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Preface

This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012),

to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination

is to be a venue for presentation and discussion of all topics in and around termination. In this way,

the workshop tries to bridge the gaps between different communities interested and active in research

in and around termination. The 12th International Workshop on Termination in Obergurgl continues

the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999),

Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and

Edinburgh (2010).

The 12th International Workshop on Termination did welcome contributions on all aspects of termination

and complexity analysis. Contributions from the imperative, constraint, functional, and logic program-

ming communities, and papers investigating applications of complexity or termination (for example in

program transformation or theorem proving) were particularly welcome.

We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In

addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin

Hofmann, and Fausto Spoto.

I would like to take this opportunity to thank all those that helped to organise the current Workshop

on Termination. First of let me thank the members of the program committee who provided invaluable

assistance on the scientific end of the workshop. Moreover I’d like to thank the members of the organi-

sation committee who did their best to guarantee that the actual event will be a success. Last, but not

least, I’d like to thank our sponsors, namely the Kurt Gödel Society, and the University of Innsbruck,

without whose assistance the workshop wouldn’t haven taken place.

Innsbruck, February 17, 2012 Georg Moser

WST 2012
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Termination of Isabelle/HOL Functions – The

Higher-Order Case

Alexander Krauss

QAware GmbH

München, Germany

krauss@in.tum.de

Abstract of the Talk

This talk gives an overview on the structure of termination problems that arise in interactive

theorem proving based on higher-order logic, specifically Isabelle/HOL.

I will explain what it means to justify a recursive definition in HOL, and discuss the

extraction of termination proof obligations and some successful approaches to their automated

proof.

Then I will focus on the higher-order case, which is not fully automated, as it requires

some configuration by the user. I will discuss the state of the art and the issues that make

further automation difficult.

© A. Krauss;

licensed under Creative Commons License NC-ND
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Amortized resource analysis

Martin Hofmann

Institut für Informatik

Ludwig-Maximilians-Universität München, Germany

hofmann@ifi.lmu.de

Abstract of the Talk

Resource analysis aims at automatically determining and upper bound on the resource usage

of a program as a function of its input size. Resources in this context can be runtime, heap-

and stack size, number of occurrences of certain events, etc.

The amortized approach to resource analysis works by associating “credits” with elements

of data structures and to “pay” for each consumption of resource from the credits currently

available. In this way composite programs and programs with intermediate data structures

can be analysed more conveniently than would otherwise be the case.

Amortization was introduced by Tarjan in the 70s in the context of manual complexity

analyis of algorithms. More recently, it has been used for type-based automatic resource

analysis.

The talk surveys the key concepts with simple examples and then moves on to survey

some recent papers, notably the inference of multivariate polynomial resource bounds for

functional programs and a type-based resource analysis of Java-like object-oriented programs.

I will also try to say something about possible connections with term rewriting, in particular

polynomial interpretations.

© M. Hofmann;

licensed under Creative Commons License NC-ND
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Termination analysis with Julia: What are we

missing?

Fausto Spoto

Dipartimento di Informatica,

Università di Verona, Italy

fausto.spoto@univr.it

Abstract of the Talk

I will describe the structure and underlying theory of the termination analysis module

of the Julia static analyzer. This tool is based on abstract interpretation and translates

Java/Android code into CLP, whose termination is more easily proved. I will give some

details about the implementation and the trade-offs between precision and efficiency. I will

then present the results of analysis of a set of large programs and see concrete examples of

where the tool does not prove termination. This will give us an idea of which actual problems

are faced by a termination analyzer and how/if they can be solved in the future.

© F. Spoto;

licensed under Creative Commons License NC-ND
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On the Invariance of the Unitary Cost Model for

Head Reduction∗

Beniamino Accattoli1 and Ugo Dal Lago2

1 INRIA & LIX (École Polytechnique)

beniamino.accattoli@inria.fr

2 Università di Bologna & INRIA

dallago@cs.unibo.it

Abstract

The λ-calculus is a widely accepted computational model of higher-order functional programs,

yet there is not any direct and universally accepted cost model for it. As a consequence, the com-

putational difficulty of reducing λ-terms to their normal form is typically studied by reasoning on

concrete implementation algorithms. Here, we show that when head reduction is the underlying

dynamics, the unitary cost model is indeed invariant. This improves on known results, which

only deal with weak (call-by-value or call-by-name) reduction. Invariance is proved by way of

a linear calculus of explicit substitutions, which allows to nicely decompose any head reduction

step in the λ-calculus into more elementary substitution steps, thus making the combinatorics

of head-reduction easier to reason about. The technique is also a promising tool to attack what

we see as the main open problem, namely understanding for which normalizing strategies the

unitary cost model is invariant, if any.

1998 ACM Subject Classification F.4.1 - Mathematical Logic, F.4.2 - Grammars and Other

Rewriting Systems

Keywords and phrases Lambda Calculus, Invariance, Cost Models

1 Introduction

Giving an estimate of the amount of time T needed to execute a program is a natural

refinement of the termination problem, which only requires to decide whether T is either

finite or infinite. The shift from termination to complexity analysis brings more informative

outcomes at the price of an increased difficulty. In particular, complexity analysis depends

much on the chosen computational model. Is it possible to express such estimates in a way

which is independent from the specific machine the program is run on? An answer to this

question can be given following computational complexity, which classifies functions based on

the amount of time (or space) they consume when executed by any abstract device endowed

with a reasonable cost model, depending on the size of input. When can a cost model be

considered reasonable? The answer lies in the so-called invariance thesis [14]: any time cost

model is reasonable if it is polynomially related to the (standard) one of Turing machines.

If programs are expressed as rewrite systems (e.g. as first-order TRSs), an abstract but

effective way to execute programs, rewriting itself, is always available. As a consequence,

a natural time cost model turns out to be derivational complexity, namely the (maximum)

number of rewrite steps which can possibly be performed from the given term. A rewriting

step, however, may not be an atomic operation, so derivational complexity is not by definition

∗ This work was partially supported by the ARC INRIA ETERNAL project.
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invariant. For first-order TRSs, however, derivational complexity has been recently shown to

be an invariant cost model, by way of term graph rewriting [7, 5].

The case of λ-calculus is definitely more delicate: if β-reduction is weak, i.e., if it cannot

take place in the scope of λ-abstractions, one can see λ-calculus as a TRS and get invariance

by way of the already cited results [6], or by other means [12]. But if one needs to reduce

“under lambdas” because the final term needs to be in normal form (e.g., when performing

type checking in dependent type theories), no invariance results are known at the time of

writing.

Here we give a partial solution to this problem, by showing that the unitary cost model is

indeed invariant for the λ-calculus endowed with head reduction, in which reduction can take

place in the scope of λ-abstractions, but can only be performed in head position. Our proof

technique consists in implementing head reduction in a calculus of explicit substitutions.

Explicit substitutions were introduced to close the gap between the theory of λ-calculus

and implementations [1]. Their rewriting theory has also been studied in depth, after Melliès

showed the possibility of pathological behaviors [9]. Starting from graphical syntaxes, a new

at a distance approach to explicit substitutions has recently been proposed [4]. The new

formalisms are simpler than those of the earlier generation, and another thread of applications

— to which this paper belongs — also started: new results on λ-calculus have been proved by

means of explicit substitutions [4, 3].

Here, we make use of the linear-substitution calculus Λ[·], a slight variation over a calculus

of explicit substitutions introduced by Robin Milner [10]. The variation is inspired by the

structural λ-calculus [4]. We study in detail the relation between λ-calculus head reduction

and linear head reduction [8], the head reduction of Λ[·], and prove that the latter can

be at most quadratically longer than the former. This is proved without any termination

assumption, by a detailed rewriting analysis.

To get the Invariance Theorem, however, other ingredients are required:

1. The Subterm Property. Linear head reduction has a property not enjoyed by head β-

reduction: linear substitutions along a reduction t⊸∗ u duplicates subterms of t only. It

easily follows that ⊸-steps can be simulated by Turing machines in time polynomial in

the size of t and the length of ⊸
∗.

2. Compact representations. Explicit substitutions, decomposing β-reduction into more

atomic steps, allow to take advantage of sharing and thus provide compact representations

of terms, avoiding the exponential blowups of term size happening in plain λ-calculus. Is

it reasonable to use these compact representations of λ-terms? We answer affirmatively,

by exhibiting a dynamic programming algorithm for checking equality of terms with

explicit substitutions modulo unfolding, and proving it to work in polynomial time in the

size of the involved compact representations.

3. Head simulation of Turing machines. We also provide the simulation of Turing machines

by λ-terms. We give a new encoding of Turing machines, since the known ones do not

work with head β-reduction, and prove it induces a polynomial overhead.

We emphasize the result for head β-reduction, but our technical detour also proves invariance

for linear head reduction. To our knowledge, we are the firsts to use the fine granularity of

explicit substitutions for complexity analysis. Many calculi with bounded complexity (e.g.

[13]) use let-constructs, an avatar of explicit substitutions, but they do not take advantage

of the refined dynamics, as they always use big-steps substitution rules.

Arguably, the main contribution of this paper lies in the technique rather than in the

invariance result. Indeed, the main open problem in this area, namely the invariance of the

unitary cost model for any normalizing strategy remains open. But even if linear explicit

WST 2012



12 On the Invariance of the Unitary Cost Model for Head Reduction

substitutions cannot be directly applied to the problem, the authors strongly believe that this

is anyway a promising direction, on which they are actively working at the time of writing.

2 Linear Explicit Substitutions and the Unitary Cost Model

First of all, we introduce the λ-calculus. Its terms are given by the grammar:

t, u, r ∈ Tλ :: x | Tλ Tλ | λx.Tλ

and its reduction rule →β is defined as the context closure of (λx.t) u 7→β t{x/u}. We will

mainly work with head reduction, instead of full β-reduction. We define head reduction as

follows. Let an head context Ĥ be defined by:

Ĥ ::= [·] | Ĥ Tλ | λx.Ĥ.

Then define head reduction →h as the closure by head contexts of 7→β . Our definition of

head reduction is slightly more liberal than the usual one, but none of its properties are lost.

The calculus of explicit substitutions we are going to use is a minor variation over a

simple calculus introduced by Milner [10]. The grammar is standard:

t, u, r ∈ T :: x | T T | λx.T | T [x/T ].

The term t[x/u] is an explicit substitution and binds x in t. Given a term t with explicit

substitutions, its unfolding is the λ-term without explicit substitutions defined as follows:

x

→

:= x

→

(t u)

→

:= t

→

u

→

(λx.t)

→

:= λx.t

→

(t[x/u])

→

:= t

→

{x/u

→

}.

Head contexts are defined by the following grammar:

H ::= [·] | H T | λx.H | H[x/T ].

We define head linear reduction ⊸ as ⊸dB ∪⊸ls, where ⊸dB and ⊸ls are the closure by

head contexts of:

(λx.t)L u 7→dB t[x/u]L H[x][x/u] 7→ls H[u][x/u]

The key property of linear head reduction is the Subterm Property. A term u is a box-subterm

of a term t if t has a subterm of the form r u or of the form r[x/u] for some r.

◮ Lemma 1 (Subterm Property). If t⊸∗ u and r is a box-suterm of u, then r is a box-subterm

of t.

Linear head substitution steps duplicate sub-terms, but the Subterm Property guarantees that

only sub-terms of the initial term t are duplicated, and thus each step can be implemented

in time polynomial in the size of t, which is the size of the input, the fundamental parameter

for complexity analysis. This is in sharp contrast with what happens in the λ-calculus, where

the cost of a β-reduction step is not even polynomially related to the size of the initial term.

The subterm property does not only concern the cost of implementing reduction steps,

but also the size of intermediate terms:

◮ Corollary 2. There is a polynomial p : N× N→ N such that if t⊸k u then |u| ≤ p(k, |t|).

From a rewriting analysis of head reduction and linear head reduction we get the

following:
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1. Any ⊸-reduction ρ projects via unfolding to a →h-reduction ρ

→

having as length exactly

the number of ⊸dB steps in ρ;

2. Any →h-reduction ρ can be simulated by a ⊸-reduction having as many ⊸dB-steps as

the the steps in ρ, followed by unfolding;

Moreover, by means of a simple measure and the subterm property we prove:

◮ Theorem 3. Let t ∈ Tλ. If ρ : t ⊸
n u then n = O(|ρ|2

dB
), where |ρ|dB is the number of

⊸dB-steps in ρ.

From the theorem and the previous two points there is a quadratic — and thus polynomial —

relation between →h-reductions and ⊸-reduction from a given term. Therefore, we get:

◮ Corollary 4 (Invariance, Part I). There is a polynomial time algorithm that, given t ∈ Tλ,

computes a term u such that u

→

= r if t has →h-normal form r and diverges if u has no

→h-normal form. Moreover, the algorithm works in polynomial time on the derivation

complexity of the input term.

One may now wonder why a result like Corollary 4 cannot be generalized to, e.g., leftmost-

outermost reduction, which is a normalizing strategy. Actually, linear explicit substitutions

can be endowed with a notion of reduction by levels capable of simulating the leftmost-

outermost strategy in the same sense as linear head-reduction simulates head-reduction here.

And, noticeably, the subterm property continues to hold. What is not true anymore, however,

is the quadratic bound we have proved in this section: in the leftmost-outermost strategy,

one needs to perform too many substitutions not related to any β-redex. If one wants to

generalize Corollary 4, in other words, one needs to further optimize the substitution process.

But this is outside the scope of this paper.

One may also wonder whether explicit substitutions are nothing more than a way to hide

the complexity of the problem under the carpet of compactness: what if we want to get the

normal form in the usual, explicit form? Consider the sequence of λ-terms defined as follows,

by induction on a natural number n (where u is the lambda term yxx): t0 = u and for every

n ∈ N, tn+1 = (λx.tn)u. tn has size linear in n, and tn rewrites to its normal form rn in

exactly n steps by head reduction strategy:

t0 ≡ u ≡ r0

t1 → yuu ≡ yr0yr0 ≡ r1

t2 → (λx.t0)(yuu) ≡ (λx.u)(r1)→ yr1r1 ≡ r2

...

For every n, however, rn+1 contains two copies of rn, hence the size of rn is exponential in n.

As a consequence, if we stick to the head strategy and if we insist on normal forms to be

represented explicitly, without taking advantage of the shared representation provided by

explicit substitutions, the number of head steps is not an invariant cost model: in a linear

number of steps we reach an object which cannot even be written down in polynomial time.

This phenomenon is due to the λ-calculus being a very inefficient way to represent λ-terms.

Explicit substitutions represent normal forms compactly, avoiding the exponential blow-up.

We prove that this compact representation is reasonable in the following sense: even if

computing the unfolding of a term t ∈ Λ[·] takes exponential time, comparing the unfoldings

of two terms t, u ∈ Λ[·] for equality can be done in polynomial time (details in [2]). This

way, linear explicit substitutions are proved to be a succint, acceptable, encoding of λ-terms

in the sense of Papadimitriou [11]. The algorithm which compares the unfoldings is based

WST 2012



14 On the Invariance of the Unitary Cost Model for Head Reduction

on dynamic programming: for every subterm of t (resp. u) it computes its unfolding with

respect to the substitutions in t (resp. u) and compare it with the unfoldings of the subterms

of the other term. This can be done without really computing those unfoldings (which would

require exponential space and time).

We address also the converse relation between Turing Machines and λ-calculus, by giving

a new encoding of Turing Machines into the λ-calculus (details in [2]). The transitions of

Turing Machines are simulated by head reduction in such a way that the running time of

the machine is polynomially related to the length of the head reduction of the encoding

term. The encoding is along the lines of existing representations of Turing Machines into

λ-calculus, except that 1) natural numbers are represented via Scott numerals (instead

of Church numerals), which are a better representation when evaluation is given by head

reduction, and 2) The encoding is in continuation-passing style. The following theorem

completes our invariance result:

◮ Theorem 5 (Invariance, Part II). Let ∆ be an alphabet. If f : ∆∗ → ∆∗ is computed by

a Turing machineM in time g, then there is a term U(M,∆) such that for every u ∈ ∆∗,

U(M,∆)⌈u⌉∆
∗

→n
h
⌈f(u)⌉∆

∗

where n = O(g(|u|) + |u|).
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Martin Avanzini1, Naohi Eguchi2, and Georg Moser1

1 Institute of Computer Science, University of Innsbruck, Austria
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Abstract

We present the small polynomial path order sPOP∗. Based on sPOP∗, we study a class of rewrite

systems, dubbed systems of predicative recursion of degree d, such that for rewrite systems in this

class we obtain that the runtime complexity lies in O(nd). We show that predicative recursive

rewrite systems of degree d define functions computable on a register machine in time O(nd).
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1 Introduction

In [1] we propose the small polynomial path order (sPOP∗ for short). The order sPOP∗

provides a characterisation of the class of polynomial time computable function (polytime

computable functions for short) via term rewrite systems. Any polytime computable function

gives rise to a rewrite system that is compatible with sPOP∗. On the other hand any function

defined by a rewrite system compatible with sPOP∗ is polytime computable. The proposed

order embodies the principle of predicative recursion as proposed by Bellantoni and Cook [4].

Our result bridges the subject of (automated) complexity analysis of rewrite systems and

the field of implicit computational complexity (ICC for short).

Based on sPOP∗, one can delineate a class of rewrite systems, dubbed systems of pred-

icative recursion of degree d, such that for rewrite systems in this class we obtain that the

runtime complexity lies in O(nd). This is a tight characterisation in the sense that one

can provide a family of systems of predicative recursion of depth d, such that their runtime

complexity is bounded from below by Ω(nd) [1]. In this note, we study the connection be-

tween functions f defined by predicative recursive term rewrite systems (TRSs) of degree

d and register machines. We show that any such function can be computed by a register

machine operating in time O(nd). This result further emphasises the fact that the runtime

complexity of a TRS (cf. [7]) is an invariant cost model [3]. Our work was essentially moti-

vated by Leivant’s work on predicative recurrence [8] and Marion’s strict ramified primitive

recursion [10].
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16 On a Correspondence between Predicative Recursion and Register Machines

Let R be a TRS and fix a (quasi)-precedence < := ≻ ⊎ ∼ on the symbols of R.

We are assuming that the arguments of every function symbol are partitioned in to nor-

mal and safe ones. Notationally we write f(t1, . . . , tk ; tk+1, . . . , tk+l) with normal argu-

ments t1, . . . , tk separated from safe arguments tk+1, . . . , tk+l by a semicolon. We define

the equivalence ∼s on terms respecting this separation as follows: s ∼s t holds if s = t

or s = f(s1, . . . , sk ; sk+1, . . . , sk+l) and t = g(t1, . . . , tk ; tk+1, . . . , tk+l) where f ∼ g and

si ∼s tπ(i) for all i = 1, . . . , k+ l such that the permutation π on {1, . . . , k+ l} maps normal

to normal argument positions. We write s ⊲n t if t is a proper subterm of s (modulo ∼s) at a

normal argument position: f(s1, . . . , sk ; sk+1, . . . , sk+l) ⊲n t if si ☎ · ∼s t and i ∈ {1, . . . , k}.

The following definition introduces small polynomial path orders >spop∗. The order

allows recursive definitions only on recursive symbols Drec ⊆ D. Symbols in D \ Drec are

called compositional and denoted by Dcomp. To retain the separation under ∼s, we require

∼ ⊆ C2 ∪ D2
rec ∪ D

2
comp. We set >spop∗ := ∼s ∪ >spop∗ and also write >spop∗ for the product

extension of >spop∗ to tuples ~s = 〈s1, . . . , sn〉 and ~t = 〈t1, . . . , tn〉: ~s >spop∗
~t holds if

si >spop∗ ti for all i = 1, . . . , n and ~s >spop∗
~t holds if additionally si0 >spop∗ ti0 for some

i0 ∈ {1, . . . , n}. We denote by T (F≺f ,V) the set of terms build from variables and function

symbols F≺f := {g | f ≻ g}.

◮ Definition 1.1. Let s = f(s1, . . . , sk ; sk+1, . . . , sk+l). Then s >spop∗ t if either

1) si >spop∗ t for some argument si of s.

2) f ∈ D, t = g(t1, . . . , tm ; tm+1, . . . , tm+n) with f ≻ g and the following conditions hold:

(i) s ⊲n tj for all normal arguments tj of t, (ii) s >spop∗ tj for all safe arguments tj of t,

and (iii) tj 6∈ T (F≺f ,V) for at most one j ∈ {1, . . . , k + l}.

3) f ∈ Drec, t = g(t1, . . . , tk ; tk+1, . . . , tk+l) with f ∼ g and the following conditions hold: (i)

〈s1, . . . , sk〉 >spop∗ 〈tπ(1), . . . , tπ(k)〉 for some permutation π, (ii) 〈sk+1, . . . , sk+l〉 >spop∗

〈tτ(k+1), . . . , tτ(k+l)〉 for some permutation τ .

The depth of recursion rd(f) is inductively defined in correspondence to the rank of f

in <, but only takes recursive symbols into account: Let n = max {0} ∪ {rd(g) | f ≻ g}.

Then rd(f) := 1 + n if f ∈ Drec and otherwise rd(f) := n. We say a constructor TRS R is

predicative recursive of degree d if R is compatible with an instance >spop∗ and the maximal

depth of recursion of a function symbol in R is d.

◮ Theorem 1.2 ([1]). Let R be predicative recursive of degree d. Then the innermost runtime

complexity of R lies in O(nd). Moreover, this bound is tight.

As one anonymous reviewer points out, Theorem 1.2 also holds with respect to full

rewriting, if R is in addition a non-duplicating overlay system [6].

2 Register Machines Compute Predicative TRSs

Let W denote the set of words over a binary alphabet. Fix a predicative constructor TRS R

of degree d that computes functions over W. We will now show that the functions computed

by R can be realised on a register machine (RM ) [5], operating in time asymptotic to nd

where n is the size of the input.

First we make precise the notion of computation on TRSs. We assume that the encoding

of words W as terms makes use of dyadic successors s0 and s1 that append the corresponding

character to its argument, as well as the constant ǫ to construct the empty word. Henceforth

we set C := {s0, s1, ǫ} and by the one-to-one correspondence between ground constructor

terms and binary words W we allow ourselves to confuse these sets. Let f be a defined symbol
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in R of arity k. Then R computes the function f : W
k →W defined as f(w1, . . . , wk) = w

if f(w1, . . . , wk) −→
!
R
w. This notion is well-defined if R is orthogonal (hence confluent) and

completely defined, i.e., normal forms and constructor terms coincide.

A RM over W contains a finite set of registers R = {x1, . . . , xn} that store words over

W. We use the notion of RM from [5] adapted from N to binary words W and identify RMs

with goto-programs over variables R that allow to (i) copy (the content of) one variable to

another, (ii) appending 0, 1, or removing the last bit of a variable, and (iii) that can perform

conditional branches based on the last bit of a variable. A RM computes the function

f : W
k → W with k 6 n defined as follows: f(w1, . . . , wk) = w if on initial assignment wi

to xi for all i = 1, . . . , k and ε to xi for all i = k + 1, . . . , n, the associated goto-program

halts and the content of a dedicated output-variable xo equals w. The complexity of an RM

is given by the number of executed instructions as function in the sum of sizes of the input.

To simplify matters, we normalise right-hand sides of rewrite rules. Throughout the fol-

lowing, we denote by ~u,~v, ~w, possibly extended by subscripts, vectors of constructor terms.

Let Rn denote some fixpoint on R of following normalisation operator: if the TRS con-

tains a rule f( ~uf ; ~vf ) → g( ~ug ; ~t1, h( ~uh ; ~t2), ~t3) where f ≻ h, h ∈ D and ~t1, ~t2 or ~t3 con-

tain at least one defined symbol, replace the rule with f( ~uf ; ~vf ) → g′( ~uf ; ~vf , ~t1, ~t2, ~t3) and

g′( ~uf ; ~vf , ~x1, ~x2, ~x3)→ g( ~ug ; ~x1, h( ~uh ; ~x2), ~x3). Here g′ is a fresh composition symbol so that

f ≻ g′ ≻ g, h and variables ~x1, ~x2, ~x3 do not occur elsewhere. Note that Rn is well-defined

as in each step the number of defined symbols in right-hand sides are decreasing.

◮ Lemma 2.1. We have (i) −→
R
⊆ −→+

Rn

and (ii) Rn is predicative recursive of degree d.

By Property (i) it is easy to verify that any function computed by R is also computed by

Rn. Property (ii) and the definition of Rn allows the classification of each f(~ul ; ~vl)→ r ∈ Rn

into one of the following forms.

- Construction Rule: r is a constructor term;

- Recursion Rule: r = g( ~ug ; ~vg, f
′( ~ur ; ~vr), ~wg) where f ≻ g and f ∼ f′;

- Composition Rule: r = g( ~ug ; ~vg, h( ~ur ; ~vr), ~wg) where f ≻ g, h.

In the latter two cases the context g( ~ug ; ~vg,✷, ~wg) might also be missing. Note that for

recursion rules, the sum of sizes of ~ul is strictly greater than the sum of the sizes of ~ur.

◮ Theorem 2.2. Let R be an orthogonal and completely defined predicative system of degree

d. Every function f computed by R is computed by a register machine RMf operating in

time O(nd), where n refers to the sum of the sizes of normal arguments.

Proof. Consider a function f computed byR, and let f be the corresponding defined symbol.

