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Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted
to become the third most common cause of death by 2020. Apart from the important preventive
steps of smoking cessation, there are no other specific treatments for COPD that are as effective
in reversing the condition, and therefore there is a need to understand the pathophysiological
mechanisms that could lead to new therapeutic strategies. The development of experimental
models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease
characterized by progressive airflow obstruction of the peripheral airways, associated with lung
inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have
been developed but are limited in comparison to models of allergic asthma. COPD models usually
do not mimic the major features of human COPD and are commonly based on the induction of
COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen
dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious
stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved
by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are
based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such
mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to
mimic irreversible airflow obstruction, associated with cough and sputum production, with the
possibility of inducing exacerbations.

Introduction
The global burden of disease studies point to an alarming
increase in the prevalence of chronic obstructive pulmo-
nary disease (COPD) [1] which is predicted to be one of
the major global causes of disability and death in the next
decade [2]. COPD is characterized by a range of patholo-
gies from chronic inflammation to tissue proteolysis and
there are no drugs specifically developed for COPD so far.
Cessation of cigarette smoking is accompanied by a reduc-

tion in decline in lung function [3] and is a most impor-
tant aspect of COPD management. The mainstay
medication consists of beta-adrenergic and anticholiner-
gic bronchodilators; addition of topical corticosteroid
therapy in patients with more severe COPD provides may
enhance bronchodilator responses and reduce exacerba-
tions [4].
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In contrast to the large amount of experimental studies on
allergic asthma and the detailed knowledge that exists on
mediators of allergic airway inflammation [5,6], much
less has been conducted for COPD. More effort and
resources have been directed into asthma research in com-
parison to COPD. The available insights into the patho-
genesis and pathophysiology of asthma may help to
improve research in COPD [7]. Many research centres that
previously focused on asthma now also investigate mech-
anisms of COPD. Using molecular and genetic
approaches, an increasing range of molecules has been
identified that could underlie the pathogenic inflamma-
tion of chronic allergic airway inflammation [8]. Based on
these findings and on new ways of administering drugs to
the lungs [9], a new image of overwhelming complexity of
the underlying pathophysiology of COPD has emerged
(Figure 1). The current challenge in COPD research is to
identify the role of the various mediators and molecular
mechanisms that may be involved in its pathophysiology,
and obtain new treatments. In addition, it is incumbent to
understand the effect of smoking cessation on the patho-
genetic process.

Studying the molecular pathways in human subjects is
restricted to the use of morphological and molecular
assessment of lung tissues obtained at surgery or perform-
ing limited in vitro studies at one single point in time
[10]. There is a need for in vivo animal models to examine
more closely pathogenesis, functional changes and the
effects of new compounds or treatments. However, ani-

mal models have limitations since there is no spontane-
ous model, and models do not necessarily mimic the
entire COPD phenotype. The best model remains chronic
exposure to cigarette smoke, since this is the
environmental toxic substance(s) that cause COPD in
man. However, other substances are also implicated such
as environmental pollution due to car exhaust fumes. The
present review draws attention to specific aspects of func-
tional and structural features of COPD that need to be
realized when interpreting molecular mechanisms identi-
fied in animal models of COPD. It identifies important
issues related to the ongoing experimental COPD research
which may in the future provide optimized COPD diag-
nosis and treatment.

COPD
Clinical features
Before characterizing and discussing the different animal
models of COPD which have been established so far, it is
crucial to reflect that within COPD, different disease
stages exist and that only some of them may be mimicked
in animal models. The diagnosis of COPD largely relies
on a history of exposure to noxious stimuli (mainly
tobacco smoke) and abnormal lung function tests. Since
COPD has a variable pathology and the molecular mech-
anisms are only understood to a minor extent, a simple
disease definition has been difficult to establish. How-
ever, the diagnosis of COPD relies on the presence of per-
sistent airflow obstruction in a cigarette smoker [4].

A classification of disease severity into four stages has
been proposed by the GOLD guidelines based primarily
on FEV1 [4]. The staging on the basis of FEV1 alone as an
index of severity for COPD has been criticised. A compos-
ite measure essentially based on clinical parameters
(BODE) has been shown to be better at predicting mortal-
ity than FEV1 [11]. The natural history of COPD in terms
of evolution of FEV1 remains unclear and the temptation
is to regard the stages as evolving from Stage 0 to Stage 4.
Just as many smokers do not develop COPD, it is possible
that the disease may not progress from one stage to the
next. Some patients with severe COPD are relatively
young and it is not clear if early stages of their disease are
similar to those found in patients with mild COPD.
COPD is a heterogeneous disease and different possible
outcomes may occur at each of the stages. Experimental
modeling of each stage of severity may be a way of provid-
ing an answer to this issue. Animal models may also help
to provide a better classification of severity by correlating
biochemical, molecular and structural changes with lung
function and exercise tolerance.

Pathophysiology
The presence of airflow obstruction which has a small
reversible component, but which is largely irreversible is a

Potential pathogenetic mechanisms involved in COPDFigure 1
Potential pathogenetic mechanisms involved in 
COPD Exogenous inhaled noxious stimuli such as tobacco 
smoke, noxious gases or indoor air pollution and genetic fac-
tors are proposed to be the major factors related to the 
pathogenesis of COPD. These factors may influence protease 
activity and may also lead to an imbalance between pro-
inflammatory and anti-inflammatory mediators.
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major feature of COPD as indicated by the Global Initia-
tive for Chronic Obstructive Lung Disease (GOLD) guide-
lines [4]. It is proposed to be the result of a combination
of small airways narrowing, airway wall inflammation
[12] and emphysema-related loss of lung elastic recoil
[13,14]. These features differ to a large extent to findings
observed in bronchial asthma (Table 1) where airflow
obstruction is usually central, while involvement of the
small airways occurs in more severe disease. The degree of
airflow obstruction in COPD can be variable, but loss of
lung function over time is a characteristic feature. Ideally,
the development of airflow obstruction which is largely
irreversible but has a small reversible component should
be a feature of animal models of COPD, but this has not
been reproduced so far. One of the important limitations
of animal models of COPD is the difficulty in: reproduc-
ing small airways pathology particularly when working in
small animals, particularly the mouse and rat where there
are few levels of airway branching. This is a problem
inherent to small laboratory animal models but provides
an advantage for developing models in larger animals
such as the pig or sheep. Part of the problem of analyzing
small airways is also due to the lack of sophistication of
lung function measurements, particularly in mice, but
there has been recent development in the methodology of
lung function measurement [15]. A new ex-vivo method
of analyzing the airway periphery is by the technique of
precision cut lung slices combined to videomorphometry
[16,17].

