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Aim. Ventilation with pure oxygen (hyperoxic ventilation: HV) is thought to decrease whole body oxygen consumption (VO,).
However, the validity and impact of this phenomenon remain ambiguous; until now, under hyperoxic conditions, VO, has only
been determined by the reverse Fick principle, a method with inherent methodological problems. The goal of this study was to
determine changes of VO,, carbon dioxide production (VCO,), and the respiratory quotient (RQ) during normoxic and hyperoxic
ventilation, using a metabolic monitor. Methods. After providing signed informed consent and institutional acceptance, 14 healthy
volunteers were asked to sequentially breathe room air, pure oxygen, and room air again. VO,, VCO,, RQ, and energy expenditure
(EE) were determined by indirect calorimetry using a modified metabolic monitor during HV. Results. HV reduced VO, from 3.4
(3.0/4.0) mL/kg/min to 2.8 (2.5/3.6) mL/kg/min (P < 0.05), whereas VCO, remained constant (3.0 [2.6/3.6] mL/kg/min versus
3.0 [2.6/3.5] mL/kg/min, n.s.). After onset of HV, RQ increased from 0.9 (0.8/0.9) to 1.1 (1.0/1.1). Most changes during HV
were immediately reversed during subsequent normoxic ventilation. Conclusion. HV not only reduces VO,, but also increases the
respiratory quotient. This might be interpreted as an indicator of the substantial metabolic changes induced by HV. However, the

impact of this phenomenon requires further study.

1. Introduction

Oxygen (O3) is widely used in emergency medicine as an
acute measure for many different pathologies. Most of the
emergency guidelines, such as for acute myocardial infarc-
tion or hemorrhagic shock, include usage of supplemental
oxygen with the aim to improve macrohemodynamics, oxy-
gen transport, and tissue oxygenation [1-4]. However, the
application of pure oxygen is associated with side effects,
including hyperoxic arteriolar constriction and reduced
functional capillary density, which reduces nutritive organ
blood flow and increases peripheral oxygen shunting [5-8].
Despite these negative side effects, hyperoxic ventilation
is thought to prevent tissue hypoxia by other means: Chapler
et al. were among the first to recognize that breathing 100%
O, significantly decreases oxygen consumption and opti-

mizes oxygen delivery—oxygen consumption balance [9], a
phenomenon that has been confirmed [10-14]. However, it
is not known whether this repeatedly observed VO, decrease
after onset of hyperoxic ventilation is not merely the result of
erroneous measurement, since all data collected thus far have
been obtained by the reverse Fick method from data obtained
by a pulmonary artery catheter (cardiac output [CO], arterial
oxygen content [Ca0O;], and venous oxygen content [CvO,]).
There are several methodological weaknesses inherent to this
indirect calculation of VO, that make results interpretation
difficult [15-17].

Of note, however, VO, can not only be calculated but
also directly measured using a metabolic monitor for low
inspiratory oxygen fractions (FiO, < 0.6). Although theoreti-
cally possible, VO, measurement up to an inspiratory oxygen
fraction of 100% has not been implemented to a metabolic



monitor so far. As a consequence, no study exists, where VO,
has actually been directly measured during HV. In contrast
to the Fick method, a metabolic monitor makes it possible to
measure concomitant changes of carbon dioxide production
(VCO;) and the respiratory quotient (RQ) during HV.
Changes in these 2 important indicators of oxygen balance
may facilitate interpretation of the observed changes in VO,.

The aim of this study was to determine VO,, VCO,, and
RQ during normoxic and hyperoxic ventilation in healthy
volunteers by means of a modified metabolic monitor,
especially designed for VO, measurement during HV (Oxy-
con Pro, VIASYS Healthcare, Hoechberg, Germany). We
hypothesized that HV not only decreases VO, but also alters
VCO, and RQ, probably indicating substantial changes in
oxygen metabolism during HV versus normoxic ventilation.

2. Materials and Methods

2.1. Study Design. Following approval by the local ethics
committee and informed consent, the experiments were
performed in 14 volunteers (7 men and 7 women) as a single
blinded, nonrandomized cross-over study.