We define a program Pf which, on input variables ~If initialised with ~v, computes f(~v) in a

dedicated output variable Of , executing no more than O(nrd(f)) instructions. The program Pf

works by reduction according to the normalised TRSRn. For this note thatRn is orthogonal,

hence Lemma 2.1 (1) gives that Rn reduces f(~v) to f(~v) independent on the evaluation

strategy. The construction is by induction on the rank f in < (on the extended signature of

Rn). We only consider the more involved inductive step. By induction hypothesis for each

g below f in the precedence there exist a program Pg that compute the function defined by

g operating in time O(nrd(g)), where n is the sum of sizes of normal arguments to g.

Suppose the input variables ~If hold the arguments ~v. Due to linearity, pattern matches

can be hard-coded by looking at suffixes in ~If bounded in size by a constant. Consequently

in a constant number of steps Pf can check which rules applies on f(~v). First suppose

f ∈ Dcomp, thus f(~u) reduces either using a construction or composition rule.

The interesting case is when f(~u) i−→
Rn

g(~v1, h(~w), ~v2) due to a composition rule. Since

f ≻ g, h, induction hypothesis gives programs Pg and Ph that compute the functions defined

WST 2012



18 On a Correspondence between Predicative Recursion and Register Machines

by g and h respectively. The program Pf first stores the arguments to h in the dedicated

input registers ~Ih and executes the code of Ph. Since ~w are constructor terms, initialisation

of ~Ih requires only constant time similar to above. Further the sum of sizes of normal inputs

in ~u and ~w differ only by a constant factor c1, hence executing Ph takes time O((c1 ·n)
rd(h)) =

O(nrd(h)). We repeat the procedure using a program Pg in time O(nrd(g)). Here we employ

that due to separation of safe and normal arguments, the complexity of computing the call

of g does not depend on the result of h(~w). Overall, employing rd(f) > rd(g), rd(h), the

runtime is in O(nrd(h) + nrd(g)) ⊆ O(nrd(f)).

Now suppose f ∈ Drec and thus rd(f) > 1. Consider an innermost reduction of f. Wlog

f(~v) = f0(~v0) i−→
Rn

g1( ~u1, f1(~v1), ~w1) i−→
R

g1( ~u1, g2( ~u2, . . . , gk( ~uk, fk( ~vk), ~wk), . . . , ~w2), ~w1)

where the first k applications follow from applying recursive rules, and fk( ~vk) matches either

a construction or composition rule. By definition the sum of sizes of normal arguments

in the recursion arguments ~v0, . . . , ~vk is strictly decreasing, and conclusively k is bounded

by n. To compute f(~v), the program Pf evaluates the last term inside out, starting from

fk( ~vk). Since we have only a constant number of registers at our disposal, we cannot program

the machine to memorise or recompute all recursion arguments ~v0, . . . , ~vk in time linear in

n. Instead, we employ per argument position of f an additional register and exploit the

following one-to-one correspondence between arguments ~vi+1 and ~vi: ~vi+1 is obtained from

~vi by flipping and chopping a constant number of bits according to the rewrite rule applied

in step i. For i = 0, . . . , n, the machine performs this operation on the input registers storing

~vi, pushing the chopped bits onto the corresponding auxiliary registers in constant time. To

recall the rule applied in step i, we associate each rule with a binary number of fixed size,

and push this number on an additional register that we abuse as a call stack. Since ~vi+1 is

obtained from ~vi by executing a constant number of instructions, ~vk is constructed in time

k = O(n), allowing stepwise reconstruction of recursion arguments starting from ~vk.

Recall that the sum of sizes of normal recursion arguments ~vi (i = 1, . . . , k) is de-

creasing and consequently bounded by n. Consider the evaluation of fk( ~vk) that reduces

by construction either using a composition or projection rule. In both cases we con-

clude that fk( ~vk) is computed in time O(nrd(f)−1) as in the case f ∈ Dcomp, employing

rd(f) > rd(g) for all g such that f ≻ g. The evaluation is then continued inside out ex-

actly as in the case f ∈ Dcomp, recovering the arguments ~vi from ~vi+1 after each step in

constant time. Employing rd(f) > rd(gi) we see that the application of gi is bounded by

O(nrd(g)) ⊆ O(nrd(f)−1). Overall, employing k = O(n), the procedure stops after executing

at most O(n) + O(n · nrd(f)−1) = O(nrd(f)) instructions. This concludes the final case. ◭

3 Experimental Results

We have implemented sPOP∗ in the Tyrolean Complexity Tool TCT1. In Table 1 we con-

trast sPOP∗ to its predecessors lightweight multiset path orders (LMPO for short) [9] and

polynomial path orders [2] (POP∗ for short)2. LMPO characterises the class of polytime com-

putable functions, also by embodying the principle of predicative recursion. Since LMPO al-

lows simultaneous recursion it fails at binding the runtime complexity polynomially. POP∗

characterises predicative recursive systems but cannot give a precise bound on the runtime

1 TCT is open source and available from http://cl-informatik.uibk.ac.at/software/tct.
2 See http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2012 for full experimental

evidence and explanation on the setup.

http://cl-informatik.uibk.ac.at/software/tct
http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2012
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complexity. Finally we also included multiset path orders (MPO for short) in the table, as

all mentioned orders are essentially syntactic restrictions of MPO.

bound MPO LMPO POP∗ sPOP∗

O(1) 9\0.06

O(n1) 32\0.07

O(n2) 38\0.09

O(n3) 39\0.20

O(nk) 43\0.05 39\0.20

yes 76\0.09 57\0.05 43\0.05 39\0.07

maybe 681\0.16 700\0.11 714\0.11 718\0.11

Figure 1 Number of oriented problems and

average execution time in seconds.

Comparing LMPO and MPO, the exper-

iments reveal that enforcing predicative re-

cursion limits the power of our techniques by

roughly one fourth on our testbed. Comparing

POP∗ with sPOP∗ we see an increase in preci-

sion accompanied with only a minor decrease

in power. Of the four systems that can be han-

dled by POP∗ but not by sPOP∗, two fail to be

oriented because sPOP∗ weakens the multiset

status to product status, and two fail because

sPOP∗ enforces a more restrictive composition

scheme.

4 Conclusion and Future Work

We have shown that predicative TRSs of recursion depth d can be computed by RMs op-

erating in time O(nd). One question that remains open is the reverse direction on the

correspondence between RMs and predicative TRSs. Using a pairing constructor for col-

lecting the contents of the registers, the simulation of O(nd) time-bounded RMs is straight

forward to define using recursion up to depth d. Without such a constructor however, the

proof gets significantly more involved. Still, we are sufficiently convinced of our argument

to conjecture that also the reverse direction on the correspondence between RMs and pred-

icative TRSs holds. More precisely, suppose f is computable by a RM in time O(nd). Then

there exists a predicative recursive TRS R of degree d that computes f . In future work we

also want to investigate whether we can weaken the assumptions in Theorem 2.2 so that

compatibility with sPOP∗ is no longer required.

References

1 M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characterisation of the

Polytime Computable Functions. CoRR, cs/CC/1201.2553, 2012.

2 M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proc. of 9th FLOPS,

volume 4989 of LNCS, pages 130–146, 2008.

3 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime

Computability. In Proc. of 21st RTA, volume 6 of LIPIcs, pages 33–48, 2010.

4 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime

Functions. CC, 2(2):97–110, 1992.

5 K. Erk and L. Priese. Theoretische Informatik: Eine umfassende Einführung. Springer

Verlag, 3te auflage edition, 2008.

6 N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for Termination and Complexity.

JAR, 2012. To appear.

7 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency

Pair Method. CoRR, abs/1102.3129, 2011. submitted.

8 D. Leivant. Stratified Functional Programs and Computational Complexity. In Proc. 20th

POPL, pages 325–333, 1993.

9 J.-Y. Marion. Analysing the Implicit Complexity of Programs. IC, 183:2–18, 2003.

10 J.-Y. Marion. On Tiered Small Jump Operators. LMCS, 5(1), 2009.

WST 2012



Higher-Order Interpretations and Program

Complexity∗

Patrick Baillot1 and Ugo Dal Lago2

1 LIP (UMR 5668 CNRS-ENS Lyon-INRIA-UCBL)

patrick.baillot@ens-lyon.fr

2 Università di Bologna & INRIA

dallago@cs.unibo.it

Abstract

Polynomial interpretations and their generalizations like quasi-interpretations have been used in

the setting of first-order functional languages to design criteria ensuring statically some com-

plexity bounds on programs [3]. This fits in the area of implicit computational complexity,

which aims at giving machine-free characterizations of complexity classes. Here we extend this

approach to the higher-order setting. For that we consider the notion of simply typed term

rewriting systems [8], we define higher-order polynomial interpretations (HOPI) for them and

give a criterion based on HOPIs to ensure that a program can be executed in polynomial time.

In order to obtain a criterion which is flexible enough to validate some interesting programs using

higher-order primitives, we introduce a notion of polynomial quasi-interpretations, coupled with

a simple termination criterion based on linear types and path-like orders.

1998 ACM Subject Classification F.4.1 - Mathematical Logic, F.4.2 - Grammars and Other

Rewriting Systems

Keywords and phrases Simply-Typed Term Rewriting, Interpretations, Quasi-Interpretations,

Implicit Computational Complexity

1 Introduction

The problem of statically analyzing the performance of programs can be attacked in many

different ways. One of them consists in inferring complexity properties of programs early in

development cycle, when the latter are still expressed in high-level programming languages,

like functional or object oriented idioms. And in this scenario, results from an area known

as implicit computational complexity (ICC in the following) can be useful: they consist

in characterizations of complexity classes in terms of paradigmatic programming languages

(λ-calculus, term rewriting systems, etc.) or logical systems (proof-nets, natural deduction,

etc.), from which static analysis methodologies can be distilled. Examples are type systems,

path-orderings and variations on the interpretation method. The challenge here is defining

ICC systems which are not only simple, but also intensionally powerful: many natural

programs among those with bounded complexity, should be recognized as such by the ICC

system, i.e., are actually programs of the system.

One of the most fertile direction in ICC is indeed the one in which programs are term

rewriting systems (TRS in the following) [3, 4], whose complexity can be kept under control

by way of variations of the powerful techniques developed to check termination of TRS,

namely path orderings [7, 5], dependency pairs and the interpretation method [6]. Many

∗ This work was partially supported by the projects INRIA ARC ETERNAL and COMPLICE (ANR-
08-BLANC-0211-01).
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different complexity classes have been characterized this way, from polynomial time to poly-

nomial space, to exponential time to logarithmic space. And remarkably, many of the intro-

duced characterizations are intensionally very powerful, in particular when the interpretation

method is relaxed and coupled with recursive path orderings, like in quasi-interpretations

[4].

Here, we consider one of the simplest higher-order generalizations of TRSs, namely Ya-

mada’s simply-typed term rewriting systems (STTRSs in the following), we define a system

of higher-order polynomial interpretations for them and prove that, following [3], this allows

to exactly characterize, among others, the class of polynomial time computable functions.

An extended version of this paper is available [2] which includes all proofs, together with a

description of how the proposed approach can be adapted to quasi-interpretations, in the

style of [4].

2 Simply-Typed Term Rewriting Systems

We recall here the definition of a STTRS, following [8, 1]. We will actually consider as

programs a subclass of STTRSs, basically those where rules only deal with the particular

case of a function symbol applied to a sequence of patterns. For first-order rewrite systems

this corresponds to the notion of constructor rewrite system.

We consider a denumerable set of base types, which we call data-types and we shall

denote as D or E. Types are defined by the following grammar:

A,B ::= D | A1 × · · · ×An → A.

A functional type is a type which contains an occurrence of→. Some examples of base types

are the type NAT of tally integers, and the type W2 of binary words.

We denote by F the set of function symbols (or just functions), C that of constructors

and X that of variables. Constructors c ∈ C have a type of the form D1 × · · · ×Dn → D.

Functions f ∈ F , on the other hand, can have any functional type. Variables x ∈ X can

have any type. Terms are typed and defined by the following grammar:

t, ti := xA | cA | fA | (tA1×···×An→A tA1

1 . . . t
An
n )A

where xA ∈ X , cA ∈ C, fA ∈ F . We denote by T the set of terms. Observe how application

is primitive and is in general treated differently from other function symbols. This is what

make STTRSs different from ordinary TRSs.

We define the size |t| of a term t as the number of symbols (elements of F ∪ C ∪ X )

it contains. To simplify the writing of terms we will often elide their type. We will also

write (t s) for (t s1 . . . sn). Therefore any term t is of the form (. . . ((α s1) s2) . . . sk) where

k ≥ 0, α ∈ X ∪ C ∪ F . Moreover, we will use the following convention: any term t is of

the form (. . . ((s s1) s2) . . . sk) will be written ((s s1 . . . sk)). A crucial class of terms are

patterns, which in particular are used in defining rewriting rules. Formally, a pattern is a

term generated by the following grammar:

p, pi := xA | (cD1×...×Dn→D pD1

1 . . . p
Dn
n ).

P is the set of all patterns. Observe that if a pattern has a functional type then it must

be a variable. We consider rewriting rules in the form t → s satisfying the following two

constraints:

1. t and s are terms of the same type A, FV (s) ⊆ FV (t), and any variable appears at most

once in t.

WST 2012



22 Higher-Order Interpretations and Program Complexity

2. t must have the form ((f p1 . . . pk)) where each pi for i ∈ 1, . . . , k consists of patterns only.

The rule is said to be a rule defining f, while the total number of patterns in p1, . . . , pk
is the arity of the rule.

Now, a simply-typed term rewriting system is a set R of orthogonal rewriting rules such that

for every function symbol f, every rule defining f has the same arity, which is said to be the

arity of f.

We consider call-by-value reduction of STTRSs, i.e, only values will be passed as argu-

ments to functions. Formally, we say that a term is a value if either:

1. it has type D and is in the form (c v1 . . . vn), where v1, . . . , vn are themselves values.

2. it has functional type and is of the form ((f, v1 . . . vn)), where the terms in v1, . . . vn are

themselves values and the total number of terms in v1, . . . , vn is strictly smaller than the

arity of f.

We denote values as v, u and their set by V.

3 Higher-Order Polynomial Interpretations

We want to demonstrate how first-order rewriting-based techniques for ICC can be adapted

to the higher-order setting. Our goal is to devise criteria ensuring a complexity bound

on programs of first-order types but using subprograms of higher-order types. A typical

application will be to find out under which conditions a higher-order functional program

such as e.g. map, iteration or foldl, fed with a (first-order) polynomial time program

produces a polynomial time program.

As a first illustrative step we consider the approach based on polynomial interpretations

from [3], which offers the advantage of simplicity. We thus build a theory of higher-order

polynomial interpretations for STTRSs. It can be seen as a particular concrete instantiation

of the methodology proposed in [8] for proving termination by interpretation.

Higher-order polynomials (HOPs) take the form of terms in a typed λ-calculus whose

only base type is that of natural numbers. To each of those terms can be assigned a strictly

monotonic function in a category FSPOS with products and functions. So, the whole process

can be summarized by the following diagram:

STTRSs
[·]

// HOPs
J·K

// FSPOS

3.1 Higher-Order Polynomials

Let us consider types built over a single base type N:

A,B ::= N | A→ A.

Let CP be the following set of constants:

CP = {+ : N→ N→ N,× : N→ N→ N} ∪ {n : N | n ∈ N
⋆}.

Observe that in CP we have constants of type N only for strictly positive integers. We

consider the following grammar of Church-typed terms

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B

where cA ∈ CP and in (λxA.MB) we require that x occurs free in M . A higher-order

polynomial (HOP) is a term of this grammar, which is in β-normal form. We use an infix
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notation for + and ×. We assume given the usual set-theoretic interpretation of types and

terms, denoted as JAK and JMK: if M has type A and FV (M) = {xA1

1 , . . . , x
An
n }, then JMK

is a map from JA1K × . . . × JAnK to JAK. We denote by ≡ the equivalence relation which

identifies terms which denote the same function, e.g. we have: λx.(2 × ((3 + x) + y)) ≡

λx.(6 + (2× x+ 2× y)).

Noticeably, even if HOPs can be built using higher-order functions, the first order frag-

ment only contains polynomials:

◮ Lemma 1. If M is a HOP of type N and such that FV (M) = {y1 : N, . . . , yk : N}, then

the function JMK is a polynomial function.

3.2 Semantic Interpretation.

Now, we consider a subcategory FSPOS of the category SPOS of strict partial orders as

objects and strictly monotonic total functions as morphisms. Objects of FSPOS are the

following:

N is the domain of strictly positive integers, equipped with the natural strict order ≺N ,

1 is the trivial order with one point;

if σ, τ are objects, then σ × τ is obtained by the product ordering,

σ → τ is the set of strictly monotonic total functions from σ to τ , equipped with the

following strict order: f ≺σ→τ g if for any a of σ we have f(a) ≺τ g(a).

We denote by �τ the reflexive closure of ≺τ . FSPOS is a subcategory of SET with all the

necessary structure to interpret types. JAK≺ denotes the semantics of A as an object of

FSPOS. We choose to set JNK≺ = N . Notice that any element of e ∈ JAK≺ can be easily

mapped onto an element e ↓ of JAK. What about terms? Actually, FSPOS can again be

shown to be sufficiently rich:

◮ Proposition 2. LetM be a HOP of type A with free variables xA1

1 , . . . , x
An
n . Then for every

e ∈ JA1× . . .×AnK≺, there is exactly one f ∈ JAK≺ such that f ↓= JMK(e↓). Moreover, this

correspondence is strictly monotone and thus defines an element of JA1 × . . . × An → AK≺
which we denote as JMK≺.

3.3 Assignments and Polynomial Interpretations

To each variable xA we associate a variable xA where A is obtained from A by replacing

each occurrence of base type by the base type N and by curryfication. We will sometimes

write x (resp. A) instead of x (resp. A) when it is clear from the context.

An assignment [ · ] is a map from C ∪ F to HOPs such that if f ∈ C ∪ F , [f ] is a closed

HOP, of type A1, . . . , An → A. Now, for t ∈ T we define [t] by induction on t:

if t ∈ X , then [t] is f ;

if t ∈ C ∪ F , [t] is already defined;

otherwise, if t = (t0 t1 . . . tn) then [t] ≡ (. . . ([t0][t1]) . . . [tn]).

Observe that in practice, computing [t] will in general require to do some β-reduction steps.

◮ Lemma 3. If s→ t, then JtK≺ ≺ JsK≺.

As a consequence, the interpretation of terms (of base type) is itself a bound on the length

of reduction sequences:

◮ Proposition 4. Let t be a closed term of base type D. Then [t] has type N and any

reduction sequence of t has length bounded by JtK≺.
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3.4 A Complexity Criterion

Proving a STTRS to have an interpretation is not enough to guarantee its time complexity to

be polynomial. To ensure that, we need to impose some constraints on the way constructors

are interpreted.

We say that the assignment [ · ] is additive if any constructor c of type D1 × · · · ×Dn →

E, where n ≥ 0, is interpreted by a HOP Mc whose semantic interpretation JMcK≺ is a

polynomial function of the form:

P (y1, . . . , yn) =

n∑

i=1

yi + γc, with γc ≥ 1.

Additivity ensures that the interpretation of first-order values is proportional to their size:

◮ Lemma 5. Let [ · ] be an additive assignment. Then there exists γ ≥ 1 such that for any

value v of type D, where D is a data type, we have JvK≺ ≤ γ · |v|.

The base type Wn denotes the data-type of n-ary words, whose constructors are empty

and c1, . . . , cn. A function f : ({0, 1}∗)m → {0, 1}∗ is said to be representable by a STTRS

R if there is a function symbol f of type Wm2 →W2 in R which computes f in the obvious

way. Noticeably:

◮ Theorem 6. The functions on binary words representable by STTRSs admitting an addi-

tive polynomial interpretation are exactly the polytime functions.

Not many programs can be proved to be polytime by way of the criterion we have just

introduced. This, however, can be partially solved by switching to quasi-interpretations, as

described in [2].
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Abstract

We report on recent and ongoing work on the Matchbox termination prover:

a constraint compiler that transforms a Boolean-valued Haskell function into a Boolean sat-

isfiability problem (SAT),

a constraint solver for real and arctic matrix constraints that is using evolutionary optimiza-

tion, and is running on massively parallel (graphics) hardware.
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1 Introduction

The program Matchbox [11] originally proved termination of string rewriting, using the

method of match bounds [6]. The domain was extended to term rewriting, by adding proof

methods of dependency pairs [1], matrix interpretations over the integers [4] and over arctic

numbers [9].

These methods are typical instances of the following scheme: to automatically find a

proof of termination, one solves constraint satisfaction problems. E.g., the precedence of

function symbols, or the coefficients of polynomials and matrices, are constrained by the

condition that the resulting path order, polynomial order, or matrix order, respectively, is

compatible with a given rewriting system.

The constraint system could be solved by

by domain-specific methods (e.g., Matchbox computes a certificate for match-boundedness

by completion of automata),

by generic search (exhaustively, randomly, or directed by some fitness function),

by transformation to another constraint domain (e. g., Matchbox transforms integer

and arctic polynomial inequalities to a Boolean satisfiability problem, and solves it with

Minisat [3]).

In the present paper, we report on recent and ongoing work to

extract a general framework for constraint programming by automatic transformation to

SAT,

and (independently) add a domain-specific solver for real and arctic matrix constraints

that is using evolutionary optimization, and is running on massively parallel (graphics)

hardware.

∗ Alexander Bau is supported by an ESF grant

© A. Bau, T. Kalbitz, M. Voigtländer, and J. Waldmann;

licensed under Creative Commons License NC-ND

WST 2012: 12th International Workshop on Termination.

Editor: G. Moser; pp. 25–28

http://creativecommons.org/licenses/by-nc-nd/3.0/


26 Recent Developments in the Matchbox Termination Prover

2 A Constraint Compiler

The idea behind constraint programming is to separate specification (encoded as constraint

system) from implementation (the constraint solver). The obvious choice for the specifica-

tion language is mathematical logic, equivalently, a pure (i.e. side-effect free) functional

programming language like Haskell. A constraint system c can be seen as a function with

type c : U → Bool, where the solution is an object s ∈ U such that c(s) is True.

There are clever solvers for the case that U ′ = Bool∗, and c′ is given by a formula in

propositional logic. But typically, the application domain U is different. The translation

from U to U ′ can be done manually by the programmer, or automatically, by some tool.

The satchmo library (http://hackage.haskell.org/package/satchmo) used in Matchbox

is an example for the “manual” approach. It is an embedded (in Haskell) domain specific

language for the generation of SAT constraints. Several termination researchers built and

published similar libraries for other host languages (Ocaml, Java). These interweave the

generation of the boolean formula with the declaration of the constraint system in the host

language. E.g., satchmo generates the formula as a side effect represented by a suitable State

monad. Actually these are different processes and should be separated from each other.

Therefore Alexander Bau is building a constraint compiler that inputs source code of a

Haskell function c : U → Bool, as explained above, and produces a satchmo program. The

domain U may use structured data types like tuples and lists, in addition to primitive types

like booleans and integers. c may also depend on run-time parameters that are not known at

compile time.

A prototypical use case is the search for a precedence that defines a lexicographical

path order (LPO) that is compatible with a term rewriting system (TRS). In this case the

constraint system consists of a Haskell implementation of LPO : TRS→ Precedence→ Bool.

LPO applied to a TRS R and a precedence p returns true, iff lpo(p) is compatible with R.

The first parameter (R) of LPO is known at run-time while the second (p) is not.

c hs2satchmo c′

Parameter satchmo

U

B

SAT solver

A

1.Haskell code 2.Satchmo code 3.Boolean formula

4.Satisfying assignment5.Reconstructed object

Compile time

The constraint system is given as a program (a set of declarations) in a subset of Haskell.

The constraint compiler performs a type-directed transformation, where the type system is

an extension of the Damas-Milner type system [2] [10]. We additionally annotate each type

constructor with a flag that indicates whether its value is known (as a parameter given at

run-time) or unknown (and therefore has to be determined by the constraint solver).

We plan to extend the type system further, to take into account resource bounds [7].

E.g., we want to be statically certain that the size of the generated SAT constraint system is

polynomially bounded in the size of the (known) input parameters.

http://hackage.haskell.org/package/satchmo
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3 Massively Parallel Constraint Solving

A constraint satisfaction problem can be converted into an optimization problem that is

solved by evolutionary algorithms. For the domain of matrix interpretations, this approach

was used by Dieter Hofbauer’s termination prover MultumNonMulta (2006, 2007), see also

[5]. We return to it now, since it allows for massive parallelisation.

In the context of numerical constraint solving by randomized, directed search, parallel

processing is applicable because

basic operations (on numbers) can be executed fast

domain specific operations (matrix multiplications) can be sped up by parallelism (multi-

plication of n dimensional square matrices, using n2 cores and n time)

evolutionary search strategies can be sped up again, by treating several individuals in

parallel (e.g., computing their fitness values)

General Purpose Graphical Processing Units (GPGPUs) provide massively parallel

processing at affordable prices. Tobias Kalbitz and Maria Voigtländer are implementing

matrix constraint solvers for CUDA capable graphics cards. CUDA (Compute Unified Device

Architecture) [8] is a parallel programming model for NVIDIA’s GPGPUs.

The following approach is used to find a strictly monotone matrix interpretation of

dimension d that is compatible with a string rewriting system R over alphabet Σ (weakly

compatible with each rule, and strictly compatible with at least one rule):

A population consists of several individuals, each individual is a matrix interpretation,

that is, a mapping [·] : Σ → N
d×d, where for each a ∈ Σ, the first column of [a] is

(1, 0, . . . , 0)T , and the last row of [a] is (0, . . . , 0, 1). This condition ensures monotonicity.