In addition to pulmonary alterations, other organ systems
may be affected in COPD [18]. Systemic effects of COPD
include weight loss, nutritional abnormalities and musc-

uloskeletal dysfunction. These systemic manifestations
will gain further socioeconomic importance with an
increasing prevalence of COPD in the next years [19].
Therefore, these systemic effects should be present in ani-
mal models of COPD and further analysis of mechanisms
underlying these systemic effects in experimental models
may help to optimize disease management.

Inflammatory cells
An important feature of COPD is the ongoing chronic
inflammatory process in the airways as indicated by the
current GOLD definition of COPD [4]. There are differ-
ences between COPD and asthma: while mast cells and
eosinophils are the prominent cell types in allergic
asthma, the major inflammatory cell types in COPD are
different (Table 2) [20-22].

Neutrophils play a prominent role in the pathophysiology
of COPD as they release a multitude of mediators and tis-
sue-degrading enzymes such as elastases which can
orchestrate tissue destruction and chronic inflammation
[8,23]. Neutrophils and macrophages are increased in
bronchoalveolar lavage fluid from cigarette smokers [24].
Patients with a high degree of airflow limitation have a
greater induced sputum neutrophilia than subjects with-
out airflow limitation. Increased sputum neutrophilia is
also related to an accelerated decrease in FEV1 and sputum
neutrophilia is more prevalent in subjects with chronic
cough and sputum production [25].

The second major cell type involved in cellular mecha-
nisms are macrophages [26]. They can release numerous
tissue-degrading enzymes such as matrix

Table 1: Currently known phenotype differences between COPD and asthma

Feature COPD Asthma

Limitation of Airflow Largely irreversible Largely reversible
Parenchymal integrity destruction intact
Bronchial Hyperresponsiveness Variable (small) significant
Steroid response reduced or absent present

Table 2: Differences in inflammatory cells between COPD and asthma. Ranked in relative order of importance.

COPD Asthma

Neutrophils Eosinophils
Macrophages Mast cells
CD8-T-lymphocytes CD4-T-lymphocytes
Eosinophils (exacerbations) Macrophages, Neutrophils
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metalloproteinases (MMPs). In an animal model of
tobacco smoke-induced tissue matrix degradation, not
only neutrophil enzymes but also macrophage-derived
enzymes such as MMP-12 are important for the develop-
ment of emphysema-like lesions [27]. A further key
enzyme is the macrophage metalloelastase which was
reported to mediate acute cigarette smoke-induced
inflammation via tumor necrosis factor (TNF)-alpha-
release [28]. Neutrophils and macrophages can commu-
nicate with other cells such as airway smooth muscle cells,
endothelial cells or sensory neurons, and release inflam-
matory mediators that induce bronchoconstriction [29],
airway remodelling [30], and mucin gene induction and
mucus hypersecretion involving the induction of mucin
genes [31-33].

Lymphocytes are also involved in cellular mechanisms
underlying COPD [34,35]. Increased numbers of CD8-
positive T-lymphocytes are found in the airways of COPD
patients [21,22] and the degree of airflow obstruction is
correlated with their numbers [36]. However, the T-cell
associated inflammatory processes largely differ from
those in allergic asthma, which is characterized by
increased numbers of CD4-positive T-lymphocytes [7,37]
(Table 2). Although eosinophils may only play a major
role in acute exacerbations of COPD [38], their presence
in stable disease is an indicator of steroid responsiveness
[39-41].

Different inflammatory cell types have also been charac-
terized in airway tissues. Epithelial neutrophilia has been
seen in proximal and distal airways of patients with
COPD [42,43]. The airway wall beneath the epithelium
shows a mononuclear inflammation with increased mac-
rophages and T cells bearing activation markers [20,36] Di
Stefano 1996;. An excess od CD8+ T cells are particularly
observed in central airways, peripheral airways and paren-
chyma [20,43]. In the small airways from patients with
stage 0 to (at risk) stage 4 (very severe) COPD, the progres-
sion of the disease is strongly associated with the accumu-
lation of inflammatory exudates in the small airway
lumen and with an increase in the volume of tissue in the
airway wall [10]. Also, the percentage of airways contain-
ing macrophages, neutrophils, CD4 cells, CD8 cells, B
cells, and lymphoid follicle aggregates and the absolute
volume of CD8+ T-cells and B cells increased with the pro-
gression of COPD [10]. The changes are also most likely
associated with an induction of mucin gene expression
[44]. The presence of increased numbers of B cells begs the
question regarding the role of these cells in the patho-
physiology of COPD. In the airway smooth muscle bun-
dles in smokers with COPD, increased localisation of T-
cells and neutrophils has been reported, indicating a pos-
sible role for these cells interacting with airway smooth
muscle in the pathogenesis of airflow limitation [45].

Mechanisms of COPD
On the basis of the different pathophysiological mecha-
nisms illustrated in Fig. 1, different animal models have
been developed in past years.

