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Abstract

Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative
biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during
fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and
can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative
production of higher amounts of isobutanol.

Results: Isobutanol production could be improved by re-locating the valine biosynthesis enzymes IIv2, Ilv5 and Ilv3
from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast
mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial
targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the
truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only
increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway.
Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine
biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate
decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol
titer was 0.63 g/L at a yield of nearly 15 mg per g glucose.

Conclusion: A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and
optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and
Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial
valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate
decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.
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Background

Biofuels produced from renewable resources are an at-
tractive alternative to supplement or replace fossil fuels.
Currently, bioethanol represents the most prominent bio-
fuel obtained by microbial fermentation. However, com-
pared to ethanol 'higher' alcohols have several advantages
as alternative biofuels [1].

Isobutanol is a normal by-product of yeast fermenta-
tions, but only in very small amounts [2,3]. It can be
synthesized via a three-step catalytic breakdown of val-
ine, the so-called Ehrlich pathway [3,4]. Thereby, valine
undergoes transamination to 2-ketoisovalerate (KIV) cat-
alyzed by branched-chain amino acid aminotransferase
(Bat2). The subsequent decarboxylation and reduction of
KIV to isobutanol is catalyzed by ketoacid decarboxylase
(KDC) and alcohol dehydrogenase (ADH) with isobutyr-
aldehyde as an intermediate. KIV is also an intermediate
of the de novo synthesis of valine and is thus a common
intermediate of both, valine synthesis and degradation
(Figure 1) [5]. The enzymes which provide KIV by
de novo synthesis are acetolactate synthase (Ilv2),
acetohydroxyacid reductoisomerase (Ilv5) and dihy-
droxyacid dehydrates (Ilv3) [5]. These enzymes con-
vert pyruvate to KIV by condensation of two
molecules of pyruvate to 2-acetolactate (ALAC) and
CO,, reduction of ALAC to 2,3-dihydroxyisovalerate
(DIV) and dehydratation to KIV. The conversion of
KIV to valine is finally catalyzed by branched-chain
amino acid aminotransferase (Batl) [6].

The coupling of valine biosynthetic enzymes with val-
ine degrading enzymes via the common intermediate
KIV would result in a direct isobutanol synthesis
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Figure 1 Schematic illustration of the synthetic isobutanol
biosynthesis pathway. Glucose is converted to pyruvate via
glycolysis. Pyruvate can be further converted to 2-ketoisovalerate
(KIV) in the cytosol by the re-localized Ilv2, Ilv5 and llv3 enzymes. KIV
is metabolized into isobutanol via the Ehrlich pathway reactions
catalyzed by Aro10 and Adh2. GAP = glyceraldehyde-3-phosphate;
PYR = pyruvate; ALAC = 2-acetolactate; DIV = 2,3-dihydroxyisovalerate;
IBA = isobutyraldehyde.
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pathway. Such a strategy could be successfully trans-
ferred into different bacterial microorganisms. In vari-
ous recent publications, the metabolic flux towards
isobutanol production was improved by overexpres-
sing endogenous or heterologous genes of valine syn-
thesis and degradation. E.g., engineered recombinant E.
coli strains were able to produce more than 20 g/L isobu-
tanol, whereby isobutanol amounts could be further
enhanced up to 50 g/L by using a 1 L bioreactor con-
nected to a gas-stripping system [7,8]. Production of
isobutanol with Bacillus subtilis and Corynebacterium
glutamicum could be achieved up to 2.62 g/L and
4.9 g/L, respectively [9,10].

One of the major problems of most bacterial host
organisms in large production processes is their low tol-
erance towards fermentation inhibitors and to isobutanol
[1]. The yeast S. cerevisiae seems to be more promising
as a host for isobutanol production [1]. Previous work
has demonstrated that S. cerevisiae possesses beneficial
properties such as higher tolerance towards butanol and
a high robustness against toxic inhibitors and fermenta-
tion products. Additionally, fermentations are performed
at low pH values, whereby the risk of contaminations is
minimized [1]. Traditionally, S. cerevisiae is used already
since centuries in applications like beer brewing or in-
dustrial ethanol production.

Recently, enhanced isobutanol production by S.
cerevisiae has first been demonstrated by overexpres-
sion of the endogenous genes involved in valine me-
tabolism. The recombinant strain produced isobutanol
with a maximum yield of 4.12 mg isobutanol/g glu-
cose [11]. In another work the final titer was
increased up to 143 mg/L at a yield of 6.6 mg/g glu-
cose by overexpressing in a Apdcl deletion strain the
first gene of valine biosynthesis (ILV2, encoding acet-
olactate synthase) and genes encoding enzymes cata-
lyzing the degradation of KIV (kivD of Lactococcus
lactis and ADH6 of S. cerevisiae) [12].

In contrast to bacteria, in the yeast S. cerevisiae ana-
bolic reactions providing KIV are separated from cata-
bolic reactions producing isobutanol. The anabolic
reactions are part of valine biosynthesis and are located
in the mitochondrial matrix, whereas the Ehrlich path-
way reactions take place in the cytosol [13,14]. We
hypothesized that the presence of all the enzymes within
the same compartment would presumably increase the
production of isobutanol. Due to the loss of mitochon-
drial function and inaccessibility of mitochondrially
located enzymes at high glucose concentrations or dur-
ing anaerobic conditions, a cytosolic localization of the
new isobutanol synthesis pathway seemed to be very
promising. Moreover, this would also avoid any trans-
port of intermediates across intracellular membranes.
Therefore, we aimed to re-localize the enzymes of valine
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biosynthesis from the mitochondrial matrix into the
cytosol (Figure 1). These enzymes are synthesized as pre-
cursor proteins containing an N-terminal mitochondrial
targeting sequence (MTS) [5,15,16]. During translocation
into the mitochondrial matrix, the N-terminal prese-
quence is cleaved off by a mitochondrial specific proces-
sing peptidase [17]. Therefore, expression of N-terminally
truncated enzyme versions lacking the MTS should lead
to a cytosolic location. Indeed, in a recent work, overex-
pression of N-terminally truncated ILV2, ILV5 and ILV3
together with overexpression of Lactococcus lactis KDC
gene kivD resulted in a production of up to 151 mg/L
isobutanol [18].

In our work we found that overexpression of cyto-
solically located Ilv2, Ilv5 and Ilv3 enzymes did not
significantly increase isobutanol production. However,
elimination of the competing mitochondrial valine path-
way together with the omission of valine from the fermen-
tation medium resulted in strongly increased isobutanol
production. Finally, the highest titers were obtained after
adaptation of the codon usage of valine biosynthetic genes
to the glycolytic codon usage and additional overexpres-
sion of a suitable yeast KIV decarboxylase and a yeast iso-
butanol dehydrogenase.

