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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview 

The construction of the early particle accelerators was motivated by nuclear physics [1]. In 

1932, J. Cockroft and E. Walton performed the first artificial nuclear reaction with a proton 

beam using a dc particle accelerator [2].  

Due to the limitations of dc voltage the main acceleration is provided nowadays by 

RadioFrequency RF accelerators. 

In 1927 Wideröe built the first RF linear accelerator by applying a time – alternating voltage 

to a sequence of drift tubes [3]. This inspired E. Lawrence to invent the cyclotron in the 

following year [4]. 

The development progress in this field was focused on accelerating the particles to highest 

energies. At the same time, a good beam quality (brilliance) was needed – especially in case 

of colliding beam experiments. For example in the Large Hadron Collider LHC [5], the 

proton beam will be accelerated to energies of 7 TeV with about 1011 particles per bunch. 

On the other hand, the accelerator size and costs become quite high. Because of that, the new 

research in accelerator physics is aiming on developing new approaches and concepts to 

overcome these constraints. 

The interactions of the high – power lasers with solid targets are capable of accelerating ions 

to energies in the MeV – range (ten to several tens on MeV in case of protons) [6-35]. 

The invention of Chirped Pulse Amplification CPA in 1985 by Strickland and Mourou [36] 

opened the way for increasing the power of laser pulses. After the implementation of CPA 

technology in modern laser facilities, one can achieve high energy laser systems with ultra – 

short ultra – intense laser pulses with intensities approaching 1021 W/cm2 [37-40]. The 

unavoidable laser pre-pulse with an intensity of the order 1012 W/cm2 is high enough to ionize 

the target and to create plasma [7-8, 10, 18, 20, 25, 27, 41-48]. The main laser pulse will 

interact with the plasma on the target front side. Beyond intensities of 1018 W/cm2, the motion 
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The laser – accelerated protons (TNSA) possess interesting features in terms of energy, 

emittance and proton number per bunch which make them “promising attractive” to 

conventional proton sources [20, 41, 59-64].  

In contrast to conventional accelerators, they can achieve considerably higher peak currents 

at beam energies of ten to several tens of MeV [7-8, 10, 18, 42-43, 65] when compared to 

state of the art injectors like single ended dc accelerators or RFQ’s [66-67]. 

The laser – proton source injector is capable of producing a single proton bunch, but on the 

other hand such an injector will have a very low duty factor. 

The important topic for further acceleration of the laser – accelerated proton bunch is the 

matching into the acceptance of the succeeding RF accelerator [19, 41, 48, 59, 68-71]. 

Several projects are proposed in this field, LIGHT (Laser Ion Generation, Handling and 

Transport) at GSI Darmstadt is one of them [68-69, 72-73]. The LIGHT project is developing 

laser accelerated proton beams, beam transport, and injection into a conventional accelerator. 

This kind of hybrid proton accelerator will benefit from the interesting features of a laser 

based source and from the flexibility of RF based accelerator structures. 

Due to the available energies, drift tube linacs are the most adequate choice for this purpose. 

The injection of laser – accelerated protons into a conventional drift tube linac DTL was 

discussed in the literature earlier [19, 59, 68-71].  

The demonstration of focusing a laser – accelerated 10 MeV proton bunch by a pulsed 18 T 

magnetic solenoid into a linac structure is the subject of this thesis. H-type drift tube 

accelerators [74-76] seem well suited to accept beam bunches like generated by lasers. A 

Crossbar H-type (CH) structure is suggested because of its high acceleration gradient, β- 

range, mechanical robustness, and high shunt impedance [74-76] at the relevant injection 

energies. The motivation for such a combination is to deliver single beam bunches with 

acceptable emittance values and at extremely high particle number per bunch. 

The results from PHELIX laser experiments and from simulations performed by the Warp 

code [20, 22, 40, 48, 77-78] show, that there are some restrictions with respect to a post 

acceleration of the generated bunches. 
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target position. In the second, more realistic case, the space charge force is identically zero at 

the target position (t = 0) and starts growing due to charge separation between electrons and 

protons while passing the magnetic solenoid field. 

The simulations in this chapter were performed using LSAIN code, which was developed at 

IAP – Frankfurt by Dr. Martin Droba. 

The experimental setup for laser – proton acceleration will be shown in chapter 4. The results 

of one experiment carried out at PHELIX (Petawatt High Energy Laser for heavy Ion 

eXperiments) will be summarized in section 4.3. 

In chapter 5 an introduction on RF linacs including the beam dynamics will be given. The H- 

type cavities (CH- and IH- DTL) are discussed in section 5.3. The KONUS beam dynamics is 

explained in section 5.4. 

Chapter 6 is describing the matching of laser – accelerated protons into a dedicated CH – 

linac. The beam dynamics in longitudinal and transversal planes through the structure are 

investigated in detail. After designing a CH linac suited to accept the high bunch current from 

the TNSA – process a bunch particle distribution as resulting from beam simulations along 

the matching section was tracked through the linac. 

In chapter 7, the simulations of CST - MicroWave Studio will be presented. The optimization 

of the drift tube, gap and stem geometries for the first cavity in the dedicated DTL will be 

shown. Tuning of the electric and magnetic fields distributions inside the cavity was 

performed. Section 7.2 shows the investigations on the surface electric fields for the CH – 

DTL. 

Chapter 8 contains the main results, conclusions and the outlook on experimental activities. 
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CHAPTER 2 

LASER – ACCELERATED PROTONS: A NEW PARTICLE 
SOURCE FOR CONVENTIONAL ACCELERATORS 

 

The interactions of the ultra-short ultra-intense laser pulses with solid targets create novel 

states of matter [13, 16, 43, 50, 79-97]. In the process of Chirped Pulse Amplification (CPA) 

disturbing effects like Amplified Spontaneous Emission (ASE) promote the formation of 

laser pre-pulses which are intense enough to ionize the target and to create a pre-plasma [7-8, 

10, 18, 20, 25, 27, 41-48]. The main laser pulse interacts with the pre-plasma on the target 

front side. The laser pulses with intensities exceeding 1018W/cm2 have a corresponding 

electric field of the order TV/m [8-9, 24-25, 43, 50]. This field is an order of magnitude 

larger than the electric field of a hydrogen atom.  Because of their small masses the main 

interaction happens between the laser and electrons which are accelerated to velocities close 

to speed of light. Thus, the relativistic electron mass will increase and the laser magnetic field 

comes into play and the relativistic effects define the electron motion. At these intensities, 

different absorption mechanisms of laser energy are introduced in the plasma where a large 

fraction of the laser energy is converted into kinetic energy of electrons. Hence, the electrons 

with energies in the MeV- range are transported through the target and then leave the rear 

side, forming a dense electron cloud [16, 98-100]. The charge separation of the electrons 

from the remaining target creates a strong electric field which is able to accelerate the ions 

(mainly protons) from the rear target surface to kinetic energies in MeV – range. 

2.1  Laser – Plasma Interaction 

In order to understand the interaction between the laser and plasma, it will be worth to study 

the case of single electron in the electromagnetic waves. The electric and magnetic fields are 

given as the solution of Maxwell’s equations. For linearly polarized laser propagating in the 

z- direction, E and B are given as 

,࢘ሺࡱ ሻݐ ൌ ࢞ࢋ଴ܧ ݖሾ݅ሺ݇݌ݔ݁ െ ߱௅ݐሻሿ (2.1) 

,࢘ሺ࡮ ሻݐ ൌ ࢟ࢋ଴ܧ ݖሾ݅ሺ݇݌ݔ݁ െ ߱௅ݐሻሿ (2.2) 
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where E0 and B0 are the laser electric and magnetic field amplitudes, respectively with B0 = 

E0/c, ߱௅ the laser angular frequency, k the laser propagation vector, t the time, c speed of 

light and ࢋ௫,௬ the unit vectors defining the orthogonality of E and B with the propagation 

vector k.   

The energy flux density (energy per unit area, per unit time) transported by the fields is given 

by the Poynting vector S 

ࡿ ൌ
1
଴ߤ
ࡱ ൈ  (2.3) ࡮

where ߤ଴ is the permeability of the vacuum. 

The laser intensity is defined as the average power per unit area transported by an 

electromagnetic wave over the fast oscillations of the laser field 

ܫ ൌ൏ |ࡿ| ൐ൌ
1
2
଴ܧ଴ܿߝ

ଶ (2.4) 

where ߝ଴ is the permittivity of the vacuum. 

A laser pulse with intensity 1019 W/cm2 has a corresponding electric field amplitude of 

଴ܧ ൎ 9	ܸܶ/݉. Using the relation B0 = E0/c, the corresponding magnetic field amplitudeܤ଴ ൎ

30	݇ܶ. 

2.1.1 Electron – Laser Interaction 

The motion of a single electron in free space in presence of the laser can be described by the 

Lorentz force. The equation of motion can be written as 

࢖݀
ݐ݀

ൌ
݀
ݐ݀
ሺ݉ߛ௘࢜ሻ ൌ െ݁ሺࡱ ൅ ࢜ ൈ  ሻ (2.5)࡮

where ࢖ and ࢜ are the electron momentum and velocity, respectively. ߛ ൌ 1 ඥ1 െ ⁄ଶߚ ൌ

ඥ1 ൅ ଶ݌ ݉௘
ଶܿସ⁄ 	 is the relativistic factor, ߚ ൌ ܿ⁄ݒ  is the normalized velocity, e and me is the 

charge and the rest mass of electron, respectively. 

For non-relativistic motion (ݒ ≪ ܿ), the ࢜ ൈ  term can be neglected and electron motion is–	࡮

defined by the electric field term. The solution of equation (2.5) leads to a harmonic 

oscillation in x- direction with the maximum oscillation velocity 
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௢௦௖ݒ ൌ
଴ܧ݁
݉௘߱௅

 (2.6) 

At intensities higher than 1018 W/cm2, the motion becomes relativistic. In order to 

differentiate between different motion regimes, the dimensionless electric field amplitude ܽ଴ 

is introduced as the ratio of maximum oscillation velocity in equation (2.6) to speed of light 

ܽ଴ ൌ
଴ܧ݁

݉௘߱௅ܿ
 (2.7) 

Hence, the corresponding electric and magnetic field amplitudes can be defined in terms of 

ܽ଴ as 

଴ܧ ൌ
݉௘߱௅ܿ
݁

ܽ଴ ൌ
ܽ଴

ሿ݉ߤ௅ሾߣ
∙ 3.2 ൈ 10ଵଶܸ/݉ (2.8) 

଴ܤ ൌ
݉௘߱௅

݁
ܽ଴ ൌ

ܽ଴
ሿ݉ߤ௅ሾߣ

∙ 1.07 ൈ 10ସܶ (2.9) 

and the intensity given by 

ܫ ൌ
1
2
଴ܧ଴ܿߝ

ଶ ൌ
ܽ଴
ଶ

௅ߣ
ଶሾ݉ߤଶሿ

∙ 1.37 ൈ 10ଵ଼ܹ/ܿ݉ଶ (2.10) 

In the classical, non-relativistic regime ܽ଴ ≪ 1, the electron motion is dominated by the 

electric field as mentioned above. The magnetic field force F = qvB leads to a forward drift 

of the electron motion in z- direction. The corresponding velocity is  

ࡰ࢜ ൌ
ܽ଴
ଶ

4 ൅ ܽ଴
ଶ  (2.11) ࢠࢋܿ

Nevertheless, at the end of the laser pulse the electron velocity is zero despite the electron has 

changed his position. Hence, the electron does not gain energy from laser, which is known as 

the Lawson-Woodward theorem [101]. For ܽ଴ ൎ 1 the electron velocity approaches the speed 

of light, and the motion must be treated fully relativistic. The ultra-relativistic regime is 

defined in case	ܽ଴ ≫ 1. 

