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AP Alkaline phosphatase 
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BALB/c inbred homozygotic white-fured mouse strain 

bp base pairs 
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CCR chemokine receptor 

CD cluster of differentiation 

CIA collagen-induced arthritis 
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CpG immunostimulatory viral or bacterial DNA motive; cytosine linked to 

 guanine by a phosphate bond 

CRTH2 chemoattractant receptor-homologous molecule expressed on Th2 

dbcAMP N-2-O-dibutyryl-cAMP 

dest. distilled 
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DNA deoxyribonucleic acid 

DP prostaglandin D2 receptor 
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EAE experimental allergic encephalopathy 

EBI3 Epstein Barr-virus induced molecule 3 

EDTA ethylendiamine tetraacetic acid 

ELISA enzyme-linked immunosorbent assay 

EP prostaglandin E2 receptor 
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FCS fetal calf serum 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GM-CSF granulocyte macrophage-colony stimulating factor 

HRP horseradish peroxidase 
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IFN interferon 

 III



 

Ig immunoglubulin 

IL interleukin 
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mo (as prefix) murine 

MyD88 myeloid differentiation primary response gene (88) 
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PAA polyacrylamide 

PBMC peripheral blood mononuclear cells 
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PCR polymerase chain reaction 
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DNA Pol-γ mitochondrial DNA polymerase-γ 

rec. recombinant 

rpm rotations per minute 

RPMI 1640 Roswell Park Memorial Institute medium 1640 

RT reverse transcriptase 

SDS Sodium dodecyl sulfate 

SFC spot forming cells 

STAT signal transducers and activators of transcription 

Taq Thermophilus aquaticus 

T-bet a transcription factor, pronouncedly expressed in T lymphocytes 

TCR T lymphocyte receptor 

TEMED N,N,N´,N´-Tetra-methyl-ethylenediamine 

TGF-β transforming growth factor-β 

Th helper T lymphocyte 

TLR Toll-like receptor 

TNF-α tumor necrosis factor-α 
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1 Introduction 
 

1.1 Components of the immune system 
After an extensive research into the adaptive immune system including specific T 

lymphocytes and antibody secreting B lymphocytes it is only in the last decade that 

much progress has been made in characterisation of the phylogenetic older innate 

immune system (formerly known as phagocytic cell system) (Fearon and Locksley, 

1996; Hoffmann et al., 1999). The importance of the innate immunity and its 

interactions with the acquired immune system has been recognised for a long time 

(Beutler, 2004; Medzhitov and Janeway, Jr., 1997; Mörner and Count K.A.H., 1908) 

but has been eclipsed by important discoveries in the acquired immunity cell system in 

the previous decades. Defects of either part but also overreaching activation may lead to 

severe polymodal immunological and autoimmune diseases with differing phenotypes. 

Microbes entering the organisms and cellular and non-cellular residues (as in apoptosis 

or tissue injury) are in most cases directly eliminated by phagocytic cells such as 

granulocytes and macrophages (MΦ). Detection of these non-self molecules takes place 

by a large variety of genetically encoded antigen-specific receptors leading to a constant 

awareness but usually no alert of the immune system. 

1.2 Polarization of the T helper cell response 

Surpassing a specific stimulation threshold leads to an additional activation of the 

adaptive immune system by professional antigen-presenting cells (APC) that process 

the antigen and present it bound to MHC surface molecules. APC comprise B 

lymphocytes and MΦ  but especially dendritic cells (DC). DC may decend from myeloid 

or lymphoid precursor cells and during their ontogenesis migrate to peripheral tissues – 

especially, with respect to the better characterised myeloid DC, immunological barriers 

such as intestine, skin and lung - and differentiate to take over their tissue-specific tasks. 

(Banchereau and Steinman, 1998). There in situ as immature DC with high phagocytic 

capacity, they capture antigen (Ag) and - under appropriately regulated conditions - 

process it (Fig. 1-1), while migrating to the regional lymph node and presenting it in the 

proper MHC context to Ag-specific, naïve or memory T lymphocytes. In addition, it is 
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now accepted that in chronic inflammation antigen presentation may also take place at 

the site of inflammation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-1: Overview of the interplay of immune system components; modified scheme (Banchereau et 
al., 2000); to be read clockwise. 

Pathogens entering the organism are detected, phagocytised and processed by antigen-presenting cells 
such as immature DC. DC trigger a local inflammation and activate antigen-specific local memory Th 
(early response) but also migrate to lymphoid tissue and mature (delayed response), selecting and 
activating antigen-specific CD4+ T lymphocytes (T) and B lymphocytes (B). B lymphocytes mature to 
plasma cells, T lymphocytes polarize to either CD4+, CD8+ and NKL (CTL), additionally activating 
granulocytes. A modulated response is achieved under the action of cytokines and tissue hormones. 
Myeloid progenitors from the bone marrow constantly renew described immune cells. 

 

The initiation of the adaptive immune response by DC leads to the subsequent 

activation of effector cells such as B lymphocytes and cytotoxic lymphocytes (CTL) 

comprising natural killer (NK) and CD8+ T lymphocytes (Abbas and Lichtman, 2003). 

Tight regulation of the T lymphocyte activation requires two parallel signals: first the 

MHC-TCR interaction - MHC I-antigen complexes are recognized by T cell receptors 
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(TCR) of CD8+ T cytotoxic cells, MHC II-antigen complexes are recognized by CD4+ T 

helper cells (Th) - second costimulating signals through activation via the B7-1 (CD80) 

and B7-2 (CD86) (Freedman et al., 1987; Greenwald, Freeman, and Sharpe, 2005) and 

the T lymphocyte CD28 molecule (Lenschow, Walunas, and Bluestone, 1996). The 

typical morphologic “dendritic” shape by this means favors DC-T lymphocyte contact 

and in this way directs T lymphocyte response by paracrine cytokine secretion. This 

initial first contact is crucial for the polarization of the CD4+ Th subsets and is tightly 

regulated. Naïve and memory Th can differentiate during Ag-presentation into Th1, Th2 

and probably Th17. Th1 produce IFN-γ, TNF-α and IL-1 (Mosmann and Coffman, 

1986) which in turn promote activation of cytotoxic lymphocytes, lymphocyte 

recruitment and local inflammation. Inflammation and cytotoxic lymphocyte activation 

via type I interferon is required for coping with intracellular pathogens (Hertzog, 

O'Neill, and Hamilton, 2003) but is also associated with chronic inflammation and 

autoimmune disease. New theories contribute at least parts of auto-aggressive T 

lymphotoxicity to Th17 cells that may evolve independently of Th1. Th2 products IL-4, 

IL-5, IL-10 and IL-13 are involved in protection against extracellular pathogens, 

allergic diseases but also in the promotion of a tolerogenic polarization of the immune 

system. Both act by regulating immune effectors, including Ag-specific CD8+ cytotoxic 

T lymphocytes and B lymphocytes as well as non–Ag-specific MΦ, eosinophils and NK 

cells. 

The induction of a Th1 type or a Th2 type response is mediated by a third signal 

constituted either by a predomination of Th2 type cytokines (especially IL-4, OX40L) – 

leading to a Th2 response – or by Th1 type cytokines (especially IL-12) that are 

secreted by DC leading to a Th1-type differentiation. High expression of these 

polarizing cytokines requires an additional signal assuring the optimal and timely 

expression of Th-cell-polarizing molecules. For IL-12 it was shown that high expression 

may involve an effective binding of CD40 by CD40L, which is rapidly expressed by the 

T cells upon encounter with endogenous danger signals (Cella et al., 1996; Schulz et al., 

2000). 

Subsequent to polarization, Th1 cytokine secretion including especially IL-2 leads to 

clonal Th1 expansion and IFN- γ known to influence nearby dendritic cells reinforcing 

the development of Th1 differentiation. 
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1.3 Functional states of dendritic cells 
Different subsets of DC derived from myeloid as well as lymphoid DC precusors have 

been characterized as specialized initiators of a specific immune response. These cell 

subsets differ in morphology and function. Immature tissue-residing DC possess high 

endocytotic and phagocytotic capacities and after confrontation with antigen and 

syngeneic T lymphocytes undergo a tightly regulated maturation during migration to 

secondary lymphoid organs. During this process the DC change their phenotype by 

upregulating surface molecules such as T lymphocyte costimulating molecules (e.g. 

CD40, CD80, CD86), intercellular adhesion molecules (CD54, CD58) and integrins 

(CD11a, CD11b, CD11c, E-cadherin). 

The antigen, the DC are confronted with, is either phagocytised (leading directly to an 

adaptive immune response) or bound to innate pathogen recognition receptors such as 

Toll-like receptors (TLR) (Rock et al., 1998) or Fc receptors (Geissmann et al., 2001). 

Prominent receptor subtypes are TLR9 (Takeda, Kaisho, and Akira, 2003) being highly 

specific for viral and bacterial DNA (Krieg, 2002) and TLR4 (Poltorak et al., 2000) 

binding to lipopolysaccharide (LPS) with its immunogenic lipid A as main endotoxin of 

Gram-negative bacteria (Takada et al., 1985; Beutler and Rietschel, 2003). 

It is known that a) different DC subsets express different sets of TLR receptors and b) 

the mode of TLR-mediated activation shows differences in immune response although 

presumably common signaling pathways are used. It was demonstrated that in the 

absence of the signaling adapter molecule MyD88 (Schnare et al., 2000) or the adaptor 

proteins CD14 (Haziot et al., 1996) and MD-2 (Shimazu et al., 1999) TLR4 but not 

TLR9-induced activation is severly impaired, suggesting that TLR might mediate a 

microbe-specific response. 

Langerhans cells (LC) constitute a well-characterized tissue-differentiated DC subset 

derived from myeloid precursors. They are characterized by expression of antigen-

presentation markers, different chemokine-recepotors, expression of integrins, absence 

of the monocyte-marker CD14 but expression of the DC-specific marker CD11c (a iC3b 

binding integrin) (Larregina et al., 2001). Crucial for the development is the expression 

of TGF–β1 receptors (Borkowski et al., 1996). Morphologically LC possess Birbeck 

granula, intracytoplasmatic vesicles unique for this cell type, presumably involved in 

the uptake and trafficking of molecules internalised through the C-type lectin langerin 

(Valladeau et al., 1999). LC express TLR2 (receptor for bacterial lipoproteins and 
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peptidoglycan), TLR4 and TLR9 (Mitsui et al., 2004); specialized subsets (like XS52 

cells) express also the imiquomod-ligand TLR7 (Thatcher et al., 2006). 

Plasmacytoid DC (pDC) (Liu, 2005) constitute the major representative of DC derived 

from lymphoid precursors. They are characterized by the expression of TCR-markers 

CD4 but not CD3, the expression of CD123, the absence of the expression of antigen-

presentation molecule CD1 and the DC marker CD11c. Essential for the development 

seems the expression of FLT3 ligand. Morphologically, pDC resemble plasma cells. 

They express mainly TLR7 and TLR9 and produce large amounts of IFN-α upon 

stimulation, supposedly involved especially in host defence against viral pathogens. 

pDC are now considered to be responsible for tolerance of the immune system towards 

auto-antigens (Ochando et al., 2006). 

 

1.4 Characterization of murine dendritic cell lines 
 
XS52 created by S. Xu et al. in 1995 is an immature Langerhans dendritic cell line 

(iLC) derived from neonatal mouse skin (Xu et al., 1995) differing from freshly isolated 

Langerhans cells in morphologic and functional features but express comparable 

cellular differentiation markers as short term-cultured immature Langerhans cells. 

They are characterized by a weak expression of the myeloid marker CD34, expression 

of CD1a (MHC II), weak expression of E-cadherin, a molecule that mediates cell 

adhesion to keratinocytes by the CLA-1 receptor (Tang et al., 1993), expression of 

lymph node homing receptors CD11a (binding ICAM-1), CD11b (binding CD54, an 

endothelial surface molecule), the chemokine receptor CCR6 and the receptor for TGF-

β1 (Radeke et al., 2005) that binds  the keratinocyte-released chemokine MIP3α. XS52 

have been tested negative for Birbeck granula, whose loss has to be considered as a 

common feature of Langerhans cells being upheld in cell culture (Schuler and Steinman, 

1985). 

Under a protocol of T lymphocyte-mediated final maturation (Yamada and Katz, 1999), 

upregulation of T lymphocyte costimulatory molecules B7-2 (CD86), B7-1 (CD80), 

CD40, ICAM-1 (CD54) (Bouis et al., 2001), CD11c, MHC II complexes, loss of CD14 

and upregulation of CCR7 (interacting with L-selectin ligands in HEV, CCL19 and 

CCL21) is observed. Although LC generally express prostaglandins (Ruzicka and 
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Aubock, 1987), it was further demonstrated by the “Foundation Immune 

Pharmacology” that XS52 cells do not produce significant amounts of neither PGE2 or 

PGD2. 

The poorly characterized immature myeloid dendritic cell line JawsII (iMDC) created 

by V. MacKay is a commercial cell line that is supposed to represent a common 

precursor of both DC and MΦ (Jorgensen, Haase, and Michelsen, 2002). The CD11b, 

CD11c, CD14, CD34 expressing iMDC have preserved an immature phenotype (low 

expression of MHC II) throughout long term culture. Jorgensen et al. further described a 

deficiency of the cell line for CD40 and IL-12 expression. In contrast, other groups 

including the “Foundation Immune Pharmacology” could detect the expression of these 

markers (Awasthi and Cox, 2003; Chen et al., 2004). 

1.5 The IL-12 related pro-inflammatory cytokines 

1.5.1 Interleukin-12 

IL-12, first named “natural killer cell stimulating factor”, was identified as a product of 

EBV-transformed human B-cell lines (Kobayashi et al., 1989) but is physiologically 

mainly produced by activated DC, monocytes, B lymphocytes, neutrophils and 

keratinocytes. It is known to exert pleiotrophic effects on B lymphocytes but more 

prominently on NK cells and also initiates the Th1 response, including the enhancement 

of cytolytic activity and co-stimulation of proliferation (Trinchieri, 2003). 

 

 

 

 

 

 

 

Fig. 1-2: Molecular structure of IL-12 according to Yoon et al. (Yoon et al., 2000). 

The figure represents a molecular model of IL-12 based on x-ray crystallography. The IL-12 molecule is 
composed of the IL-12p40 and IL-12p35 (at the left). The structure of IL-12p40 with its three domains 
D1, D2, D3 resembles the extracellular domain of class I cytokine receptors. p35 is associated to this unit 
as a receptor ligand and additionally linked by disulfide-bonds that might be necessary due to a probable 
instability of the p35-protein. 
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IL-12 enhances IFN-γ production by these cells which in turn activates DC in a positive 

feedback mechanism (Ma et al., 1996) crucial for immune response as described in 

knockout models (Kaplan et al., 1996). The major trigger for the production of IL-12, 

constitute bacterial, viral and parasitic motives binding to TLR. Further enhancement of 

bioactive IL-12 is induced by IL-12 itself and in combination with IL-18, TNF-α and as 

described above  by IFN-γ. Inhibition of IL-12 secretion is mediated by TGF-β and IL-

10 (Aste-Amezaga et al., 1998; Du and Sriram, 1998). 

Structurally IL-12 is a heterodimeric protein composed of two glycoprotein subunits, 

p35 and p40 linked together by both disulfide-bonds and charge-dependent interactions 

(Fig. 1-2) binding to a high affinity transmembrane receptor composed of two type-I-

transmembrane-glycoprotein subunits (IL-12Rβ and IL-12Rβ2). IL-12Rβ2 is expressed 

on T lymphocytes, NK cells, DC and B lymphocytes and  induced during Th1-type 

immune response (Szabo et al., 1997). STAT4 as downstream signal transducer is 

considered to be necessary for differentiation of naïve T lymphocytes into IFN-γ 

producing Th1. IFN-γ then activates the STAT1 transcription factor and subsequent T-

bet expression which is required for optimal IL-12Rβ2 expression. 

 

1.5.2 IL-12-related cytokines 

The recently characterized APC-expressed cytokine subunits p19 (Oppmann et al., 

2000) that is able to complex with the IL-12p40 subunit and the homologuous p28 

(Pflanz et al., 2002) make necessary a revised characterization of IL-12 and its 

described effects as they partially overlap with these new subunits (Hunter, 2005). 

 

 

 

 

Fig. 1-3: IL-12 subunits according to Brombacher et al. (Brombacher, Kastelein, and Alber, 2003). 

From left to right: IL-12 (p70) composed of the p40 subunit bound to the p35 subunit, p80 composed of 
two p40 monomers, IL-23 composed of the p19 subunit bound to p40 and IL-27 composed of EBI3 – a 
p40 homologue, bound to p28 (homologue of p35). The subunits are connected by disulfide-bridges. 
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1.5.2.1 Interleukin-23 
IL-23 like IL-12 is a heterodimeric cytokine composed of the promiscuous IL-12p40 

subunit and the p19 subunit, connected by a disulfide-bridge and binding to the receptor 

composed of IL-12Rβ1 and IL-23R expressed on T lymphocytes, NK cells, monocytes 

and DC (Parham et al., 2002). 

It was shown that IL-12p35-deficient mice develop a severe progression in murine 

autoimmune disease models such as experimental allergic encephalopathy (EAE) and 

collagen-induced arthritis (CIA) and presumably inflammatory bowel disease (IBD). 

These effects are contributed to a more pronounced expression of bioactive IL-23. 

Aggressive inflammation can also achieved by a transgenic expression of IL-12p40 and 

more important IL-23p19 leading to premature death while IL-23p19-deficient mice are 

resistant to the development of EAE (Watford and O'Shea, 2003). 

