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Background: SHARPIN is a subunit of the E3 ligase complex LUBAC and the gene that is mutated in chronic proliferative
dermatitis mice.
Results: The N-terminal portion of SHARPIN adopts the PH superfold and mediates homodimerization.
Conclusion: The PH superfold can be used as a protein dimerization module.
Significance: This study highlights the versatility of the PH superfold and its function as a protein interaction module.

SHARPIN (SHANK-associated RH domain interacting pro-
tein) is part of a largemulti-protein E3 ubiquitin ligase complex
called LUBAC (linear ubiquitin chain assembly complex), which
catalyzes the formation of linear ubiquitin chains and regulates
immune and apoptopic signaling pathways. TheC-terminal half
of SHARPIN contains ubiquitin-like domain andNpl4-zinc fin-
ger domains that mediate the interaction with the LUBAC sub-
unit HOIP and ubiquitin, respectively. In contrast, the N-termi-
nal region does not show any homology with known protein
interaction domains but has been suggested to be responsible
for self-association of SHARPIN, presumably via a coiled-coil
region. We have determined the crystal structure of the N-ter-
minal portion of SHARPIN, which adopts the highly conserved
pleckstrin homology superfold that is often used as a scaffold to
create protein interactionmodules.We show that in SHARPIN,
this domain does not appear to be used as a ligand recognition
domain because it lacks many of the surface properties that are
present in other pleckstrin homology fold-based interaction
modules. Instead, it acts as a dimerizationmodule extending the
functional applications of this superfold.

SHARPIN (also known as Sipl1) is a 387-amino acid protein
that originally has been identified as a SHANK (SH3 (Src
homology 3) and multiple ankyrin repeat domains protein)-
binding protein enriched in the postsynaptic density of excit-
atory neurotransmitters (1). More recently, the observation
that a spontaneous mutation in the mouse SHARPIN gene
causes chronic proliferative dermatitis, a disease marked by

skin lesions, multi-organ inflammation, and a deficient
immune system suggested that SHARPIN might also be impli-
cated in immune and inflammatory signaling pathways (2).
Such a role has now been confirmed by the discovery that
SHARPIN acts as a novel subunit of the E3 ubiquitin ligase
complex LUBAC, which catalyzes the formation of linear or
M1-linked polyubiquitin chains that play an important role in
the activation of the transcription factor NF-�B (3–5). LUBAC
contains two other subunits, termed HOIL-1L (also known as
RBCK1) and HOIP (HOIL-1L interacting protein, also known
as RNF31), both of which are members of the RBR (RING-
between-RING) subfamily of RING family E3 ligases (6), with
the RBR domain residing in the C-terminal portion of the mol-
ecules (7–10). The N-terminal half of HOIL-1L consists of an
ubiquitin-like domain (UBL)2 followed by an Npl4 zinc finger
(NZF). The UBL recognizes an ubiquitin-associated domain in
HOIP to mediate complex formation (7).
Other domains present in HOIP include a PUB (Peptide:

N-glycanase/UBA or UBX-containing proteins) domain fol-
lowed by a zinc finger (ZF) and two NZF domains. Mutational
studies have shown that the RBR domain of HOIP is the active
side for linear ubiquitin chain synthesis, whereas the RBR of
HOIL-1L is dispensable for catalysis, although complex forma-
tion between the two proteins is required for enzymatic activity
(7, 8). SHARPIN does not contain an RBR domain but shares
significant similarity with the N-terminal region of HOIL-1L
that comprises the UBL and NZF domains (see Fig. 1A) and
similar to HOIL-1L binds ubiquitin via the NZF, whereas its
UBLdomain is responsible for the interactionwithHOIP (3–5).
This related domain architecture and sequence similarity likely
explains the apparent overlapping function of the two proteins
as SHARPIN can substitute for HOIL-1L in promoting linear
ubiquitin chain synthesis by HOIP. Furthermore, the observa-
tion that endogenous HOIP can form a complex with only
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HOIL-1L or SHARPIN in the absence of the other and that
either of these complexes can synthesize linear ubiquitin chains
to promote NF-�B activation indicates that some of the func-
tions of the two proteins are redundant (3, 5, 8). Nevertheless,
clear functional differences exist: it has been shown that
SHARPIN but not HOIL-1L deficiency in mice results in an
increased TNF�-induced cell death, whereas HOIL-1L has a
much more profound effect on IL-1�-induced NF-�B activa-
tion (3–5). These specific functions of SHARPIN andHOIL-1L
are most likely mediated by distinct structural features outside
the UBL-NZF segment that is shared between the two proteins.
SHARPIN contains a 170-amino acid stretch at theN terminus,
which is not well characterized and is absent in HOIL-1L.
Immune precipitation experiments showed this region to
undergo homomultimerization, an observation that is in line
with the presence of a short heptad repeat motif-spanning res-
idues 36–49 that is predicted to forma coiled coil (1). However,
apart from these findings, no further information about the
functional or structural properties of the N-terminal part of
SHARPIN is currently available. To gain insight into the prop-
erties of this region, we have solved the x-ray structure of a
SHARPIN construct containing residues 1–127 and character-
ized its propensity for self-association. The structure confirms
that SHARPIN has the ability to self-associate into dimers but
rather unexpectedly shows that dimerization is notmediated by
a coiled coil but that SHARPINutilizes the pleckstrin homology
(PH) superfold as a dimerization module instead. This mode of
interaction is unique and represents a novel function for the PH
superfold.

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification—The N-terminal frag-
ment of human SHARPIN comprising residues 1–127 was
expressed in pGEX-4T1 (GEHealthcare). The interfacemutant
V114D and the mutant L22M/L101M used for producing sel-
enomethionine-substituted protein was generated by site-di-
rected mutagenesis according to the QuikChange protocol
(Stratagene) and verified by DNA sequencing. The protein was
purified on GSH-Sepharose, and the GST was cleaved with
thrombin at 4 °C overnight. The cleaved protein was further
purified by gel filtration using a Superdex S75 column (GE
Healthcare) run in 50 mM HEPES, pH 7.4, 150 mM NaCl, and 1
mM DTT. Purified SHARPIN was concentrated to a final con-
centration of 5 mM and stored at �80 °C.
Crystallography—Crystallization of SHARPIN 1–127 and

SHARPIN 1–127 L22M/L101Mwill be described in detail else-
where. In brief, crystals were grown from a 10 mg/ml protein
solution in sitting drop set-ups using a reservoir solution con-
taining 4 M sodium formate and optimized by seeding. The
mother liquor was not buffered, and its pH was measured to be
pH7.7. Crystalswere flash-frozen in liquid nitrogenwith a solu-
tion containing the mother liquor and 10% glycerol. Data were
collected at 100 K. Crystals diffract to 2.0 Å and belong to the
primitive tetragonal space group P43212 with four molecules
per asymmetric unit. A data set of high redundancy was col-
lected on beamline I0.4 at the Diamond Light Source (Oxford,
UK) and processed using Denzo and Scalepack (11). The struc-
ture was solved by single anomalous dispersion phasing using

the SeMet derivative SHARPIN 1–127 L22M/L101M. Heavy
atom search, density modification, and initial model building
was performed using Phenix AutoSol (12). After several rounds
of iterativemanualmodel buildingwithCoot (13), the structure
was refined using the program REFMAC5 (14), and the stre-
rochemistry of the final model was analyzed with Procheck
(15).
Isothermal Titration Calorimetry—Dilution experiments

were conducted to investigate the dissociation process of the
monomer-dimer transition using an ITC200 calorimeter (GE
Healthcare). Protein samples of WT and mutant V114D
SHARPIN were prepared by dialysis against 50 mM HEPES,
pH 7.4, 150 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine
(TCEP)). Measurements were performed at 25 °C, and data
were analyzed using the Origin-based software provided by
the manufacturer.
Analytical Ultracentrifugation—Sedimentation velocity ex-