2.1.2 Ponderomotive Force 

Up to this point, the problem was restricted to a laser plane wave. While in reality, the laser is 

focused to a focal spot diameter of several ݉ߤ resulting in a varying transverse intensity 

profile which could be, for example, Gaussian. 
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Hence, the laser intensity decreases with increasing distance from the axis. This will lead to a 

displacement of the electron during the first half-cycle into the region of lower intensity. At 

its new position, the electron experiences a weaker laser field whose electric field is not able 

to return the electron to its initial position during the second half-cycle of the laser oscillation. 

Thus, the electron drifts towards the lower intensity regions with a finite velocity. 

The force driving the electron to lower intensity region is called the ponderomotive force 

[102-108]. It was derived in 1957 by Boot and Harvie [102], who showed that charged 

particles of either sign will experience acceleration towards the position of least electric field 

strength [109-110]. For a single electron, the ponderomotive force is given by [102, 104, 108] 

ऐ࢖ ൌ െ
݁ଶ

4݉௘߱௅
ଶ સሺࡱ ∙ ࡱ

∗ሻ (2.12) 

As soon as the electron velocity approaches the speed of light, the Lorentz force acting on the 

electron due to the magnetic field cannot be neglected anymore. The ࢜ ൈ  force pushes the ࡮

electron into the forward direction (see equation (2.11)). In this case, the relativistic 

correction on the ponderomotive force has been obtained by Bauer et al. [104] 

ऐ࢖ ൌ െ
ܿଶ

ߛ
ቈસm௘௙௙ ൅

ߛ െ 1
଴ݒ
ଶ ൫࢜૙ ∙ સm௘௙௙൯࢜૙቉ (2.13) 

where m௘௙௙ the space and time dependent effective mass is given by 

m௘௙௙ ൌ ቆ1 ൅
݁ଶ࡭ ∙ ∗࡭

2݉௘
ଶܿଶ

ቇ

ଵ
ଶൗ

ൌ  (2.14) ߛ̅

where A the magnetic vector potential and the cycle- averaged gamma function ̅ߛ ൌ

ඥ1 ൅ ܽ଴
ଶ 2⁄  [111] for a linearly polarized laser. 

The solution of equation (2.13) is very complicated and has to be done numerically which is 

not a topic in this thesis. 

Up to this point, only the interaction of a single electron with the laser field is described. In 

comparison with electrons, ions have much higher rest mass. Protons for example, as the 

lightest ion (mp = 1836 me), have the relativistic threshold not at ܽ଴ ൌ 1 but at ܽ଴,௣ ൌ 1836. 

Using equations (2.8 – 2.10) and by replacing the electron mass by the proton one gets 
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଴ܧ ൌ
ܽ଴,௣

ሿ݉ߤ௅ሾߣ
∙ 5.9 ൈ 10ଵହܸ/݉ (2.15) 

଴ܤ ൌ
ܽ଴,௣

ሿ݉ߤ௅ሾߣ
∙ 1.9 ൈ 10଻ܶ (2.16) 

ܫ ൌ
ܽ଴,௣
ଶ

௅ߣ
ଶሾ݉ߤଶሿ

∙ 4.6 ൈ 10ଶସܹ/ܿ݉ଶ (2.17) 

where ܽ଴,௣ denotes the dimensionless electric field amplitude in the proton case. 

A required intensity of ൐ 10ଶସܹ/ܿ݉ଶ is far beyond the present laser development. With 

intensities available today (ܫ௅ ൌ 10ଵ଼ െ 10ଶଵܹ/ܿ݉ଶ, ௅ߣ ൎ  the ions hardly move in (݉ߤ	1

the laser electric field and they are assumed to form an immobile, positively charged 

background. 

The averaged kinetic energy Wp which electrons gain during one laser cycle, can be obtained 

by calculating the ponderomotive potential Up via ௣࣠ ൌ െ݉௘સܷ௣, which leads to Wp. The 

resulting equation for the energy gain by the relativistic ponderomotive potential is  

௣ܹ ൌ ሺ̅ߛ െ 1ሻ݉௘ܿଶ (2.18) 

Equation 2.18 can be expressed in terms of measurable laser parameters or with the 

dimensionless electric field amplitude as [104-105, 112-114] 

௣ܹ ൌ ݇஻ ௘ܶ ൌ ݉௘ܿଶ ቌඨ1 ൅
௅ߣ௅ሾ10ଵ଼ܹ/ܿ݉ଶሿܫ

ଶሾ݉ߤଶሿ

2.74
െ 1ቍ

ൌ ݉௘ܿଶ ቌඨ1 ൅
ܽ଴
ଶ

2
െ 1ቍ 

(2.19) 

where ܫ௅ሾ10ଵ଼ܹ/ܿ݉ଶሿ is the laser intensity given in units of 10ଵ଼ܹ/ܿ݉ଶ, ߣ௅the laser wave 

length given in ݉ߤ	units,	݇஻ the Boltzmann constant and ௘ܶ the electron temperature.  

For a laser intensity of 5 ൈ 10ଵଽܹ/ܿ݉ଶ	at	ߣ௅ ൌ one gets for protons ௣ܹ ,݉ߤ1.054
௣ ൌ

2.81	ܸ݇݁ and for electrons ௣ܹ
௘ ൌ  .ܸ݁ܯ	1.85
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2.1.3 Laser Propagation in  the Plasma 

Up to this point, the study focuses on the interaction of the laser with a single electron. But in 

reality, the laser interacts with all plasma electrons. 

An important length for quasi-neutral plasma is the Debye length ߣ஽ [115] 

஽ߣ ൌ ඨ
଴݇஻ߝ ௘ܶ

݊௘݁ଶ
 (2.20) 

where ݊௘ and ௘ܶ are the electron density and electron temperature, respectively. 

The electrons will oscillate with the electron plasma frequency ߱௣ [115] 

߱௣ ൌ ඨ
݊௘݁ଶ

ߛ଴݉௘̅ߝ
 (2.21) 

Hence, the laser can propagate in the plasma as long as its frequency ߱௅ exceeds the plasma 

frequency	߱௣. The refractive index ݊௣ can be defined in terms of ߱௣ and	߱௅as [115] 

݊௣ ൌ ඨ1 െ
߱௣ଶ

߱௅
ଶ (2.22) 

For ߱௅ ൏ ߱௣ the refractive index becomes imaginary, which means that the laser can 

propagate up to the point where	߱௅ ൌ ߱௣. At this point, one can define the critical density,	݊௖ 

as the electron density where the laser pulse is reflected by the plasma 

݊௖ ൌ
଴߱௅ߝ

ଶ݉௘̅ߛ
݁ଶ

 (2.23) 

Figure 2.1 shows the interaction process between the laser and a solid target. The laser pulse 

propagates through the pre- plasma up to the point where the electrons reach the critical 

density. 

Because of the ponderomotive force, the plasma electrons are pushed radially from the high 

intensity area near the axis towards lower intensities. This will change the radial electron 

density profile. Hence, this profile works as a convex lens for the laser beam. This effect is 

called the relativistic self-focusing [116-117]. 
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Assuming that, as shown in Figure 2.1, the laser accelerated electrons propagate through the 

target of thickness d with an opening angle	ߠ, which can be calculated as tanଶ ߠ ൌ 2 ሺ̅ߛ െ 1ሻ⁄  

[118-121], the electron bunch radius B at the rear side can be written as [33] 

ܤ ൌ ௅ݎ ൅ ݀ ∙ tan  (2.24) ߠ

where ݎ௅the laser focal spot radius. 

The number Ne of laser accelerated electrons in dependence from the laser energy EL is given 

by introducing the conversion efficiency coefficient ߟ	defined by [32] 

௘ܰ ൌ
௅ܧߟ
݇஻ ௘ܶ

 (2.25) 

where ݇஻ ௘ܶ	is the mean electron energy given by equation 2.19. 

The initial electron density ne0 can be estimated as 

݊௘଴ ൌ
௘ܰ

ܿ߬௅ܤߨଶ
 (2.26) 

where ߬௅	the laser pulse duration, and B as given by (2.24). 

A detailed study on the dependence of the conversion efficiency on laser intensities and target 

properties can be found in Refs. [7-9, 21, 90, 122-126]. Several experiments worldwide show 

a dependence of ߟ	on the laser intensity according to [126] 

ߟ ൌ 1.2 ∙ 10ିଵହ ൈ ௅ܫ
଴.଻ସ (2.27) 

 where IL given in W/cm2. 

For example, the laser pulse at PHELIX experiments [78] has an energy (after the 

compressor) of about 108 J and a duration of 700 fs and was focused by a copper parabola 

mirror to a focal spot area of 54	݉ߤߨଶ, resulting in	4.5 ൈ 10ଵଽܹ/ܿ݉ଶ. The predicted 

conversion efficiency is about 45% and the total number of electrons can be estimated by 

equations (2.19) and (2.25) to be	1.6 ൈ 10ଵସ, where the laser wave length	ߣ௅ ൌ  .݉ߤ1.054

2.2  Laser – Proton Acceleration 

The acceleration of ions directly with the laser is not possible with intensities available today. 

As mentioned in the previous section (Equations 2.15 – 2.17), this becomes possible for laser 
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intensities above 1024W/cm2. Instead, electrons are used in an intermediate step to transfer 

energy from the laser pulse to protons. 

In this work, the ion acceleration from the rear side of a solid target will be discussed. Due to 

the laser intensities as well as to target parameters at PHELIX laser experiments, the Target 

Normal Sheath Acceleration mechanism – TNSA [6-10, 18, 25, 50] will occur. In the 

following section, this process will be explained in detail. 

Radiation Pressure Acceleration (RPA) [51, 127-130] is another mechanism where the 

protons can be accelerated up to energies in the GeV- range. In this process a circularly 

polarized laser is needed, which is not the case in PHELIX. Because of that the RPA – 

mechanism is not discussed in this thesis.  

2.2.1 Target Normal Sheath Acceleration – TNSA 

In the previous section 2.1.4 the transport of accelerated electrons, though a solid target, was 

explained. These electrons are reaching the rear side of the target and some of them can 

escape leaving the target positively charged. The emitted electrons are trapped by Coulomb 

forces and form an electron sheath cloud. Hence, the charge separation between target and 

electron cloud will form a strong electric field estimated by 

଴ܧ ൌ
݇஻ ௘ܶ

஽ߣ݁
 (2.28) 

 The typical value for ߣ஽	is a few ݉ߤ	[11]. Therefore, this electric field is in the same 

strength order of the laser field itself (TV/m) which will be strong enough to ionize the atoms 

on the rear side of the target and to accelerate the protons to energies in the MeV to several 

tens of MeV – range. 

Because of the protons are the lightest ions, it will be easy to ionize first. The electric field 

lines are pointed normally to the target rear surface, resulting in the ion acceleration in the 

same direction, therefore this acceleration mechanism is called Target Normal Sheath 

Acceleration. Figure 2.2 shows a schematic for TNSA process [25]. This process was 

observed by different groups [6-10, 18, 25, 43, 50-56]. After that, several experiments were 

demonstrated on the proton acceleration with energies up to 70 MeV [37] and heavier ions 

with energies up to 7 MeV/nucleon [11, 131].  
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When the plasma expands in vacuum, the electrons transfer energy to the protons through the 

Coulomb interaction. Finally, electrons are co- moving with the protons resulting in a neutral 

plasma. 

This model [132] expects an exponential proton spectrum where the number of protons per 

unit energy dN/dEp can be expressed as  

݀ܰ
௣ܧ݀

ൌ
݊௜଴ܿ௦߬௔௖௖
ඥ2݇஻ ௘ܶܧ௣

݌ݔ݁ ቌെඨ
௣ܧ2
݇஻ ௘ܶ

ቍ (2.29) 

Where ܿ௦ ൌ ඥ݇஻ ௘ܶ ݉௣⁄  the ion – acoustic velocity, ݊௜଴ ൌ ݊௘଴	the initial proton density and 

߬௔௖௖	 the proton acceleration time which can be estimated by the laser pulse duration as  

߬௔௖௖ ൌ 1.3 ൈ ߬௅ (2.30) 

The maximum energy that can be gained in the isothermal model is given by 

௠௔௫ܧ ൌ 2݇஻ ௘ܶ ቂ݈݊ݐ௣ ൅ ൫ݐ௣ଶ ൅ 1൯
ଵ/ଶ
ቃ
ଶ
 (2.31) 

where ݐ௣ ൌ ߱௣௣ݐ௔௖௖ ඥ2exp	ሺ1ሻ	⁄ the normalized acceleration time and ߱௣௣ ൌ ඥ݁ଶ݊௣଴ ⁄଴ߝ௣݉ߛ̅  

the proton plasma frequency. 

