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Flow in conical shock waves: A signal for the deconfinement transition? 
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We investigate the hydrodynamical flow of nuclear matter in a conical-shock-wave scenario of a 
central, asymmetric heavy-ion collision. This work is rnotivated by a suggestion of Chapline and 
Granik that the creation of a deconfined phase of quarks and gluons behind the shock will appreci- 
ably increase the deflection angle of the matter flow. We employ several hadron matter equations of 
state recently suggested to solve the conical-shock-wave problern and cornpare the results with a 
calculation using the bag equation of state. We find that large differences in the deflection angle ob- 
tained in the rest frarne of the shock vanish in the laboratory System. However, a signature for the 
deconfinement transition rnay be the transverse rnomentum of the matter flow, which is up to a fac- 
tor of 2 larger for the quark-gluon plasma. Thus, an excitation function of the mean transverse 
rnomentum would show an increase at a certain bombarding energy, signaling the onset of the 
deconfinement transition. 

I. INTRODUCTION 

One of the most intriguing questions of nuclear physics 
nowadays is how nuclear matter behaves at high densities 
and temperatures.'p3 Heavy-ion collision experiments at 
various bombarding energies are up to now the only 
means to probe this behavior far from the nuclear-matter 
ground state. To  extract information for theoretical con- 
cepts of strongly interacting matter, one has to compare 
the experimental results with dynamical models of 
heavy-ion collisions, which require these concepts as in- 
put. Such models may describe the collision in micro- 
scopical or macroscopical terms, such as, e.g., the hydro- 
dynamical approach.'-3 The appeal of the latter is that 
properties of nuclear matter are parametrized in terms of 
macroscopic variables which are easy to interpret and are 
related by an equation of state (EOS). A great deal of 
effort has been spent to extract this EOS. ' .~  Up to now, 
because of the complexity of quantum chrornodynamics 
(QCD), this EOS is of phenomenological origin. 

To  justify the application of ideal hydrodynamics to 
heavy-ion collisions, one assurnes that interactions be- 
tween particles happen on a scale which is srnall as com- 
pared to the system's size. They should also happen 
sufficiently often and fast to establish local thermodynam- 
ical equilibrium. Still, the full (3 + lbdimensional prob- 
lem requires enormous numerical e f f ~ r t . ~  Therefore, 
models have been developed which try to appropriately 
parametrize the actual flow pattern in a collision in sim- 
ple terms and thus simplify the hydrodynarnical equa- 
tions. 

One of them is the one-dimensional shock model, con- 
venient to describe the central region in symmetric head- 
on co~lisions.~ For a central collision of a small projectile 
with a large target, the conical-shock-wave rnodel was 
d e ~ e l o ~ e d , ~  and refined.'" In this case, since the projec- 
tile velocity is supersonic even for intermediate-energy 
heavy-ion collisions, a conical shock wave may form, 

which travels ahead of the projectile through the target 
nucleus, compressing the target matter. After certain 
simplifying assumptions, one is able to apply the equa- 
tions of the oblique-shock-wave problem9-11 to fix the 
flow velocity and the thermodynamical variables immedi- 
ately behind the conical shock wave. 

To determine the full (conical) flow pattern behind the 
shock, one may arguex that, to some extent, the situation 
in such an asyrnrnetric collision resembles the case when 
a bullet (the projectile) moves through a fluid (the target) 
with supersonic velocity. Thus, the solution of the rela- 
tivistic Taylor-Maccoll may be convenient to 
describe the flow of nuclear matter behind the conical 
shock.'' 

In Ref. 7 the oblique-shock-wave problem and in Ref. 8 
the relativistic Taylor-Maccoll problem were investigated 
with the following result: let us assume that, as predicted 
by QCD lattice s i m ~ l a t i o n s , ' ~  a first-order phase transi- 
tion to a deconfined phase, the so-called quark-gluon 
plasma (QGP),  takes place across the shock front.16 Then 
the flow pattern behind the shock is appreciably affected: 
as measured in the rest frame of the shock, the matter 
flow is nearly twice as strongly deflected from the original 
direction ahead of the shock, if a QGP is created as com- 
pared to the case where there is ordinary hadronic matter 
behind the shock wave. It was argued that this might 
serve as a signal for the deconfinement transition in 
heavy-ion collisions. The idea is that, if a QGP is created 
by the conical shock wave above a certain critical bom- 
barding energy, this increase of deflection shows up in the 
excitation function of the mean deflection angle of matter 
in asymmetric, central heavy-ion collisions, and thus 
rnarks the onset of the deconfinement transition. 