periments were performed in a Beckman Optima XL-I analyt-
ical ultracentrifuge using conventional aluminum double-sec-
tor centerpieces and quartzwindows. Solvent density, viscosity,
and the protein partial specific volumes were calculated using
SEDNTERP. Prior to centrifugation, samples were prepared by
dialysis against the buffer blank solution, 50mMHEPES, pH7.4,
150 mM NaCl, and 1 mM TCEP. Samples (400 �l) and buffer
blanks (420 �l) were loaded into the cells, and centrifugation
was performed at 50,000 rpm and 293 K in an An-60 Ti rotor.
Interference images were collected every 180 s during the sed-
imentation run. The data were analyzed as a distribution of
sedimentation coefficients using SEDFIT (16). Sedimentation
equilibrium experiments were performed in a Beckman
Optima XLA analytical ultracentrifuge using charcoal-filled
epon six-channel centerpieces in an An-60 Ti rotor. Prior to
centrifugation, samples were prepared by dialysis against the
buffer blank solution, 50mMHEPES, pH 7.4, 150mMNaCl, and
1mMTCEP. The solutionswere allowed to reach equilibriumat
18,000, 20,000, 26,000, and 30,000 rpm. To determine the dis-
sociation constant (Kd), the sedimentation equilibrium data
were fitted globally with the programm SEDPHAT (17) using a
monomer-dimer ideal solution model.
Multi-angle Laser Light Scattering (MALS)—Molecular mass

and molecular mass distributions were determined using size
exclusion chromatography coupled tomulti-angle light scatter-
ing. Samples ofWTandmutantV114DSHARPINwere applied
in a volume of 100 �l to a Superdex 75 10/300 GL column (GE
Healthcare) equilibrated in 50 mM HEPES, pH 7.4, 150 mM

NaCl, and 1mMTCEP, at a flow rate of 0.5ml/min. The column
was mounted on a Jasco HPLC. The scattered light intensity of
the column eluate was recorded using a DAWN-HELEOS laser
photometer (Wyatt Technology, Santa Barbara, CA). The pro-
tein concentration of the eluent was determined using an
OPTILAB-rEX differential refractometer (Wyatt Technology).
The weight-averaged molecular mass of the eluent was deter-
mined using the ASTRA software (version 5.1;Wyatt Technol-
ogy). Measurements were performed at 25 °C.

RESULTS AND DISCUSSION

Self-association of N-terminal Portion of SHARPIN—
SHARPIN contains 387 amino acids with UBL and NZF
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domains covering residues 219–377 (Fig. 1A). In contrast, a
scan of the region N-terminal to the UBL-NZF module against
the PROSITE and SMART databases (18, 19) did not provide
any hits for recognizable domains. Therefore, to gain three-
dimensional insight into the N-terminal half of SHARPIN, we
screened this region for soluble constructs of bacterially
expressed fragments suitable for structural studies. One of the
constructs that could be purified to homogeneity covers amino
acids 1–127. This construct includes the region spanning
amino acids 36–49 that displays a heptad repeat motif and is
predicted with high propensity to form a short coiled coil. To
investigate whether SHARPIN 1–127 indeed reversibly self-as-
sociates in solution, we performed sedimentation velocity
experiments. At a concentration of 38 �M, the polypeptide pri-

marily exists as a single species with a sedimentation coefficient
of 1.3 S, which corresponds to a molecular mass of 13,150 Da,
themass of a SHARPINmonomer (Fig. 1B). However, when the
SHARPIN concentration was increased by 2- and 4-fold,
respectively, another species with a sedimentation coefficient
of 1.9 S became apparent (Fig. 1B). This population corre-
sponds to the molecular mass of a dimer, demonstrating that
SHARPIN 1–127 exists in monomer-dimer equilibrium. The
high concentrations required to form the dimeric species indi-
cated a rather weak intermolecular interaction, and we were
able to derive a dissociation constant of 160 �M by sedimenta-
tion equilibrium measurements (Fig. 1C). In an alternative
approach, we determined the dissociation constant for the
monomer-dimer equilibrium by isothermal titration calorime-