Notice that, the electron density profile has a Gaussian – radial distribution which was shown 

in the measurements [61]. Hence, the protons accelerated in the direction normal to the 

electron density gradient result in different proton energies. The central part is accelerated 

more than the protons on the edge. The proton bunch radii as well as the emission angles are 

energy dependent.  

Figure 2.3 shows the results of one experiment at PHELIX. Obviously one can see the 

exponential energy spectrum of the protons (Figure 2.3, left), the opening angle being highly 

dependent on proton energy (Figure 2.3, right).  

Proton spectra are characterized by a large divergence at low energies. This divergence is 

found to be decreased with increasing proton energy (Figure 2.3, right). The emission radius 

of the protons at the target position is also decreased with increasing energy (see Figure 2.4) 

[15-16, 18, 24, 61-63, 78-79, 95, 147-148]. 
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149-153]. Other options on using these protons are still investigated in wide researcher areas 

like in medicine [51, 154-166]. 

In the following, an overview on the application of laser accelerated protons (ions) will be 

addressed briefly. 

2.3.1 A new particle Source for Conventional Accelerators 

The unique features of laser – accelerated protons could be useful for accelerator technology 

[41, 59, 149-153]. The laser technique can deliver proton beams at energies of ten to several 

tens of MeV – far above energies delivered by RFQ’s [66-67], which are the current linac 

front end technology. The important topic for further acceleration of proton bunch is the 

matching into the acceptance of an RF accelerator. The e RFQ is no more efficient at energies 

beyond 10 MeV.  

With respect to the transit energies, direct matching into drift tube linacs are the most 

adequate choice. A Crossbar H-type (CH) structure is suggested as the linac part.  

The matching problem from the target into the CH- structure by a magnetic pulsed solenoid 

will be explained in detail in the following chapters 3 and 6. 

2.3.2 Isochronic Heating 

Isochronic heating means heating at constant volume. It is the way to produce a Warm Dense 

Matter (WDM) with a solid state density at a temperature of several tens of eV [167]. The 

WDM is very important in astrophysics to understand the interior planets such as Uranus and 

Neptune [22, 167]. Production of a matter at solid state density heated normally with a 

temperature > 106 K is challenging. The laser – accelerated protons with short pulse duration 

may be used for this purpose [22, 167-168]. The characteristic behavior of the protons 

deposition energy in matter is shown in Figure 2.5. 

The proton loses its energy uniformly in the matter up to the point of Bragg peak where the 

proton comes to rest. Hence, the target located in the plateau region allows to achieve an 

almost uniform temperature.  
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body. While in the ion therapy, it will be possible to deposit the ion energy in a well 

localized area within the tumor. Protons with energies ranging from 70 MeV – 250 MeV 

and carbon ions with energies up to 430 MeV per nucleon are used [51]. The Heidelberg 

Ion beam Therapy (HIT) is one of the modern facilities located in Germany [170]. The 

cost of the ion therapy facility is about 100 million Euros. The new developments in 

lasers predicted that in the coming years one can laser accelerate protons or even carbon 

ions to energies of several hundreds of MeV and up to GeV. Hence, laser ion acceleration 

might be able to compete with conventional accelerators in the ion therapy facilities [51, 

154-157, 164-166]. The hope is that this might not only reduce the cost of construction of 

such a facility but also make the device more compact [155, 164]. 

Other applications for laser accelerated protons may open in nuclear physics [131, 171] 

and in fast ignition [172-175], especially. 
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Table 3.2: Chemical composition and density of Gafchromic Radiochromic films. 

 density 

(g/cm3) 
C (%) H (%) O (%) N (%) 

Polyester 1.35 45.44 36.36 18.20 0.00 

Sensitive layer 1.08 29.14 56.80 7.12 6.94 

Adhesive 1.20 33.33 57.14 9.53 0.00 

Gelatin coating 1.20 22.61 53.52 11.12 12.75 

 

The dosimetry film is sensitive for an ionizing dose like provided by accelerated protons. 

After the interaction, the film color changes from transparent to different shades of blue, 

depending on the amount of dose absorbed in the film by polymerization [191]. 

Hence, it depends on the total number of protons passing the film and their energies.  

The RCF films have been calibrated for protons by Hey et al., with a micro-densitometer [84, 

192]. At PHELIX the transmission film scanner Microtek ArtixScan 1800f was used to scan 

the films resulting in the same accuracy as micro-densitometers [34]. The scanner was 

calibrated with a grey scale wedge [34, 193]. This allows converting the film information to 

an optical density.  

The deposited energy ܧௗ௘௣	of protons in each film is calculated by the SRIM code [194]. 

Figure 3.6 shows calibration curves for three different RCF films [20, 34]. The results in 

Figure 3.6 can be approximated by a non-linear exponential function [34] 

ௗ௘௣ܧ ൌ exp൭෍ܽ௜ ∙ ௕೔ܦ

௜

൱ (3.1) 

where ܧௗ௘௣	is the deposition energy in 	ܸ݁ܭ ݉݉ଶ⁄  and ܾ are	is the optical density, ܽ	ܦ ,

constant  fitting parameters, having different values for different film types. 

For more details about this technique see the PhD dissertations of F. Nürnberg and M. 

Schollmeier [32, 34]. 
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As mentioned before, protons deposit a part of their energy in all penetrated layers. This 

fraction is varying from one layer to another. So the total deposited energy in a specific film 

can be calculated by integration over the whole spectrum 

௧௢௧௔௟ܧ ൌ න
݀ܰሺܧ´ሻ
ܧ݀

ൈ ሻ´ܧ௟௢௦௦ሺܧ  (3.2) ´ܧ݀

where ݀ܰ ⁄ܧ݀  is the number of proton detected per energy interval, and ܧ௟௢௦௦ሺܧ´ሻ the energy 

loss of a proton with energy ܧ´ in a given layer.  

Each layer need to be de – convolved by the nonlinear detector response function to calculate 

the particle spectrum	݀ܰ ⁄ܧ݀ . This can be done by a convolution with an assumed function 

for ݀ܰ ⁄ܧ݀ . 

Recent publications have shown that the particle spectrum ݀ܰ ⁄ܧ݀  has an exponential 

behavior [20, 32, 34, 40, 48, 126]. Assuming an isothermal, quasi-neutral plasma expansion 

as given by Fuchs et al. [126] the particle spectrum can be written as 

݀ܰ
ܧ݀

ൌ ଴ܰ

ඥ2݇ܧ஻ܶ
ൈ expቌെඨ

ܧ2
݇஻ܶ

ቍ (3.3) 

With the particle spectrum function ݀ܰ ⁄ܧ݀ 	and the ܧ௟௢௦௦ as calculated by the SRIM-code, 

the total deposited energy is calculated for each RCF layer. The energy deposited by all 

protons in ܸ݁ܯ as a function of the proton energy is shown in Figure 3.12. 

The integral in equation 3.2 is solved numerically. The parameters ଴ܰ and ݇஻ܶ are iteratively 

determined by minimizing of the root mean square deviation [34]. For the proton beam in this 

experiment, the best fit function is given by equation 3.3 where the fit parameters are 

଴ܰ ൌ 4.6 ൈ 10ଵଵ and	݇஻ܶ ൌ  .ܸ݁ܯ	0.61
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CHAPTER 4 

TRACKING OF LASER – ACCELERATED PROTONS 
THROUGH A PULSED MAGNETIC SOLENOID 

 

The unique features of laser – accelerated protons make them attractive for study. Possible 

applications of these generated and accelerated protons require a collimated beam with well-

defined energy and divergence. 

Due to the fact that the protons are generated with a large divergence and as the transversal 

acceptance of accelerators is limited, focusing elements (lenses) must be designed properly to 

match the beam into the linac. 

The impact of the electric field compared to the magnetic field can be estimated by the 

relation	ࡱ ൌ ߚ ܶ at	Hence, a magnetic field strength of 18 .࡮ݒ ≅ 0.15	(about 10 MeV proton 

kinetic energy) is equivalent to	ܧ ൌ 7.8 ൈ 10଼	ܸ/݉. This value of the electric field is far 

above the technical limits. Thus, for laser – accelerated proton collimation, magnetic lenses 

will be used. The focusing elements could be quadrupole or solenoid. 

Different options were suggested and demonstrated for focusing and transporting laser – 

accelerated protons [19, 34, 48, 70-71, 151, 195-198]. 

Due to highly divergent protons, most of them were lost when a quadrupole transport channel 

was used. Thus, the quadrupole element was found not to be convenient for this problem (see 

for example refs. 32, 195). 

In order to catch the laser – accelerated protons, a pulsed magnetic solenoid is used as the 

first focusing element, with fields as high as 20 T theoretically [19, 22, 71, 78, 196-198]. In 

the following, the protons with energy around 10ܸ݁ܯ are selected from the TNSA proton 

spectrum for further acceleration to higher energies by an RF linac (see chapter 6). They 

required field strengths up to 20	ܶ theoretically for collimation [19, 71, 196-198] (see the 

next sections). 

It is shown that, the pulsed magnetic solenoid is able to match the laser accelerated protons 

into the linac structure (CH – DTL) [19, 71, 196-198]. 



36 
 

The particle simulations through the solenoid starting at the target position and ending at the 

linac entrance were done by a new 3D code – LASIN (LASer INjection) [199]. This code, 

which was developed at IAP – Frankfurt by Dr. Martin Droba, is used for multi – particle 

tracking through the solenoidal magnetic field including fringing fields. 

4.1 LASIN Code 

The LASIN- code is a 3D code, developed for multi-species (electrons, protons and ions) 

beam tracking through a solenoidal magnetic field with high space charge forces and at 

rapidly varying geometric bunch dimensions. The tracking in longitudinal and transversal 

planes can be adapted depending on the initial bunch parameters. The magnetic field is 

calculated by the Biot- Savart solver using a numerical integration scheme from a given 

distribution of current elements. At every exact particle position at a given time step, the 

corresponding magnetic field B is calculated accordingly. 

In case of space charge forces, the charge density is integrated on a cylindrical mesh from 

a particle distribution by PIC (Particle- In- Cell) techniques [200]. Afterwards, the Poisson 

equation is solved numerically by the iteration method BiCGSTAB (Bi-Conjugate Gradient 

Method- STABilized) [201] on the mesh resulting in the potential distribution. For the 

tracking algorithm the electric field is interpolated at the particle position. 

A symplectic middle step scheme [202] in Cartesian coordinates is used to follow the 

particle motion in given fields.  

The code is implemented at the Frankfurt Center for Scientific Computing CSC cluster [203] 

by fully exploiting the parallel processing capabilities. Typically, 50 processors and up to 107 

macroparticles are used in proton tracking simulations from the target (TNSA – Protons) to 

the linac accelerating structure (CH – DTL in this work). For optimization purposes and 

memory requirement a reduction of the sparse format of stored vectors and matrices is used. 

4.2 Pulsed Magnetic Solenoid 

The magnetic solenoid consists of radial and axial magnetic fields with cylindrical symmetry 

around the beam axis [204]. Since the magnetic field is constant during the passage of the 

particle bunch, the particles don’t change their energy. 

As the particles cross the fringing field of the solenoid, the Lorentz force ݍ ∙ ௭ݒ ൈ  will act	௥ܤ

azimuthally. The resulting velocity ݒఏ	will lead to a radial force when the particles cross 

 .inside the solenoid. This radial force will focus the particles towards the axis [204]	௭ܤ
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Due to the fact that the focal length depends on the momentum, particles with different 

momentum (or energy) are focused at different distances from the lens. 