Results
Disruption of the mitochondrial targeting sequences of
the valine biosynthesis enzymes
Isobutanol is a common by-product of yeast fermenta-
tions. However, isobutanol levels are very low and are
dependent on the fermentation conditions [2,11]. Isobu-
tanol derives from the degradation of valine via the Ehr-
lich pathway which takes place in the cytosol [2,19]. On
the other hand, the biosynthesis of valine from pyruvate
occurs in the mitochondria [13]. In order to re-locate
IIv2, IIv5 and Ilv3 into the cytosol we wanted to
overexpress these enzymes without their N-terminal
mitochondrial targeting sequences. Mitochondrial tar-
geting sequences are not clearly defined but have a
length of typically 15-50 amino acids, forming positively
charged amphipathic alpha helices [20]. Therefore, we
tested different truncations for the individual enzymes.
The choice for the truncated version of Ilv5 was based on
previously published results [15] whereas the truncated
versions of Ilv2 and Ilv3 were derived from alignments
with bacterial homologues which do not possess mito-
chondrial import sequences (Figure 2A). Furthermore, the
Mitoprot program was used for validation [21]. In the case
of IIv3AN19, additionally the version IlV3AN19”F was
included adding the negatively charged amino acids D and
E after the initial methionine to disturb any random posi-
tive charges.

The wild-type as well as various truncated ORF versions
of ILV2, ILV3 and ILV5 were cloned via homologous
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recombination into multicopy overexpression plasmids
with and without a six-histidin (6His)-tag at their
C-termini. After transformation into CEN.PK2-1C the
(6His)-tagged versions were used to verify in Western
blot analyses that all truncated enzymes were indeed
expressed with their expected sizes (Figure 2B-D).

Localization of truncated llv enzymes by indirect
immunofluorescence microscopy
To test the localization of the truncated Ilv enzymes, in-
direct immunofluorescence microscopy analyses were per-
formed. Localization of the truncated enzymes was
compared with their mitochondrial wild-type counterparts
and the cytosolic marker protein Hsp70 (Figure 2E-G).
The Ilv2AN54 variant was clearly re-localized out of
the mitochondria, most probably into the cytosol, al-
though it seemed to cluster in a specific, undefined
region of the cells (Figure 2E). The localization of
[Iv2AN85 was difficult to determine but it was also
not homogeneously distributed within the cells. Ilv5AN48
clearly co-localized with the cytosolic marker protein
as already shown before (Figure 2F) [15]. In the case
of Ilv3, the Ilv3AN19 variant was found to be in the cyto-
sol although some prominent punctuated patterns could
be observed which might indicate aggregation of the pro-
tein (Figure 2G). All the other truncated Ilv3 variants
including IIv3AN19"F showed an increasing tendency to
accumulate in these punctuated patterns.

Complementation tests with truncated Ilv enzyme
versions in their respective single deletion mutants

To analyze the properties of the truncated Ilv enzymes,
complementation tests were performed in single ilv dele-
tion strains by growth tests on media lacking valine or
isoleucine. Deletion mutants were constructed for ilv2,
ilvs and ilv3 in strain CEN.PK2-1C, resulting in strains
Isoy8, Isoyl2 and IsoylO, respectively. The multicopy
plasmids expressing the various truncated Ilv versions or
the corresponding wild-type enzymes, with (not shown)
or without C-terminal 6His-tags, as well as empty vector
controls were transformed into the respective deletion
mutants. If the individual truncated enzymes were re-
localized out of the mitochondrial matrix into the cyto-
sol but still were functional we expected to see at least a
partial complementation of the growth defect depending
on whether the metabolic intermediates are able to cross
the mitochondrial membranes or not.

For Ilv2 both truncated versions mediated very slow
growth within seven days of incubation (Figure 3A). In
the case of IIVGAN48 only a few single colonies growing
in the absence of valine could be observed (Figure 3B).
However, when we tested complementation of the iso-
leucine auxotrophy of the ilv5 strain by Ilv5AN48 faint
growth of all the cells could be observed. For Ilv3 the
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Figure 2 Cytosolic re-localization of the isobutanol synthesis enzyms llv2, llv5 and llv3. (A) N-terminal amino acid sequences of the
precursor proteins Ilv2, Ilv5 and Ilv3. The N-termini of enzymes IIv2, llv5 and Ilv3 were shortened to eliminate the N-terminal import signal
sequences. Different truncations were constructed which were based on alignments with bacterial homologues and are indicated by inverted
triangles. Truncations predicted by Mitoprot analysis are indicated by arrows. (B-D) Western blot analyses of wild-type and N-terminally truncated
Iv2, Ilv5 and Ilv3 proteins carrying a C-terminal 6His-tag. CEN.PK2-1C cells containing overexpression plasmids for the different proteins were
grown on selective SCD media into the exponential growth phase, crude extracts were prepared and subjected to Western blot analyses. Bands
of interest are framed. Panel B: Lanel: IIV2AN54; Lane2: [IV2AN85; Lane3: wild-type IIv2. Panel C: Lanel: IlV5AN48; Lane2: wild-type IIv5. Panel D:
Lanel: IV3AN19; Lane2: IIV3AN34; Lane3: IIv3AN42; Laned: IIV3ANS0; Lanes: IvV3ANT9™; Lane6: wild-type IIv3. (E-G) Indirect immunofluorescence
microscopy of wild-type and N-terminally truncated proteins carrying a C-terminal 6His-tag. Yeast cells as under B-D were grown on selective
SCD media into the exponential growth phase, harvested and prepared as described in Material and Methods. a-His antibodies were applied for
the visualisation of Ilv enzymes, a-Hsp70 antibodies for cytosolic staining. Panel E: localization of Ilv2 variants. Panel F: localization of Ilv5 variants
and empty vector (ev). Panel G: localization of Ilv3 variants.
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truncated version IIVBAN19 fully complemented the the absence of valine (Figure 3C). However, the other
growth defect comparable to the wild-type enzyme and  shortened Ilv3 versions did not complement the growth
even the IlV3ANI19”F version mediated fast growth in  defect at all. Taken together with the localization
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Figure 3 Growth complementation analyses of single ilv
deletion mutants. Isoy8, Isoy10 and Isoy12 were transformed with
plasmids overexpressing genes for wild-type or truncated Ilv2, llv3
and Ilv5 proteins. As a negative control strains were transformed
with empty vectors. Transformants were grown in selective SCD
medium, washed with sterile water and spotted in serial dilutions on
selective SMD medium agar plates containing or lacking valine or
isoleucine, respectively, and incubated for up to 7 days at 30°C.
Panel A: Isoy8 containing empty vector or plasmids encoding
wild-type IIv2, IIV5AN54 and IIlV2ANSS, respectively. Panel B: Isoy12
containing empty vector or plasmids encoding wild-type Ilv5 and
Ilv5AN48, respectively. Panel C: Isoy10 containing empty vector or
plasmids encoding wild-type Ilv3, lIv3AN19, lIlv3ANT9F, IIV3AN34,

Ilv3AN42 and Ilv3AN50, respectively.

analyses these results suggest that the truncated Ilv2 ver-
sions as well as the IIV5AN48 and the Ilv3AN19 variants
are active enzymes even outside the mitochondrial
matrix.
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To verify the enzyme activity of the Ilv5AN48 variant
with 2-acetolactate, keto acid isomeroreductase enzymes
assays were performed with crude extracts of the ilv5
deletion strain Isoyl2 transformed with plasmids overex-
pressing wild-type ILVS, ILV5AN48 or empty vector.
Extracts from cells overexpressing the wild-type ILV5
gene catalyzed conversion of 2-acetolactate to 2,3-dihy-
doxyisovalerate at a maximal rate of 23.11 £ 2.04 mU mg
protein™ whereas the reaction in extracts derived from
cells expressing ILVSAN48 proceeded at a rate of
1593+ 1.77 mU mg protein™". These results show that
the truncated Ilv5 enzyme is nearly as active as the wild-
type enzyme and suggest that its inability to complement
growth of ilv5 mutants in the absence of valine, but not
of isoleucine, is only due to the failure of either its sub-
strate 2-acetolactate (produced by mitochondrially
localized Ilv2) to leave mitochondria or its product 2,3-
dihydroxyisovalerate (needed by mitochondrially loca-
lized Ilv3) to enter mitochondria (or both) or to its low
activity on 2-acetolactate.