FIGURE 1. A, schematic drawing of the domain organization of HOIL-1L and SHARPIN. The dashed line indicates the region of sequence similarity (RING, really
interesting new gene; IBR, in-between-ring). B, sedimentation velocity size distribution analysis of SHARPIN 1–127 at three different concentrations (38, 76, and
154 �M). The fitted boundary scans are shown in the left panels and the corresponding c(s) analyses are shown in the right panels. C, sedimentation equilibrium
traces with residual plots for SHARPIN 1–127. Data were recorded for three different concentrations (20, 40, and 80 �M) at four velocities (18,000 rpm (E) bottom
curve, 20,000 rpm (�), 26,000 rpm (‚), and 30,000 rpm (ƒ) top curve and fitted to a monomer-dimer equilibrium model, which resulted in a Kd value of 160 �M.
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try (ITC), which resulted in an�2-fold lowerKd value of 88�M.
These data are consistent with the observation that SHARPIN
multimerizes through its N-terminal region in vivo (1) and are
the first molecular description of this self-association process.
N-terminal Region of SHARPIN Adopts PH Superfold—To

understand the structural basis of SHARPIN dimerization, we
crystallized the fragment containing residues 1–127. Crystals of
space group P43212 were grown in 4 M sodium formate from
selenomethionine-derivatized protein, which diffracted to a
maximal resolution of 2.0 Å with four molecules in the asym-
metric unit. The structure was solved by single anomalous dis-
persion (Table 1 and supplemental Fig. S1). Remarkably, the
structure of the four subunits in the asymmetric unit revealed
that SHARPIN utilizes a PH fold for self-association (Fig. 2, A
and B). Residues 20–120 of SHARPIN cover the canonical PH
fold, which is a seven-stranded antiparallel �-sheet, strongly
bent to form a �-barrel-like conformation and capped by a
C-terminal �-helix. A helical turn that connects strand �4 and
�5 of the collapsed �-barrel is the only variation of the con-
served PH domain organization. Residues 1–20 adopt different
conformations in the four copies in the asymmetric unit. TheN
terminus of one of the subunits is buried into the center of the
symmetry axis of the tetramer and participates in intermolecu-
lar interactions with the other PH-like domains (Fig. 2A). The
amino-terminal stretch of the diagonally opposite subunit
makes contacts to symmetry related molecules. No density can

be observed for the remaining other two N termini, indicating
that they are disordered. Each of the protomers in the crystal-
lographic tetramer forms two distinctive interfaces. Because
our solution studies did not give any indication that SHARPIN
assembles into higher order oligomers, it is likely that tetramer-
ization is due to crystal packing. The subunits I and II are
aligned head-to-head against the subunits IV and III, respec-
tively, with a rotation of 180o degrees (Fig. 2A). This orientation
causes the formation of a histidine-stacking interaction, which
is sandwiched between two salt bridges and probably based on
crystal contacts (supplemental Fig. S2). In comparison, the sec-
ond interface (I–II and III–IV) (Fig. 2B) is formed predomi-
nantly by a perpendicular arrangement of the helical elements
of two neighboring PH-like domains and involves the interplay
of many more side chains (Fig. 3, A and B). Val-114 is in the
center of a hydrophobic interface formed by Leu-115, Leu-21,
and Phe-56 of the other dimer half (Fig. 3,A and B). The hydro-
phobic patch is limited by electrostatic interactions, which

TABLE 1
Statistics of data collection, phasing, and refinement
FOM, figure of merit.

Data collection
Wavelength (Å) 0.9799
Resolution (Å) 30-2.0 (2.09-2.00)a
Space group P43212
Unit cell parameters (Å) a/b � 61.55, c � 222.81
Total measurements 213,897
Unique reflections 55,100b
Average redundancy 3.9 (3.8)
I/� 17.2 (2.9)
Completeness (%) 99.1
Rmerge (%)c 7.1 (48.3)

Phasing
No. of sites 2
Mean FOM (phaser) (30-2.6 Å) 0.53
No. of copies in the AU 4
Mean FOM (resolve) (30-2.4 Å) 0.73

Refinement
Resolution (Å) 30-2.0
Rwork (%)d 20.9
Rfree (%)e 26.9
No. of atoms 3186
Protein 3186
Water 86

Average B-factor (Å2) 34.5
r.m.s.d. from ideal valuesf
Bond length (Å) 0.018
Bond angles 2.135°

