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The modes and frequencies of the giant quadrupole resonance of heavy deformed nuclei have been cal- 
culated. The quadrupole operator is computed and the absorption cross section is derived. The quadrupole 
sum rule is discussed, and the relevant oscillator strengths have been evaluated for various orientations of 
the nucleus. The giant quadrupole resonances have energies between 20 and 25 MeV. The total absorption 
cross section is about 20% of the giant dipole absorption cross section. Of particular interest is the occurrence 
of the quadrupole mode which is sensitive to the nuclear radius in a direction of approximately e=i?r from 
the symmetry axis. This may give information on the details of the nuclear shape. 

I. INTRODUCTION if the model is still applicable, the giant quadrupole 

T HE predictions of the hydrodynamic model of 
the giant dipole resonance have been found to 

agree with the ex~erimental facts in very great detai1.l-B 
As a matter of fact, no real discrepancies between the 
predictions of the model and experimental results 
have as yet turned up. I t  thus seems important to 
develop the model further in order to find its limits of 
validity. 

In this paper we develop the theory of the giant 
quadrupole resonance for deformed nuclei with a rigid 
boundary condition, the so-called "static" theory. This 
step is analogous to the static theory of the splitting of 
the giant dipole re~onance.~~* We shall see that the 
splitting of the quadrupole resonance is of the order of 
5-6 MeV compared with about half that amount for 
the giant dipole resonance. The splitting of the giant 
quadrupole resonance is of interest also in the following 
connection. In the Same way as the giant dipole res- 
onance is sensitive to the nuclear axes in three orthog- 
onal directions, the giant quadrupole resonance is 
sensitive to the nuclear radius in five directions. Thus, 
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resonance, together wiihthe giant dipÖle resonance,-can 
reveal rather fine details of the nuclear shape. 

In this paper we do not treat the rotations and 
vibrations of the nucleus. The results obtained are thus 
valid only for the coordinate system fixed relative to 
the nucleus, the so-called intrinsic coordinate system. 
They would be valid also for the laboratory system for a 
nucleus with infinite spin which could have a fixed 
direction in the laboratory. The obtained eigenenergies 
have the Same meaning and usefulness as those of the 
equivalent step in the theory of the giant dipole res- 
onance. They give the qualitative picture, and they 
serve as input Parameters to the coinplete theory which 
treats the giant resonances together with the vibrations 
and rotations. 

The experimental situation concerning the giant 
quadrupoc resonance is still alrnost void of~results; this 
is so mostly because of the experimental difficulties 
(the giant quadrupole resonance lies on the back of the 
much larger giant dipole resonance). I t  is, however, of 
great interest to determine whether or not the hydro- 
dvnamic model is still a ~ ~ l i c a b i e  for the giant auad- 

a A 

rupole resonance, i.e., whether or not this resonance 
actually exists with a width comparable to that of the 
giant dipole resonanceg as assumed in a previous 
communi~ation.'~ This would have to be expected if 
the hydrodynamic model is still applicable a t  the 
energy of the giant quadrupole resonance which is 
about 1.6 times higher than the giant dipole resonance. 
The breakdown of the hvdrodvnamic model should be 
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DIPOLE QUADRUPOLE 

FIG. 1. Schematic showing the motion of protons and neutrons 
for the giant dipole and giant quadrupole vibrations in a sphencal 
nucleus. 

correlations of the nuclear wave functionsu which is 
about l@l3 Cm. The "second-sound" wavelength of the 
giant dipole resonance is about X=k-1=2.7X10-13 Cm, 
while it is only about X~1.7X10-l3 cm for the giant 
quadrupole resonance, i.e., it is already quite close to the 
two-body correlation length. I t  must be emphasized a t  
this point that this breakdown is not limited to the 
hydrodynamic model. For identically the Same reasons, 
the long-range correlation shell-model description, 
nowadays called the "particle-hole" picture, becomes 
inadequate a t  higher energies (or larger momentum 
transfers in electron scattering). There the quasi- 
deuteron effect becomes the predominant mechanism. 
We hope by this discussion to stimulate some interest 
among our experimental friends regarding this energy 
region. 

Briefly, the paper is organized as follows. In Sec. I1 
the general results of the hydrodynamic model are 
given. In  Sec. I11 three methods for obtaining the 
solution to the Helmholtz equation in a deformed 
nucleus are discussed. In this section we also evaluate 
the quadrupole energies for a spherical nucleus. In 
Sec. IV the expression of the photon quadrupole oper- 
ator in terms of the collective coordinates is derived, 
and in Sec. V the photon absorption Cross section is 
calculated and the sum rule is established. Section V1 
exhibits the computation of oscillator strengths in the 
intrinsic System for various cases. Finally, we have 
sumrnarized the results and discussed their physical 
aspects in Sec. VII. 

11. THE HYDRODYNAMICAL MODEL 

In  the hydrodynamic mode112J3 it is assumed that the 
internal motion consists of a flow of protons and 
neutrons in opposite directions such that the changes 
in the proton and neutron densities, p, and p„ cancel in 
the total nuclear density, po. The static theory in 
addition considers the nuclear surface to remain fixed. 
The restoring force is supplied by the sqmmetry energy. 

l1 J. H. D. Jensen, Angew. Chemie 76, 69 (1964). 
12 J. H. D. Jensen and H. Steinwedel, Z. Naturforsch. 5a, 413 

(1950). 
M. Danos, Ann. Physik 6,265 (1952). 