Hence, particles with lower energies are bent more and therefore focused at shorter distances 

from the lens. This effect results in an enlargement of the beam radius behind the lens, which 

is given by [204, 206] 

௖ݎ ൌ ߚ௖ܥ
݌∆
݌

 (4.2) 

where ܥ௖ is the chromatic aberration coefficient, ߚ the angle of convergence and ∆݌ ⁄݌ ൌ

ܧ∆	 ⁄ܧ2  the momentum spread. 

For the pulsed magnetic solenoid from previous section, the chromatic and spherical 

aberrations were investigated in detail [68, 198]. The beam dynamics simulations were 

performed for proton beams with varied input transverse divergence (opening angle). Three 

different cases were analyzed for	ߙ : േ45 mrad, േ90 mrad and േ180 mrad. For each case 

different momentum spreads up to േ10% are used. These simulations are made at negligible 

space charge conditions. 

For a given solenoid and spot radius, one can use eq. 4.2 to scale the chromatic emittance ߳௖ 

as 

߳௖ ൌ ଶߚ௖ܥ
݌∆
݌

 (4.3) 

For small input emittance values ߳௜  , ߳௖ can dominate and will become the effective 

emittance ߳௢ as can be seen in Figures 4.5. The magnetic field level at 210 mm behind of the 

target is below 1% of the maximum field. Thus, the resulting emittance at that position 

depends on the momentum spread as well as on the initial beam divergence, α. 

In Figure 4.5, the impact of the chromatic and spherical effects at that position can be seen, 

where three different cases for the beam divergence are plotted. 

The predicted linear behavior in eq. 4.3 is confirmed for a momentum spread larger than 2% 

for both planes x and y. At vanishing momentum spread, the relative emittance growth is 

caused by spherical aberrations only. This can be seen in Figures 4.5, right (∆݌ ⁄݌ ൏ 2%). 
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Besides the mesh resolution close to the target, details of the initial proton and electron 

distributions in phase space have to be chosen properly. Especially, the huge electric fields 

caused by charge separation in the presence of the solenoid field were limiting the choice of 

the mesh cell dimensions. Moreover, Courant stability criteria for numerical explicit schemes 

require that v×∆tmesh < ∆zmesh, resulting in a small time step. Due to the fact, that the 

maximum occurring electric field is a dynamical variable, several preliminary test 

simulations were needed to find an optimum mesh setting. The total internal energy (potential 

plus kinetic energy of all particles) was calculated as a control parameter to check 

conservation properties and to distinguish between numerical and physical effects. 

These preliminary simulation checks and an optimum use of the available cluster capabilities 

resulted in the following strategy, which divides the transport line into 4 sections a) – d), 

simulated by LASIN. 

The tracking of the proton bunch through the pulsed magnetic solenoid with the presence of 

co-moving electrons is described in the following [198]. 

a) Initial Particle Distribution and Transport	0 െ  .ݏ݌	10

In the following, an isothermal expansion model (drifting particles) during the first 10	ݏ݌ 

with starting from a radial Gaussian 2ߪ density distribution was assumed. 

The input parameters for the initial distribution as well as their dependence on the proton 

energy were chosen according to the simulated and measured data in the PHELIX laser 

experiments [34]. Figures 4.21 – 4.22 summarize these data. 

The input parameter “initial source radius” was varied from	180	݉ߤ at		5	ܸ݁ܯ to	70	݉ߤ 

at	15	ܸ݁ܯ continously. The angular divergence is decreased with increasing proton energy. 

The angle of divergence was varied from about 400	݉݀ܽݎ at	5	ܸ݁ܯ to 140	݉݀ܽݎ at 

 .(	8°	to °24) ܸ݁ܯ	15	

An initial energy spectrum as large as 10 MeV ± 5 MeV was assumed now in the simulations: 

This is already 10 times larger than the energy band of 10 MeV ± 0.5 MeV, which is adequate 

for injection into the rf linac finally. Within the chosen energy range 10 MeV ± 5 MeV, the 

particle distribution is chosen according to the measured energy spectrum as shown in Figure 

4.11. 

 



 

Figure 

calcula

of proto

was use

 

Figure 

where t

[PhD th

The par

macro-p

proton 

MeV are

Electron

the start

b) 

During 

the simu

4.21: The 

tions using 

ons per en

ed to get the

4.22: Proto

the blue dot

hesis of F. N

rticles with

particle num

fraction of 

e truncated 

ns were cho

ting positio

Transport

the first	10

ulation in L

measured e

equation ׬

nergy interv

e plot on the

on beam pa

ts (∎) are r

Nürnberg re

h low energ

mber 10଻ an

interest for

for the sam

osen co-mo

n. 

t 10 െ 40

the pro ,ݏ݌	0

LASIN. The

energy depo

ᇱሻܧሺ݀ܰሺ׬ ݀⁄

val.  Equat

e right [PhD

arameters o

referring to 

ef. 34]. 

gy below 5

nd their exp

r post-accel

me reason. 

ving with th

 .ݏ݌	

oton and ele

e starting di

56 

osition of p

ሻܧ݀ ൈ ௟௢௦௦ܧ

tion ݀ܰ ⁄ܧ݀

D thesis of F

of the PHE

the experim

MeV were

pected smal

leration. Th

he protons 

ectron bunc

stribution fo

protons in R

௦ሺܧᇱሻ݀ܧᇱ (le

ܧ ൌ ൫ ଴ܰ ඥ⁄

F. Nürnberg

ELIX data u

mental data

e truncated 

l interaction

he protons w

with 100%

ches expand

for the energ

RCF films 

eft). The fit 

ඥ2݇ܧ஻ܶ൯ ൈ

g ref. 34]. 

used in the 

a and (▬) is

due to the

n with the 1

with an ene

space charg

d to conveni

gy band 10	

compared w

t shows the 

ܧ൫െඥ2݌ݔ݁

LASIN sim

s the fitted f

e limited m

ܸ݁ܯ	10 േ 0

ergy larger 

ge compens

ient dimens

ܸ݁ܯ േ 0.5

 

with the 

number 

ܧ ݇஻ܶ⁄ ൯ 

 

mulations 

function 

maximum 

 ܸ݁ܯ	0.5

than 15 

sation at 

sions for 

 is ܸ݁ܯ	5



 

shown 

݉ߤ	400

The den

Figure 4

Figure 

fraction

Figure 

left. 

The init

the time

in the ta

and		ݕ .

The pro

beam ax

in Figure 

݉ behind the

nsity profil

4.24). 

4.23: The ݔ

n of a simula

4.24: Trans

tial cylindri

e step	Δݐ ൌ

arget region

 On contrar

oton density

xis (Figure 

4.23. The 

e target. 

le of the pr

ݔ െ lef) – ݕ

ated proton

sversal den

ical mesh h

2.5 ൈ 10ିଵ

n, electrons

ry, the proto

y decreases

4.25). 

correspond

rotons in th

eft) and ݔ െ

n pulse after

nsity profile 

has the dime

ଵସݏ. Due to

 are transve

ons with the

s while the

57 

ding positio

he transvers

 

െ righ) – ′ݔ

r 10 ps; ߝ௥௠

distributio

ensions ∆ݎ

o the fringin

ersally focu

eir large tra

e electron d

on of the p

se planes is

ht) projectio

௠௦ ൌ 6.56 ݉

n of the ma

ൌ ,݉ߤ	4 ݖ∆

ng field of th

used and can

ansversal m

density stay

particles af

s distributed

ons of the 1

݉݉ ∙  .݀ܽݎ݉

 

acroparticle

ݖ ൌ ,݉ߤ	2 ∆

he focusing

nnot expand

momentum c

ys almost u

fter 40	ݏ݌ 

d as Gaussi

10 MeV  0

e from Figu

∆߶ ൌ ݎ	0.21

g magnetic s

d transversa

can expand r

unchanged n

is abort 

ian (See 

 

0.5 MeV 

ure 4.23, 

 and ݀ܽݎ

solenoid 

ally in ݔ 

radially. 

near the 



 

Due to 

which l

4.26 sho

Figure 

magnet

 

Figure 

differen

As a co

directio

kinetic 

distribu

potentia

the charge

leads to aris

ows the lon

ݖ :4.25 െ ݔ

tic solenoid f

4.26: Poten

nt positions 

onsequence

ons. Subsequ

energy of t

ution along t

al behavior 

e separation

sing negativ

ngitudinal an

ݔ projection

fringing fie

ntial curves

along z.At t

e, the electr

uently, the p

the particles

the magneti

as shown 

n and fringi

ve on axis p

nd transvers

n of the pa

eld is seen a

 in transver

t = 40 ps, th

rons can es

potential dro

s. The rapid

ic field was

in Figure 4

58 

ng fields, t

potential, re

sal on axis p

article distr

already. 

 

rsal (left) an

he space cha

scape and a

ops down a

d thermalisa

s observed. G

4.26. An oc

the electron

eaching abo

potential. 

ributions af

nd longitud

arge potent

are accelera

and electrost

ation proce

Generally th

ccurring pla

n on axis de

out -40 kV

fter 25 ps. 

dinal (right)

tial is reach

ated in forw

tatic energy

ss of the lo

his fact is d

asma oscilla

ensity is in

after 40	ݏ݌

 

The action

 directions 

hing a maxim

ward and ba

y is converte

ongitudinal 

demonstrate

ation at t = 

ncreased, 

 Figure .ݏ

n of the 

 

at three 

mum. 

ackward 

ed to the 

electron 

ed by the 

17.5 ps 



 

(Figure

density 

40 ps is

Figure 

directio

where t

 

Figure 

right pi

The ele

form. 

After th

and are

evident 

stays un

s 4.26 – 4.

of 1021 m-3

s reaching a

4.27: Detai

on. The plas

the simulate

4.28: Time

icture has d

ectron kinet

he propagati

e accelerated

in the distr

nchanged w

27) is almo
3 the plasma

lmost const

il of the pot

sma oscilla

ed particle d

e evolution 

different sca

tic energy 

ion time ݐ ൌ

d to high en

ribution fun

within the s

ost damped 

a frequency 

tant values a

tential curve

ation has a 

density reac

of the elect

ling. 

distribution

ൌ som ݏ݌	25

nergies in b

nction (Figur

same time s

59 

at t = 40 p

has an osci

along the z-

e (from Fig

higher pot

ches its max

 

tron energy

n (Figure 4

me of electr

both directio

re 4.28, righ

scale (first 4

ps. For com

illation peri

-axis within

gure 4.26) af

tential fluct

ximum. 

y distributio

4.28, left) i

rons start to

ons along th

ht). The pro

40 ps, see 

mparison, at

iod of 2 ps. 

n the propag

fter 17.5 ps

uation at lo

on at differ

s changed 

o escape from

he z-axis. T

oton kinetic 

Figure 4.33

t a typical 

The potenti

gating proton

 

s in the long

ower z – po

ent time ste

to the Max

m the proto

Two peaks 

energy dist

3). Howeve

electron 

ial at t = 

n bunch  

gitudinal 

ositions, 

 

eps. The 

xwellian 

on bunch 

are now 

tribution 

er it was 



 

found t

convert

separati

is not v

c) 

Because

dimensi

10ିଵଷ	ݏ

The pro

the case

time sp

the targ

slowly t

Figure 

are acc

distribu

with 10

An elec

phase sp

The cen

pronoun

slope of

which j

that, the gr

ted from the

ion is stimu

iolated on t

Transport

e of the rel

ions 	∆ݎ ൌ

The small .ݏ

oton pulse e

e of a single

an (ݐ ൌ 46

get (Figure 

towards zer

4.29: Proto

celerated ax

ution is sho

	ܸ݁ܯ	0 േ 0.

ctron influen

pace projec

ntral part o

nced radial 

f the core – 

ust experien

rowing pote

e initial tran

ulated by th

he 10-4 leve

t 40 െ 46

laxing space

ൌ ,݉ߤ	45 ݖ∆

l time step i

expands tra

e specie tran

the p (ݏ݌	0

4.29, positi

ro on axis. 

on (red) and

xially by th

own in deta

 .ܸ݁ܯ	5

nce on the 

ction for the

of the prot

focusing fo

distribution

nced the dri

ential energ

nsversal kin

he big initia

el. 

