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We compute the phase and the modulus of an energy- and pressure-free, composite, adjoint, and
inert field φ in an SU(2) Yang-Mills theory at large temperatures. This field is physically relevant
in describing part of the ground-state structure and the quasiparticle masses of excitations. The
field φ possesses nontrivial S1-winding on the group manifold S3. Even at asymptotically high
temperatures, where the theory reaches its Stefan-Boltzmann limit, the field φ, though strongly
power suppressed, is conceptually relevant: its presence resolves the infrared problem of thermal
perturbation theory.

1. Introduction

In [1, 2] one of us has put forward an analytical and nonperturbative approach to
SU(2)/SU(3) Yang-Mills thermodynamics. Each of these theories comes in three phases:
deconfining (electric phase), preconfining (magnetic phase), and completely confining
(center phase). This approach assumes the existence of a composite, adjoint Higgs field φ,
describing part of the thermal ground state, that is, the BPS saturated topologically nontrivial
sector of the theory. The field φ is generated by a spatial average over noninteracting
trivial-holonomy SU(2) calorons [3] which can be embedded in SU(3). The “condensation”1

of trivial-holonomy SU(2) calorons into the field φ must take place at an asymptotically
high temperature [1, 2], that is, at the limit of applicability of the gauge-field theoretical
description. For any physics model formulated in terms of an SU(2)/SU(3) Yang-Mills
theory this is to say that caloron “condensation” takes place at T ∼ MP where MP denotes
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the Planck mass. Since |φ| ∼
√
Λ3/2πT topological defects only marginally deform the ideal-

gas expressions for thermodynamical quantities at T � Λ. Here Λ denotes the Yang-Mills
scale. Every contribution to a thermodynamical quantity, which arises from the topologically
nontrivial sector, is power suppressed in temperature. As a consequence, the effective theory
is asymptotically free and exhibits, though in a quantitatively different way, the infrared-
ultraviolet decoupling property [1, 2] seen in renormalized perturbation theory [4–7].
Asymptotic freedom is a conceptually very appealing property of SU(N) Yang-Mills theories.
It first was discovered in perturbation theory [8–11].

In the effective thermal theory, interactions between trivial-holonomy calorons in the
ground state are taken into account by obtaining a pure-gauge solution to the classical
equations of motion for the topologically trivial sector in the (nonfluctuating and nonback-
reacting) background φ. Thus the partition function of the fundamental theory is evaluated
in three steps in the deconfining phase: (i) integrate over the admissible part of the moduli
space for the caloron-anticaloron system and spatially average over the associated two-point
correlations to derive the (classical and temperature dependent) dynamics of an adjoint,
spatially homogeneous scalar field φ, (ii) establish the quantum mechanical and statistical
inertness of φ and use it as a temperature-dependent background to find a pure-gauge
solution a

bg
μ to the Yang-Mills equations describing the trivial-topology sector. Together, φ

and a
bg
μ constitute the thermal ground state of the system. The fact that the action for the

ground-state configurations φ and a
bg
μ is infinite is unproblematic since the corresponding,

vanishing weight in the partition function is associated with a nonfluctuating configuration
and therefore can be factored out and is cancelled when evaluating expectation values in
the effective theory. (iii) Consider the interactions between the macroscopic ground state
and trivial-topology fluctuations in terms of quasiparticle masses of the latter which are
generated by the adjoint Higgs mechanism2 and impose thermodynamical self-consistency
to derive an evolution equation for the effective gauge coupling e. In the following, we
will restrict our discussion to the case SU(2). Isolated magnetic charges are generated by
dissociating calorons of sufficiently large holonomy [12–23]; for a quick explanation of the
term holonomy, see Figure 1. Nontrivial holonomy is locally excited by interactions between
trivial-holonomy calorons and anticalorons mediated by plane-wave configurations. In [18]
it was shown as a result of a heroic calculation that small (large) holonomy leads to an
attractive (repulsive) potential between themonopole and the antimonopole constituents of a
given caloron. An attraction between a monopole and an antimonopole leads to annihilation
once the distance between their centers is comparable to the sum of their charge radii.
Thermodynamically, the probability for exciting a small holonomy is much larger than that
for exciting a large holonomy. In the former case, this probability roughly is determined by
the one-loop quantum weight of a trivial holonomy caloron, while in the latter case both
monopole constituents have a combinedmass ∼ 4π2T ∼ 39T [14]. Thus an attractive potential
between a monopole and its antimonopole is the by far dominating situation. This is the
microscopic reason for a negative ground-state pressure Pg.s. which, on spatial average, turns
out to be Pg.s. = −4πΛ3T (the equation of ground state is ρg.s. = −Pg.s.) [1, 2]. In the unlikely
case of repulsion (large holonomy) the monopole and the antimonopole separate back to
back until their interaction is sufficiently screened to facilitate their existence in isolation (as
long as the overall pressure of the system is positive). Magnetic monopoles in isolation do not
contribute to the pressure of the system3. The overall pressure is positive if the gauge-field
fluctuations after spatial coars graining are sufficiently light and energetic to over compensate
the negative ground-state contribution, that is, if the temperature is sufficiently large.
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Figure 1: Possible values of the Polyakov loop P at spatial infinity on a given gauge-field configuration. A
small holonomy corresponds to values close to the center elements depicted by the dots. Crosses indicate
examples for a large holonomy.