Writing 

the motion is described by 

together with the boundary condition appropriate to a 
rigid surface, 

h . v q I + = R = h ' f  Ir-R. (3) 
Here 

k2 = (1 +iI'/w) , (4) 

In these expressions K is the syrnmetry energy constant, 
M* is the effective nucleon mass introduced to allow 
for virtual meson exchange,11.14 E is the externally 
applied electric field strength, and F is the width of the 
resonance. In Eq. (3) f i  is a unit vector normal to the 
surface. 

The dipole and quadrupole modes are schematically 
depicted in Fig. 1. 

111. THE SOLUTION T 0  THE HELMHOLTZ 
EQUATION 

Owing to the 7 vibrations of the nuclear surface, the 
instantaneous shape of the nucleus is in general triaxial. 
Therefore, no tabulated functions are available to 
express the solutions of (2) in closed form. We shall use 
two approximation methods to obtain solutions and 
check the results in the limiting case of axial symmetry 
against the exact solutions in an ellipsoidal nucleus 
where tabulated spheroidal wave functions are avail- 
able. In  the first of the two approximation methods 
which we refer to as the expansion method, we treat 
the wave equation in spherical coordinates. The general 
solution is then expressed as a linear superposition of 
spherical waves. The expansion is performed to first 
order in the nuclear deformation Parameters. The 
eigenvalues are obtained upon satisfying the boundary 
conditions. For the second method we use a variational 
technique to obtain the eigenvalues of the deformed 
state. 

A. The Expansion Method 

When the wave equation is expressed in spherical 
coordinates, the general solution that is finite a t  the 
origin is 

W L  

V (r) ' C C C L M ~ L  (Kr) YLM(~, (P) . 
L 4  M-L 

(8) 

14 M. Danos, University of Maryland Technical Report No. 
221, 1961 (unpublished). 
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The origin of the coordinate system is the center of 
mass of the nucleus. In  this approach we calculate the 
gradient of (r) and equate the scalar product 4 .  Vv (r) 
and the scalar product 4.f, both of which are evaluated 
a t  the surface. In this manner we obtain the coefficients 
CLM in terms of the electric field and the wave number k. 
By finding the poles of these coefficients as functions of 
the energy, we obtain the eigenvalues. 

To calculate the Vy(r) we use the gradient formula15 

where the vectorial spherical harmonics are defined by 

The E ,  are the spherical basis vectors 

with the orthonormality relations 

The gradient of 7 (r) is calculated by applying Eq. (9) 
to Eq. (8). The obtained expressions, together with 
several other long formulas, are given in Appendix A. 

We express the normal unit vector in terms of the 
spherical unit vectors as 

1 

?I= C .,L 
,=-I 

(13) 

and consider the coefficients (Y, as functions of the 
surface deformation parameters, ao and a2, defined in 
the usual manner 

Expressions for the (Y, are given in Appendix A. 
We still need to evaluate the spherical Bessel func- 

tions a t  the surface, Eq. (14). We do this by expanding 
the spherical Bessel functions jh(kR) in a Taylor series 
about R= Ro and retain only terms to first order in the 
deformation parameters. We have 

The prime denotes differentiation with respect to the 
argument z= KR. The expression for the nom~al gradient 
obtained in this way is again given in Appendix A. 

We now evaluate 4 - f  a t  the surface. Let us consider 
a plane, circularly polarized wave traveling in the 
direction s, with wave number s =  I S I .  Then 

E =  &oapeiur  (16) 
and 

d,= (l/\iz) (dl+iPzZz) , (17) 

" M .  E. Rose, Elementary Theory o j  Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

with ab 42, and s/s real unit vectors forming a right- 
handed orthogonal Cartesian coordinate system. P is 
the polarization index with P= 1 corresponding to left 
circularly polarized waves, and P= -1 to right cir- 
cularly polarized waves. 

Using the well-known expansioii for a plane wave 

we obtain the multipole expansion of a circularly 
polarized plane wave15 in the coordinate system used 
in Eq. (14), i.e., in the "intrinsic coordinate system," 

C= CL CM iL(2L+1)1/2a)Mp(L)(~ßy) 
X ( A L M ~ + ~ ~ A L M ~ ) ,  (19) 

where 

The a>~fp(~)(aßy)  are the rotation matrices and (Y, ß, 
and y are the Euler angles. 

We wich to consider a plane polarized wave. We thus 
must consider an appropriate superposition of left 
circularly polarized and right circularly polarized waves. 
For a = ß = y =  0 we choose E along the X axis and s 
along the z axis. Thus 

Finally, keeping only the quadrupole term we have 

where 
d ) ~ * ( ~ ) =  9 , ~ 1 ( ~ ) f  9M-1(2). (24) 

For energies of the order of 25 MeV, we have sRo 
=ERo/hc=0.9. Hence, we may neglect j3(sr) in our 
calculations since it will be a t  most only about 301, of 
j~(sr) .  