2.2. Measurement of VO, and VCO,. Volunteers were con-
nected to a modified metabolic monitor (Oxycon Pro,
VIASYS Healthcare, Hoechberg, Germany) that is designed
to measure VO,, VCO,, and RQ during hyperoxic ventila-
tion. The basic version of this metabolic monitor has been
thoroughly described and validated elsewhere [18]. Exper-
imental measurements of VO, and VCO, were obtained
by calibrating the metabolic monitor with the inspiratory
oxygen concentration of every time point (room air, pure
oxygen, and room air) and applying a modified, validated
Haldane equation. Expired gas was passed through a flow
meter, oxygen analyzer, and carbon dioxide analyzer. The
flow meter and gas analyzers were connected to a computer,
which calculated minute ventilation, oxygen uptake (VO;),
carbon dioxide production (VCO,), the respiratory quotient
(RQ), and energy expenditure (EE) each minute, from
adapted equations for hyperoxic ventilation. Values obtained
over 20 min were averaged and are given as the median value
for each time point.

2.2.1. Participants. Fourteen healthy nonsmoking volunteers
(7 men and 7 women) agreed to participate in this study.
Health histories and physical examinations were completed,
and written informed consent was obtained according to
protocols approved by the University of Frankfurt ethics
committee. Prior to the experiments, the subjects were
interviewed and examined for the following exclusion
criteria: neurological, cardiovascular, pulmonary, hepatic,
renal, hematopoietic, gastrointestinal, metabolic, or psychi-
atric dysfunction; receiving medication on a regular basis.
Subjects’ physical characteristics were as follows: age 29.3
(range: 24-37) yrs; height 176 cm (range: 162-198 cm);
weight 74.5 kg (range: 53—-105 kg).

2.3. Experimental Protocol. Measurements were made as
subjects watched television while seated in a beach-chair
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position in a temperature-controlled room (21°C). Measure-
ments were made using the metabolic monitor connected
to an intensive care respirator (Vela, VIASYS Healthcare,
Hoechberg, Germany). The gas mixture was administered
through a nonrebreathing system with a tightly fitted face-
mask. The resistance of the breathing system was not com-
pensated for by pressure support throughout the protocol.
No continuous positive airway pressure was applied, since
volunteers had no artificial airway. The inspiratory oxygen
fraction was controlled by oxygen sensors in the circuit. After
30 min of adaptation, the volunteers sequentially breathed
room air (FiO, 0.21; time point NOX 1), pure oxygen (FiO,
1.0; time point HOX), and room air (FiO, 0.21; time point
NOX 2) again for 20 min each. Before each measurement,
the metabolic monitor was recalibrated according to the
manufacturer’s instructions. After each change in FiO,, an
equilibration period of 8 min was allowed to elapse, to
achieve steady state conditions. We demonstrated in 3 pilot
experiments that after a wash-in phase of 5min, a steady-
state oxygen uptake is reached, and any changes in VO, can-
not be attributed to wash-in kinetics after this time period.
All the volunteers were blinded to the FiO, used; however,
the different FiO, were not applied in a randomized order.

2.4. Monitoring. Brachial blood pressure was recorded at
5min intervals by a semiautomated noninvasive oscillo-
metric sphygmomanometer (Datascope Passport, NJ, USA).
Pulse oximeter saturation (SpO,) was monitored non-
invasively by a standard anesthesia monitor (Datascope
Passport, NJ, USA). A digital 12-channel ECG recording was
registered continuously throughout the protocol (Cardiax
Mesa, Benediktbeuren, Germany). VO,, VCO;, RQ, and EE
were determined as described above. No further invasive
measurements have been established.