Caloron-induced tree-level masses for gauge-fieldmodes decay as 1/
√
T when heating

up the system. Due to the linear rise of ρg.s. with T the thermodynamics of the ground state
is thus subdominant at large temperatures4. The main purpose of the present work is to
compute and to discuss the dynamical generation of an adjoint, macroscopic, and composite
scalar field φ. This is a first-principle analysis of the ground-state structure in the electric
phase of an SU(2) Yang-Mills theory. The paper is organized as follows. In Section 2 we write
down and discuss a nonlocal definition, relevant for the determination of φ’s phase, in terms
of a spatial and scale-parameter average over an adjointly transforming 2-point function. This
average needs to be evaluated on trivial-holonomy caloron and anticaloron configurations at
a given time τ . In Section 3 we perform the average and discuss the occurrence of a global
gauge freedom in φ’s phase, which has a geometrical interpretation. In Section 4, we show
how the derived information about a nontrivial S1 winding of the field φ together with
analyticity of the right-hand side of the associated BPS equation and with the assumption
of the existence of an externally given scale Λ can be used to uniquely construct a potential
determining φ’s classical (and temperature dependent) dynamics. In Section 5we summarize
and discuss our results and give an outlook on future research.

2. Definition of φ’s Phase

In this section we discuss the BPS saturated, topological part of the ground-state physics
in the electric phase of an SU(2) Yang-Mills theory. According to the approach in [1, 2] the
adjoint scalar φ emerges as an energy- and pressure-free (BPS saturated) field from a spatial
average over the classical correlations in a caloron-anticaloron system of trivial holonomy in
absence of interactions. On spatial average, the latter are taken into account by a pure-gauge
configuration solving the classical, trivial-topology gauge-field equations in the spatially
homogeneous background φ. This is consistent since φ’s quantum mechanical and statistical
inertness can be established. Without assuming the existence of a Yang-Mills scale Λ only
φ’s phase, that is φ/|φ| , can be computed. A computation of φ itself requires the existence
of Λ. As we will see, the information about the S1 winding of φ’s phase together with the
analyticity of the right-hand side of φ’s BPS equation uniquely determines φ’s modulus in
terms of Λ and T .

Let us first set up some prerequisites. We consider BPS saturated solutions to the Yang-
Mills equation

DμFμν = 0 (2.1)
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which are periodic in Euclidean time τ (0 ≤ τ ≤ 1/T) and of trivial holonomy. The only
relevant configurations are calorons of topological charge5 ±1. They are [3]

AC
μ (τ, x) = ηaμν

λa

2
∂ν lnΠ(τ, x) or

AA
μ (τ, x) = ηaμν

λa

2
∂ν lnΠ(τ, x),

(2.2)

where the ’t Hooft symbols ηaμν and ηaμν are defined as

ηaμν = εaμν + δaμδν4 − δaνδμ4,

ηaμν = εaμν − δaμδν4 + δaνδμ4.
(2.3)

The solutions in (2.2) (the superscript (A)C refers to (anti)caloron) are generated by a
temporal mirror sum of the (pre) potentialΠ of a single (anti)instanton in singular gauge [24–
26]. They have the same color orientation as the “seed” instanton or “seed” anti-instanton.
In (2.2) λa, (a = 1, 2, 3), denote the Pauli matrices. The “nonperturbative” definition of the
gauge field is used were the gauge coupling constant g is absorbed into the field.

The scalar function Π(τ, x) is given as [3]

Π(τ, x) = Π(τ, r) ≡ 1 +
πρ2

βr

sinh
(
2πr/β

)

cosh
(
2πr/β

) − cos
(
2πτ/β

) , (2.4)

where r ≡ |x|, β ≡ 1/T , and ρ denotes the scale parameter whose variation leaves the classical
action S = 8π2/g2 invariant. At a given ρ the solutions in (2.2) can be generalized by shifting
the center from z = 0 to z = (τz, z) by the (quasi)translational invariance of the classical
action6 S. Another set of moduli is associated with global color rotations of the solutions in
(2.2).

From the BPS saturation

Fμν

[
A(C,A)

]
= (+,−)F̃μν

[
A(C,A)

]
(2.5)

it follows that the (Euclidean) energy-momentum tensor θμν, evaluated on A
(C,A)
μ , vanishes

identically

θμν
[
A(C,A)

]
≡ 0. (2.6)

This property translates to the macroscopic field φ with energy-momentum tensor θμν in an
effective theory since φ is obtained by a spatial average over caloron-anticaloron correlations
neglecting their interactions7

θμν

[
φ
] ≡ 0. (2.7)
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Figure 2: Possible directions of winding of (φ/|φ|)(τ) around the group manifold S3 of SU(2). The angles
γ, δ are arbitrary but constant. They are determined by the choice of plane in which angular regularization
is carried out when computing φ’s phase, see below. The angle α(τ) parametrizes the S1 winding of φ/|φ|.