Using the expression for the vectorial spherical 
harmonics, and Eqs. (19), (20), and (21), we obtain 

Let us now consider the scalar product 4.8. Since 4 
contains the angular functions Y1, and Yav only, in 
combining with Yz, the parity rule will restrict the 
scalar product to terms such as Y1„, Y3v,, and YS~,, 
while in combining with Y1„ we will obtain only terms 
Yoo, Yzvt, and Ydv'. Since we are interested only in the 
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TABLE I. Directions of the incident photon and electric field, and 
the related quadrupole modes which are excited. 

Excited 
modes 

a ß r  s E (ao=az=O) 

0 i n  0 4sd(2+2) 6 soa(2 -2 )  Y20 and 
(Y22+Y2-2) 

$T 0 )s(x+9+42$) (go/2) (2+9-v22) YZO and 
(Yzz- Y2-2) 

quadrupole oscillations, we need only the terms 
involving Y1, in Eq. (25). The scalar product with the 
normal is then 

4 - E = - iGOa($)U2 jl (sr) {C-  a- lD~-(~)  (6)-'I2 
+aoa)-l-(2) (2)-'I2- a+la)-2-(2)]Y1,-1 
+ [- a-1 (2)-1/2+a~a)o-(2) ($)lI2 
-a+lD~1~(2)]Yio+[-a(Y1D2-(2) 

+aoa)~-(2)(2)-'~2-~+~~o-(2)(6)-'i2]Y11). (26) 

To evaluate Eq. (26) a t  the surface, we again perform 
a Taylor expansion of jl(sR) to first order in a, about 
the point sR0. 

The prime denotes differentiation with respect to the 
argument 4= SR. We give the resulting expressions in 
Appendix A. 

To evaluate the coefficients CLM for L= 2, we consider 
the boundary condition Eq. (2). These coefficients may 
then be obtained by equating the corresponding coeffi- 
cients of the Yx,. This procedure will produce a set of 
simultaneous equations. From these equations we 
obtain to first order in ao and az 

C2o=B2o/A22, 

Czz*= (B22=tB~-z)/A 33 , (28) 

C d =  (Fzlf F2-1)/(Ellf Elzaz), 
with 

B2o= - tif sin2ßC- 3 ( 6 ~ / 5 ) " ~ j l  
+ (jl-3C;j;) (6112a~+2a2 cos2a)/7], 

Bz,,%= - tif sin2ßc3 (.rr/5)'I2 jlekZia 
+ (jl-3.$j11) (aoe*2da-6112a~)/7], (29) 

F2,*1 = ~ i i f  cos2ß[3 (~ /5) '1~  jlekia 
- (jl- 3 t  j;) (aoe*ia+6112a~e'ia)/7], 

and 
10($a)'12Aza=X-aoY, 

1 0 ( $ ~ ) ' / ~ A ~ ~ = X + a o Y ,  (30) 

1 0 ( $ ~ ) ~ 1 ~ ( E l ~ f  E12a2) = X-4 ( a 0 i 5 ~ I ~ a ~ )  Y ,  

where 

The argument of the spherical Bessel functions above 
is z= kRo. 

To begin with, we shall evaluate the CLM for an 
undeformed nucleus for which the different modes are 
degenerate. The electric field directions associated with 
diverse photon polarizations and directions are listed 
in Table I. We thus look for those choices of the Euler 
angles a, P, and -y which maximize the coefficients as 
given by (28). In comparison with the dipole resonance, 
for which the oscillations are in the direction of the 
electric field, the directions of the quadrupole oscilla- 
tions are a t  an angle of $T with respect to the direction 
of the electric field. The characteristics of the eigen- 
modes for the quadrupole oscillations are summarized 
in Table 11. 

The eigenmodes in Table I1 are those corresponding 
to the undeformed nucleus. A finite deformation will 
produce not only a change in the frequency of the 
oscillation but also a change in the direction of max- 
imum displacement. Specifically, from (28) we find the 
results as summarized in Appendix A. 

In order to calculate the eigenfrequencies and 
eigenenergies, we look for the Zeros of the denominators 
in (A4). We have expressed these denominators in 
the form 

X+A~MBY '0, (31) 
where 

Since -3 j3(z)+2 jl(z)= 5ji(z),  we See that for the 
undeformed nucleus, the eigenfrequencies occur a t  the 
maxima and minima of jz(z). From 3j3(z)=2jl(z), 
there follows 

cotz = (9 - 4z2)/z(9- z2) . (33) 

Then C ~ M  for a,= 0 has the poles given in Table 111. 
To calculate the eigenvalues for the deformed nucleus, 

we perform an expansion about the undefonned eigen- 
values Zn. 

Let 
zn=Z,+Azn. 