Re-localization of the whole valine biosynthesis pathway
into the cytosol

To test whether the combination of all three truncated
re-localized Ilv enzymes could replace the mitochondrial
valine biosynthesis pathway, a triple ilv deletion mu-
tant (Ailv2 Ailvs Ailv3; Isoyl6) was constructed in
CEN.PK2-1C. Plasmids expressing ILV2AN54, ILV5AN48
and ILV3AN19 were transformed together into this strain.
As a negative control empty vectors and as a positive con-
trol plasmids overexpressing wild-type ILV2, ILV5 and
ILV3 were also transformed, respectively. Cells expressing
the re-localized Ilv enzymes could grow in the absence of
valine or isoleucine although slightly slower than those
with the wild-type enzymes (Figure 4A). These results
suggest that the new cytosolic valine biosynthetic pathway
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Figure 4 Complementation experiments of triple ilv deletion mutants. Isoy16 was transformed with plasmids expressing genes for wild-type
and truncated IIV2AN54, Ilv5A48 and Ilv3A19 enzymes, respective combinations, and codon-optimized genes for truncated lIv2AN54, [lv5A48 and
IIV3A19 proteins. Transformants were grown on selective SMD + leu-val + ile medium, washed with sterile water and spotted in serial dilutions
on selective SMD medium agar plates containing or lacking valine or isoleucine, respectively, and incubated for up to 7 days at 30°C (detailed
description in Methods). Cells containing empty vectors were pregrown on selective SMD + leu + val + ile medium. Panel A: Isoy16 containing
empty vectors or plasmids encoding for wild-type or truncated Ilv2, Ilv5 and IIv3, respective combinations. Panel B: Isoy16 expressing plasmid
p425-synthlLV235. Isoy16 transformed with empty vector were spotted as a negative control.
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can replace the native mitochondrial valine pathway of S.
cerevisiae.

Expression of codon-optimized truncated ILV genes

To increase Ilv protein expression for improved cytosolic
KIV production, the codon usage of ILV2AN54, ILV5AN48
and ILV3ANI9 genes was adapted to that of the highly
expressed glycolytic genes of S. cerevisiae but without
changing the amino acid sequence. This approach has
previously been shown to overcome bottlenecks in engin-
eering of heterologous pathways and to improve sugar
utilization in S. cerevisiae engineered for pentose fermen-
tation [22,23]. In ILV2AN54 285 from 635 codons were
changed, in ILV5AN48 67 from 349 and in ILV3AN19 223
from 568. All three truncated codon optimized ILV-ORFs
were cloned on the same 2 p multicopy plasmid and were
placed between strong and constitutive glycolytic gene
promoters and terminators, resulting in plasmid p425-
synthILV235.

Strain Isoyl6 was transformed with plasmid p425-
synthILV235 and as negative control with an empty vec-
tor, respectively, and tested for valine and isoleucine
prototroph. Cells expressing the codon-optimized ver-
sion of the valine pathway grew even faster than those
with the non-optimized truncated ILV genes (Figure 4B).
The results suggest that codon-optimization clearly
improved the flux through the new cytosolic valine
pathway.

Enhancement of Ehrlich pathway reactions

Basically, the complete isobutanol pathway should con-
sist of three parts of different pathways: glycolysis to
provide pyruvate, valine biosynthesis to metabolize pyru-
vate to KIV and the Ehrlich pathway which is required
for degradation of KIV to isobutanol. Metabolization of
KIV to isobutanol can be catalyzed by KDC-like and
ADH enzymes [2,19] (Figure 1). Therefore, in order
to complete the isobutanol pathway we investigated
candidate enzymes useful for decarboxylation of KIV
to isobutyraldehyde and reduction of isobutyraldehyde
to isobutanol.

KDC activity of Aro10

As KIV-decarboxylase (KDC) activity links valine metab-
olism and Ehrlich pathway, a high activity of this enzyme
reaction is essential for high levels of isobutanol produc-
tion. In S. cerevisiae five endogenous enzymes encoded
by PDCI1, PDC5, PDC6, AROI0 and THI3 have been
postulated to be involved in the decarboxylation of KIV
to isobutyraldehyde [2,19]. The three Pdc enzymes are
also involved in pyruvate decarboxylation in the ethanol
fermentation pathway of yeast. As in a final industrial
isobutanol producing yeast strain, the three PDC genes
are important targets for blocking ethanol fermentation
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and as Thi3 activity contributes rather to leucine and
isoleucine catabolism [19,24-27], we investigated the
effects of overexpression of AROI10 [28,29] and of the
bacterial kivD of Lactococcus lactis [30].

To determine KDC activity of suitable enzymes, the
strain Isoy21 (a CEN.PK2-1C Apdc™ suppressor strain)
was transformed with overexpression plasmids encoding
Arol0, KivD or the empty vector, respectively. Addition-
ally the wild-type strain CEN.PK2-1C was transformed
with an empty vector. Overexpression of AROIO in
strain Isoy21 could nearly fully substitute the KDC
activity of Pdc enzymes (32.83+8.72 mU mg protein™)
(Figure 5) whereas kivD overexpression resulted in only
partial complementation (19.61+2.52 mU mg protein™)
(Figure 5). As AROIO overexpression could not restore
ethanolic fermentation of Isoy21 and did not show any de-
carboxylation activity on pyruvate (data not shown),
Arol0 was a promising candidate enzyme for increasing
the decarboxylation of KIV for increased isobutanol
production.

Alcohol dehydrogenases

The conversion of isobutyraldehyde to isobutanol is the
final enzymatic reaction in the isobutanol pathway.
Enzymes which in principle might catalyze this reduc-
tion are encoded by the genes ADHI, ADH2, ADH3,
ADH4, ADHS or SFAI, but the specificities of some of

50

40

KIV-Decarboxylase activity [mU/mg prot.]

&

Figure 5 KDC activities. Strain Isoy21 was transformed with
plasmids overexpressing AROT0 of S. cerevisiae, kivD of Lactococcus
lactis or the empty vector. The wild-type strain CEN.PK2-1C was
transformed with the empty vector. Transformants were grown in
selective SCD medium and KDC activity determined in crude
extracts and normalized to the amount of protein.
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these enzymes to catalyze the reaction isobutyraldehyde
to isobutanol remain unknown [19]. To determine the
most suitable dehydrogenase for reduction of isobutyral-
dehyde, the adhl adh3 adhS triple deletion strain JDY4
was transformed with plasmids overexpressing ADHI,
ADH2, ADH3, ADH4, ADH6 or SFAI. Both, isobutyralde-
hyde and acetaldehyde were tested as substrates (Figure 6).
Whereas Adhl overexpressing cells exhibited the highest
activity with acetaldehyde (219.68 +21.3 mU mg protein™),
the highest activity with isobutyraldehyde was measured for
Adh2 (22.98 +0.215 mU mg protein™") (Figure 6). The
overexpression of ADH3, ADH4, ADHG6 or SFAI resulted
in no or only minor activities with both substrates.
This experiment revealed Adh2 as a promising candi-
date enzyme for increased isobutyraldehyde reduc-
tion activity.