The aim of this work is twofold. First, the authors of 
Refs. 7 and 8 used a particularly simple version of the 
hadron matter EOS, i.e., an EOS with a constant adiabat- 
ic index i- =(a lnp /a lnn ), (p is the pressure, n the net 
baryon density, and a the specific entropy). This enabled 
thern to obtain most results in analytical terms. In this 
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paper we now Want to show how more realistic equations 
of state for hadronic matter [with T = T ( n , u ) ]  can be 
treated in the formalism of the conical-shock-wave prob- 
lem, i.e., the oblique-shock-wave problem in the vicinity 
of the shock cone, and the Taylor-Maccoll problem 
behind the shock. We study their influence on the flow 
Pattern and, in particular, how they affect the importance 
of the deflection angle as a signature for the phase transi- 
tion to the QGP. The second aim is the following: since 
the results are so far obtained in the rest frame of the 
shock, we transform them to the observer's frame. This 
is usually the rest frame of the target, i.e., the laboratory. 
Here one is able to make definite predictions that can be 
experimentally confirmed. We find that the EOS of the 
matter under consideration has no influence on the 
deflection angle of matter in the laboratory frame. Rath- 
er, it is the transverse momentum of the matter flow 
which exhibits the features of the deconfinement transi- 
tion. 

In Sec. I1 the oblique-shock-wave problem is briefly re- 
viewed and solved for the hadronic equations of state of 
Refs. 17 and 18. In Sec. I11 we investigate the Taylor- 
Maccoll problem for the flow of nuclear matter described 
by the EOS of Ref. 17. The results are compared to the 
case when a Q G P  described by the MIT bag EOS is 
formed across the shock front."' In Sec. IV we interpret 
our results obtained in the rest frame of the shock after 
transforming them into the laboratory frame and point 
out some consequences concerning experimental detec- 
tion. In Sec. V we make some critical remarks concern- 
ing the applicability of the discussed picture of a heavy- 
ion collision and summarize this work. 

11. THE OBLIQUE-SHOCK-WAVE PROBLEM 
IK RELATIVISTIC KUCLEAR HYDRODYNAMICS 

Let us assume that the conical shock wave formed in a 
heavy-ion collision moves with constant Speed, given by 
the bombarding energy, through the target nucleus and 
that its opening angle 24 ,  which is given by the collision 
geometry, does not change (cf. Fig. 1).14 The flow is 
furthermore assumed to be steady and homogeneous 
ahead and along both sides of the shock front. Across 
the shock front it is assumed to be steady. Then, for a 
given initial state of matter ahead of the shock front and 
for given 4 and U ?  (the four-velocity of the target matter 
relative to the shock front) the equations of ideal relativ- 
istic hydrodynamics can be locally (i.e., in the vicinity of 
the shock front) reduced to the equations of the oblique- 
shock-wave 

Here E, p, and n are the energy density, the pressure, and 
the net baryon-number density, respectively. u  ", u ' are 
the components of the four-velocity up= y ( 1,ß) normal 
and tangential to the shock front (ß is the three-velocity) 
and u0  is the time component of u p .  [ A l  denotes 
A ,  - A , , where the index 2 refers to the state behind and 

FIG. 1. Schematic picture for the oblique-shock-wave prob- 
lern (flow along a wedge) to introduce notation used in the text. 

1 refers to the state ahead of the shock. Equations (1) re- 
late the initial state of matter and the upstream velocity 
to the state of matter and the downstream velocity im- 
mediately behind the shock front. If we furthermore as- 
sume that the flow behind the shock front is steady and 
homogeneous everywhere [i.e., that matter is character- 
ized everywhere behind the shock front by c„p„ n „ u  i; 
determined by Eqs. (1) and not only in a small vicinity of 
the shock], we end up with the hydrodynamical problem 
of flow along a ~ e d g e . ~ , ' ~  We note, however, that for a 
conical shock geometry one must account for the radial 
expansion of flow behind the shock front. This is done in 
Sec. I11 under the more stringent assumption of conical 
~7ow behind the shock. This requires in addition the solu- 
tion of the relativistic Taylor-Maccoll to deter- 
mine the state of matter behind the shock front. For the 
moment, however, let us first discuss the oblique-shock- 
wave problem. 

One immediately derives some important consequences 
from Eqs. (1  1. 

(a) The tangential component of the three-velocity ß, is 
continuous across the shock front: 

(b) The Rankine-Hugoniot-Taub-adiabat (RHTA) 
equationI9 for plane shocks holds also in this case: 

X =i E+P 1/71 is the generalized volume. Therefore, all 
final states of matter behind the shock front belong to the 
RHTA of the plane shock problem. The actual final state 
is, however, not uniquely determined by U ' ;  as in the 
plane case, but depends also on #. 

(C) The ratio of the normal components of the three- 
velocities ßi,ß2 is the same as for plane shocks: 
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(d) The product of the normal velocities is 

Consequences of this formula for the Mach angle in rela- 
tivistic flow problems will be discussed below. Note that 
in the nonrelativistic limit ß, << 1, and we regain the 
well-known result of Ref. 10. 