TABLE 11. The 
directions of the 
f rom equilibrium. 

quadrupole modes and their corresponding 
maximum displacement of the proton fluid 

Direction of 
maximum oscillation Perjodicity 

Mode O P  P 

Yzo 0 ... ... 
Yzi+Yz-i $T fa a 
Y21- Yz-1 $T 0 T 
Yzz+Yz-2 fa 0 f X 
1'22- Yz-2 $T $T +T 

-- 
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Then 

Y (2,) = Y (Zn) . (35) 

Thus 
Azn= -A2M'Y(zn)/x1(zn) 

or 
(36) 

Since 
~ ~ ~ v I ~ ' R o =  Zn 

and 
konRo= Zn, 

we then have 

For n= 1,Zn=3.342, we find 

Thus (dropping the superscript 1) 

Since the energies are proportional to the wave 
numbers k s ~ ~ ,  the above relationships also hold true 
for the energies. Thus for n= 1 

where EO is dependent upon A, N, and Z (see Sec. IIID). 
We note that kzo and k2*2 of Eq. (40) are in first-order 
independent of the nuclear asymmetry parameter a2. 
This can be understood from Fig. 2 where the mode 
(Y22+Y2-2) is shown for az>O and a2<0. [ A  similar 
situation exists for (Y22-Y2-2).] In  both cases this 
quadrupole mode "sees" a minor and a major axis 
simultaneously. Therefore, no linear dependence of the 
energy on az can be expected for this mode. 

B. The Variational Calculation 

In order to obtain the energies of the quadrupole 
oscillations to second order in the deformation Daram- 
eter ao, we use a variational approach. The expansion 
method of the previous section becomes too involved 
to be practicable. The variational approach has been 
used by Inopin16 for the dipole case. A comparison of 
his results with the exact calculations of Danos8 for the 
case of axial symrnetry shows an agreement for the 
eigenvalues within 1%. 

TABLE 111. Values of 8=kRo for which the coefficients C ~ M  are 
maximized in the undeformed nucleus. 

The technique used is described by Morse and 
Feshbach.17 For a trial solution qt, which is dependent 
upon one or more Parameters, the eigenvalue is given by 

For trial solutions we use the wave functions for a 
sphere of volume equal to that of the considered 
nucleus. Thus 

WO= j2(kor)Y20, 

v2*1= jz(kor) (Y21f Y2-11, (43) 

q2*2= jdkor) (Y22~t Yz-2) , 
with ko=3.34/Ro. To second order in ao and to first 
order in az , this calculation yields the results 

One observes that to first order in ao the expansion 
method and the variational calculation yield the Same 
result for the energy. These results are indeed intimately 

FIG. 2. Plane cut through 
the nuclear ellipsoid perpen- '2" 
dicular to the main axis. 
The shaded areas show 
s c h e m a t i c a l l v  t h e  Y 2 2 +  Y2-2 
(Y22fY2-2) giant * quad- 
rupole mode. It is immedi- 
ately apparent that this 
mode "sees" both wes 
(major and minor) simul- 
taneously. 

16 E. V. Inopin, Zh. Eksperim. i Teor. Fiz. 38, 992 (1960) 17 P. M. Morse and H. Feshbach, Metkods of TheoreGcd Physics 
[English transl.: Soviet Phys.-JETP 21, 714 (1960)l. (McGraw-Hili Book Company, Inc., New York, 1953). 
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EIE, 1 

FIG. 3. Graph of the resonance energies of the various quad- 
rupole modes in terms of the quadropole resonance energy for 
spherical nuclei Eo. 

related. Consider a superposition of the trial solutions, 
Eq. (43) 

v = C m  arnvrn. (45) 

Upon calculating Eq. (42) with this trial solution and 
minimizing with respect to the parameters arn, we would 
obtain a Set of simultaneous equations. These equations 
are precisely the Same as in the expansion method. 

C. The Exact Method 

Insofar as the nucleus may be treated as an ellipsoid 
of revolution, exact solutions to the Helmholtz equation 
(12) are obtainable. For small deformations the "quad- 
rupole shape," defined by (14), and the shape of an 
ellipsoid of revolution are identical. However, already 
a t  the nuclear deformations corresponding to ~ 0 ~ 0 . 3 ,  
the ellipsoidal and the quadrupole shapes differ some- 
what. Hence, expanding the ellipsoidal shape in 
spherical harmonics, i.e., continuing to higher values 
of E, for such a deformation the term a4Y40 would have 
an amplitude a4= 0.1. The consequences of this differ- 
ence will become apparent below. 

The exact solution is a linear superposition of 
spheroidal wave functions. These functions are solutions 
of Eq. (12) separated in spheroidal coordinates. For 
the prolate spheroid the transformations are given byl* 

z=$a$X, 
where 

l _ < E < m  1 

- l < X l l ,  (47) 

05 cp52n. 