The field φ is spatially homogeneous since it emerges from a spatial average. If the action
density governing φ’s dynamics in the absence of caloron interactions contains a kinetic term
quadratic in the τ-derivatives and a potential V then (2.7) is equivalent to φ solving the first-
order equation

∂τφ = V (1/2), (2.8)

where V (1/2) denotes the “square root” of V 8, V ≡ tr (V (1/2))†V (1/2). In (2.8) the right-hand
side will turn out to be determined only up to a global gauge rotation, see Figure 2. Already
at this point it is important to remark that the Yang-Mills scale parametrizes the potential V
and thus also the classical solution to (2.8). In the absence of trivial-topology fluctuations
it is, however, invisible, see (2.7). Only after the macroscopic equation of motion for the
trivial-topology sector is solved for a pure-gauge configuration in the background φ does
the existence of a Yang-Mills scale become manifest by a nonvanishing ground-state pressure
and a nonvanishing ground-state energy density [1, 2]. Hence the trace anomaly θ̃μμ /= 0 for

the total energy-momentum tensor θ̃μν ≡ θ
g.s.
μν +θfluc

μν in the effective theory which includes the

effects of trivial-topology fluctuations: since θ
g.s.
μν = 4πTΛ3 δμν and θfluc

μν ∝ T4 for T � Λ the
trace anomaly dies off as Λ3/T3.

Without imposing constraints other than nonlocality9 the τ dependence of φ’s phase
(the ratio of the two averages φ and |φ| over admissible moduli deformations, A(C,A)

μ would
naively be characterized as

φa

∣∣φ
∣∣(τ) ∼ tr

[
β01!

∫
d3x

∫
dρ

λa

2
Fμν

[
Aα

(
ρ, β

)]
((τ, 0)){(τ, 0), (τ, x)}[Aα

(
ρ, β

)]

× Fμν

[
Aα

(
ρ, β

)]
((τ, x)){(τ, x), (τ, 0)}[Aα

(
ρ, β

)]

+ β−12!
∫
d3x

∫
d3y

∫
dρ
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λa

2
Fμλ

[
Aα

(
ρ, β

)]
((τ, 0)){(τ, 0), (τ, x)}[Aα

(
ρ, β

)]

× Fλν

[
Aα

(
ρ, β

)]
((τ, x)) {(τ, x), (τ,y)}[Aα

(
ρ, β

)]

× Fνμ

[
Aα

(
ρ, β

)]
((τ,y)){(τ,y), (τ, 0)}

+ β−23!
∫
d3x

∫
d3y

∫
d3u

∫
dρ

λa

2
Fμλ

[
Aα

(
ρ, β

)]
((τ, 0)){(τ, 0), (τ, x)}[Aα

(
ρ, β

)]

×Fλν

[
Aα

(
ρ, β

)]
((τ, x)){(τ, x), (τ,y)}[Aα

(
ρ, β

)]

×Fνκ

[
Aα

(
ρ, β

)]
((τ,y)){(τ,y), (τ,u)}Fκμ

[
Aα

(
ρ, β

)]
((τ,u))

×{(τ,u), (τ, 0)} + · · ·
]
.

(2.9)

The dots in (2.9) stand for the contributions of higher n-point functions and for reducible, that
is, factorizable, contributions with respect to the spatial integrations. In (2.9) the following
definitions apply:

∣∣φ
∣∣ ≡ 1

2
trφ2,

{(τ, 0), (τ, x)}[Aα] ≡ P exp

[

i

∫ (τ,x)

(τ,0)
dyβAβ

(
y, ρ

)
]

,

{(τ, x), (τ, 0)}[Aα] ≡ P exp

[

−i
∫ (τ,x)

(τ,0)
dyβAβ

(
y, ρ

)
]

.

(2.10)

The integral in the Wilson lines in (2.10) is along a straight line10 connecting the points (τ, 0)
and (τ, x), and P denotes the path-ordering symbol.

Under a microscopic gauge transformation Ω(y) the following relations hold:

{(τ, 0), (τ, x)}[Aα] −→ Ω†((τ, 0)){(τ, 0), (τ, x)}[Aα]Ω((τ, x)),

{(τ, x), (τ, 0)}[Aα] −→ Ω†((τ, x)){(τ, x), (τ, 0)}[Aα]Ω((τ, 0)),

Fμν[Aα]((τ, x)) −→ Ω†((τ, x))Fμν[Aα]((τ, x))Ω((τ, x)),

Fμν[Aα]((τ, 0)) −→ Ω†((τ, 0))Fμν[Aα]((τ, 0))Ω((τ, 0)).

(2.11)

As a consequence of (2.11) the right-hand side of (2.9) transforms as

φa

∣∣φ
∣∣ (τ) −→ Rab(τ)

φb

∣∣φ
∣∣ (τ), (2.12)
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where the SO(3) matrix Rab(τ) is defined as

Rab(τ)λb = Ω((τ, 0))λa Ω†((τ, 0)). (2.13)

Thus we have defined an adjointly transforming scalar in (2.9). Moreover, only the time-
dependent part of a microscopic gauge transformation survives after spatial averaging (mac-
roscopic level).

In (2.9) the ∼ sign indicates that both left- and right-hand sides satisfy the same homo-
geneous evolution equation in τ

D
[

φ
∣
∣φ

∣
∣

]

= 0. (2.14)

HereD is a differential operator such that (2.14) represents a homogeneous differential equa-
tion. As it will turn out, (2.14) is a linear second-order equation which, up to global gauge
rotations, determines the first-order or BPS equation whose solution φ’s phase is. Each term
in the series in (2.9) is understood as a sum over the two solutions in (2.2), that is,Aα = AC

α or
Aα = AA

α . As we will show in Section 3, the dimensionless quantity defined on the right-hand
side of (2.9) is ambiguous11; the operator D, however, is not.