Ramachandran plot
Residues in most favored region (%) 96.0
Residues in additional allowed regions (%) 4.0

a Values in parentheses correspond to the highest resolution shell.
b Friedel pairs are treated as separate reflections.
c Rmerge (I) � �hkl�i�Ihkl,i � �Ihkl��/�hkl�i/Ihkl,i�, where �Ihkl� is the average intensity
of multiple Ihkl,i observations for symmetry-related reflections.

d Rwork � �hkl�Fo � Fc /�hkl�Fo�, where Fo and Fc are the observed and calculated
structure factors, respectively.

e Rfree � �hkl�Fo � Fc�/�hkl�Fo� was calculated with 5% of the data omitted from
structure refinement.

f r.m.s.d. represents root mean square deviation.

FIGURE 2. A, schematic presentation of all four PH domains observed in the
asymmetric unit of the SHARPIN crystals. The loop region connecting strand
�1 with �2 of subunits I, III, and IV are not observed in the density and indi-
cated with dashed lines. B, overall structure shown as a ribbon representation
of the non-crystallographic dimer of the SHARPIN PH domain. The electro-
static potential is projected on the surface of one subunit of the PH dimer.
Valine 114 of the other subunit is depicted as ball-and-stick representation
and points against the hydrophobic patch of the dimer interface. The struc-
ture is rotated by 180° with respect to the structure on the left.
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involve the side chains of two arginines positioned at the C-ter-
minal�-helix. Arg-111 binds the backbone oxygen of Leu-21 in
�1 and Arg-117 coordinates the carbonyl group of Gly-118 and
the side chain of Glu-122, which are both located at the tip of
the helix. To confirm the relevance of the observed interface for
self-association, we introduced a negative charge into the
hydrophobic patch of the dimerization side. The mutation
V114D should impair the hydrophobic network of the dimer
interface and abolish dimerization in solution if this was the
physiologically relevant dimer interface. In a complementary
approach to our AUC analysis, we performed size exclusion
chromatography coupled to multi-angle light scattering mea-
surements of the wild-type and mutant PH-like domain. In
these experiments, the retention time of wild-type SHARPIN
shifts from amonomeric to a dimeric species when the concen-
tration is increased in line with a monomer-dimer equilibrium
(Fig. 4A). In contrast, the V114D mutant elutes as a monomer
even at the very high concentration of 2.5 mM. Similarly, no
monomer-dimer equilibrium can be observed for V114D when
probed by ITC (Fig. 4B). These results clearly indicate that
complex formation of the PH-like dimer is indeed formed via
the helical interface observed in the crystal structure.
Does N-terminal Portion of SHARPIN Act as Protein Interac-

tion Domain?—The PH superfold is a stable fold that has been
adopted by a number of protein interaction domains that oth-
erwise share no sequence homology but use the PH superfold as
a scaffold upon which different ligand binding surfaces are
crafted (20). These include PHdomains themselves, which have
been identified as phosphatidylinositol phosphate binding

modules and function as membrane-targeting domains (21), as
well as for example EVH1 (Enabled/VASP homology) domains,
which act as protein-protein interaction modules (22, 23).
Interestingly, only �15% of all PH domains show specific lipid
binding properties (21), whereas the majority bind phospho-
lipid ligands only with low affinity and specificity or show no
interaction at all. SHARPIN appears to belong to the latter
group as it did not show any detectable phospholipid binding in
protein lipid overlay assays (PIP strips, data not shown). In con-
cordance, SHARPIN lacks the electrostatic polarization typi-
cally observed for those PHdomains that bind to phospholipids
and associate with negatively charged membrane surfaces (20)
(supplemental Fig. S3, A and B), further supporting the notion
that its PH-like domainmost likely does not function as a lipid-
binding module.
A search of the proteins structure database server DaliLite

(version 3) (24) with our structure revealed the EVH1 (Enabled/
VASP homology 1) domain of the scaffold proteinHOMER as a
close three-dimensional neighbor of SHARPIN (root mean
square deviation, 2.6 Å2) (25) (supplemental Fig. S4A). EVH1
domains adopt the same core structure as the PH domain and
act as protein interaction modules via the recognition of poly-
proline-containing sequences (22, 23). However, despite the
high structural similarity between SHARPIN and the EVH1
domain of HOMER, interaction of SHARPINwith proline-rich
sequences is unlikely because SHARPIN lacks a highly con-
served cluster of three surface-exposed aromatic amino acids
that form the ligandbinding site in EVH1domains (supplemen-
tal Fig. S4B). Indeed, when we tested the ability of SHARPIN to