It was shown that IL-23 - especially in the absence of IFN-γ - leads to a pronounced 

expression of IL-17A and IL-17F by memory and activated Th cells (Aggarwal et al., 

2003). IL-17 related cytokines, that are exclusively secreted by CD4+ and CD8+ T 

lympocytes, are known to provoke tissue inflammation by inducing proinflammatory 

and neutrophil-mobilizing cytokines and by this constitute major mediators of 

autoimmune inflammation (Kolls and Linden, 2004). IFN-γ and IL-12 suppress the 

development of a IL-17 response (McKenzie, Kastelein, and Cua, 2006). 

 

1.5.2.2 Interleukin-27 
 
A further subunit, the Epstein–Barr virus induced gene 3 (EBI3) that is known to be 

related to IL-12p40 and to be able to engage the p35 subunit was characterized by 

Devergne et al. (Devergne et al., 1996; Devergne, Birkenbach, and Kieff, 1997). EBI3 

further dimerizes the recently described p28 chain to form the heterodimeric APC 

cytokine IL-27 and binds to the IL-27 receptor composed of WSX1 and gp130, a 

receptor subunit also used by IL-6. The IL-27 receptor is expressed especially on CD4+, 

CD8+, NK cells and mast cells. 

IL-27 is characterized as a synergistic cytokine to IL-12, inducing proliferation of naive 

T lymphocytes and IFN-γ production, particularly in synergy with IL-12 and IL-18. It 

has been demonstrated that IL-27 in early inflammation mediates upregulation of IFN-γ 
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expression and of the IL-12Rβ2 (the receptor subunit that is unique for the IL-12 

receptor) via STAT1 and T-bet and this way increases the responsiveness of CD4+ to 

IL-12. It further induces mast cells to secrete proinflammatory cytokines. In the 

presence of strong polarization, IL-27 acts as limiting cytokine by suppressing IL-2 

expression and by this inhibits clonal T cell expansion. EBI3 is highly expressed in 

human placenta, upregulated in ulcerative colitis and induced during the activation of 

human monocytes and dendritic cells. Similar to IL-12p35 and IL-23p19, IL-27p28 can 

be secreted only when associated with IL-12p40 and EBI3, respectively. 

 

1.6 Modulation of immune processes by local tissue cells 
In epithelial barriers, bystander tissue cell products such as cytokines, biogen amines 

(e.g. histamine, VIP), lipidic mediators (e.g. prostaglandins, leukotriens, ceramides and 

sphingophospholipids), nucleotides and nucleosides (such as ATP and adenosine) 

morphins, lysophospholipids and PPAR-γ ligands have been reported to modulate 

diverse immune functions including a) tissue permeability necessary for immune cell 

migration (Lewis, Berg, and Kleine, 1995) but also b) suppression and initiation of 

adaptive immune processes. In the skin epithelial barrier specifically keratinocytes and 

fibroblasts bear these tasks. 

Previous to these studies the reciprocal influence of nearby activated T lymphocytes and 

renal bystander cells (there: mesangial cells) has been studied in detail (Radeke, 

Schwinzer, and Resch, 1992). In more recent yet unpublished studies, Radeke et al. 

detected large amounts of PGE2 and especially PGD2 in supernatants of LPS-stimulated 

mesangial cells. Under the assumption that the same paracrinely active substances may 

modulate T cell function as well as antigen-presentation processes, these observations 

gave rise to the following studies using a Th1 memory clone and an immature 

epidermal Langerhans cell clone as APC. Early modulation at the site of inflammation 

seems to be a principal target insofar as it may suppress early local as well as nodal 

antigen-presentation of tissue-differentiated DC to Th cells and thus the subsequent 

polarization of potential harmful subsets of effector T lymphocytes. 
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1.6.1 Immunomodulatory effects of prostaglandins 

Prostaglandins (PG) (Bergstrom and Samuelsson, 1962; Funk, 2001) are ubiquitous 

tissue hormones, with numerous tissue-specific activities acting paracrinely as well as 

autocrinely, being present in body fluids in pico- to nanomolar concentrations and 

reaching concentrations in the micromolar range under inflammation. After cellular 

activation by mechanical trauma, bacterial peptides, allergens or inflammatory 

mediators such as cytokines and growth hormones, they are de novo synthesized from 

arachidonic acid, that is kept esterified to phospholipids of the endoplasmatic reticulum 

and the nuclear membrane, by the action of isoformes of phospholipase A2. They are 

liberated, then converted to an unstable endoperoxide intermediate by cyclooxygenases 

isoformes and subsequently metabolized to one of several related products including 

PGD2, PGE2, PGF2, prostacyclin (PGI2), and thromboxane A2 through the action of 

specific PG synthases. Specifically cyclooxygenase 2 (COX 2), competing for the 

arachinodate with the lipoxygenase but also the specific prostaglandin synthases are 

induced by proinflammatory stimuli and are preferentially expressed in barrier epithelial 

tissues (Holtzman et al., 1994). 

 

1.6.2 PGE2 

PGE2 as potent lipidic mediator derived from arachidonic acid metabolism - produced 

under the regulation of the microsomal PGE2 synthase (Jakobsson et al., 1999) - 

regulates a broad range of physiologic processes in the cardiovascular, endocrine, 

gastrointestinal, neural, pulmonary, reproductive, visual, and immune systems. Mainly 

produced by stromal cells and MΦ but also tumor cells, PGE2 acts by binding to 

specific receptors belonging to the rhodopsin family of G protein coupled receptors, 

existing in four subtypes: EP1, EP2, EP3 and EP4 (Narumiya, Sugimoto, and Ushikubi, 

1999). 

EP1 activates phosopholipase C and phosphatidylinositiol turnover and stimulates the 

release of intracellular Ca2+. While EP1 generally has low expression, moderate 

expression is described for kidney and lung epithelial cells. 

EP2 activates adenylate cyclase via a cholera toxin-sensitive, stimulatory G protein 

coupled pathway in response to butaprost. Although EP4 also activates adenylate 

cyclase, it is insensitive to butaprost and has been shown to be responsible for DC 
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migration. EP4-deficient mice are resistant to develop CIA (McCoy, Wicks, and 

Audoly, 2002). EP2, as well as EP4 expression is described for immune cells, epithelial 

cells and smooth muscles. 

The EP3 receptors stimulate the release of intracellular Ca2+ and inhibit cAMP 

metabolism; splicing variants α, β and γ with differing activities are described; the EP3γ 

isoform is also able to stimulate cAMP metabolism. EP3 is ubiquitously expressed. 

Both the cAMP and the calcium cascade fulfill complex “downstream” activations of 

different kinases, leading finally to the activation of transcription factors and may lead 

to lasting changes in cellular differentiation. Differential expression of these receptors 

allows a great variety of response in very different cells to the same stimulant, also 

reflecting the cellular differentiation state. 

Th1 seem to preferentially express the receptors EP3 and EP4 (Bloom et al., 1999), 

PGE2 seems to inhibit IL-2 and IFN-γ production in Th1 cells but not the production of 

IL-4 by Th2 cells (Betz and Fox, 1991), effects that can be reproduced by cAMP 

analogues. It is suggested that Th1 possess more or higher affinity binding sites for 

PGE2 that explain differential effects compared to Th2 (Harris et al., 2002). 

Contradictory results have been reported regarding T cell polarization induced by DCs 

that are cultured in the presence of PGE2: Kalinski et al. (Kalinski et al., 1997; Kalinski 

et al., 1998; van der Pouw Kraan TC et al., 1995) reported that immature and mature 

DC, generated in the presence of PGE2, either initially or during terminal maturation, 

induce naïve T cells towards a Th2 response by impairing the production of IL-12. 

Other investigators reported a Th1 type differentiation meditated by an increase in DC 

IL-12 expression (Morelli and Thomson, 2003; Rieser et al., 1997; Steinbrink et al., 

2000). Under costimulation with LPS, PGE2 depressed the amount of IL-12 in DC 

supernatants (Jozefowski, Bobek, and Marcinkiewicz, 2003). 

This discussion should be understood within the context that the described effects seem 

to be highly dependent on the source of the DC, the extend of inflammation and the 

microenvironment. New insights into the biology of the IL-12 cytokine family 

supplemented these findings: While IL-12p35 - and not IL-12p40 - mRNA expression 

was observed to be decreased following stimulation with PGE2 (Kalinski et al., 2001), it 

was later observed that IL-23p19 and total IL-23 were increased in cell culture 

supernatants of murine MDC cultured in the presence of PGE2 (Schnurr et al., 2005; 

Sheibanie et al., 2004). Sheibanie and Schnurr demonstrated that PGE2, acting via EP2 
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and cAMP, promotes IL-23 but inhibit IL-12 expression in mature murine as well 

human MDC. Although it is not exactly known how downstream signaling pathways are 

involved, it was shown that STAT4, T-bet and probably STAT3 take part. 

Beside diverse cytokines, cysteinyl leukotriene C4 and PGE2 have been demonstrated to 

potentiate chemokine-driven DC and LC migration by increasing responsiveness to 

CCR7 that acts as a cofactor on DC maturation (Narumiya, 2003). 

Catabolism of PGE2 takes place intracellularly and is rate-limited by cellular 

transporters, then oxidized by 15-hydroxy PG dehydrogenase or carbonyl reductase to 

inactive PGF2α. When cells rupture, intracellular PG dehydrogenase is released and acts 

extracellulary (Ivanov, Scheck, and Romanovsky, 2003). Various effects of PGE2 on 

other immune cells are reported. 

 

1.6.3 PGD2 

PGD2 known to be implicated in platelet aggregation, relaxation of vascular and 

nonvascular smooth muscles, nerve cell functions and immune response is tightly 

regulated by the activity of COX2 and PGD2 synthase existing in two isoformes 

(Trivedi et al., 2006). The gluthatione-dependent hematopoetic PGD2 synthase 

(hPGDS) is expressed in APC, Th2 (but not Th1), megakaryocytes but especially in 

mast cells (Urade et al., 1990). 

PGD2 acts through its G protein-coupled receptor DP1 (an activator of adenylate 

cyclase) and DP2, a member of the chemoattractant receptors (also named CRTH2 for 

its selective expression on Th2 and not on Th1) that is an activator of phospholipase C 

(Nagata et al., 1999; Hirai et al., 2001). CRTH2 is expressed on monocytes, eosinophils 

and basophil granulocytes mediating chemotaxis and is considered to be implicated as a 

central player in promoting Th2-related allergic inflammation. 

Although Th1 seem not to express DP receptors (Luster and Tager, 2004), increased 

IFN-γ mRNA levels are reported in skin biopsies sensitized with OVA and BW245C, a 

specific DP1 ligand (Angeli et al., 2004). 

PGD2 induces a DP1-mediated (CRTH2 is not expressed on DC) inhibition of LC 

trafficking to the draining lymph nodes (Angeli et al., 2001; Hammad et al., 2003). 
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PGD2 and its selective agonist BW245C inhibit the IL-12 production in human 

monocyte derived DC and murine MDC (Faveeuw et al., 2003; Gosset et al., 2003), 

through DP1-dependent and independent pathways. 

The PGD2 catabolism involves non-enzymatically intracellular as well as extracellular 

conversion into the cyclopentenones of the J-series. While some authors describe an 

albumin-catalized conversion, Shibata et al. (Shibata et al., 2002) describe a 

stabilization of PGD2 mediated by human serum albumin. 

 

1.6.4 15d-PGJ2 

PGD2 can be enzymatically and non-enzymatically converted to the F and J series of 

prostaglandins beyond which 15d-PGJ2 has been characterized as a very active 

metabolite whose effects overlap with PGD2 (Scher and Pillinger, 2005). 

15d-PGJ2 is also a ligand of CRTH2 and after active resorption, may as a high affinitiy 

ligand interact with the nuclear peroxisome proliferator-activated receptor γ (PPAR-γ), 

expressed predominantely in adipose tissue, adrenal gland and spleen but also in MΦ. 

15d-PGJ2-mediated PPAR-γ activation affects the activation of NF-κB, AP1 and MAP 

kinase pathways, signal transducers and activators of transcription as well as the 

suppression of inducible nitric oxide synthase and proinflammatory cytokine synthesis 

(Spiegelman, 1998; Tilley, Coffman, and Koller, 2001). PPAR-γ-independent effects 

are observed. 

The effects of 15d-PGJ2 in DC and Th1 are complex and poorly characterized; its role 

in physiology and pathophysiology is unclear. DC (Jakobsen et al., 2006) as well as Th1 

express PPAR-γ but not CRTH2. 

PPAR-γ agonists are reported to inhibit NF-κB and a consequent IL-12p40 transcription 

in DC (Appel et al., 2005; Faveeuw et al., 2000; Nencioni et al., 2002). It was further 

demonstrated that 15d-PGJ2 decreases IL-2 in murine Th1 (Clark et al., 2000) and 

induces apoptosis in murine B and T lymphocytes. 
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1.7 Aim of the thesis 
 
The following paragraphs describe dendritic cell assays that have been performed 

between January 2003 and January 2004. The data are based on the immunological and 

molecular biological tools available at this date. Newer antibodies and findings 

published since 2004 could not be integrated in these experimental setups. 

Three cell lines, the described XS52 cell line, the JawsII cell and the Th1 cell line IF12 

were arranged to imitate the in vivo cell contact of specialized tissue-differentiated DC 

with Th1 cells and the environmental influence of nearby stromal cells at the initiation 

of inflammation. Therefore I established two different methodical settings. In the first 

part the direct interactions of Th1 and DC are described through the expression of IFN-γ 

in Th1 cells as one parameter of the complex cytokine interplay. PGE2 and PGD2, 

known as modulating agents at the site of inflammation and produced by stromal cells 

were artificially added to the stimulated cells. The influence of these agents on the 

cytokine production was measured. 

The second part of the assays centers on the dendritic cells as initiators of these 

inflammatory process. The IL-12-related cytokine subunits constitute a cytokine entity 

yet fragmentarily characterized. The modulation of these subunits by PGE2 and PGD2 

was analyzed. I specifically addressed to possible differential effects of prostaglandins 

under differential stimulation with Toll-like receptors 4 and 9. 

Moreover, it was my aim to clarify the use of antibodies against IL-12 related cytokine 

subunits, seeing as for more than ten years IL-12 has been detected in Western blot 

under non-reducing conditions, yet the p40-linked IL-23 (that shares a common subunit 

with IL-12) could not be identified. The identification of IL-23 was not possible until 

2000 when computer-based homologous search of DNA-sequences led to its detection. 
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2 Materials and Methods 
 

2.1 Materials 
Chemicals were purchased from Merck (Darmstadt), AppliChem GmbH (Darmstadt), 

Sigma-Aldrich Chemical Co. (St.Louis/MO) and Carl Roth GmbH&CoKG (Karlsruhe) 

or as indicated in the text. 

Concanavalin A, Forskolin, Ionomycin, N-2-O-dibutyryl-cAMP, Escherichia coli-

derived (strain 0127:B8) lipopolysaccharide and grade VI ovalbumin were purchased 

from Sigma-Aldrich Chemical Co. (St.Louis/MO). Prostaglandins were purchased from 

Cayman Chemicals (Ann Arbor/MI). CpG with the sequence (small “g”s representing 

phosphothioates): 5’ggGGGACGATCGTCgggggG 3’ was purchased from Sigma ARK 

genosys (Steinheim). 

Plastics and cell culture material were purchased from BD Falcon (Bedford/MA), 

Eppendorf (Westbury/NY) or Greiner (Frickenhausen). 

 

2.2 Cultivation of mammalian cells 
All cells were cultivated in a standard cell incubator (BBD 6220, Kendro Laboratory 

Products GmbH/ Heraeus, Hanau) and grown at 37 °C and 5% CO2 with saturating 

humidity (95%). 

2.2.1 Cultivation and passaging of DC 

 
JawsII (iMDC) medium 
 
500 ml Iscove’s medium Biochrom, Berlin 
5 ml L-glutamine ( final 2 mM) Invitrogen Corp., Carlsbad/CA 
5 ml Penicillin/Streptomycin (final 100 IU/100 µg/ml) Gibco- Invitrogen, Grand Island/NY 
50 ml FCS (final 10%) Bio Whittaker-Cambrex, East Rutherford/NJ 
0.5 ml β-ME Gibco- Invitrogen, Grand Island/NY 
5 ng/ml rec. moGM-CSF Strathmann, Hamburg 

 

The commercially available murine C57BL/6 bone marrow-derived immature dendritic 

cell line JawsII (iMDC) was cultivated in the recommended medium in horizontally 

stored 75 cm2 cell culture flasks (Greiner bio-one, Frickenhausen). Cells were split 

once a week; adherent cells were harvested with cell scrapers, suspended with non-

adherent iMDC, centrifuged (Megafuge 1.0, Heraeus, Hanau) for 5 min at 1200 rpm in 
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50 ml tubes (BD Falcon, Bedford/MA). The supernatant was removed and cells were 

resuspended with unconditioned complete medium. The day before the assay, medium 

and GM-CSF were renewed and cell number per flask was set at 2.5 x 106 cells in 10 ml 

medium. 
 

XS 52 (iLC) medium 
500 ml Iscove’s medium Biochrom, Berlin 
5 ml L-glutamine (final 2 mM) Invitrogen Corp., Carlsbad/CA 
5 ml Penicillin/Streptomycin (final 100 IU/100 µg/ml) Gibco- Invitrogen, Grand Island/NY 
5 ml Sodium-Pyruvate (1 mM) Gibco- Invitrogen, Grand Island/NY 
5 ml NEA (100 µM) Gibco- Invitrogen, Grand Island/NY 
25 ml FCS (final 5%) Bio Whittaker-Cambrex, East Rutherford/NJ 
0.5 ml β-ME Gibco- Invitrogen, Grand Island/NY 
10 ng/ml moGM-CSF  Strathmann, Hamburg 

 

The murine embryonic BALB/c Langerhans cell line XS52 (iLC; kindly provided by G. 