The fitness of an interpretation [·] is
∑
{max(0, [r]p,q− [l]p,q)

2 | (l, r) ∈ R, 1 ≤ {p, q} ≤ d},

plus some very large penalty in case that ¬∃(l, r) ∈ R : [l]1,d > [r]1,d. Lower fitness values

are better, and value zero indicates that compatibility holds.

An individual with fitness > 0 is changed by a large mutation: we randomly pick some

(l, r) ∈ R, 1 ≤ {p, q} ≤ d such that [l]p,q < [r]p,q, and we choose randomly a sequence

of indices p = p0, p1, . . . , pn = q with n = |l|, and then increase each [ai]pi−1,pi by one,

where l = a1 . . . an. This ensures that [l]p,q increases.

Next, this individual undergoes a series of small mutations where for any a ∈ Σ, 1 ≤

i, j ≤ d, the entry at [a]i,j is modified. We try sereval small mutations, until we find one

that decreases fitness, and then repeat. The total number of small mutations is bounded.

The resulting individual is placed back into the population, removing another individual

of larger fitness.

◮ Example 1. With 1000 individuals, and 100 small steps after each large step, we find a

compatible 5-dimensional interpretation for a2b2 → b3a3 (Problem z001) with < 30.000 large

steps with probability > 50%. Of course, the total runtime is not bounded, as the evolution

may go into a dead-end. So it is better to re-start than to wait.

Applying this idea to rational, and arctic, numbers, we meet the following challenges:

Real numbers are approximated by rational (“floating point” values), thus results of

comparisons may be wrong. The solution is to introduce a “grid” for rounding input values,

e.g. use only integer multiples of 1/2, or 1/10, say.

A fine grid implies a smooth objective function, and this may help evolutionary algorithms.

On the other hand, a coarse grid reduces the search space, and may increase the chance that

we find a solution by luck.

Note that we do not need a grid for arctic numbers, since we can use arctic integers.

WST 2012
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On typical CUDA cards, a large number of compute cores is available (e.g., 512). They

can only be used efficiently if the data that they process is stored in fast (thread-(block-)local)

memory. The amount of such memory is severely limited (e.g., 16 kByte total, resulting in

300 byte per core)

CUDA cards are programmed in (a dialect of) C. This allows fine-grained control, but

is highly impractical for large-scale programming. Therefore, we are isolating the low-level

details in a C library, and provide it with an interface to Haskell, where we implement global

flow of control. Still it is important that data stays on the card’s memory, since transport to

and from the host computer’s memory is slow.

4 Future plans

We stress that the above is a report on ongoing work.

We plan to have an implementation ready for the termination competition in 2012. The

code will be open-sourced.

Since the hardware of the competition platform does not include a GPGPU, we will run

Matchbox/CUDA remotely.
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Abstract

In most termination tools two ingredients, namely recursive path orderings (RPO) and polyno-

mial interpretation orderings (POLO), are used in a consecutive disjoint way to solve the final

constraints generated from the termination problem.

We present a simple ordering that combines both RPO and POLO and defines a family of

orderings that includes both, and extends them with the possibility of having, at the same time,

an RPO-like treatment for some symbols and a POLO-like treatment for the others.

The ordering is extended to higher-order terms, providing an automatable use of polynomial

interpretations in combination with beta-reduction.

1 Introduction

Term orderings have been extensively used in termination proofs of rewriting. They are used

both in direct proofs of termination showing decreasingness of every rule or as ingredients for

solving the constraints generated by other methods like the Dependency Pair approach [1]

or the Monotonic Semantic Path Ordering [4].

The most widely used term orderings in automatic termination tools are the recursive

path ordering (RPO) and the polynomial ordering (POLO). Almost all known tools im-

plement these orderings. RPO and POLO are incomparable, so that they are used in a

sequential way, first trying one method (maybe under some time limit) and, in case of

failure, trying the other one afterwards.

As an alternative to this sequential application we propose a new ordering that combines

both RPO and POLO. The new family of orderings, called RPOLO, includes strictly both

RPO and POLO as well as the sequential combination of both. Our approach is based on

splitting the set of symbols into those handled in an RPO-like way (called RPO-symbols)

and those that are interpreted using a polynomial interpretation (called POLO-symbols).

In this paper, only linear polynomial interpretations are considered. These interpretations

are never applied to terms headed by an RPO-symbol. Instead, the term is interpreted

as a new variable (labeled by the term). This is crucial to be able to extend the ordering

to the higher-order case, since applying polynomial interpretations to beta-reduction is not

easy. However, the introduction of different unrelated variables for every term makes us lose

stability under substitutions and (weak) monotonicity. To avoid that, a context relating the

variables is introduced, but then a new original proof of well-foundedness is needed.

Matrix interpretations [8, 7], have recently been adopted as the third alternative to

define term orderings. As future work, it would be interesting to study if our results can

be generalized to matrix interpretations and to more general interpretations fulfilling some

required properties1.
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Although the new ordering is strictly more powerful than its predecessors and thus

examples that can be handled by RPOLO and neither by RPO nor by POLO can be cooked,

in practice, there is no real gain when using RPOLO on the first-order examples coming

from the Termination Problem Data Base.

Due to this, we show its practical usefulness by extending it, using the same techniques

as for the higher-order recursive path ordering [10] (HORPO), to rewriting on simply typed

higher-order terms union beta-reduction. The resulting ordering, called HORPOLO, can

hence be used to prove termination of the so called Algebraic Functional Systems [9] (AFS),

and provides an automatable termination method that allows the user to have polynomial

interpretations on some symbols in a higher-order setting. Note that, although some polyno-

mial interpretations for higher-order rewrite systems à la Nipkow where extensively studied

in [11], it is unclear how to implement those techniques in an automatic tool.

Due to the space limitations we have not included here the definitions of the higher-order

version of the ordering, but it is the natural extension following the same ideas applied to

extend RPO to HORPO (for a full version of this work see [3]).

2 The recursive path and polynomial ordering (RPOLO)

Here we present the ordering for first-order terms. Let F be a signature split into two sets

FPOLO and FRPO. We have a precedence �F on FRPO and a polynomial interpretation I

over the non-negative integers Z
+ for the terms in T (F ,X ). Moreover, the interpretation I

is defined by a linear interpretation fI with coefficients in Z
+ for every symbol f in FPOLO

and a variable xs for every term s with top symbol in FRPO:

I(s) =

{
fI(I(s1), . . . , I(sn)) if s = f(s1, . . . , sn) and f ∈ FPOLO
xs otherwise

In order to handle these introduced variables xs, we define a context information to be

used when comparing the interpretations. In what follows a (polynomial) context is a set of

constraints of the form x ≥ E where x is a variable and E is a linear polynomial expression

over Z
+. Let us now show the way contexts are used when comparing polynomials.

◮ Definition 1. Let C be a context. The relation→C on linear polynomial expressions over

Z
+ is defined by the rules P + x→C P + E for every x ≥ E ∈ C.

Let p and q be linear polynomial expressions over Z
+. Then p >C q (resp. p ≥C q) if

there is some u such that p −→q =
C u > q (resp. p −→q =

C u ≥ q).

We use here (the reflexive closure of) a parallel rewriting step −→q =
C instead of the tran-

sitive closure of →C because it simplifies the proofs without losing any power.

The following three mutually recursive definitions introduce respectively the context

C(S) of a set of terms S, the ordering ≻RPOLO and the compatible quasi-ordering ⊒RPOLO.

◮ Definition 2. Let S be a set of terms u such that top(u) 6∈ FPOLO. The context C(S) is

defined as the union of

1. xu ≥ E+1 for all u ∈ S and for all linear polynomial expressions E over Z
+ and variables

{xv1
, . . . , xvn} such that u ≻RPOLO vi for all i ∈ {1, . . . , n}.

2. xu ≥ xv for all u ∈ S and all v such that u ⊒RPOLO v and top(v) ∈ FRPO.

Note that C(s) can be infinite. For this reason, in practice, when comparing a pair of

terms s and t we only generate the part of C(s) that is needed. This part is chosen by

inspecting t.
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◮ Definition 3. s ⊒RPOLO t iff

1. s = t ∈ X , or

2. s = f(s1, . . . , sn) and

a. f ∈ FPOLO, I(s) ≥C(s) I(t) or

b. t = g(t1, . . . , tn), f, g ∈ FRPO, f =F g and

i. stat(f) = mul and {s1, . . . , sn}(⊒RPOLO)mon{t1, . . . , tn}, or

ii. stat(f) = lex and 〈s1, . . . , sn〉(⊒RPOLO)mon〈t1, . . . , tn〉.

◮ Definition 4. s = f(s1, . . . , sn) ≻RPOLO t iff

1. f ∈ FPOLO and I(s) >C(s) I(t), or

2. f ∈ FRPO, and

a. si �RPOLO t for some i ∈ {1, . . . , n}, or

b. t = g(t1, . . . , tm), g ∈ FPOLO and s ≻RPOLO u for all u ∈ Acc(t), or

c. t = g(t1, . . . , tm), g ∈ FRPO and

i. f ≻F g and s ≻RPOLO ti for all i ∈ {1, . . . ,m}, or

ii. f =F g, stat(f) = mul and {s1, . . . , sn}(≻RPOLO)mul{t1, . . . , tm}, or

iii. f =F g, stat(f) = lex, 〈s1, . . . , sn〉(≻RPOLO)lex〈t1, . . . , tm〉 and s ≻RPOLO ti for all

i ∈ {1, . . . ,m},

where s �RPOLO t iff s ≻RPOLO t or s ⊒RPOLO t and Acc(s) is defined as {u | xu ∈ Var(I(s))}

and, to ease the reading, C(s) denotes C(Acc(s)).

Note that ordering keeps the flavor of the RPO definition, but adding some cases to

handle the terms headed by polynomially interpreted symbols.

Now, we provide some examples of comparisons between terms that are included in our

ordering and are neither included in RPO nor in POLO, i.e., using (linear) integer polynomial

interpretations. In fact, since we consider constraints including both strict and non-strict

literals, what we show is that they are included in the pair (≻RPOLO,�RPOLO).

◮ Example 5. Consider the following constraint consisting of three literals:

H(f(g(g(x)), y), x) > H(f(g(y), x), f(g(y), x))

H(x, g(y)) ≥ H(y, x)

f(g(x), y) ≥ f(y, x)

The first literal cannot be proved by RPO since f(g(g(x)), y) cannot be proved larger than

f(g(y), x) as no argument of the former is greater than g(y). The constraints cannot be

proved terminating by an integer polynomial interpretation either.

Let us prove it using RPOLO. We takeH ∈ FRPO with stat(H) = mul and f, g ∈ FPOLO
with fI(x, y) = x+ y and gI(x) = x+ 1.

For the first literal, applying case 4.2(c)ii, we need to prove {f(g(g(x)), y), x}(≻RPOLO

)mul{f(g(y), x), f(g(y), x)}, which holds since f(g(g(x)), y) ≻RPOLO f(g(y), x) by case 4.1 as

I(f(g(g(x)), y)) = xx + xy + 2 > xx + xy + 1 = I(f(g(y), x)). The proof of the other two

literals reuses part of the previous argument. ◭

Let us now show an example where we need symbols in FRPO occurring below symbols

that need to be in FPOLO. Moreover, in this example a non-trivial use of the context is also

necessary.

◮ Example 6. Consider the following constraint coming from a termination proof:

f(0, x) ≥ x

f(s(x), y) ≥ s(f(x, f(x, y)))

H(s(f(s(x), y)), z) > H(s(z), s(f(x, y)))
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The third literal needs H and s to be in FPOLO. To hint this fact, note that we cannot

remove s and, in that case, no argument in H(s(f(s(x), y)), z) can be greater than or equal

to s(z). On the other hand, since due to the third literal, s cannot be removed and needs

a non-zero coefficient for its argument, there is no polynomial interpretation for f fulfilling

the first two literals, i.e., f must be in FRPO.

Therefore, we take H, s ∈ FPOLO with HI(x, y) = x+y and sI(x) = x+1, and f ∈ FRPO
with stat(f) = lex.

The first literal holds by case 4.2a. For the second one, f(s(x), y) ≻RPOLO s(f(x, f(x, y)))

is proved by applying case 4.2b which requires f(s(x), y) ≻RPOLO f(x, f(x, y)). We apply

then case 4.2(c)iii, showing s(x) ≻RPOLO x, by case 4.1, since I(s(x)) = xx + 1 > xx = I(x),

and f(s(x), y) ≻RPOLO x and f(s(x), y) ≻RPOLO f(x, y) for the arguments. The first one holds

by applying cases 4.2a and 4.1 consecutively, and the second one by case 4.2(c)iii as before.

Finally, for the third literal we apply case 4.1, since

xf(s(x),y) + xz + 1→{xf(s(x),y)≥xf(x,y)+2} xf(x,y) + 2 + xz + 1 > xz + xf(x,y) + 2

Note that xf(s(x),y) ≥ xf(x,y) + 2 belongs to the context of H(s(f(s(x), y)), z) since we have

f(s(x), y) ≻RPOLO s(f(x, y)) and I(s(f(x, y))) = xf(x,y) + 1. ◭

Let us mention that, although in the previous example we have used the context, in all

non cooked examples we have tried the context is not used. However, the context is still

necessary, since otherwise we can not prove neither stability under substitutions nor (weak)

monotonicity.

HORPOLO has been implemented as base ordering in THOR-1.0 2, a higher-order ter-

mination prover based on the monotonic higher-order semantic path ordering [6].

The implementation of HORPOLO is done by translating the ordering constraints s > t

and s ≥ t into problems in SAT modulo non-linear integer arithmetic (NIA) which is handled

by the Barcelogic [2, 5] SMT-solver.

Just to hint on the power of the extension of the ordering to the higher-order case we

provide an example that cannot be proved with other existing methods.

◮ Example 7. Let nat be a data type, F = {s : [nat]→ nat, 0 : []→ nat, dec : [nat×nat]→

nat, grec : [nat×nat×nat× (nat→ nat→ nat)]→ nat,+ : [nat×nat]→ nat, log2 : [nat×

nat]→ nat, sumlog : [nat]→ nat} and X = {x : nat, y : nat, u : nat, F : nat→ nat→ nat}.

Consider the following set of rules:

dec(0, x) → 0

dec(x, 0) → x

dec(s(x), s(y)) → dec(x, y)

grec(0, d, u, F ) → u

grec(s(x), s(y), u, F ) → grec(dec(x, y), s(y),@(@(F, u), x), F )

2 See http://www.lsi.upc.edu/~albert/term.html

http://www.lsi.upc.edu/~albert/term.html
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0 + x → x

s(x) + y → s(x+ y)

quad(0) → 0

quad(s(x)) → s(s(s(s(quad(x)))))

sqr(x) → sqrp(p(x, 0))

sqrp(p(0, 0)) → 0

sqrp(p(s(s(x)), y)) → sqrp(p(x, s(y)))

sqrp(p(0, s(y))) → quad(sqrp(p(s(y), 0)))

sqrp(p(s(0), y)) → quad(sqrp(p(y, 0))) + s(quad(y))

sumsqr(x) → grec(x, s(s(0)), 0, λz1 : nat.λz2 : nat.sqr(s(z2)) + z1)

The first rules define a tail recursive generalized form of the Gödel recursor where we can

decrease in any given fixed amount at every recursive call. Using it, the rules compute the

square root using the recurrence x2 = 4(x div 2)2 when x is even and x2 = 4(x div 2)2 +

4(x div 2) + 1 when x is odd. Note that in the square definitions the even/odd checking is

done along with the computation. To be able to handle this example we need to introduce

the symbol p, which allows us to have sqrp ∈ FRPO and p ∈ FPOLO.

Some more examples as well as all details and proofs can be found in [3].

References

1 T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs. Theoretical

Computer Science, 236(1-2):133-178, 2000.

2 M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell and A. Rubio. The Barce-

logic SMT Solver. In Proc. 20th International Conference on Computer Aided Verification

(CAV). Springer LNCS 5123, pp. 294–298, 2008.

3 M. Bofill, C. Borralleras, E. Rodríguez-Carbonell, and A. Rubio. The recursive path and

polynomial ordering for first-order and higher-order terms. Journal submission, 2011.

4 C. Borralleras, M. Ferreira and A. Rubio. Complete monotonic semantic path orderings.

In Proc. 17th International Conference on Automated Deduction (CADE). Springer, LNAI

1831, pp. 346–364, 2000.

5 C. Borralleras, S. Lucas, E. Rodríguez-Carbonell, A. Oliveras and A. Rubio. SAT Modulo

Linear Arithmetic for Solving Polynomial Constraints. Journal of Automated Reasoning.

Springer, 2012.

6 C. Borralleras and A. Rubio. A Monotonic Higher-Order Semantic Path Ordering. In

Proceedings of the 8th International Conference on Logic for Programming, Artificial Intel-

ligence (LPAR), volume 2250 of LNAI, pages 531–547, La Havana (Cuba), December 2001.

Springer.

7 J. Endrullis, J. Waldmann and H. Zantema. Matrix interpretations for proving termination

of term rewriting. Journal of Automated Reasoning, 40(2–3):195–220, 2008.

8 D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix interpretations.

In Proc. 17th International Conference on Rewriting Techniques and Applications (RTA

2006), LNCS 4098, pp. 328–342, 2006.

9 J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic

specification languages. In Proceedings of the 6th Annual IEEE Symposium on Logic in

Computer Science (LICS), pp. 350–361. IEEE Computer Society Press, 1991.

10 J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings. Journal

of the ACM, 54(1):1-48, 2007.

11 J. van de Pol. Termination of Higher-order Rewrite Systems. PhD. Thesis, Utrecht Uni-

versity, 1996.

WST 2012



Proving Termination of Java Bytecode with Cyclic

Data∗

Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen

Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract

In earlier work, we developed a technique to prove termination of Java Bytecode (JBC) automat-

ically: first, JBC programs are automatically transformed to term rewrite systems (TRSs) and

then, existing methods and tools are used to prove termination of the resulting TRSs. In this

paper, we extend our technique in order to prove termination of algorithms on cyclic data such

as cyclic lists or graphs automatically. We implemented our technique in the tool AProVE and

performed extensive experiments to evaluate its practical applicability.
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1 Introduction

Most techniques for proving termination of imperative languages synthesize ranking functions

(e.g., [6, 13]) and localize the termination test using Ramsey’s theorem [10, 14]. For instance,

such techniques are used in the tools Terminator [2, 7] and LoopFrog [9] to analyze termination

of C programs. The heap is usually abstracted to integers using separation logic, cf. e.g. [11].

On the other hand, there also exist transformational approaches which automatically

transform imperative programs to TRSs or to (constraint) logic programs. They allow to

re-use the existing techniques and tools from term rewriting or logic programming also for

termination of imperative programs. A tool to analyze C by a transformation to TRSs was

presented in [8] and the tools Julia [15] and COSTA [1] prove termination of Java Bytecode

(JBC) via a transformation to constraint logic programs. To deal with the heap, they use an

abstraction to integers and represent objects by their path length (i.e., by the length of the

maximal path obtained by following the fields of objects).

We presented a technique for termination of Java via a transformation to TRSs in

[3, 4, 5, 12]. In contrast to other approaches for termination of imperative programs, we

handle the heap by an abstraction to terms. In this paper, we extend our technique to

also handle algorithms whose termination depends on the traversal or manipulation of

cyclic objects. Up to now, transformational approaches could not deal with such programs.

Our termination technique works in two steps: first, a JBC program is transformed into a

termination graph, which is a finite representation of all possible program runs. This graph

takes all sharing effects into account. In the second step, a TRS is generated from the graph.
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2 Handling Algorithms on Cyclic Data

public class L {
int v;
L n;
static void visit(L x){

int e = x.v;
while (x.v == e) {

x.v = e + 1;
x = x.n; }}}

Figure 1 Java Program

We regard lists with a “next” field n where every element

has an integer value v. The method visit in Fig. 1 stores

the value of the first list element. Then it iterates over

the list elements as long as they have the same value and

“marks” them by modifying their value. The JBC for visit

is shown in Fig. 2.

The algorithm terminates because it can distinguish

already visited objects from unvisited ones by checking if

the field v was changed. We recapitulate our representation of states in termination graphs

in Sect. 2.1, explain the termination graph of visit in Sect. 2.2, and extend our approach in

order to prove termination of algorithms like visit in Sect. 2.3.

2.1 Abstract States in Termination Graphs

00: aload_0 #load x
01: getfield v #get v from x
04: istore_1 #store to e
05: aload_0 #load x
06: getfield v #get v from x
09: iload_1 #load e
10: if_icmpne 28 #jump if x.v != e
13: aload_0 #load x
14: iload_1 #load e
15: iconst_1 #load 1
16: iadd #add e and 1
17: putfield v #store to x.v
20: aload_0 #load x
21: getfield n #get n from x
24: astore_0 #store to x
25: goto 5
28: return

Figure 2 JBC for visit

In our termination graphs, we use abstract

states to represent a possibly infinite number of

non-abstract states. Such an abstract state is

depicted in Fig. 3. The first three components

of a state are written in the first line, sepa-

rated by “|”. The first component is the next

instruction to evaluate. The second component

represents the local variables as a list of refer-

ences to the heap.1 So “x : o1” indicates that

the 0-th local variable x has the value o1. The

third component is the operand stack, which

holds temporary results of JBC instructions.

The empty stack is denoted by ε and “o1, o2”

denotes a stack with top element o1.

05 |x :o1,e : i1 |ε
o1:L(?) i1:Z o1	

Figure 3 State A

Below the first line, the heap is shown. It maps references to

(abstract) values and contains annotations to specify sharing effects

in parts of the heap that are not explicitly represented. We represent

unknown integers by intervals, and abbreviate intervals such as (−∞,∞) by Z. If Cl is

the name of a class, Cl(?) is an unknown object of type Cl (or a subtype) or null. Thus,

“o1:L(?)” means that at address o1, we have an instance of L with unknown field values or

that o1 is null. More concrete objects are represented similarly, e.g., “o2:L(v = i2, n = o3)”

describes some L-object at address o2 whose field v contains the reference i2 and whose field

n contains o3.

If one of our states contains the references o1 and o2, then the objects reachable from o1
resp. o2 are disjoint2 and all these objects are tree-shaped (and thus acyclic), unless this is

explicitly stated otherwise. Sharing can be represented in two ways in our states. Either, it

is expressed directly (e.g., “o1:L(v = i2, n = o1)” implies that o1 is cyclic) or annotations are

1 To avoid a special treatment of integers, we also represent them using references to the heap. Furthermore,
to ease readability, in examples we denote local variables by names instead of numbers.

2 An exception are references to null or Ints, since in JBC, integers are primitive values where one cannot
have any side effects. So if h is the heap of a state and h(o1) = h(o2) ∈ Ints or h(o1) = h(o2) = null,
then one can always assume o1 = o2.

WST 2012



36 Automated Termination Proofs for Java Bytecode with Cyclic Data

05 |x :o1,e : i1 |ε
o1:L(?) i1:Z o1	

A

06 |x :o1,e : i1 |o1

o1:L(?) i1:Z o1	

B

06 |x :null,e : i1 |null

C

06 |x :o2,e : i1 |o2

o2:L(v= i2, n =o3)

o3 : L(?) i1 : Z i2 : Z

o2,o3	 o2%$o3 o2=?o3

D
06 |x :o2,e : i1 |o2

o2:L(v= i2, n =o3)

o3 : L(?) i1 : Z i2 : Z

o2,o3	 o2%$o3

E

06 |x :o2,e : i1 |o2

o2:L(v= i2, n =o2)

i1:Z i2:Z

F

10 |x :o2,e : i1 | i1, i2
o2:L(v= i2, n =o3) o2%$o3

o3:L(?) i1:Z i2:Z o2,o3	

G

05 |x :o2,e : i1 |ε
o2:L(v= i4, n =o2) i3:Z

K

10 |x :o2,e : i1 | i1, i2
o2: L(v = i2, n = o3) o2%$o3

o3:L(?) i1:Z i2:Z o2,o3	

H

10 |x :o2,e : i1 | i1, i1
o2:L(v= i1, n =o3)

o3:L(?) i1:Z

o2,o3	 o2%$o3

I

10 |x :o2,e : i1 | i1, i2
o2:L(v= i2, n =o2)

i1:Z i2:Z

L

05 |x :o3,e : i1 |ε
o3:L(?) i1:Z o3	

J

i1 = i2
i4 = i1 +1

i1 6= i2

i1 6= i2
i1

= i
2

i3 = i1 +1

Figure 4 Termination Graph for visit

used to indicate (possible) sharing in parts of the heap that are not explicitly represented.

For example, the equality annotation o =? o′ means that the two references o and o′ could

actually be the same and the joinability annotation o %$ o′ means that o and o′ possibly

have a common successor.

In our earlier papers [3, 12] we had another annotation to denote references that may point

to non-tree-shaped objects. To maintain more information about possibly non-tree-shaped

objects, we now introduce two new shape annotations instead. The non-tree annotation o♦

means that o might have some successor that can be reached using two different cycle-free

paths starting in o. The cyclicity annotation o	 means that there could be cycles including

o or reachable from o.

2.2 Constructing the Termination Graph

When calling visit for an arbitrary (possibly cyclic) list, one reaches state A from Fig. 4

after one loop iteration by symbolic evaluation and generalization. Now aload_0 loads the

value o1 of x on the operand stack, yielding state B. To evaluate getfield v, we perform

a case analysis (which we call refinement) and create successors C where o1 is null and

D where o1 (now called o2) is an actual instance of L. We copy the annotation 	 to its

n-field o3 and allow o2 and o3 to join. We also add o2 =? o3, for the case where o2 is a cyclic

one-element list.