The foci of the ellipsoid (spheroid) are z=&$a, and 
X,  y, z are the rectangular coordinates. In spheroidal 

l8 F. J. Corbato et al., Spheroidal Wave Fu~c t ions  (John Wiley 
& Sons, Inc., New York, 1956). 

coordinates a solution of (2) is then of the form 

where J([) obeys the ordinary differential equation in E 

A and m are separation constants and 

Expressed in spheroidal coordinates, the surface of an 
ellipsoid is a surface of constant 4 for a certain value of 
the parameter h, and the normal gradient operation is 
simply the differentiation with respect to 4. The 
spheroidal function can be expanded in spherical Bessel 
functions. In  the notation of Stratton et al.18 this 
expansion is 

The coefficients an(h 1 ml) are given in Ref. 18. The 
prime on the summation sign indicates that the expan- 
sion contains only even or odd n. Then 

By Eq. (51) we have 

(a/aE)jeml(h,t) 

=,(E2- l)(rn'2)-1~7n-1 Cd an(h/ml) jn+,(h[) 

The semirnajor and semiminor axes of the ellipsoid 
are given by 

a=  Ro[l+ (5 /4~ ) l /~a~ ]  (54) 

b = Ro[l- $ (5/4~)~1~a0]. (55) 

In terms of the deformation parameter ao, the parameter 
h is given by 

Furthermore, ao and the coordinate 5 are related by the 
quadratic equation 

0.299(E2- 1.333)aO2+1.893 (E2-0.667)~~- 1 = 0. (57) 

We now consider the quadrupole term, viz. E=2 in 
the expansion (52). The boundary condition yields 

(a/a4) jemz(h, E )  = 0. (58) 



151 S T A T I C  T H E O R Y  O F  G I A N T  Q U A D R U P O L E  R E S O N A N C E  767 

These equations corresponding to m=0, 1, 2 are given 
in Appendix A. By solving these equations, viz. (Ag), 
(A9), (AlO), and using (56) and (57), one obtains the 
curves (Fig. 3) relating the Parameters ao and the 
eigenvalues Es. 

D. The Resonant Energies for Spherical Nuclei 

In Fig. 3 we give the resonant energies of the funda- 
mental quadrupole modes in ternis of the energy of the 
degenerate modes of the undeformed nucleus. This 
energy, Eo, is given by 

where U is the velocity of "second sound'' in the nucleus. 
Together with (6), the energy is then 

Eo= (hZl/Ro)[(8~/M*) (hrZ/A2)]1'2 . (60) 

If we use 4NZ/A2=1, K=20 MeV, Ro=1.35A113 fm, 
21=3.34, and a=0.5 for the effective mass, Eq. (7 ) ,  
then 

230% 125A-'I3. (61) 

This value of Eo is affected by several sources of un- 
certainty. First, the value of the symmetry energy 
constant is uncertain by about &10%. Second, the 
diffuseness of the nuclear shape also affects the res- 
onance energies. Both effects have to be kiiown to 
determine the effective mass. However, since the same 
effects are present in the dipole as in the quadrupole 
resonance, they will presumably have little influence 
on the ratio 

E q u a d r u p o i e  
= 1.6. 

E d i p o l e  
(62) 

IV. THE QUADRUPOLE OPERATOR 

The electric quadrupole moment operator in the 
laboratory system, Q„ is obtained by transforming the 
quadrupole operator in the intrinsic system Q, with 
the rotation lnatrices 

The operator in the intrinsic system is defined as 

The integral is taken over the nuclear volume with the 
proton distribution p, given byl 

Here p,(O) is the equilibrium proton density. The F, 
are normalization factors. T, characterizes the amplitude 
of the quadrupole oscillation associated with the mode 

p. If we assume hannonic quadrupole oscillations, then 
the potential energy assumes the form 

The C, are constants which are to be determined. 
In the hydrodynamic model the potential energy is 

given byl 
P 

po is the nucleon density. The integration is again 
taken over the nuclear volume. b is a constant. Equat- 
ing Eqs. (66) and (67), we have 

Upon calculation of the integrals with the wave 
functions 

we obtain the expressions for the C„ which are given in 
Appendix B. 

Let us now define 

This is the intrinsic quadrupole operator resulting only 
from the nonspherical shape of the nucleus. I t  is nonzero 
already for q=O, i.e., for a uniform proton distribution. 
We find 

We now introduce the annihilation and creation 
operators for the quadrupole oscillations, q ,  and q?, 
respectively : 

which, actually, is also a defining equation for the 
mass Parameter B. The amplitudes T thus are related 
to the annihilation and creation operators by 

and W,= k2,u. This relation insures that T,*= (-)MT-,. 
A change in notation with respect to previous calcula- 
tions1v2 has been introduced in order to conform to the 
standard phase conventions. We list the expressions for 
the intrinsic quadrupole operators in Appendix B. 
From these formulas, Eq. (B2), one can easily give an 
estimate of the induced quadrupole moments, which are 
Q,-Qpl. We find Qo-Q;=3 b while Q(=5 b. Thus 
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the induced giant resonance quadriipole moments are of Since 
the Same order of magnitude as the intrinsic quadrupole 4 (0) 
moments of the nuclear shape. H 4 = 3  C Q.--.- 23 

i , j  dxi J 
(82) 

V. PHOTON ABSORPTION CROSS SECTION the elements of the matrix may be expressed as 

The explicit expression we use for the total photon ( l H ~ j ) ~ o = $ i s & o e - ~ ~ ~ ( j  X QijMijl}no. (83) 
absorption cross section is1,19320 i , j  