Protease-antiprotease imbalance
An imbalance between protease and antiprotease
enzymes has been hypothesized with respect to the patho-
genesis of emphysema [46]. This concept derives from
early clinical observations that alpha1-antitrypsin-defi-
cient subjects develop severe emphysema and the role of
protease-antiprotease imbalance was later demonstrated
in animal models of COPD [47,48]. Although alpha1-
antitrypsin-deficiency is a very rare cause of emphysema
[49,50], it points to a role of proteases and proteolysis
[51,52]. Neutrophil elastase-deficient mice were signifi-
cantly protected from emphysema-development induced
by chronic cigarette smoke [48]. Depletion of the macro-
phage elastase gene also led to a complete protection from
emphysema induced by cigarette smoke [47]. Each of
these elastases inactivated the endogenous inhibitor of
the other, with macrophage elastase degrading alpha1-
antitrypsin and neutrophil elastase degrading tissue
inhibitor of metalloproteinase-1 [48]. In tobacco smoke
exposure-induced recruitment of neutrophils and mono-
cytes was impaired in elastase gene-depleted animals and
there was less macrophage elastase activity due to a
decreased macrophage influx in these animals. Thus, a
major role for neutrophil elastase and macrophage
elastase in the mediation of alveolar destruction in
response to cigarette smoke has been shown [47,48]. This
experimental evidence derived from animal models
points to an important pathogenetic role for proteases
that correlates well with the imbalance of proteases
present in human COPD. However, many pathways of tis-
sue destruction can be found in animal models that lead
to a picture similar to human disease, and it is important
to examine whether these mechanisms are operative in
the human disease itself.

Oxidative stress
Oxidative stress arising from inhaled noxious stimuli such
as tobacco smoke or nitrogen dioxide may be important
cause of the inflammation and tissue damage in COPD.
This potential mechanism is supported by clinical reports
of increased levels of oxidative stress indicators in exhaled
breath condensates of COPD patients [53-55]. Apart from
elevated levels of 8-isoprostane [55], nitrosothiol levels
were increased in COPD patients [56-58]. Studies in a
mouse model of tobacco smoke-induced COPD also
demonstrated the presence of tissue damage due to oxida-
tive stress [59]. These changes could be blocked by
superoxide dismutase [60]. Oxidative stress has also been
implicated in the development of corticosteroid resistance
in COPD.
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Mediators
Many mediators have been identified which may contrib-
ute to COPD pathogenesis [8]. As in bronchial asthma,
pro- and anti-inflammatory mediators of inflammation
such as tachykinins [61], vasoactive intestinal polypeptide
(VIP) [62], histamine [63], nitric oxide [64,65], leukot-
rienes [66], opioids [67] or intracellular mediators such as
SMADs [68,69] have been implicated. The balance of his-
tone acetylases and deacetylases [70] is a key regulator of
gene transcription and expression by controlling the
access of the transcriptional machinery to bind to regula-
tory sites on DNA. Acetylation of core histones lead to
modification of chromatin structure that affect transcrip-
tion, and the acetylartion status depends on a balance of
histone deacetylase and histone acetyltransferase. This is
also likely to play a role in the regulation of cytokine pro-
duction in COPD. Cigarette smoke exposure led to altered
chromatin remodelling with reduced histone deacetylase
activity with a resultant increase in transcription of pro-
inflammatory genes in lungs of rats exposed to smoke,
linked to an increase in phosphorylated p38 MAPK in the
lung concomitant with an increased histone 3 phospho-
acetylation, histone 4 acetylation and elevated DNA bind-
ing of NF-kappaB, and activator protein 1 (AP-1) [70]. In
addition, oxidative stress has also been shown to enhance
acetylation of histone proteins and decrease histone
deacetylase activity leading to modulation of NF-κB acti-
vation [71], similar to the effect of cigarette smoke.

A Th2 cytokine that has been proposed to be implicated
in the pathophysiology of COPD is IL-13. It is also over-
expressed and related to the pathogenesis of the asthmatic
Th2 inflammation and airway remodelling process [72].
The effects of IL-13 in asthma have been elucidated in a
series of experiments that demonstrated the an airway-
specific constitutive overexpression of IL-13 leads to a
process of airway remodelling with subepithelial fibrosis
and mucus metaplasia combined with an eosinophil-,
lymphocyte-, and macrophage-rich inflammation and
increased hyperresponsiveness [73]. Since asthma and
COPD pathogenesis may be linked, similar mechanisms
may contribute to the development and progression of
both diseases [74]. In this respect, IL-13 may also play a
role in COPD since the inducible overexpression of IL-13
in adult murine lungs leads to alveolar enlargement, lung
enlargement and an enhanced compliance and mucus cell
metaplasia [75] with activation of MMP-2, -9, -12, -13,
and -14 and cathepsins B, S, L, H, and K in this model.

Parallel to protease-based and extracellular mediator-
based concepts, altered intracellular pathways may also
play a role in COPD. MAPK signalling pathways i.e. p38
and c-Jun N terminal kinase (JNK) [76,77] seem to be
important signal transducers in the airways and airway-
innervating neurons [78-80] and may therefore display an

interesting target for COPD research. For some cells, the
activation of p38 or JNK pathways may promote apopto-
sis rather than proliferation [81,82].

Viral infections
Previous studies showed an association between latent
adenoviral infection with expression of the adenoviral
E1A gene and chronic obstructive pulmonary disease
(COPD) [83,84]. It may therefore be assumed that latent
adenoviral infection can be one of the factors that might
amplify airway inflammation. Human data [35]
demonstrating the presence of the viral E1A gene and its
expression in the lungs from smokers [85,86], animals
[87] and cell cultures [88] support this hypothesis. A
small population of lung epithelial cells may carry the
adenoviral E1A gene which may then amplify cigarette
smoke-induced airway inflammation to generate paren-
chymal lesions leading to COPD. Inflammatory changes
lead to collagen deposition, elastin degradation, and
induction of abnormal elastin in COPD [89,90]. Also,
latent adenovirus E1A infection of epithelial cells could
contribute to airway remodelling in COPD by the viral
E1A gene, inducing TGF-beta 1 and CTGF expression and
shifting cells towards a more mesenchymal
phenotype[84].