The quantities appearing in the numerator and denominator of the left-hand side
of (2.9) are understood as functional and spatial averages over the appropriate multilocal
operators, being built of the field strength and the gauge field. The functional average is
restricted to the moduli spaces of Aα = AC

α and Aα = AA
α excluding global color rotations and

time translations.
Let us explain this in more detail. For the gauge variant density in (2.9) an average

over global color rotations and time shifts τ → τ + τz (0 ≤ τz ≤ β) would yield zero and
thus is forbidden12. The nonflatness of the measure with respect to the separate ρ integration
in the numerator and the denominator average in (2.9) transforms into flatness by taking
the ratio. Since the integration weight exp(−S) is independent of temperature on the moduli
space of a caloron, the right-hand side of (2.9) must not exhibit an explicit temperature de-
pendence. This forbids the contribution of n-point functions with n > 2, and we are left with
an investigation of the first term in (2.9). In the absence of a fixed mass scale on the classical
level an average overspatial translations would have a dimensionful measure d3z making
the definition of a dimensionless quantity ∼ φ/|φ| impossible. We conclude that the average
overspatial translations is already performed in (2.9). Since one of the two available length
scales ρ and β parametrizing the caloron or the anticaloron is integrated over in (2.9), the only
scale responsible for a nontrivial τ dependence of φa/|φ| is β.

What about the contribution of calorons with a topological chargemodulus larger than
unity? Let us consider the charge-two case. Here we have three moduli of dimension length
which should enter the average defining the differential operatorD: two scale parameters and
a core separation. The reader may easily convince himself that by the absence of an explicit
temperature dependence it is impossible to define the associated dimensionless quantity in
terms of spatial and moduli averages over n-point functions involving these configurations.
The situation is even worse for calorons of topological charge larger than two. We conclude
that only calorons of topological charge ±1 contribute to the definition of the operator D in
(2.14) by means of (2.9).
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3. Computation of Two-Point Correlation

Before we perform the actual calculation let us stress some simplifying properties of the
solutions A(C,A)

μ in (2.2).
The path-ordering prescription for theWilson lines {(τ, 0), (τ, x)} and {(τ, 0), (τ, x)}† in

(2.10) can actually be omitted. To see this, we first consider the quantity P (C,A)(τ, rst) defined
as

P (C,A)(τ, rst) ≡ A
(C,A)
i (τ, srt)ti, (3.1)

where 0 ≤ r ≤ ∞, 0 ≤ s ≤ 1, (i = 1, 2, 3). The vector t denotes the unit line tangential along the
straight line connecting the points (τ, 0) and (τ, x) ≡ (τ, rt). We have

{(τ, 0), (τ, rt)}(C,A) = P exp

[

ir

∫1

0
ds P (C,A)(τ, srt)

]

, (3.2)

where

P (C,A)(τ, srt) = ∓1
2
t · λ ∂4 lnΠ(τ, sr). (3.3)

Thus the path-ordering symbol can, indeed, be omitted in (3.2). The field strength FC
aμν on the

caloron solution in (2.2) is

FC
aμν = ηaμν

(∂κΠ)(∂κΠ)
Π2

+ ηaμκ

Π(∂ν∂κΠ) − 2(∂κΠ)(∂νΠ)
Π2

− ηaνκ

Π
(
∂μ∂κΠ

) − 2(∂κΠ)
(
∂μΠ

)

Π2
,

(3.4)

whereΠ is defined in (2.4). For the anticaloron one replaces η by η in (3.4). Using (2.9), (3.2),
and (3.4), we obtain the following expression for the contribution (φa/|φ|)|C arising from
calorons:

φa

|φ|
∣∣∣∣
C

∼ i

∫
dρ

∫
d3x

xa

r

[
(∂4Π(τ, 0))2

Π2(τ, 0)
− 2
3
∂24Π(τ, 0)
Π(τ, 0)

]

×
{

4 cos
(
2g(τ, r)

)
[
∂r∂4Π(τ, r)
Π(τ, r)

− 2
(∂rΠ(τ, r))(∂4Π(τ, r))

Π2(τ, r)

]

+ sin
(
2g(τ, r)

)
[

4
(∂4Π(τ, r))2 − (∂rΠ(τ, r))2

Π2(τ, r)
+ 2

∂2rΠ(τ, r) − ∂24Π(τ, r)
Π(τ, r)

]}

,

(3.5)
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where

g(τ, r) ≡
∫1

0
ds

r

2
∂4 lnΠ(τ, sr), (3.6)

(∂4Π(τ, 0))2

Π2(τ, 0)
− 2
3
∂24Π(τ, 0)
Π(τ, 0)

= −16
3
π4 ρ

2

β2
π2ρ2 + β2

(
2 + cos

(
2πτ/β

))

[
2π2ρ2 + β2

(
1 − cos

(
2πτ/β

))]2 . (3.7)

The dependences on ρ and β are suppressed in the integrands of (3.5) and (3.6). It is worth
mentioning that the integrand in (3.6) is proportional to δ(s) for r � β. A useful set of
identities is

FC
μν(τ, x) = FA

μν(τ,−x)

{(τ, 0), (τ, x)}C =
(
{(τ, x), (τ, 0)}C

)†
=

=
(
{(τ,−x), (τ, 0}A

)†
.