FIGURE 3. A, schematic drawing of interacting residues observed in the dimer interface. Hydrogen bonds (cutoff level of 3.5 Å) are shown as dashed lines.
Hydrophobic interactions (cutoff level of 4.0 Å) are marked by black eyelashes. B, stereo view of the SHARPIN dimer interface. Residues participating in dimer
formation are shown as ball-and-sticks.
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bind peptides derived from classical EVH1 domain ligands
using ITC, we could not detect any interaction (data not
shown). Furthermore, a yeast two-hybrid screen using the
N-terminal 127 amino acids as a bait to identify novel protein
partners of the PH domain of SHARPIN did not yield any hits.
Based on these observations, we suggest that in SHARPIN,

the PH domain is not used as a protein-ligand interaction plat-
form but rather a scaffold that provides the structural basis for
homodimerization that occurs under in vitro conditions as
shown by our MALS, AUC, and ITC experiments and in vivo
(1). The crystal structure of the SHARPIN PH domain reveals
that the dimer is formed primarily by hydrophobic interactions
between two helices, which are packed head-to-head in an
almost rectangular manner. The interface area covers a solvent
accessible surface area of 616 Å2 (26). A binding site of this
magnitude is often characteristic formoderate toweak protein-
protein interactions and therefore in good agreement with the
experimental binding constant of 88 and 160�Mdetermined by
ITC and AUC, respectively (27). Despite the high Kd value
determined for PH domain dimerization, the interaction is
highly specific. Incorporation of a single electrostatic charge in

the center of the hydrophobic framework of the interface by
mutating Val-114 to Asp completely abolishes interaction. The
fact that SHARPIN dimerization is mediated by a PH domain
and not as originally assumed by a predicted coiled coil was
unexpected and somewhat surprising.However, in this context,
it is interesting to note that dimer formation of proteins medi-
ated by the PH superfold has been suggested before, although
the phenomenon has not been investigated on a molecular
level. The activity of phosphoinositide-dependent kinase 1 for
instance is dependent on 3-phosphoinositide-dependent ho-
modimerization of its C-terminal PH domain (28). Similarly, it
has been reported that the PH domain of dynamin undergoes a
phosphoinositide binding-coupled monomer-dimer equilib-
rium (29, 30). Although in both of these cases, PH domain-
mediated dimerization is coupled to the interaction with lipids,
it raises the possibility that self-association via PH domains is a
more general function for the PH superfold.
In conclusion, the structure of the N-terminal portion of

SHARPIN presented here shows that it adopts the PH domain
superfold. Our data suggest that, unlike what is generally
assumed this domain does not act as a protein interactionmod-

FIGURE 4. A, size exclusion chromatography-MALS measurements of SHARPIN 1–127 at three different concentrations (0.15, 1.5, and 4.6 mM). The molecular
mass (MW) distributions of the eluent are shown as dashed lines and the refractive index (RI) response is shown as a solid line. B, comparison of size exclusion
chromatography-MALS analysis of SHARPIN 1–127 WT and V114D. Both measurements were performed at a molar concentration of 2.5 mM. C, dimer dissoci-
ation probed by ITC. 1 mM SHARPIN PH domain WT or V114D was injected into the calorimeter cell containing buffer, and dissociation thermograms were
recorded. The fitted data yield the equilibrium dissociation constant for wild-type SHARPIN of 88 �M.
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ule but as a dimerization domain, thereby extending the man-
ner in which the PH fold can be used as a protein scaffold.
Current data suggest that this region does not contribute to the
catalytic activity of LUBAC (5),3 indicating that it may play a
role in other physiological functions of SHARPIN that have
been described, such as its tumor-associated role or its ability to
inhibit �1-integrin activation (1, 31–33). Further studies are
required to better understand these functions and to test
whether self-association might be a regulated process.
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