Genetics
Since only a minority of smokers (approximately 15 to
20%) develop symptoms and COPD is known to cluster
in families, a genetic predisposition has been hypothe-
sized. Many candidate genes have been assessed, but the
data are often unclear and systematic studies are currently
performed to identify disease-associated genes. Next to
alpha1-antitrypsin deficiency, several candidate genes
have been suggested to be linked to COPD induction.
Genetic polymorphisms in matrix metalloproteinase
genes MMP1, MMP9 and MMP12 may be important in
the development of COPD. In this respect, polymor-
phisms in the MMP1 and MMP12 genes, but not MMP9,
have been suggested to be related to smoking-related lung
injury or are in a linkage disequilibrium with other causa-
tive polymorphisms [91-93]. An association between an
MMP9 polymorphism and the development of smoking-
induced pulmonary emphysema was also reported in a
population of Japanese smokers [94]. Also, polymor-
phisms in the genes encoding for IL-11 [95], TGF-beta1
[96], and the group-specific component of serum globulin
[97] have been shown to be related to a genetic predispo-
sition for COPD. Since it was difficult to replicate some of
these findings among different populations, future studies
are needed. Also, whole genome screening in patients and
unaffected siblings displays a promising genetic approach
to identify genes associated with COPD.
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Experimental models of COPD
There are three major experimental approaches to mimic
COPD encompassing inhalation of noxious stimuli, tra-
cheal instillation of tissue-degrading enzymes to induce
emphysema-like lesions and gene-modifying techniques
leading to a COPD-like phenotype (Figure 2). These
approaches may also be combined. Ideally a number of
potential indicators for COPD which have been proposed
by the GOLD guidelines should be present in animal
models of COPD (Table 3). Since COPD definition still
rests heavily on lung function measures (airflow limita-
tion and transfer factor), it would be ideal to have lung
function measurements in experimental models [15]. The
challenge is in the measurement of lung function in very

small mammals such as mice and since the use of the
enhanced pause (Penh) in conscious mice as an indicator
of airflow obstruction is not ideal [98], invasive methods
remain the gold standard and these should be correlated
with inflammatory markers and cellular remodelling.

Inhalation models – tobacco smoke
A variety of animal species has been exposed to tobacco
smoke. Next to guinea pigs, rabbits, and dogs, and also
rats and mice have been used. Guinea pigs have been
reported to be a very susceptible species. They develop
COPD-like lesions and emphysema-like airspace enlarge-
ment within a few months of active tobacco smoke expo-
sure [99]. By contrast, rat strains seem to be more resistant
to the induction of emphysema-like lesions. Susceptibility
in mice varies from strain to strain. The mode of exposure
to tobacco smoke may be either active via nose-only expo-
sure systems or passive via large whole-body chambers.

The first species to be examined in detail for COPD-like
lesions due to tobacco smoke exposure was the guinea pig
[99]. Different exposure protocols were screened and
exposure to the smoke of 10 cigarettes each day, 5 days per
week, for a period of either 1, 3, 6, or 12 months resulted
in progressive pulmonary function abnormalities and
emphysema-like lesions. The cessation of smoke exposure
did not reverse but stabilized emphysema-like airspace
enlargement. On the cellular level, long term exposure
lead to neutrophilia and accumulation of macrophages
and CD4+ T-cells [83,100]. Latent adenoviral infection
amplifies the emphysematous lung destruction and
increases the inflammatory response produced by ciga-
rette-smoke exposure. Interestingly, it was shown that the
increase in CD4+ T-cells is associated with cigarette smoke
and the increase in CD8+ T-cells with latent adenoviral
infection [83].

Mice represent the most favoured laboratory animal spe-
cies with regard to immune mechanisms since they offer
the opportunity to manipulate gene expression. However,

Table 3: Indicators for COPD. These indicators are related to the presence of COPD and should ideally be present in animal models 
and available for analysis.

Indicator Human features Experimental approach

History of exposure to 
risk factors

Tobacco smoke.
Occupational dusts and chemicals.
Indoor / outdoor air pollution

Exposure-based experimental protocol

Airflow obstruction Decrease in FEV1 Lung function tests
Hypersecretion Chronic sputum production Functional and morphological assessment of hypersecretion
Cough Chronic intermittent or persistent cough Cough assessment
Dyspnea Progressive / Persistent / worse on exercise / 

worse during respiratory infections
Assessment of hypoxemia

Emphysema Progressive impairment of lung function Morphological analysis of airspace enlargement

Experimental approaches to mimic COPDFigure 2
Experimental approaches to mimic COPD There are 
three major experimental approaches to mimic COPD or 
emphysema consisting of inhalation of noxious stimuli such as 
tobacco smoke, tracheal instillation of tissue-degrading 
enzymes to induce emphysema-like lesions and gene-modify-
ing techniques leading to COPD-like murine phenotypes.
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it is more difficult to assess lung function and mice
tolerate at least two cigarettes daily for a year with mini-
mal effects on body weight and carboxyhemoglobin lev-
els. Mice differ considerably in respiratory tract functions
and anatomy if compared to humans: they are obligate
nose breathers, they have lower numbers of cilia, fewer
Clara cells and a restriction of submucosal glands to the
trachea. Next to a lower filter function for tobacco smoke,
mice also do not have a cough reflex and many mediators
such as histamine or tachykinins have different pharma-
cological effects. The development of emphysema-like
lesions is strain-dependent: enlarged alveolar spaces and
increased alveolar duct area are found after 3–6 months of
tobacco smoke exposure in susceptible strains such as
B6C3F1 mice [101]. At these later time points, tissue
destruction seems to be mediated via macrophages. At the
cellular level, neutrophil recruitment has been reported to
occur immediately after the beginning of tobacco smoke
exposure and is followed by accumulation of macro-
phages. The early influx of neutrophils is paralleled by a
connective tissue breakdown. The early stage alterations
of neutrophil influx and increase in elastin and collagen
degradation can be prevented by pre-treatment with a
neutrophil antibody or alpha1-antitrypsin [102].