In C, we end with a NullPointerException. Before accessing o2’s fields in D, we have

to resolve all possible equalities. Thus we refine D, obtaining E and F , corresponding to the

cases where o2 6= o3 and where o2 = o3. F needs no annotations anymore, as all reachable

objects are completely represented in the state. In E we evaluate getfield, retrieving the

value i2 of the field v. Then we load e’s value i1 on the operand stack, which yields G. To

evaluate if_icmpne, we branch depending on the inequality of the top stack entries i1 and

i2, resulting in H and I. We label the edges with the respective integer relations.

In I, we add 1 to i1, creating i3, which is written into the field v of o2. Then, the field

n of o2 is retrieved, and the obtained reference o3 is written into x, leading to J . As J is

a renaming of A, it is an instance of A, meaning that A represents all non-abstract states

represented by J . Therefore, we draw an instance edge (depicted by a thick arrow) from J

to A. The states following F are analogous to the ones following E.

2.3 Proving Termination of Algorithms on Cyclic Data

To prove termination of algorithms like visit, the idea is to find a suitable marking property

M ⊆ Instances. So M is a set of objects that satisfy a certain property. We add an extra
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local variable with the name cM to each state, counting the number of objects in the state

that are in M . For each concrete state s, its value is the number of reachable objects of s

which are in M . For an abstract state s representing some concrete state s′, the value of cM
is an interval containing an upper bound for the number of objects with property M in s′.

Then, we can analyze the termination graph for changes to this counter. In our example,

we let M be the set of L-objects with v = i1. Then in each loop iteration, the field v of

some L-object is set to a value i3 resp. i4 which is different from i1. Thus, the counter cM
decreases.

To detect a suitable marking property automatically, we restrict ourselves to properties

“Cl.f ⊲⊳ i”, where Cl is a class, f a field in Cl, i a (possibly unknown) integer, and ⊲⊳ an

integer relation. Then M is the set of all Cl-objects (including objects of subtypes of Cl)

whose field f stands in relation ⊲⊳ to the value i.

The first step is to find some integer value that remains constant. In our example, we can

easily infer this for i1 automatically. The second step is to find Cl, f, and ⊲⊳ such that every

cycle contains some state where cM > 0, where M is the set of all objects satisfying C.f ⊲⊳ i.

We consider those states whose incoming edge is labeled with “i ⊲⊳ . . .” or “. . . ⊲⊳ i”. In our

example, I’s incoming edge is labeled with “i1 = i2” and at the time of the comparison of

i1 and i2 (i.e., in state G), i2 was the value of o2’s field v, where o2 is an L-object. This

suggests the marking property “L.v = i1”. In I we thus know that cM > 0. So the cycle

A, . . . , E, . . . A contains a state with cM > 0 and one can automatically detect that the other

cycle A, . . . , F, . . . , A also has a similar state with cM > 0.

In the third step, we add cM as a new local variable with value i to all states. The edge

from G to I is then labeled with “i > 0” which we inferred in the second step above (this

label will be used in the resulting TRS). It remains to explain how to detect changes of the

counter cM . To this end, we use SMT solving. A counter for “Cl.f ⊲⊳ i” can only change

when a new object of type Cl (or a subtype) is created or when the field Cl.f is modified.

So whenever “new Cl′” is called for some subtype Cl′ of Cl, then we have to consider the

default value d for the field Cl.f. If the underlying SMT solver can prove that ¬d ⊲⊳ i is a

tautology, then cM can remain unchanged. Otherwise, to ensure that cM is an upper bound

for the number of objects in M , cM is incremented by 1. If a putfield replaces the value u

in Cl.f by w, we have three cases:

(i) If u ⊲⊳ i ∧ ¬w ⊲⊳ i is a tautology, then cM may be decremented by 1.

(ii) If u ⊲⊳ i↔ w ⊲⊳ i is a tautology, then cM remains the same.

(iii) In the remaining cases, we increment cM by 1.

In our example, between I and J one writes i3 to the field v of o2. To find out how cM
changes from I to J , we create a formula containing all information on the edges in the path

up to now. This results in i1 = i2 ∧ i3 = i1 + 1. We then check whether the information

in the path implies u ⊲⊳ i ∧ ¬w ⊲⊳ i. In our example, the previous value u of o2.v is i1 and

the new value w is i3. Any SMT solver for integer arithmetic can easily prove that the

resulting formula i1 = i2 ∧ i3 = i1 + 1 → i1 = i1 ∧ ¬i3 = i1 is a tautology (i.e., its negation

is unsatisfiable).

Thus, cM is decremented by 1 in the step from I to J and hence, we label the edge from

I to J with the relation “i′ = i− 1” (where i′ is the new value of cM ). Similarly, one can also

easily prove that cM decreases between F and K. We can now generate TRSs as in [4, 12].

The new counter results in an extra argument of the function symbols in the TRS. So for the

cycle A, . . . , E, . . . A, after some “merging” of rewrite rules, we obtain the following TRS:

fA(. . . , i)→ fI(. . . , i) | i > 0 fI(. . . , i)→ fJ(. . . , i− 1) fJ(. . . , i′)→ fA(. . . , i′)
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For the other cycle A, . . . , F, . . . A we obtain similar rules. Termination of the resulting TRS

can easily be be shown automatically, which proves termination of the original method visit.

3 Experiments and Conclusion

We extended our earlier work [3, 4, 5, 12] on proving termination of JBC automatically to

also handle methods whose termination behaviour depends on the cyclicity of the handled

data. In the full version of the paper, we also describe additional extensions to handle further

classes of such algorithms besides “marking algorithms” as in Sect. 2. We implemented

our new approach in the termination tool AProVE and evaluated it on a large collection

of JBC programs, including all methods of the classes LinkedList and HashMap from the

Collections framework in the java.util package, which is part of the standard Java

distribution. Our experiments demonstrate the practical applicability of our approach and

they show that the new version of AProVE is significantly more powerful than its predecessor

and than other tools for JBC termination analysis. For further details, we refer to the

forthcoming full version of the paper.
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Abstract

Recently, we developed an approach for automated termination proofs of Java Bytecode (JBC),

which is based on constructing and analyzing termination graphs. These graphs represent all

possible program executions in a finite way. In this paper, we show that this approach can

also be used to detect non-termination. We implemented our results in the termination prover

AProVE and provide experimental evidence for the power of our approach.
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1 Introduction

Our approach is based on our earlier work to prove termination of JBC [3, 4, 11]. Here, a JBC

program is first automatically transformed to a termination graph by symbolic evaluation.

Afterwards, a term rewrite system is generated from the termination graph and existing

techniques from term rewriting are used to prove termination of the rewrite system. As

shown in the annual International Termination Competition,1 our corresponding tool AProVE

[9] is currently among the most powerful ones for automated termination proofs of Java

programs.

Termination graphs finitely represent all runs through a program for a certain set of

input values. In Sect. 2, we show that termination graphs can also be used to detect

non-termination.

Methods to prove non-termination automatically have for example been studied for term

rewriting (e.g., [8, 13]) and logic programming (e.g., [12]). We are only aware of two existing

tools for automated non-termination analysis of Java: The tool Julia transforms JBC programs

into constraint logic programs, which are then analyzed for non-termination [14] and under

certain conditions, this allows to deduce non-termination of the original JBC program. The

tool Invel [15] investigates non-termination of Java programs based on a combination of

theorem proving and invariant generation using the KeY [2] system. In contrast to our

approach, Invel and Julia only have limited support for proving non-termination of programs

operating on the heap. Moreover, in contrast to our technique, neither Julia nor Invel return

witnesses for non-termination. In Sect. 3 we compare the implementation of our approach in

the tool AProVE with Julia and Invel. In our experiments, the non-termination analyzer in

AProVE was substantially more powerful than the ones implemented in Julia and Invel.

∗ Supported by the DFG grant GI 274/5-3, the G.I.F. grant 966-116.6, and the DFG Research Training
Group 1298 (AlgoSyn).
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Moreover, [10] presents a method for non-termination proofs of C programs. In contrast

to our approach, [10] can deal with non-terminating recursion and integer overflows. On

the other hand, [10] cannot detect non-periodic non-termination (where there is no fixed

sequence of program positions that is repeated infinitely many times), whereas this is no

problem for our approach.

2 Proving Non-Termination

static void nonLoop (

int x, int y) {

if (y >= 0) {

while (x >= y) {

int z = x - y;

if (z > 0) {

x--;

} else {

x = 2*x + 1;

y++; }}}}

Figure 1 nonLoop(x,y)

Consider the method nonLoop in Fig. 1 which does not terminate

if x ≥ y ≥ 0. For example, if x = 2, y = 1 at the beginning

of the loop, then after one iteration we have x = 1, y = 1. In

the next iterations, we obtain x = 3, y = 2; x = 2, y = 2; and

x = 5, y = 3, etc. So this non-termination is non-looping and even

non-periodic (since there is no fixed sequence of program positions

that is repeated infinitely many times). Thus, non-termination

cannot be proved by techniques like [10].

To prove non-termination of such methods, we first generate

the termination graph automatically. Then we construct a formula that represents the loop

condition and the computation on each path through the loop. Afterwards, we use an SMT

solver to prove that the variable assignments after any run through the loop satisfy the loop

condition again, and hence, the loop will be traversed again. If this proof succeeds, then we

can conclude non-termination under the condition that at least one run through the loop is

possible.

. . . |x : i4, y : i2 | . . .
i4:Z i2: [≥0]

B

. . . |x : i1, y : i2 | . . .
i1:Z i2: [≥0]

A

. . . |x : i6, y : i7 | . . .
i6:Z i7: [>0]

C

i1 ≥ i2, i3 = i1 − i2,
i3 > 0, i4 = i1 − 1

i1 ≥ i2, i3 = i1 − i2,
i3 ≤ 0, i5 = 2 · i1,
i6 = i5 + 1, i7 = i2 + 1

Figure 2 Graph for nonLoop

Our approach is related to abstract interpretation [6],

since the states in termination graphs are abstract, i.e.,

they represent a (possibly infinite) set of concrete system

configurations of the program. For our symbolic evalua-

tion, we concretize our states when needed for evaluation

and abstract them again in order to “merge” similar states

(this is needed to obtain a finite representation of all pro-

gram runs). For our example program, it suffices to regard

a simplified version of the termination graph, which is

shown in Fig. 2. State A corresponds to the program

position in the corresponding JBC program where one

has just entered the body of the while loop. Thus, here we have two local variables x and y

whose values are some integer numbers i1 and i2. Moreover, the state contains all information

that we have about i1 and i2, i.e., i2 is non-negative, whereas i1 can be an arbitrary integer

(we do not handle overflows).

By repeated symbolic evaluation and case analyses, the abstract program state A can be

evaluated to the state B (if i3 = i1 − i2 > 0) or to the state C (otherwise), representing the

two possible paths through the loop. The states B and C are again at the same program

position as A, i.e., at the beginning of the body of the while loop. Note that all concrete

states that are represented by B or C are also represented by A, i.e., B and C are instances of

A. Thus, we can draw so-called instance edges from both B and C to A, which concludes the

construction of the termination graph. For more details on the construction of termination

graphs (also for programs operating on the heap), we refer to the full version of the paper [5].

A node in a cycle with a predecessor outside of the cycle is called a loop head node. In

Fig. 2, A is such a node. We consider all paths p1, . . . , pn from the loop head node back
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to itself (without traversing the loop head node in between), i.e., p1 = A, . . . , B,A and

p2 = A, . . . , C,A. Here, p1 corresponds to the case where x ≥ y and z = x− y > 0, whereas

p2 handles the case where x ≥ y and z = x− y ≤ 0. For each path pj , we generate a loop

condition formula ϕj (expressing the condition for entering this path) and a loop body formula

ψj (expressing how the values of the variables are changed in this path).

Essentially, the formulas ϕj and ψj result from the constraints on the edges of the

cycle. Here, ϕj contains those constraints that express relations between integers and

ψj contains those constraints that express operations on integers. In our example, ϕ1 is

i1 ≥ i2 ∧ i3 > 0 and ϕ2 is i1 ≥ i2 ∧ i3 ≤ 0. Moreover, ψ1 is i3 = i1 − i2 ∧ i4 = i1 − 1

and ψ2 is i3 = i1 − i2 ∧ i5 = 2 · i1 ∧ i6 = i5 + 1 ∧ i7 = i2 + 1. We use a labeling func-

tion ℓk where for any formula ξ, ℓk(ξ) results from ξ by labeling all variables with k. We

use the labels 1, . . . , n for the paths through the loop and the label r for the resul-

ting variables (after having traversed the loop once). The question is whether after one run

through the loop, one will leave the loop or whether one will stay within the loop. In other

words, the question is whether the resulting variables after the first loop iteration violate all

of the loop conditions.

ρ(p1, . . . , pn) = µ︸︷︷︸
invariants

∧ (
∨n
j=1

(ℓj(ϕj) ∧ ℓ
j(ψj) ∧ ιj))

︸ ︷︷ ︸
first run through the loop

∧ (
∧n
j=1

(¬ℓr(ϕj) ∧ ℓ
r(ψj)))

︸ ︷︷ ︸
violation of loop conditions after first loop traversal

Here, µ is a set of obvious invariants that are known in the loop head node. So as we know

“i2: [≥0]” in state A, µ is i2 ≥ 0 for our example. The formula ιj connects the variables labeled

with j to the unlabeled variables in µ and to the variables labeled with r in the formulas

after the first loop traversal. So for every integer i in the loop head node, ιj contains i = ij .

Moreover, if there is an instance edge from state s′ to the loop head node s and the integer

i′ in s′ corresponds to the integer i in s, then ιj contains i′j = ir. For our example, ι1 is

i1 = i11 ∧ i2 = i12 ∧ i
1
4 = ir1 ∧ i

1
2 = ir2.

Intuitively, satisfiability of the first two parts of ρ(p1, . . . , pn) corresponds to one successful

run through the loop. The third part encodes that after the first loop iteration, none of the

loop conditions holds anymore. Here, we do not only consider the negated loop conditions

¬ℓr(ϕj), but we also need ℓr(ψj), as ϕj can contain variables computed in the loop body.

For example in the method nonLoop, ℓr(ϕ1) contains ir3 > 0. But to determine how ir3 results

from the “input arguments” ir1, i
r
2, one needs ℓr(ψ1) which contains ir3 = ir1 − i

r
2.

The generated formula ρ(p1, . . . , pn) is an existentially quantified formula using non-linear

integer arithmetic.2 If an SMT solver proves unsatisfiability of this formula, we know that

whenever a variable assignment satisfies a loop condition, then after one execution of the loop

body, a loop condition is satisfied again (i.e., the loop runs forever). Note that we generalized

the notion of “loop conditions”, as we discover the conditions by symbolic evaluation of the

loop. Consequently, we can also handle loop control constructs like break or continue.

So unsatisfiability of ρ(p1, . . . , pn) implies that the loop is non-terminating, provided that

the loop condition can be satisfied at all. To check this, we use an SMT solver to find a model

for σ(p1, . . . , pn) = µ ∧ (
∨n
j=1(ℓj(ϕj) ∧ ℓ

j(ψj) ∧ ιj)). Moreover, to prove non-termination

of a whole JBC method, one of course also has to prove that the non-terminating loop is

reachable from the initial state of the method, cf. [5].

◮ Theorem 1 (Proving Non-Termination). Let s be a loop head node in a termination graph

where the local variables of s only have integer values, and let p1, . . . , pn be all paths from s

2 As most programs do not contain non-linear expressions relevant for termination, ρ(p1, . . . , pn) is linear
in most cases.

WST 2012



42 Proving Non-Termination for Java Bytecode Programs

back to s. Let ρ(p1, . . . , pn) be unsatisfiable and let σ(p1, . . . , pn) be satisfiable by some model

M . Let c be a concrete state represented by s, where every integer variable in c has been

assigned the value given in M . Then c starts an infinite JBC evaluation.3

So from the model M of σ(p1, . . . , pn), we obtain an instance c of the loop head node

where we replace unknown integers by the values in M . For our example, i1 = i11 = i13 =

1, i2 = i12 = ir2 = i14 = ir1 = 0 satisfies σ(p1, . . . , pn). From this, we can generate a witness

state with x = 1 and y = 0 at the program position of the loop head node which indeed leads

to non-termination.

Finally, we have to prove that this witness state is reachable from the initial state of the

method nonLoop. To this end, we proceed step by step and automatically generate witnesses

at preceding program positions by traversing the edges of the termination graph backwards

and reversing the effects of the symbolic evaluation (the details of this witness generation

are presented in [5]). If this succeeds and a witness state at the position of the initial state

of the method could be generated, we present this witness to the user as a non-terminating

counterexample. So in this way, we obtain a sound method for non-termination analysis of

JBC, although the termination graph usually represents a superset of the executions that are

possible in the original JBC program.

3 Evaluation and Conclusion

Based on termination graphs, we presented a technique to prove non-termination of JBC.

While the approach presented in this paper fails on non-terminating programs that manipulate

the heap or have sub-loops, the full version of the paper [5] also contains techniques to detect

periodic non-termination of methods that operate on the heap and that may have sub-loops.

We implemented our approach in the termination tool AProVE [9], using the SMT solver Z3

[7] and evaluated it on a collection of 325 examples which contains all 268 JBC programs from

the Termination Problem Data Base that is used in the annual International Termination

Competition4 and all 55 examples from [15] used to evaluate the Invel tool. For our evaluation,

we compared the old version of AProVE (without support for non-termination), the new

version AProVE-No, and Julia [14]. We were not able to obtain a running version of Invel,

and thus we only compared to the results of Invel reported in [15].

Invel Examples Other Examples

Y N F T R Y N F T R

AProVE-No 1 51 0 3 5 204 30 12 24 11

AProVE 1 0 5 49 54 204 0 27 39 15

Julia 1 0 54 0 2 166 22 82 0 4

Invel 0 42 13 0 ?

We used a time-out of 60 seconds for each example. “Yes” and “No” indicate how often

termination (resp. non-termination) could be proved, “Fail” states how often the tool failed

in less than 1 minute, “T” indicates how many examples led to a Time-out, and “R” gives

the average Runtime in seconds for each example. The experiments clearly show the power of

our contributions, since AProVE-No is the most powerful tool for automated non-termination

3 For the proof of the theorem, we refer to [5].
4 We removed a controversial example whose termination depends on integer overflows.
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proofs of Java resp. JBC programs. Moreover, the comparison between AProVE-No and

AProVE indicates that the runtime for termination proofs did not increase due to the added

non-termination techniques. To experiment with our implementation via a web interface and

for further details, we refer to [1] and to the full version of the paper [5].
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Abstract

We describe an approach for proving termination of programs abstracted to systems of mono-

tonicity constraints in the integer domain. Monotonicity constraints are a non-trivial extension of

the size-change termination method. In this setting, termination is PSPACE complete, hence we

focus on a significant subset in NP, which we call MCNP, designed to be amenable to a SAT-based

solution. We use ranking functions in terms of bounded differences between multisets of integers.

Experiments with our approach as a back-end for termination analysis of Java Bytecode with

AProVE and COSTA as front-ends reveal a good trade-off between precision and cost of analysis.

Keywords and phrases Termination Analysis, Monotonicity Constraints, SAT Encoding

1 Introduction

For termination analysis, we need a program abstraction that both captures the properties

required to prove termination as often as possible and provides a decidable sufficient criterion

for termination. Typically, such abstractions describe possible program steps by finitely many

abstract transition rules. The abstraction considered in this paper is based on monotonicity-

constraint systems (MCSs). The MCS abstraction is an extension of the SCT (size-change

termination [4]) abstraction, which has been studied extensively during the last decade.1 For

SCT, an abstract transition rule is specified by a set of inequalities that show how the sizes of

program data in the target state decrease compared to the source state. Size is measured by

a well-founded base order. These inequalities are often represented by a size-change graph.

The size-change technique was conceived to deal with well-founded domains, where infinite

descent is impossible. Termination is deduced by proving that any (hypothetical) infinite run

would decrease some value monotonically and endlessly, in contradiction to well-foundedness.

Extending this approach, a monotonicity constraint (MC) allows for any conjunction of order

relations (strict and non-strict inequalities) involving any pair of variables from the source

and target states. So in contrast to SCT, one may also have relations between two variables

in the target state or two variables in the source state, which makes MCSs more expressive

than size-change graphs. Another advantage of MCSs is that monotonicity constraints can

imply termination under a different assumption—that the data are integers. Not being

well-founded, integer data cannot be handled by SCT.

∗ Supported by the G.I.F. grant 966-116.6.
† Part of this author’s work was carried out while he was visiting DIKU, the University of Copenhagen.
‡ Part of this author’s work was carried out at LuFG Informatik 2, RWTH Aachen University.
1 See http://www2.mta.ac.il/~amirben/sct.html for a summary and references.
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MCS and SCT both have the drawback that the decision problems for termination are

PSPACE complete and a certificate can be of prohibitive complexity. [1] addresses this

problem for SCT, identifying an NP complete subclass of SCT, called SCNP, which yields

polynomial-size certificates. Moreover, [1] automates SCNP using a SAT solver. In practice,

this method has good performance and power compared to a complete SCT decision procedure.

In this paper we tackle the similar termination problem for MCSs in the integer domain.

The integer setting is more complicated than the well-founded setting, and termination is

often proved by looking at differences of certain program values (which should be decreasing

and lower-bounded). We use the following approach: (1) We associate two argument sets

with each program point and define how to “subtract” them so that the difference can be

used for ranking (generalizing the difference of two integers). (2) We introduce a concept of

“ranking functions” which is less strict than typically used but still suffices for termination.

After setting up the scenario in Sect. 2, Sect. 3 introduces ranking structures as termination

witnesses and the class MCNP of terminating MCSs, which is in NP. Sect. 4 gives an empirical

evaluation and concludes. For further details, please see also the full paper [2].

2 Monotonicity-Constraint Systems and Their Termination

Our method is programming-language independent. It works on an abstraction of the

program provided by a front-end (assumed given). An abstract program is a transition

system with states expressed in terms of a finite number of variables (argument positions).

◮ Definition 1 (monotonicity-constraint system, monotonicity constraint). A monotonicity-

constraint system (MCS) is an abstract program, represented by a directed multigraph called

a control-flow graph (CFG). The vertices are called program points and they have fixed

numbers (arity) of argument positions. A program state is an association of a value from Z

to each argument position of a program point p, denoted p(x1, . . . , xn) and abbreviated p(x̄).

The set of all states is denoted St. The arcs of the CFG are associated with transition rules

p(x̄) :– π; q(ȳ) specifying relations on program states. Here π is a monotonicity constraint

(MC) on V = x̄ ∪ ȳ, i.e., π is a conjunction of constraints x ⊲ y where x, y ∈ V , and

⊲ ∈ {>,≥}. We write π |= x⊲ y if x⊲ y is a consequence of π.

We often represent a MC as a directed graph (often denoted by the letter g), with vertices

x̄∪ ȳ, and two types of edges (x, y): strict and weak. If π |= x > y then there is a strict edge

from x to y and if π |= x ≥ y (but not x > y) then the edge is weak. Note that this paper

has two kinds of graphs: those for transition rules, and the CFG induced by these rules.

◮ Definition 2 (run, termination). Let G be a transition system. A run of G is a sequence

p0(x̄0)
π0

→ p1(x̄1)
π1

→ p2(x̄2) . . . of states labeled by constraints such that each labeled pair of

states, pi(x̄i)
πi
→ pi+1(x̄i+1), corresponds to a transition rule pi(x̄) :– πi; pi+1(ȳ) from G and

such that πi is satisfied. A transition system terminates if it has no infinite run.

◮ Example 3. This example presents a MCS in textual form as well as graphical form. This

system is terminating, and later we shall prove this using our method. In the graphs, solid

arrows stand for strict inequalities and dotted arrows stand for weak inequalities.

g1 = p(x1, x2, x3) :– y1 > x1, y2 ≥ x1, x2 ≥ y2, x2 ≥ y3, x2 ≥ x1; p(y1, y2, y3)

g2 = p(x1, x2, x3) :– y1 ≥ x1, y1 > x2, y2 > x2, x3 ≥ y2, x3 ≥ y3, x3 > x2; p(y1, y2, y3)

p :

p :

x1 x2oo

����

x3

y1

OO

y2

^^

y3

p :

p :

x1 x2 x3oo

�� ��
y1

OO @@
�

�
�

�
�

y2

OO

y3
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3 Ranking Structures for MCSs and MCNP

For a quasi-order %, its strict part x ≻ y is (x % y) ∧ (y 6% x), and it is well-founded if there

is no infinite ≻-chain. A set is well-founded if it has a tacitly-understood well-founded order.

A ranking function maps program states into a well-founded set, such that every transition

decreases the function’s value. Generalizing, we introduce ranking structures, which are more

flexible than ranking functions, and suffice for most practical termination proofs.