(e) Defining 

(ßozzßl = i ß l  1 in the plane shock problem), one is able to 
express the normal velocities PI,, and ß2,n as functions of 
4 and thermodynamical variables ahead of and behind 
the shock front: 

Consequences (al-(e) imply a very simple algorithm to 
solve the oblique-shock-wave problem for an arbitrary 
EOS: solving the plane shock problem, i.e., the RHTA 
equation for a given center (€,,P n ) one obtains a set of 
thermodynamic states ( ( ~ „ p „ n ,  1 ) .  For given u r  and 4 
one immediately derives ßt,ßI,, from geometrical con- 
siderations (cf. Fig. 1) and from ß:=u :Al+  u ), where 
u : = u :,, + u :,, . According to (7) one consequently 
knows ß,. One has now only to pick out the state 
( ~ „ p „ n , )  among all solutions of the RHTA equation, 
which yields, via (61 and (4), a ßo in agreement with that 
obtained via (7). Note that different combinations of U ?  

and 4 may yield the same ßo, i.e., the Same state 
( ~ ~ , p ~ , n ~ )  behind the shock front. Thus, the physical in- 
formation contained in the RHTA is not sufficient to 
uniquely determine the solution of the oblique-shock- 
wave problem. 

To this end, it is more convenient to use the so-called 
"shock-polar" representation.'' We define7 

From geometrical considerations (cf. Fig. 1) one readily 
expresses y and X as functions of 4 and 6, the deflection 
angle of matter behind the shock front: 

I 
X =  

1 + tand tan6 

Note that [from (2)] 

and thus 6 is completely determined by d and X, which is, 
in turn, given by the solution of the oblique-shock-wave 

problem. Hence y and X are uniquely determined by the 
solution of the oblique-shock-wave problem for given u '; 
and 4. Eliminating tan6 from (10) via (1 1) and tanq5 be- 
tween y and X in (10) one obtains 

Note that X is not constant, but depends on the particular 
solution of the RHTA. Thus, (12) defines in general not a 
circle but an epicyloid. For given U ,  the set of points 
(y,x) is the so-called "shock polar" (cf. Fig. 2). Each 
point ( y , x )  on this curve represents a solution of the 
oblique-shock-wave problem for a different shock angle 
4. Another representation of the solution of the oblique- 
shock-wave problem is to consider 6 as a function of 4 
(Ref. 10) icf. Figs. 3-5). I t  is completely equivalent to 
(121, but information about the magnitude of and X is 
not directly available [cf. Eq. (10)]. However, an advan- 
tage is that the deflection angle of matter can be directly 
read off. Therefore, we will use this representation in the 
following. 

Let us now present our results for oblique shock waves 
when the compressed state is hadronic matter. In this 
case Eq. (3) is the ordinary shock adiabat passing through 
its center ( ~ „ p  „ n ,), which we take to be the ground state 
of nuclear matter, E ,  =e0= 157 MeV fm-3, p ,  =po=O, n , 
=no=O. 17 fm-! To  calculate (3), we take the hadronic 
equations of state of Refs. 17 and 18. The corresponding 
shock polars in y-X and 6-4 representations are shown in 
Figs. 2-4. Note that the flow velocity behind the shock 
becomes supersonic if the shock angle is smaller than a 
certain value du. Above du,  shocks are called "strong" 
(solid lines in Figs. 2-41, below they are named "weak" 
(dotted lines in Figs. 2-4). In the limit 6 + 0 , 4 - + ~ / 2  
(corresponding to y-0, X < I) ,  we have ordinary strong 
plane shocks; in the limit 6-0, d=4, < n / 2  (corre- 
sponding to y -0,x -+ 1) the shock becomes merely a 
sonic disturbance. We note that the velocity of sound for 
the hadronic equations of state is calculated along the 
lines given in Ref. 17. 

FIG. 2. Shock polars in y-X representation for hadronic 
matter described by the Walecka model (n, =O. 158 91 fm-', 
p0=922 MeV, lower curve) and the equation of state of Ref. 18 
with Ko = 300 MeV (upper curve) for u := 10. Dotted lines cor- 
respond to supersonic flow behind the shock front, solid lines to 
subsonic flow. 



For a compression shock adiabat (3), we infer from (5) 
that, in this case (ß2,n +Bl,, =ßisinqbiw, [P] / [ E ]  

+ ( dp /d  E ),=P:, (the velocity of sound in the ground 
state), ß, =ßIcosdM 1, 

4, is the so-called Mach angle.9"0 Since 

for the equations of state of Refs. 17 and 18 (Ko is the 
ground-state incompressibility and p, the chemical po- 
tential in the ground state), the curves of Figs. 3 and 4 
cannot terminate at the origin (as for the QGP shock po- 
lar, See Fig. 5 below), but 6 has to vanish at the finite 
value qb=dM#O. One readily confirms that this value of 
4, in Figs. 3 and 4 is in accord with Eqs. (13) and (143 
(K, =300 MeV, po=922 MeV for the EOS of Ref. 18, 
Ko=248 MeV, p0=923 MeV for the EOS of Ref. 173. 