Rats are also often used for models of COPD. However,
they appear to be relatively resistant to the induction of
emphysema-like lesions. Using morphometry and his-
topathology to assess and compare emphysema
development in mice and rats, significant differences were
demonstrated [101]: Animals were exposed via whole-
body exposure to tobacco smoke at a concentration of 250
mg total particulate matter/m3 for 6 h/day, 5 days/week,
for either 7 or 13 months. Morphometry included meas-
urements of tissue loss (volume density of alveolar septa)
and parenchymal air space enlargement (alveolar septa
mean linear intercept, volume density of alveolar air
space). Also, centroacinar intra-alveolar inflammatory
cells were assessed to investigate differences in the type of
inflammatory responses associated with tobacco smoke
exposure. In B6C3F1 mice, many of the morphometric
parameters used to assess emphysema-like lesions dif-
fered significantly between exposed and non-exposed ani-
mals. By contrast, in exposed Fischer-344 rats, only some
parameters differed significantly from non-exposed val-
ues. The alveolar septa mean linear intercept in both
exposed mice and rats was increased at 7 and 13 months,
indicating an enlargement of parenchymal air spaces. In
contrast, the volume density of alveolar air space was sig-
nificantly increased only in exposed mice. The volume
density of alveolar septa was decreased in mice at both
time points indicating damage to the structural integrity
of parenchyma. There was no alteration in Fischer-344
rats. Morphologic evidence of tissue destruction in the
mice included irregularly-sized and -shaped alveoli and

multiple foci of septal discontinuities and isolated septal
fragments. The morphometric differences in mice were
greater at 13 months than at 7 months, suggesting a pro-
gression of the disease. Inflammatory influx within the
lungs of exposed mice contained significantly more neu-
trophils than in rats. These results indicated that B6C3F1
mice are more susceptible than F344-rats to the induction
of COPD-like lesions in response to tobacco smoke expo-
sure [101].

Recent work on cigarette exposure in rats indicate that this
model also achieves a degree of corticosteroid resistance
that has been observed in patients with COPD [103,104].
Thus, the inflammatory response observed after exposure
of rats to cigarette smoke for 3 days is noty inhibited by
pre-treatment with corticosteroids [70]. This may be due
to the reduction in histone deacetylase activity, which
could result from a defect in recruitment of this activity by
corticosteroid receptors. Corticosteroids recruit hitone
deacetylase 2 protein to the transcriptional complex to
suppress proinflammatory gene transcription [105]. Mod-
ifications in histone deacetylase 2 by oxidative stress or by
cigarette smoke may make corticosteroids ineffective
[106]. Therefore, models of COPD that show corticoster-
oid resistance may be necessary and could be used to dis-
sect out the mechanisms of this resistance.

Generally, tobacco smoke exposure may be used to gener-
ate COPD features such as emphysema and airway remod-
elling and chronic inflammation. Although the
alterations still differ from the human situation and many
involved mediators may have different functional effects
especially in the murine respiratory tract, these models
represent useful approaches to investigate cellular and
molecular mechanisms underlying the development and
progression of COPD. As a considerable strain-to-strain
and species-to-species variation can be found in the mod-
els used so far, the selection of a strain needs to be done
with great caution. Animal models of COPD still need to
be precisely evaluated as to whether they mimic features
of human COPD, and their limitations must be appreci-
ated. Findings obtained from these models may provide
significant advances in terms of understanding novel
mechanisms involved in COPD.

Inhalation models – sulfur dioxide
Sulfur dioxide (SO2) is a gaseous irritant which can be
used to induce COPD-like lesions in animal models. With
daily exposure to high concentrations of SO2, chronic
injury and repair of epithelial cells can be observed in spe-
cies such as rat or guinea pig. The exposure to high-levels
of this gas ranging from 200 to 700 ppm for 4 to 8 weeks
has been demonstrated to lead to neutrophilic inflamma-
tion, morphological signs of mucus production and
mucus cell metaplasia and damage of ciliated epithelial
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cells in rats [107,108]. These changes are directly
dependent on the exposure to the gas: signs of mucus pro-
duction and neutrophilic inflammation are almost
entirely reversed within a week after termination of expo-
sure [108]. Acute exposure to SO2 also leads to loss of cilia
and exfoliation of ciliated cells as demonstrated in SO2-
exposed dogs using transmission electron microscopy
[109]. After a longer period of exposure the epithelial
layer regenerates and airway wall thickening and change
in cilia structure can be observed [110]. Long-term expo-
sure also increases in mucosal permeability both in vivo
and in vitro [111].

Mucus hypersecretion is an important indicator for COPD
and experimental models should encompass features of
hypersecretion. After chronic exposure to SO2 in rats, visi-
ble mucus layers and mucus plugs may sometimes be
observed in the large airways [107] and an elevation of
mucus content may be found in bronchoalveolar lavage
fluids [112]. Parallel to these findings, there is an increase
of PAS- and Alcian Blue-staining epithelial cells in chron-
ically SO2 exposed rats [113] but there is substantial vari-
ation present as with human COPD [114]. Tracheal
mucus glands are also increased in size after SO2-exposure
[115] and increased levels of mucin RNA can be found in
lung extracts [112]. The mechanisms underlying mucus
hypersecretion have not been elucidated so far and also,
functional studies assessing basal and metacholine-
induced secretion have not been conducted so far.

Airway inflammation with cellular infiltration is an
important feature of COPD. After exposure to SO2,
increases in mononuclear and polymorphonuclear
inflammatory cells are present in rat airways. However,
the influx is confined to large but not small airways which
are important in human COPD [107]. Even after one day
of exposure, polymorphonuclear inflammatory cells are
found and their influx can be inhibited with steroid treat-
ment [116].