Müller, Department of Dermatology, Gutenberg Universität Mainz) was cultivated in 

horizontally stored 175 ml cell culture flasks using a modification of the recommended 

medium; CSF-1 - an active component of fibroblast supernatants (Takashima et al., 

1995) – was suggested to be added to the XS52 medium but was replaced by GM-CSF 

in our laboratories. The cell line tested negative for Mycoplasma species contamination 

in several assays with a commercial mycoplasma kit (Venor GeM Kit Mycoplasma kit, 

Minerva biolabs/ Berlin). iLC were splitted every 3-4 days; adherent cells were 

harvested with cell scrapers, suspended with non-adherent DC, centrifuged for 5 min at 

1200 rpm. One day before the assay the medium was renewed and the cell number was 

set at 2.5 x 106 cells. During the assay no growth hormones were added. 

2.2.2 Cultivation and passaging of Th1 

 
IF12 (Th1) medium 
500 ml RPMI 1640 Gibco- Invitrogen, Grand Island/NY 
5 ml L-glutamine (final 2 mM) Invitrogen Corp., Carlsbad/CA 
5 ml Penicillin/Streptomycin (final 100 U/100 µl) Gibco- Invitrogen, Grand Island/NY 
5 ml NEA Gibco- Invitrogen, Grand Island/NY 
5 ng/ml rec. moIL-2 Roche, Basel/Switzerland 
50 ml FCS (final 10%) Bio Whittaker-Cambrex, East Rutherford/NJ 
 

 

The CCR7+ (Rubant, 2005), L-selectin- (unpublished observation) OVA-specific 

memory T-helper 1 cell line IF12 (Th1) (Radeke et al., 2002; Karulin et al., 2000; 
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Rubant et al., 2006) was cultivated in vertically stored 75 cm2 flasks. The medium was 

renewed every 3 to 4 days, the cell number per flask was set at 250.000 cells/ml and 

cells were centrifuged at 1000 rpm for 5 min. Th1 were then resuspended in complete 

medium. 

In a period of 4 weeks, a re-stimulation with OVA-loaded dendritic cells was necessary 

in order to uphold the specificity for the OVA protein. Therefore, 2.5 x 106 irradiated 

spleen-derived APC were added to 6 x 105 IF12. After addition of OVA (final 

concentration: 13.5 µg/ml) the coculture was uphold for 6 days in IL-2-deprived 

medium leading to the decline of the non-OVA-specific Th1. After a regeneration of 6 

to 7 days in complete medium, the surviving Th1 were used again in assays. 

2.2.3 Cell freezing and thawing 

In a period of approximately twelve weeks the used cell lines were renewed by cell 

aliquots stored in common stock according to a modified protocol for cryopreservation 

of eucaryotic cells established by Sherman and Tarkowski (Sherman, 1964). 

Approximately 3 x 106 cells/ml were pelleted as described above and then solved in 

freezing medium containing MEM alpha (Gibco- Invitrogen, Grand Island/NY), 40 % 

heat-inactivated FCS, 20 % DMSO (Dimethylsulfoxide, Merck, Darmstadt) and 

transferred to freezing vials, placed into a Cryo freezing container (Qualifreeze Cryo-

Einfriergeräte, Merck-Qualilab, Darmstadt) cooled 1°/min in a –80°C refrigerator 

(freeze, Heraeus/Kendro, Hanau) over night, then transferred to a liquid nitrogen tank (-

192°C). For thawing, a vial of frozen cells was removed from liquid nitrogen and placed 

in a 37°C water bath (W12, Preiss-Daimler, Medingen) until thawed. To remove 

DMSO, cells were pipetted into a centrifuge tube containing 5 ml 100% FCS and 

prewarmed medium. After a centrifugation at 1000 rpm for 5 min, the supernatant was 

discarded and the cells were resuspended in 10 ml of complete medium and transferred 

to cell culture flasks. Cells were incubated overnight under usual cultivation conditions; 

the medium was replaced the next day. 
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2.3 Immunological methods 

2.3.1 Generation of supernatants 

Previous to the antigen detection, cultivation methods had to be adjusted due to a 60kDa 

band that occurred in FCS-containing supernatant showing an interference with the 

expected 40 to 80 kDa bands of IL-12 subunits. I therefore used FCS-free media for 

incubation during the assays. FCS contaminations were also observed in the rec. 

mo(p40)2  (499-ML, R&D Systems, Minneapolis/MN) (Fig. 2-1). I standardized a 

common protocol for the cultivation of DC later using the cells for mRNA detection in 

RT-PCR and the supernatant proteins for cytokine detection in Western blot. 

 

 

Fig. 2-1: Accompanying proteins in a commercial rec. moIL-12(p40)2 preparation. 

From left to right: M: 6 µl of protein standard, lane 1: 25 ng, lane 2: 40 ng, lane 3: 250 ng and lane 4: 
500 ng of recombinant (p40)2 separated under reducing conditions in a 10% polyacrylamide discontinous 
gel electrophoresis. Protein detection was performed according to the protocol for silver staining. Apart 
from the suspected 40 kDa band as detected in lane 1, a 60 kDa band with superior intensity could be 
detected at the molecular weight of approximately 60 kDa, representing contaminations of the 
commercial rec. protein. 

2.3.2 Mass concentration of supernatants 

Supernatants were concentrated with filter spin concentrators (Centriprep YM-10, 

Millipore Corp., Bedford/MA) with a molecular weight cut off of 10 kDa for 30 min at 

3000 rpm in a centrifuge (3K30, Sigma, St. Louis/MO). Proteins with lower molecular 

weight than 10 kDa were discarded. The qualitative concentration increased the amount 

of protein to be separated per lane in SDS-PAGE. The average volume of 9 to 10 ml 

was reduced to 2–2.5 ml, reflecting a concentration factor of approximately 4. 
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2.3.3 Measurement of protein concentration 

Protein concentration in supernatants was determined with the BCA protein detection 

assay (BCA Protein AssayKit, Pierce Biotechnology, Rockford/IL). The BCA 

(bicinchoninic acide) test according to Bredford (Smith et al., 1985) allows the 

colorimetric determination of protein content based on the biuret-reaction. 

Spectrometric peak of the reaction product is observed at 562 nm. I diluted the 

supernatant samples to 1:10, 1:20, 1:50 in dest. water on ELISA plates (PS microplate 

96, Greiner bio-one, Frickenhausen), parallelly diluted a protein standard (BSA) with a 

defined concentration, and incubated it for 45 min with the reagent at 37 °C. 

Measurement was performed with a spectral-photometer at 562 nm (Elisa-Reader, 

SPECTRAFluor Plus, Tecan Maennedorf/Switzerland). 

 

2.3.4 Western blot assay 

Western blot analysis allows the antibody-dependent detection of proteins after their 

separation according to their molecular weight by polyacrylamide electrophoresis 

followed by transfer to a PVDF or nitrocellulose membrane. I chose this method to 

characterize IL-12 subunit detecting antibodies that were later used in ELISPOT assays. 

Various commercial moIL-12 subunit antibodies with a described specificity for p70 

were systematically tested. I used protein supernatants of CpG-stimulated (Sigma ARK 

genosys, Steinheim) or LPS-stimulated murine iLC and rec. mo(p40)2 dimer as target 

protein. The results further allowed a quantitative analysis of p40 levels. 

 

2.3.5 Discontinuous SDS-polyacrylamide gel electrophoresis 

The SDS-polyacrylamide gel electrophoresis was performed with the vertical gel 

electrophoresis system Mini Protean III (Bio-Rad, Hercules/CA) in a 1.5 mm gel at 60 

mA for 90 min. By the action of denaturing Sodium dodecylsulfate (SDS), proteins are 

unfold and unionized, allowing a separation in a polyacrylamide matrix under electricity 

according to their molecular weight. I chose a discontinuous gel system consisting of 

two phase of varying concentrations of polyacrylamide allowing a better resolution of 

the electrophoresis. 
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The 12.5 % separation gel, first founded in the chamber consists of: 

 3.3 ml H20 
 4.2 ml 30% polyacrylamide 
 2.7 ml 1.5 M Tris (pH 8.8) 
 100 µl 10% SDS 
 100 µl 10% APS 
 4 µl TEMED 
 ad 10 ml. 
 
 
The optimal polyacrylamide concentration depends on the proteins to be resolved; the 

chosen 12.5% is recommended for proteins < 60 kDa. 1 ml of isopropanol as detergent 

should be added directly after founding. Polymerization lasts approximately 1 h, then 

the stacking gel, a thin 4% polyacrylamide gel that should focus the protein bands, is 

added: 
 2.1 ml H2O 
 0.5 ml 30% polyacrylamide 
 0.38 ml 1.5 M Tris pH 6.8 
 30 µl 10% SDS 
 30 µl 10% APS 
 3 µl TEMED 
 ad 3 ml. 

5 µl per lane of Precision Plus Protein Standard (Bio-Rad, Hercules/CA) and 1 ng per 

lane of rec. mo(p40)2 (499-ML, R&D Systems, Minneapolis/MN) was used as molecular 

weight marker and protein standard. Protein samples and rec. protein were loaded 

together with denaturing respectively non-reducing Laemmli-buffer (2X) (Laemmli, 

1970). For denaturation, protein samples were heated up to 95 °C (Heating block, HBT 

130-2, HLC, Bovenden) for 5 minutes in reducing Laemmli buffer. 

Laemmli buffer (reducing) Laemmli buffer (non-reducing) 
3.8 ml H2O dest. 1 g SDS 
1 ml 0.5 M Tris/Cl (pH 6.8) 3 mg EDTA 
0.8 ml glycerol 0.001 g NaN3 
1.6 ml 10% SDS 10 mg bromphenol blue 
0.4 ml β -ME 2.5 ml 0.5 M Tris/Cl (pH 6.8) 
0.4 ml 0.005% bromphenol blue ad 100 ml H2O dest. 
 

2.3.6 Semidry blot 

The proteins bound to the polyacrylamide gel were transferred from the gel to a 

Polyvinylidine fluoride (PVDF) membrane (polyfiltronics PVDF membrane Immobilon 

P, Whatman, Kent/UK) with the semi-dry electrophoresis method (Towbin, Staehelin, 

and Gordon, 1979). 
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Fig. 2-2: Construction of the Western blotting system. 

The Western blot system consists of anode and cathode blades and in-between buffer-wrenched filter 
papers favoring the transfer of the proteins on the electrophoresis gel to the activated PVDF membrane. 
Modified according to Westermeier (Westermeier, 1990). 

 

The methanol-sensitized PVDF membrane was buffered with blotting buffer-saturated 

Whatman-paper sheets (8 x 10 cm) (Whatman filter paper, Schleicher und Schüll, 

Dassel), the membrane was placed on the side of the gel facing the anode, and 

transferred during 30 min at 60 mA (0.8 mA/cm2) in the Consort Western blot system 

(V20-SDB, Consort, Turnhout/Belgium) as described in Fig. 2-2. 

 

Western blot buffers 
Blotting buffer A (pH 10.4) anode buffer Blotting buffer B (ph 10.4) anode buffer 
0.3 M Tris (36.3 g) 25 mM Tris (3.025 g) 
20% methanol (200 ml) 20% methanol (200 ml) 
ad 1 l H2O ad 1 l H2O 
 
 
Blotting buffer C (pH 9.4) cathode buffer Electrophoresis buffer (pH 8.3) 
25 mM Tris (3.025 g) 2 M Tris (0.025%) 12.5 ml 
0.04 % ε-amino-n-capronacid (5.24 g) 2 M glycin (0.192%) 95.83 ml 
20% methanol (200 ml) 10% SDS (0.1%) 10 ml 
ad 1 l H2O ad 1 l H2O 

The membrane was then washed with PBS/TWEEN 0.05% (Tween 20, Fluka Chemika, 

Buchs/ Switzerland) for 45 min and blocked for 1 h with 1% BSA in PBS/TWEEN 

0.05%. The membrane was incubated over night on a shaking table. 10 h later the 

membrane was washed 6 times for 15 min with PBS/TWEEN 0.05% and then incubated 

with Streptavidin-HRP diluted at 1:200 in 1% BSA (Bovine Serum Albumine Fraction 

V, Boehringer, Mannheim) solved in PBS/TWEEN 0.05% for 1 h, then washed again 6 

times for 15 min and then incubated with a ECL Western Blotting Detection Reagent 

(RPN 2106, Amersham Biosciences, Little Chalfont/UK) for 1 min. Luminescense 

detection was performed with the Hyperfilm ECL system (Amersham Biosciences, Little 

Chalfont/UK). The gel was silver-stained and dried with the DryEasy system. 
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 Primary antibodies 
 
 anti-moIL-12p40  
 MAB 499 (capture) R&D Systems, Minneapolis/MN 
 BAF 499 (biotinilated) R&D Systems, Minneapolis/MN 
 C15.6 (capture) BD Pharmingen, Franklin Lakes/NJ 
 C17.8 (biotinilated) BD Pharmingen, Franklin Lakes/NJ 
 sc 1283 Santa Cruz, Santa Cruz/CA 
 
 anti-moIL-12p70 
 9A5 (capture) BD Pharmingen, Franklin Lakes/NJ 
 C17.8 (biotinilated) BD Pharmingen, Franklin Lakes/NJ 
 C15.6 (capture) BD Pharmingen, Franklin Lakes/NJ 
 
 anti-moCD40 
 3/23 (stimulating antibody) BD Pharmingen, Franklin Lakes/NJ 
 
 anti-moIFN-γ 
 R3-6A2 BD Pharmingen, Franklin Lakes/NJ 
 XMG1.2 (biotinilated) BD Pharmingen, Franklin Lakes/NJ 
 
 Secondary antibodies 
 
 Biotin-SP-Rabbit Anti-Goat IgG Dianova, Hamburg/Germany 
 Rabbit Anti-Rat IgG DAKO, Glostrup/Danemark 

 

 

 

The antibodies BAF499, C17.8, sc-1283 in combination with P 0449 were able to detect 

rec. mo(p40)2 499-ML (96 kDa) that - under reducing conditions - could be detected as 

a 40 kDa double band. Reducing conditions included β-ME-treatment for complete 

unfolding of the disulfide-linked proteins - necessary for correct contribution of the 

molecular weight. Alone BAF499 was sensitive enough to detect protein extracted from 

supernatants in my assays (Fig. 2-3). The other tested antibodies did not lead to 

successive protein detection under my conditions. 
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Fig. 2-3: Characterization of commercial murine IL-12 antibodies. 

The table provides an overview of the used antibody systems and the concentrations used for detection in 
Western blot. No specific antibody that specifically detects p40 (with reactivity for the dimerization 
binding site) has been described yet. p40, p70 and IL-23 Ab target the p40 protein without making 
difference between dimerized and monomer proteins. Notable is further the producer’s description of the 
antibody specificity. As the IL-12 protein is a dimer of two distinct protein subunits with genes located in 
the mouse on chromosome 11 and 6, no such “anti CHO-expressed IL-12p70” exists. Especially the 
specificity of C15.6 is poor. Cross-reactivities (up to 40%) of the other antibodies to different p40 related 
proteins are described. 

2.3.7 Silver staining 

After fixation the gel was treated with the destaining solution for 20-30 min, then rinsed 

with water for 20-60 min in order to remove the resting acid. The gel was sensitized 

with 0.02% sodium sodium thiosulfate for 1-2 min. Then the solution was discarded and 

the gel rinsed again with two charges of water. The gel was incubated with 0.1% silver 

nitrate (AgNO3) solution for 30 min. The solution was discarded and the gel was rinsed 

with two charges of water. The developing solution was added, shaken and replaced 

when it turned yellow. The solution was discarded as soon as sufficient staining was 

achieved, 1% acetic acid solution was added. 

 
Destaining solution Developing solution 
45 ml methanol 150 µl formalin (0.04%) 
5 ml acetic acid 12.5 g Na2Co2 (2%) 
45 ml H2O dest. 0.5 l H2O dest. 
Sodium thiosulfate 0.02% 5 ml acetic acid 1% 
0.1 g Na2S2O3 495 ml H2O dest. 
0.5 l H2O dest. 
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2.3.8 Easydry gel preservation system 

The Easydry system (Invitrogen Corp., Carlsbad/CA) is a conservation system for 

PAGE-gels. The gels were dried between two methanol-wrenched transparent 

membranes. The membranes adhere and stiffen after contact with methanol and 

laminate the gel; the gel itself shrinks in the drying process. The quality of the gel-

drying system frames is poor. 

2.3.9 Densitometry of gel images 

Densitometric evaluation of pictures was performed with ImageJ (ImageJ 1997-2004. 

Online in internet [date: 12-04-2005]: http://rsb.info.nih.gov/ij/). The developed films 

were scanned with 1200 bpi, converted and normalized to the background. The optical 

density was determined in grey scales. 

 

2.3.10 ELISPOT assay 

The ELISPOT assay is a single cell assay detecting secreted proteins introduced by 

Sedgwick (Sedgwick and Holt, 1983) and Czerkinsky (Czerkinsky et al., 1983) as a 

“solid-phase enzyme-linked immunosorbent assay” for the enumeration of cells 

secreting specific antibodies and later extended for the detection of cytokine-secreting 

cells (Fig. 2-4). The assay detects cytokine secretion by suspended single cells adhering 

to an antibody-coated PVDF-membrane. Released cytokines are captured by cytokine-

specific antibodies capturing the cytokine directly beside the cell. This allows - after 

detection with insoluble colors - to contribute single “spot forming cells” (SFC). 

ELISPOT assay has become an important quantitative assay for cytokine biology. 

Cytokines - that are paracrinely secreted - reach high concentrations only in the direct 

surrounding of an activated cell and have effects only on directly neighboured cells. The 

measurement of cytokine plasma levels - as it is done in ELISA - does not necessarily 

correlate with the actual activation. Furthermore, the activation of single cells is the 

starting point of a signal amplification mechanism: single cells and not the entity of all 

immunological cells are responsible for the initiation of immune response. 
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Fig. 2-4: The principle of the ELISPOT assay, modified from Segdwick et al.. 