FIG. 3. Shock polars in 6-d representation for hadronic 
matter described by the Walecka model and the equation of 
state of Ref. 18 (parameters as in Fig. 2 ) .  (a) is the analogue to 
Fig. 2 (upper curve: EOS of Ref. 18, lower curve: Walecka 
model); (b) shows the influence of varying U: for the EOS of 
Ref. 18 (U: = I ,  10, 100,  1000 as indicated in the figure). Dotted 
lines correspond to supersonic flow behind the shock front, 
solid lines to subsonic flow. 

However, as one reads off Eq. (13), 4,w+0 as U:-+ co, 

which is confirmed in Figs. 3 and 4. Let us note that (13) 
implies 

with ~ , , = ß ~ , , (  1 -ß:0)-"2, and only in the nonrelativis- 
tic limit we regain the well-known result sinqb, =ßs,,/ß1. 

In Figs. 3(a) and 4(a) we show the influence of the 
stiffness of the equations of state under consideration. 
One observes that for the EOS of Ref. 18 and for the 
Walecka model the maximum deflection angle is in fair 
agreement with the results of Ref. 7, obtained with a 
Bethe-Johnson EOS. However, if the EOS becomes 
softer (e.g., if we consider the possible excitation of ha- 
dronic resonances such as in the EOS of Ref. 17, cf. Fig. 
4) the maximum deflection angle increases up to values in 
the range of that obtained with the MIT bag EOS for the 
QGP (Fig. 5 and Ref. 7). Since the difference is only a 
few degrees, the identification of QGP creation in oblique 
shock waves by means of the deflection angle may cause 
problems, even in the rest frame of the shock (for the dis- 
cussion of possible experimental identification, See also 
Sec. IV). 

To conclude this section let us note that the influence 

FIG. 4  As in Fig. 3, for the EOS of Ref. 17. (a) shows the 
influence of the stiffness of the EOS ( K , = 2 4 8 ,  256, and 266 
MeV, from above to below); (b) shows the influence of U: (for 
K , = 2 4 8  MeV). 
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FIG. 5. Ac in Fig. 3, for the MIT bag EOS. ia) shows the 
influence of varying the bag constant B (=400, 250, 140, 80 
MeVfmp3, from above to below); (b) the influence of U :  ifor 
B = 140 MeV fmp3). 

of the initial upstream velocity u is rather small as com- 
pared to that of the stiffness of the EOS: for the QGP 
[Fig. 5(b)] we observe that 6„, decreases monotonously 
by -2" only when U ,  is increased by an order of magni- 
tude. It changes, however, by - 10" if we vary the bag 
constant within the commonly accepted range of values 
[Fig. 5ia)I. We note that the Part of the shock polar cor- 
responding to small 4, 6 ( X  = l , y  << 1) is not physical, 
since it represents unlikely transitions from hadron to 
quark matter via a small amplitude shock discontinuity. 
For the hadronic EOS we get similar results: between a 
very stiff EOS (the Walecka model) and a soft EOS (the 
EOS of Ref. 17 with K ,  = 248 MeV) 6„, varies by - 13" 
[cf. Figs. 3(a) and 4(a)], while a variation of u changes 
6„, by only 5" [cf. Figs. 3ib) and 4(b)]. Note that Sm, 
has a maximum as a function of U ,  at U: = 10 and then 
decreases monotonously for all hadronic equations of 
state under consideration. 

111. THE RELATIVISTIC TAYLOR-MACCOLL 
PROBLEM 

The Taylor-Maccoll problem is the determination of 
the hydrodynamical flow Pattern of matter moving along 
an impermeable conical surface. Let us first note that 
there is, of Course, no such object as an impermeable cone 
in a heavy-ion collision. We rather assume that the flow 
of nuclear matter in a collision of a small projectile with a 
large target resembles that of air streaming along a bullet. 
Whether or not this assumption is viable cannot be prov- 
en, but it is very suggestive and leads to an appreciable 
simplification of the hydrodynamic equations. In Ref. 8 
the cone is thought to consist of projectile matter, play- 
ing the role of "spectators." 