SO2 -based models of COPD have also been shown to be
associated with an increase in pulmonary resistance and
airway hyperresponsiveness [107] and it was hypothe-
sized that elevated levels of mucus may account for the
increased responsiveness [117]. Since sensory nerve fibres
may function as potent regulators of chronic inflamma-
tion in COPD by changes in the activation threshold and
the release of pro-inflammatory mediators such as tachy-
kinins [61,118] or CGRP [6,119], this class of nerve fibres
was examined in a number of studies [120,121]. The
results of these studies supported the hypothesis that
rather than contributing to the pathophysiological
manifestations of bronchitis, sensory nerve fibres limit the
development of airway obstruction and airway hyperre-
sponsiveness during induction of chronic bronchitis by

SO2-exposure. In this respect, the enhanced contractile
responses of airways from neonatally SO2-exposed capsa-
icin-treated rats may result from increased airway smooth
muscle mass and contribute to the increased airway
responsiveness observed in these animals [121].

To obtain coexisting expression of emphysema and
inflammatory changes as seen in COPD, neutrophil
elastase instillation and SO2-exposure were performed
simultaneously [108]. The pre-treatment with elastase
aimed to render the animals more susceptible to the
inflammation induced by SO2. However, neither allergy-
phenotype Brown Norway nor emphysematous Sprague–
Dawley rats displayed an increased sensitivity to SO2-
exposure.

With regard to the observed histopathological changes, it
can be concluded that SO2 exposure leads to a more dif-
fuse alveolar damage with a more extensive damage with
destruction of lung tissue after longer exposure. Therefore,
the outcome is more or less a picture of tissue destruction
with close resemblance to end stages of emphysema but
not a complete picture of COPD.

Inhalation models – nitrogen dioxide
Nitrogen dioxide (NO2) is a another gas that may lead to
COPD-like lesions depending on concentration, duration
of exposure, and species genetic susceptibility [122]. Con-
centrations ranging from 50–150 ppm (94–282 mg/m3)
can lead to death in laboratory animals due to extensive
pulmonary injury including pulmonary oedema, haemor-
rhage, and pleural effusion.

Short-term exposure to NO2 leads to a biphasic response
with an initial injury phase followed by a repair phase.
Both increased cellular proliferation and enzymatic activ-
ity occur during the repair phase. Exposure of rats to 15
ppm NO2 for 7 days leads to an increased oxygen con-
sumption in airway tissues. The increase in oxidative
capacity reflects an increase in mitochondrial activity con-
sistent with observations of increased DNA synthesis
[123]. Exposure to 10 ppm NO2 for more than 24 h causes
damage to cilia and hypertrophy of the bronchiolar epi-
thelium [124]. Also, exposure to 15–20 ppm NO2 leads to
a type II pneumocyte hyperplasia [125,126].

As with the exposure to other noxious stimuli, there is also
a significant inter-species variability. In comparison to
mice and rats, guinea pigs exhibit changes in lung mor-
phology at much lower NO2 concentrations. It was shown
that a 2 ppm NO2 3-day exposure causes increased thick-
ening of the alveolar wall, damage to cilia and pulmonary
oedema [127]. Other changes are an influx of inflamma-
tory cells and increases in connective tissue formation
[128].
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There is also a significant mode of inheritance of suscepti-
bility to NO2-induced lung injury in inbred mice. Suscep-
tible C57BL/6J (B6) and resistant C3H/HeJ (C3) mice, as
well as F1, F2, and backcross (BX) populations derived
from them, were acutely exposed to 15 parts per million
NO2 for 3 h to determine differences [122]. Significant dif-
ferences in numbers of lavageable macrophages, epithe-
lial cells, and dead cells were found between inbred
strains: distributions of cellular responses in F1 progeny
overlapped both progenitors, and mean responses were
intermediate. It was shown that in C3:BX progeny, ranges
of responses to NO2 closely resembled C3 mice. Ranges of
cellular responses to NO2 in B6:BX and intercross progeny
were reported to overlap both progenitor and mean
responses of both populations were intermediate to pro-
genitors. Therefore, there were likely two major unlinked
genes that account for differential susceptibility to acute
NO2 exposure [122]. Based on the genetic background of
C57BL/6 mice, a model of long-term NO2 exposure was
recently established leading to signs of pulmonary inflam-
mation and progressive development of airflow obstruc-
tion [129].

Inhalation models – oxidant stimuli and particulates
The administration of oxidants such as ozone also causes
significant lung injury with some features related to
inflammatory changes occurring in human COPD [130]
and this causes numerous effects in airway cells [131-
135]. As a gaseous pollutant, ozone targets airway tissues
and breathing slightly elevated concentrations of this gas
leads to a range of respiratory symptoms including
decreased lung function and increased airway hyper-reac-
tivity. In conditions such as COPD and asthma, ozone
may lead to exacerbations of symptoms. Ozone is highly
reactive: the reaction with other substrates in the airway
lining fluid such as proteins or lipids leads to secondary
oxidation products which transmit the toxic signals to the
underlying pulmonary epithelium. These signals include
cytokine generation, adhesion molecule expression and
tight junction modification leading to inflammatory cell
influx and increase of lung permeability with oedema for-
mation [130]. However, the nature and extent of these
responses are often variable and not related within an
individual. The large amount of data obtained from ani-
mal models of ozone exposure indicates that both ozone-
and endotoxin-induced animal models are dependent on
neutrophilic inflammation. It was shown that each toxin
enhances reactions induced by the other toxin. The syner-
gistic effects elicited by coexposure to ozone and endo-
toxin are also mediated, in part, by neutrophils.
[136,137].

Further animal models focus on the exposure to ultrafine
particles, silica and coal dust [138,139]. Ultrafine particles
are a common component of air pollution, derived

mainly from primary combustion sources that cause sig-
nificant levels of oxidative stress in airway cells [140,141].
The animal models are predominantly characterized by
focal emphysema and it was suggested that dust-induced
emphysema and smoke-induced emphysema occur
through similar mechanisms [142].

