
Probabilistic model

The following derivation is based on a series of N independent tests. In our experiment N =

22 (for the 22 different CR1 subtypes). Each test can have N results. In general, the quantity of

results can be from 1 to N. However, if any of the results at special time points are impossible,

we shall consider their probabilities equal to 0. That is because the probabilities of these results

depend on the time point of the test, as some retroposons (CR1 subtypes) evolved later than

others and the timeframes of activity differ from subtype to subtype. This simply means that the

oldest subtypes, after their inactivation, could not integrate into the youngest, because these did

not yet exist at the point of their activity.

We designate pi,j(t) as the probability of the result j for experiment of the i-th series at time

point t (i , j ∈ {1,2…N}, t ∈ Ti 
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i }). Ti is the set of time points in which the tests are

performed. In other words we define for a time point t the probability of the result of a CR1

element i (one of the 22 subtypes) having inserted into the host CR1 element j (one of the

remaining 21 subtypes).

Given that for any t ∈ Ti   
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pi, j (t)
j=1
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we assume, that if i  ≠  j, then pi,j(t)N << 1 (accordingly, pi,i (t) is close to 1).

In the experiment we observe the values mi,j of the random variables ji ,µ  - the quantities

of approaches of a result j in the i-th  series.

We consider
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ni = mi, j
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∑  as the quantity of tests in the i-th series.

We define )(tjη as the quantity of elements of the subtype j (potential hosts) that are

present at the time point t. By including the biological fact that elements of a subtype j «appear»

(first evolve and than distribute) at time points ,,...,, 21
j
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τττ  we obtain:
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can be considered as an empirical distribution function of a random variable 
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τ j . In other words

this function gives the ratio of CR1 elements of a subtype j that, at time point t, already exist and

the number of CR1 elements of a subtype j that exist over the observation time.

The probability 

€ 

pi, j (t) (at i ≠  j) is considered to be proportional to )(tjη :

€ 

pi, j (t) =α ⋅η j (t)  under the condition iTt∈ . (3)

Further we assume that 1<<⋅ jnα . Under this assumption it is possible to prove that for

the i-th series at ∞→in  the Poisson distribution can be applied:
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Accordingly, for all N series
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According to (5) and (3) it follows that
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The sum can be written as Stieltjes integral:
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Inserting equation (2), we get the following:
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As an approximation for Fj(t) we chose the normal distribution with the parameters 
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π
 is the standard function of the normal distribution.

Then, with (9), we receive
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Thus the problem is reduced to the search for estimations of the unknown parameters
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α , t1 ...tN ,σ1 ...σN ..

To estimate these parameters, we use a maximal likelihood method. Replacing, in (6),

jix , to jim ,  and lowering multipliers, not dependent on estimated parameters, in view of (11), we

receive the function of likelihood
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Accordingly, the logarithm of the function of likelihood is equal to
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This sum we designate as n0:
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Thus it is possible to describe (14) in the form of
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Equating a partial derivative to zero
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(for our experimental data we have received 710003.1~ −⋅=α ).
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Concerning parameters iσ  we have accepted that these are proportional to n (in particular

ii n=σ ).

The estimations of the other parameters we derive by maximizing ln(l), using the

program MathCad (Mathsoft Engineering & Education).

Application in this study:

We wrote a computer script to obtain the data of the TinT matrix (Table S1). The probabilistic

model was then used to calculate the peaks of the activity distribution for each element on a

relative timescale.



Empirical and Estimated Divergency Curves of CR1-C4 and CR1-D2
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Figure S1. Examples of divergency distributions in two CR1 subtypes. The level of divergency
from the consensus of a CR1 subtype is plotted against the total amount of copies in the chicken
genome. The empirical divergency distribution of each CR1 subtype is approximated by the
normal distribution (as it was also shown for Alu elements by R Mills, E Bennett, S Devine:
Poster 47: A Positional Approach to Classifying Transposons. In: FASEB Meeting on Mobile
Elements in Mammalian Genomes; Tucson, 2007)
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Figure S2. Activity distribution for each element on a relative timescale.
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Figure S3. Comparison of Divergency level and relative TinT timescale.
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Figure S4. Normalized relative activity periods for the 22 Cr1 subtypes of the chicken genome. Ovals represent the 50% activity distribution with the median position in black. Horizontal lines indicate the 90% activity distribution of each element. The relative time axis is given at the bottom.
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