 .ݏ݌	0

e charge fo

ݖ ൌ ,݉ߤ	45

is due to the

ansversally 

nsport as di

roton bunch

ion inside o

d electron (b

heir own po

ail (right). T

proton distr

 whole ener

on distribu

orce of the 

n in phase s

ift into the e

60 

gy as cause

netic proton

al beam dive

orces, the cy

∆߶ ൌ 0.21

e high gyrat

in radius; h

iscussed in 

h propagate

of the solen

blue) distrib

otential. The

The green m

ribution cou

rgy spectrum

ution (ݎ ൏ 5

electrons c

space differs

edge field o

ed by the 

 energy. Th

ergence. Th

ylindrical m

with ݀ܽݎ	1

tion frequen

however, th

section 4.4

ed up to the

noid) and th

bution in z-x

e detail AB

marked are

uld be clear

m 10	ܸ݁ܯ

is (݉ߤ	500

close to the 

s strongly fr

f the soleno

charge sep

he growing 

he overall e

mesh could 

h the time

ncy in the m

he expansio

.1. At the e

e position a

he electric p

x plane afte

B containing

ea correspo

rly demonst

േ  ܸ݁ܯ	0.5

 strongly f

beam axis.

from the pro

oid so far. 

aration, is 

pronounced

energy cons

be adapted 

e step Δݐ

magnetic fiel

n is slower

nd of the di

around 2 cm

potential is 

er 460 ps. E

g the whole

onds to the 

trated in the

(Figure 4.3

focused due

. Consequen

otons at larg

actually 

d charge 

ervation 

to have 

ൌ 3.5 ൈ

ld. 

r than in 

iscussed 

m behind 

relaxing 

Electrons 

e proton 

protons 

e ݔ െ  ᇱݔ

30): 

e to the 

ntly, the 

ger radii, 



 

Figure 

MeV  

The pea

within a

the ener

Gaussia

Figure 

460 ps. 

The pha

an outsi

The pro

lower e

the entr

4.30: The ݔ

5 MeV at 46

aked centra

a radius of 

rgy of inter

an shape and

4.31: Tran

ase space d

ide defocus

oton kinetic

energy side 

rance of the 

ݔ െ phas ′ݔ

60 ps. 

al proton di

 is ݉ߤ	500

rest	10	ܸ݁ܯ

d is peaked 

nsversal pro

distribution	ݔ

ed part (± 3

c energy sp

(Figure 4.33

solenoid. 

se space pro

istribution, 

composed 

ܸ േ ܸ݁ܯ	0.5

on the axis

oton distribu

ݔ െ  has	ᇱݔ

350 mrad di

pectrum aft

3). The long

61 

ojection of 

with about 

of all proto

ܸ. The tran

s (See Figur

 

ution for th

a central co

ivergence) a

ter 460 is o

gitudinal pr

the transpo

30 % of al

on energies.

nsversal prot

re 4.31). 

he energy b

ore in a foc

at radii up to

only slightly

roton bunch

 

orted proton

ll macropar

. This is als

ton distribu

band 10 Me

cus (almost 

o ± 7 mm (S

y changed, 

h position af

n spectrum 

rticles conc

so demonstr

ution has no

eV  0.5 M

parallel bea

See Figure 4

mainly wi

fter 460 ps i

with 10 

centrated 

rated for 

o more a 

 

MeV after 

am) and 

4.32). 

ithin the 

is just at 



 

Figure 

The loc

Figure 

changin

d) 

In the f

neglecte

4.29): T

radius. 

case of 

After 4

reduced

distribu

4.32: Proto

al influence

4.33: Proto

ng mainly a

Transport

following s

ed because 

The maximu

This corres

the proton d

460ps the f

d and the ma

No more 

ution will sh

on distributi

e of co-mov

on spectral 

t low energy

t 460	ݏ݌ െ

imulation t

the electro

um radial el

sponds to th

distribution

focusing el

agnetic forc

additional 

how the cycl

ion ݔ െ f ′ݔ

ing on axis 

distributio

gy end. 

െ .ݏ݊	3.4

through the 

on and proto

lectric field 

he equilibriu

n.  

ectric force

ce becomes 

proton ac

lotron motio

62 

for the ener

electrons is

n developm

solenoid th

on phase sp

at t = 460 p

um between

es due to t

dominant.

ccumulation

on. 

rgy band 10

s seen at |x|

ment within 

he influenc

paces are w

ps reached a

n magnetic 

the electron

n on axis 

 

0 MeV  0.5

 < 0.5 mm. 

 

the first 46

e of co-mo

well separate

about 107 V

and electric

n distributi

is possibl

5 MeV after

60 ps. The s

oving electr

ed now (see

V/m level at 

c focusing f

ion will be

e and the 

r 460 ps. 

shape is 

ons was 

e Figure 

500 µm 

forces in 

e further 

proton 



63 
 

The radial electric force due to the electron column reached about 106 V/m level in the outer 

part ሺݎ ൐ 1	݉݉ሻ of the proton distribution and its contribution is then decreasing 

proportional to 1 ⁄ݎ  outside. Estimating the momentum transfer to the proton distribution 

after 460 ps down along the whole solenoid results in angular corrections below the 1% level. 

The other reason to stop the electrons is because of an impractically long run – time of the 

numerical simulations with electrons which took more than 4000 hours. 

The time step was set to t = 2.5×10-11 s and mesh cells to z = 1 mm, r = 88 m. 

The resulting proton distribution as described in section 4.4.2.c is now transported along the 

remaining length of the solenoid and up to t = 3.4 ns. This corresponds to a drift of 60 mm 

behind the solenoid for the 10 MeV protons. 

Due to its individual orientation at the solenoid exit, the inner 30% core (compare Figure 

4.30) will further diverge along the drift while the outer beam fraction is approaching the 

waist (Figure 3.34). 

In Figure 4.34, the low energy proton fraction is concentrated on the left, approaching a 

waist, while the high energy protons on the right show a central, focused core caused by the 

electrons in the early stage of beam motion as described in section 3.4.2.c. The distribution of 

the particles with 10 MeV ± 0.5 MeV clearly shows the dominance of the chromatic 

aberration as discussed in section 4.3.1 and displayed in Figure 4.7. 

A maximum beam potential of + 14 kV after the propagation time of	3.4	݊ݏ was reached on 

the beam axis at position	ݖ ൌ 11	ܿ݉. The potential level of about 4 kV was detected for the 

energies of interest around 10 MeV at the same moment at	ݖ ൌ 15	ܿ݉. It has to be noted that 

this potential is now acting on protons only.  

To have a full view for the particles motion in phase space, the longitudinal particle 

distribution for the whole proton spectrum (10 MeV ± 5 MeV) is shown in Figure 4.35, left. 

The particles in red are represented to the protons with energies 10 MeV ± 0.5 MeV. This can 

be seen in detail in Figure 4.35, right. 
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ܼ ൌ ଴ܸ
ଶ

ܲ ∙ ܮ
ൌ

଴ܧ
ଶ

 (5.8) ܮ/ܲ

In an accelerating cavity, it is aimed to maximize the energy gain per dissipated power. The 

maximum energy gain is calculated by equation (5.3) for	ߔ ൌ 0, ∆W୫ୟ୶ ൌ ݍ ଴ܸܶ. In 

comparison with equation (5.8) one can define a maximum effective voltage for a given 

dissipated power per unit length as the effective shunt impedance per unit length, Zeff. 

ܼ௘௙௙ ൌ ܼܶଶ ൌ ൤
∆ ௠ܹ௔௫

ݍ
൨
ଶ 1
ܲ ∙ ܮ

ൌ
ሾ ଴ܸܶሿଶ

ܲ ∙ ܮ
ൌ
ሺܧ଴ܶሻଶ

ܮ/ܲ
 (5.9) 

The units of shunt impedance per unit length and the effective shunt impedance per unit 

length are Mߗ/m. 

In the design of normal conducting cavities, one aims to choose the optimum geometry to 

maximize the effective shunt impedance per unit length. Hence, this leads to maximize the 

energy gain for a given dissipated power in a given length. 

The ratio of effective shunt impedance to the quality factor, is another useful parameter 

ܼ௘௙௙
ܳ

ൌ
ሾ ଴ܸܶሿଶ

ܹ߱
 (5.10) 

This parameter depends only on the cavity geometry and is independent of the power losses. 

ܼ௘௙௙ ܳ⁄ 	 measures the acceleration efficiency per stored energy at a given frequency. 

The power delivered to the beam PB is calculated as 

஻ܲ ൌ ܫ  (5.11) ݍ/ܹ∆

where I the beam current, and ∆W is the energy given through the acceleration. 

The total power is the sum of beam power and the loss power 

்ܲ ൌ ܲ ൅ ஻ܲ (5.12) 

The beam power to total power efficiency is measured by the beam loading parameter, 

߳௦ ൌ
஻ܲ

்ܲ
 (5.13) 
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The efficiency of the acceleration increases with increasing beam current, up to the current 

limit of a given structure. 

Finally, the dependence of RF parameters mentioned previously, on the operating frequency 

can be summarized as [208]: 

																						 						ܲ	 ∝ 	ቐ
		݂ି

ଵ
ଶ ݈ܽ݉ݎ݋݊ ݃݊݅ݐܿݑ݀݊݋ܿ ܥܰ

	݂	 ݎ݁݌ݑݏ ݃݊݅ݐܿݑ݀݊݋ܿ ܥܵ
		 (5.14) 

ܳ	 ∝ 		 ቐ
		݂ି

ଵ
ଶ ܥܰ

	݂ିଶ ܥܵ
 (5.15) 

ܼܶଶ 	∝ 		 ቐ
݂
ଵ
ଶ ܥܰ

݂ିଵ ܥܵ
 (5.16) 

ܼܶଶ

ܳ
	∝ 		 ൝

݂ ܥܰ

	݂ ܥܵ
 (5.17) 

Notice that, ܼܶଶ ܳ⁄ 	 has the same dependency on operating frequency for both normal and 

superconducting, which is another evidence that ܼܶଶ ܳ⁄  is independent of the surface 

properties. 

In these scaling’s it is assumed that the frequency shift is provided by a scaling of the cavity 

geometry: Size ~1 ݂.⁄  

5.2 Beam Dynamics in a Linac 

The energy gain of a particle in an RF gap is given by equation (5.3) 

∆ܹ ൌ ݍ ଴ܸ  (5.3) ߶ݏ݋ܿܶ

The value of ߶ at which the cavity is designed to operate is called the synchronous 

phase,	߶௦	. A particle arriving at each gap center with synchronous phase will gain the right 

amount of energy to maintain synchronism with the field, this particle is called the 

synchronous particle. 

Synchronous phase points െ90° ൏ ߶௦ ൏ 0° are stable points because particles arriving earlier 

than the synchronous particle gain less energy, and particles arriving later will gain more 
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5.2.1 Longitudinal Particle Dynamic 

The acceleration of particle bunches in a linac is done by a series of accelerating cells (see 

Figure 5.6), consisting of drift tubes separated by accelerating gaps. It is assumed in a first 

order calculation that, the normalized velocity ߚ௡ିଵ is constant when the bunch passes from 

gap center n-1 to gap center n. The energy gain in a single gap is assumed to be small against 

the particle energy. 

 
Figure 5.6: A series of accelerating cells describing the longitudinal motion. These cells are 

consisting of drift tubes separated by accelerating gaps. 

The phase, energy and velocity of the synchronous particle in the nth gap express 

as	߶௦,௡, ௦ܹ,௡	and	ߚ௦,௡, respectively. In similar way, for an arbitrary particle in the same gap 

one can express its phase, energy and velocity as	߶௡, ௡ܹ	and	ߚ௡, respectively. 