After incubation of a 96-well PVDF-Microtiter plate coated with the cytokine-specific coating antibody 
for at least 6 hours, the plates are blocked with fraction V BSA (Sigma-Aldrich Chemical Co., 
St.Louis/MO) and washed with sterile PBS. The stimulated cells are suspended and pipetted into the 
wells. The cells drop to the bottom of the plate and produce cytokines that are bound to the primary 
antibody directly around the cell (A). B and C: After the incubation period (between 20-50 h), the 
membrane is washed and a cytokine-specific detection antibody either directly conjugated with a color-
reactive enzyme - or as in Fig. 2-4 D – detected with a secondary antibody coupled to a color-reactive 
enzyme is added. Insoluble colors precipitate and form spots with typical diameters of 75-400 µm at the 
bottom of the 96-well microtiter plates (well Ø approx. 5mm), representing single cytokine producing 
cells. E. Spots are macroscoply enumerated with e.g. AELVIS ELISPOT counter. 

The advantage of this method compared to the standard ELISA is a higher specifity as 

only the spots of the cells producing the examined cytokine are colored while sensitivity 

is impaired compared to ELISA assay (Czerkinsky et al., 1988). Additional information 

is provided by the quotient of spots per total amount of assayed cells called the 

responder frequency. 

Video-based analysis of ELISPOT plates - such as performed with AELVIS ELISPOT-

counter (ELISPOT analysis, V3.3, A.EL.VIS GmbH, Hannover) - allows further analysis 

of the detected SFC such as the distribution of the spot size (Fig. 2-5B). Surpassing the 

possibilities of visual counting, computer-based evaluation allows based on computer-

based graphic recognition a) the definition of a common region of interest preventing a 

detection of unspecific cell agglomeration e.g. at the well margins; b) the definition of 

the suspected spot size allows to exclude unspecific small or too big spots, e.g. resulting 

from an agglomeration of various cells; c) the definition of the circularity indicating e.g. 

cell migration (differentiation of different cell subtypes) or aggregation; d) the spot 

intensity indicating e.g. unspecific background effects. Together this makes ELISPOT 

are more objective cell biology tool. 
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Fig. 2-5: Definition of spot parameters. 

2-5 A shows the spots as visualized by the AELVIS ELISPOT counter system. Contured spots represent 
the spots that are included in the statistical analysis. Spots smaller than 6 x 500 µm2 were excluded here 
as “unspecific”– leading to a gap in the corresponding spot distribution curve (2-5 B). 

 

2.3.11 IFN-γ ELISPOT 

The activation of the murine Th1 cell line IF12 was tested in the ELISPOT assay by 

measuring the cytokine IFN-γ with an established system of murine αIFN-γ Ab 

(Taguchi et al., 1990). 

Ionized PVDF membrane ELISPOT plates (unifilter-350, Whatman, Kent/UK) were 

incubated over night with the detection antibody R3-6A2 at a concentration of 4 µg/ml 

in sterile Dulbecco’s PBS (1X) (PAA Laboratories GmbH, Pasching/Austria). After 

overnight incubation with saturated humidity at 4 °C, the plates were washed 4 times 

with sterile PBS, then blocked in 1% purified sterile-filtered BSA fraction V (Sigma-

Aldrich Chemical Co., St.Louis/MO) for 2 h, then washed again 4 times with sterile 

PBS. Cells and additives were solved in a volume of 200 µl per well, reagents were 

diluted as described. The plates were incubated for 20 hours in a cell incubator. The 

next day, plates were washed 4 times with PBS, then 4 times with PBS/Tween 0.005%. 

The biotinilated secondary antibody XMG1.2 was diluted at a concentration of 2 µg/ml 

in non-sterile PBS/ 1% BSA (Bovine Serum Albumine, Boehringer, Mannheim) and 

incubated over night. 

10 h later, the plates were washed again 4 times and incubated with Streptavidin-AP at 

1:2000 in PBS/Tween 0.05%/ 1% BSA for 2 h. After washing them 4 times with 

PBS/TWEEN 0.05%/ 1% BSA, the plates were incubated for 10 min with 50 µl/well of 
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the precipitating hydrophobic color BCIP/NBT. Plates were photographed with an 

ELISPOT plate reader (ELISPOT reader Unit V, A.EL.VIS GmbH, Hannover) and 

evaluated (Fig. 2-5). 

 

2.3.12 IL-12p40 ELISPOT 

ELISPOT assays are already described for human IL-12p40 and prepared kits for 

murine IL-12p40 ELISPOT assays have been developed but insufficiently 

characterized. I established an IL-12p40 ELISPOT with the antibody BAF499 

previously characterized for its p40 specificity in Western blot of iLC supernatants. 

ELISPOT plates (ELIIP10SSP, Millipore Corp., Bedford/MA) were incubated over 

night with the detection antibody MAB499 at a concentration of 6 µg/ml in sterile PBS. 

After overnight incubation with saturated humidity at 4 °C, plates were washed 4 times 

with sterile PBS, then blocked in 1% purified BSA fraction V for 2 hours, then washed 

again 4 times with sterile PBS. 

Cells and additives were dissolved in a volume of 200 µl per well, reagents were diluted 

as described. The plates were incubated for 24 hours in a cell incubator. The next day, 

plates were washed eight times (four times with PBS, four times with PBS/Tween 

0.005%). The biotinilated secondary antibody BAF499 at a concentration of 2 µg/ml 

was diluted in PBS/ 1% fraction V BSA and incubated over night. 10 h later, the plates 

were washed again 4 times and incubated with Streptavidin-AP (Streptavidin-AP, R&D 

Systems, Minneapolis/MN) at 1:2000 in 1% BSA/PBS Tween 0.05% for 1 h. After 

washing them four times with BSA/PBST, the plates were incubated for 5 min with 50 

µl/well BCIP/NBT (Moss Inc., Pasadena/ML). 

Alternatively to BCIP/NBT, AEC (Aminopure AEC 34004,Pierce, Rockford/Il) was 

used in connection with Streptavidin-HRP (R&D Systems, Minneapolis/MN). In order to 

obtain the AEC solution, AEC was diluted 1:100 in Dimethylformamide, later diluted at 

1:30 in 0.1 M acetate buffer and filtered with 45µm filters. H2O2 was added 1:2000. 200 

µl of AEC solution was applied per well for 15 min. The AP- BCIP/NBT system was 

superior in the IL-12p40 ELISPOT under the described conditions. 
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2.4 Molecular Biology 
 

2.4.1 RNA isolation and purification 

After centrifugation for 10 min at 1500 rpm (Sigma 3K30 Heraeus, Hanau) and 

isolation of the supernatant, the pellet of 2.5 x 106 cells was solved and homogenized in 

1 ml of TRIZOL reagent (Gibco- Invitrogen, Grand Island/NY) by repetitive pipetting. 

TRIZOL reagent (Chomczynski and Sacchi, 1987) - a preparation that allows the 

stabilisation of the RNA during the lysis of the cells - was used according to the 

supplier’s protocol: 

Homogenized samples were incubated for 5 min at room temperature. Then 0.2 ml of 

chloroform were added followed by capping of sample tubes, shaking for 15 s, 

incubation at room temperature for 3 min, centrifugation at 12000 g for 10 min at 2 to 

8°C. The mixture separated into a lower red, phenol-chloroform phase, an inter-phase 

and a colorless upper aqueous phase containing RNA. The aqueous phase was 

transferred to a fresh tube and the RNA was precipitated from the aqueous phase by 

mixing with 0.5 ml isopropyl alcohol. The samples were then incubated for 10 min at 

room temperature and centrifuged at 12000 g for 10 min at 2 to 8 °C. After the 

supernatant was removed, the RNA pellet was washed once with 75% ethanol. 

Therefore 1 ml of 75% ethanol was added, the sample was vortexed and centrifuged at 

7500 g for 10 min at 8 °C. After discarding the supernatant the RNA was air-dried for 2 

to 5 min and rediluted in an approriate volume of RNAse- free water. 

2.4.2 Determination of RNA concentration 

As nucleid acids absorb UV light of 250 to 270 nm wavelength, with a maximum at 

260nm, DNA and RNA concentrations can be photometrically determined. The 

absorbance of 1 unit at 260 nm corresponds to approximately 40 µg/ml RNA. The ratio 

between the readings at 260 nm and 280 nm corresponds with the purity of the nucleic 

acid. Pure preparations of DNA and RNA have ratios of 1.8 to 1.95, smaller values 

indicate pollution with phenol or proteins. For determination of RNA concentration I 

analyzed 1 µl of RNA diluted in sterile distilled water at dilutions of 1:100 and 1:1000 

against sterile distilled water in a preset spectrophotometer (Gene Quant Pro, 

Amersham Pharmacia, Uppsala/Sweden). 
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2.4.3  Semi-quantitative RT-PCR 

Reverse-transcribed polymerase chain reaction (RT-PCR) is an in vitro method that 

allows the amplification of RNA in two steps. The ThermoScript RT-PCR kit 

(Invitrogen Life Technologies, Karlsruhe) uses a RNAse H-deficient mutant of avian 

myeloblastosis retroviral reverse transcriptase, that transcribes the RNA to 

complementary DNA – that by its turn can be amplified by the DNA-specific Platinum 

Taq DNA polymerase (Invitrogen Corp., Carlsbad/CA) (Saiki et al., 1988). I used the 

RT-PCR method in order to detect mRNA of the IL-12 related subunits. The isolated 

RNA was therefore incubated with the primers for 5 min at 65 °C leading to the 

denaturation of 2 µg RNA solved in water: 

 

RNA primer mix: 2µg RNA 
 1 µl Oligo(dT) 
 1 µl random hexameres 
 ad 10 µl H2O 
 

The RNA samples were then stored on ice for 4 minutes. In the next step these samples 

were incubated with 10 µl of RT-master-mix as described below: 

 
RT-master-mix 4 µl 5x cDNA synthase buffer 
 1 µl of 0.1 M DTT 
 1 µl H2O 
 2 µl 10 mM dNTP-Mix 
 1 µl of RNAse Out 
 1 µl of RT 

 

This mixture was then incubated for 10 min at at 25 °C, for 45 min at 50°C, for 5 min at 

85 °C. Subsequently 1 µl of RNAse H was added for 20 min at 37°C. 

Next, the PCR master mix was incubated for 2 min at 94 °C. 
 
PCR master mix 5 µl of 10xPCR buffer 
(45.5 µl per sample) 1.5 µl of 50 mM MgCl2 
 1 µl of 10 mM dNTP Mix 
 38 µl H2O 
 2 µl cDNA (from RT) 
 0.5 µl Platinum Taq polymerase 
 
1 µl of 10 µM of forward and 1 µl of 10 µM reverse primers (Tab. 2-1) specific for the 

analyzed protein were added and then cycled 34-40 times (Thermocycler, T personal, 
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Biometra/Whatman, Kent/UK): 30 s at 94 °C, 30 s at a temperature specific for the 

oligonucleotide 1 minute at 72 °C. 

The primers were determined by M. Schwarz and H. H. Radeke using the program 

HUSAR (http://genius.embnet.dkfz-heidelberg.de/menu/w2h/w2hdkfz/) according to 

the published sequences. The primers were synthesized by Invitrogen (Karlsruhe). 

 

Oligodesoxynucleotides 

moIL-12p35: 5’ATGACCCTGTGCCTTGGTAG3’ 
 5’CCCTGTTGATGGTCACGAC3’ 
40 cycles, 277 bp cycle temperature: 94 °C 30 s, 57 °C 30 s,72 °C 60 s. 
  
moIL-12p40 5’TCTTTGTTCGAATCCAGCG3’ 
 5’GAAAACTGGAAAAAGCCAACC3’ 
36 cycles, 316 bp cycle temp.: 94 °C 30 s, 56 °C 30 s, 72 °C 60 s. 
  
moIL-27p28 5’GGCATCACCTCTCTGACTCTG3’ 
 5’AACATTTGAATCCTGCAGCC3’ 
40 cycles, 198 bp cycle temp.: 94 °C 30 s, 60 °C 30 s, 72 °C 60 s. 
  
moIL-23p19 5’CAGCAGCTCTCTCGGAAT3’ 
 5’ACAACCATCTTCACACTGGATACG3’ 
34 cycles, 135 bp cycle temp.: 94 °C 30 s, 57 °C 30 s, 72 °C 60 s. 
  
moDNA polymerase-γ 5’GCACTTCCGCCTCCTGGCCCAGAAGCAGA3’ 

5’GCTCGGTCAAAGGAAACATTGTGCCCCACCACTAA3’ 
34 cycles, 419 bp cycle temp.: 94 °C 30 s, 56 °C 30 s, 72 °C 60 s. 
 
moGAPDH 5’ACCACAGTCCATGCCATCAC3’ 

5’TCCACCACCCTGTTGCTGTA3’ 
30 cycles, 452 bp cycle temp.: 94 °C 30 s, 60 °C 30 s, 72 °C 60s. 
 
moβ-Tubulin 
 5’TTCCCTGGCCAGCTSAANGCNGACCTNCGCAAG3’
 5’CATGCCCTCGCCNGTGTACCAGTGNANGAAGGC3’ 
36 cycles, 484 bp cycle temp.: 94 °C 30 s, 55 °C 30 s, 72 °C 60 s. 
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Fig. 2-7: Optimization of PCR amplification conditions. 

RT-PCR was performed with 2 µg of total RNA. The amount of input cDNA for PCR was constant. PCR 
was performed exemplarily with primers for p35 (2-7A) and p40 (2-7B) and products were detected with 
a fluorescence camera after Ethidium bromide treatment. Optimal cycling conditions for cytokines and 
housekeeping genes were performed empirically, as illustrated here for p40 and p35: In order to perform 
semiquantitative RT-PCR analysis, submaximal band intensity had to be achieved. Three incubation 
parameters (temperature of second cycle; MgCl2 concentration and cycle number) can be varied in order 
to configurate band intensities that can be qualitatively distinguished. The temperature during the PCR 
cycles varies allowing dissociation and aggregation of the used DNA-polymerase to the transcribed 
molecule. Optimal temperature for the DNA polymerase is molecule-specific and was determined for 
each subunit. A cycle consists of a heating period (94 °C for 30 s) allowing the dissociation, a 
transcription period (varying between 54 and 60 °C, according to the molecule; for 30 s) and a third 
period (72 °C for 60 s). In Fig. 2-7A I tested the influence of the temperature during the transcription 
period on the cDNA intensity of the p35 band. Clearly distinguishable bands (277 bp) were reached when 
transcription was performed at 57 °C. The number of RT-PCR cycles was varied between 32 and 40 
cycles (Fig. 2-7B). The first lane represents the 50 kDa DNA ladder, in the following 4 lanes, cDNA of 
unstimulated iLC was cycled with the specific primer 32, 34, 36 and 40 times, with no detectable bands. 
The next 4 lanes of LPS-stimulated iLC represent the products of 32, 34, 36 and 40 cycles. I could detect 
bands of the suspected 316 bp of the p40 cDNA. Subsequently to these results, I chose 36 cycles for the 
following p40 RT-PCR. The concentration of MgCl2 (1mM) in the PCR master mix was not altered. 

2.4.4  Polyacrylamide gel electrophoresis 

 
12% PAA gel 50x TAE 
0.2 ml 50xTAE 242 g TRIS 
4 ml % polyacrylamide 57.5 ml Ice acid 
5.8 ml H20 100 ml 0.5 M EDTA (pH 8.0) 
100 µl 10% APS ad 1 l H2O dest. 
4 µl TEMED 
 
10 µl of cDNA of RT-PCR, diluted in 2 µl sample buffer (6X) and 4 µl of 50 bp DNA 

ladder was pipettted per lane. 

The RNA was separated at 140 V for 1 h in a horizontal gel electrophoresis system 

(Subcell GT, Bio-Rad, Hercules/CA), then detached from electrophoresis apparatus and 

incubated with a buffered Ethidium bromide solution for 10 minutes: 

 20 ml 1xTAE 
 2 µl Ethidium bromide 
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The fluorescence detection of the cytokine-specific autoradiographic bands was 

performed with a fluorescence camera (GelDoc, GelDoc-It, Ltf, Wasserburg). 

Densitometry was performed with ImageJ. Data were normalized to the levels of DNA 

polymerase-γ. This mitochondrial protein showed constant secretion in stimulated 

dendritic cells and was recommended as housekeeping gene (Park et al., 2001; Schultz 

et al., 1998). When CpG was used as a stimulant, the detected mRNA of DNA 

polymerase-γ was impaired so that I was forced to compare the effectiveness of DNA 

polymerase-γ with GAPDH and β-Tubulin that were constantly transcribed. 

 

2.5 Statistics 
 
The confidence intervall was defined at 0.95; “*” representing p<0.05; “**” 

representing p<0.01 and “***” representing p<0.001. Assays in the following were 

performed at least three times (Fig. 3-2, Fig. 3-5 to 3-9, Fig. 3-11 to 3-13, Fig. 3-17) or 

considered as representative out of a series of similar experiments. Assays that 

concluded in the Fig. 3-1A/B were performed 13 times, 4 assays failed (no spots or 

positive controls); further 3 assays showed spots, but no cell number dependence 

(possible contamination); 7 assays confirmed the demonstrated graph. Figures 3-3 and 

3-10 (n=1) are considered representative based on earlier findings of the “Foundation 

Immunepharmacology”. Assays for figures 3-14, 3-15 and 3-18 were performed two 

times, figures 3-16 and 3-20 represent experiments that were performed 3 respectively 2 

times while two further assays were not valid. The values were given as mean ± one 

standard deviation (SD). In assays that were repeated less than three times, the standard 

error of the mean (SEM) was calculated. Unpaired Student t test, paired t test and 

Whitney-Mann test were performed using GraphPad Prism version 4.00 for windows, 

GraphPad SoftwareSan Diego/CA, www.graphpad.com. 
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3 Results 

3.1 Interaction of murine epidermal dendritic cells and Th1 cells 
 
The goal of this project was to elucidate and characterize the interaction of two 

collaborating cell types positioned at the propagation of chronic inflammation: dendritic 

cells and Th1 cells. 