◮ Definition 4 (anchor, intermittent ranking function). Let G be a MCS with state space

St. Let (D,%) be a quasi-order and D+ a well-founded subset of D. Consider a function

Φ : St→ D. We say that g ∈ G is a Φ-anchor for G (or that g is anchored by Φ for G) if for

every run p0(x̄0)
π0

→ p1(x̄1)
π1

→ . . .
πk−1

→ pk(x̄k)
πk
→ pk+1(x̄k+1) where both p0(x̄0)

π0

→ p1(x̄1) and

pk(x̄k)
πk
→ pk+1(x̄k+1) correspond to the transition rule g, we have Φ(pi(x̄i)) % Φ(pi+1(x̄i+1))

for all 0 ≤ i ≤ k, where at least one of these inequalities is strict; and Φ(pi(x̄i)) ∈ D+ for

some 0 ≤ i ≤ k. Such a function Φ is called an intermittent ranking function (IRF).

◮ Example 5. Consider the transition rules from Ex. 3 inducing the MCS G. Let Φ1(p(x̄)) =

max(x2, x3)− x1. In any run built with g1 and g2, the value of Φ1 is non-negative at least in

every state followed by a transition by g1. Moreover, a transition by g1 decreases the value

strictly and a transition by g2 decreases it weakly. Hence, g1 is anchored by Φ1 for G.

◮ Definition 6 (ranking structure). Consider G and D as in Def. 4. Let Φ1, . . . ,Φm : St→ D.

Let G1 consist of all transition rules g ∈ G where Φ1 anchors g for G. For 2 ≤ i ≤ m, let Gi
consist of all transition rules g ∈ G\(G1∪ . . .∪Gi−1) where Φi anchors g in G\(G1∪ . . .∪Gi−1).

We say that 〈Φ1, . . . ,Φm〉 is a ranking structure for G if G1 ∪ . . . ∪ Gm = G.

Note that by the above definition, for every g ∈ G there is a (unique) Gi with g ∈ Gi.

◮ Example 7. For the program of Ex. 3, a ranking structure is 〈Φ1,Φ2〉 with Φ1 as in Ex. 5

and Φ2(p(x̄)) = x3 − x2. Here, we have g1 ∈ G1 and g2 ∈ G2.

◮ Theorem 8. If there is a ranking structure for G, then G terminates.

The building blocks for our construction are two2 quasi-orders on multisets of integers

and a notion of level mappings from program states into pairs of multisets, whose difference

(not set-theoretic difference; see Def. 13 below) will be used to rank the states. The difference

will be itself a multiset, and we use the following relations to order such multisets.

◮ Definition 9 (multiset types). Let ℘n(Z) denote the set of multisets of integers of at most

n elements, where n is fixed by context.3 The µ-ordered multiset type, for µ ∈ {max,min },

is the quasi-ordered set (℘n(Z),%µ) where:

1. (max order) S %
max T holds iff max(S) ≥ max(T ), or T is empty; S ≻max T holds iff

max(S) > max(T ), or T is empty while S is not.

2. (min order) S %
min T holds iff min(S) ≥ min(T ), or S is empty; S ≻min T holds iff

min(S) > min(T ), or S is empty while T is not.

◮ Example 10. For S = {10, 8, 5}, T = {9, 5}: S ≻max T , T %
min S.

◮ Definition 11 (well-founded subset of multiset types). For µ ∈ {max,min }, we define

(℘n(Z),%µ)+ as follows: For min (respectively max) order, the subset consists of the multisets

whose minimum (resp. maximum) is non-negative.

◮ Lemma 12. For all µ ∈ {max,min }, (℘n(Z),%µ) is a total quasi-order, with ≻µ its

strict part; and (℘n(Z),%µ)+ is well-founded.

2 The full version of this paper [2] additionally uses the multiset order and the dual multiset order.
3 For monotonicity-constraint systems, n is the maximum arity of program points.
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For MCs over the integers, we consider differences: in the simplest case,

we have a “low variable” x that is non-descending and a “high variable” y

that is non-ascending, so y − x is non-ascending (and will decrease if x or y

changes). If we also have a constraint like y ≥ x, to bound the difference from

below, we can use this for ranking a loop (we refer to this situation as “the Π”—due to the

diagram on the right). In the more general case, we consider sets of variables. We will search

for a similar Π situation involving a “low set” and a “high set”. We next define how to form

a difference of two sets so that one can follow the same strategy of “diminishing difference”.

◮ Definition 13 (multiset difference). Let L,H be non-empty multisets with types µL, µH
respectively. For µL ∈ {max,min}, we define H − L = {h − µL(L) | h ∈ H}, and H − L

has the type of H. (Here, µL(L) signifies min(L) or max(L) depending on the value of µL).

We write H G L if the difference belongs to the well-founded subset.

The following lemma provides the intuition for multiset difference as above.

◮ Lemma 14. Let L,H be two multisets of types µL, µH , let µD be the type of H−L, and let

L′, H ′ be of the types of L,H respectively. Then H %
µH H ′∧L -

µL L′ ⇒ H−L %
µD H ′−L′;

H ≻µH H ′∧L -
µL L′ ⇒ H−L ≻µD H ′−L′; H %

µH H ′∧L ≺µL L′ ⇒ H−L ≻µD H ′−L′.

Level mappings are functions that facilitate the construction of ranking structures.

◮ Definition 15 (bi-multiset level mapping, or “level mapping” for short). Let G be a MCS.

A (bi-multiset) level mapping, fµL,µH maps each program state p(x̄) to a pair of (possibly

intersecting) multisets plowf (x̄) = { u1, . . . , ul } ⊆ x̄ and phighf (x̄) = { v1, . . . , vk } ⊆ x̄ with

types indicated respectively by µL, µH ∈ {max,min }. The selection of argument positions

only depends on the program point p.

◮ Example 16. The following are the level mappings used (in Ex. 23) to prove termination

of the program of Ex. 3. Here, each program point p is mapped to 〈plowf (x̄), phighf (x̄)〉.

f1
min,max(p(x̄)) = 〈{ x1 } , { x2, x3 }〉 f2

min,max(p(x̄)) = 〈{ x2 } , { x3 }〉

Level mappings are applied to express the diminishing difference of their low and high

sets. We also need to express a constraint relating the high and low sets, providing the

horizontal bar of “the Π”. A transition rule that has such a constraint is called bounded.

◮ Definition 17 (bounded). Let G be a MCS, f a level mapping (for brevity we sometimes

write f instead of fµL,µH ) and g ∈ G. A transition rule g = p(x̄) :– π; q(ȳ) in G is called

bounded w.r.t. f if π |= phighf G plowf .

◮ Definition 18 (orienting transition rules). Let f be a level mapping. (1) f orients transition

rule g = p(x̄) :– π; q(ȳ) if π |= phighf (x̄) % q
high
f (ȳ) and π |= plowf (x̄) - qlowf (ȳ); (2) f orients

g strictly if, in addition, π |= phighf (x̄) ≻ qhighf (ȳ) or π |= plowf (x̄) ≺ qlowf (ȳ).

◮ Example 19. We refer to Ex. 3 and the level mapping f1
min,max from Ex. 16. Function

f1
min,max orients all transition rules, where g1 is bounded and oriented strictly w.r.t. f1

min,max.

◮ Corollary 20 (of Def. 18 and Lemma 14). Let f be a level mapping and define Φf (p(x̄)) =

p
high
f (x̄)− plowf (x̄). If f orients g = p(x̄) :– π; q(ȳ) , then π |= Φf (p(x̄)) % Φf (q(ȳ)); and if f

orients g strictly, then π |= Φf (p(x̄)) ≻ Φf (q(ȳ)).

The next theorem combines orientation and bounding to show how a level mapping

induces anchors. We refer to cycles in the CFG also as “cycles in G”.
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◮ Theorem 21. Let G be a MCS and f a level mapping. Let g = p(x̄) :– π; q(ȳ) be such

that every cycle C including g satisfies these conditions: (1) all transitions in C are oriented

by f , and at least one of them strictly; (2) at least one transition in C is bounded w.r.t. f .

Then g is a Φf -anchor for G, where Φf (p(x̄)) = phighf (x̄)− plowf (x̄).

◮ Definition 22 (MCNP anchors and ranking functions). Let G be a MCS and f a level

mapping. We say that g is a MCNP-anchor for G w.r.t. f if f and g satisfy the conditions of

Thm. 21. Φf is called a MCNP (intermittent) ranking function (MCNP IRF). A system of

monotonicity constraints is in MCNP if it has a tuple of MCNP IRFs as a ranking structure.

It follows from Thm. 8 that if a MCS is in MCNP, then it terminates.

◮ Example 23. Consider again Ex. 3 and Ex. 16. Then, 〈Φf1 ,Φf2〉 is a ranking structure

for G. The facts in Ex. 19 imply that g1 is an MCNP-anchor w.r.t. f1. Moreover, f2 is both

strict and bounded on g2.

One can now show that MCNP is in NP. Thus, for automation we use a SAT encoding to

find termination proofs using an off-the-shelf SAT solver. We invoke a SAT solver iteratively

to generate level-mappings and construct a ranking structure 〈Φ1,Φ2, . . . ,Φm〉. Details on

the algorithm and on the encoding can be found in the full version of this paper [2].

4 Experiments and Conclusion

We implemented a termination analyzer based on our SAT encoding for MCNP and tested

it on several benchmark suites. For details on our experiments please see http://aprove.

informatik.rwth-aachen.de/eval/MCNP. As part of our experiments, we applied our

MCNP implementation on MCS abstractions of over 100 Java Bytecode programs which

were obtained using the termination tools AProVE and COSTA. Our results show that MCNP

is almost as powerful as the back-ends of AProVE and COSTA, and its performance is

competitive, especially in comparison to the rewrite-based tool AProVE. Thus, it could

be fruitful to use a combination of tools where the MCNP-analyzer is tried first and the

rewrite-based analyzer is only applied for the remaining “hard” examples.

To conclude, we introduced a new approach to prove termination of monotonicity-

constraint transition systems. The idea is to construct a ranking structure, of a novel kind,

extending previous work in this area. For automation, we use a SAT-based approach, which

we evaluated in extensive experiments. The results demonstrate the power of our approach

and show that its integration into termination tools for Java Bytecode advances the state of

the art of automated termination analysis. The full version of this paper has appeared in [2].
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Abstract

We introduce a technique to prove non-termination of term rewrite systems automatically. In

contrast to most previous approaches, our technique is also able to detect non-looping non-

termination.
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1 Introduction

To prove constructively that a term rewrite system (TRS) is non-terminating, one has to

provide a finite description of how to obtain an infinite rewrite sequence. The most common

way to do so is in the form of loops. A loop is a finite sequence of rewrite steps, such that

the start term of the sequence is embedded in the final term.

◮ Definition 1 (Loops). A TRS R is called looping, if there is a term u, a context C, and a

substitution µ such that u→+
R
C[uµ].

Since term rewriting is closed under substitutions and contexts, from any loop it is

possible to construct an infinite rewrite sequence u→n
R
C[uµ]→n

R
C[Cµ[uµ2]]→n

R
. . . for

some n > 0.

To detect loops automatically, one can start with a rule and then repeatedly narrow

it using other rules (see e.g. [3, 4, 10, 12, 14, 15] for existing work on proving looping

non-termination of TRSs). Narrowing is similar to rewriting, but instead of matching the

left-hand side of a rule with a subterm, one uses unification. In this way, one constructs

longer and longer rewrite sequences u→+
R
v. As soon as u semi-unifies with a subterm v|π

of v (i.e., uδ1δ2 = v|πδ1 for some substitutions δ1 and δ2), one has found a loop, since

uδ1 →
+
R
vδ1 = vδ1[v|πδ1]π = vδ1[uδ1δ2]π.

This approach is suitable for automation, since semi-unification is decidable and algorithms

for semi-unification were presented in [6, 8], for example.

2 Non-Looping Non-Termination

While interesting classes and examples of non-looping TRSs were identified in earlier papers

(e.g., [2, 13]), up to now virtually all methods to prove non-termination of TRSs automatically
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were restricted to looping non-termination.1 A notable exception, although restricted to

string rewrite systems (SRSs), is a technique and tool for non-termination proofs of non-

looping SRSs given in [9]. This approach uses an abstract rewrite relation, where rules are

not pairs of strings, but pairs of patterns of the form uvnw. Here, u, v, and w are strings

and n can be instantiated by a natural number.

Our goal is to extend this idea in order to obtain a powerful automated technique for

non-termination of (possibly non-looping) term rewrite systems.

◮ Example 2. Let R be the TRS consisting of the following rules:

isNat(0) → true (1)

isNat(s(x)) → isNat(x) (2)

f(true, x) → f(isNat(x), s(x)) (3)

This system is non-terminating, but not looping. To see this, note that any infinite

rewrite sequence has the following form (up to contexts):

f(true, sn(0)) →R f(isNat(sn(0)), sn+1(0))

→n+1
R

f(true, s
n+1

(0))

→R f(isNat(s
n+1

(0)), s
n+2

(0))

→n+2
R

f(true, s
n+2

(0))

. . .

Since the number of steps required to reduce the isNat-terms to true increases in every

iteration, this sequence cannot be represented as a loop. In other words, loops cannot capture

non-periodic infinite rewrite sequences.

To represent such sequences, we extend the idea of [9] from strings to terms and define

so-called pattern rules which are parameterized over the natural numbers. Instantiating the

parameter results in a pair of terms u, v such that u→+
R
v. This allows us to capture certain

rewrite sequences of arbitrary length by a finite representation.

For instance, the effect of repeated application of rule (2) on the same position can be

captured by the pattern rule

isNat(x)[x/s(x)]n →֒ isNat(x) (4)

with the parameter n, where [x/s(x)]n means that the substitution [x/s(x)] is applied n

times. Then, for every natural number n, the term pair resulting from the instantiation is

contained in →n
R

(i.e., isNat(sn(x))→n
R

isNat(x)).

To prove non-termination, we now proceed in a similar way as in existing techniques

to find loops. More precisely, we extend the concept of narrowing from ordinary rules to

pattern rules. In this way, we can generate new pattern rules that describe longer and longer

rewrite sequences. Finally, we use a variant of semi-unification to check whether one of the

newly obtained pattern rules directly leads to non-termination.

1 For automated non-termination proofs of programs, the situation is similar, i.e., most of the existing
automated approaches for non-termination also just detect loops. However for Java Bytecode, we
recently presented an approach that can also detect certain forms of non-looping and non-periodic
non-termination automatically, based on SMT solving [1]. But an adaption of that approach to term
rewriting does not seem to be promising, since [1] can only handle non-periodic non-termination in
cases where there are no sub-loops and where non-termination is due to operations on integers. Thus,
this approach is not suitable for TRSs where one treats terms instead of integers and where sub-loops
(i.e., recursively defined auxiliary functions like isNat) are common.
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To illustrate the narrowing of pattern rules, we first narrow the pattern rule (4) with rule

(1). In other words, the variable x in the pattern rule is instantiated by the term 0, and then

the resulting right-hand side isNat(0) is rewritten using (1). This yields the new pattern rule

isNat(x)[x/s(x)]n[x/0] →֒ true. (5)

While we narrowed a pattern rule with an ordinary rule above, it is also possible to do

the converse, i.e., one can narrow an ordinary rule with a pattern rule. To see this, we now

narrow rule (3) with the pattern rule (5) which yields

f(true, x)[x/s(x)]n[x/0] →֒ f(true, s(x))[x/s(x)]n[x/0]. (6)

Moreover, one can even narrow pattern rules with pattern rules.

The following theorem extends the semi-unification criterion to pattern rules, in order

to detect whether a pattern rule directly leads to non-termination. For a pattern rule

uσnµ →֒ vσnµ, we do not only check whether the base term u on the left-hand side semi-

unifies with the base term v on the right-hand side. In addition, one may also apply the

pattern substitution σ arbitrary many times to u before performing the semi-unification.

◮ Theorem 3 (Detecting Non-Termination of Pattern Rules). Let uσnµ →+
R
vσnµ for all

natural numbers n. If there are a position π of v, a natural number k ∈ N, and two

substitutions δ1 and δ2 such that uσkδ1δ2 = v|πδ1 and such that both δ1 and δ2 commute2

with both σ and µ, then R is non-terminating.

Proof. We show that for all natural numbers n, the term uσnµδ1 rewrites to a term containing

a subterm that is an instance of uσk+nµδ1. By repeating these rewrite steps on that subterm,

we obtain an infinite rewrite sequence. Here, we denote the superterm relation by D.

uσnµδ1
→+
R
vσnµδ1 by rewriting

= vδ1σ
nµ since δ1 commutes with both σ and µ

D uσkδ1δ2σ
nµ since uσkδ1δ2 = v|πδ1

= uσkδ1σ
nµδ2 since δ2 commutes with both σ and µ

= uσk+nµδ1δ2 since δ1 commutes with both σ and µ

◭

In our example, the criterion of Thm. 3 can easily detect non-termination of the pattern

rule (6), i.e., of f(true, x)σnµ →֒ f(true, s(x))σnµ where σ = [x/s(x)] and µ = [x/0]. Let

k = 1. Then we have uσk = v, i.e., the term f(true, x)σk is equal to the base term f(true, s(x))

of the right-hand side of the pattern rule (6). Thus, we choose δ1 and δ2 to be the identity.

Since then δ1 and δ2 trivially commute with σ and µ, non-termination of the original TRS

in Ex. 2 follows from Thm. 3.

3 Conclusion

We introduced a new technique to prove non-termination of possibly non-looping TRSs

automatically. The technique extends and subsumes previous approaches to detect loops

which were based on narrowing and semi-unification. To this end, we adapted an idea of

2 We say that two substitutions δ and σ commute if δσ = σδ.
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[9] from string rewriting to term rewriting and introduced pattern rules which represent a

whole class of rewrite sequences. Afterwards, we extended narrowing and semi-unification to

pattern rules. The technical details and extensions of our approach will be presented in a

forthcoming full version of the paper.

We implemented the resulting non-termination prover in the tool AProVE [5] and compared

the new version AProVE-NL (for non-loop) with the previous version AProVE ’11 and 3 other

powerful tools for non-termination of TRSs (NTI [10], TTT2 [7], VMTL [11]). We ran the

tools on the 1438 TRSs of the Termination Problem Data Base (TPDB) used in the annual

International Termination Competition.3 In the table, we consider those 241 TRSs of the

TPDB nl

N R N R

AProVE-NL 232 6.6 44 5.2

AProVE ’11 228 6.6 0 60.0

NTI 214 7.3 0 60.0

TTT2 208 9.1 0 60.0

VMTL 95 16.5 0 42.8

TPDB where at least one tool proved non-

termination. Moreover, we also tested the tools

on a selection of 58 typical non-looping non-

terminating TRSs from different sources (“nl”).

We used a time-out of 1 minute for each exam-

ple. “N” indicates how often Non-termination was

proved and “R” gives the average Runtime in sec-

onds for each example. Thus, AProVE-NL could

solve 75.9 % of the non-looping examples without compromising its power on looping exam-

ples, whereas the other tools cannot handle non-looping non-termination. For further details

on the evaluation, we also refer to the forthcoming full version of the paper.
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Abstract

Polynomial interpretations can be used for proving termination of term rewrite systems. In this

note, we contemplate binomial interpretations based on binomial coefficients, and show that they

form a suitable basis for obtaining (weakly) monotone algebras. The main motivation is that

this representation covers examples with negative coefficients like f(x) = 2x2 − x+ 1, and even

some polynomials with rational coefficients like f(x) = x(x− 1)/2 that map natural numbers to

natural numbers.

1 Introduction

Using well-founded monotone algebras is a general and common method for proving termi-

nation of term rewrite systems. Many algebras have been suggested for this purpose. Here

we are mainly interested in polynomial interpretations (introduced by Lankford, [6]). In [8]

it is shown among other things that polynomial interpretations over the real numbers do

not subsume polynomial interpretations over the natural numbers. Ultimately, the reason

for this surprising result lies in the fact that there are polynomials that are non-negative

for every natural number, but negative when evaluated for some real numbers. The exam-

ple f(x) = x(x− 1)/2 shows that there are polynomials with non-integer coefficients that

nevertheless evaluate to integers at every integer argument. Binomial functions (see below)

capture these polynomials precisely.

We are not the first to use binomial functions this way. Girard et al. [1] extend linear

logic with resources bounded by resource polynomials, which are binomial functions with

non-negative coefficients. In more recent work, Hofmann et al. [4, 3] use resource polynomials

for amortized resource analysis of programs. The observation that binomial functions are

closed under composition is much older. The earliest appearances that we are aware of

originate in the study of nilpotent groups [2] and of recursively equivalent sets [7].

In the remainder of the paper, we exhibit some fundamental properties of binomial

coefficients in Section 2, then sketch binomial interpretations in Section 3. In Section 4, we

compare the power of binomial interpretations to standard polynomial interpretations.

2 Fundamentals

◮ Definition 1. For n ∈ N (where N is the set of non-negative integers), and x element of

some ring, the falling power, xn, is defined as follows: (This notation is used by Knuth in [5])

x0 = 1 xn = x · (x− 1)
n−1

Falling powers are closely related to binomial coefficients. In fact, we can define binomial

coefficients in terms of falling powers.

◮ Definition 2. For k ∈ N, the binomial coefficient
(

x

k

)

is defined as
(

x

k

)

= x
k

k!
.
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◮ Remark. Over some rings, the fraction x
k

k!
may not have a value for some x. For example,

in the polynomial ring Z[x],
(

x

2

)

does not exist. The fraction may also have several values (if

the ring is not torsion-free). But we will only work over Z or R, where this does not happen.

It is clear from the definition that the binomial coefficient
(

x

k

)

is a polynomial in x of

degree k with rational coefficients. It is well known that
(

x

k

)

∈ Z whenever x ∈ Z.

◮ Lemma 3. Binomial coefficients satisfy a tremendous number of identities. We exhibit

two of them. (Only (1) is used later, but the second one gives some insight into why binomial

functions are closed under composition.)

(

x+ 1

k + 1

)

−

(

x

k + 1

)

=

(

x

k

)

(1)

(

x+ y

k

)

=

k
∑

i=0

(

x

i

)(

y

k − i

)

(2)

3 Binomial Interpretations

◮ Definition 4. A monomial over the variables V is a finite product
∏

v∈V ′

(

v

kv

)

such that

V ′ ⊆ V and 0 < kv ∈ N. We write 1 if the product is empty and v for
(

v

1

)

. A binomial function

f over a domain D is a linear combination of monomials, f(v1, . . . , vn) =
∑

m∈M
am ·m

where am ∈ D andM is a finite set of monomials over the variables V = {v1, . . . , vn}. We can

evaluate binomial functions in the obvious way, substituting values for the formal variables.

We define a difference operator on binomial functions, justified by the identity (1): We let

∆v
(
∑

m∈M
am ·m

)

=
∑

m∈M
am ·∆vm, where on monomials, ∆v

∏

w∈V

(

w

kw

)

= 0 if v /∈ V

or kv = 0. Otherwise, ∆v
∏

w∈V

(

w

kw

)

=
(

w

k′
w

)

where k′v = kv − 1 and k′w = kw for w 6= v. It is

easy to see that f(v1, . . . , vi + 1, . . . , vn)− f(v1, . . . , vi, . . . , vn) = (∆vif)(v1, . . . , vi, . . . , vn)

for all binomial functions f and variables vi.

It is known that binomial functions over N are closed under addition, multiplication and

composition [1]. In practice, the best way to compute the results of these operations appears

to be to use the identity (∆nv
(

v

k

)

)(0) = δn,k, where δn,k = 1 if n = k and δn,k = 0 otherwise.

Once the degree d of a unary binomial function f(x) is known, one can compute its coefficients

from f(0), f(1), . . . , f(d). This can be extended to multiple variables by treating a binomial

function in V with v ∈ V as a unary function in v with coefficients that are binomial functions

over V \{v}. The difference operator also plays a crucial role in showing that all integer-valued

(over the integers) polynomials can be expressed by binomial functions, as follows. Let f(v)

be an integer-valued polynomial of degree d > 0. Then (∆vf)(v) = f(v + 1) − f(v) is an

integer-valued polynomial of degree d− 1. The function f can be reconstructed from ∆vf

and f(0), and ultimately from the values fi = (∆ivf)(0) for 0 6 i 6 d, and we have just seen

that these define a binomial function. In fact, f(v) =
∑d

i=0 fi
(

v

i

)

.

◮ Definition 5. Let F be a signature where each f ∈ F has an arity ari(f). Furthermore let

V = {v1, v2, . . . } be a countable set of variables. A binomial F-algebra A over a domain D

assigns to each f ∈ F an interpretation fA that is a binomial function over D with variables

{v1, . . . vari(f)}. A binomial F -algebra induces an F -algebra with carrier D by evaluating the

binomial functions.

To use a binomial F-algebra for proving termination of a TRS R, it has to induce a

well-founded monotone algebra that is compatible with R.
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◮ Theorem 6. Let A be a F-algebra over N. Then A is a well-founded monotone algebra,

provided that for all f ∈ F , fA(v1, . . . , vn) =
∑

m∈M
am ·m implies avi > 1 for 1 6 i 6 n.

Furthermore, for any binomial function f(v1, . . . , vn) =
∑

m∈M
am · m over N, we have

f(v1, . . . , vn) > 0 for all possible values of vi ∈ N, if, and only if, a1 > 0.

Proof. Note that over N, all binomial functions are weakly monotone and nowhere negative.

The theorem follows easily from that observation. ◭

4 Comparison to Polynomial Interpretations

We will show below that neither polynomial interpretations over R nor over N subsume

binomial interpretations. Note that linear binomial interpretations are identical to linear

polynomial interpretations over the integers—the increased power requires higher degree

polynomials. Using the method by Neurauter and Middeldorp [8], which can force weakly

compatible polynomial interpretations to be linear with non-integer coefficients, it is clear

that binomial interpretations do not subsume polynomial interpretations over Q. On the

other hand, if negative coefficients are allowed, binomial interpretations subsume polynomial

interpretations over N with integer coefficients, by way of the identity

xk =

k
∑

i=0

i!