To investigate the motion of particles in phases and energies, it is assumed that the 

synchronous particle arrive each gap in the correct phase. Hence, the motion in a ߣߚ 2⁄  

structure (ߨ-mode) will be investigated.  

The particles in the accelerated beam bunch will perform the so – called synchrotron 

oscillations around the synchronous particle. 

These oscillations can be described by the energy and phase difference between an arbitrary 

particle in the bunch and the synchronous particle (Δ ௜ܹ,௦ ൌ ௜ܹ െ ௦ܹ, Δ߶௜,௦ ൌ ߶௜ െ ߶௦). 

The variation of Δ ௜ܹ,௦	and Δ߶௜,௦	along the beam axis s is given as [208] 

௦ଷߚ௦ଷߛ
݀ሺ߶ െ ߶௦ሻ

ݏ݀
ൌ െ2ߨ

ܹ െ ௦ܹ

݉ܿଶߣ
 (5.18) 

 

݀ሺܹ െ ௦ܹሻ
ݏ݀

ൌ ߶଴ܶሺcosܧݍ െ  ௦ሻ (5.19)߶ݏ݋ܿ
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By differentiate eq. (5.24) and substitute eq. (5.25), one gets a second-order non-linear 

differential equation for the longitudinal motion, which can be simplified by assuming a slow 

rate acceleration to  

௦ଶߚ௦ଶߛ
݀ଶሺ߶ െ ߶௦ሻ

ଶݏ݀
ൌ െ2ߨ

଴ܶܧݍ
݉ܿଶߣ

ሺcos߶ െ  ௦ሻ (5.20)߶ݏ݋ܿ

By using the following notation 

ݓ ൌ ߛߜ ൌ
ܹ െ ௦ܹ

݉ܿଶ
, ܣ ൌ

ߨ2
ߣ௦ଷߛ௦ଷߚ

and ܤ ൌ
଴ܶܧݍ
݉ܿଶ

 (5.21) 

With the help of equation (5.20) and equations (5.21), one can obtain 

ଶݓܣ

2
൅ ߶݊݅ݏሺܤ െ ௦ሻ߶ݏ݋ܿ߶ ൌ ݐݏ݊݋ܿ ൌ  థ (5.22)ܪ

where ܪథ is a constant and can identify as the Hamiltonian (total energy): the first term is the 

kinetic energy and the second one is the potential energy. 

Thus, the potential energy థܸ	can be expressed as 

థܸ ൌ ߶ሺsinܤ െ  ௦ሻ (5.23)߶ݏ݋ܿ߶

For  െߨ ൑ ߶௦ ൑ 0 , థܸ has a potential well (as can be seen in Figure 5.8). The acceleration 

happens for  െగ

ଶ
൑ ߶௦ ൑

గ

ଶ
 , thus the stable acceleration occurs for	െ గ

ଶ
൑ ߶௦ ൑ 0. 

The potential థܸ	has the maximum at	߶ ൌ െ	߶௦, therefore ߶ᇱ ൌ 0 and	ݓ ൌ 0. 

One can rewrite equation 5.32, by defining the constant ܪథ	at	߶ ൌ ߶௦, as 

ଶݓܣ

2
൅ ߶݊݅ݏሺܤ െ ௦ሻ߶ݏ݋ܿ߶ ൌ െܤሾ݊݅ݏ߶௦ െ ߶௦ܿݏ݋߶௦ሿ (5.24) 

Equation (5.24) represents the separatrix equation which separates the longitudinal phase 

space into a stable and an unstable region. 

The maximum particle energy on the separatrix occurs at	߶ ൌ ߶௦. Hence, solving the 

equation of separatrix at ߶ ൌ ߶௦	leads to   

௠௔௫ݓ ൌ
ܹ െ ௦ܹ

݉ܿଶ
ൌ ඨ2ߚܶ°ܧݍ௦

ଷߛ௦ଷߣ
ଶܿ݉ߨ

ሺ߶௦ܿݏ݋߶௦ െ  ௦ሻ (5.25)߶݊݅ݏ

 



 

Figure 

phase	߶

potentia

the long

motion 

(outside

5.2.2 T

The off

negativ

5.7: At th

߶; the sync

al థܸ	has its

gitudinal ph

in the long

e the separa

Transverse

f-axis partic

e, this mean

e top, the 

chronous ph

s minimum 

hase space 

gitudinal ph

atrix) area. 

e Beam Dy

cles experie

ns the majo

acceleratin

hase ߶௦	is s

at ߶ ൌ ߶௦

are shown

hase space

ynamics 

ence radial e

ority of part

73 

ng electric

shown as a

as shown i

n in the mid

e into a sta

electric forc

ticles experi

field EZ is

a negative 

in the bottom

ddle. Here, 

able (inside 

ces. For lon

ience highe

s shown as

value. Thu

m. The par

the separa

the separa

ngitudinal s

er fields in t

 

s a function

us, the long

rticle traject

atrix is divid

atrix) and u

tability ߶௦ 

the second h

n of the 

gitudinal 

tories in 

ding the 

unstable 

must be 

half gap 



74 
 

resulting in a net defocusing force. This defocusing force appears as soon as there is a net 

focusing longitudinal force. 

The Maxwell’s equations in cylindrical coordinates with azimuthal symmetry and with 

absence of charge and current sources in the gap can be written as 

સ. ࡱ ൌ 0			 →
1
ݎ
߲ሺܧݎ௥ሻ

ݎ߲
൅
௭ܧ߲
ݖ߲

ൌ 0 (5.26) 

સ ൈ ࡮ ൌ
1
ܿଶ
ࡱ߲
ݐ߲

ە
ۖ
۔

ۖ
ሺસۓ ൈ ሻ௭࡮ ൌ

1
ܿଶ
௭ܧ߲
ݐ߲

→
1
ݎ
߲ሺܤݎఏሻ

ݎ߲
ൌ
1
ܿଶ
௭ܧ߲
ݐ߲

ݖ െ ݐ݊݁݊݋݌݉݋ܿ

	

ሺસ ൈ ሻ௥࡮ ൌ
1
ܿଶ
௥ܧ߲
ݐ߲

→ െ
ఏܤ߲
ݖ߲

ൌ
1
ܿଶ
௥ܧ߲
ݐ߲

ݎ െ ݐ݊݁݊݋݌݉݋ܿ

 

(5.27) 

(5.28) 

સ ൈ 		ࡱ ൌ െ
࡮߲
ݐ߲

→
௥ܧ߲
ݖ߲

െ
௭ܧ߲
ݎ߲

ൌ െ
ఏܤ߲
ݐ߲

 (5.29) 

Notice that, only	ܧ௭ and ܧ௥	are non-zero field components. 

Assuming that near the axis ܧ௭ is independent of r, equations (5.26) and (5.27) can be 

integrated to have 

௥ܧ ൌ െ
ݎ
2
௭ܧ߲
ݐ߲

 (5.30) 

and 

ఏܤ ൌ െ
ݎ
2ܿଶ

௭ܧ߲
ݐ߲

 (5.31) 

Hence, the radial momentum component near the axis is 

Δ݌௥ ൌ නݍሺܧ௥ െ ఏሻܤܿߚ

௅
ଶ

ି௅ଶ

ݖ݀
ܿߚ

 (5.32) 

where ݀ݐ	replaced by ݀ܿߚ/ݖ	and	ݒ௭ ൌ  .	ܿߚ

Using equations (5.30) and (5.31) to substitute into equation (5.29), we get 

௥݌∆ ൌ െ
ݍ
2
නݎ ൬

௭ܧ߲
ݖ߲

൅
ߚ
ܿ
௭ܧ߲
ݐ߲

൰
ݖ݀
ݐ݀

௅
ଶ

ି௅ଶ

 (5.33) 

To simplify equation (5.33), it is useful to use 
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௭ܧ݀
ݖ݀

ൌ
௭ܧ߲
ݖ߲

൅
1
ܿߚ

௭ܧ߲
ݐ߲

 (5.34) 

The electric field 	ܧ௭	near the axis looks like 

௭ܧ ൌ ݐ଴cosሺ߱ܧ ൅ ߶ሻ (5.35) 

Now, one can use equations (5.34) and (5.35) and the definition of T to get 

௥݌∆ ൌ െ
ܮ଴ܶܧߨݍ ߶݊݅ݏ
ܿߣଶߚଶߛ

 (5.36) ݎ

In case of 	߶ ൌ ߶௦ we obtain 

௥݌∆ ൌ െ
௦߶݊݅ݏܮ଴ܶܧߨݍ

ܿߣଶߚଶߛ
 (5.37) ݎ

In the previous section, the longitudinal stable motion is happened when	െ గ

ଶ
൑ ߶௦ ൑ 0 , but 

this leads to defocus the beam. 

In conclusion, the phase stable acceleration which happened for	െ గ

ଶ
൑ ߶௦ ൑ 0 , giving a 

positive RF deflection. 

In order to compensate this rf defocusing in the linac, it is needed to use a focusing devices 

like magnetic lenses. The quadrupole lenses are the most common. 

In Alvarez structure, the quadrupoles are inserted within the drift tubes. This will reduce the 

RF efficiency of the cavity. In order to overcome this problem, one option was to invent a 

new structure with a lake of internal focusing element in the RF cavity. 

The focusing elements are installed between the cavities. H-type cavity is an example on this 

structure. 

5.3  H- type Cavities 

H-type cavities are characterized by the direction of the RF magnetic field, which is parallel 

and antiparallel with respect to the beam axis [74-76, 209-214]. Closed field loops are 

provided by connecting field lines with opposite orientation at the cavity ends. These cavities 

are operating in transverse-electric (TE)-mode structure (known also as H-mode). 

Solving the Maxwell equations in a cylindrical cavity of radius R and length L lead to [213] 
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௭ሺ௠,௡,௟ሻܪ ൌ ሻݎ௠ሺ݇௖ܬ଴ܪ	 cos݉߶ . ݖ௭݇݊݅ݏ  (5.38) 

ఃሺ௠,௡,௟ሻܪ ൌ 	
.଴ܪ ݇௭.݉

݇௖
ଶ .

1
ݎ
. ሻݎ௠ሺ݇௖ܬ . sin݉߶ . cos ݇௭ݖ  (5.39) 

௥ሺ௠,௡,௟ሻܪ	 ൌ
.଴ܪ ݇௭
݇௖

௠ᇱܬ	 ሺ݇௖ݎሻ cos݉߶ . cos ݇௭ݖ  (5.40) 

ఃሺ௠,௡,௟ሻܧ ൌ 	
.଴.ܼ଴ܪ ݇
݇௖

. ௠ᇱܬ ሺ݇௖ݎሻ. cos݉߶ . ݖ௭݇݊݅ݏ  
(5.41) 

௥ሺ௠,௡,௟ሻܧ ൌ
.଴ܪ ܼ଴. ݇.݉

݇௖
ଶ ሻݎ௠ሺ݇௖ܬ . sin݉߶. ݖ௭݇݊݅ݏ  

(5.42) 

 where ܬ௠ is the Bessel’s function of order m, 	ܬ௠ᇱ  is the first derivative of the Bessel’s 

function and (	݉, ݊, ݈	) are integers defining the excited made. 

The wave number ݇, ݇௭	ܽ݊݀	݇௖	are defining as 

݇ଶ ൌ ݇௖ଶ ൅ ݇௭ଶ (5.43) 

݇௭ ൌ
݈. ߨ
ܮ
				 ݈ ൌ 0,1,2 (5.44) 

݇௖ ൌ
௠௡ݔ
ᇱ

ܴ
 (5.45) 

where 	ݔ′௠௡	 is the nth zero of  	ܬ′௠. 

The H-type structures have excellent properties which make them attractive for low and 

medium β – acceleration. The RF efficiency, beam quality and operation reliability are the 

main aspects in any linac structure. The H-type shows excellent behavior in these aspects. 

Table 5.1 shows the comparison between the Alvarez-DTL and H-type structure. 