{(τ, 0), (τ,−x)}A (3.8)

Equation (3.8) states that the integrand for (φa/|φ|)|A can be obtained by a parity transfor-
mation x → −x of the integrand for (φa/|φ|)|C. Since the latter changes its sign, see (3.5); one
naively would conclude that

φa

∣∣φ
∣∣ =

φa

|φ|
∣∣∣∣
C

+
φa

|φ|
∣∣∣∣
A

= 0. (3.9)

This, however, would only be the case if no ambiguity in evaluating the integral in both
cases existed. But such ambiguities do occur! First, the τ dependence of the anticaloron’s
contribution may be shifted as compared to that of the caloron. Second, the color orientation
of caloron and anticaloron contributions may be different. Third, the normalization of the two
contributions may be different. To see this, we need to investigate the convergence properties
of the radial integration in (3.5). It is easily checked that all terms give rise to a converging r
integration except for the following one:

2
xa

r
sin

(
2g(τ, r)

)∂2rΠ(τ, r)
Π(τ, r)

. (3.10)

Namely, for r > R � β (3.10) goes over in

4 ta
πρ2 sin

(
2g(τ, r)

)

βr3
. (3.11)

Thus the r-integral of the term in (3.10) is logarithmically divergent in the infrared13:

4ta
πρ2

β

∫∞

R

dr

r
sin

(
2g(τ, r)

)
. (3.12)
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Recall that g(τ, r) behaves like a constant in r for r > R. The angular integration, on
the other hand, would yield zero if the radial integration was regular. Thus a logarithmic
divergence can be cancelled by the vanishing angular integral to yield some finite and real
but undetermined normalization of the emerging τ dependence. To investigate this, both
angular and radial integration need to regularized.

We may regularize the r integral in (3.12) by prescribing

∫∞

R

dr

r
−→ βε

∫∞

R

dr

r1+ε
(3.13)

with ε > 0. We have

βε
∫∞

R

dr

r1+ε
= βε

∫∞

0

dr

(r + R)1+ε

=
1
ε
− log

(
R

β

)
+
1
2
εlog2

(
R

β

)
+ · · · .

(3.14)

Away from the pole at ε = 0 this is regular. For ε < 0 (3.14) can be regarded as a legitimate
analytical continuation. An ambiguity inherent in (3.14) relates to how one circumvents the
pole in the smeared expression

1
2η

∫η

−η
dε

(
1

ε ± i0
− log

(
R

β

)
+
1
2
εlog2

(
R

β

)
+ · · ·

)

= ∓πi
2η

− log
(
R

β

)
+ · · · , (

η > 0, η � 1
)
.

(3.15)

Concerning the regularization of the angular integration we may introduce defect (or sur-
plus) angles 2η′ in the azimuthal integration as

∫π

0
dω sinω

∫2π

0
dθ −→

∫π

0
dω sinω

∫αC+2π∓η′

αC±η′
dθ, (3.16)

see Figure 3. In (3.16) αC is a constant angle with 0 ≤ αC ≤ 2π and 0 < η′ � 1. Obvi-
ously, this regularization singles out the x1x2 plane. As we will show below, the choice of
regularization plane translates into a global gauge choice for the τ dependence of φ’s phase
and thus is physically irrelevant: the apparent breaking of rotational symmetry by the angular
regularization translates into a gauge choice.

The value of αC is determined by an (physically irrelevant) initial condition. We have

∫π

0
dω sinω

∫αC+2π∓η′

αC±η′
dθta ∼ ∓πη′(δa1 cosαC + δa2 sinαC). (3.17)
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x1

x2

αC

η′
η′

Figure 3: The axis for the integration over θ.

To see what is going on we may fix, for the time being, the ratio η′/η for the normalization
of the caloron contribution to a finite and positive but otherwise arbitrary constant Ξ when
sending η and η′ to zero in the end of the calculation:

lim
η,η′ → 0

η′

η
= Ξ. (3.18)

Combining (3.12), (3.15), (3.17), and (3.7), expression (3.5) reads:

φa

|φ|
∣∣∣∣
C

∼ ±32
3

π7

β3
Ξ (δa1 cosαC + δa2 sinαC)

∫
dρ

[
lim
r→∞

sin
(
2g(τ, r)

)
]

× ρ4
π2ρ2 + β2

(
2 + cos

(
2πτ/β

))

[
2π2ρ2 + β2

(
1 − cos

(
2πτ/β

))]2

≡ ±Ξ (δa1 cosαC + δa2 sinαC)A
(
2πτ
β

)
,

(3.19)

where A is a dimensionless function of its dimensionless argument. The sign ambiguity in
(3.19) arises from the ambiguity associated with the way how one circumvents the pole in
(3.15) and whether one introduces a surplus or a defect angle in (3.16). Furthermore, there is
an ambiguity associated with a constant shift τ → τ + τC (0 ≤ τC ≤ β) in (3.19).

For the anticaloron contributionwemay, for the time being, fix the ratio η′/η to another
finite and positive constant Ξ′. In analogy to the caloron case, there is the ambiguity related
to a shift τ → τ + τA (0 ≤ τA ≤ β) in the anticaloron contribution. Moreover, we may without
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restriction of generality (global gauge choice) use an axis for the angular regularization which
also lies in the x1x2 plane, but with a different angle αA. Then we have

φa

∣
∣φ

∣
∣ =

φa

∣
∣φ

∣
∣

∣
∣
∣
∣
∣
C

+
φa

∣
∣φ

∣
∣

∣
∣
∣
∣
∣
A

= ±Ξ (δa1 cosαC + δa2 sinαC)A
(
2π(τ + τC)

β

)

± Ξ′ (δa1 cosαA + δa2 sinαA)A
(
2π(τ + τA)

β

)

/= 0,

(3.20)

where the choices of signs in either contribution are independent. Equation (3.20) is the basis
for fixing the operator D in (2.14).