{

n

i

}(

x

i

)

where
{

n

i

}

denotes Stirling numbers of the second kind, which are non-negative integers. The

same relation allows us to transform polynomial interpretations with non-negative coefficients

to binomial interpretations with non-negative coefficients.

We adapt an example from [8] to show that binomial interpretations are not subsumed

by polynomial interpretations over R or N. Let R be the following TRS.

s(0)→ f(0) (1) s(f(s(x)))→ h(f(x), g(x)) (6)

s2(0)→ f(s(0)) (2) f(g(s(x)))→ g(g(f(s(x)))) (7)

g(x)→ h(x, h(x, x)) (3) h(s2(x), h(x, x))→ g(x) (8)

s(x)→ h(0, x) (4) s(x)→ h(x, 0) (9)

g(s(x))→ s(s(g(x))) (5) h(f(x), s(g(x)))→ f(s(x)) (10)

◮ Theorem 7. Termination of the TRS R can be shown by a binomial interpretation.

Proof. We let [0] = 0, [s](x) = x+1, [f](x) = 3
(

x

2

)

+x, [g](x) = 3x+1, [h](x, y) = x+y. These

are strictly monotone functions on N. For compatibility with R, we obtain the following

constraints.

1 > 0 (1) 3
(

x

2

)

+ 4x+ 2 > 3
(

x

2

)

+ 4x+ 1 (6)

2 > 1 (2) 27
(

x

2

)

+ 48x+ 22 > 27
(

x

2

)

+ 36x+ 13 (7)

3x+ 1 > 3x (3) 3x+ 2 > 3x+ 1 (8)

x+ 1 > x (4) x+ 1 > x (9)

3x+ 4 > 3x+ 3 (5) 3
(

x

2

)

+ 4x+ 2 >
(

x

2

)

+ 4x+ 1 (10)

Since these constraints are all satisfied, we conclude that R is terminating. ◭

◮ Theorem 8. Termination of R cannot be shown using polynomial interpretations over N

or R
+ = {x ∈ R | x > 0}.
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Proof. The argument follows that from [8]. We will first show that regardless of the domain

N or R
+, a polynomial interpretation that is compatible with R must assign [f] a quadratic

polynomial with leading coefficient 3
2s0

for some s0 ∈ N, ruling out N as a domain. The

second part of the proof is devoted to showing that [s](x) = x+ δ, where δ is the parameter

defining the well-founded order <δ on R
+. Using this fact we will conclude that [f](x) < 0

for some x ∈ R, establishing the claim for the domain R
+.

For the first part, we can treat both domains N and R
+ simultaneously, as follows. When

working over R
+, we use >δ as well-founded order and > as compatible quasi-order to obtain

a well-founded monotone algebra, where a >δ b iff a > b+δ and δ > 0 is a fixed real numgber.

Over N, the well-founded order and quasi-order are > and >, respectively. If we let δ = 1

over N, then >δ = >, and the two definitions of the orders coincide.

Assume that we are given polynomials [0] = z, [s] = s, [f] = f , [g] = g and [h] =

h with coefficients in R (Z) for domain R
+ (N). Furthermore let these polynomials be

strictly monotone with respect to >δ over the domain and compatible with R. To establish

compatibility with the rules, we evaluate both sides of all rules and compare the resulting

polynomials. First consider rules (7) and (5), and compare the degrees of both sides: We have

deg(f) deg(g) > deg(g)2 deg(f) and deg(g) deg(s) > deg(s)2 deg(g), from which we conclude

that deg(g) = deg(s) = 1 (note that because of strict monotonicity, none of the polynomials

can be constant). So g(x) = g1x+ g0 and s(x) = s1x+ s0 for some g1, s1 > 1 and g0, s0 > 0.

Furthermore by comparing the leading coefficients of (5), namely g1s1 > s21g1 we see that

s1 = 1. Next we find constraints on h. To that end, consider (3). Since the left-hand side

evaluates to a linear polynomial, so must the right-hand side. Therefore, we may assume that

h(x, y) = hxx+ hyy + h0 where hx, hy > 1 and h0 > 0. By comparing leading coefficients

of (4) and (9) we find that s1 > hx and s1 > hy, i.e., hx = hy = 1. Using these values, we

can find a lower bound on s0 from the compatibility of (9), namely s0 > z0 + h0 + δ, which

implies s0 > δ > 0. Finally we find a bound on the degree of f . Using (10) we conclude that

x+ 2s0 + h0 > f(x+ s0)− f(x) Because s0 > δ > 0, the degree of f(x+ s0)− f(x) is one

less than that of f(x), and since the left-hand side is linear, f can at most be quadratic. To

summarize, we can express z, s, f , g and h as follows.

z = z0 s(x) = x+ s0 f(x) = f2x
2 + f1x+ f0

g(x) = g1x+ g0 h(x, y) = x+ y + h0

We also know that z0, f0, g0, h0 > 0 and s0 > δ. Next we compare the leading coefficients in

(3,8). For (3), we get g1 > 3, while for (8), 3 > g1. Therefore, g1 = 3.

Now let us determine f2. From compatibility of (6) we find that f2x
2 + (2f2s0 + f1)x+

O(1) >δ f2x
2 + (f1 + g1)x + O(1), where O(1) stands for a constant term not containing

x. From this we conclude that 2f2s0 > g1. Similarly from compatibility (10) we have

f2x
2 +(f1 +g1)x+O(1) >δ f2x

2 +(2f2s0 +f1)x+O(1), which implies g1 > 2f2s0. Therefore,

f2 = g1

2s0

= 3
2s0

. In particular, no polynomial interpretation over N can exist, because s0 and

f2 cannot both be integers.

Therefore, from now on, we assume that we are given a polynomial interpretation over R.

Our next step will be to determine s0. We already know that s0 > δ. By strict monotonicity,

we must have f(δ)− f(0) > δ, which is equivalent to f2δ + f1 > 1. Now consider (2). We

have z0 + 2s0 − δ > f2(z0 + s0)2 + f1(z0 + s0) + f0 > f2s0(z0 + s0) + (1 − f2δ)(z0 + s0).

Therefore, s0 − δ > f2(z0 + s0)(s0 − δ) > f2s0(s0 − δ) = 3
2
(s0 − δ), which implies δ > s0,

from which we conclude that s0 = δ. Using (4), this implies z0 + h0 6 0, i.e., z0 = h0 = 0.

Then, from (1), we conclude that f0 = 0. Finally, we consider (2) once more. Compatibility

now implies 2δ − δ >
3
2
δ + f1δ, or − 1

2
> f1. This, however, leads to a contradiction, since
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f( δ
6
) = 3

2δ
· δ

2

62 + f1
δ

6
6

1
24
δ − 1

12
δ < 0 lies outside the domain R

+. ◭

5 Conclusion

We have described an extension of polynomial interpretations with integer coefficients using

binomial coefficients. These binomial interpretations arise naturally as a characterization of

integer-valued polynomials with integer arguments and rational coefficients. We have also

shown that binomial interpretations are not subsumed by polynomial interpretations over

the real numbers.

As future work, we plan to incorporate binomial interpretations into TTT2.
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Abstract

The modularity of termination and confluence properties of term rewriting systems has been

extensively studied, for disjoint unions and other more types of combinations. However, for

rewriting under strategies the theory is less well explored. Here we extend the modularity analysis

of termination properties systematically to (variants of) innermost and outermost rewriting. It

turns out — as expected — that in essence innermost rewriting behaves nicely w.r.t. modularity

of termination properties, whereas this is not at all the case for outermost rewriting, at least not

without further assumptions.

Keywords and phrases Modularity, Preservation under Signature Extensions, Termination Prop-

erties, Rewriting under Strategies

1 Introduction and Overview

Whereas most known modularity results refer to unrestricted rewriting, cf. e.g. [2]–[16], in

applications and programming language contexts one very often has restrictions imposed on

the evaluation mechanism like (position-based) strategies. For instance, innermost rewriting

closely corresponds to eager evaluation and call-by-value whereas outermost rewriting is

close to lazy evaluation and call-by-name. Here we will study the modularity behaviour of

normalization and termination of (different versions of) innermost and outermost rewriting.

It will turn out that in this regard innermost rewriting has nice properties (which is not very

surprising) whereas outermost rewriting is highly non-modular.

We will entirely focus here on the case of disjoint unions, cf. e.g. [14, 13]. Most results

easily extend to slightly more general combinations like (at most) constructor sharing or

composable systems, cf. e.g.[10]. The interference of the usual modularity analysis, taking

into account the layered structure of mixed terms with strategy-based restrictions of rewriting

steps is in general (highly) non-trivial, especially for the case of outermost rewriting.

The remainder of this extended abstract is structured as follows. In Section 2 we will

very briefly recall some notions and notations. In the main Section 3 we first review what is

known and then study the modularity of weak and strong termination properties of (variants

of) innermost and outermost rewriting. As a next step we analyze under which additional

assumptions modularity can be recovered (for outermost rewriting). Then, motivated by

the negative results, we study a very special case of modularity, namely preservation under

signature extensions. Finally, we briefly discuss directions for further research.

Due to lack of space we omit any proofs. Yet, for some negative results we give concrete

counterexamples.

2 Preliminaries

We assume familiarity with the basics of term rewriting and of modularity in term rewriting

(cf. e.g. [2], [4], [11]).
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We will deal with (term) rewriting systems (TRS) RF = (F , R) consisting of (a signature

F and) rules l → r over some signature F and set of variables V. The rules l → r satisfy

two conditions: The left-hand side l must not be a variable, and every variable appearing

in r also appears in l. The rewrite relation induced by a TRS R is denoted by →R or →

if R is clear from the context or irrelevant. We sometimes use notations like s →q t or

s →>ǫ t to indicate that the position of the redex contraction is q or is strictly below the

root, repectively.

Innermost rewriting →i is defined as follows, slightly abusing notation: s →i t if t is

obtained from s by contracting an innermost redex, i.e., a subterm of s which is reduced

at the root such that all its proper subterms are in normal form. Leftmost innermost

rewriting is defined by s →li t if s →i t such that in this step a leftmost innermost

redex is contracted. (Maximal) parallel innermost rewriting →pi is given by s →pi t if

s = C[s1, . . . , sn]p1,...,pn →
∗
i C[t1, . . . , tn]p1,...,pn = t such that spi , 1 ≤ i ≤ n are all the

innermost redexes of s and si →i,ǫ ti for all i. Analogously, the relations outermost rewriting

→o, leftmost outermost rewriting →lo and (maximal) parallel outermost rewriting →po are

defined. Note that whereas a parallel innermost step can always be sequentialized into a

sequence of ordinary innermost steps, the analogous property does not hold in general for

parallel outermost rewriting.

An orthogonal TRS is left-normal if in every rule l→ r the constant and function symbols

in the left-hand side precede (in the linear term notation) the variables.

Two TRSs RF1

1 and RF2

2 are disjoint if F1∩F2 = ∅ (which then also implies R1∩R1 = ∅).

Finally, a modular reduction step s  t means normalization of s in one system (i.e.,

reduction in one system to normal form w.r.t. that system), cf. [9].

3 Modularity of Termination Properties of Rewriting under Strategies

We will consider innermost and outermost rewriting as well as variants thereof, namely leftmost

and (maximal) parallel versions of both, as well as weak termination and termination, also

known as weak normalization (WN) and strong normalization (SN), respectively.

First let us recall in Table 1 the main basic results that are known concerning modularity

of WN and SN, without mentioning the many advanced results about (non-)modularity of

termination of standard rewriting.

property is modular? reason/reference

SN − [14, 13]

WN + [15, 16], [5], [3], [9]

SN( ) + [9]

SIN + [6]

WIN + [6]

Table 1 Some known modularity results for termination properties of standard rewriting

From this table it is clear that — apart from termination properties of general rewriting —

only (modularity of termination of) innermost rewriting has been studied to some extent, but

outermost rewriting not at all, to the best of our knowledge. In the sequel we will investigate

modularity of both termination (SN) and weak termination (WN) for standard, leftmost and

(maximal) parallel innermost as well as outermost rewriting. For brevity we use the following

abbreviations: WIN = WN(→i), WLIN = WN(→li), WPIN = WN(→pi), SIN = SN(→i),

SLIN = SN(→li), SPIN = SN(→pi).
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For a better understanding of the following tables let us mention that normalization and

termination, respectively, of innermost rewriting remain invariant, when the variants →li or

→pi are used instead of →i.

◮ Fact 3.1 (selection invariance for innermost rewriting). WIN ⇐⇒ WLIN ⇐⇒ WPIN and

SIN ⇐⇒ SLIN ⇐⇒ SPIN.

This property, called selection invariance in [8] (cf. also [7]), seems to be ’folklore knowledge’

in rewriting. A formal proof of a particular case (namely the equivalence of SLIN and SIN) is

given in [8, Theorem]. Table 2 below shows which of the termination properties of innermost

and outermost rewriting are modular, and which are not in general.

Table 3 then exhibits which of the negative results even hold for orthogonal TRSs

(and which positive results hold for orthogonal systems). Observe that in left-normal

normalizing TRSs leftmost-outermost reduction is normalizing, hence terminating (cf. e.g.

[4]. Furthermore, in orthogonal systems we clearly have WLON ⇐⇒ SLON.

property is modular? reason/reference

SIN,SLIN,SPIN + Table 1, Fact 3.1

WIN,WLIN,WPIN + Table 1, Fact 3.1

SON − Table 4

WON − Table 4

SLON − Table 4

WLON − Table 4

SPON − Table 4

WPON − Table 4

Table 2 Modularity of innermost and outermost termination properties

property is modular?

SON −

WON, WPON, SPON1 +

WLON, SLON − (but holds for left-normal TRSs)

Table 3 Modularity of outermost termination properties for orthogonal TRSs

Further easy positive results are possible by requiring non-collapsingness of the TRSs involved,

which we do not detail here. Another question is, whether the negative results of Table 2

turn into positive ones, at least for the very special case of signature extensions. But as

shown below in Table 4, this is only the case for left-linear TRSs. Observe that the positive

preservation results in Table 4 for left-linear TRSs crucially rely on the property of left-linear

systems that in a term s = s[lσ], the redex s|p = lσ (for some rule l → r) is still a redex

after reducing in the ’substitution part’ of lσ.

In the following we present a few counterexamples supporting some of the previous

negative claims.

1 Note for left-normal orthogonal TRSs any outermost rewriting strategy is well-known to be normalizing,
not only parallel outermost. Thus, in this case the properties WON, WPON and SONcoincide.
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property is preserved under signature extensions?

SON − (but holds for left-linear TRSs)

WON − (but holds for left-linear TRSs)

SLON − (but holds for left-linear TRSs)

WLON − (but holds for left-linear TRSs)

SPON − (but holds for left-linear TRSs)

WPON − (but holds for left-linear TRSs)

Table 4 Preservation of outermost termination properties under signature extensions

◮ Example 1 (counterexample to preservation of SON, WON, SLON, WLON under signature

extensions). Consider the TRS R over the signature F = {f1, f2, g, c, d1, d2}:

g(f1(x, y, y))→ g(f2(x, x, y))

g(f1(y, x, y))→ g(f2(x, x, y))

f2(x, x, y)→ f1(x, x, y)

d1 → d2

g(f2(∗, x, y))→ c

g(f2(x, ∗, y))→ c

g(f2(x, y, ∗))→ c

g(f2(x, x, x))→ c

Here, the “∗”-pattern notation in 3 of the rules is to be interpreted as follows: For l→ r of

shape C[∗]→ r, the rule stands for the whole family of rules C[∗]→ r where ∗ is sucessively

replaced by all most general f -patterns, for all f ∈ F , i.e., by f(x1, . . . , xar(f)), such that the

xi are distinct fresh (w.r.t. C[.]) variables. With some effort one can show that R is SON,

hence also WON, SLON and WLON. However, if we add a fresh unary function symbol H,

all these properties get lost. To wit, consider s = g(f1(H(d1), H(d1), H(d2))) which initiates

the (only) outermost derivations (the contracted outermost redexes are underlined)

s = g(f1(H(d1), H(d1), H(d2)))→o g(f1(H(d2), H(d1), H(d2)))

→o g(f2(H(d1), H(d1), H(d2)))→o s→ · · · and

s = g(f1(H(d1), H(d1), H(d2)))→o g(f1(H(d1), H(d2), H(d2)))

→o g(f2(H(d1), H(d1), H(d2)))→o s→ · · ·

◮ Example 2 (counterexample to to preservation of SPON, WPON under signature extensions).

Consider the TRS R over the signature F = {f1, f2, g1, g2, c, d1, d2}:

g1(f1(x, y), x)→ g2(f1(x, y), x)

f1(x, y)→ f2(x, y)

g2(f2(x, y), y)→ g1(f1(x, y), x)

d1 → d2

g2(f1(∗, x), y)→ c

g2(f1(x, ∗), y)→ c

g2(f1(x, y), ∗)→ c

g2(f1(x, x), x)→ c

Again, with some effort one can show that R is SPON, hence also WPON. However, if

we add the fresh unary function symbol H, these properties get lost. To wit, consider

s = g2(f1(H(d1), H(d2)), H(d1)) which initiates the (only) parallel outermost derivation (the

contracted parallel outermost redexes are underlined)

s = g2(f1(H(d1), H(d2)), H(d1))→po g2(f2(H(d1), H(d2)), H(d2))

→po g1(f1(H(d1), H(d2)), H(d1))→po s→ · · · .

Concerning future work, it is quite natural to ask how the situation looks like for strategies

other than innermost and outermost and for restrictions of rewriting like context-sensitivity

or forbidden patterns. Furthermore more general combinations of TRSs like constructor

sharing or composable ([10]) ones are of interest, too. Another line of research is to take into

account typing, i.e. to ask whether imposing a type discipline may facilitate the verification
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of termination properties of rewriting under strategies, cf. e.g. [17, 1]. On a more technical

level it appears interesting to investigate relationships to other settings and approaches

where non-left-linearity causes major problems, e.g., in (automatically) proving outermost

termination and in dependency pair based termination proofs where signature extensions

play a major role ([12]).
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Abstract

We revisit termination graphs from the viewpoint of runtime complexity. Suitably generalising the

construction proposed in the literature, we define an alternative representation of Jinja Bytecode

(JBC) executions as computation graphs. We show that the transformation from JBC programs

to computation graphs is sound, i.e., an infinite execution gives rise to an infinite path in the

computation graph. Moreover, we establish that the transformation is complexity preserving.

1998 ACM Subject Classification F.3.2 - Program analysis

Keywords and phrases Jinja, Runtime Complexity, Rewriting, Computation Graph

1 Introduction

In [9, 4, 3] termination of Jinja Bytecode (JBC for short) programs is studied. To this extent

the execution of a JBC program P is represented in a finite graph, a so-called termination

graph. Based on this graph, integer term rewrite systems R (cf. [5]) are defined, such that

termination of R yields termination of P . That is, the proposed transformation from JBC

to rewrite systems is non-termination preserving.

In this note we revisit termination graphs from the viewpoint of runtime complexity.

Suitably generalising the earlier construction, we propose an alternative representation of

JBC executions in graph form as computation graphs G. The nodes of the computation

graph are abstract states, representing sets of states of the Jinja Virtual Machine (JVM).

The edges represent symbolic evaluations together with refinements and abstraction steps.

We show that the transformation from JBC programs to computation graphs is non-

termination preserving, that is, any infinite evaluation of P gives rise to the existence of

infinite paths in G. Moreover, we establish that the transformation is complexity preserving.

For this we measure the runtime complexity of P as a function that relates the maximal

length of evaluations to the size of the initial state. (Note that this measure overestimates

the size of the input to P only by a constant factor.) Moreover, the computation complexity

maps the maximal length of a path in G to the size of the initial abstract state. We show

that the runtime complexity of P is asymptotically bounded in the computation complexity

of G. Disregarding the viewpoint of complexity, this paper provides a simplification and

clarification of the concepts proposed in [9, 4, 3] and thus may be of independent interest.

In the following we give a brief overview about the Jinja source language, cf. [7] for details.

Values are either Boolean, integers, references, the null reference (denoted as null), or the

dummy value (denoted as unit). We usually refer to (non-null) references as addresses. The

dummy value unit is used for the evaluation of assignments (see [7]) and also used in the

JVM to allocate uninitialised local variables.

A Jinja program consists of a set of class declarations. Each class is identified by a class

name and further consists of the name of its direct superclass, field declarations and method
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declarations. A field declaration is a pair of field name and field type. A method declaration

consists of the method name, a list of parameter types, the result type and the method body.

The method body consists of a list of parameter identifiers and an expression. The definition

for JBC programs is almost identical to the definition of Jinja programs. The sole exception

is that the JBC method body is represented by a triple (mxs,mxl, ins), where mxs denotes

the maximal size of the operand stack, mxl the number of registers (not including the this

pointer and the parameters) and ins a sequence of JBC instructions. We consider Jinja

programs and JBC programs to be well-formed [7]. Further, we presuppose normal evaluation,

that is, no exceptions are raised and demand that all data structures are non-cyclic.

JBC is executable on the JVM. A state of the JVM is represented by a pair of heap and

frames. The heap represents the global memory of the program and associates addresses

to objects. A frame represents the execution environment of a method and is a quintuple

(stk, loc, cn,mn, pc) such that: stk denotes the operand stack, loc denotes the registers, cn

denotes the class name, mn denotes the method name, and pc is the program counter. Both,

operand stack and registers store values. For each frame the number of registers is fixed and

the maximum size of the operand stack is computed during compilation. Thus the operand

stack can be conceived as an array. See [7] for further details.

2 Abstract States

We extend Jinja by abstract variables Class for each class considered. Further, Bool :=

{true, false} denotes an abstract Boolean value and any interval I ⊆ [−∞,∞] denotes an

abstract integer value. We write Int instead of I, if the concrete interval is not relevant and

we identify the interval [z, z], where z ∈ Z with the integer z. An abstract value is either a

Jinja value, or an abstract Boolean or integer value. Furthermore, we make use of an infinite

supply of abstract locations ζ0, ζ1, ζ2, . . . In the following � denotes the subclass relation.

An abstract state is a triple consisting of the heap, the list of frames, and a set of

annotations. A heap is a mapping from addresses to objects, where an object is either

an abstract variable or pair (cn, ft): cn denotes the class name and ft denotes the field

table, i.e., a mapping from (cn′, fieldid) to abstract values, where cn � cn′. Let obj be an

object. We define the projections cl and ft as follows: (i) cl(obj) := cn, if obj = (cn, ft), and

cl(obj) := Class, if obj is an abstract variable of type Class. (ii) ft((cn, ft)) := ft. Registers

and operand stack of a frame, now store abstract values. Furthermore, we define annotations

of addresses in a state s, denoted as iu. Annotations are pairs p 6= q of addresses, where

p, q ∈ heap and p 6= q. The intuition of iu is to express that for p 6= q ∈ iu, we disallow

sharing of these addresses in concrete states. An abstract state which does not contain

abstract variables and where addresses cannot be shared further is a concrete (or Jinja) state.

We define a bĳection φ that associates every non-address value in heap with an abstract

location. We define the graph Φ as function of heap:

Φ(heap) := {(ζ, val) | ∃ address a: rg(ft(heap(a))) = val, val not an address, ζ fresh} .

Finally, we set φ(ζ) := val if (ζ, val) ∈ Φ(heap).

◮ Definition 1. We represent heap as a directed graph H = (VH , SuccH , LH , EH), where

the nodes, the successor relation and the labeling function are defined as follows: (i) VH :=

dom(heap) ∪ dom(φ) (ii) SuccH(u) := [ft∗((C1, id1)), . . . , ft∗((Ck, idk))], if u is an address,

ft(heap(u)) = ft and dom(ft) = {(C1, id1), . . . , (Ck, idk)}, otherwise SuccH(u) := []. Here

ft∗((C, id)) := ft((C, id)), if ft((C, id)) is an address and ft∗((C, id)) := φ−1(ft((C, id)))

otherwise. (iii) LH(u) := cl(heap(u)), if u is an address and LH(u) := φ(u) otherwise. (iv)
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EH(u → v) := (C, id), if u is an address, ft(heap(u)) = ft and ft((C, id)) = v. Otherwise

we set EH(u→ v) := ǫ.

We call a value val reachable from an address a in heap, if there exists a path from

a to val in the heap graph of heap. For a given state s = (heap, frms, iu) with top-

frame frm = (stk, loc, cn,mn, pc), we are only concerned with the part of the heap that is

reachable from frm. Let heap ↾frm denote the restriction of heap to all nodes reachable

from {stk(i) | i ∈ {1, . . . ,m} ∪ {loc(i) | i ∈ {1, . . . , n}}. We generalise the bĳection φ so that

also non-address values in the registers and on the operand stack are represented. For that

we define the graph Φ as a function of stk, loc, and heap in the natural way. Finally, we set

φ(ζ) := val if (ζ, val) ∈ Φ(stk, loc, heap).