Exposure to diesel exhaust particles (DEP) may also lead
to chronic airway inflammation in laboratory animals as
it was shown to have affect various respiratory conditions
including exacerbations of COPD, asthma, and respira-
tory tract infections [143]. Both the organic and the partic-
ulate components of DEP cause significant oxidant injury
and especially the particulate component of DEP is
reported to induce alveolar epithelial damage, alter thiol
levels in alveolar macrophages (AM) and lymphocytes,
and induce the generation of reactive oxygen species
(ROS) and pro-inflammatory cytokines [144]. The
organic component has also been shown to generate
intracellular ROS, leading to a variety of cellular responses
including apoptosis. Long-term exposure to various parti-
cles including DEP, carbon black (CB), and washed DEP
devoid of the organic content, have been shown to pro-
duce chronic inflammatory changes and tumorigenic
responses [144]. The organic component of DEP also sup-
presses the production of pro-inflammatory cytokines by
macrophages and the development of Th1 cell-mediated
mechanisms thereby enhancing allergic sensitization. The
underlying mechanisms have not been fully investigated
so far but may involve the induction of haeme oxygen-
ases, which are mediators of airway inflammation [145].
Whereas the organic component that induces IL-4 and IL-
10 production may skew the immunity toward Th2
response, the particulate component may stimulate both
the Th1 and Th2 responses [146]. In conclusion, exposure
to particulate and organic components of DEP may be a
helpful approach to simulate certain conditions such as
exacerbations. Also, the development of lung tumours
after long term exposure may be useful when studying
interactions between COPD-like lesions and
tumorigenesis.

A further toxin is cadmium chloride, a constituent of cig-
arette smoke. Administration of this substance also leads
to alterations in pulmonary integrity with primarily inter-
stitial fibrosis with tethering open of airspaces [147]. A
combination of cadmium and lathyrogen beta-aminopro-
pionile enhances emphysematous changes [148].

Tissue-degrading approaches
Emphysema-like lesions can also be achieved by intrapul-
monary challenge with tissue-degrading enzymes and
other compounds [149] (Figure 2). Proteinases such as
human neutrophil elastase, porcine pancreatic elastase, or
papain produce an efficient enzymatic induction of
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panacinar emphysema after a single intrapulmonary chal-
lenge [150,151]. Since bacterial collagenases do not lead
to the formation of emphysema, the effectiveness of the
proteinases is related to their elastolytic activity. While
these models may not be as useful as smoke exposure
studies to achieve COPD-like lesions, they can lead to a
dramatic picture of emphysema and may be used to study
mechanisms related specifically to emphysema and to the
repair of damaged lung. However, the method of inducing
emphysema-like lesions by intratracheal instillation of
these enzymes may not very closely relate to mechanisms
found in the human situation.

Among the different emphysema models, elastase-
induced emphysema has also been characterized to be
accompanied by pulmonary function abnormalities,
hypoxemia, and secretory cell metaplasia which represent
characteristic features of human COPD. Recent studies
suggested that exogenous retinoic acid can induce alveolar
regeneration in models of elastase-induced experimental
emphysema [152] and that retinoic acid may have a role
for alveolar development and regeneration after injury
[153,154]. However, the role of retinoic acid in relation to
alveolar development has only been analysed in a rat
model and models in other animals did not show similar
effects [155]. Also, the ability of alveolar regeneration
which is present in rats does not occur to a similar extent
in humans; a recent clinical trial using retinoic acid in
COPD did not show positive results [156].

The mechanisms of emphysema induction by intratra-
cheal administration of elastase encompass an initial loss
of collagen and elastin. Later, glycosaminoglycan and
elastin levels normalize again but collagen levels are
enhanced. The extracellular matrix remains distorted in
structure and diminished with resulting abnormal airway
architecture [157]. The enlargement of the airspaces
immediately develops after the induction of elastolytic
injuries and is followed by inflammatory processes which
lead to a transformation of airspace enlargement to
emphysema-like lesions. This progression most likely
occurs due to destructive effects exerted by host inflamma-
tory proteinases. Addition of lathyrogen beta-aminopro-
pionile leads to an impairment of collagen and elastin
crosslinking and therefore further increases the extent of
emphysema-like lesions [158]. Effects seem to be medi-
ated via IL-1β and TNFα receptors since mice deficient in
IL-1β Type1 receptor and in TNFalpha type 1 and 2 recep-
tors are protected from developing emphysema following
intratracheal challenge with porcine pancreatic elastase.
This was associated with reduced inflammation and
increased apoptosis [159].

In general, intrapulmonary administration of tissue-
degrading enzymes represents a useful tool especially

when focusing on mechanisms to repair emphysematic
features. However, the lack of proximity to the human sit-
uation needs to be realized since the mechanisms of
emphysema induction are clearly not related to the
human situation. An advantage of proteinase-based mod-
els is the simple exposure protocol with a single intratra-
cheal administration leading to significant and rapid
changes. However, extrapolating these findings to slowly
developing features of smoking induced human COPD is
very difficult since a large number of mediators may not
be involved in the rapid proteinase approach. Therefore,
these models may not encompass important features of
human COPD which may be more closely mimicked by
inhalation exposures and it is clear that tissue-degrading
enzyme models always represent the picture of an
"induced pathogenesis".

Gene-targeting approaches
The genetic predisposition to environmental disease is an
important area of research and a number of animal strains
prone to develop COPD-like lesions have been character-
ized [160-162] (Figure 2). Also, genetically-altered mono-
genic and polygenic models to mimic COPD have been
developed in recent years using modern techniques of
molecular biology [163,164].

Gene-depletion and -overexpression in mice provide a
powerful technique to identify the function and role of
distinct genes in the regulation of pulmonary homeostasis
in vivo. There are two major concepts consisting of gain-of-
function and loss-of-function models. Gain-of-function is
achieved by gene overexpression in transgenic mice either
organ specific or non-specific while loss of function is
achieved by targeted mutagenesis techniques [165,166].
These models can be of significant help for the identifica-
tion of both physiological functions of distinct genes as
well as mechanisms of diseases such as COPD.