Under certain c ~ n d i t i o n s ' ~ , ' ~  a conical shock front is 
attached to the tip of the cone. Thus, for given shock an- 
gle d one first solves (locally) the oblique-shock-wave 
problem, as done in Sec. 11. Then one accounts for the 
modification of the flow and the thermodynamical quan- 
tities behind the shock front due to the existence of the 

I shock cone 
shock cone 

FIG. 6. Schematic picture of the Taylor-Maccoll problem (flow around a cone). 



conical surface. Along this surface the component of the 
matter velocity normal to the surface vanishes. In physi- 
cal terms this means that the cone is impermeable. 

Matter is still in a steady state behind the shock, but 
that state is not globally homogeneous. Rather, the flow 
Pattern is azimuthally symmetric and the flow and the 
properties of the matter are homogeneous12 along conical 
surfaces with opening angles 28, with 8, 5 8 5 d ,  where 
28, is the opening angle of the conical surface (cf. Fig. 6). 
Thus, in spherical coordinates, all radial derivatives drop 
out of the hydrodynamical equations. Under the assump- 
tion of stationary, isentropic, irrotational flow the hydro- 
dynamic equations reduce to the continuity equation, 
Bernoulli's equation and the condition for irrotationality: 

d ß r 
c o n t  D,= 

n 

Combining these equations, one derives an ordinary 
differential equation for the variable ({-Dr, the relativis- 
tic Taylor-Maccoll equation 

where ß, is the velocity of sound. The result of Ref. 8 is 
obtained by substituting the value of ß: for the Bethe- 
Johnson EOS and exploiting Bernoulli's equation. Then 
a dependence on upstream quantities enters (17). This is, 
however, not a general feature of the relativistic version 
of the Taylor-Maccoll equation, as stated in Ref. 8, but is 
rather due to the special EOS used there. 

The problem entering the solution of (17) is that ß, de- 
pends in general on the density n .  A possible dependence 
on a second independent thermodynamic variable drops 
out, since the entropy per baryon D is constant in isentro- 
pic flow and thus given by the solution of the oblique- 
shock-wave problem. The density itself, however, is 
determined by the continuity equation. Thus, one has to 
solve simultaneously (17) and the first equation (16). 
Starting from 8=4  one decreases 8 step by step by a 
small amount until, at a certain value 8=8„ the polar 
coordinate of ß vanishes, ß,=c1=O. This is the condi- 
tion that no matter permeates the conical surface. Thus, 
the cone angle 8, is determined. In the original Taylor- 
Maccoll 8, and ßr at the cone's surface are 
given and (17) is integrated from 8=8, until at some 
value 8=4 the state of matter and the velocity coincide 
with that obtained as solution of the oblique-shock-wave 
problem. Thus, the shock angle 4 is found. 

In Fig. 7(a) we show the solution of the Taylor-Maccoll 
problem for the hadronic EOS of Ref. 17, i.e., ßr and ße 
behind the shock front as a function of 8 for various 
upstream velocities U ,  and a fixed shock angle d=45". 
As intuitively expected, ß, increases from its minimum 
value at the shock front to Zero at the cone's surface. 

FIG. 7. (a) Radial and tangential velocities as a function of 
the opening angle Q icf. Fig. 6) for the EOS of Ref. 17 with 
K,=248 MeV. The curves correspond to different values of the 
upstream velocity U ,  (in the upper Part from below to above: 
U: = 3 ,  5, 7, 10, 100, 1000, the corresponding curves in the lower 
Part can be identified by the fact that they terminate at the Same 
8=8,) for a shock angle d=45". Dotted lines: the flow velocity 
ß2=(ßt+ße) '  is supersonic; solid lines: ß, is subsonic. The 
absolute value of the flow velocity decreases when the flow lines 
approach the cone, due to the pileup of matter along the cone's 
surface. (b) As in (a), but with fixed U: = 10 and for different 
shock angles (in the upper Part from above to below: 4=10, 15, 
20, . . .  ,SO, 85"). 
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Simultaneously, ß, increases. However, since the density IV. OBSERVABLE CONSEQUENCES 

has to increase towards the cone (there is a pileup of OF QGP FORMATION - - 
matter along the cone due to the pressure exerted by the 
cone's surface), the total velocity ßz=(ßf ~-ß;)' '~ de- 
creases. Hence, the flow may change from supersonic 
(dotted line) immediately behind the shock front to sub- 
sonic (solid line) in the vicinity of the cone. 

Observe that there exists a maximum cone angle if 
M: -10, which is, of Course, related to the fact that for 
this value the deflection angle 6 immediately behind the 
shock has a maximum as a function of M: [cf. Fig. 4(b)]. 