2.5. Statistical Analysis. Data are presented as medians (Q1-
Q3). Calculations and statistical analysis were performed
with the R software package (R-Project, 2.2.0, R-Foundation,
Vienna, Austria). Distribution of data was tested by a
Shapiro-Wilks test. Because not all data were normally
distributed, differences between NOX 1, HOX, and NOX 2
were analyzed with a Wilcoxon-signed rank test. Post hoc
analysis of differences detected with the Wilcoxon signed-
rank test was performed by the Bonferroni-Holm method.
Overall, statistical significance was accepted at P < 0.05.

3. Results

All the 14 volunteers completed the study, and none reported
discomfort from the facemask or the administration of pure
oxygen.

Figure 1 and Table 2 illustrate the changes of VO,, VCO,,
RQ, and EE during the 3 time points. After onset of HV,
VO, was reduced 18% at time point HOX (P < 0.05),
whereas VCO, remained unaltered (n.s.). Simultaneously,
RQ increased by 22% (P < 0.05) and EE decreased by 12%
(P < 0.05). Table 1 depicts the hemodynamic changes during
the study: HV slightly increased SaO, and decreased HR
(both P < 0.05). Arterial blood pressures (AOPgys, AOPgia)
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FIGURE I: Single-experiment depiction of oxygen consumption (VO,), carbon dioxide production (VCO,), respiratory quotient (RR), and
energy expenditure (EE) for the NOX 1 (baseline, FiO, 0.21), HOX (FiO, 1.0), and NOX 2 (FiO, 0.21 again) time points. SP < 0.05 time

point versus NOX 1.

TaBLE 1: Hemodynamic parameters.

TaBLE 2: Metabolic parameters.

NOX 1 HOX NOX 2
AOP,,, [mmHg] 115 (107/122) 115 (110/122) 118 (109/125)
AOPg;, [mmHg] 69 (66/74) 70 (66/78) 71 (67,10/76,90)
HR [min] 67 (60/77) 64 (56/71)8 66 (61/72)
Sa0, [%] 98 (97/98) 100 (99/100)S 98 (97/99)

Hemodynamic parameters. All values are presented as medians (Q1-Q3) for
time points NOX I (baseline, FiO; 0.21), HOX (FiO; 1.0), and NOX 2 (FiO,
0.21).

§P < 0.05 time point versus NOX 1.

AOPygy;: systolic arterial pressure; AOPg;,: diastolic arterial pressure; HR:
heart rate; SaO,: arterial hemoglobin saturation.

were not affected by HV. At time point NOX 2, VO, returned
to the value obtained before HV, whereas VCO, and RQ were
significantly decreased, even below the threshold of NOX 1
(—=13% and —27%, resp., both P < 0.05). EE returned to
baseline at time point NOX 2.

NOX 1 HOX NOX 2
VO, ;
(ml/min/ke] 3.4(3.0/4.0)  2.8(2.5/3.6)S  3.4(3.3/4.0)
RQ 0.9 (0.8/0.9)  1.1(L0/L.1)S 0.8 (0.7/0.8)8
VCO, 5
(mLminkg >0 (2.6/3.6)  3.0(2.6/3.5)  2.6(2.4/3.1)
EE 23.4 20.6 22.7
[kcalkg™'day~!'] (21.1/27.2) (18.5/28.0)8 (21.9/27.4)

Metabolic parameters. All values are presented as medians (Q1-Q3) for time
points NOX I (baseline, FiO, 0.21), HOX (FiO; 1.0), and NOX 2 (FiO,
0.21).

§P < 0.05 time point versus NOX 1.

VO,: oxygen consumption; RQ: respiratory quotient; VCO,: carbon dioxide
production; EE: energy expenditure.

4. Discussion

The main findings of this study were as follows. (1) Changes
from normoxic to hyperoxic ventilation significantly reduced



VO,. (2) After the onset of HV, the respiratory quo-
tient (RQ) increased, whereas carbon dioxide production
(VCO,) remained unaltered. (3) Most variables immediately
returned to baseline when FiO, was returned to 0.21 at time
point NOX 2. Only VCO, and RQ recovered slower and did
not reach NOX 1 levels within the measurement period of
NOX 2.