In this project I examined the murine epidermal MHC II I-Ad immature Langerhans 

dendritic cell line XS52 (iLC), the syngeneic murine MHC-compatible OVA-specific 

Th1 cell clone IF12 (Th1) and the murine allogeneic MHC II I-Ab immature myeloid 

dendritic cell line JawsII (iMDC). 

The cell types were investigated individually and in their interaction. Therefore 

prominent cytokines of each cell type - IFN-γ secreted by Th1 cells and IL-12 and IL-

12-related cytokines secreted by dendritic cells – were measured in the ELISPOT assay. 

The ELISPOT assay data were complemented by RT-PCR and Western blot data. 

3.1.1 Con A dose-dependent increase of the amount of IFN-γ secreting Th1 

The glycopeptide-binding lectin extract of Canavalia ensiformis concanavalin A 

(ConA) circumvents physiological activation mechanisms by capping relevant outer-

membrane receptors leading to mitogenic T lymphocyte activation resulting in the 

release of IFN-γ in Th1 cells (Pilarski, Bretscher, and Baum, 1977; Reeke, Jr. et al., 

1974). 

Examining the IFN-γ release of Th1 cells, I routinely controlled nonspecific background 

effects using unstimulated cells as a control. As shown in Fig. 3-1A I tested various 

concentrations of Con A in order to determine the optimal stimulation conditions of the 

Th1 cells. Unstimulated Th1 do not produce IFN-γ. High numbers of spot forming cells 

(SFC) were detected at very different concentrations of Con A. While the number of 

IFN-γ  secreting Th1 cells increased when the Con A concentration was doubled from 1 

µg/ml to 2 µg/ml, no further increase was observed when 4 µg/ml of Con A was 

applied. The spot number even diminished when 5 µg/ml of Con A were added. 

The concentration of Con A I used in the following assays was by mistake higher than 

the optimal 2 µg/ml. Fig. 3-1 B shows the results of six assays performed with a Con A 

concentration of 5 µg/ml. 
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Fig. 3-1: Con A dose-dependent effects on the number of IFN-γ-secreting Th1 cells. 

The number of IFN-γ-spots in the Th1-ELISPOT assay (1000 Th1/well; 96 well plates) was measured 
either in medium (control), in unstimulated Th1 cells (Th1) or Th1 cells stimulated with Con A in 
concentrations of A 1 µg/ml, 2 µg/ml, 4 µg/ml and 5 µg/ml or B 5 µg/ml for 24 hours. A: Out of a series 
of six independent experiments one is shown, done in triplicates and expressed as mean ± SEM. Most 
favourable concentrations of Con A were reached between 2 and 4 µg/ml. This and the following assays 
demonstrate the excitability of the Th1 cell line IF12. B This graph displays the number of SFC after 
stimulation with 5 µg/ml in mean ± SD. The IFN-γ release of Con A-stimulated Th1 cells is significantly 
different from medium control (control) and control of unstimulated Th1 with p<0.0001 (unpaired 
Student t test) for all tested concentrations. 

 

An average of 113.8 ± 22.4 (n=6) spots per 1000 T lymphocytes (under stimulation with 

5 µg/ml ConA) were detected reflecting the stimulation of 11% of incubated T 

lymphocytes. These data could be confirmed in a series of more than 10 assays 

performed in the laboratories of the “Foundation Immune Pharmacology”. In 

comparison to the original characterization of this Th1 clone in 1996 with a IFN-γ 

responder frequency of 42 % this indicates a decrease in the amount of specifically 

responding Th1. 

 

3.1.2 Influence of PGE2 and PGD2 on Th1 activation 

3.1.2.1 Influence of PGE2 and PGD2 on Con A-induced Th1 activation 
The following assays were designed to examine the effects of the interfering agents 

PGD2 and PGE2 on the number of activated Th1 cells – effects that were previously 

observed in the laboratories of the “Foundation Immune Pharmacology” in models of 

autoimmune kidney disease. Especially PGD2 was surprisingly enriched in supernatants 

of stimulated mesangial cells. 
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As a substitute of the formerly applied mesangial cell supernatants I used purified 

synthetic PGE2 and PGD2. Con A and prostaglandins were added simultaneously to the 

Th1 cells and incubated for 24 h considering that pre-incubation with either substance 

might lead to different results. The effects of prostaglandins E2 and D2 on Con A-

stimulated Th1 were measured in ELISPOT assay (Fig.3-2). 

Although nonspecific activation of Th1 was observed (n=1), the number of IFN-γ spots 

was increased under stimulation with Con A to the same extend as in Fig. 3-1. When 

PGE2 was added to Con A-stimulated Th1 in tenfold serial dilutions (10-9 to 10-5 M) the 

number of SFC was reduced (p=0.07; unpaired Student t test comparing the number of 

spots of Th1 stimulated with Con A and Th1 stimulated with Con A and 10-6 M PGE2). 

These results – although with moderate statistical quality (considering that they were 

the first results of my work) - agree with a series of more than 10 former assays of the 

“Foundation Immune Pharmacology” where a significant reduction of SFC was 

observed at concentrations of 10-7 M to 10-5 M PGE2. 

In the same assays, Th1 cells were stimulated with Con A in the presence of PGD2 (10-9 

to 10-5 M; tenfold serial dilutions) but no significant effects were observed compared to 

control. 

Subsequently, I analysed the effects of PGE2 and PGD2 on Th1 stimulated with OVA-

loaded iLC. OVA internalised by iLC, processed in endosomal compartments and 

complexed to MHC II is supposed to interact with the Th1 TCR-CD3-complex. 

Complemented by co-stimulating signals it represents the appropriate stimulation for 

cytokine release of the Th1 cell, leading to equal numbers of activated Th1 as with Con 

A stimulation. 

I could not detect significant influence of prostaglandins on Th1 stimulated with OVA-

treated iLC. 

By contrast, former assays of the “Foundation Immune Pharmacology” showed an 

inhibiting effect of PGE2 on both Th1 stimulated with Con A and Th1 stimulated with 

OVA-treated iLC (Fig. 3-3; IL-2 ELISPOT). The significant reduction of SFC confirms 

previous assumptions of PGE2-induced inhibition of Th1 cell response based on 

observations performed with ELISA cytokine assays. PGD2 showed no effects either. 
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Fig. 3-2: Effects of PGD2 and PGE2 on the number of IFN-γ+  Th1 under Con A–stimulation. 

ELISPOT experiment of Th1 cells (1000 /well; 96-well ELISPOT plate) incubated with Con A (5 µg/ml) 
in the presence of PGE2 or PGD2 added in tenfold serial dilutions (10-9 to 10–5 M). Incubation lasted for 
24 h. Plates were prepared as described in „materials“. Results represent mean ± SD of three independent 
experiments done in triplicates. Dose-dependent effects cumulate at a concentration of 10-5 M PGE2 
where the amount of Con A-induced activated Th1 cells is reduced from 121.6 ± 9.4 spots/well (absence 
of PGE2) to 83.3±70.1 spots (n=3; p=0.07 as determined with unpaired Student t test). PGD2 effects were 
not significant. 

 

Fig. 3-3: Effects of PGE2 and PGD2 on the number of IL-2 secreting Th1 under stimulation with OVA-
incubated iLC. 

Out of a series of three experiments this is one representative assay analysing the effects of the 
prostaglandins PGE2, PGD2, PGJ2 and 15d-PGJ2 on the number of IL-2 secreting Th1 stimulated with 
OVA-loaded iLC. PGE2 has pronounced depressing effects on Th1, while PGD2 and in high dosage, also 
PGJ2 and 15d-PGJ2 are ineffective. This assay was performed by the “Foundation Immune 
Pharmacology”. 
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3.2 Prostaglandin effects on the mRNA expression of IL-12-related 
cytokines 

IFN-γ, as a key cytokine of the Th1 cell response is promoted by IL-12 among others 

and is increased upon Th1 IFN-γ-secretion reinforcing a directed inflammatory 

differentiation towards a Th1 response. 

In the following assays I systematically examined the modulating influence of the 

prostaglandins E2 and D2 and stimulating factor αCD40 on the secretion of IL-12-

related cytokines by LPS-stimulated and alternatively CpG-stimulated iLC. 

Escherichia coli lipopolysaccharide (LPS) - representative for other Gram-negative 

bacterial endotoxins and differing only in structural details - was used as TLR4-

stimulant. The CpG phosphothioate oligodeoxynucleotide 2216 (CpG) (Hartmann et al., 

2003), specific for human TLR9 but also known as potent cytokine inductor, especially 

for IFN-α, in the mouse model (Iho, 2003; Kuramoto et al., 1992) was used as TLR9 

stimulant. 

 

3.2.1 mRNA expression of IL-12-related cytokine subunits in iLC and 

iMDC 

The subunits of the IL-12 related molecules were measured semi-quantitatively with 

reverse-transcribed polymerase chain reaction (RT-PCR) and Western blot assay 

according to a standardized protocol investigating eight stimulation conditions. The 

supernatants of the stimulated cells, containing cell culture medium and cellular 

cytokines were used for protein analysis in Western blot, cellular mRNA was isolated 

from the pelleted cells for RT-PCR amplification with the described primers against IL-

12-related cytokine subunits. Because of that, cellular protein could not be additionally 

isolated. As control, unstimulated cells were analysed for the same parameters in all 

assays. Results of the RT-PCR were normalized to the level of DNA polymerase-γ and 

alternatively GAPDH in assays involving CpG. I repeated the assays under same 

conditions three and respectively four times - as shown for the p19 subunit detected in 

LPS-stimulated iLC in Fig. 3-4 - and summed up the densitometrically measured band 

intensities as shown in Fig. 3-5 to Fig. 3-9. 
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Fig. 3-4: Effects of PGE2 and PGD2 on LPS-induced expression of p19 in iLC. 

The figure shows 4 gel pictures and 4 densitometrical evaluations (relative density) of a 135 bp cDNA 
bands - contributed to p19 - in reference to the density of DNA polymerase-γ as standard. 2.5 x 106 iLC 
were incubated for 20 h in 10 ml of the described medium in the absence of growth factors and stimulated 
as followed: lane 1: unstimulated iLC, lane 2: iLC + 1 µg/ml LPS lane 3: iLC + 10-6 M PGE2, lane 4: 
iLC + 10-6 M PGE2+ 1 µg/ml LPS lane 5: iLC +10-5 M PGD2, lane 6: iLC +10-5 M PGD2 +1 µg/ml LPS, 
lane 7: iLC + 5 µg/ml αCD40 Ab, lane 8: iLC +5 µg/ml αCD40 Ab + 1 µg/ml LPS. M: 50 kDa DNA 
ladder. The cellular RNA was isolated as described in “methods” and separated on a 12% PAA gel. After 
densitometric evaluation, the results of three, respectively four experiments were summed up (Fig. 3-5A). 
In the following paragraphs RT-PCR results are described and related to the Western 

blots and ELISPOT assays performed in parallel. 
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3.2.1.1 IL-23p19 expression of iLC and iMDC 
 

 

Fig. 3-5: Influence of PGE2 and PGD2 on p19 transcription of TLR-stimulated iLC and iMDC. 

The RT-PCR products of the p19 subunit of A iLC stimulated with LPS, B iLC stimulated with CpG, C 
iMDC stimulated with LPS were genererated as described in “methods” and separated on a 12% PAA gel. 
2.5 x 106 iLC or iMDC were incubated for 20 h in 10 ml of the described medium in the absence of 
growth factors with the following stimulants: lane 1: unstimulated DC, lane 2: DC + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 3: DC + 10-6 M PGE2, lane 4: DC + 10-6 M PGE2 + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 5: DC +10-5 M PGD2, lane 6: DC +10-5 M PGD2 +1 µg/ml LPS 
respectively 2,5 µM CpG, lane 7: DC + 5 µg/ml αCD40 Ab, lane 8: DC +5 µg/ml αCD40 Ab + 1 µg/ml 
LPS respectively 2,5 µM CpG. M: 50 kDa DNA ladder. The gel pictures represent one representative out 
of 3 respectively 4 assays. Data were normalized to DNA polymerase-γ  (A and C) or GAPDH (B) 
(standard figures: Fig. 3-9). The results represent mean ± SD of 3 respectively 4 assays under the same 
conditions. While a constant high transcription is observed in A, p19 cDNA levels are impaired under 
stimulation with PGD2 in B (p=0.005 as determined by unpaired Student t test comparing iLC stimulated 
with CpG in the presence or absence of 10-5 M PGD2). p19 cDNA levels in iMDC (C) are increased in all 
lanes where LPS is applied to the cells (p=0.0278 comparing unstimulated in the presence or absence of 1 
µg/ml LPS as determined by unpaired Student t test). 

IL-23p19 mRNA - but not the mRNA of p28, p35 and p40 - was constitutively 

expressed in both iLC and iMDC as shown in lane 1 of figures 3-5. While a constantly 

high transcription of p19 mRNA without modulation under addition of LPS, 
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prostaglandins E2 or D2 or αCD40 Ab was observed in iLC stimulated with LPS, the 

transcription of the p19 subunit was inconstant under stimulation with CpG. A 

significant increase can be distinguished in iLC stimulated with CpG in combination 

with PGD2 compared to stimulation with CpG alone (p=0.005; unpaired Student t test, 

n=3). These results should be interpreted with care as I observed an irregular 

transcription of DNA polymerase-γ while GAPDH levels were constant. Contrary to the 

iLC I demonstrated in iMDC that basal transcription was significantly induced under 

stimulation with LPS. Bands of cells stimulated with LPS have an increased intensity 

[p=0.0278 (comparison of unstimulated cells to cells stimulated with LPS alone)]. No 

additional effect of prostaglandins was detected. 

Remarkably, I constantly detected a band of 350 bp in all PCRs in addition to the p19 

band of 135 bp. 

Western blot assays performed later in the laboratory of the “Foundation Immune 

Pharmacology” with the p19-antibodies detected the p19 protein in supernatants and 

cell lysates of unstimulated iLC. 

3.2.1.2 IL-12p35 expression of iLC and iMDC 
 
Fig. 3-6 demonstrates that IL-12p35 was transcribed at a very low level in iLC, without 

influence of stimulating agents. No differences between LPS and CpG are observed 

here. In Western blots later performed in the laboratory of the “Foundation Immune 

Pharmacology” the p35 subunit could not be detected in either iLC supernatants or cell 

lysates. Contrary, the p35 subunit was detected in iMDC under stimulation with LPS 

while no basal transcription was observed and other additives were ineffective. This test 

failed once (n=3); it should be cautiously interpreted. 
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Fig. 3-6: Influence of PGE2, PGD2 and αCD40 Ab on p35 transcription of iLC and iMDC. 

The RT-PCR products of the p35 subunit of A iLC stimulated with LPS, B iLC stimulated with CpG, C 
iMDC stimulated with LPS were genererated as described in “methods” and separated on a 12% PAA gel. 
2.5 x 106 iLC or iMDC were incubated for 20 h in 10 ml of the described medium in the absence of 
growth factors with the following stimulants: lane 1: unstimulated DC, lane 2: DC + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 3: DC + 10-6 M PGE2, lane 4: DC + 10-6 M PGE2 + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 5: DC +10-5 M PGD2, lane 6: DC +10-5 M  PGD2 +1 µg/ml LPS 
respectively 2,5 µM CpG, lane 7: DC + 5 µg/ml αCD40 Ab, lane 8: DC +5 µg/ml αCD40 Ab + 1 µg/ml 
LPS respectively 2,5 µM CpG. M: 50 kDa DNA ladder. The gel pictures represent one representative out 
of 3 respectively 2 assays. Data were normalized to DNA polymerase-γ  (A and C) or GAPDH (B) 
(standard figures: 3-9). The results represent mean ± SD of 3 respectively 2 assays (± SEM) under the 
same conditions. While a constant low p35 transcription is observed in iLC under stimulation with LPS or 
CpG (A and B) p35 cDNA levels in iMDC (C) are increased in all lanes where LPS is applied to the cells. 
This assay was performed thrice, in one assay, p35 could not be detected. 
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3.2.1.3 IL-12- and IL-23p40 expression of iLC and iMDC 

 
Fig. 3-7: Influence of PGE2 and PGD2 on p40 transcription of TLR-stimulated iLC and iMDC. 

The RT-PCR products of the p40 subunit of A iLC stimulated with LPS, B iLC stimulated with CpG, C 
iMDC stimulated with LPS were genererated as described in “methods” and separated on a 12% PAA gel. 
2.5 x 106 iLC or iMDC were incubated for 20 h in 10 ml of the described medium in the absence of 
growth factors with the following stimulants: lane 1: unstimulated DC, lane 2: DC + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 3: DC + 10-6 M PGE2, lane 4: DC + 10-6 M PGE2 + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 5: DC +10-5 M PGD2, lane 6: DC +10-5 M PGD2 +1 µg/ml LPS 
respectively 2,5 µM CpG, lane 7: DC + 5 µg/ml αCD40 Ab, lane 8: DC +5 µg/ml αCD40 Ab + 1 µg/ml 
LPS respectively 2,5 µM CpG. M: 50 kDa DNA ladder. The gel pictures represent one representative out 
of 3 respectively 4 assays. Data were normalized to DNA polymerase-γ  (A and C)  or GAPDH (B) 
(standard figures: 3-9). The results represent mean ± SD of 3 respectively 4 assays under the same 
conditions. Increase of cDNA levels in all lanes were LPS or CpG was added (p<0.0001; unpaired 
Student t test) was observed for A-C. 