To evaluate the functionA(2πτ/β) in (3.19) numerically, we introduce the same cutoff
for the ρ integration in the caloron and anticaloron case as follows:

∫
dρ −→

∫ ζβ

0
dρ, (ζ > 0). (3.21)

This introduces an additional dependence of A on ζ. In Figure 4 the τ dependence of A for
various values of ζ is depicted. It can be seen that

A
(
2π
β

τ, ζ −→ ∞
)

−→ 272ζ3 sin
(
2π
β

τ

)
. (3.22)

Therefore we have

φa

∣∣φ
∣∣ ∼ 272ζ3

(
±Ξ(δa1 cosαC + δa2 sinαC) sin

(
2π
β

(τ + τC)
)

±Ξ′(δa1 cosαA + δa2 sinαA) sin
(
2π
β

(τ + τA)
))

≡ φ̂a.

(3.23)

The numbers ζ3Ξ, ζ3Ξ′, τC/β, and τA/β in (3.23) are undetermined. For each color orientation
(corresponding to a given angular regularization) there are two independent parameters, a
normalization and a phase shift. The principal impossibility to fix the normalizations reflects
the fact that on the classical level the theory is invariant under spatial dilatations. To give a
meaning to these number, a mass scale needs to be generated dynamically. This, however, can
only happen due to dimensional transmutation, which is known to be an effect induced by
trivial-topology fluctuations [8–11]. The result in (3.23) is highly nontrivial since it is obtained
only after an integration over the entire admissible part of the moduli spaces of (anti)calorons
is performed.
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Figure 4: A as a function of (2π/βτ) for ζ = 1, 2, 10. For each case the dashed line is a plot of maxA ×
sin((2π/β)τ). We have fitted the asymptotic dependence on ζ of the amplitude of A as A((2π/β)τ =
π/2, ζ) = 272ζ3, (ζ > 10). The fit is stable under variations of the fitting interval. For the case ζ = 10 the
difference between the two curves cannot be resolved anymore.

Let us now discuss the physical content of (3.23). For fixed values of the parameters
ζ3Ξ, ζ3Ξ′, τC/β, and τA/β the right-hand side of (3.23) resembles a fixed elliptic polarization
in the x1x2 plane of adjoint color space. For a given polarization plane the two independent
numbers (normalization and phase-shift) of each oscillation axis parametrize the solution
space (in total four undetermined parameters) of a second-order linear differential equation

Dφ̂ = 0. (3.24)

From (3.23) we observe that the operator D is

D = ∂2τ +
(
2π
β

)2

. (3.25)
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Since for a given polarization plane there is a one-to-onemap from the solution space of (3.24)
to the parameter space associatedwith the ambiguities in the definition (2.9)we conclude that
the operator D is uniquely determined by (2.9).

What we need to assure the validity of (2.7) is a BPS saturation14 of the solution to
(3.24). Thus we need to find first-order equations whose solutions solve the second-order
equation (3.24). The relevant two first-order equations are

∂τ φ̂ = ±2πi
β

λ3φ̂, (3.26)

where we have defined φ = |φ|φ̂(τ). Obviously, the right-hand sides of (3.26) are subject to
a global gauge ambiguity associated with the choice of plane for angular regularization, any
normalized generator other than λ3 could have appeared, see Figure 2. Now the solution to
either of the two equations (3.26) also solves (3.24),

∂2τ φ̂ = ±2πi
β

λ3 ∂τ φ̂

=
2πi
β

λ3
2πi
β

λ3φ̂

= −
(
2π
β

)2

φ̂.

(3.27)

Traceless, hermitian solutions to (3.26) are given as

φ̂ = Cλ1 exp
(
∓2πi

β
λ3(τ − τ0)

)
, (3.28)

where C and τ0 denote real integration constants which both are undetermined. Notice that
the requirement of BPS saturation has reduced the number of undetermined parameters from
four to two: an elliptic polarization in the x1x2 plane is cast into a circular polarization. Thus
the field φwinds along an S1 on the group manifold S3 of SU(2). Both winding senses appear
but cannot be distinguished physically [1, 2].

4. How to Obtain φ’s Modulus

Here we show how the information about φ’s phase in (3.28) can be used to infer its modulus.
Let us assume that a scale Λ is externally given which characterizes this modulus at a given
temperature T . Together, Λ and T determine what the minimal physical volume |φ|−3 is for
which the spatial average over the caloron-anticaloron system saturates the infinite-volume
average appearing in (2.9).

We have

φ = φ

(
β,Λ,

τ

β

)
. (4.1)
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In order to reproduce the phase in (3.28) a linear dependence on φ must appear on the right-
hand side of the BPS equation (2.8). Furthermore, this right-hand side ought not depend on
β explicitly and must be analytic in φ15. The two following possibilities exist:

∂τφ = ±iΛλ3φ (4.2)

or

∂τφ = ±iΛ3λ3φ
−1, (4.3)

where φ−1 ≡ φ/|φ|2. Recall that

φ−1 = φ−1
0

∞∑

n=0
(−1)nφ−n

0

(
φ − φ0

)n
(4.4)

has a finite radius of convergence. According to (3.28) we may write

φ =
∣∣φ

∣∣(β,Λ
) × λ1 exp

(
∓2πi

β
λ3(τ − τ0)

)
. (4.5)