Whole-body VO, can be measured by a pulmonary
artery catheter or by a metabolic monitor. For resting
patients breathing room air, both methods yielded satis-
factory results for daily clinical practice. It is well known,
however, that the accuracy of a standard metabolic monitor
is rather low if FiO, increases [19]. This is even more
true for ventilation with pure oxygen. As a consequence, it
has been impossible to use standard metabolic monitors to
accurately determine VO, above a maximum FiO, of 0.6
due to technical problems (mainly the Haldane transfor-
mation; for technical details see Appendix). Therefore, all
studies of hyperoxic ventilation and oxygen consumption
have been conducted with a pulmonary artery catheter.
However, this approach has several weaknesses, which cast
the results obtained by this method into doubt [15-17, 20,
21]. Apart from the inferior reproducibility of the reversed
Fick method, the most important finding is a consistent
negative bias of calculated VO, values versus calorimetric
VO, data observed by the majority of authors during
normoxic conditions [22]. We determined VO,, VCO,, and
RQ during HV for the first time by using a modified
metabolic monitor, which is not limited by these restrictions.
We did not measure VO, simultaneously by means of a
pulmonary artery catheter during our protocol to directly
compare the results of both methods. Since the main goal of
our study was to determine VO, during HV, placement of a
pulmonary artery catheter might be judged an inappropriate
risk for the subjects participating in the study. Furthermore,
several studies already demonstrated a decline of VO, during
HV by means of a pulmonary artery catheter [10-14, 23,
24]. Using a modified metabolic monitor, we were able
to replicate the results of these authors by a completely
different technique. Consequently, we can state that HV
actually decreases VO,, and that this phenomenon is unlikely
to be judged a measurement artifact due to the method used.
The fact that there are no studies validating the Delta Trac
Pro for use with HV might be seen as a limitation to this
study. Although the basic version of our metabolic monitor
has been described and validated thoroughly elsewhere [18],
there are no studies validating the Oxycon Pro during HV.
This has to be stated as a limitation to our study.

Several mechanisms might be responsible for the
observed decrease of VO, during hyperoxic ventilation. It
is well known that HV reduces heart rate and myocardial
oxygen consumption [11, 25]. It might therefore be specu-
lated that the HV-induced decline of whole-body VO, might
originate from a decrease of myocardial O, consumption.
However, because we observed only a negligible reduction
of heart rate during HV, it seems unlikely that a concomi-
tant decline of myocardial oxygen consumption is solely
responsible for the observed decline of whole-body oxygen
consumption.
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Furthermore, it is known that breathing O,-enriched
air transiently decreases minute ventilation by 10-20%, a
phenomenon which might reduce respiratory work load and
O, consumption [26]. However, this effect, which has been
attributed to a decrease in carotid body activity, lasts for less
than 5min [10]. Thereafter, minute ventilation returns to
the baseline value and after another 5 min breathing of O,-
enriched air increases minute ventilation up to 15% [27]. We
therefore assume that this effect played a minor role in our
setting.

Using a modified metabolic monitor for the determi-
nation of VO, and VCO, during HV yielded an additional
result, which has not been observed previously: hyperoxic
ventilation does not alter carbon dioxide production, despite
a significant decline in oxygen consumption. This phe-
nomenon might be explained by 2 different mechanisms:
(1) During anaerobiosis, the VCO,/VO, ratio (RQ) increases
above 1.0, because alternative metabolic pathways (mainly
anaerobic glycolysis) are engaged, using less-molecular oxy-
gen for the production of the same amount of carbon diox-
ide. For example, the respiratory quotient increases during
hypovolemia as soon as the anaerobic threshold is reached
[28]. However, it seems very unlikely that HV resulted in
severe anaerobic conditions in our setting, and this expla-
nation might only play a minor role. (2) A second possible
explanation for the decline of VO, despite constant VCO,
during HV might be the fact that exposure to hyperoxia
causes a substantial change in the metabolism of cells and
tissues [29]. In Chinese hamster ovary cells exposed to
hyperoxia for 24 h or more, Schoonen et al. found that the
rate of oxygen consumption was substantially lower than that
of cells maintained at normoxia [30]. The reduction in ATP
generation from oxidative phosphorylation was partially off-
set by increased glycolysis; however, steady-state ATP levels
were significantly reduced. One possible mechanism for
this phenomenon is that aconitase, a mitochondrial matrix
enzyme responsible for the hydration of citrate and isocitrate
at the beginning of the citric acid cycle, is inactivated by
exposure to hyperoxia [31]. These substantial changes in the
oxidative pathway might at least partially explain the changes
of VO, despite constant VCO, during HV. However, little is
known about the different effects of HV on cellular oxygen
metabolism in different organs in vivo, and therefore the
relevance of this mechanism remains unclear. However, HV
resulted in substantial changes of RQ in our model, and we
speculate that changes of cellular O, metabolism might, at
least in part, be responsible for the changes of VO, during
HV.