 
While no detectable levels of p40 is transcribed in the absence of LPS, the appearance 

of the p40 bands under stimulation with LPS respectively CpG is specific (p<0.0001; 

n=3; unpaired Student t test) (Fig.3-7). Further distinction between the p40 band density 

of cell preparations containing LPS is not possible due to the semi-quantitative assay 

design of the RT-PCR. Western blot assays of the p40 subunit (Fig. 3-10) indicate a 
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regulation of the p40 subunit by PGE2 and PGD2.Massive induction of p40 transcription 

in the presence of LPS was observed to the same extend in iMDC. Additional to iLC, a 

basal transcription of the p40 subunit could be detected here. 

 

3.2.1.4 IL-27p28 expression in iLC and iMDC 
IL-27 is a sequence homologue to IL-12 consisting of p28 and EBI3 with p28 as a 

homologue to p35. In my assays I isolatedly respected the p28 subunit. 

I could detect a low basal transcription in both cell lines (Fig. 3-8). The amount of 

mRNA differed from the control when additional to the TLR agonist αCD40 Ab was 

added. Stimulation of αCD40 as necessary condition for effective IL-27p28 secretion 

has been suggested by Planz et al.. Additional effects of PGE2 and PGD2 could not be 

detected. 
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Fig. 3-8: Influence of PGE2 and PGD2 on p28 transcription of TLR-stimulated iLC and iMDC. 

The RT-PCR products of the p28 subunit of A iLC stimulated with LPS, B iLC stimulated with CpG, C 
iMDC stimulated with LPS were genererated as described in “methods” and separated on a 12% PAA gel. 
2.5 x 106 iLC or iMDC were incubated for 20 h in 10 ml of the described medium in the absence of 
growth factors with the following stimulants: lane 1: unstimulated DC, lane 2: DC + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 3: DC + 10-6 M PGE2, lane 4: DC + 10-6 M PGE2 + 1 µg/ml LPS 
respectively 2,5 µM CpG, lane 5: DC +10-5 M PGD2, lane 6: DC +10-5 M PGD2 +1 µg/ml LPS 
respectively 2,5 µM CpG, lane 7: DC + 5 µg/ml αCD40 Ab, lane 8: DC +5 µg/ml αCD40 Ab + 1 µg/ml 
LPS respectively 2,5 µM CpG. M: 50 kDa DNA ladder. The gel pictures represent one representative out 
of 3 assays. Data were normalized to DNA polymerase-γ  (A and C) or GAPDH (B) (standard figures: 3-
9). The results represent mean ± SD of 3 under the same conditions. p28 cDNA levels are low in A-C. 
Alone the addition of stimulating αCD40 Ab seems to increase the transcription levels of this subunit (B: 
p=0.035 comparing iLC stimulated with CpG and iLC stimulated with CpG and αCD40 Ab as 
determined by unpaired Student t test; C: p=0.0061 comparing iMDC stimulated with LPS compared to 
iMDC stimulated with LPS and αCD40 determined by unpaired Student t test). 
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3.2.1.5 mRNA expression of standards in iLC and iMDC 

Fig. 3-9: Influence of PGE2 and PGD2 on standard transcription of TLR-stimulated iLC and iMDC. 

RT-PCR products of standards of A iLC stimulated with LPS, B iLC stimulated with CpG, C iMDC 
stimulated with LPS were genererated as described in “methods” and separated on a 12% PAA gel. 2.5 x 
106 iLC or iMDC were incubated for 20 h in 10 ml of the described medium in the absence of growth 
factors with the following stimulants: lane 1: unstimulated DC, lane 2: DC + 1 µg/ml LPS respectively 
2,5 µM CpG, lane 3: DC + 10-6 M PGE2, lane 4: DC + 10-6 M PGE2 + 1 µg/ml LPS respectively 2,5 µM 
CpG, lane 5: DC +10-5 M PGD2, lane 6: DC +10-5 M PGD2 +1 µg/ml LPS respectively 2,5µ M CpG, 
lane 7: DC + 5 µg/ml αCD40 Ab, lane 8: DC +5 µg/ml αCD40 Ab + 1 µg/ml LPS respectively 2,5 µM 
CpG. M: 50 kDa DNA ladder. cDNA levels for DNA polymerase-γ were constant in all assays where 
cells were stimulated with LPS (A and C). Under stimulation with CpG (B), cDNA levels of DNA 
polymerase-γ were impaired but not the levels of β-tubulin (not shown) or GAPDH. I therefore used 
GAPDH as standard for these assays. 

 
DNA polymerase-γ - the enzyme responsible for the transcription of mitochondrial 

DNA in human and in murine cells - was used as mRNA standard as inspired by Park et 

al.. Under incubation of iLC with CpG, I observed an isolated impaired expression of 

DNA polymerase-γ and for this reason I chose to use GAPDH as standard for these 

assays which, same as β-tubulin, was constantly expressed. 
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3.3 IL-12p40 expression in iLC supernatants 
While the stimulated cells of the previously described assays were used for mRNA 

analysis in RT-PCR, the supernatants were concentrated with the help of 10 kDa 

centriprep® tubes to 25% of their previous volumes, aliquoted and stored at –80 °C. 

In order to assign the molecular weight of the proteins detected with the examined 

antibodies I used reducing conditions in SDS-PAGE (including heating for 5 min at 

95°C, Laemmli buffer containing 5% β-ME and 2% SDS).The use of reducing Laemmli 

buffer leads to the complete dissociation of the dimeric proteins as can be seen in the 

lane of the recombinant protein (Fig. 3-10). This according to the product description - 

containes pure p40 homodimeric molecules. 

Because of the subunit dissociation under reducing conditions, it was not possible to 

distinguish between the p40 dimer, the p40 monomer or the p40 possibly coupled to p19 

or to p35. In the running front of the described rec. (p40)2 -fragments two bands of 

approximately 40 kDa were detected that also appeared in the lanes where supernatants 

of LPS-stimulated iLC were separated. No other band supposedly detectable at 80 kDa, 

70 kDa or 60 kDa could be detected. As the supernatant of unstimulated dendritic cells 

did not show any protein band, the LPS-dependent induction of this protein band and its 

molecular weight confirmed the specifity of the antibody for a 40 kDa protein and the 

used recombinant protein. Lane 2 of Fig. 3-10 displays the amount of detected IL-12p40 

in LPS-stimulated iLC. When PGE2 was added the density of the band increased 

overadditively compared to LPS alone (lane 4). Lane 6 demonstrates that PGD2 added 

to cells that were simultaneously stimulated with LPS diminished the density of the p40 

band that was observed under LPS-stimulation alone. PGD2 alone (lane 5) had no effect. 

The bands in lane 7 and 8 represent the p40-levels in iLC stimulated with either αCD40 

alone or with αCD40 in combination with LPS. αCD40 added alone to the iLC did not 

lead to detectable levels of p40. In combination with LPS a possible moderate increase 

compared to LPS-stimulated cells could be observed. 

In a further Western blot that I performed under non-reducing conditions, I could detect 

an intact 80 kDa (respectively 96k Da) band in the lane of the recombinant protein, but 

only the p40 kDa band could be detected in the supernatant of the LPS-stimulated iLC. 

This Western blot assay was only performed once. Although not statistically 

meaningful, these results are in agreement with the following quantitative cytokine 
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ELISPOT assays. The confirmation of the antibody specifity in this Western assay 

should be considered as important quality control for the following assays. 

 

Fig. 3-10: Effects of prostaglandins, LPS and αCD40 Ab on IL-12p40 protein release in iLC. 

The Western blot was performed with the biotinilated antibody BAF499 at a concentration of 0.2 µg/ml. 
Supernatants were isolated from 2.5 x106 iLC incubated for 20 h with the following stimulants solved in 
iLC medium in the absence of growth factors: lane 1: unstimulated iLC, lane 2: iLC + 1 µg/ml LPS, lane 
3: iLC + 10-6 M PGE2, lane 4: iLC + 10-6 M PGE2+ 1 µg/ml LPS, lane 5: iLC +10-5 M PGD2, lane 6: iLC 
+10-5 M PGD2 +1 µg/ml LPS, lane 7: iLC + 5 µg/ml αCD40 Ab, lane 8: iLC + 5 µg/ml αCD40 Ab + 1 
µg/ml LPS solved in 10 ml of total volume. Concentration was performed with 10 kDa Centriprep®-
filters to one-fourth of their original volume. Protein amount was normalised to a constant amount of 25 
µg/lane, protein mass was determined with BCA-assay. Protein samples were unpicked using a 12.5% 
SDS-PAGE. Precision plus® marker was used with auto-luminescent protein bands at 37 kDa and 50 kDa 
(M). 50 ng of rec. (p40)2 was applied in the first lane (P). The semi-quantitative Western blot – regarded 
as antibody control - was performed once. The intensity of the bands reflects the amount of detected 
supernatant protein and was estimated by densitometrical analysis and then normalized to the 
recombinant protein. The band intensity of the double band of the p40 protein is increased in the 
supernatants where LPS is added to the cells. The presence of PGE2 in cell culture increases the band 
intensity overadditively while PGD2 seems to diminish the amount of this protein. 

 

3.3.1 Influence of PGD2 and PGE2 on the number of IL-12p40 SFC 

Western blot assay and RT-PCR allow qualitative and quantitative statements about 

mRNA or protein levels, but no information about actual biological processes such as 

cell activation and therefore ELISPOT data are a good complement. In the following 

ELISPOT assay I quantified the effectively LPS-stimulated iLC and the interfering 

effects of PGE2 and PGD2. 

3.3.2 LPS dose-dependent effects on the number of IL-12p40 secreting cells 

The ELISPOT was carried out with an antibody pair including the antibody BAF499 

that was previously characterized in Western blot assay. Polyclonal BAF499 used as 

secondary antibody in ELISPOT is specific for p40 and also binds to (p40)2. MAB499 

used as primary purified antibody is a monoclonal antibody with a declared specificity 

against rec. moIL-12p40. 
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Previously to the following assays I performed tests to empirically determine the 

appropriate cell amount for the following assays at 50 000 cells/well. 

It could be shown that LPS dose-dependently increases the amount of IL-12p40 SFC 

excluding unspecific background effects (Fig. 3-11). 

In order to examine LPS-dose-dependent effects on the amount of IL-12p40 SFC LPS 

concentrations between 1 ng/ml and 10 µg/ml were tested. While 1 ng/ml did not induce 

significant increase of the amount of IL-12p40 SFC (p=0.1442; unpaired Student t test 

in reference to unstimulated conditions), the concentration of 100 ng/ml to 1 µg/ml LPS 

led to a peak in the number of detected SFC (p<0.0001; unpaired Student t test, 

examined value compared to unstimulated conditions). Higher concentrations of LPS 

led to a reduced number of spots. 

 

Fig. 3-11: LPS concentration-dependent effects on the frequency of IL-12p40 secreting iLC. 

ELISPOT assay. iLC (50 000 /well in 96-well ELISPOT plates) were incubated with different doses of 
LPS solved in iLC medium in the absence of growth factors. LPS was added in tenfold serial dilutions 
between 1 ng/ml and 10 µg/ml. Cells were incubated with the reagent for 24 h. Results represent mean ± 
SD of three independent experiments with triplicates. Maximal amount of spots is measured at 1 µg/ml 
LPS compared to unstimulated iLC (p<0.0001; unpaired Student t test) whereas 1 ng/ml LPS does not 
have significant impact on IL-12p40 spots. The ”responder frequency” of LPS-stimulated and IL-12p40 
SFC at 1 µg/ml LPS is 0.12%. 

 

An estimated responder frequency of LPS-stimulated IL-12p40 SFC of 0.12% 

demonstrates that the activation process of IL-12p40 secretion needs to surpass a high 

stimulation threshold. Based on these observations, I stimulated the iLC in the 

following assays with 1 µg/ml LPS. 
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3.3.3 PGE2 effects on the number p40 SFC under LPS stimulation 

I quantified PGE2 influence on the amount of IL-12p40 secreting cells under LPS-

stimulation (Fig. 3-12) in ELISPOT and could demonstrate that PGE2 not only increases 

the amount of LPS-induced IL-12p40 but also dose-dependently augments the number 

of IL-12p40 SFC (p<0.0001; unpaired Student t test; number of IL-12p40 secreting cells 

under LPS-stimulation in the presence or absence of 10-5 M PGE2). Significant increase 

of IL-12p40-secreting cells is reached at a concentration of 10-7 M PGE2. 

 

Fig. 3-12: Dose-dependent effects of PGE2 on the frequency of IL-12p40 secreting iLC. 

ELISPOT assay. iLC (50 000 /well in 96-well ELISPOT plates) were incubated with a constant dose of 1 
µg/ml LPS in iLC medium. PGE2 was added in tenfold serial dilutions between 10-8 M and 10-5 M. Cells 
were incubated with additives for 24 h. Results represent mean ± SD of three independent experiments 
with triplicates. Highest effects are reached at 10-5 M PGE2 compared to control (p<0.0001; unpaired 
Student t test; absence/presence 10-5 M PGE2): the mean of IL-12p40-spots is doubled from 53.3 spots to 
106.9 spots/50 000 iLC. 

 

3.3.4 Characterization of PGE2 effects on LPS-stimulated iLC 

In the following assays I tried to further characterize these effects of PGE2. With the 

help of dbcAMP and Forskolin, I mimicked cAMP which is known to induce signal 

transduction of the prostaglandin receptors EP2 and EP4. Forskolin (Insel and Ostrom, 

2003) imitates stimulating GS-receptor stimulation by activating adenylate cyclase, 

while dbcAMP is a stable form of cAMP elevating directly intracellular cAMP levels. 

dbcAMP was diluted in twofold serial dilutions (Fig. 3-13) and added simultaneously 

with LPS to the iLC. The counted values were related to the iLC stimulated solely with 

LPS (“+LPS”). The number of spots in the medium control and in the wells of 

unstimulated iLC is low. 
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Fig. 3-13: Dose-dependent effects of dbcAMP on the frequency of LPS-induced IL-12p40 SFC. 

tant 

dbcAMP dose-dependently increased the number of IL-12p40 SFC under LPS-

stimulation significantly by approximately 100%. 

I wanted to reproduce these observed effects with Forskolin. DMSO that was used as a 

solvent for Forskolin had to be assayed for nonspecific effects and it seemed indeed to 

increase background effects when added to unstimulated iLC (Fig. 3-14). 

Forskolin was diluted in twofold serial dilution (0.3 M to 10 M) (by mistake too high; 

recommended concentrations at 0.2 mM, compare discussion) and added to the iLC 

within a period of 10 minutes after their stimulation with LPS. No direct Forskolin-

dose-dependent increase of SFC was measured (n=2), although some values were 

significantly elevated compared to control. I abandoned these tests as the assays that 

analysed dbcAMP effects demonstrated a dose-dependent relation of the cAMP-

stimulation on the number of IL-12p40 secreting iLC. 

ELISPOT experiment. iLC (50 000 /well in 96-well ELISPOT plates) were incubated with a cons
dose of 1 µg/ml LPS in iLC medium. dbcAMP was directly diluted in the medium added in twofold serial 
dilutions (15.3 µM, 30.5 µM, 63 µM, 125 µM, 250 µM, 500 µM, 1 mM). Cells were incubated with 
additives for 24h. Results represent mean ± SD of four independent experiments with triplicates. Optimal 
effects are obtained at 250 µM dbcAMP compared to control (p=0.005; unpaired Student t-test; 
absence/presence 250 µM dbcAMP). The number of IL-12p40-spot is doubled under these conditions 
from 28.75 ± 26.4 (n=4) to 60.7 ± 23.6 (n=4) in presence of 250 µM dbcAMP. 

 50



 

 

Fig. 3-14: Dose-dependent effects of Forskolin on the number of LPS-induced IL-12p40 SFC. 

ELISPOT experiment. iLC (50 000/well in 96-well ELISPOT plates) were incubated with a constant dose 
of 1 µg/ml LPS in dendritic cell medium. Forskolin, solved in DMSO, was diluted in the medium added 
in twofold serial dilutions (0.3 M to 10 M). The solvent DMSO was assayed at a dilution of 1:1000. Cells 
were incubated with additives for 24 h. Results represent mean ± SEM of two independent experiments 
with triplicates. The test was only performed twice. 

The ionophor Ionomycin is capable of extracting Ca2+ and other divalent cations from 

an aqueous into an organic phase and elevates intracellular Ca2+ levels. In this manner it 

bypasses Ca2+ as second messenger as implicated in inhibitory G-protein coupled 

receptor signaling known for prostaglandin receptor EP1 and EP3. Fig. 3-15 presents the 

results of 2 independent experiments. While the controls measuring unstimulated iLC, 

medium background, DMSO-effects and cell stimulated with LPS were in accordance 

with previous assays, the addition of Ionomycin added in tenfold serial dilutions (10-10 

M to 10-6 M) to LPS-stimulated (1 µg/ml) iLC did not lead to significant changes in the 

number of SFC. 
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Fig. 3-15: Effects of Ionomycin on the frequency of LPS-induced IL-12p40 secreting iLC. 

iLC (50 000/well in 96-well ELISPOT plates) were incubated with a constant dose of 1 µg/ml LPS in 
dendritic cell medium. Ionomycin, solved in DMSO, was diluted in dendritic cell medium added in 
tenfold serial dilutions (10-10 M to 10-6 M). The solvent DMSO was assayed at a dilution of 1:1000. Cells 
were incubated with additives for 24h. Results represent mean ± SEM of two independent experiments 
with triplicates. 

3.3.5 Modulation of the amount of LPS-induced IL-12p40 SFC by PGD2 

LPS- (1 µg/ml) and αCD40 Ab-treated (1µg/ml) iLC were additionally stimulated with 

different concentrations of PGD2 (10-5 M to 10-8 M, tenfold serial dilutions) (Fig. 3-16). 