In Fig. 7(b) we vary the shock angle 4 at fixed M , .  I t  is 
intuitively clear inspecting Fig. 6 that there is a one-to- 
one proportionality between 8, and 6, a fact that is 
confirmed in Fig. 7(b). The smaller 6 is, the smaller 8 ,  
should be, although always 8, > 6. Thus, the Statement 
of Ref. 8 that the cone angle 8, increases with the shock 
angle 4 is not correct in general: for large ch [beyond 
d(6„,)], the deflection angle 6 ,  and thus 8,, becomes 
smaller again (cf. Figs. 3 and 4). We mention that our 
solution of the Taylor-Maccoll problem for the MIT bag 
EOS is in agreement with the results of Ref. 8. To sum- 
marize this section we note that, provided the flow pat- 
tern of matter behind an oblique shock front obeys the 
Taylor-Maccoll equation, the deflection angle of matter is 
simply increased as compared to the homogeneous case 
treated in Sec. 111. Thus, if the deflection angle obtained 
from the solution of the oblique-shock-wave problem for 
the QGP behind the shock front differs from that ob- 
tained with a hadron matter EOS, this difference will be 
qualitatively preserved in the conical flow. 

Let us now discuss the results with respect to the ex- 
perimental identification of the QGP. We first stress that 
the results of the preceding two sections refer solely to 
the rest frame of the shock front. Hence, to establish ex- 
perimentally confirmable predictions we have to trans- 
form our results into the laboratory frame. To  this end 
we refer to our picture envisaged in Sec. I that the target 
is at rest in the laboratory, i.e., that the shock front 
moves with M ,  in the - X  direction through the target (cf. 
Fig. 8).14 Then, the four-velocity of matter behind the 
shock front is 

) l = b =  1 Y l Y 2 (  1 -ß,ß2,x ) , ~ 1 ~ 2 ( ß 2 , x  - ß 1 ) ' ~ 4 2 , ~ , 0 1  

( 1 8 )  
and thus 

Hence, the deflection angle a of matter behind an oblique 
shock front with respect to the beam (i.e., X )  axis is given 
by 

with the notations (9). Amusingly enough, because of 
(10), we obtain 

t Y _- 

P cone 

C 

I I 

FIG. 8. Schernatic picture of the flow in the laboratory systern. 
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i.e., the deflection of matter in the laboratorv frame does 
not depend on the properties of the matter under con- 
sideration, i.e., on the EOS. It solely depends on the 
shock angle 4 and the velocity of the shock front. Thus, 
there is no hope to detect the Q G P  by measuring only the 
deflection angle behind an oblique shock front for given 
u and d. 

This dilemma might be resolved by considering the 
conical flow behind the shock front. The flow pattern de- 
pends on the EOS, entering (17) via 8:. Thus, the pattern 
looks different for hadronic matter than for quark matter 
in the rest frame of the shock. It is very unlikely that 
these differences also vanish in the laboratory frame. 
Indeed, Eq. (20) is now replaced by 

ß,sinO- ßscosf3 P 

tana = Y1 (22) ß, -ß,cos0- 'ßslsinQ 

and thus tana depends on 0 and also, in contrast with the 
oblique shock, on the EOS under consideration (via ß, 
and ßo). In Fig. 9 we show for the Q G P  how the 
deflection angle of matter immediately behind the shock 
front (ad) and in the vicinity of the impermeable cone 
(CL,) vary as a function of the shock angle d. One notes 
that the difference between both, as measured in the labo- 
ratory frame, is at most of the order of 2". This result is 
fairly independent of the bag constant and the upstream 
velocity. The same behavior can be found for the ha- 
dronic EOS. Thus, there seems little hope to identify the 
Q G P  by means of the deflection angle of the matter flow 
in a conical shock wave in heavy-ion collisions. 

However, the deflection angle is not a Lorentz- 
invariant quantity as, for example, the transverse momen- 
tum p, of the matter flow. Any difference in p , ,  calculat- 
ed in the rest frame of the shock, would be preserved in 
the laboratory frame. This is immediately clear noting 
that p , / M = u , , , = u ~ ~  [cf. Eq. (18)]. In general, M 
denotes the mass of a fluid element and thus an "average" 
particle mass in the fluid. However, our "fluid" has to 

FIG. 9. The deflection angle of quark matter in the laborato- 
ry frame for the Taylor-Maccoll problem in the vicinity of the 
cone ia„ solid line: B = 140 MeV fm-' ,  dashed line: B = 80 
MeV fm-', dashed-dotted line: B =400 MeV fm 'I and im- 
mediately behind the shock front ( a d ,  dotted lirie, cf. Fig. 8) as a 
function of the shock angle d. 

"fragment" at freeze-out, before experimental detection 
is possible. Thus, several particles (mainly pions and nu- 
cleons) with different rnasses and consequently different 
transverse momenta, but with (nearly2') the same p , / M  
will enter the detector. It is thus natural to consider the 
scaled quantity p ,  / M  rather than p, alone. To  get an 
idea of the order of magnitude of the effects described 
below one may use M - M ,  = 1 GeV, if the observed par- 
ticles are nucleons. 