The clinical impact of these HV-induced effects is
ambiguous. HV is frequently used to treat hypoxemia and to
preserve tissue oxygenation by increasing CaO, during var-
ious pathological conditions where a critical restriction of
oxygen transport is assumed (myocardial infarction, normo-
volemic anemia, hemorrhagic shock, etc.) [32-34]. However,
it has been shown by many different investigators that HV
regularly increases CaO, but usually fails to increase local
and systemic oxygen delivery (DO;) [11, 34-36]. This
phenomenon is mainly attributed to the fact that HV induces
generalized arteriolar constriction, which is accompanied
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by reduced functional capillary density [5-8] and nutritive
organ blood flow, and increased peripheral oxygen shunting
[8, 35]. As a consequence, HV-induced oxygen shunting
might result in higher venous oxygen partial pressures and
lower tissue oxygen partial pressures [7]. This should result
in a reduction of VO, at the expense of peripheral O,
delivery. However, we did not assess for signs of peripheral
acidosis in our setting.

In summary, we speculate that the additional amount of
O, actually transported to the cells after initiation of HV
might be negligible, since HV increases CaO, but the accom-
panying decrease in nutritive organ blood flow prevents
an increase of regional and whole-body DO,. Furthermore,
this mechanism is in contrast to the beneficial effects of HV
on oxygen transport and tissue oxygenation described above.
One might speculate that the beneficial effects of HV
during many different pathologies may to some extent be
contributed to the fact that oxygen consumption of tissues
is decreased by HV, and to the fact that HV increases CaO,.
However, no clear proof of this concept is provided by the
current data.

5. Conclusion

The change from normoxic to hyperoxic ventilation reduces
whole-body oxygen consumption, regardless of the detec-
tion method, whereas carbon dioxide production (VCO,)
remains unaltered. This phenomenon might be caused by
substantial metabolic changes during HV; however, clarifica-
tion of this phenomenon and its impact on oxygen transport
and tissue oxygenation require further study.

Appendix

The Haldane Transformation

Standard metabolic monitors quantify VO,, VCO,, and RQ
by continuous measurement of the in- and expiratory oxygen
fractions (F;O; and F,O,). The difference F;O, of F;O, and
F.O; can be calculated as

F40; = F;0; — F.Opr. (A.1)
Using these values and the in- and expiratory CO, concentra-

tions (F;CO, and F.CO;) and the Haldane transformation,
the respiratory quotient can be calculated as follows:

_ 1- FiOZ
RQ= F,0,/(8.CO, - FCO)) RO, A
Because the respiratory quotient RQ is defined as
_ VCO,
RQ = VO, ’ (A.3)
VO, can be calculated as
_ VCO,
VO, = RQ (A.4)

However, using the Haldane transformation, an FiO, of 1.0
will regularly result in a respiratory quotient of 0. Therefore,
VO, cannot be calculated this way for FiO, = 1.0.

Calibration of the metabolic monitor and application
of an adapted Haldane algorithm enables measurement
of VO, and VCO, during hyperoxic conditions. However,
the underlying algorithm has not been published by the
manufacturer of the metabolic monitor.
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