Neither medium nor unstimulated cells or cells stimulated with PGD2 alone led to 

significant amounts of spots while the number of SFC in the controls corresponds with 

previous assays. The number of spots obtained under stimulation with LPS (1 µg/ml) in 

combination with PGD2 (10-5 M) is reduced significantly (p=0.0023; unpaired Student t 

test) compared to LPS-stimulated cells in the absence of PGD2. 

The inhibitory tendency of PGD2 on LPS-induced IL-12p40 secretion in my results is 

supported in recent publications. 
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Fig. 3-16: Dose-dependent effects of PGD2 on the number of LPS-induced IL-12p40-secreting cells. 

IL-12p40 ELISPOT experiment iLC (50 000 /well in 96-well ELISPOT plates) were incubated with a 
constant dose of 1 µg/ml LPS and 1 µg/ml αCD40 solved in iLC medium in the absence of growth 
factors. PGD2 was diluted in tenfold serial dilutions (10-9 M to 10-5 M). Cells were incubated with 
additives for 24h. Results represent mean ± SD of three independent experiments with triplicates. The 
amount of IL-12p40 secreting cells in the presence of PGD2 is significantly reduced (p=0.0025 as 
determined with Whitney-Mann test) compared to incubation of the cells in the absence of PGD2. 1 value 
was excluded. 

3.3.6 Influence of αCD40 on the number of IL-12p40 SFC 

The results in Western blot assay indicate an increase of IL-12p40 in cell culture 

supernatant (Fig. 3-10) when cells were stimulated with αCD40 Ab additionally to LPS. 

I tested the stimulating αCD40 antibody 3/23 for effects in the IL12p40-ELISPOT and 

could not detect any differences in the amount of SFC compared to iLC stimulated with 

LPS alone. By mistake, assays in ELISPOT were performed with 1 µg/ml αCD40 

instead of 5 µg/ml as recommended (Hasbold et al., 1994) while in the iLC that were 

prepared for Western blot and RT-PCR the recommended 5 µg/ml were used. 

 

3.4 IL-12p40 expression in supernatants of CpG-stimulated iLC 

3.4.1.1 CpG induction of IL-12p40 secretion in iLC 
The supernatants obtained from CpG-stimulated iLC were assayed for total IL-12p40 

secretion in Western blot with the αmoIL-12p40 antibody BAF499 (Fig. 3-17). 
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Fig. 3-17: CpG-induced IL-12p40 secretion in iLC. 

Out of 3 experiments performed under the same conditions, one representative Western blot is shown. 
The Western blot was performed with biotinilated antibody BAF499 at a concentration of 0.2 µg/ml. 
Supernatants were concentrated with 10 kDa Centriprep®-filters to one-fourth of their volume. Protein-
amount was normalised to a constant 25 µg/lane, protein mass was determined with the BCA assay 
Supernatants were isolated from 2.5 x 106 iLC incubated for 20 h with the following stimulants solved in 
iLC medium in the absence of growth factors: lane 1: unstimulated iLC, lane 2: iLC + 2,5 µM CpG, lane 
3: iLC + 10-6 M PGE2, lane 4: iLCC + 10-6 M PGE2+ 2,5 µM CpG, lane 5: iLC +10-5 M PGD2, lane 6: 
iLC +10-5 M  PGD2 +2,5 µM CpG, lane 7: iLC + 5 µg/ml αCD40 Ab, lane 8: iLC + 5 µg/ml αCD40 Ab 
+ 2,5 µM CpG solved in 10 ml of total volume. The recombinant control contains 50 ng of recombinant 
protein (P). Precision plus® marker was used with auto-luminescent protein bands at 37 kDa and 50 kDa 
(M). 50 ng of rec. (p40)2 was applied in the first lane (P). Results represent mean ± SD of three 
independent experiments. PGE2 increases the IL-12p40 levels and PGD2 reduces the IL-12p40 levels 
comparing a stimulation with CpG alone. αCD40 strongly induces IL-12p40 levels (p<0.001; unpaired 
Student t test compared to stimulation with CpG alone). 
I demonstrate that CpG induced IL-12p40 secretion in iLC supernatants, alone or in 

combination with PGE2, PGD2 or stimulating αCD40 Ab. In combination with 

stimulating αCD40 Ab CpG leads to massively increased IL-12p40 protein levels in 

iLC supernatants compared to iLC stimulated with CpG alone. Apart from this, the 

results correspond to the data obtained under LPS-stimulation: PGD2 in combination 

with CpG rather seems to decrease the IL-12p40 level. CpG in combination with PGE2 

seems to lead to higher IL-12p40 supernatant levels compared to isolated CpG 

stimulation. 

Additionally to these observations, a third band of 50 kDa could be observed in lane 7 

and 8 were stimulatory αCD40 Ab was added. This band represents IgG antibody 

fragments from the added antibody according to papain cleavage. 

 

3.4.1.2 CpG dose-dependent affection of the number of IL-12p40 SFC 
Next, I performed assays, analysing dose-dependent effects of CpG on the number of 

IL-12p40 secreting iLC, using concentrations of CpG between 100 nM to 12800 nM in 
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twofold serial dilutions (Fig. 3-18). Optimal concentrations for TLR-stimulation 

(personal opinion of A. Krieg) are 100 nM to 1 µM CpG. 

 

 

 

Fig. 3-18: Dose-dependent effects of CpG in iLC. 

iLC (50 000/ well in 96-well ELISPOT plates) were incubated with varying doses of CpG (100 nM to 
12800 nM; twofold serial dilutions) in iLC medium and assayed in IL-12p40 ELISPOT assay. Cells were 
incubated with additives for 24 h. Results represent mean ± SEM of two independent experiments with 
triplicates. Optimal stimulation is observed at 2.5 µM CpG. 

 

First effects are observed at a CpG concentration of 100 nM. An intense stimulation of 

the iLC in ELISPOT assay is obtained at concentrations between 1600 nM to 3200 nM. 

Concentrations higher than 3200 nM lead to high background effects. Contrary to these 

observations the relatively highest effective dose in RT-PCR is reached at a 

concentration of 500 nM. In order to standardize the assays I used a constant 

concentration of 2500 nM in all assays. Remarkably, the spot quality detected under 

stimulation with CpG differs from the spot quality in LPS-stimulated cells (Fig. 3-19). 
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Fig. 3-19: Comparison of spot quality under stimulation with CpG and LPS as measured with 
AELVIS ELISPOT plate scanner. 

Figures 3-19 A and B are details of a αIL-12p40 (BAF499)-BCIP/NBT-coloured ELISPOT plate image 
of 50.000 iLC incubated with A 2.5 µM CpG or B 1 µg/ml LPS. Spot colour intensity, spot diameter, spot 
circularity and the number of spots varied. The images are taken from a single plate, assaying both CpG 
and LPS-stimulation effects. 

 

Microscopically, aggregation of cells under CpG stimulation was observed, an 

observation that might have impaired the results. 

Prostaglandin effects on CpG-stimulated iLC were tested in the following three assays 

under the same conditions but due to high background effects, results have only limited 

value. 

 

 

 

 

 

 

Fig. 3-20: Prostaglandin D2 and E2 effects on the amount of CpG-stimulated IL-12p40 SFC. 

For the IL-12p40 ELISPOT experiment iLC (50 000 /well in 96-well ELISPOT plates) were incubated 
with a constant dose of 2.5 µM CpG. Both reagents PGD2 and PGE2 were diluted in tenfold serial 
dilutions and incubated with CpG-stimulated iLC. The assay was repeated 4 times. Due to high 
background effects, only two assays could be statistically evaluated. In these assays, both PGE2 and PGD2 
had depressing effects on the number of IL-12p40 secreting cells. 
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3.5 IL-12p40 expression in iMDC supernatants 
While transcription of all needed subunits is described in RT-PCR no IL-12p40 protein 

could be detected in cell culture supernatants in four out of five IL-12p40 Western blot 

assays according to the established protocol. Also under non-reducing conditions in 

ELISPOT no IL-12p40-linked protein could be detected with the established αmoIL-

12p40 ELISPOT. 
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4 Discussion 
 

These assays were consistent with a model of early Th1 mediated inflammation in 

which I analysed activating or inhibiting effects of PGE2 and PGD2 and potentially 15d-

PGJ2 and cytokines (especially IL-12 related cytokines) on memory Th1 cells. The 

effects of these substances produced by bystanding stromal cells or immune cells, such 

as iLC, are yet poorly characterized. 

The data were assessed by RT-PCR (analysing the mRNA transcription levels of IL-12 

cytokine subunits), Western blot assays (analysing isolatedly the IL-12p40 cytokine 

subunit in the cell culture supernatant under prostaglandin influence) and ELISPOT 

assays that provided information about the actual immunological effects of 

prostaglandins on single cell level. As priming signals I tested the influence of 

differential TLR-stimulation in both iLC and iMDC which I further compared in their 

alloproliferative capacities. 

4.1 Modulation of Th1 cell activity by PGE2 and PGD2 
 

It has long been accepted that prostaglandins have an effect on T lymphocytes during 

the effector phase. In regard to IL-2 and IFN-γ, PGE2, even at nanomolar 

concentrations, clearly inhibits the expression of Th1 cells. When measuring the number 

of memory Th1 cells in IFN-γ ELISPOT in a model of MHC-dependent adaptive 

immune response mediated by either Con A-stimulation or stimulation with syngeneic 

DC in the presence of OVA I could observe a moderate decrease of IFN-γ SFC under 

stimulation with PGE2. In previous assays of the “Foundation Immune Pharmacology” 

the extend of PGE2-mediated suppression on the number of IFN-γ secreting memory 

Th1 was more significant. The extent of inhibition of antigen-specific activated Th1 

clones allows us to estimate with a more sophisticated and qualitative method, the 

extent of prostaglandin-mediated effects as compared to previous ELISA-based assays. 

The extent of PGE2-induced suppression was quantitatively lower in ELISPOT single 

cell assay as compared to previous ELISA studies (Hilkens et al., 1996) – a result that is 

due to different experimental settings and might reflect the actual immunological 

reaction more precisely: the activation of single cells and not the plasma-levels of 

cytokines leads to the clonal expansion of immune response. 
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Despite that Th1 are not supposed to express DP1 and the second PGD2 receptor CRTH2 

seems to be exclusively expressed on Th2, probable premature degradation of 

prostaglandins was considered, especially under the premise that PGD2 products are 

active. The concentrations of active prostaglandins can only be estimated under assay 

conditions. While PGE2 in supernatants of intact cells seems to be more stable, PGD2 

effects rapidly reduce and overlap with 15d-PGJ2 effects reaching at least 10% of 

originally applied PGD2 after 12 h. Beside CRTH2, the other 15d-PGJ2 ligand PPAR-γ 

is supposedly expressed in Th1 and might be regulated by added PGD2, effects, that I 

could not detect although the necessary stimulation time for the optimal stimulation of 

this receptor might be longer. 

The relatively high concentrations of prostaglandins in my model designed to imitate 

bystander cell products - in this case especially immune cells, keratinocytes and 

fibroblasts – should therefore be understood in first line in regard to the rapid 

catabolism of prostaglandins and in a time-dependent context. Gilroy et al. established a 

model in which a sequential liberation of PGE2 by PMN in the first hours of 

inflammation and the liberation of PGD2, 15d-PGJ2 by monocytes in late inflammation 

serves as an inhibitory feedback mechanism to prevent excessive inflammation (Gilroy 

et al., 1999). 

These described prostaglandin effects on the effector cells have to be separated from the 

induction phase of the immune response mediated by the activation of local DC. 

 

4.2 Modulation of IL-12-related cytokines by prostaglandins in iLC and 

iMDC 

4.2.1 mRNA expression of IL-12-related cytokines 

The immune cells that are influenced most by modulating skin bystander products are 

iLC in the epidermis and iMDC in the dermis. Both cell types have tissue-specific 

allostimulatory properties dependent on their state of maturation. I focused especially 

on the LC that, although also bone marrow-derived, constitute a distinct unique DC 

subset. 

In semi-quantitative mRNA of IL-12 related cytokine subunits in the iLC cell line XS52 

I detected high levels of p40 – induced by LPS as described by Torii et al. (Torii et al., 
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1997) but also by CpG – and a constitutive expression of the p19 subunit. I could not 

detect p35 and - only in low levels under additional CD40-stimulation - p28. 

Prostaglandins and in most assays stimulating αCD40 Ab did not seem to influence the 

transcription of these subunits in as far as this could be interpreted in results of semi-

quantitative RT-PCR. The parallel expression of both p19 and p40 allow the assembly 

of the IL-23 that in fact could be detected in later assays performed by the “Foundation 

Immune Pharmacology” in cell culture supernatants. According to my data, it seems 

that XS52 do not produce IL-12 but are inducible for IL-23 and eventually under 

additional CD40-stimulation for IL-27 expression. Some authors claimed to have 

detected IL-12 in XS52 (Bouis et al. detected only IL-12p40; Thatcher et al. used C15.6 

and the antibody kit OpTEIA consisting of 9A5 and C17.8) in immunoassays but no 

direct RT-PCR or Western blot assay evidence of the two subunits had been brought 

forward for XS52. It is currently unclear if Langerhans cells produce IL-12 at all and 

great part of the pertinent publications ignoring the existence of IL-23, were actually 

based on IL-12p40 assays and therefore have to be questioned in the post-IL-23 era. 

Morelli et al. (Morelli et al., 2005) characterized a human migratory CD1a+ CD14- skin 

DC fraction that did not express IL-12 but IL-23, IL-10 and TGF-β that (in combination 

with IL-6) has been reported to be responsible for the generation of Th17 out of naïve 

and memory T lymphocytes (Bettelli et al., 2006). By contrast solitary stimulation with 

TGF-β seems to engender tolerogenic regulatory T lymphocytes. While XS52 have not 

been assayed for TGF-β, although they are known to express TGF-β1 receptors, the role 

of this factor is known to be crucial for Langerhans cell differentiation. XS52 might 

resemble the epidermal cell fraction described by Morelli in different aspects. 

The significance of the expression of IL-23 in the skin inflammation and not only in 

Langerhans cells has been meanwhile underlined. 

Ghilardi et al. (Ghilardi et al., 2004) studied IL-23p19 and IL-23p40 knockout mice and 

outlined a severe impairment of delayed-type hypersensitivity skin reaction (DTH) and 

of humoral immune response indicating a significant role for IL-23 in the activation of 

memory T lymphocytes in the epidermis. Furthermore Kopp et al. (Kopp et al., 2003) 

established a transgenic expression model of IL-23 in the basal epidermis inducing a 

atopic dermatitis-like inflammation with increased numbers of LC and allostimulatory 

activity inducing accelerated rejection in a graft rejection model. While Kopp et al. only 

detected the p19 subunit in keratinocytes (murine model), Piskin et al. described a high 
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expression of IL-23 in psoariatic lesions by human keratinocytes. Beside IL-23, I could 

further detect the IL-27p28 subunit that was only expressed under costimulation with 

αCD40 Ab as previously described by Pflanz et al.. When dimerized with EBI3, that I 

did not analyse, the assembly of IL-27 would be possible. IL-27 has been characterized 

as a IL-12 response supporting cytokine but also as as antagonist of IL-2 expression (as 

a limiting factor for clonal Th expansion) and might, without overrating this 

observation, be a factor of autoregulation of IL-23 response in my assays. 

Contrary to XS52, the myeloid JAWS II cell line expressed mRNA of both IL-12 and 

IL-23 subunits and also low amounts of p28 upon αCD40 stimulation. The regulation of 

the IL-12 subunits in this cell line was more complex, as p40 but also p35 and p19 were 

upregulated upon confrontation with LPS. This cell line has been characterized as a 

common precursor for MΦ and DC according to Jorgensen et al. and might be in fact 

representative for an undifferentiated precursor with the ability to differentiate into a 

majorly IL-12- as well as IL-23-expressing DC. Suprisingly when I tested this cell line 

in ELISPOT and Western blot assay I could not detect the p40 protein in cell culture 

supernatant upon stimulation with LPS although it was obviously expressed on mRNA 

level, suggesting that although already transcribed, the protein delivery process is 

blocked or inefficient. While it has been suggested that p40 is regulated on the level of 

transcription, the expression of p35 (that is known to undergo complex 

posttranscriptional modifications) and probably p19 is considered to be regulated 

posttranslationally (Abdi, 2002), so at least, the detection of p40 should have been 

expected in cell culture supernatants. This observation displays the complex translation 

of mRNA to actual protein that is tightly regulated and requires the activity of diverse 

processing enzymes. 

 

4.2.2 Protein expression of IL-12-related cytokines 

In the past decade the wrongly attributed contribution of actual IL-23 effects to the IL-

12 protein (without the detection of the existence of IL-23 in reliable immunological 

assays) diminished the meaning of these previous works. Until now no specific IL-12 

antibody detecting both subunits simultaneously or detecting one of the subunits 

exclusively exists. Due to the very restricted stability of the heterodimer proteins and 
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the vast excess of p40 monomer and homodimer, a valid immunologic detection 

requires therefore the detection of both subunits. 

To address this issue, I verified the antibody specificity of commercial p40 antibodies. 

Aside from the producer-declared cross-reactivity (Fig. 2-3), I tried to verify the 

antibody specificity in serial Western blots under reducing SDS-PAGE conditions using 

either rec. (p40)2 protein or concentrated supernatants of LPS-stimulated iLC as target 

protein. I could detect under reducing conditions with the declared αIL12p40 Ab 

BAF499 and C17.8 but also with the sc-1283 Ab a 40 kDA protein as double-band – a 

phenomenon that Westermeier contributed to the sulphate-linked protein subunits that 

partial refold after separation and thus have different running fronts. It is suggested to 

use alcylating agents such as iodacetamide to prevent refolding. The band intensity was 

optimal with the Ab BAF499 which was therefore chosen for subsequent Western blot 

assays. I tried in a single assay to detect the rec. (p40)2 and possibly assembling p40 

products in supernatants of LPS-stimulated iLC in a non-reducing Western blot assay 

(data not shown). While I could detect the intact rec. (p40)2 and the p40 monomer in 

supernatant of LPS-stimulated iLC, I did not detect either (p40)2, IL-23, IL-12 or a 

possible p40-p28 dimer. A reason for this might be the poor stability of p40-linked 

proteins that might be responsible for the dissociation of the supernatant protein that 

underwent a technical necessary freeze-thaw cycle in my assays. 