Isobutanol fermentations with cells containing the
cytosolic isobutanol pathway

In order to test whether the overexpression of the re-
localized enzymes Ilv2AN54, Ilv5AN48 and Ilv3AN19
can increase production of isobutanol, fermentations in
selective SCD medium without valine were performed
under aerobic conditions in shake-flasks. Unexpectedly,
CEN.PK2-1C containing empty vectors produced nearly
the same amounts of isobutanol (13.70 +4.05 mg/L) as
the strains overexpressing wild-type or truncated Ilv pro-
teins (12.27 £ 0.90 mg/L and 10.31 + 1.04 mg/L, respect-
ively). Isobutanol production could not further be
increased by the additional overexpression of AROIO
and ADH?2 (not shown). Even when we used strain CEN.
PK2-1C overexpressing the codon-optimized truncated
ILV versions from plasmid p425-synthILV235, with or
without simultaneous overexpression of AROIO and
ADH?2, we could not observe significant higher isobuta-
nol production rates (not shown), isobutanol titers (up
to 12.80 +2.44 mg/L and 11.96 + 2.58 mg/L, respectively)
and yields (0.30+£0.07 mg per gram of glucose and
0.27 £ 0.06 mg per gram of glucose, respectively).
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We speculated that the lack of an increase in isobuta-
nol production might be due to competition between
the synthetic isobutanol pathway and the host valine
biosynthesis pathway. Therefore, the triple ilv deletion
strain Isoyl7 (Ailv2 Ailv5 Ailv3) expressing the cytosolic
isobutanol pathway was used for further fermentation
experiments. Isoyl7 was derived from Isoyl6 by evolu-
tionary engineering for improved growth in the absence
of valine after expression of genes encoding truncated
[Iv2AN54, IIv5AN48 and IIv3AN19, but was finally cured
for the plasmids. In isobutanol fermentation experi-
ments, however, it performed similar to Isoyl6 (see
below).

Isoyl7 overexpressing wild-type ILV genes produced
52.57 +4.81 mg/L isobutanol within 96 hours (Figure 7).
This was surprising as the corresponding wild-type
strain overexpressing the same genes only produced
12.27 £0.90 mg/L (see above). Moreover, obviously this
was not due to mutations selected in the evolutionary
engineering optimization of Isoyl7 from Isoyl6, as in
other isobutanol fermentations Isoyl6 and 17 transfor-
mants performed nearly the same (see below). Add-
itional overexpression of ARO10 and ADH2 increased
isobutanol production only slightly (57.69 +3.87 mg/L)
(Figure 7). In comparison, Isoyl7 overexpressing the
truncated ILV genes produced 123.77 +£21.20 mg/L iso-
butanol. Moreover, additional overexpression of AROI0
and ADH2 resulted in a further increase up to
184.56 + 55.00 mg/L with a yield of 3.81 + 0.30 mg isobu-
tanol per g of glucose (Figure 7). Glucose consumption
rates of all the strains producing isobutanol were very
similar and glucose was consumed after about 50-
60 hours of fermentation (data not shown). These results
show that overexpression of truncated ILV genes as
compared to wild-type ILV genes resulted in a more
than 2-fold increase in isobutanol production which
could be even more increased by simultaneous over-
expression of AROI0 and ADH2. In comparison to
the wild-type strain CEN.PK2-1C elimination of the
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Figure 7 Isobutanol production with strains expressing the cytosolic valine pathway. Fermentation experiments were performed
aerobically at 30°C in shake flasks in selective SCD-val medium containing 40 g/L glucose. Transformants were pregrown aerobically in
fermentation medium, harvested and inoculated in fresh medium. Experiments were performed in triplicate with given standard deviations. Panel
A: isobutanol production of Isoy17 expressing different plasmid combinations encoding for: empty vectors (closed circle); Aro10 and Adh2 (closed
square); wild-type Ilv2, llv5 and Ilv3 (closed triangle), wild-type IIv2, IIV5, 1Iv3, Aro10 and Adh2 (inverted closed triangle); truncated IIV2AN54,
IIV5AN48 and IIV3AN19 (closed diamond); truncated IIV2AN54, IIVSAN48, [Iv3AN19, Aro10 and Adh2 (open circle), codon-optimized truncated
IIV2AN54, IIVSAN48 and Ilv3AN19 (open square), codon-optimized truncated IIvV2AN54, [IVSAN48, Iv3AN19, Aro10 and Adh2 (open triangle). Panel
B: isobutanol yield of Isoy17 expressing different plasmid combinations encoding for genes which are indicated below the axis. Plus symbols
denote overexpression of the indicated gene.
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competing mitochondrial valine biosynthesis pathway
resulted in an about 13-fold increase in isobutanol
production by the cytosolic isobutanol pathway.

Isobutanol fermentations using codon-optimized ILV
genes

As in the growth experiments in media lacking valine or
isoleucine the codon-optimized ILV genes showed prom-
ising properties (Figure 4B), these genes were also tested
in isobutanol fermentation experiments. For this pur-
pose Isoyl7 was transformed with the multicopy plasmid
p425-synthILV235 expressing the three truncated ILV
genes in a codon-optimized version behind strong pro-
moters. For comparability with the former results, Isoyl7

was additionally transformed with empty vectors eliminat-
ing the auxotrophic requirements of the cells. Plasmids
overexpressing AROI0 and ADH?2 were also transformed.
After 96 hours of fermentation, Isoyl7 containing p425-
synthILV235 produced 320.40+49.48 mg/L isobutanol
with a yield of 7.41+1.18 mg per g glucose (Figure 7).
Additional overexpression of ARO10 and ADH?2 increased
isobutanol production up to 505.07 £ 76.29 mg/L with a
yield of 10.85+1.12 mg per gram of glucose (Figure 7).
Again, glucose consumption rates of the strains producing
isobutanol were very similar and glucose was consumed
after about 50-60 hours of fermentation (data not shown).
These results mean that yeast strains expressing the new
codon-optimized cytosolic isobutanol pathway instead of
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the competing mitochondrial valine biosynthesis pathway
produce more than 30-fold the amount of isobutanol.

Isobutanol fermentations with cells containing single
ilv2,5 or 3 gene deletions

The fermentation results with the triple ilv deletion strain
indicate a competition between the mitochondrial valine
and the cytosolic isobutanol pathway. In order to test
whether the increase in isobutanol production was due to
the deletion of the whole mitochondrial valine pathway or
whether only the initial enzymatic reaction or one of the
other two reactions is involved, fermentation experiments
were performed with the ilv single deletion mutant strains
Isoy8 (Ailv2), Isoyl0 (Ailv3) and Isoyl2 (AilvS) trans-
formed with p425-synthILV235, respectively. As controls,
the wild-type strain CEN.PK2-1C and the non-evolved
Isoyl6 triple ilv strain were transformed with plasmid
p425-synthILV235. As before, CEN.PK2-1C containing
plasmid p425-synthILV235 exhibited very low isobutanol
production (19.48 + 0.99 mg/L) (Figure 8). Isoyl6 contain-
ing p425-synthILV235 produced similar amounts of iso-
butanol (363.29 £ 65.77 mg/L) as was produced before by
the evolved strain Isoyl7 expressing p425-synthILV235.
The ilv2 single deletion strain where only the initial reac-
tion of the mitochondrial valine pathway is blocked pro-
duced up to 630.27 +14.18 mg/L isobutanol with a yield
of 14.86 + 0.55 mg per g glucose (Figure 8). Isoy12 (Ailv5
strain) expressing the codon-optimized cytosolic Ilv path-
way produced 264.35+44.96 mg/L and IsoylO (Ailv3)
produced 74.88+7.53 mg/L isobutanol. These results
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indicate that the absence of an increase in isobutanol pro-
duction in the wild-type can be explained by competition
for pyruvate between the new cytosolic isobutanol path-
way with the native mitochondrial pathway but that also
the other enzyme reactions or metabolic intermediates of
the mitochondrial valine pathway may interfere with the
synthetic isobutanol production pathway.