2n 1 rEnO Using s=o/c= E/hc, we find for the Cross section 
un(E)=- - 

Ac &02 
I (H~)nol 

(En0- E)2+$rZ 
(74) E ~ E ~ ~ ~ ~  r 

uPn (E) = 2n- I(IQI>no12 
(Ezpn0-E)2+$r2 ' 

(84) 
H Q  is the quadrupole interaction and is the width of (Ac) 
the resonance. where we have denoted the mode by the subscript p, and 

For a localized charge distribution p(r) placed in an the energy level by n. we have also defined external potential @(r), the electrostatic interaction of 
the system is Q=Q C QijMij. 

i , j  
(85) 

w=/p(r)@(r)dV. (75) 
We now calculate the integrated cross section and 

the quadrupole sum rule. Following Khokhlo~,~ '  we 
Expanding the potential around an origin chosen a t  the h„ the „, nile 
Center of the nucleus, we have 

Here q and d are the total charge and the dipole moment, with (E)  = C n  g,n (E). riI tlle limit as r -t 0 the 
respectively. Q, is the quadrupole nioment given by function 

r 
es= e/ ( 3 ~ ~ ~ -  r26dp (r)d V .  (77) (EzcnO- E)'+$r2 

Upon comparison of Eq. (77) with Eq. (64), we obtain 
the explicit expressions for the Qij as listed in Appendix 
B. The Q,' do not have to be included since the matrix 
element of these operators between the ground state 
and a giant -E2-state vanishes. 

To calculate 8Ej(0)/dxi we consider an incident 
plane wave traveling in the direction s with wave 
number s and frequency o with the electric field 
polarized in the direction d 

~ = d B ~ ~ i ( s . r - ~ t )  (78) 

where I dl = 1. Writing the Cartesian coordinates as 

s=si5?+s2g+s32, 

u=  u$+u%~+ U&, 
(79) 

the gradient of E evaluated a t  the origin becomes 

VI(O) = i~Eo[M]e-~~~. (80) 

[M] is a (3x3)  matrix with components 

Mi; = siuj/s. (81) 

l@ S. Flugge, Z. Naturforsch. 1, 121 (1946). 
20 S. Flugge, Z. Naturforsch. 3a, 97 (1948). 

behaves as a Dirac delta function, 2d(E-Ez,"O), 
upon integration over the energy from 0 to W .  To apply 
this sum rule, we have to include a factor N / A  which 
has its origin in the fact that the hydrodynamic model 
contains only the "second sound" part of the sum rule 
in which the protons and the neutrons move in opposite 
fashion. For example, the contributions of surface 
vibrations where protons and neutrons move together 
have to be excluded here. We now define the E2 
oscillator strengths by 

TABLE IV. Oscillator streneths and cross sections for the auad- 
rupole modes of 68EP6 for The Special onentations of ~ a b l e  I. 
E2, is obtained from the vanational calculation. W,=EZ17/ 
[ ( E Z , - E ) ~ + ~ ~ / ~ ] .  

E Y ~  b?(E)IWn 
P zf201(Ro2NZIA) (MeV) (mb/MeV) 

0 0.866 20.3 5.54><10* 

2lK. Y. Khokhlov, Zh. Eksperim. i Teor. Fiz. 32, 124 (1957) 
[English transl.: Soviet Phys.-JETP 5, 88 (1957)l. 
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TABLE V. Excitation energies for the quadrupole modes in heavy deformed nuclei. The values of E2 are calculated using the variational 
technique, except for the last column. Comparison of the mean value of and EzWl with the value obtained by the ellipsoidal treat- 
ment (Exact) indicates that in some cases there is a difference of as much as 1 MeV in the eigenenergies.8 

Mean Exact 
Eo Ezo E2+2 &+I Ez-I EZ+I Ez+i 

Element ao a2/a0 (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) 

64Gd164 0.33 0.162 23.5 20.8 25.9 22.6 21.8 22.2 23.0 
64Gd'66 0.41 0.132 23.4 20.0 26.3 22.1 21.3 21.7 22.8 
64Gd168 0.46 0.125 23.3 19.4 26.6 21.7 20.7 21.2 22.7 
„Gd'@0 0.47 0.134 23.2 19.2 26.5 21.6 20.6 21.1 22.6 
„ErlBB 0.33 0.155 22.9 20.3 25.2 22.1 21.3 21.7 22.4 
„Er168 0.33 0.150 22.8 20.2 25.1 22.0 21.2 21.6 22.3 
9flhzm 0.23 0 20.6 19.0 22.0 19.9 19.9 19.9 20.3 
,oTh232 0.25 0 20.5 18.8 22.0 19.7 19.7 19.7 20.1 

In these calculations we have used Eo =125A-'18, E 2 0  =Eo[l -0.284~0 -0.186aa2l. Ezii =Eo[l -0.142(aof (6)lfza2)-0.077aa~], and Eziz =Eo[lf 0.284ao 
+0.048aa2]. 

then comparison of (84) and (86) shows that 

Let us define [see Eq. (B3)] 

Qcj= 0.492e(poRo6/~)1/2Nij. 
Since 

PO= A/$aRo3, 
then 

where f2lo is in 10-26 cm2, I' and E in MeV, and a,'(E) 
in mb. Let us consider as an example a nucleus with 