◮ Definition 2. Let s = (heap, frms, iu) be a state and let frm = (stk, loc, cn,mn, pc) be the

top-frame. Let dom(stk) = {1, . . . ,m} and let dom(loc) = {1, . . . , n}. Recall that stk can be

conceived as array. We use osi (li) to denote index i of the stack (register i). Moreover suppose

H denotes heap↾frm. We define the state graph of s as 5-triple S = (VS , SuccS , LS , ES , iu),

where the first four components denote a directed graph with edge labels and iu denotes a set

of annotations. The nodes, the successor relation, and the labeling function of the directed

graph are defined as follows: (i) VS := {1, . . . ,m+n}∪VH∪dom(φ) (ii) SuccS(u) := [stk∗(u)],

if u ∈ {1, . . . ,m}. Otherwise, if u ∈ {m+ 1, . . . , n}, then SuccS(u) := [loc∗(u−m)]. Finally,

if u ∈ VH , then SuccS(u) := SuccH(u). Here stk∗(u) and loc∗(u) is defined like ft∗ as

introduced in Definition 1. (iii) LS(u) := osu, if u ∈ {1, . . . ,m} and LS(u) := lu−m, if u ∈

{m+ 1, . . . , n}. Otherwise, LS(u) := cl(heap(u)), if u is an address. Finally, LS(u) := φ(u).

(iv) ES(u→ v) := EH(u→ v), if u, v ∈ H. Otherwise, we set ES(u→ v) := ǫ.

We often confuse a state s and its representation as a state graph and addresses v with its

corresponding object heap(v). We define a binary relation ⊑ on abstract values. Let v, w be

values. Then v ⊑ w if (i) v ∈ {null, unit} and either v = w or w ∈ {null, Class, Bool, Int},

or (ii) v, w ⊆ [−∞,∞] and v ⊆ w, (iii) v, w ∈ {true, false, Bool} and either v = w or

w = Bool, or (iv) v, w are class names or abstract class variables and v � w. Based on the

definition of ⊑ we introduce the following variant of graph morphism, called state morphism.

◮ Definition 3. Let S, T be state graphs. A state morphism from T to S (denotedm : T → S)

is a function m : VT → VS such that (i) for all u ∈ T , LT (u) ⊒ LS(m(u)), (ii) for all u ∈ T ,

m∗(SuccT (u)) = SuccS(m(u)), and (iii) for all u
ℓ
−→ v ∈ T and m(u)

ℓ′

−→ m(v) ∈ S, ℓ = ℓ′.

If no confusion can arise we refer to a state morphism simply as morphism. It is easy to

see that the composition m1 ◦m2 of two morphisms m1, m2 is again a morphism.

◮ Definition 4. Let s = (heap, frms, iu) and t = (heap′, frms′, iu′) be states. Then t is

an instance of s (denoted as t ⊑ s) if the following conditions hold: (i) all corresponding

program counters in the frame lists frms and frms′ coincide, (ii) there exists a morphism

m : s→ t, and (iii) for all p 6= q ∈ iu we have that m(p) 6= m(q) and iu′ ⊆ m∗(iu). If t an

instance of s, then we call s an abstraction of t, denoted as s ⊒ t.

It is an easy consequence of the composability of morphism that the instance relation ⊑

is transitive. Let s = (heap, frms, iu) be a state and let p, q denote distinct addresses in

heap such that p 6= q 6∈ iu. Then we say p and q are unifiable (denoted as p
?
= q) if there

exists a state t and a morphism m : s→ t, such that m(p) = m(q).

◮ Definition 5. Let s be a state and let S = (VS , SuccS , LS , ES , iu) be its state graph. The

size of s, denoted |s|, is defined as follows:
∑
l∈LS
|l|, where |l| is abs(l) if l ∈ Z, otherwise 1.

(As usual abs(l) denotes the absolut value of the integer l.)
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3 Computation Graph

The operational semantics of the JVM yields the single-step execution of each JBC com-

mand [7]. Based on these instructions, and actually mimicking them quite closely, we define

how abstract states are symbolically evaluated. We write instr_of(C,M) to denote the

instruction list of method M in class C of the considered JBC program P . Furthermore,

we set method(C,M) = (D,Ts, T,mbody) to denote that method M with type signature

M : Ts → T is defined in the superclass D of C and its body is mbody = (mxs,mxl, ins).

See [7] for a suitable implementation of the functions instr_of and method.

Let s = (heap, frms, iu) be an abstract state with top-frame frm = (stk, loc, cn,mn, pc).

Suppose instr = instr_of(C,M)(pc), i.e., the current instruction. By case distinction on

instr, one defines the symbolic evaluation of P . In Definition 6 we have worked out the cases

for Putfield and Invoke. The other cases are left to the reader.

◮ Definition 6. Consider a Putfield F C instruction. Let v be a value and r be an address

such that heap(r) = (D, ft). We set ft′ := ft{(C,F ) 7→ v} to denote the updating of field

F in ft. Suppose there exists no address p ∈ heap such that r
?
= p. Then we define the

following step:

(heap, (v :: r :: stk, loc, cn,mn, pc) :: frms, iu)

(heap{r 7→ (D, ft′)}, (stk, loc, cn,mn, pc+ 1) :: frms, iu) .

Now, consider an instruction Invoke M n. Suppose r denotes the address of the calling

object and cl(heap(r)) = C and method(C,M) = (D,Ts, T, (mxs,mxl, ins)). We set:

(heap, (pn−1 :: · · · :: p0 :: r :: stk, loc, cn,mn, pc) :: frms, iu)

(heap, frm′ :: (stk, loc, cn,mn, pc) :: frms, iu) ,

where loc′ := [r, p0, . . . , pn−1] @ units and frm′ = ([], loc′, D,M, 0). Here units denotes an

array of unit-values of size mxl.

In addition to symbolic evaluations, we define refinement steps on abstract states s if the

information given in s is not concrete enough to execute a given instruction. Following [4] we

make use of case distinction, class instance, sharing, and unsharing. We will restrict to an

informal explanation of these refinement steps. Case distinction refines abstract Boolean or

integer values if a symbolic instruction is otherwise not possible as the state is underspecified.

The refinement class instance either replaces an abstract class variable by the null-pointer or

refines the information about the class. Finally, the refinement steps sharing, and unsharing

either explicitly share unifiable addresses p, q by identifying them, or the annotation p 6= q is

added to mark that these references must not be shared. We arrive at the definition of a

computation graph.

◮ Definition 7. A computation graph G = (VG, EG) is a directed graph, where VG are

abstract states and s→ t ∈ EG if either (i) t is obtained from s by a symbolic evaluation,

(ii) t is obtained by a refinement step, or (iii) s ⊑ t holds.

Let G be a computation graph. We write G : s ⇀G t to indicate that state t is directly

reachable in G from s. If s is reachable from t in G we write G : s
∗
⇀G t. Let s and t be

concrete states. Then we denote by P : s
jvm

−−→1 t the one-step transition relation of the JVM.

If there exists a (normal) evaluation of s to t, we write P : s
jvm

−−→ t. The next lemma states

that any single-step execution on the JVM can be simulated by at least one step in the

computation graph.
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◮ Lemma 8. Let s be a state and let s′ be a concrete state such that s′ ⊑ s. Then P : s′
jvm

−−→1 t
′

implies the existence of a state t such that t′ ⊑ t and G : s
+
⇀G t.

We define the runtime of a JVM for a given normal evaluation P : s
jvm

−−→ t as the

number of single-step executions. The computation length denotes the maximal length of

a path in the computation graph G such that G : s
∗
⇀G t. Recall Definition 5, defining

the size of some state s. We define the runtime complexity with respect to P as follows:

rcj(n) := max{m | P : s
jvm

−−→ t holds such that the runtime is m and |s| 6 n}. Similarly we

set: cc(n) := max{m | G : s
∗
⇀G t holds such that the computation length is m and |s| 6 n}.

◮ Theorem 9. Let s′ and t′ be concrete states. Suppose P : s′
jvm

−−→ t′. Then there exists an

abstraction s of s′ and a computation G : s
∗
⇀G t such that t′ ⊑ t. Furthermore rcj ∈ O(cc).

4 Conclusion

In this note we propose computation graphs as suitable representation of the execution of a

JVM. We show that this representation is complexity preserving. In future work it needs

to be clarified whether our result on complexity preservation still holds, if the cycles of the

computation graph are considered separately [9]. Furthermore, the notion of (innermost)

runtime complexity for integer rewrite systems need to be clarified (cf. [6, 2] for the standard

definition of runtime complexity of a rewrite system). Finally, methods for runtime complexity

need to be adapted to integer rewrite systems (cf. [1, 8, 6] for examples of existing techniques).
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Abstract

Matrix interpretations can be used to bound the derivational complexity of term rewrite systems.

In general, the obtained bounds are exponential. In this paper we use joint spectral radius theory

in order to completely characterize matrix interpretations that induce polynomial upper bounds

on the derivational complexity of (compatible) rewrite systems.
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1 Introduction

This paper is concerned with automated complexity analysis of term rewrite systems. Given

a terminating rewrite system, the aim is to obtain information about the maximal length

of rewrite sequences in terms of the size of the initial term. This is known as derivational

complexity. Matrix interpretations [3] are a popular method for automatically proving

termination of rewrite systems. They can readily be used to establish upper bounds on

the derivational complexity of compatible rewrite systems. However, in general, matrix

interpretations induce exponential (rather than polynomial) upper bounds. In order to obtain

polynomial upper bounds, the matrices used in a matrix interpretation must satisfy certain

(additional) restrictions, the study of which is the central concern of [8, 9, 11]. So what are

the conditions for polynomial boundedness of a matrix interpretation? In the literature, two

different approaches have emerged. On the one hand, there is the automata-based approach

of [11], where matrices are viewed as weighted (word) automata computing a weight function,

which is required to be polynomially bounded. The result is a complete characterization (i.e.,

necessary and sufficient conditions) of polynomially bounded matrix interpretations over N.

On the other hand, there is the algebraic approach pursued in [9] (originating from [8]) that

can handle matrix interpretations over N, Q, and R but only provides sufficient conditions for

polynomial boundedness. In what follows, we use joint spectral radius theory [5, 4] to extend

the latter to a complete characterization of polynomially bounded matrix interpretations

over N, Q and R.

2 Preliminaries

We assume familiarity with the basics of term rewriting [1, 10]. Let V denote a countably

infinite set of variables and F a fixed-arity signature. The set of terms over F and V is

denoted by T (F ,V). The size |t| of a term t is defined as the number of function symbols and
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variables occurring in it. A term rewrite system (TRS for short) R over T (F ,V) is a finite

set of rewrite rules ℓ→ r such that ℓ /∈ V and Var(ℓ) ⊇ Var(r). The smallest rewrite relation

that contains R is denoted by→R. As usual,→+
R

(→∗
R

) denotes the transitive (and reflexive)

closure of →R and →n
R

its n-th iterate. For a terminating TRS R, the derivation height of a

term t with respect to R is defined as dh(t,→R) = max {n | t→n
R
u for some term u}. The

derivational complexity of R is the function dcR : N\{0} → N, k 7→ max {dh(t,→R) | |t| 6 k}.

An F -algebra A consists of a carrier set A and a collection of interpretations fA : Ak → A

for each k-ary function symbol f ∈ F . By [α]A(·) we denote the usual evaluation function of

A according to an assignment α which maps variables to values in A. An F -algebra together

with a well-founded order > on A is called a (well-founded) monotone algebra if for each

function symbol f ∈ F the interpretation function fA is monotone with respect to > in all

arguments. Any monotone algebra (A, >) (or just A if > is clear from the context) induces

a well-founded order on terms: s >A t if and only if [α]A(s) > [α]A(t) for all assignments α.

A TRS R and a monotone algebra A are compatible if ℓ >A r for all ℓ→ r ∈ R.

Let R be a commutative ring (e.g., Z, Q, R). The ring of all n-dimensional square

matrices over R is denoted by Rn×n. The set of all non-negative n-dimensional square

matrices of Z
n×n (Rn×n) is denoted by N

n×n (Rn×n0 ), and we write AT for the transpose of

a matrix (vector) A. With any matrix A ∈ R
n×n
0 we associate a directed (weighted) graph

G(A) on n vertices, numbered from 1 to n, such that there is a directed edge (of weight Aij)

in G(A) from i to j if and only if Aij 6= 0. In this situation, A is said to be the adjacency

matrix of the graph G(A). The weight of a path in G(A) is the product of the weights of

its edges. With a (non-empty) finite set of matrices S ⊆ R
n×n
0 we associate the directed

(weighted) graph G(S) := G(M), where M denotes the component-wise maximum of the

matrices in S, i.e., Mij = max {Aij | A ∈ S} for all 1 6 i, j 6 n. Following [5], we define

a directed graph Gk(S) for k > 2 on nk vertices representing ordered tuples of vertices of

G(S), such that there is an edge from vertex (i1, . . . , ik) to (j1, . . . , jk) if and only if there is

a matrix A ∈ S with Aiℓjℓ > 0 for all ℓ = 1, . . . , k.

For matrix interpretations (over R), we fix a dimension n ∈ N \ {0} and use the set R
n
0 as

the carrier of an algebraM, together with the order >δ on R
n
0 defined as (x1, x2, . . . , xn)T >δ

(y1, y2, . . . , yn)
T if x1 >R,δ y1 and xi >R yi for 2 6 i 6 n. Here x >R,δ y if and only if

x >R y + δ. Each k-ary function symbol f is interpreted by a linear function of the following

shape: fM(~v1, . . . , ~vk) = F1~v1 + · · · + Fk~vk + ~f where ~v1, . . . , ~vk are (column) vectors of

variables, F1, . . . , Fk ∈ R
n×n
0 and ~f is a vector in R

n
0 . To ensure monotonicity, it suffices that

the top left entry (Fi)11 of each matrix Fi is at least one. Then it is easy to see that (M, >δ)

forms a well-founded monotone algebra for any δ > 0. We obtain matrix interpretations

over Q by restricting to the carrier Q
n
0 . Similarly, matrix interpretations over N operate

on the carrier N
n and use δ = 1. We denote by SM the set of matrices occurring in (the

interpretation functions of)M. We set SM = {0} in the pathological case whenM contains

no matrices. Further, we denote by Sk
M

= {A1 · · ·Ak | Ai ∈ SM, 1 6 i 6 k} the set of all

products of length k of matrices taken from SM. For k = 0, this yields the singleton set

S0
M

= {I} containing only the identity matrix. Finally, S∗
M

denotes the (matrix) monoid

generated by SM, i.e., S∗
M

=
⋃

∞

k=0 S
k
M

. We often drop the subscriptM if it is clear from

the context.

Let t be an arbitrary term and α0 the assignment that maps every variable to 0. In the

sequel, we abbreviate [α0]M(t) by [t]M (or just [t] ifM is clear from the context), and we

write [t]j (1 6 j 6 n) for the j-th component of [t].
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3 Growth of Matrix Interpretations

Following [11], we define the notion of growth of a matrix interpretation as follows.

◮ Definition 3.1. LetM be a matrix interpretation. The growth function ofM is defined

as growth
M

(k) = max {[t]1 | t is a term and |t| 6 k}.

According to [9], for a TRS R and a compatible matrix interpretation M, we have

dh(t,→R) 6
1
δ · [t]1, and therefore dcR(k) 6

1
δ · growth

M
(k). As the growth ofM is at most

exponential (in the worst case), the derivational complexity of the TRSs one can handle

in this way can at most be exponential. This was shown in [3] for matrix interpretations

over N, but the result obviously extends to matrix interpretations over Q and R. In order

to establish polynomial derivational complexity, the matrices occurring inM must satisfy

certain additional properties that guarantee polynomial boundedness of growth
M

(k).

4 Algebraic Methods for Bounding Polynomial Growth

In this section we study an algebraic approach to characterize polynomial growth of matrix

interpretations (over N, Q, and R). We employ the following definition [7, 8, 9].

◮ Definition 4.1. A matrix interpretationM is polynomially bounded (with degree d ∈ N) if

the growth of the entries of all matrix products in S∗
M

is polynomial (with degree d) in the

length of such products, i.e., max {Mij |M ∈ S
k
M
} ∈ O(kd) for all 1 6 i, j 6 n, where n is

the dimension ofM.

Obviously, the condition given in Definition 4.1 is sufficient for polynomial boundedness

of growth
M

(k). Moreover, as shown in [7], it is also necessary in the following sense. If

growth
M

(k) is polynomially bounded and M is compatible with a TRS R, then there

exists a matrix interpretation N compatible with R such that growth
N

(k) = growth
M

(k)

and the entries of all matrix products in S∗
N

are of polynomial growth (i.e., N conforms to

Definition 4.1). The proof given in [7] leverages the connection between matrix interpretations

and weighted word automata. This is possible since matrix interpretations correspond to a

rather restricted form of tree automata, called path-separated [6]. The idea is to transform a

matrix interpretation into the corresponding automaton, trim this automaton by removing

useless states and then transform the resulting automaton back into a (compatible) matrix

interpretation. Thus, the interpretation N can be obtained from M by simply dropping

some rows and columns (the ones whose indices correspond to the useless states) in the

matrices and vectors occurring in the interpretation functions ofM.

The relationship between polynomially bounded matrix interpretations and the deriva-

tional complexity of compatible TRSs is as follows (cf. [9, 7]).

◮ Lemma 4.2. Let R be a TRS and M a compatible matrix interpretation. If M is

polynomially bounded with degree d, then dcR(k) ∈ O(kd+1). ◭

In the sequel, we employ joint spectral radius theory [5, 4], a branch of mathematics

dedicated to studying the growth rate of products of matrices taken from a set, to obtain a

complete characterization of polynomially bounded matrix interpretations (over N, Q and R).

All matrix norms ‖·‖ are assumed to be submultiplicative, i.e., ‖AB‖ 6 ‖A‖ · ‖B‖.

◮ Definition 4.3. Let S ⊆ R
n×n be a finite set of real square matrices, and let ‖·‖ denote a

matrix norm. The growth function growthS associated with S is defined as growthS(k, ‖·‖) =

max { ‖A1 · · ·Ak‖ | Ai ∈ S, 1 6 i 6 k }.
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Using the (submultiplicative) matrix norm ‖·‖1 given by the sum of the absolute values of

all matrix entries, we observe that a matrix interpretationM is polynomially bounded (with

degree d) if and only if growthSM(k, ‖·‖1) is polynomial in k (with degree d). The asymptotic

behaviour of growthSM(k, ‖·‖1) can be characterized by the joint spectral radius of SM.

◮ Definition 4.4. Let S ⊆ R
n×n be finite, and let ‖·‖ denote a matrix norm. The joint spectral

radius ρ(S) of S is defined as ρ(S) = limk→∞max { ‖A1 · · ·Ak‖
1/k | Ai ∈ S, 1 6 i 6 k }.

It is well-known that this limit always exists and that it does not depend on the chosen

norm, which follows from the equivalence of all norms in R
n. Because of this and due to the

fact that we are only interested in the asymptotic behaviour of growthS(k, ‖·‖), from now on

we simply write growthS(k). The following theorem (due to [2]) provides a characterization

of polynomial boundedness of growthS(k) by the joint spectral radius of S.

◮ Theorem 4.5 ([2, Theorem 1.2]). Let S ⊆ R
n×n be a finite set of matrices. Then

growthS(k) ∈ O(kd) for some d ∈ N if and only if ρ(S) 6 1. In particular, d 6 n− 1. ◭

Hence, polynomial boundedness of growthS(k) is decidable if ρ(S) 6 1 is decidable. But

it is well-known that the latter is undecidable in general, even if S consists of finitely many

non-negative rational matrices (cf. [5, Theorem 2.6]). However, in case S is a finite set of

non-negative integer matrices, then ρ(S) 6 1 is decidable. In particular, there exists a

polynomial-time algorithm that decides it (cf. [5, Theorem 3.1]). This algorithm is based on

the following lemma.

◮ Lemma 4.6 ([5, Lemma 3.3]). Let S ⊆ R
n×n
0 be a finite set of non-negative real square

matrices. Then there is a product A ∈ S∗ such that Aii > 1 for some i ∈ {1, . . . , n} if and

only if ρ(S) > 1. ◭

According to [5], for S ⊆ N
n×n, the existence of such a product can be characterized in

terms of the graphs G(S) and G2(S) one can associate with S. More precisely, there is a

product A ∈ S∗ with Aii > 1 if and only if

1. there is a cycle in G(S) containing at least one edge of weight w > 1, or

2. there is a cycle in G2(S) containing at least one vertex (i, i) and at least one vertex (p, q)

with p 6= q.

Hence, we have ρ(S) 6 1 if and only if neither of the two conditions holds, which can

be checked in polynomial time according to [5]. Furthermore, as already mentioned in [5,

Chapter 3], this graph-theoretic characterization does not only hold for non-negative integer

matrices, but for any set of matrices such that all matrix entries are either zero or at least

one (because then all paths in G(S) have weight at least one).

◮ Lemma 4.7. Let S ⊆ R
n×n
0 be a finite set of matrices where all matrix entries are either

zero or at least one. Then ρ(S) 6 1 is decidable in polynomial time. ◭

So, in the situation of Lemma 4.7, polynomial boundedness of growthS(k) is decidable in

polynomial time. In addition, the exact degree of growth can be computed in polynomial

time (cf. [5, Theorem 3.3, Lemma 3.2 and Proposition 3.3]).

◮ Theorem 4.8. Let S ⊆ R
n×n
0 be a finite set of matrices such that ρ(S) 6 1 and all matrix

entries are either zero or at least one, and let d > 0 be the largest integer possessing the

following property: there exist d different pairs of indices (i1, j1), . . . , (id, jd) such that for

every pair (is, js) the indices is, js are different and there is a product A ∈ S∗ for which

Aisis , Aisjs , Ajsjs > 1, and for each 1 6 s 6 d − 1, there exists B ∈ S∗ with Bjsis+1
> 1.

Then growthS(k) ∈ Θ(kd) if d > 1 and growthS(k) ∈ O(kd) if d = 0. Moreover, the growth

rate d is computable in polynomial time and d 6 n− 1. ◭
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Next we elaborate on the ramifications of joint spectral radius theory on complexity

analysis of TRSs via polynomially bounded matrix interpretations. To begin with, we note

that a matrix interpretation M is polynomially bounded if and only if ρ(SM) 6 1. This

follows directly from Theorem 4.5. Due to the relationship between polynomially bounded

matrix interpretations and the derivational complexity of compatible TRSs expressed in

Lemma 4.2, we immediately obtain the following result, which holds for matrix interpretations

over N, Q, and R.

◮ Theorem 4.9. Let R be a TRS andM a compatible matrix interpretation of dimension n.

If ρ(SM) 6 1, then dcR(k) ∈ O(kn). ◭

As this theorem assumes the worst-case growth rate for growthSM(k), the inferred degree

of the polynomial bound may generally be too high (and unnecessarily so). Yet with the

help of Theorem 4.8, from which we obtain the exact growth rate, Theorem 4.9 can be

strengthened (in this respect), at the expense of having to restrict the set of permissible

matrices.

◮ Theorem 4.10. Let R be a TRS andM a compatible matrix interpretation of dimension n

where all matrix entries are either zero or at least one. If ρ(SM) 6 1, then dcR(k) ∈ O(kd+1),

where d refers to the growth rate obtained from Theorem 4.8. ◭
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Abstract

The diagram-based method to prove correctness of program transformations consists of comput-

ing complete set of (forking and commuting) diagrams, acting on sequences of standard reductions

and program transformations. In many cases, the only missing step for proving correctness of a

program transformation is to show the termination of the rearrangement of the sequences. There-

fore we encode complete sets of diagrams as term rewriting systems and use an automated tool

to show termination, which provides a further step in the automation of the inductive step in

correctness proofs.

1998 ACM Subject Classification F.3.1 - Specifying and Verifying and Reasoning about Pro-

grams, F.3.2 - Semantics of Programming Languages

Keywords and phrases Termination, Program Transformations, Correctness

1 Introduction

The motivation for this work is derived from proving correctness of program transformations

in program calculi, in particular in extended lambda calculi that model core-languages of

variants of Haskell.

In our setting a program calculus is a tuple (E , C,
sr
−→,A) where E is the set of expressions,

C is the set of contexts, i.e. usually C consists of all expressions of E where one subexpression

is replaced by the context hole,
sr
−→ ⊆ E×E is a small-step reduction relation (called standard

reduction) which defines the operational semantics of the program calculus and A ⊆ E is a

set of answers, which are usually
sr
−→-irreducible. The evaluation of a program expression

e ∈ E is a sequence of standard reduction steps to an answer a ∈ A, i.e. e
sr,∗
−−→ a, where

sr,∗
−−→ denotes the reflexive-transitive closure of

sr
−→. If such an evaluation exists, then we

write e⇓ and say e converges, otherwise we write e⇑ and say e diverges. The semantics

is the contextual equivalence of expressions: e ∼c e
′ : ⇐⇒ e ≤c e

′ ∧ e′ ≤c e, where

e ≤c e
′ :⇐⇒ ∀C ∈ C : C[e]⇓ =⇒ C[e′]⇓.

A program transformation
T
−→ ⊆ (E × E) is a binary relation on expressions. It is called

correct if for all e, e′ with e
T
−→ e′ the equivalence e ∼c e

′ holds. Usually a context-closure T ′ of

the program transformation T is considered (w.r.t. all contexts, or a restricted class of contexts,

if a context lemma is available), such that proving e
T ′
−→ e′ implies e⇓ ⇐⇒ e′⇓ suffices to

conclude that T is a correct program transformation. In the following we do not distinguish

between T and its context-closure T ′, and assume that a program transformation is always

closed by an appropriate class of contexts such that the correctness proof is reduced to show
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equivalence of convergence for all e
T
−→ e′. Moreover, with

T
←− denoting the inverse of

T
−→

the correctness of
T
−→ holds, if

T
−→ as well as

T
←− are convergence preserving (where

T
−→ is

convergence preserving if e
T
−→ e′ =⇒ (e⇓ =⇒ e′⇓)).