 
Features 

Alvarez H-type 

Field mode TM TE 
Structure mode 2ߨ ߨ 
Frequency range [MHz] 100 – 400 30 – 800 
Period length 2/ߣߚ ߣߚ 

 range ≤ 0.5 ≤ 0.5 - ߚ
Max. accelerating gradient [MV/m] 4 10.7 for IH [215] 
Availability* RT RT & SC 

* This refers to the material type where RT and SC stand for room temperature (normal 
conductor) and Superconducting, respectively. 

Table 5.1: A comparison between Alvarez drift tube linac and H – type DTL. 

Structure 
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Figure 5.12: IH – DTL for the CERN LINAC 3 lead injector showing a detail of the electric 

and magnetic field distributions inside the cavity (Courtesy of U. Ratzinger). 

5.3.2 Crossbar H-type DTL (CH-DTL) 

For frequencies ൐ 250 MHz, the dimensions of the IH are too small and in terms of 

mechanical construction the cavity design is not attractive. So, one can consider to excite 

higher H-modes, ܪ௡ଵ଴. 

Hmn – modes show higher frequencies at a given tank radius for higher m. On the other hand, 

the structure gets more complex. The H21 – mode with two stems per drift tube seems to be 

attractive for medium β – profiles. The cavity operated in this mode is called a Crossbar H-

type structure (CH-DTL) [74-76, 210, 212-214, 227]. In this mode, the operation frequency 

can reach up to 800 MHz [210, 212-213]. 
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5.4 KONUS Beam Dynamics and LORASR Code 

In section 5.2 it was shown that, in conventional DTL’s the synchronous phase of an 

accelerating gap should be negative for a longitudinal stable motion. This causes a defocusing 

in transverse direction and therefore additional focusing elements are housed in the drift 

tubes. This will limit the achievable accelerating gradient and reduce the shunt impedance. 

An alternative focusing scheme proposed by U. Ratzinger to solve this problem, was the 

KONUS (KOmbinierte NUll grad Struktur – Combined Zero Degree Structure) beam 

dynamics concept [74-76, 211-214, 241]. The main idea of the KONUS beam dynamics is to 

apply the 0° synchronous phase in the accelerating gap to maximize the acceleration 

efficiency, and thus minimize the defocusing in transverse planes. 

Figure 5.16 shows a comparison between the particle trajectories in longitudinal phase space 

at different values of the synchronous phase	߶௦ ൌ െ30°,െ90°	and	0°. Obviously, at 

߶௦ ൌ 	0°	the separatrix does not exist (shrinks to zero) and full field will be used for 

acceleration. Figure 5.17 explains the difference to the KONUS structure. 

In the absence of a separatrix, the quasi stable area in longitudinal phase space which can be 

used by KONUS is marked with dark arrows in Figure 5.18 [213]. 

The KONUS period consists of three sections with different purposes (see Figures 5.9, 5.19). 

These sections are  

1- A transverse focusing magnetic lens (a quadrupole triplet in case of room temperature 

cavity or a solenoid in case of superconducting cavity). 

2- A short rebunching section with a negative synchronous phase for longitudinal 

matching. 

3- A main acceleration section with a multi – cell 0° - synchronous phase. 

The main acceleration section in KONUS beam dynamics is defined by a zero degree 

synchronous particle, the beam is injected to this section with a surplus in energy against the 

synchronous particle. 
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Figure 5.17: Comparison of the longitudinal particle motion at two synchronous phase 

values; a negative synchronous phase (left) and zero synchronous phase (right). The 

accelerating field is shown as a cosine function of the phase (a), the longitudinal potential 

well (b) and the longitudinal phase – space trajectories are shown in (c) (Courtesy of U. 

Ratzinger). 

 

 

Figure 5.18: Flowchart of single particle motion in the longitudinal phase space for ߶௦ ൌ 0°. 

Stable area in longitudinal phase space which can be used by KONUS is marked with dark 

arrows (Courtesy of U. Ratzinger). 
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CHAPTER 6 

DEVELOPMENT AND MATCHING OF A DEDICATED 

CH- LINAC FOR INTENSE LASER – ACCELERATED 

PROTON BUNCHES 

Laser – accelerated protons possess interesting properties in terms of energy, emittance and 

proton number per bunch which make them competitive to conventional proton sources in 

some cases. The important topic for a further acceleration of these protons is the matching 

into the acceptance of a conventional RF accelerator. This kind of hybrid proton accelerator 

will benefit from the interesting features of the laser based source and from the flexibility of 

RF based accelerator structure. 

Such a combination will give us the chance for a further acceleration and control of the laser 

–  accelerated protons by conventional accelerator structures which adapt the beam to fulfill 

the required parameters for different applications. 

Due to the available energies, drift tube linacs are the most adequate choice for this purpose. 

The coupling between laser – accelerated protons and a conventional drift tube linac – DTL 

was discussed and studied numerically [19, 48, 59, 69-71, 151, 254]. In this work, a crossbar 

H-type (CH) structure is suggested as the linac structure [196-198]. 

The laser generated proton bunch is expected to have small emittance values initially when 

compared to conventional accelerators, at an extremely high proton number per bunch. To 

compare the beam dynamics in each bunch with conventional bunch trains, one has to take 

the beam current resulting from a cw linac operation with all rf buckets filled with the same 

particle number. The resulting equivalent beam current to be used for beam dynamics 

calculations is then  

௕ܫ ൌ ௣ܰ. ݂. ݁ (6.1) 

For example, in our case 10ଵ଴ protons in the laser generated bunch can be detected in the 

energy band	10	ܸ݁ܯ േ  ,CH-DTL ݖܪܯ	These protons will be injected into a 325 .	ܸ݁ܯ	0.5

the corresponding averaged beam current corresponds then to		ܫ௕ ൌ  This may be .ܣ݉	520
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Table 6.1: A summary for each cell period structure in all cavities of the CH – DTL. 
Period 

Cell (cm) 
Drift Tube 

No. 
Tube 

Length 
(cm) 

Gap No. Gap Length 
(cm) 

Voltage 
(MV) 

TTF 

CH – 1 
4.01* 1 2.41 1 3.20 0.918 0.838 
6.91 2 3.65 2 3.31 0.969 0.840 
7.15 3 3.78 3 3.43 1.020 0.840 
7.39 4 3.91 4 3.53 1.020 0.840 
9.10 5 5.68 5 3.31 1.020 0.837 
7.68 6 4.23 6 3.60 0.969 0.839 
7.95 7 4.22 7 3.87 0.918 0.844 

CH – 2 
47.24** 8 43.34 8 3.92 0.936 0.846 

8.60 9 4.64 9 4.01 0.988 0.847 
8.80 10 4.79 10 4.00 1.040 0.853 
8.99 11 4.89 11 4.21 1.040 0.844 

11.16 12 7.01 12 4.09 1.040 0.858 
9.22 13 4.98 13 4.39 1.040 0.846 
9.46 14 4.96 14 4.62 0.988 0.839 
9.68 15 5.00 15 4.74 0.936 0.836 

CH – 3 
47.24** 16 42.27 16 5.19 0.954 0.813 
10.23 17 5.31 17 4.65 1.007 0.854 
10.40 18 6.02 18 4.12 1.060 0.887 
10.57 19 6.35 19 4.33 1.060 0.878 
13.02 20 8.84 20 4.04 1.060 0.897 
10.72 21 6.65 21 4.11 1.060 0.898 
10.93 22 6.83 22 4.08 1.060 0.902 
11.13 23 7.07 23 4.04 1.007 0.906 
11.32 24 7.24 24 4.10 0.954 0.905 

CH – 4 
47.24** 25 43.19 25 4.00 0.972 0.915 
11.82 26 7.80 26 4.05 1.026 0.915 
11.96 27 7.88 27 4.13 1.080 0.914 
12.11 28 8.00 28 4.08 1.080 0.916 
14.86 29 10.88 29 3.88 1.080 0.926 
12.21 30 8.30 30 3.94 1.080 0.926 
12.39 31 8.43 31 3.99 1.080 0.926 
12.57 32 8.54 32 4.05 1.080 0.926 
12.74 33 8.63 33 4.17 1.026 0.924 
12.90 34 8.80 34 4.02 0.972 0.931 

47.23** 35 45.22  
* Entrance drift to the first gap center.  
** Drift across the quadrupole triplets. 
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Due to the fact that the transverse focusing period is much larger than in a conventional 

FODO structure, and in order to avoid beam losses, the length of the first cavity was limited 

to 7 gaps only. 

Two injected beam distributions were analyzed for this design: The matched case which is a 

numerically generated waterbag distribution with rms – emittance values close to the linac 

acceptance (compare aperture filling in Figure 6.4), and the laser accelerated case with a 

proton distribution as simulated in chapter 3.4.2. 

6.1.1 Matched Beam Case 

The matched beam parameters at 	500	݉ܣ equivalent beam current are summarized in Table 

6.2, where the input values are given 	40	݉݉ in front of the first gap center (corresponding to 

z = 147 mm in Figure 3.1). The 6D-water bag distribution, which is defined in the LORASR 

code, is used as an initial distribution. The particles were accelerated to the exit without any 

losses. 

Table 6.2: Normalized rms- emittance values for the input and 

output distribution with 500 mA beam current. 

Emittance Input Output 

Transverse/ ݉݉ ∙  ݀ܽݎ݉
x: 3.85 4.08 

y: 3.85 4.06 

Longitudinal/ ܸ݇݁ ∙  6.68 5.37 ݏ݊

The rms- emittance growth rates along the linac are less than 25	% in longitudinal plane and 

less than 6% in the transverse planes as shown in Figure 6.3. 

The transverse and longitudinal 90, 99 and 100	% beam envelopes at 500	݉ܣ equivalent 

beam current can be seen in Figure 6.4. The 100	% beam envelope is reaching more than 

90% of the aperture in the second triplet lens. The magnetic field gradients of the quadrupoles 

are ranging up to 50	.5 ܶ ݉⁄  at quadrupole aperture radii of 25 mm, which can be reached 

with cobalt based cores (Vacoflux 50 for example). 
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first cavity was chosen in order to handle the huge space charge and to prevent beam losses. 

A gap voltage of about 1 MV was applied at all gaps. 

1010 protons per bunch are expected to be delivered by TNSA in the energy band of 10 MeV 

± 0.5 MeV. This number is equivalent to 520 mA averaged beam current in a linac if all 

buckets are filled with the same number. 

The high gap voltage will increase the power losses and have a high risk of sparking. It could 

be reduced by a certain percentage, without a serious reduction of beam quality. This is 

described now. 

The accelerating gap voltage was investigated for three different cases. The first case is the 

one explained in section 6.1.1 where the proton bunch is accelerated from 10 MeV up to 

40.03 MeV. In the second case, the accelerating gradient was reduced to 75%. Hence, the 

proton bunch will be accelerated up to 32.53 MeV.  

A 50% reduction in accelerating gradient which will accelerate the bunch up to 25.02 MeV in 

the third case. 

For each case, the transmission and longitudinal emittance growth was evaluated at different 

beam currents up to 2 A. 

For the first and second cases, where the accelerating gradient was V0 and 0.75V0, the 

resulting 100% transmission up to 1 A was approved (see Figures 6.10 and 6.11). While in 

the third case, 100% transmission is valid up to 400 mA only. Beyond this point, the 

transmission starts to decrease with increasing beam current as shown in Figure 6.12. 

At 500 mA beam current, the longitudinal emittance growth is slightly different between V0 

and 0.75V0 case, but quite different for the 0.5V0 case. Table 6.4 shows a comparison between 

the different cases at different beam current. 

As a result, a 25% reduction of the gap voltages for a 500 mA beam current layout seems 

reasonable. This gives then effective gap voltages of around 750 kV which gives a good 

safety margin against sparking at the envisaged, that rf phase operation. 

With respect to longitudinal rms – emittance growth, the factor is increasing from 1.23 

(nominal case) to 1.31. 