A large number of genetically-altered mice strains have
been associated to features of COPD and a primary focus
was the assessment of matrix-related genes. As destruction
of alveolar elastic fibres is implicated in the pathogenic
mechanism of emphysema and elastin is a major compo-
nent of the extracellular matrix, mice lacking elastin were
generated. It was shown that these animals have a devel-
opmental arrest development of terminal airway branches
accompanied by fewer distal air sacs that are dilated with
attenuated tissue septae. These emphysema-like altera-
tions suggest that in addition to its role in the structure
and function of the mature lung, elastin is essential for
pulmonary development and is important for terminal
airway branching [167]. Also, deficiency of the microfi-
brillar component fibulin-5 and platelet derived growth
factor A (PDGF-A) leads to airspace enlargement
[168,169]. PDGF-A(-/-) mice lack lung alveolar smooth
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muscle cells, exhibit reduced deposition of elastin fibres
in the lung parenchyma, and develop lung emphysema
due to a complete failure of alveogenesis [170]. The post-
natal alveogenesis failure in PDGF-A(-/-) mice is most
likely due to a prenatal block in the distal spreading of
PDGF-R alpha+ cells along the tubular lung epithelium
during the canalicular stage of lung development [170].

The importance of integrins in causing emphysema has
been demonstrated in mouse. Epithelial restricted
integrin α vβ 6-null mice develop age-related emphysema
through the loss of activation of latent TGF-beta which
leads to an increase in macrophage MMP-12 expression
[171].

Fibroblast growth factors are known to be essential for
lung development. Mice simultaneously lacking receptors
for FGFR-3 and FGFR-4 have an impaired alveogenesis
with increased collagen synthesis [172]. It is crucial to dis-
tinguish developmental airspace enlargement from adult
emphysema which is defined as the destruction of mature
alveoli. However, the identification of numerous factors
influencing lung development is an important step
towards identifying potential mechanisms underlying the
development and progression of emphysema in human
COPD.

Next to developmental airspace enlargement also sponta-
neous emphysema may occur in genetically-modified
mice strains and a gradual appearance of emphysema-like
lesions has been found in mice lacking the surfactant pro-
tein D (SP-D) gene [173] and in mice lacking the tissue
inhibitor of metalloproteinase-3 (TIMP-3) gene [174]. In
these strains, matrix metalloproteinases were suggested to
be the primary mediators of tissue destruction.

A further mechanism to induce emphysema-like lesions is
to expose developmentally normal genetically-modified
animals to exogenous noxious stimuli such as tobacco
smoke. This also allows identifying potential molecular
mechanisms involved in the pathogenesis of COPD.
Using macrophage elastase (MMP-12) gene-depletion
studies it was shown that in contrast to wild type mice, the
lung structure of MMP-12 gene-depleted animals remains
normal after long term exposure to cigarette smoke [47].
These animals also fail to develop macrophage accumula-
tion in response to cigarette smoke, an effect that could be
related to MMP-12 induced generation of elastin frag-
ments that are chemotactic for monocytes [175,176].

In summary, gene-targeting techniques display very useful
tools to examine potential molecular mechanisms under-
lying human COPD. In combination with inhalation
protocols they may identify important protective or pro-
inflammatory mediators of the disease.

Other models
Various other agents have also been characterized to
induce airway inflammation injury. In this respect,
administration of toxins such as endotoxin leads to a
recruitment of neutrophils and macrophage activation
with concomitant airspace enlargement [177,178].

Non-inflammatory emphysema-like lesions may also be
accomplished by intravascular administration of a vascu-
lar endothelial cell growth factor receptor-2 (VEGFR-2)
blocker [179]. VEGF is required for blood vessel develop-
ment and endothelial cell survival and its absence leads to
endothelial cell apoptosis [180]. An increased septal cell
death in human emphysematous lungs and a reduced
expression of VEGF and VEGFR-2 is found in emphysema
lungs [181]. Also, chronic blockage of VEGFR-2 causes
alveolar septal cell apoptosis and airspace enlargement
[179]. These findings of airspace enlargement point to a
role of the vascular system in the development and pro-
gression of emphysema.

Conclusions
In contrast to the variable pathology and different stages
of severity in human COPD, currently available animal
models are restricted to mimicking a limited amount of
characteristic features of COPD. Animal models need to
be precisely evaluated based on whether they agree with
features of human COPD in order to advance the under-
standing of mechanisms in human COPD.

Based on inhalative exposure to noxious stimuli such as
cigarette smoke, the administration of tissue-degrading
enzymes or gene-targeting techniques, a number of exper-
imental approaches to mimic acute and chronic features
of COPD have been established in the past years. Due to
the complexity of the disease, and species-specific differ-
ences they are all limited concerning their clinical
significance.

While the induction of the COPD lesions by tissue-
degrading enzymes may appear artificial in many cases, it
does not mean that these models are not valuable because
they can be used to study many aspects of pulmonary
pathophysiology of end-stage emphysema. Cellular
mechanisms can be studied efficiently and underlying
molecular mechanisms and potential therapeutic
approaches can be revealed if the data is extrapolated
cautiously.

Combined models of inhalative exposure, proteinase-
based tissue degradation to produce emphysema and
gene-targeting techniques may provide models of COPD
which encompass more features of the disease. However,
one cannot assume that reproducing COPD with a high
degree of fidelity in the animal necessarily means that the
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model simulates the human condition. In fact, a model
that only produces a single pathologic COPD feature may
be more useful as long as it produces this feature via a rel-
evant mechanism that allows exploratory research. By
contrast, a model producing all kinds of COPD features
via irrelevant mechanisms may be less useful. In this
respect, validation of models as being relevant is an
extremely important issue in the early steps of model
development. Animal models should not only assess his-
topathological features but also attempt to focus on func-
tional features of human COPD such as airflow
limitation, mucus hypersecretion, chronic cough and
exacerbations, and also on pharmacological features such
as corticosteroid resistance or diminished β-adrenergic
bronchodilator responses. In conclusion, there are many
benefits that can accrue from the development of animal
models of COPD, most important of which is understand-
ing of mechanisms and development of specific drugs for
COPD.
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