(88) the parameters of 68Er'66. Frorn low-energy data 
ao=0.33 and, effectively, a2=0.051. If we assume 
M*=00.57M and Ro= l.2A1l3 fm= 6.6 fm, then Eo= 22.9 
MeV. The results are summarized in Table IV and are 

(89) for the cases listed in Appendix B. The total cross 
section for the energy E is given by 

In terms of the oscillator strength, the photon absorp- 
tion cross section for the region of the giant quadrupole 
resonance is 

VI. CALCULATION OF THE OSCILLATOR 
STRENGTHS AND TOTAL ABSORPTION 

CROSS SECTION 

We begin by considering the case of a spherical 
nucleus. Then kz,'= ko, wpl=wo and Rz,= RO. Equation 
(90) for n= 1 then becomes 

(90) VII. RESULTS AND DISCUSSION 

Let a and ß be the Euler angles defining the direction 
of the incident photon with wave vector s in the intrinsic 
coordinate System. We consider the four separate 
cases as given in Table I. These cases correspond to 
different orientations of the nucleus with respect to the 
incident photon beam. The explicit formulas are given 
in Appendix B. 

We now turn to defonned nuclei. The cross section for 
the mode p is 

E2r 

In a spherical nucleus the five quadrupole modes of 
oscillation are degenerate. However, they are not 
degenerate in a deformed, triaxial nucleus, and they 
have, to a good approximation, angular distributions 
proportional to Yzo, (Yzif Y 2 4 ,  (Y224 Y2-2). Of 
particular interest is the result that the eigenfrequencies 
of the (Yzlf Yz-1)-distributions depend strongly on 
the form of the deformed n ~ c l e u s , ~  e.g., whether i t  is 
an ellipsoidal shape or a quadrupole shape where 
R =  R~(lfaz,Y~,) (Fig. 3). Since the (Yz1f Y2-J modes 
are peaked a t  O=nn/4, we compare the radial distances 
of the ellipsoidal shape and the quadrupole shape in 
this direction, assuming axial symrnetry. We have 
for an ellipsoid 

Re? = 2a2b2/ (a2+ b2) , (95) 

where a and b are the semimajor and semiminor axes of 
the ellipsoid, respectively. We then find 

R,i= R0[1+4(5/4a)'/~ao- (15/16a)ao2+. . -1. (96) 

For the quadrupole shape we have 

Rq= Ro[l+$ (5/4~)~/~ao] .  (97) 

Hence, the ratio of the change in the radial distance a t  
a/4 as a function of ao is 

AR,i/ARq - 1 - 3 (5/h)1/2a~. (98) 
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With ao = +, we then find 

where AEq and AE,i are the shift of the mean resonant 
energies of the modes (Y2lf Yz-1) in the cases of quad- 
rupole shapes and ellipsoidal shapes, respectively. 
The difference in the resonant energies for these modes 
is thus significant enough to shift the position of the 
maximum cross section by as much as 1 MeV. This 
difference is shown explicitly for heavy nuclei in 
Table V by comparison of the variational calculation 
(mean) and the ellipsoidal calculation (exact). As ao 
becomes large, (98) becomes inaccurate since the 
direction of maximum oscillation for these modes is 
then a t  an angle less than $T. 

We now make a few remarks about the magnitude 
of the errors involved in the calculation and the 
validity of the model. As noted in Sec. IIIB, the energies 
as calculated by the variational method could be 
improved by considering the trial wave functions as a 
sum of spherical harmonics and varying the coefficients 
to obtain the closest approximation to the exact wave 
function and its corresponding eigenvalues. This 
procedure was followed in certain modes, but the values 
of the eigenenergies were decreased by less than 0.5y0. 

The calculation of the resonant energy of the unde- 
formed nucleus in Sec. IIID depends on the values of K 

and M*. The uncertainties in these values result in an 
uncertainty of the resonant energy of about 20%. 
However, this uncertainty will have a very small effect 
on the shape of the cross section and the splitting of the 
resonance for a deformed nucleus. The value of E0 for 
the quadrupole resonance can be expected to appear at  
1.6E<, where E< is the position of the giant dipole 
resonance. Therefore, from the knowledge of the latter, 
we can precisely detennine the position of the quad- 
rupole resonance. Another significant change in the 
resonant energies would be expected to result from a 
consideration of a dynamic theory. We have here 
neglected the coupling of the quadrupole oscillations 
with surface vibrations (-1 MeV), rotational modes 
(-100 keV), and single particle motions (-500 keV). 
The inclusion of these interactions for a dynamic 
treatment of the problem should constitute the next 
step in the theory of the giant quadrupole resonance. 