In Fig. 10ia) we show p ,  /M versus the shock angle 4 
for u:=10 and various equations of state for the 
oblique-shock-wave problem. One observes that there is 
a difference in the maximum p ,  of - 100 MeV/c between 
nucleons emerging from the -QGP or  from hadronic 
matter, provided that the hadron matter EOS is not too 
soft and the bag constant not too small (B should be in 
the range of values that produce reasonable 
deconfinement temperatures T* at vanishing baryon 
number,I5 i.e., T* =m,-B = 190 M ~ V  fmP3). 

To  make predictions that can be experimentally 
confirmed, let us express the shock angle 4,  which is not 
an observable quantity, by the kinetic energy of the 
matter flow in the laboratory frame [Fig. 10(b)]. There is 
a one-to-one correspondence between d and E", since 
E" has a maximum for plane shocks @=n-/2) and van- 
ishes for d=d,M. We first observe that the difference be- 
tween p l / M  of quark matter and of hadronic matter is 
larger for large values of E"/M. For example, for 
E" -M, the transverse momentum of fragments origi- 
nating from the Q G P  is even twice as large as that of ha- 
dronic matter, which has never undergone a phase transi- 
tion iif we consider, for instance, B = 200 MeV fm-' and 
the EOS of Ref. 17 with K o  =266 MeV). We further note 
that also for given p ,  / M  the kinetic energy of nucleons is 
larger by at least 100 MeV, if there is a deconfinement 
transition across the shock front. 

The dependence of the upstream velocity U: is shown 
in Fig. 10(ci. As is intuitively clear, p , / M  is'larger for 
larger u and assumes its maximum value at  larger values 
of E" /M. 

Considering conical flow behind the shock front does 
not qualitatively change this behavior. However, the an- 
gle of deflection of matter increases in the rest frame of 
the shock due to the assumed existence of an (imperme- 
able) cone. Hence U,., -pI /M increases in this frame 
and thus, because of Lorentz invariante, also in the labo- 
ratory frame. This increase is of the order of about 0.1 
( -  100 MeV/c difference in transverse momentum for riu- 
cleons) and fairly independent of the value of the 
upstream velocity. 

From the above it is clear that the creation of a Q G P  
through the conical shock wave exhibits itself by a sud- 
den increase in the excitation function of p , / M  at fixed 
Efi;, / M  (or of E& /M at fixed p ,  /M) at some critical 
bombarding energy. In this context let us briefly discuss 
two aspects, which may be of some importance concern- 
ing the experimental identification of this effect. Both as- 
pects are related to the following fact: the kinetic quanti- 
ties p, and E& are not exactly equal to the mean trans- 
Verse momentum and the mean kinetic energy of matter 
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FIG. 10. The transverse momentum of the matter flow 
behind an oblique shock front as a function of the shock angle d 
(a) and the kinetic energy of fragments in  the laboratory frame 
(b) .  Solid lines, from above to below: B =400, 250, 140, 80 
MeV f m ' .  Dotted lines: results for the hadronic EOS of Ref. 
17 (upper curve: K „  =248 MeV, lower curve: K, = 266 MeV). 
Dashed curve: the EOS of Ref. 18 (K0=300 MeV). ( C )  The 
dependence of p , / M  vs E &  on U:. From below to above: 
u : = 2 ,  10. 100, solid line: bag EOS with B=250 MeV fm ', 
dotted line: hadron matter EOS of Ref. 17, K,=248 MeV. 

fragrnents measured in an experiment. For instance, our 
quantities neglect the intrinsic thermal motion of the 
fluid at freeze-out, which essentially broadens the range 
of possible p ,  valiies. However, as a very simple estimate 
shows, the relative fluctuation of t h ~ m e a n  transverse 
rnomentum is proportional to 1 / v M ,  i.e., for given 
freeze-out temperature, the relative dispersion of p ,  is 
half as large for a particles as for nucleons (and only 
- 1 / 5  of the dispersion for pions). Thus, the first con- 
clusion is that from the experimental point of view it is 
advantageous to consider p , / M  of heavy particles in or- 
der to observe an effect of the deconfinement transition. 

Second, when estimating the relative fluctuation of p „  
one also realizes that this quantity is (roughly) inversely 
proportional to E ka, / M .  Thus, the relative distortion in- 
duced by the temperature is smallest for fragments with 
large kinetic energy. As we already observed in Fig. 
10(b), the effect of the deconfinement transition is also 
most dramatic for large E&,. Therefore, the mean trans- 
verse rnomentum of heavy fragments with large kinetic 
energy is a very promising observable to detect the 
influence of QGP production on the matter flow. 