Discussion

The implementation of driving forces is important for
high titer synthesis of biochemical products via genetic
engineering (e.g. in [31]). Such driving forces might push
or pull metabolic intermediates into, through or out of
existing or engineered metabolic pathways. For the pro-
duction of isobutanol with S. cerevisiae we have devel-
oped new driving forces which, when combined, resulted
in the final production of more than 630 mg/L isobuta-
nol with a yield of nearly 15 mg/g glucose. The highest
values reported before for recombinant S. cerevisiae
were about 150 mg/L isobutanol and a yield of 6.6 mg/g
glucose [12,18].

Our strategy aimed to construct a cytosolic isobutanol
production pathway. The driving force for this new
pathway was provided by the simultaneous elimination
of the competing mitochondrial valine synthesis path-
way. This should increase the availability of intracellular
pyruvate and should push pyruvate into the cytosolic
isobutanol pathway. Overexpression of the cytosolically
localized enzymes of valine biosynthesis in wild-type
yeast cells did not increase isobutanol production but only
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Figure 8 Isobutanol production of different ilv single deletion strains expressing the codon-optimized cytosolic valine pathway.

S. cerevisiae strains Isoy8 (Ailv2), Isoy10 (Ailv3), Isoy12 (Ailv5) and Isoy16 (Ailv2Ailv5Ailv3) were transformed with plasmid p425-synthlLV235,
pregrown and used for inoculation of fresh selective SCD-val containing 40 g/L glucose to an ODggonm Of 1. Fermentation experiments were
performed aerobically in shake flasks at 30°C. The effect of different gene deletions were compared concerning productivity and yield of
isobutanol in S. cerevisiae strains. CEN.PK2-1C transformed with p425-synthlLV235 was used as a control. Panel A: isobutanol production of S.
cerevisiae strains transformed with plasmid p425-synthlLV235: CEN.PK2-1C (closed circle); Isoy8 (closed square); Isoy12 (closed inverted triangle);
Isoy10 (closed triangle); Isoy16 (closed diamond). Panel B: isobutanol yield of different ilv deletion strains carrying p425-synthlLV235. Deleted
genes are indicated below the axis and are denoted with open triangle. Plus symbols denote intact genes.
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when at least the first competing reaction of the mito-
chondrial pathway, Ilv2, was eliminated. Overexpression
of the mitochondrially located wild-type enzymes did only
slightly increase isobutanol production in i/lv mutant cells
but not in wild-type cells, in contrast to previous work
[11]. These results might be explained either that the cyto-
solic KIV synthesis pathway is much more efficient than
the mitochondrial pathway, that the transport of pyruvate
into mitochondria or KIV out of mitochondria is limiting
a mitochondrial pathway for isobutanol production and/
or that the endogenous expression of wild-type Ilv
enzymes (at least Ilv2) somehow has a negative effect on
isobutanol production. To test the possibility of a simple
competing role of the two pathways it will be highly re-
vealing to delete the only very recently discovered genes
coding for the mitochondrial pyruvate carrier [32].

As mitochondrial targeting sequences are not strictly
defined we tested different versions of N-terminally trun-
cated enzymes. Western blot and immunofluorescence
analyses indicated for most of them that they were
expressed and indeed located in the cytosol. To test en-
zymatic activities of the truncated versions, in the case of
Ilv2 and Ilv3 we could use only a growth based assay as it
was not possible to establish enzyme activity tests. When
we expressed the two truncated Ilv2 versions in the cyto-
sol but let Ilv5 and Ilv3 in the mitochondria we could de-
tect slow growth on media lacking valine or isoleucine.
This indicated that the enzymes were still able to convert
pyruvate into 2-acetolactate which, however, only slowly
crossed the mitochondrial membrane and could serve
there as the substrate for Ilv5. In accordance with this, we
also expressed the bacterial /LV2 counterpart alsS from B.
subtilis in the ilv2 mutant strain which could complement
the growth deficiency in the absence of valine comparable
to IIv2AN54 (not shown). Indeed, it is very likely that
2-acetolactate can cross the mitochondrial membrane as
it is known that brewing yeasts produce diacetyl (2,3-buta-
nedione) during fermentations. Production of diacetyl
results from decarboxylation of 2-acetolactate outside the
mitochondria [33,34]. In the case of Ilv5, nearly wild-type
enzymatic activities for the re-located enzyme could be
determined in enzyme assays. For the cytosolic Ilv3 ver-
sions IIv3AN19 and IIv3AN19"F growth of ilv3 mutants
was completely restored in the absence of valine or isoleu-
cine. As transport of KIV across the mitochondrial mem-
brane is known [11] this indicates that DIV can be
efficiently exported out of mitochondria. The three stron-
ger truncated Ilv3 versions did not complement and prob-
ably have lost their enzymatic activities.

Normally, IIv2 is regulated by Ilvé [35]. As Ilv6 is
involved in feedback inhibition of Ilv2 by branched-chain
amino acids we omitted Ilv6 in the cytosolic isobutanol
pathway. For ilv5 mutants a petite phenotype is described
as Ilv5 seems to be involved in the maintenance of wild-
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type mitochondrial DNA [36]. However, we could not find
any indications for the occurrence of a petite phenotype in
our i/v5 mutant strains. Ilv3 is a [Fe-S] cluster containing
enzyme [37]. In yeast cells, iron-sulphur clusters are nor-
mally synthesized within mitochdrondria by the ISC as-
sembly machinery which is similar to the bacterial ISC
system [38]. Extra mitochondrial iron-sulphur proteins
are synthesized by the cytosolic assembly system CIA
which requires both the mitochondrial ISC assembly and
export machineries. Furthermore, for cytosolic and nu-
clear iron-sulphur protein biogenesis the CIA assembly
machinery needs an unknown component which is
exported by the ISC export machinery [39,40]. It seems
that for the cytosolic Ilv3 version the loading with iron-
sulphur can also be accomplished by the cytosolic assem-
bly machinery CIA.