Antagonizing effects of p40 momomer and more important of the p40 dimer have been 

described [(p40)2 has been only detected in the mouse model] (Gillessen et al., 1995; 

Holscher et al., 2001) but might have been overestimated due to lacking knowledge of 

IL-23. The total amount of in vivo detected p40 monomer and dimer is small. Hölscher 

et al. estimated its amount to 5-30% of totally detected p40. But Kopp et al. described 

that only 8% of intact IL-23 compensated the antagonising effects of p40 both monomer 

and dimer. 

While p35 could not be detected in RT-PCR, I focused on the p19 subunit. No 

commercial antibodies were available at this time for this subunit. Based on the protein 

structure information for p19 of the NIH protein bank, we selected a p19 epitope that 

was recombinantly synthesized and vaccined to rabbits (www.eurogentec.com). 

Because of a delay in the antibody production, I could not analyse these effects. 

 62

http://www.eurogentec.com/


 

Despite Abdi et al. argued that p35 and p19 is rate-limiting and best-correlating to 

actual heterodimeric cytokine amounts, it constituted for me under these conditions the 

only possible approach to test the regulated p40 subunit alone. In case of the XS52 cell 

line at least, p40 might correlate well with total IL-23: the p19 subunit was constantly 

transcribed on mRNA level while the p40 subunit was regulated upon LPS and CpG 

stimulation. Further it is assumed that p19 is only secreted when assembled with p40. In 

a single Western blot experiment I could describe that IL-12p40 in LPS-stimulated iLC 

was overadditively upregulated by PGE2 and αCD40 Ab while it was downregulated by 

PGD2. These data were later confirmed by ELISPOT experiments. Under ELISPOT cell 

culture conditions, it might be assumed that at least a part of the detected IL-12p40 

spots reflects intact IL-23. The responder frequency of 0.2% thereby was congruent 

with the data in a human IL-12p40 system analysing the amount of IL-12p40 secreting 

PBMC (Ozenci et al., 2000). 

I also focused on the influence of PGE2 in IL-12p40 ELISPOT experiments. 

Using the reagents Forskolin and dbcAMP the stimulatory effects observed under PGE2 

were found to reflect intracellular cAMP levels. Whereas Forskolin was probably used 

at too high concentrations (Betz et al. used 10-5 M Forskolin) the effects of dbcAMP 

correlated with the observed PGE2 effects indicating a mediation of IL-12p40 

promotion by EP2 and EP4 signaling. Ionomycin was ineffective, underlining this thesis. 

Surprisingly until now, PGE2 pathways are one of the only known differences between 

IL-12 and IL-23 secreting cells. Sheibanie et al. described an PGE2-induced increase of 

total IL-23 in supernatants of murine MDC while p35 levels were not altered. Schnur et 

al. using human monocyte-derived DC suggests, that G protein-coupled receptors acting 

through cAMP EP2 and EP4, histamine receptor H2, adenosine receptor A2α and 

adenosinetrisphosphate receptor P2Y downregulate (synergistically with IL-10 and 

TGF-β) the expression of IL-12 and IL-12p40 but upregulate the p19 subunit leading to 

higher levels of IL-23. PGE2-stimulated DC had in that way a lower capacity to induce 

IFN-γ secreting naïve T lymphocytes. In my assays I could not directly analyse a 

differential regulation of IL-12 and IL-23, as the used iLC were more differentiated and 

did not express IL-12. But I did observe an upregulation of IL-12p40 and presumably of 

total IL-23 in ELISPOT. Although the iMDC did express both, the results in semi-

quantitative RT-PCR did not allow qualitative interpretation. Hence I focused on 
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possible differential effects of TLR4 and TLR9. The diversity of TLR indicate different 

pathways leading to the expression of IL-12 related cytokines. 

 

4.3 Differential effects of TLR4 and TLR9 stimulation 
 
TLR have become defining receptors for DC subtypes: with regard to human DC, it has 

been shown that myeloid DC express TLR2 and TLR4, whereas plasmacytoid DC 

express preferentially TLR7 and TLR9 (Kadowaki et al., 2001; Krug et al., 2001) and it 

has been suggested that - based on different pattern of Toll-like receptor (TLR) 

expression - these two cell types detect different classes of microbial molecules. In 

murine LC Mitsui et al. detected TLR2, TLR4, TLR9 but not TLR7 that is contrarily 

expressed in XS52 cells. Differential effects of TLR stimulation on IL-12 subunit 

expression have been demonstrated: It was demonstrated that IL-23 expression of 

myeloid DC upon confrontation with Klebsiella pneumoniae is TLR4-dependent 

(Happel et al., 2005; Re and Strominger, 2001). Though I did not analyse the receptors 

directly, I detected a specific response of the cells towards receptor-specific antigens. 

Focusing on the mRNA expression of cytokines upon TLR4 and TLR9 stimulation, I 

could not detect differences in cytokine expression as analysed by semi-quantitative 

RT-PCR, whereas I observed differences at the protein level. While LPS alone or in 

combination with prostaglandins or αCD40 Ab led reproducibly to detectable p40 

expression in Western blot and ELISPOT, only CpG stimulation in combination with 

aCD40 led to significant bands in Western blot. In IL-12p40 ELISPOT I focussed on 

the effects of prostaglandins under CpG in the absence of αCD40, which led to 

inconsistent results. In a similar manner Will et al. (Waibler et al., 2006) could not 

detect intact IL-23 in cellular supernatant of CpG-stimulated iLC as measured with 

ELISA in the absence of T cell costimulation. SFC in ELISPOT when detected had a 

remarkable large halo while the number of total spots was smaller compared to IL-

12p40 ELISPOT under LPS-stimulation indicating a different cell biology such as 

upregulation of adhesion molecules under the influence of TLR9 stimulation. On the 

other hand, there have been signs that CpG has lymphotoxic side effects under certain 

conditions (Heikenwalder et al., 2004). The observed effects of CpG on the expression 

of DNA polymerase-γ under CpG might be a indicator for this. 
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4.4 Combined effects of prostaglandins and IL-12-related cytokines 
 
I described in 4.1 and 4.2 the isolated effects of prostaglandins on either Th1 alone or 

on iLC alone. The combined effects of prostaglandins on the two cell lines together 

seem however to be more complicated and have to respect the time and the place of 

stimulation. Gilroy et al. outline the time-dependence of PGE2 and PGD2 release. 

Further the microenvironment in the tissue and the differentiation state of the immune 

cells are outstanding factors that influence the prostaglandin pattern and the cellular 

reactivity of the immune cells. This overview (Fig. 4-1) reflects some of the properties 

contributed to prostaglandins in different cell systems and is consistent with my results. 

 

 

 

 

 

 

 

 

Fig. 4-1: Model of possible effects of modulatory bystander products in different tissues, at different 
times and in different states of maturation of the effector cell. 

Either immature or mature DC communicate with T lymphocytes (T) and stromal bystander cells (BC) in 
peripheral and lymphatic tissue. Dependent on the maturation state and the ratio of the number of DC and 
T lymphocytes predominantly either the DC or the T lymphocyte is directed to a specific maturation by 
bystander cell products. While the prostaglandins are sequentially secreted by different bystander cells 
and the prostaglandin profile differs at inflammation sites and in lymph nodes, the predominant cell might 
act very differently dependent on these factors. Indices that underline the theoretical model above are: a) 
the principle of autoregulation of immune processes; b) the cell ratio: T lymphocytes are concentrated in 
lymph nodes while LC are widely distributed in the skin; c) PGE2 was shown to be a very potent 
promoter of DC migration. As it acts early at the site of inflammation, this helps the activated LC to home 
to the lymph node early after antigen-confrontation; d) in lymph nodes a rich activity of PGD synthase 
has been recently observed (Trivedi et al., 2006) that might potentially modulate the activation of specific 
T lymphocytes by DC. 

 

In the IFN-γ ELISPOT assays Con A stimulated the memory Th1 lymphocyte clone 

(Fig. 3-3) to a relatively high responder frequency of 11 % of IFN-γ positive cells 

indicating a competent activation. In contrast to responder frequencies of 0.2 % in iLC 

under stimulation with LPS or CpG, this constitutes a specific adaptive stimulation of a 
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specific memory Th clone with the priming protein OVA (the decrease of the responder 

frequency from 42 % in 2002 to 11% might be consistent with the loss of ability of the 

T cell clone to cope with complex proteins under cell culture conditions, often observed 

in cell culture). This adaptive stimulation requires physical contact - contrary to the 

nonspecific innate IL-12/IL-23 mediated T cell activation – and proceeds by activating 

the TCR to a T-bet-mediated release of IFN-γ. Because it is specific and potent, this is a 

very strong stimulus for Th differentiation and led in the described Th1 ELISPOT 

model to IFN-γ secretion. Physiologically, this is a very rare event and Th1 stimulation 

is preferentially promoted by a) IL-12 (not IL-23) considered to be indispensable for 

STAT4-induced IFN-γ secretion (Magram et al., 1996) and alternatively by b) the 

cytokines IL-15, IL-21, IL-18 (Strengell et al., 2003). 

Overlapping of these two axes of T cell activation a) adaptive TCR-mediated 

(auto)antigen-presentation and b) innate immunity activation via TLR-signaling via 

TGF-β and IL-6, later upheld by IL-23 are suggested to be implicated in the formation 

of autoreactive Th17. 

4.5 Conclusion and Outlook 
 

The balance of prostaglandins and other tissue hormones play a decisive role as 

modulators of early steps in the development of Th differentiation. When this balance 

collapses, potential harmful Th subtypes like the proposed Th17 may lead to auto-

aggressive diseases. I established a coculture model and examined the influence of 

modulatory prostaglandins with special attention on their effects on DC and its IL-12 

related cytokine subunits. Immunological therapies targeting IL-12 related cytokine 

subunits are now in development and have, at least in the mouse model, shown positive 

effects. While therapeutical targeting the p35 subunit is obsolete, the p40 and p19 

subunit constitute major targets in recent studies. Advantages of the use of αIL-12p40 

treatment in a phase I study of psorias vulgaris patients (Kauffman et al., 2004) were 

outlined and it was later demonstrated that the blockage of IL-12p40 is equally effective 

as the blockage of IL-23p19 (Chen et al., 2006). The specificity of the used antibodies 

in human will however constitute a severe problem as cross-reactivity to potentially 

protective subunits has been observed so far. New insights in the biology of Th cells 

may furthermore provide new and more specific targets. 
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Summary 
 

IL-12-related cytokines produced by dendritic cells are considered to be major inducers 

of adaptive immune system activation upon innate antigen-sensing. IL-23 specifically is 

currently being discussed to support the differentiation of potentially auto-aggressive 

Th17 cells. Prostaglandins as bystander cell products are known to modulate the 

translation of this process. While previous studies focused therefore on IL-12, ignoring 

the existence of new IL-12-related cytokines IL-23 and IL-27, this study analysed 

effects of prostaglandin E2, D2 and 15d-PGJ2 on the secretion pattern of these subunits 

in the murine immature Langerhans cell line XS52 and the murine immature myeloid 

dendritic cell line JawsII under TLR4 (LPS) and TLR9 (CpG) stimulation as well as 

effects of prostaglandins on the murine Th1 cell line IF12 in coculture and upon Con A 

treatment. 

In serial semi-quantitative RT-PCR of the IL-12 related cytokines of the XS52 cell line 

and the JawsII cell line, the p40 subunit was upregulated in both DC cell lines upon 

TLR-stimulation, the IL-23p19 subunit constantly expressed in XS52 and upregulated 

in JawsII upon TLR-stimulation, while the IL-27p28 subunit was only weekly 

expressed under additional stimulating αCD40 Ab treatment. IL-12p35 could only be 

detected in the immature myeloid cell line. The protein expression of the p40 subunit 

was measured in Western blot assays following SDS-PAGE under reducing conditions 

in XS52. The Western blot-based antibody specification allowed the establishment of a 

p40-specific ELISPOT assays, where overadditive upregulation of the number of LPS-

stimulated spot forming XS52 cells was observed under stimulation with PGE2 while 

PGD2 depressed the number of LPS-stimulated cytokine secreting cells. Contrary IL-

12p40 could not be detected in supernatants of the JawsII cell line. 

Both DC cell lines were further tested for differential response towards different TLR 

stimulation described as a defining feature of DC subsets. While subunit expression on 

transcription level did not differ, only LPS-treatment led to constant IL-12p40 

expression in supernatants of XS52. CpG-treatment of XS52 cells led to constantly high 

IL-12p40 levels under additional αCD40 Ab treatment. 

In IFN-γ ELISPOT assays, prostaglandin effects were further analysed in IF12 Th1 cells 

upon Con A treatment or alternatively upon treatment in a coculture model with the 
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syngeneic cell line XS52 and the T lymphocyte-specific protein ovalbumin. While 

PGE2 depressed the amount of activated Th1, PGD2 showed no effect. 

In conclusion, a coculture model has been generated that allows the analysis of DC and 

TC interactions. The importance of prostaglandins as differential regulators in time- and 

tissue-dependence in inflammatory processes has been demonstrated. These results 

accord with recent observations of an upregulation of IL-23 secretion upon PGE2 

treatment. 
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Zusammenfassung 
 

Die von dendritischen Zellen freigesetzten Zytokine der IL-12 Gruppe sind maßgeblich 

an der  Übersetzung der unspezifischer Aktivierung des angeborenen Immunsystems zur 

adaptiven Immunantwort beteiligt. Besonders Interleukin-23 wird gegenwärtig als 

unterstützendes Zytokin einer potentiell autoaggressiven Th17-Antwort diskutiert. Es 

wurde gezeigt, daß die von Stromazellen freigesetzten Prostaglandine diese 

Aktivierungsmechanismen beeinflussen. Einflüsse auf die kürzlich charakterisierten   

IL-12-verwandten Zytokine IL-23 und IL-27, von denen ersteres eine gemeinsame 

Untereinheit mit IL-12 teilt, wurden in früheren Studien nicht berücksichtig. 

Die vorliegenden Arbeit stellt eine Untersuchung der Effekte der Prostaglandine PGE2, 

PGD2 und dessen Abbauprodukts 15d-PGJ2 auf die Expression der Untereinheiten der 

IL-12 Gruppe in der murinen immaturen Langerhans Zellinie XS52 und der murinen 

immaturen myeloiden dendritischen Zellinie JawsII nach TLR4- (LPS) und TLR9- 

(CpG) Stimulierung dar. In weiteren Versuchen wurde der Prostaglandineinfluß auf Th1 

Zellen (IF12) in Cokultur als auch nach Con A-Stimulierung untersucht. 

Ergebnisse von seriellen semi-quantitativen RT-PCR der Zytokinuntereinheiten der IL-

12 Gruppe in XS52 und JawsII Zellen zeigten eine Hochregulierung der p40-Expression 

auf mRNA-Ebene nach TLR-Stimulation. Die IL-23p19 Untereinheit wurde in XS52 

Zellen konstant transkribiert, in JawsII Zellen nach TLR-Stimulation hochreguliert. Die 

IL-27p28 Untereinheit wurde nur schwach und nur nach Stimulierung mit zusätzlichen 

αCD40-spezifischen stimulierenden Antikörper transkribiert. IL-12p35 konnte nicht in 

XS52 Zellen nachgewiesen werden, wohl aber in JawsII Zellen. Mittels Western blot 

assays nach reduzierenden SDS-PAGE wurde p40 in Zellkulturüberständen detektiert. 

Die Antikörperspezifierung durch Western blot assay erlaubte die Etablierung eines 

p40-spezifischen ELISPOT assays. Überadditiv steigerte PGE2 unter LPS-Stimulierung 

die Anzahl der Spot forming cells, während PGD2 die Anzahl der aktivierten Zellen 

verringerte. In JawsII-Zellkulturüberständen konnte p40 nicht nachgewiesen werden. 

Beiden Zellinien wurde auf eine differentielle Expression der IL-12 Untereinheiten nach 

verschiedenartiger TLR-Stimulierung, als definierendes Merkmal von unterschiedlichen 

DC Linien untersucht. Während die Transkription unbeeinflußt blieb, wurde nur in 

Zellkulturüberständen von XS52 nach LPS-Stimulierung eine konstante 
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Proteinexpression nachgewiesen. CpG-Behandlung führte zu konstant hoher Expression 

nach zusätzlicher stimulierender αCD40-Stimulierung. 

In IFN-γ ELISPOT assays wurden Prostaglandineffekte auf die Th1 Zellinie IF12 nach 

Con A-Behandlung und alternativ im Cokultur Modell mit syngenen XS52 und dem T 

Lymphozyten-spezifischen Protein Ovalbumin untersucht. Während PGE2 die Anzahl 

der aktivierten Th1 senkte, hatte PGD2 keine Wirkung. 

Zusammenfassend wurde in dieser Arbeit ein Cokultur Modell entwickelt, das die 

Untersuchung von DC and TC Interaktionen erlaubt. Die Wichtigkeit von 

Prostaglandinen als differentielle Regulatoren in Zeit- und Ortsabhängigkeit bei 

inflammatorische Prozessen wurde dargelegt. Diese Ergebnisse stimmen mit kürzlich 

veröffentlichten Publikationen, die eine isolierte Hochregulierung der IL-23 Sekretion 

bei unveraänderter IL-12 Expression nach PGE2-Behandlung beschreiben, überein. 
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