In further investigations to be done, it will be tried to reduce the voltage against the nominal 

case in the very first cavity. The others will then get longer gaps.  
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From these simulations one can see that, the design discussed in section 6.1 is quite robust 

and can stand with acceptable emittance growths and with good transmission values over 

95% for the variation of voltage levels from ∆V/V = -6% to ∆V/V = +12%. 

6.4 RF Power Budget for a Single Bunch Operation 

One great advantage of high current, single bunch passage along the cavity is that the 

amplifier only has to provide the loss power in the cavity walls. The beam power is provided 

by the stored energy in the cavity fields, while reducing the field levels only within 

tolerances. 

An estimation of the maximum single bunch proton number can be given in the following 

way [198]: 

ܹ ൌ ௟ܲ௢௦௦ ∙ ܳ଴
߱

; 

௟ܲ௢௦௦ ൌ
൫ ீܰ ௙ܷܶ଴൯

ଶ

ܼ௘௙௙ ∙ ܮ
 

(6.2) 

(6.3) 

W = stored field energy, ௟ܲ௢௦௦ = thermic wall losses, ܳ଴ = unloaded quality factor, NG = gap 

numbers, Tf = the transit time factor, ܷ଴ = averaged gap voltage amplitude along the cavity, 

ܼ௘௙௙ = effective shunt impedance, L = the effective cavity length. 

The synchronous beam bunch will absorb cavity energy while passing NG cells of length 

  the bunch transit time along the cavity corresponds to ;2/ߣߚ	

߬௖ ൌ ܶ ∙ ீܰ

2
; (6.4) 

with ܶ ൌ 1 ݂⁄ , ݂	being the rf frequency in Hz. Assuming an rf phase of 0° in each gap center 

– that means maximum voltage gain ௚ܸ ൌ ଴ܸ,௚௔௣ ∙ ௙ܶ with ଴ܸ,௚௔௣	being the gap voltage 

amplitude assuming to be constant along the cavity, the energy transfer to the beam bunch 

with Np protons along each gap passage corresponds to 

௚ܹ ൌ ௣ܰ ∙ ݁ ∙ ௚ܸ; (6.5) 
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The bunch will pass the cavity during a few ten ns, where a feedback control will be too slow 

for compensation. On the other hand, a feed forward loop technique might provide solutions 

for achieving even higher bunch particle numbers, but is not considered here. 

The acceptable voltage drop tolerance A caused by the bunch will be in the 1 to 2 percent 

range.  

ܣ ൌ ቤ
∆ ௚ܸ,௠௔௫

௚ܸ
ቤ ; (6.6) 

This assures in a good approximation an unchanged power input Pl by the feeder line during 

the bunch passage, additionally the matching condition will be disturbed slightly only. 

The time constant	࢓࣎, after which the amplitude shift caused by the beam reaches the limit is 

given by 

߬௠ ൌ 2 ∙
ܣ ∙ ܹ

௕ܲ,௘௙௙
; (6.7) 

 ௕ܲ,௘௙௙= the beam extracted rf power. In case of a single bunch passage through a 2/ߣߚ 

structure it is  

௕ܲ,௘௙௙ ൌ 2 ∙ ௙ܶ ∙ ܷ଴ ∙
ܳ஻௨௡௖௛
ܶ

; (6.8) 

The bunch particle limit will be exceeded if  

߬௠ ൑ ߬௖; (6.9) 

The particle limit is given by  

߬௠
߬௖

ൌ 1; (6.10) 

 

2 ∙ ܣ ∙ ܹ

௙ܶ ∙ ଴ܷ ∙ ܳ஻௨௡௖௛ ∙ ீܰ
ൌ 1; (6.11) 

 

ܳ஻௨௡௖௛ ൌ
2 ∙ ܣ ∙ ܹ

௙ܶ ∙ ଴ܷ ∙ ீܰ
; (6.12) 
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As an example, for the first cavity of the proposed linac, the cavity parameters can be 

estimated by CST – MWS (see table 7.1 in next chapter) to get	ܳ஻௨௡௖௛	 like follows: 

L = 0.5 m; Zeff = 45 MΩ/m; NG = 7 gaps; Tf = 0.8, U0 = 1.0 MV; Q0 = 13289; 

From equation 6.3, the wall losses result in Ploss = 1.39 MW. Equation 6.2 gives the stored 

field energy W = 9.07 J. 

With an assumed tolerance value A = 0.01 one gets from equation 6.12 a maximum bunch 

charge of QBunch = 3.24×10-8 C, corresponding to a proton number NP = 2.02×1011. 

This would correspond to a beam current of 10.5 A with all buckets filled by the same 

particle number.  

The resulting proton number above can be compared with a particle number of 4.3×109 in the 

simulate example in section 6.1.2. 

This shows that, the single bunch beam load will not affect the cavity oscillation, as stated 

above. 

One further aspect is the total number of protons arriving at the linac entrance. These 

particles might cause cavity sparking when hitting the wall. Even cavity de-phasing might 

occur by a large particle fraction with energies close enough to the accepted energy window. 

To reduce the risk of sparking, the intense low energy part of the laser generated pulse should 

be cut at the linac entrance. This will be a subject of intense simulation studies in the next 

future. Moreover, the inner drift tube contour can be optimized to reduce the secondary 

particle emission. 

The total number of accepted particles with energies above 10.5 MeV is estimated to about 

5×109. But they are continuously distributed in rf phase. One main aspect of an rf 

postacceleration experiment will be the rf operation stability under these beam load 

conditions. 
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A summary for this study is given in table 7.1 which shows the main parameters of the first 

CH – cavity for this linac. 

Table 7.1: The main characteristic parameters of the first CH – cavity of the dedicated linac 

for laser accelerated protons. 

Number of Gaps 7 

Frequency (MHz) 325.2 

Energy Range (MeV) 10.05 – 16.09 

Power Loss (MW) 1.92 

ܳ଴ – value 13289 

Effective Shunt impedance (MΩ/m) 45.7 

Accelerating Field Gradient (MV/m) 12.6 

Beam Aperture (mm) 30 

Outer Drift Tube Diameter (mm) 50 

Total Length (mm) 668.4 
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to the inclined stems. In case of straight stems, the surface field distribution is similar to the 
on axis distribution unless the values are different. 

As a consequence, the stems should get a larger straight element close to the drift tubes to 
reduces that effect. 

In the CST – MWS simulations the drift tubes edges are rounded to have realistic geometry. 
Thus the field values on the surfaces can be taken as a good estimation for the field values in 
reality. 

Another important distribution which is important for the beam dynamics is the electric field 
distribution along the path 3 which is parallel to the beam axis and displaced radially by the 
aperture radius (path 3, Figure 7.18). This can be seen in Figure 7.19. 

The longitudinal electric field distribution along the path AB in gap number 2 of the CH 
cavity is shown in Figure 7.20. 
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CHAPTER 8 

CONCLUSION AND OUTLOOK 

 

The results of this study show that the matching of laser – accelerated protons into a 

conventional RF drift tube linac is possible. 

Laser driven proton beam sources (TNSA) possess attractive features in terms of energy and 

proton number per bunch. These interesting features make them attractive to be used as RF 

linac injectors at energies as high as 10 MeV or beyond. 

With respect to laser – accelerated beams, the high current capability of the CH – DTL cavity 

has been investigated. Beam simulations have demonstrated that 1010 protons per bunch can 

be accelerated successfully and loss free along the structure. 

The high number of particles per bunch and the feature of delivering single bunches to the 

experiment are unique. Moreover, the beam power is delivered by the stored energy in the 

linac cavities and does not cause a demand for larger RF amplifier, while in case of multi 

bunch acceleration the beam power has to be derived additionally by the RF amplifier. 

In section 6.4, it was shown that, the maximum number of protons per bunch that can be 

accelerated in the first cavity by exploiting about 1% of the stored field energy is 2.02×1011 

protons. This corresponds to an equivalent beam current of 10.5 A.  

The maximum proton number can be compared with a particle number of 4.3× 109 in the 

simulated bunch example in section 6.1.2. 

One further aspect is the total number of protons arriving at the linac entrance. These 

particles might cause cavity sparking when hitting the wall. Even cavity de-phasing might 

occur by a large particle fraction with energies close enough to the accepted energy window. 

To reduce the risk of sparking, the intense low energy part of the laser generated pulse should 

be cut at the linac entrance by scrapers. Moreover, the inner drift tube contour can be 

optimized to reduce the secondary particle emission. 
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The total number of accepted particles with energies above 10.5 MeV is estimated to about 

5×109. But they are continuously distributed in rf phase. One main aspect of an rf post-

acceleration experiment will be the rf operation stability under these beam load conditions. 

Single bunch proton numbers of around 1010 at the linac exit seem within reach. Detailed 

simulations from the target along the solenoid and down to the linac entrance were presented, 

applying adapted software. Special care was taken on the time steps, especially close to the 

target, and on the collective phenomena between electron and proton distributions. The effect 

of co – moving electrons on the beam dynamics has been investigated in detail. 

The resulting emittance values in all three planes are relatively large at linac injection, due to 

the high phase space density at bunch generation which leads to emittance growth along the 

transport section. 

A CH – linac with high space charge limit and large transverse and longitudinal acceptance 

was designed to accept a maximum fraction of the laser generated proton bursts. The high 

particle number per bunch requires a high voltage gain per meter along the linac to get 

enough longitudinal focusing force. The described example is at the upper technical limit. 

The voltage can be reduced by up to 50 % with only a minor increase in emittance growth 

and at beam losses below 0.5 %. 

Hence, high voltage gains of the order 1 MV are attractive to minimize the beam losses along 

the linac. This aspect becomes very important at the low energy end of the rf linac. 

Due to well-known transformations of the injected beam emittances along the CH- cavity, it 

is aimed to derive parameters of the TNSA generated beam by measuring the beam properties 

behind of the CH- cavity. Different CH operation settings may allow solving this interesting 

task. 

Attractive applications for single bunch operation as delivered naturally by laser driven 

systems might occur, involving time of flight techniques or the study of secondary reactions 

at low noise level, for instance. 

The time averaged beam current at the linac exit may be increased to more interesting values 

for certain applications, if advanced laser systems with much higher repetition rates (100 Hz 

to several kHz) will become available. On the other hand, conventional injectors consisting of 

an ion source, low energy beam transport LEBT and radiofrequency quadrupole RFQ will be 
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superior if a high time averaged proton current is needed, as these systems are flexible in the 

beam pulse structure up to cw operation. 

With respect to the linac development it is intended to realize the first cavity of the proposed 

CH – DTL and to demonstrate the acceleration of a laser generated proton bunch with the 

LIGHT project. 

The first cavity consists of 7 gaps within a total length of about 668 mm. It is operated at 325 

MHz and has an effective accelerating field gradient of about 12.6 MV/m. 

The study on the surface electric field for this cavity shows, that maximum surface fields of 

about 94 MV/m and 88 MV/m on the third and sixth drift tubes are reachable, respectively. 

These values are about 5.2 and 4.9 times greater than the Kilpatric limit. However, they 

appear very locally only at the drift tube ends. 

Further optimization and development is needed in order to optimize the proposed CH - 

cavities by using the CST – MicroWave Studio (MWS), and by improving cavity surface 

preparation techniques. This concept will lead towards intense single proton bunch 

acceleration far above particle numbers reached so far by conventional accelerator 

techniques. 

This work is connected to the LIGHT project as an advanced option. LIGHT is proposed to 

produce a controllable compact laser – proton source with controlled energy and divergence, 

which can be injected into a conventional accelerator. It is a collaboration project including 

GSI - Helmholtzzentrum für Schwerionenforschung GmbH, Technische Universität 

Darmstadt, the newly founded Helmholtz-Institute Jena, the Forschungszentrum Dresden-

Rossendorf and the Institute for applied Sciences at the University of Frankfurt (UF). 

Figure 8.1 contains the CH – cavity which will get beam from PHELIX by rotating the target 

chamber by 90° counter clockwise. This experiment will allow testing a most direct coupling 

of the rf linac with the laser source by using only one compact, pulsed magnetic solenoid for 

matching 
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