After we had successfully replaced the mitochon-
drial by a cytosolic valine pathway, we next optimized
the flux through the new isobutanol pathway by
adapting the codon usage of the valine biosynthesis
genes to the codon usage of the highly expressed
glycolytic genes of S. cerevisiaze. The strongly expressed
genes in S. cerevisiae like those coding for glycolytic pro-
teins have adapted a highly biased codon usage with a
strong preference for the most abundant tRNAs and can
make up more than 50% of the proteins in a yeast cell. For
most amino acids, the glycolytic genes are restricted to
only one of the corresponding synonymous codons [22].
As we wanted to convert the anabolic valine pathway to a
catabolic isobutanol pathway, we thought that it might be
beneficial to adapt even the genes from the yeast valine
pathway to the codon usage of the catabolic glycolytic
pathway in yeast. Thereby the codon adaptation index
(CAI) values of the three valine synthesis enzymes were
changed from 0.356 (ILV2ANS54), 0.448 (ILV3AN19) and
0.846 (ILV5AN48) to 0.991 (ILV2ANS54), 0.987 (ILV3AN19)
and 0.992 (ILV5AN48), respectively. The CAI measures
the deviation of a given protein coding gene sequence
with respect to a reference set of genes which here are the
highly expressed yeast genes [41]. Indeed, by turning the
‘anabolic’ genes into highly expressed 'catabolic' genes, we
could significantly improve production of isobutanol. This
demonstrates that even expression of endogenous yeast
genes can be increased by converting them into the glyco-
lytic codon usage.

The next crucial driving force was the valine require-
ment of our yeast strains. As KIV is not only the final
substrate for the transamination reaction into valine but
also an intermediate in the isobutanol production path-
way, we argued that the valine requirement would serve
as a pulling force to increase the production of KIV. In-
deed, only in the absence of valine we could observe sig-
nificant isobutanol production in the triple ilv mutant
strain expressing the truncated Ilv enzymes. When we
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added valine to the fermentation medium only basal
levels of isobutanol production could be observed.

To complete the isobutanol pathway a suitable KIV
decarboxylase (KDC) and an alcohol dehydrogenase with
high activity on isobutyraldehyd had to be found. Indeed,
overexpression of AROIO restored KIV decarboxylase
activity in a pdcl, 5, 6 mutant strain but not pyruvate
decarboxylase activity. Moreover, already in a previous
work enhanced Arol0 activity had resulted in increased
isobutanol production [12,18]. As also the bacterial
homologue KivD of L. lactis had been used successfully
in other studies [7,18], we included it in the enzymatic
assays. However, as our construct performed worse than
Arol0, we did not test it in fermentations. The last en-
zymatic reaction of the isobutanol pathway can be cata-
lyzed by different yeast oxidoreductases [19,42]. To find
an enzyme with a high activity on isobutyraldehyde we
overexpressed ADHI, ADH2, ADH3, ADH4, ADH6 and
SFAI and tested them by in vitro enzyme assays.
Whereas Adhl had the highest activity with acetalde-
hyde, Adh2 had the highest activity with isobutyraldehyd
and NADH. Moreover, in previous work overexpression
of ADH2 was successfully used for isobutanol produc-
tion [7,9,43]. Indeed, by overexpressing ADH2 simultan-
eously with AROI10 we could further increase isobutanol
yields. We could not confirm high activity of Adh6 on
isobutyraldehyde as had been suggested previously [12].

It should be stressed that the isobutanol concentrations
reported in our study are clearly underestimated. In a con-
trol experiment we observed that 35% of the isobutanol
was lost during 5 days of incubation at 30°C due to evap-
oration. Moreover, in our experiments isobutanol produc-
tion stopped when glucose was exhausted. Therefore,
feeding more glucose would certainly increase isobutanol
titers. Nevertheless, the most promising step to push more
pyruvate into the new pathway is to delete pyruvate de-
carboxylase and to replace ethanol fermentation com-
pletely by isobutanol fermentation. This, however, would
create new problems as pdc mutants are known to

Table 1 S. cerevisiae strains used in this work
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become auxotrophic for cytosolic acetyl-CoA which is
needed for e.g. lipid synthesis [44]. Moreover, whereas
in glycolysis NADH is produced as a reduced cofac-
tor, Ilv5 in the isobutanol pathway exclusively uses
NADPH. As S. cerevisiae lacks transhydrogenases to
transfer hydride-ions from NADH to NADP”, the cofactor
levels within the cell will be imbalanced [45]. Therefore,
either the yeast glycolytic glyceraldehydes dehydrogenase
must be exchanged against an NADP" dependent enzyme
(together with alcohol dehydrogenase) or the cofactor pre-
ference of Ilv5 must be changed to NADH. Such a strategy
could be successfully established in E. coli where under
anaerobic conditions isobutanol production reached
nearly 100% of the theoretical yield [46]. The final chal-
lenge, however, would be to overcome the toxicity of iso-
butanol on microbial organisms. For this, the most
promising way is to find effective methods to extract iso-
butanol already during the fermentations.

Conclusions

In this work, we expressed a valine biosynthetic pathway
from pyruvate to KIV in the cytosol of yeast cells. Simul-
taneous blocking of the mitochondrial pathway and
omission of valine from the fermentation medium
pushed and pulled pyruvate into and through the new
pathway. Changing the ‘anabolic’ codon usage of valine
synthesis genes into a ‘catabolic’ codon usage further
improved flux through the new pathway. Overexpression
of KDC and ADH activities increased the conversion of
KIV to isobutanol. The highest measured isobutanol titer
of 0.6 g/L represents the highest titer ever reported for
recombinant S. cerevisiae.

Methods

Strains and media

Yeast strains used in this work are listed in Table 1 and
plasmids in Table S1 (see Additional file 1: Table S1) [47-
50]. S. cerevisia was grown in selective medium (1.7 g/L
Difco yeast nitrogen base without amino acids and 5 g/L

Strains Relevant genotype Source

CEN.PK2-1C MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 EUROSCARF, Frankfurt

Isoy8 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Ailv2:loxP This work

Isoy10 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Ailv3:loxP This work

Isoy12 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Ailv5:loxP This work

Isoy16 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Ailv2:loxP Ailv5:loxP Ailv3:loxP This work

Isoy17 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Ailv2:loxP Ailv5:loxP Ailv3:loxP; This work
unknown beneficial mutations for growth on media lacking valine

Isoy21 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Apdc1:loxP Dpdc5:loxP Dpdc6:loxP; This work
unknown beneficial mutations for growth on media with glucose as sole carbon source

JDY4 MATa leu2-3,112 ura3-52 trp1-289 his3-_1 MAL2-8c SUC2 Aadh1:loxP Aadh3:loxP Aadh5::loxP-kanMX-loxP Boles, lab stock
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ammonium sulfate), supplemented with amino acids but
omitting the selective plasmid markers nutrients as
described previously [51], containing 2% glucose as sole
carbon source (SCD). Compared to SCD medium, SMD
medium was synthetic medium only supplemented for
auxotrophic requirements. For maintenance of resistance
plasmids, media contained appropriate concentration of
antibiotics. Concentrations for geneticin were 200 mg/L,
for hygromycin B 200 mg/L and 100 mg/L for nourseo-
thricin. “Selective medium” means medium without auxo-
trophic requirements or with antibiotics for plasmid
selection.