Substituting (4.5) into (4.2) yields

Λ =
2π
β

(4.6)

which is unacceptable since Λ is a constant scale. For the possibility in (4.3) we obtain

∣∣φ
∣∣(β,Λ

)
=

√
βΛ3

2π
=

√
Λ3

2πT
(4.7)

when substituting (4.5) into (4.3). This is acceptable and indicates that at T � Λφ’s
modulus is small. The right-hand side of (4.3) defines the “square-root” V (1/2) of a potential
V (|φ|) ≡ tr (V (1/2))

†
V (1/2) = Λ6 trφ−2, and the equation of motion (4.3) can be derived from

the following action:

Sφ = tr
∫β

0
dτ

∫
d3x

(
∂τφ∂τφ + Λ6φ−2

)
. (4.8)

Notice that a shift V → V + const is forbidden in (4.8) since the relevant equation of motion
is the first-order equation (4.3).

After the spatial average is performed the action Sφ is extended by including
topologically trivial configurations aμ in a minimal fashion: ∂τφ → ∂μφ + ie[φ, aμ] ≡ Dμφ
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and an added kinetic term. Here e denotes the effective gauge coupling. Thus the effective
Yang-Mills action S is written as

S = tr
∫β

0
dτ

∫
d3x

(
1
2
GμνGμν +DμφDμφ + Λ6φ−2

)
, (4.9)

where Gμν = Ga
μνλ

a/2 and Ga
μν = ∂μa

a
ν − ∂νa

a
μ − eεabcab

μa
c
ν.

In (4.2) and (4.3) the existence of the mass scaleΛ (the Yang-Mills scale)was assumed.
One attributes the generation of a mass scale to the topologically trivial sector which,
however, was assumed to be switched off so far. How can a contradiction be avoided? The
answer to this question is that the scale Λ remains hidden as long as topologically trivial
fluctuations are switched off; see (2.7). Only after switching on interactions between trivial-
holonomy calorons within the ground state can Λ be seen [1, 2]. Let us repeat the derivation
of this result: in [1, 2]we have shown that themass squared of φ-field fluctuations, ∂2|φ| V (|φ|),
is much larger than the square of the compositeness scale |φ|. Moreover ∂2|φ| V (|φ|) is much
larger than T2 for all temperatures T ≥ Tc,E where Tc,E denotes the critical temperature for
the electric-magnetic transition. Thus φ is quantum mechanically and statistically inert: it
provides a (nonbackreacting and undeformable) source for the following equation of motion:

DμGμν = 2ie
[
φ,Dνφ

]
(4.10)

which follows from the action in (4.9). A pure-gauge solution to (4.10), describing the ground
state together with φ, is

a
bg
μ =

π

e
Tδμ4λ3. (4.11)

As a consequence of (4.11)we haveDμφ ≡ 0, and thus a ground-state pressure Pg.s. = −4πΛ3T
and a ground-state energy-density ρg.s. = 4πΛ3T are generated in the electric phase: The so far
hidden scaleΛ becomes visible by averaged-over caloron-anticaloron interactions encoded in
the pure-gauge configuration a

bg
μ .

5. Summary and Outlook

Let us summarize our results. We have derived the phase and the modulus of a statistically
and quantum mechanically inert adjoint and spatially homogeneous scalar field φ for an
SU(2) Yang-Mills theory being in its electric phase. This field and a pure-gauge configuration
together suggest the concept of a thermal ground state since they generate temperature-
dependent pressure and energy density with an equation of state corresponding to a
cosmological constant. The existence of φ originates from the spatial correlations inherent in
BPS saturated, trivial-holonomy solutions to the classical Yang-Mills equations at finite tem-
perature: the Harrington-Shepard solutions of topological charge modulus one. To derive φ’s
phase these field configurations are, in a first step, treated as noninteracting when performing
the functional average over the admissible parts of their moduli spaces. We have shown why
adjoint scalar fields arising from configurations of higher topological charge do not exist.
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The BPS saturated and classical field φ possesses nontrivial S1 winding on the group
manifold S3. The associated trajectory on S3 becomes circular and thus a pure phase only after
the integration over the entire admissible parts of the moduli spaces is carried out. Together
with a pure-gauge configuration the adjoint scalar field φ generates a linear temperature
dependence of the ground-state pressure and the ground-state energy density where the
pure-gauge configuration solves the Yang-Mills equations in the background φ and, after
the spatial average, describes the interactions between trivial-holonomy calorons. The pure-
gauge configuration also makes explicit that the electric phase is deconfining [1, 2]. Since
trivial-topology fluctuations may acquire quasiparticle masses on tree level by the adjoint
Higgs mechanism [1, 2], the presence of φ resolves the infrared problem inherent in a
perturbative loop expansion of thermodynamical quantities [27]. Since there are kinematical
constraints for the maximal hardness of topologically trivial quantum fluctuations, no
renormalization procedure for the treatment of ultraviolet divergences is needed in the
loop expansion of thermodynamical quantities [27] performed in the effective theory. These
kinematical constraints arise from φ’s compositeness emerging at distances ∼ |φ|−1. The usual
assertion that the effects of the topologically nontrivial sector are extremely suppressed at
high temperature—they turn out to be power suppressed in T—is shown to be correct by
taking this sector into account. The theory, indeed, has a Stefan-Boltzmann limit which is
very quickly approached. It turns out to be incorrect, however, to neglect the topologically
nontrivial sector from the start: assuming T � Λ to justify the omission of the topologically
nontrivial sector before performing a (perturbative) loop expansion of thermodynamical
quantities does not capture the thermodynamics of an SU(2) Yang-Mills theory and leads
to the known problems in the infrared sector [28].