The experimental problenis involved in the detection 
of the giant quadrupole resonance are considerable. In 
the multipole expansion of the radiation field, the 
quadrupole term is about SR times as big as the dipole 
term. For sRz0.7 the ratio of the cross sections would 
then be about 0.50 since the cross section is proportional 
to the Square of the matrix element. Furthermore, the 
tail of the dipole resonance in the quadrupole resonance 
region is still 10yo to 20Yo of its maximum value. If 
direct photon absorption experiments were performed, 
it would be necessary to subtract the dipole contribution 
in the energy region under consideration to obtain the 

quadrupole resonance. A more sensitive experimental 
technique perhaps might be inelastic electron scattering 
a t  an angle for which the dipole contribution to the 
scattering has a minimum; the quadrupole contribution 
would not be depressed a t  that angle. The drawback 
here would be the difficulty in the subtraction of the 
radiation tails associated with the inelastic scattering 
events leading to all nuclear levels which have lower ex- 
citation energies than the desired level. In balance, none 
of the possible experiments are simple in interpretation. 

APPENDIX A 

We list here several long formulas which were 
obtained in the solution of the Helmholtz equation in 
Sec. 111. 

In terms of spherical unit vectors, the expansion of 
vr(r) ,  Eq. (81, is 

The expansion coefficients of the normal unit vectors 
in terms of the spherical unit vectors, Eq. (13), is 

The expression for 4 . v ~  1 ,=E, after expansion up to 
terms linear in ao and a2, is of the form 

where the coefficients WLM are given in Ref. 22. They 
are too long to be listed here. 

The excited modes and the corresponding quadrupole 
expansion coefficients, using the abbreviations CLM* 
= CLM~CL-M,  are 

a=O, ß=O, y = o  
C2o=C21+=C22+=C22-=0, 

Czl- = if[42 ( ~ / 5 ) ' / ~  jl- (jl- 3 l  jl') (a0+6'/~a2)]/ 
[14(E11-E12a2)]. (A4) 

22 C. B. Kohr, thesis, University of Maryland, 1965 (unpub- 
lished). 
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with 
c = 0.1 ~ ~ K ~ ~ ( O ) R O ~ / ~ ~ .  

Czl+= if[42 ( ~ / 5 ) ' / ~  j1+ (jl-35- j ~ ' )  (a0-6~~~az)]/ 
The expressions for the intrinsic quadrupole operators 

[14(El l+El~a~)l .  (A5) „, 
a = O ,  @=?T, y=O 

For the spheroidal (exact) calculation the eigenvalue 
equations resulting from the boundary condition, Eq. 
(58), are 

APPENDIX B 

Several of the longer formulas obtained in the 
calculation of the quadrupole Operator and the absorp- 
tion Cross section are given here. 

The constants C, in Eq. (66) are given by 

The Qij  as defined by Eq. (77) are 0.492e(p0R0~/~) '~~ 
XIVij [see Eq. (89)], where 

We now list the oscillator strengths for special 
orientations of the nuclei. These orientations are those 
of Table I and correspond to those for which each mode 
has its maximum excitation. The values given are for 



D A N O S ,  G R E I N E R ,  A N D  I < O H R  

P H Y S I C A L  R E V I E W  V O L U M E  1 5 1 ,  N U M B E R  3 1 8  N O V E M B E R  1 9 6 6  

Convenient Analytic Form for the Deuteron Wave Function* 

IAN J. MCGEE 
Department of Physics, University of Wisconsin, Madison, Wisconsin 

(Received 6 June 1966) 

A convenient analytical form for the deuteron wave function is presented which reproduces the static 
properties of the deuteron, and is in accord with numerical wave functions which fit neutron-proton scatter- 
ing data up to 300 MeV. 

D EUTERON wave functions in numerical form have 
been obtained by several groupsl from nucleon- 

nucleon potentials which reproduce the phenomeno- 
logical phase Parameter fits to the two-nucleon scatter- 
ing data up to several hundred MeV. The object of this 
note is to present approximate expressions for one of 
these numerical wave functions which is convenient and 
accurate for most cases of interest. 

The motivation for the analytic fonn used in this 
paper Comes from several sources. However, i t  is suffi- 
cient for purposes of ill~istration to indicate the approach 
from the work of Bertocchi et aL2 Their work shows that 
for neutron-proton potentials describable as a sum of 
Irukawa forms, the S and D states of the deuteron wave 
function can be written in coordinate space in the form: 

. , 
* Work supported in part by the University of Wisconsin 

Research Committee with funds granted by the \Visconsin 
Alumni Research Foundation and in part by the U. S. Atomic 
Energy Commission under Contract No. AT(l1-1)-881, No. 
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and in momentum space as 

* a, (z)dz N 
-- 

' ( P ) = N ~  

r n f f d ( ~ ) d ~  pN 
-- - G ( P ) = p ~ l  -- 

p2+z2 p2+a2 
where 

the fiinction 0 being the unit step function. Here X is 
the minimum decay constant which appears in the 
potential, ai is given by the deuteron binding energy E, 
a= (me)U2, p is the asymptotic D to S ratio, and N is 
the wave-function normalization, given in terms of the 
deuteron effective range p (- E, - E) by 

The weight functions ai(z) in Eqs. (1) and (2) are 
subject to the subsidiary conditions3 

These sum rules are reqiiired to guarantee that the 
wave functions be finite a t  the origin and have the 
correct indicial behavior. 

thank Professor L. Durand, 111, for calling his attention to this. 
See also Ref. 3. 