For serial dilution growth assays using single Ailv dele-
tion strains, cells expressing ILV2, ILV3 or ILVS variants
were cultivated till exponential phase in selective SCD
media. Cells were collected and resuspended in sterile
water to an ODggonm, of 1. Cultures were serially diluted in
10-fold steps and 7 pl of each dilution was spotted
on selective SMD agar plates. As a positive control, select-
ive SMD media were supplemented with leucine, isoleu-
cine and valine. To investigate valine and isoleucine
requirements, transformants were also spotted on SMD +
leu media lacking valine or isoleucine or both. Plates were
incubated at 30°C up to one week. For growth assays with
ilv2 and ilv5 mutants 0.5% ammonium sulfate was used as
nitrogen source whereas 0.5% leucine +0.5% isoleucine +
0.5% valine was employed as nitrogen source for ilv3
mutants. For serial dilution growth assays using triple Ailv
deletion strains, tranformants containing plasmids encod-
ing for different combinations of Ilv2, Ilv5 and Ilv3 var-
iants were streaked out or replica plated onto selective
SMD + leu + ile media lacking valine. After colonies
appeared they were collected and resuspended in sterile
water to an ODggonm Of 1. Cultures were serially diluted in
10-fold steps and 7 pl of each dilution was spotted
on selective SMD + leu agar plates containing valine and/
or isoleucine, with 0.5% proline as sole nitrogen source. In
aerobic batch cultivations, S. cerevisiaze was grown in
selective SCD media.

Plasmids were amplified in Escherichia coli strain
DH5a (Gibco BRL, Gaithersburg, MD) and strain SURE
(Strata gene, La Jolla, CA). E. coli transformations were
performed via electroporation according to the methods
of Dower et al, (1988) [52]. E. coli was grown on LB
(Luria-Bertani) medium with 40 pg/ml ampicillin for
plasmid selection.

Construction of ilv deletion strains

Strains Isoy8, Isoyl0O, Isoyl2 and Isoyl6 were con-
structed employing the lox:kanMX:loxP/Cre recom-
bines system and the 'short flanking homology PCR'
technology [47]. Instead of geneticin resistance (kanMX)
gene, hygromycine B resistance gene (hphNTI) and
nourseothricin resistance gene (natNT2) were also used to
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generate ilv deletion mutants. The primers used for the
construction of the replacement PCR constructs are listed
(see Additional file 1: Table S2). Primers were obtained
from biomers.net. Yeast transformations were carried out
as described previously [53,54]. As induction of the galact-
ose-inducible, glucose-repressible Cre recombines on
plasmid pSH47 by galactose appeared to have deleterious
effects on cells containing several loxP-sites, we routinely
used maltose (which has a weaker repressive effect than
glucose) to induce/derepress loxP-Cre recombination.

Plasmid construction

Plasmids and primers used in this publication are listed in
Table S1 and Table S2, respectively (see Additional file 1).
The coding regions of ILV2, ILVS5, ILV3, AROIO,
ADHI1,ADH2, ADH3, ADH4, ADH6 and SFAI of S.
cerevisiae strain CEN.PK2-1C were amplified by PCR,
respectively, and cloned into the linearized vectors
p423H7, p424H7, p426H7, pRS42KH7, pRS42HH7
and pRS42NH7 by recombination cloning omitting
the six histidine codons [55].

Furthermore, ORFs of ILV2, ILV5, ILV3 and truncated
variants of ILV2, ILV5 and ILV3 of CEN.PK2-1C were
also cloned by recombination cloning into the vector
p423H7, p426H7 and pRS42KH?7, respectively, fusing six
histidine codons at their 3’-terminal ends. In addition,
the ORF of kivD of Lactococcus lactis was fused with six
histidine codons at the 5'-terminal end.

Codon-optimized ORF versions of ILV2, ILVS5 and ILV3
were obtained from Geneart AG (Regensburg, Germany)
by changing the original codons of the respective genes to
those used by the genes encoding glycolytic enzymes in S.
cerevisiae [22]. The codon-optimized ILV2ANS54 was
cloned behind a truncated HX7T7 promoter fragment [56]
and CYCI terminator, the codon-optimized ILV5AN48
behind FBA1 promoter and PGKI terminator and the
codon-optimized ILV3AN19 was under control of PFK1
promoter and FBA1 terminator. Furthermore, the plasmid
contained two nucleotide sequences (369 bp and 385 bp)
homologous to the yeast intergenic FMOI-locus, which
could be useful for integration into chromosomVIII. As
selection marker, it contained the geneticin resistance
gene (kanMX) flanked by loxP-sites. Codon-optimized
truncated ILV-ORFs, promoters and terminators were
amplified with primers listed (see Additional file 1: Table
S2). Linearized vector p425H7, amplified codon-optimized
truncated ILV ORFs, amplified promoter/terminator
elements (see Additional file 1 for plasmid p425-
synthILV235), amplified loxP-kanMX-loxP resistance gene
and 369 bp and 385 bp homologous to FMOI-locus were
transformed into Isoyl6. Transformants were replica pla-
ted on selective media lacking valine to select clones con-
taining functional vectors which enabled to complement
valine auxotrophy.
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Molecular techniques were performed according to
published procedures [57]. Yeast transformations and
resolution of plasmid DNA from yeast cells were carried
out as described previously [53,58].

Metabolite analysis

The concentrations of glucose, ethanol, glycerol and
acetate were determined by high-performance liquid
chromatography (Dionex) using a Nugleogel Sugar
810 H exchange column (Macherey-Nagel GmbH & Co,
Germany). The column was eluted with 5 mM H,SO, as
mobile phase and a flow rate of 0.6 ml/min at the
temperature of 65°C. Detection was done by means of a
Shodex RI-101 refractive index detector. For data evalu-
ation, Chromeleon software (version 6.50) was used.
Rates of glucose consumption were determined in the
phase of glucose growth.

Isobutanol concentration was measured by using static
head-space-gas chromatography combined with mass
spectrometry. The gas chromatograph (model 7890A,
Agilent, Waldbronn, Germany) was equipped with a
CTC PAL Combi XT auto sampler (CTC Analytics AG,
Zwingen, Switzerland) and a Series 5975C (Agilent,
Waldbronn, Germany) mass selective detector. Analyses
were separated on a DB5ht column (lenght of 30 m,
0.25 mm of an inner diameter, 0,1 pm in strength of sta-
tionary phase film; Agilent, Waldbronn, Germany). He-
lium was used as the carrier gas at a constant flow rate of
1 ml/min. Samples (2 ml in 20 ml sealed head space vials)
were investigated by applying the headspace option. After
incubation in the sample oven for five minutes at 95°C
800 pl of the gas phase were aspirated and injected into
the gas chromatograph. The method parameters were as
follows: inlet temperature: 250°C; injection mode: Split,
ratio 10:1; oven temperature program: 35°C for 1 min,
increased to 50°C with 10°C/min and finally to 200°C with
120°C/min, hold for 3 min before re-equilibration. The
temperature of the transfer line to the mass selective de-
tector was held at 280°C, the ion sources temperature
230°C and its quadrupole temperature at 150°C. Mass data
were recorded with a Scan/SIM combination of 45-100D
and 74.1D, respectively. For data evaluation and quantifi-
cation the Data Analysis tool from MSD ChemStation
E.02.00.493 (Agilent, Waldbronn, Germany) was used. The
single ion chromatogram of 74.1D, which corresponds to
the molecular ion species of isobutanol was integrated
and isobutanol concentration in per cent by volume were
inferred from a calibration line.

Batch fermentations

Cultures of laboratory strains (100 ml) were grown in
500-ml shake flasks at 30°C with constant shaking at
180 rpm. Precultures were grown in selective SCD
medium containing 4% glucose as the sole carbon
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source. Cells were washed with sterile water and inocu-
lated to an optical density at 600 nm (ODggonm) of 1 in
the same medium. During the fermentations equivalent
volumes of fermentation medium were added to cultures
after taking samples for metabolite and isobutanol ana-
lysis in order to compensate for volume losses. The dilu-
tions were considered in the calculations of metabolite
concentrations. Fermentations were started with differ-
ent precultures and were performed in triplicate with
the given standard deviations.