Acknowledgments

The authors would like to thankNucu Stamatescu for his continuing interest in our work, and
Janos Polonyi and Dirk Rischke for stressing the necessity of this paper. Useful conversations
with H. Gies and J. Pawlowski are gratefully acknowledged.

Endnotes

1. By “condensation” we mean the effects of long-range spatial correlations in the classical,
BPS-saturated, trivial-holonomy configurations in singular gauge, see (2.9).

2. In unitary gauge off-Cartan fluctuations acquire a temperature-dependent mass when
propagating through and thereby interacting with the “medium” of caloron fluctuations.

3. The reader may convince himself of this fact by computing the energy-momentum tensor
on a BPS monopole.

4. Gauge-field excitations are free at large temperatures [27] and contribute to the total
pressure and the total energy density like ∼ T4. The small residual interactions, which
peak close to a 2nd-order transition to the magnetic phase at Tc,E, are likely to explain
the large-angle anomalies seen in some CMB power spectra [27, 29]. When cooling the
system, monopoles and antimonopoles, which were generated by dissociating calorons
(large holonomy), start to overlap at a temperature To slightly higher than Tc,E because
they aremoving towards one another under the influence of an overall negative pressure.
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The latter is generated by the dominating pressure component generated by small-
holonomy calorons whose monopole constituents attract and eventually annihilate at
a given point in space but get recreated elseswhere. Naively seen, negative pressure
corresponds to an instability of the system causing it to collapse. We usually imagine
a contracting system in terms of a decrease of the mean interparticle distance while
tacitly assuming the particles to be pointlike. Despite an overall negative pressure a total
collapse in the above sense does not occur in an SU(2) Yang-Mills theory. This can be
understood as follows: the mass of an isolated, screened monopole is m ∼ 2π2T/e, and
the effective gauge coupling e is constant if monopoles do not overlap, that is, for T > To
(magnetic charge conservation [1, 2]). At To the magnetic charge contained in a given
spatial volume no longer remains constant in time because of the increasing mobility of
strongly screened monopoles. Thus formerly separated monopoles can annihilate and
but also get recreated. Therefore the notion of a local collapse ceases to be applicable
since the associated particles cease to exist if they are close to one another. If the rate of
annihilation equals the rate of recreation of monopole-antimonopole pairs then we are
witnessing an equilibium situation characterized by a temperature despite a negative
overall pressure.

5. Configurations with higher topological charge and trivial holonomy have been con-
structed, see for example [30, 31]. A priori they should contribute to the ground-state
thermodynamics of the theory in terms of additional adjoint scalar fields. The nonexist-
ence of these Higgs fields is assured by their larger number of dimensionful moduli—for
the charge-two case we have two instanton radii and the core separation—which does
not allow for the nonlocal definition of a macroscopic, dimensionless phase; see (2.9) and
the discussion following it.

6. Because of periodicity, τz needs to be restricted as 0 ≤ τz ≤ β.

7. A spatial average over zero energy momentum yields zero.

8. The fact that an ordinary and not a covariant derivative appears in (2.8) is, of course,
tied to our specific gauge choice. If we were to leave the (singular) gauge for the
(anti)instanton, in which the solutions of (2.2) are constructed, by a time-dependent

gauge rotationΩ(τ) then a pure-gauge configurationA
p.g.
μ (τ) = iδμ4Ω

†
∂τΩwould appear

in a covariant derivative on the left-hand side of (2.8).

9. A local definition of φ’s phase always yields zero due to the (anti)self-duality of the
(anti)caloron configuration.

10. Curved integration contours introduce scales which have no physical counterpart on the
classical level. Furthermore, shifting the spatial part of the argument (τ, 0) → (τ, z) in
(2.9) introduces a parameter |z| of dimension inverse mass. There is no physical reason
for a finite value of |z| to exist on the classical level. Thus we conclude that z = 0.

11. A shift, τ → τ + τz (0 ≤ τz ≤ β), is always possible and not fixed by a physical
boundary condition on the classical level. As we will see below, the same holds true
for the normalization of the right-hand side of (2.9). Therefore, for each color direction
these two ambiguities parametrize the solution space of the second-order linear operator
D.

12. The “naked” gauge charge in (2.9) is needed for a coupling of the trivial topology sector
to the ground-state after spatial coarse-graining generating (i) quasiparticle masses and
(ii) finite values of the ground-state energy density and the ground-state pressure [1, 2].
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13. The integral converges for r → 0.

14. The modulus |φ| does not depend on τ in thermal equilibrium and thus can be cancelled
out.

15. The former requirement derives from the fact that φ and its potential V are obtained by
functionally integrating over a noninteracting caloron-anticaloron system. The associated
part of the partition function does not exhibit an explicit β dependence since the
action S is β independent on the caloron and anticaloron moduli spaces. Thus a β
dependence of V or V (1/2) can only be generated via the periodicity of φ itself. The latter
requirement derives from the demand that the thermodynamics at temperature T + δT
to any given accuracy must be derivable from the thermodynamics at temperature T
for δT sufficiently small provided no phase transition occurs at T . This is accomplished
by a Taylor expansion of the right-hand side of the BPS equation (finite radius of
convergence) which, in turn, is the starting point for a perturbative treatment with
expansion parameter δT/T .
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