Of Course, more detailed calculations are necessary to 
account for all effects induced by the freeze-out (cf. also 
Ref. 21). However, since we do not expect that our sim- 
ple rnodel is able to make viable quarltitative predictions, 
we are for the mornent content to point out qualitative 
effects of the deconfinernent transition on the flow of nu- 
clear matter in heavy-ion collisions. 

V. CONCLUSIONS AND SUJIMARY 

In conclusion, let us rnake some critical rernarks con- 
cerning the assumptions entering our calculations. In ad- 
dition to the fact that the viability of the hydrodynamical 
approach rnay be liniited by principal facts (deviations 
frorn local thermodynamical equilibriurn may be large), 
we stress the following which are connected with 
the special picture of a conical shock wave. 

ia) If the rate of deceleration of the projectile is of the 
order of the rate of matter passing through the shock 
front, the assumption of a uniform shock-front velocity 
and of a steady flow through this front is violated. 

(b) The shock angle may vary in time or space (curved 
shock fronts), which will in effect introduce some kind of 
d average on the results. 

(C) The assurnptions entering the shock geometry, e.g., 
that of a conically shaped shock front, rnay be too simple. 
This picture is viable for the flow Pattern of a fluid along 
a "tough" ii.e., "tougher" than the fluid) object, e.g., a 
bullet in air, as experirnents have confirmed.12 In our 
case, however, it would be rnore reasonable to consider a 
collision of "drop on drop." Then, however, we are fac- 
ing the problem that the deceleration of the projectile 
rnay be too large, see (a). 

(d) Since there is no impermeable object such as a cone 
in heavy-ion collisions that exerts a force on the fluid, the 
validity of the Taylor-Maccoll equation is by no rneans 
clear. Our assumption that (17) applies relies solely on 
the very suggestive picture that our asymrnetric collision 
resemb1e.r. the rnotion of a bullet in air. 



However, the question whether t h e  conical-shock-wave 
picture for  heavy-ion collisions is too simple and  thus  
inapplicable c a n  only be proved by full ( 3 f  1)- 
dimensional c a l c ~ l a t i o n s . ~ ~ ~ ~ ~ ~ ~ ~  T h e  intention of this 
work is simply t o  confirm that ,  in a very simple and  sug- 
gestive picture,798 there may be  principal differences in  
flow quantities, if a deconfinement transition happens 
across t h e  shock. These differences, however, cannot be  
observed measuring the  excitation function of the  
deflection angle,'" but only via that  of  the  transverse 
momentum of emitted fragments. 

In  Summary we extended the  studies of Refs. 7 and  8 t o  
more  realistic nuclear equations of  s ta te  a n d  investigated 
the  difference between oblique shock waves (and conical 
flow behind such a wave) in pure hadronic matter  and  in 
the  case that  a Q G P  is created via such shocks. W e  
found tha t  the  softer the  hadronic EOS is, t h e  more the  
flow Pattern of such hadronic matter  resembles that  of 
quark matter  behind the  shock front.  F o r  given shock 
velocity a n d  shock angle, there is n o  effect of the  EOS on  
t h e  deflection angle as  measured in the  laboratory frarne 
( the rest f rame of t h e  matter  in front of the  shock wave). 
Assuming conical flow behind t h e  shock wave, one finds 
that ,  for a given shock angle 4, the  deflection angle of 
mat te r  immediately behind the  shock front and  in the  vi- 
cinity of the  cone differs very slightly as  measured in t h e  
laboratory frame (probably within the  experimental accu- 
racy). T h e  effect of the  deconfinement transition on  the  
hydrodynamical flow behind a conical shock wave may 

nevertheless be observed, if one considers the  excitation 
function of the  transverse momentum of  heavy emitted 
fragments. F o r  instance, p ,  of cr particles with a kinetic 
energy of the  order  of their mass is larger by -800 
MeV/c if they originate from quark-gluon matter  instead 
of hadronic matter.  Thus,  in  the  case of Q G P  creation, 
we expect a sharp  increase of  the  excitation function of 
the  mean p _  at  some critical bombarding energy, signal- 
ing the onset of t h e  deconfinement transition. 

Let us  finally mention that  another  way t o  identify the  
creation of a Q G P  is t o  perform a n  event-by-event 
analysis of heavy-ion collisions. Events with a n  unusually 
large p , / M  in the  range of bombarding energies, where 
the  deconfinement transition is expected (-5-20 
GeV/nucleon), would also indicate the  transient existence 
of a Q G P .  W e  note that  in  this work a possible coex- 
istence of quark and hadronic matter  behind t h e  shock 
front was not considered. Fur ther  investigation along 
these lines would be interesting, especially with respect t o  
the  stability of the  shock f r o n t s 5  I t  may  clarify t h e  ques- 
tion, why related c a l c ~ l a t i o n s ~ ~  show the opposite behav- 
ior of the  mean transverse momentum in the  phase t ran-  
sition region than predicted above. 
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