Western blot analysis

To test whether the N-terminally truncated Ilv enzymes
were expressed and were not degraded as a result of their
truncation and re-localization Western blot analyses were
performed. The plasmids expressing the wild-type and
truncated ORFs with 6His-tags at their C-termini were
transformed into strain CEN.PK2-1C. Transformants were
grown on selective SCD media into the exponential
growth phase. Cells were harvested and disrupted with
Y-PER®, which was used as recommended from provider
(Thermo Scientific). The protein content was determined
according to the method of Bradford (1976) and adjusted
for equal loading on a sodium dodecyl sulfate (SDS)-poly-
acrylamide gel [59]. Twenty micrograms of total protein
was applied in each lane. Preparation of cells was also per-
formed as described in Kushnirov (2000) [60]. For West-
ern blot analysis, protein was transferred from the SDS gel
to PVDF membranes by submerse electro blotting. Ilv-
6His were detected with mouse anti-His6 antibody
(Roche) and goat anti-mouse immunoglobulin G coupled
to peroxidase (Roche).

Subcellular localization with indirect immunofluorescence
microscopy

To localize truncated ILV enzymes in yeast indirect
immunofluorescence microscopy was performed using
CLSM (Confocal Laser Scanning Microscopy; TCS SP5
Leica Microsystems AG, Wetzlar, Germany). Therefore,
yeast transformants expressing C-terminally His6 epitope-
tagged variants of ILV2, ILV5 and ILV3 from S. cerevisiae
(carried on multicopy vectors) were cultivated until early
exponential growth phase in selective SCD medium. An
appropriate volume of cells was treated with 1/3 volume
of PFA/PBS. Cells were washed two times with TDES buf-
fer (100 mM Tris—HCl pH 7.5; 5 mM EDTA; 25 mM
DTT; 1.2 M Sorbitol) and one time with 0.2 M phos-
phate/citrate buffer. After centrifugation the cell pellet
was incubated for one hour at 30°C in 0.2 M phosphate/
citrate buffer containing zymolyase (1 mg/ml). After incu-
bation cells were washed two times with PBS. Cell pellet
was resuspended in 0.5% Triton X 100/PBS and incubated
for 10 min at RT. Spheroplasts were immobilized on
coated cover slips which were treated before using with
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poly-L-lysine. After incubation of 10 min slips were
washed two times with PBS and treated with 100 mM
Glycin/PBS for 15 min to block residual aldehyde groups.
Following, slips were blocked over night with 5% BSA/
PBS. Blocked slips were treated with primary antiserum in
an appropriate dilution in 1-5% BSA/PBS for at least 3 h
followed by two washing steps in PBS. For C-terminally
His6 epitope-tagged variants of ILV2, ILV5 and ILV3 var-
iants mouse anti-His6 and as a control rabbit anti-Hsp70
were used. After washing steps slips were incubated with
secondary fluorochrome-labeled antiserum (anti-mouse-
cy3 1:500) in an appropriate dilution in 5% BSA/PBS for
2 h. Immobilized cells were washed one time with PBS
and conserved in Aqua Poly/Mount (Polysciences, Inc.).
To detect enzymes with bounded antibodies followed sec-
ondary antiserum were used, donkey anti-mouse im-
munoglobulin G coupled to Cy3 for C-terminally His6
epitope-tagged enzymes and goat anti-rabbit immuno-
globulin G coupled to Cy2 for Hsp70 SSB1.

Stacks of images were restored using Huygens. Loca-
tion of enzymes in prepared cells were evaluated by
using Imaris 4.1.3 software (Bitplane AG, Zurich,
Switzerland) and Photoshop CS 2 software (Adobe
Systems, San Jose, USA).

Enzyme assays

To measure enzyme activities, yeast transformants were
cultivated until early exponential growth phase in selective
SCD medium. Cells were harvested and disrupted with
glass beads (diameter, 0.45 mm) using a Vibrax cell dis-
rupter (Janke & Kunkel, Staufen, Germany). Protein con-
centration was determined with the method of Bradford
(1976) by using bovine serum albumin as a standard [59].
Enzyme assays were performed immediately after prepar-
ation of crude extracts. One unit of enzyme activity was
defined as conversion of one pmol substrate per minute.

llv5 assay

To confirm enzyme activity of truncated Ilv5, Isoyl2
expressing truncated ILV5AN48 (carried on multicopy
vector) was investigated. As a control Isoyl2 was trans-
formed with an empty vector or vector encoding wild-
typ Ilv5. Assays were carried out in reaction mixtures
containing 0.23 mM NADPH, 2 mM MgCl, in 50 mM
Tris—HCI buffer (pH 7.4), and crude cell extracts. The
reaction was started by addition of 3-4 mM acetolactate
and monitored by measuring oxidation of NADPH spec-
trophotometrically at 340 nm. All enzyme assays were
carried out at least in triplicate. Synthesis of acetolactate
was based on Krampitz (1948) and production was con-
firmed through NMR spectroscopic analysis [61]. 1 H —
Spectra were made on a 400 MHz spectrometer (Bruker
BioSpin GmbH, Germany) with 200 scans and spectral
width of 7. As reference the water signal was set at
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4.7 ppm as it is in accordance with the signal range for
water protons. For the deuteriumlock 10% deuteriumoxid
was admixed to the aqueous solution. The puls sequence
was a 90° puls. Following, the FID (Free Induction Decay)
was recorded and converted by Fourier Transformation in
absorptive signals. Prepared spectra were evaluated by
using TopSpin software (Bruker, Germany).

Aro10 assay

KIV decarboxylase activity in cell extracts of recombin-
ant yeast strains was determined at 30°C. Strain Isoy21
was transformed with p424H7-Aro10 and p424H7-kivD,
respectively, to investigate enzyme activity, and as a
control Isoy2l and CEN.PK2-1C containing empty
vector were used, respectively. Assays were carried
out in reaction mixtures containing 0.23 mM NADH,
2 U alcohol dehydrogenase in 40 mM imidazolbuffer
(buffer contained 40 mM imidazol, 5 mM MgCl,,
0.2 mM thiaminepyrophosphate, pH 7.0 was adjusted
with KOH), and crude cell extracts, as described previously
[44]. The reaction was started by addition of 2 mM KIV
and monitored by measuring oxidation of NADH
spectrophotometrically at 340 nm. Pdc1,5,6 triple mutants
expressed only a very low KDC activity (8.66 + 0.41 mU mg
protein™) whereas the wild-type strain exhibited the high-
est activity (38.73 + 6.24 mU mg protein™).

Adh assay

The enzymes Adhl, Adh2, Adh3, Adh4, Adh6 and Sfal
were investigated to determine the specific enzyme activity
towards isobutyraldehyde and acetaldehyde in crude cell
extracts. The plasmids encoding these enzymes were
transformed into JDY4. Assays were carried out in reac-
tion mixtures containing 0.23 mM NADH in 50 mM
MOPS (pH 7), and crude cells extracts. The reaction was
started by addition of substrates isobutyraldehyde
(50 mM) or acetaldehyde (10 mM). The oxidation of
NADH was monitored spectrophotometrically at 340 nm.
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