In the application below, we will use different program transformations T1, . . . , Tk in

which case we set T =
⋃k
i=1 Ti. In general, there are also different kinds of standard

reductions, which are used in the concrete proofs, hence we extend the standard reduction to
sr
−→ ⊆ E ×E ×L where L is a set of labels. Sometimes we indicate the label l by writing

sr,l
−−→.

We say the program transformation
T
−→ is answer-preserving, if a ∈ A and a

T
−→ e implies

e ∈ A; and weakly answer-preserving, if a ∈ A and a
T
−→ e implies e⇓.

The diagram-based proof method operates on abstract reduction sequences (ARS), which

are strings consisting only of the standard reductions with their labels, and the program

transformations, but the expressions are ignored with the exception of an abstract symbol

A for an answer. A forking diagram is a rewriting rule L R on ARSs. The semantics of

a diagram L R is that the reduction sequence L can be transformed (or rewritten) into

the reduction sequence R. We also allow diagrams that speak about transitive closures of

reductions. We are only interested in ARSs that are a mix of
sr
←− and

T
−→-reductions, perhaps

labeled, together with an answer token A to the left. The idea of the diagrams is that they

transform reduction sequences into evaluations. In general, this rewriting is non-deterministic,

which is the price for abstracting away the term structure. Completeness of a set DF (
T
−→) of

forking diagrams for transformation
T
−→ means that every ARS A

sr,+
←−−−

T
−→ is modifiable by

a diagram. For
T
←− we call the diagrams in DF (

T
←−) commuting diagrams.

Usually, forking diagrams are of the form
sr,ln
←−−− . . .

sr,l1
←−−−

Tk−→  
T1−→ . . .

Tm−−→
sr,l

n′←−−− . . .
sr,l1
←−−−

where labels li may also be omitted and where also the meta-symbols + and ∗ may occur for

the transitive/transitive-reflexive closure of a standard reduction or transformation.

We also need another form of diagrams, the answer diagrams, DA(
T
−→), which are called

complete (for transformation
T
−→), if every ARS A

T,+
−−→ is modifiable by a diagram in DA. In

the case of answer-preservation, these extra diagrams are simply A
T
−→ A, and for a weakly

answer-preserving transformation, the diagrams are of the form A
T
−→  A

sr,ln
←−−− . . .

sr,l1
←−−−,

where usually only a subset of the labels occur as li which may ease the termination proof.

In applications to calculi, the computation of the diagram sets for a given program

transformation is done by analyzing the syntax of expressions and the syntax of rules and

by covering all possibilities, where usually labels are heavily used at
sr
←−, depending on the

kind of reduction rules, and often, several program transformations occur in the diagram set.

This computation may be done by hand, but there is also a proposal for automating this in

an expressive core calculus of Haskell, see [3, 4].

The diagram based method to show correctness of a program transformation
T
−→ is

performed by the steps:

1. Show (weak) answer-preservation of
T
−→ and compute the DA-diagrams.

2. Compute complete sets of forking-diagrams for
T
−→.

3. Show that every reduction sequence a
sr,∗
←−− e

T
−→ e′ where a ∈ A can be transformed

using the diagrams from steps 1 and 2 into a′
sr,∗
←−− e′, where a′ ∈ A. This is usually done

by an induction on the application of diagrams.

4. Do the same by performing steps (1), (2), (3) for the inverse relation
T
←−.

Since answer-preservation implies weak answer-preservation, we show the next theorem

only for the weak case.
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1 ·

iS,seq //

n,a

��

·

n,a

���
�

�

·

iS,seq //___
·

2 ·

iS,seq //

n,a

��

·

n,a

���
�

�

�

·

3 ·

iS,seq //
n,a ��

·

n,a

���
�

�

�

�

·

n,seq ��
·

4 ·

iS,seq //

n,cp

��

·

n,cp

���
�

�

·

iS,seq //___
·

iS,seq //___
·

(a) Forking diagrams for the transformation (iS, seq)

1

iSseq(n(a, x)) → n(a, iSseq(x))

iSseq(n(seq, x)) → n(seq, iSseq(x))

iSseq(n(cp, x)) → n(cp, iSseq(x))

3

iSseq(n(a, n(seq, x))) → n(a, x)

iSseq(n(seq, n(seq, x))) → n(seq, x)

iSseq(n(cp, n(seq, x))) → n(cp, x)

2

iSseq(n(a, x)) → n(a, x)

iSseq(n(seq, x)) → n(seq, x)

iSseq(n(cp, x)) → n(cp, x)

4 iSseq(n(cp, x)) → n(cp, iSseq(iSseq(x)))

Answer diagram iSseq(w) → w

(b) TRS encoding of forking- and answer-diagrams for the transformation (iS, seq)

Figure 1 Diagrams and their TRS encoding for the transformation (iS, seq)

◮ Proposition 1.1. Let
T
−→ be weakly answer preserving, and let DF (

T
−→) and DA(

T
−→) be

the complete sets of forking and answer diagrams, respectively, for
T
−→. Then termination of

DF (
T
−→) ∪DA(

T
−→) implies that

T
−→ ⊆ ≤c.

Proof. Starting with e⇓ and e
T
−→ e′, this corresponds to an ARS of the form A

sr,ln
←−−−

. . .
sr,l1
←−−−

T
−→. Completeness of DF (

T
−→) and DA(

T
−→) guarantees that an ARS in normal-form

is of the form A
sr,l′

m←−−− . . .
sr,l′

1←−−−, which shows e′⇓. Since
T
−→ is assumed to be closed for

context application, this implies e ≤c e
′. Since this holds for all e

T
−→ e′, we have shown

T
−→ ⊆ ≤c. ◭

◮ Theorem 1.2. If the assumptions of Proposition 1.1 hold for
T
−→ as well as for

T
←− –

including complete sets DF (
T
−→), DF (

T
←−), DA(

T
−→), and DA(

T
←−) – then

T
−→ ⊆ ∼c, which

means that T is a correct program transformation.

Based on the description above and Theorem 1.2, we encode reduction sequences as

terms, and complete sets of diagrams as term rewriting systems on the sequences. As we

will demonstrate for encoding some of our diagrams including transitive closure we require

conditional integer term rewriting systems (ITRS). However, these can also be treated by the

automated termination prover AProVE [1, 2]. Hence we can use the AProVE system to show

termination of TRSs / conditional ITRSs, which provides a further step in the automation

of the inductive step in correctness proofs.

2 Encodings of Reductions and Sets of Diagrams

We give some examples for the encoding of complete sets of diagrams into (I)TRSs. The

diagrams are taken from [5] for an extended call-by-need lambda calculus with a standard

reduction called normal order reduction, denoted as
n
−→, and expressions considered as answers

are called weak head normal forms (WHNFs).

We first consider the transformation seq. Figure 1a shows the forking diagrams DF(
iS,seq
−−−−→)

for the transformation (iS, seq), which is the context-closure of seq. The label a signifies

an arbitrary reduction label. The solid lines in the diagrams represent the left hand sides
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and the dashed lines the right hand sides in the diagram rules of the form L  R. The

diagrams can also be represented in their flat form, e.g. the flat form of the first diagram is
n,a
←−−

iS,seq
−−−−→  

iS,seq
−−−−→

n,a
←−−. Figure 1b shows the TRS encoding of the forking- and answer-

diagrams for the transformation (iS, seq), where x is a variable, and all other symbols are

function symbols. We highlight on some properties of the encoding:

The special answer token (i.e. WHNF-token) is represented as the constant w.

The abstract reduction sequences in the graphical diagrams are encoded from right to

left, i.e. the flat diagram
n,a
←−−

iS,seq
−−−−→  

iS,seq
−−−−→

n,a
←−− is represented as the rewrite rule

iSseq(n(a, x))→ n(a, iSseq(x)). This is done to express the fact that diagrams turn reduc-

tion sequences into evaluations. E.g. the sequence w
n,a
←−−

n,a
←−−

n,a
←−−

iS,seq
−−−−→ is represented by

the term iSseq(n(a, n(a, n(a,w)))) and can be turned into the evaluation w
n,a
←−−

n,a
←−−

n,a
←−−

(either by repeated application of the first diagram and a closing application of the

answer-diagram or by a single application of the second diagram).

The labels of normal order reductions and transformations are encoded differently: Labels

of transformations are encoded directly into function symbols (like iSseq) whereas labels

of normal order reductions are encoded as parameters of function applications, e.g. in

the term n(a, x) the constant a denotes the label of the normal order reduction. Here a

is a constant that represents arbitrary reduction labels (that are not seq or cp) whereas

the constants seq and cp denote those specific labels (this is also the reason why we need

three rewrite rules per diagram in the present example). The different encoding of names

has mainly technical reasons: The automatic proofs using AProVE are in some cases only

possible with the described encoding.

Since seq is answer-preserving the TRS encoding of DA(
iS,seq
−−−−→) consists of the single diagram

iSseq(w) → w. For the seq transformation the termination of the TRS encoded complete

diagram set could be automatically shown.

Figure 2a gives another example of a complete set of forking diagrams DF(
iS,llet
−−−−→) for

the transformation (iS, llet), which is answer-preserving. In the diagrams
n,lll+

−−−−→ represents

a (non-empty) sequence of l ll-reductions i.e. the transitive closure of those reductions. These

symbols require a special treatment in the encoding into TRS, since they represent an infinite

set of diagrams. If the symbol
n,lll+

−−−−→ occurs on the left hand side of a diagram, this means

that any given (non-empty) reduction sequence of l ll-reductions can be matched. In the

encoding this symbol is represented by the function symbol nlllPlusL and there are additional

rules which allow to contract a given sequence of l ll-reductions into the symbol
n,lll+

−−−−→ (see

Figure 2c). If a symbol
n,lll+

−−−−→ occurs on the right hand side of a diagram, then a naive

approach would be to add rules
n,lll+

−−−−→  
n,lll
−−−→ and

n,lll+

−−−−→  
n,lll+

−−−−→
n,lll
−−−→. However, this

approach does not work, since it introduces nontermination in the corresponding TRS. Hence,

we use integer term rewrite systems for the encoding, which allow to rewrite the symbol
n,lll+

−−−−→ into a sequence of
n,lll
−−−→-reductions of arbitrary but fixed length. In the encoding we

use the function symbol nlllPlusR for the occurrence of
n,lll+

−−−−→ on the right hand side. For

diagrams 3 and 4, an integer variable k is introduced by the rewriting rule which is like

guessing a natural number. Additionally we add ITRS-rules to rewrite the symbol into a

sequence of k
n,lll
−−−→-reductions (see Figure 2d).

Termination of DF(
iS,llet
−−−−→) ∪DA(

iS,llet
−−−−→) can be automatically checked using AProVE.
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1 ·

iS,llet //

n,a

��

·

n,a

���
�

�

·

iS,llet //___
·

2 ·

iS,llet //

n,a

��

·

n,a

���
�

�

�

·

3 ·

iS,llet //

n,lll+

��

·

n,lll+���
�

�

�

·

4 ·

iS,llet //

n,lll+

��

·

n,lll+

���
�

�

·

iS,llet //___
·

5 ·

iS,llet //
n,a ��

·

n,a

���
�

�

�

�

·

n,llet ��
·

(a) Forking diagrams for the transformation (iS, llet)

3 iSllet(nlllPlusL(x)) → nlllPlusR(k, x) 4 iSllet(nlllPlusL(x)) → nlllPlusR(k, iSllet(x))

(b) ITRS encoding of the third and fourth forking diagram for the transformation (iS, llet)

n(lll,nlllPlusL(x)) → nlllPlusL(x)

n(lll, x) → nlllPlusL(x)

(c) Contracting
n,lll
−−−→-sequences into

n,lll+

−−−−→

nlllPlusR(0, x) → x

nlllPlusR(k, x) → nlllPlusR(k − 1, n(lll, x)) if k > 0

(d) Expansion of
n,lll+

−−−−→ into k
n,lll
−−−→-reductions

Figure 2 Diagrams and ITRS encoding for the transformation (iS, llet)

Conclusion We tested the complete sets of (forking as well as commuting) diagrams of

several program transformations from [5] and they could all be shown terminating with

the above method using AProVE as a tool for automatic termination proofs. While the

encoding of most of the diagrams from [5] was in general rather straightforward, there are

also cases, where additional knowledge (beyond the mere information of the diagram) has to

be employed in the encoding, or where the automatic proof can only be found for a particular

syntactic variant. An increasing set of (I)TRS-encoded diagrams and the corresponding

termination proofs in AProVE can be found on the website:

http://www.ki.informatik.uni-frankfurt.de/research/dfg-diagram/auto-induct/.

Future work is to connect the automated termination prover with the diagram calculator

of [3, 4] and thus to complete the tool for automated correctness proofs of program transfor-

mations. Another direction is to check more sets of diagrams which probably requires to

develop more sophisticated encoding techniques.
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1 Introduction

Relative rewriting and the dependency pair framework (DP framework) are two strongly

related termination methods. In both formalisms we consider whether the combination of

two TRSs allows an infinite derivation:

Relative termination of R/S can be defined as strong normalization of →R · →
∗

S
.

Finiteness of a DP problem (P,R) can be defined as strong normalization of
ǫ
→P · →

∗

R

where
ǫ
→ allows steps only at the top. Moreover, minimality can be incorporated by

requiring that all terms are terminating w.r.t. R.

The above definitions have two orthogonal distinctions of rules. In both formalisms there

are strict and weak rules: P and R are the strict rules of (P,R) and R/S, respectively,

while R and S are the respective weak rules. In the DP framework, there is the additional

distinction between rules that may only be applied at the top (P) and those that can be

applied at arbitrary positions (R).

Note that the restriction to top rewriting is an important advantage for proving termination

in the DP framework. It allows to use non-monotone orders for orienting the strict rules.

Furthermore, if minimality is considered, we can use termination techniques (e.g., usable

rules or the subterm criterion) that are not available for relative rewriting.

However, also relative rewriting has some advantages which are currently not available in

the DP framework: Geser showed that it is always possible to split a relative termination

problem into two parts [4]. Relative termination of (Rs ∪Rw)/(Ss ∪ Sw) can be shown by

relative termination of both (Rs ∪ Ss)/(Rw ∪ Sw) and Rw/Sw. Hence, it is possible to show

(in a first relative termination proof) that the strict rules Rs∪Ss cannot occur infinitely often

and afterwards continue (in a second relative termination proof) with the problem Rw/Sw. A

major advantage of this approach is that in the first proof we can apply arbitrary techniques

which may increase the size of the TRSs drastically (e.g., semantic labeling [11]), or which

may even be incomplete (e.g., string reversal in combination with innermost rewriting, where

by reversing the rules we have to forget about the strategy). As long as relative termination

of (Rs ∪ Ss)/(Rw ∪ Sw) could be proven, we can afterwards continue independently with the

problem Rw/Sw.

Such a split is currently not possible in the DP framework since there are no top weak

rules and also no strict rules which can be applied everywhere.

In this paper we generalize the DP framework to a relative DP framework, where such a

split is possible. To this end, we consider DP problems of the form (P,Pw,R,Rw), where we

have strict and weak, top and non-top rules. (This kind of DP problems were first suggested

by Jörg Endrullis at the Workshop on the Certification of Termination Proofs in 2007 and
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80 A Relative Dependency Pair Framework

are already used in his termination tool Jambox [3]. Unfortunately the suggestion did not get

much attention back then and we are not aware of any publications on this topic.) In this way,

problems that occur in combination with semantic labeling and dependency pairs—which

can otherwise be solved by using a dedicated semantics for DP problems [9]—can easily be

avoided. Furthermore, the new framework is more general than [9] since it also solves some

problems that occur when using other termination techniques like uncurrying [6, 8].

2 A Relative Dependency Pair Framework

We assume familiarity with term rewriting [2] and the DP framework [5].

◮ Definition 1. A relative dependency pair problem (P,Pw,R,Rw) is a quadruple of TRSs

with pairs P ∪ Pw (where pairs from P are called strict and those of Pw weak) and rules

R∪Rw (where rules of R are called strict and those of Rw weak).

For relative DPPs the notion of chains and finiteness is adapted in the following way.

◮ Definition 2. An infinite sequence of pairs s1 → t1, s2 → t2, . . . forms a (P,Pw,R,Rw)-

chain if there exists a corresponding sequence of substitutions σ1, σ2, . . . such that

si → ti ∈ P ∪ Pw for all i (1)

tiσi →
∗

R∪Rw

si+1σi+1 for all i (2)

si → ti ∈ P or tiσi →
∗

R∪Rw

· →R · →
∗

R∪Rw

si+1σi+1 for infinitely many i (3)

For minimal chains, we additionally require

SNR∪Rw
(tiσi) for all i (4)

A relative DPP (P,Pw,R,Rw) is finite, iff there is no minimal infinite (P,Pw,R,Rw)-chain.

Hence, a (minimal) (P,Pw,R,Rw)-chain is like a (minimal) (P ∪Pw,R∪Rw)-chain—as

defined in [1]—with the additional demand that there are infinitely many strict steps using

P or R. It is easy to see that (P,R)-chains can be expressed in the new framework.

◮ Lemma 3. The DP problem (P,R) is finite iff there exists a minimal (P,R)-chain iff

there exists a minimal (P, ∅, ∅,R)-chain iff the relative DPP (P, ∅, ∅,R) is finite.

Note that in contrast to DPPs (P,R), for relative DPPs, P = ∅ does not imply finiteness

of (P,Pw,R,Rw).

◮ Example 4. The relative DPP (∅, {F(a)→ F(b)}, {b→ a}, ∅) is not finite.

However, a sufficient criterion for finiteness is that there are either no pairs, or that there

are neither strict pairs nor strict rules.

◮ Lemma 5 (Trivially finite relative DPPs). If P ∪Pw = ∅ or P ∪R = ∅ then (P,Pw,R,Rw)

is finite.

3 Processors in the Relative Dependency Pair Framework

Processors and soundness of processors in the relative DP framework are defined as in the DP

framework, but operate on relative DPPs instead of DPPs (a processor is sound if finiteness

of all resulting relative DPPs implies finiteness of the given relative DPP).
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Note that most processors can easily be adapted to the new framework where most often

it suffices to treat the relative DPP (P,Pw,R,Rw) as the DPP (P ∪ Pw,R∪Rw).

However, when starting with the initial relative DPP (DP(R), ∅, ∅,R) it is questionable

whether we ever reach relative DPPs containing weak pairs or strict rules. If this is not the

case, then our generalization would be useless. Therefore, in the following we give evidence

that the additional flexibility is beneficial.

Easy examples are semantic labeling and uncurrying. Both techniques are transformational

techniques where each original step is transformed into one main transformed step together

with some auxiliary steps. For the auxiliary steps one uses auxiliary pairs and rules (the

decreasing rules and the uncurrying rules, respectively). If there are auxiliary pairs Paux ,

then in the DP framework, Paux can only be added as strict pairs, whereas in the relative

DP framework, we can add Paux to the weak pairs, and hence we do not have to delete all

pairs of Paux anymore for proving finiteness.

As another example, we consider top-uncurrying of [8, Def. 19], where some rules R are

turned into pairs. Again, in the DP framework this would turn the weak rules R into strict

pairs, which in fact would demand that we prove termination of R twice: Once via the

original DPs for R, and a second time after the weak rules of R have been converted into

strict pairs. For example, in [8, Ex. 21] termination of the minus-rules is proven twice. This

is no longer required in the relative DP framework where one can just turn the weak rules R

into weak pairs R.

Finally, in the relative DP framework we can apply the split technique known from

relative rewriting.

◮ Definition 6 (Split processor). The relative DPP (P1
s
∪ P1

w
,P2

s
∪ P2

w
,R1

s
∪R1

w
,R2

s
∪R2

w
)

is finite if both (P1
s
∪ P2

s
,P1

w
∪ P2

w
,R1

s
∪R2

s
,R1

w
∪R2

w
) and (P1

w
,P2

w
,R2

w
,R2

w
) are finite.

A more instructive way of putting the above definition for termination tool authors that

are used to standard DP problems is as follows. Start from the relative DPP (P, ∅, ∅,R).

Identify pairs P ′ and rules R′ that should be deleted. Then use the split processor to obtain

the two relative DPPs (P ′,P \ P ′,R′,R \R′) and (P \ P ′, ∅, ∅,R \R′).

Clearly, the split processor can be used to obtain relative DPPs with strict rules and

weak pairs, but the question is how to apply it. We give two possibilities.

Semantic labeling is often used in a way, that after labeling one tries to remove all labeled

variants of some rules Rs and pairs Ps, and afterwards removes the labels again to continue

on a smaller unlabeled problem.

◮ Example 7. Consider a DP problem p1 = ({1, 2}, {3}). After applying semantic labeling,

all pairs and rules occur in labeled variants 1.x, 2.x, and 3.x, so the resulting DP problem

might look like ({1.a, 1.b, 2.a, 2.b}, {3.a, 3.b, 3.c}). Applying standard techniques to remove

pairs and rules one might get stuck at p2 = ({2.a, 2.b}, {3.a, 3.c}). Although p1 contains less

rules than p2, p2 is somehow simpler since all rules 1.x have been removed. And indeed, after

applying unlabeling on p2 the resulting DP problem p3 = ({2}, {3}) is smaller than p1.

Since the removal of labels is problematic for soundness, a special semantics was developed

in [9]. This is no longer required in the relative DP framework. After Rs and Ps have

been identified, one just applies the split processor to transform (P, ∅, ∅,R) into (Ps,P \

Ps,Rs,R \Rs) and (P \ Ps, ∅, ∅,R \Rs). The proof that all labeled variants of rules in Rs

and pairs in Ps can be dropped, proves finiteness of the first problem, and one can continue

on the latter problem without having to apply unlabeling.
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◮ Example 8. Using split, we can restructure the proof of Example 7 without using unlabeling:

We know that in the end, we only get rid of pair 1. Hence, we apply split on p1 to obtain

p3 and p4 = ({1}, {2}, ∅, {3}). Thus, we get the same remaining problem p3 if we can prove

finiteness of p4. But this can be done by replaying the proof steps in Example 7. Applying

the same labeling as before, we obtain p5 = ({1.a, 1.b}, {2.a, 2.b}, ∅, {3.a, 3.b, 3.c}). Removing

pairs and rules as before, we simplify p5 to p6 = (∅, {2.a, 2.b}, ∅, {3.a, 3.c}) and this relative

DP problem is trivially finite by Lemma 5.

Note that using [9] it was only possible to revert the labeling, but not to revert other

techniques like the closure under flat contexts which is used in combination with root-labeling

[7]. However, using the split processor this is also easily possible, since one just has to apply

the split processor before applying the closure under flat contexts.

A further advantage of the relative DP framework in comparison to [9] can be seen in the

combination of semantic labeling with the dependency graph processor.

◮ Example 9. Consider a DP problem p1 = ({1, 2}, {3, 4}) which is transformed into

({1.a, 1.b, 2.a, 2.b}, {3.a, 3.b, 4.a, 4.b}) using semantic labeling. Applying the dependency

graph and reduction pairs yields two remaining DP problems p2 = ({2.a}, {4.a}) and

p3 = ({2.b}, {3.a, 4.b}). Using unlabeling we have to prove finiteness of the two remaining

problems p4 = ({2}, {4}) and p5 = ({2}, {3, 4}). Note that finiteness of p5 does not imply

finiteness of p4, so one indeed has to perform two proofs.

However, when using the split processor, only p5 remains: we observe from p2 and p3 that

only pair 1 could be removed. So, we start to split p1 into p5 and p6 = ({1}, {2}, ∅, {3, 4}).

Labeling p6 yields ({1.a, 1.b}, {2.a, 2.b}, ∅, {3.a, 3.b, 4.a, 4.b}) which is simplified to the two

problems (∅, {2.a}, ∅, {4.a}) and (∅, {2.b}, ∅, {3.a, 4.b}) with the same techniques as before.

Both problems are trivially finite by Lemma 5.

Other Techniques may also take advantage of the split processor. For example, the

dependency pair transformation of narrowing [1,5] is not complete in the innermost case but

might help to remove some pairs and rules. If it turns out that after some narrowing steps

some original pairs and rules can be removed, then one can just insert a split processor before

narrowing has been performed. In this way one has obtained progress in proving finiteness

and in the remaining system the potential incomplete narrowing steps have not been applied.

In other words, the split processor allows to apply incomplete techniques without losing

overall completeness.

4 Conclusions and Future Work

We presented the relative DP framework which generalizes the existing DP framework by

allowing weak pairs and strict rules. It forms the basis of our proof checker CeTA (since version

2.0) [10] where we additionally integrated innermost rewriting (in the form of Q-restricted

rewriting) [5]. One of the main features of the new framework is the possibility to split a DP

problem into two DP problems which can be treated independently. Examples to illustrate

the new features are provided in the IsaFoR-repository (e.g., div_uncurry.proof.xml uses

weak pairs for uncurrying, and in secret_07_trs_4_top.proof.xml the split processor is

used to avoid unlabeling).

It is an obvious question, whether the relative DP framework can be used to characterize

relative termination. In a preliminary version we answered this question positively by present-

ing a theorem that R/S is relative terminating iff there is no infinite (DP(R), DP(S),R,S)-

chain. However, it was detected that the corresponding proof contained a gap (it was the

http://cl-informatik.uibk.ac.at/software/ceta/examples/div_uncurry.proof.xml
http://cl-informatik.uibk.ac.at/software/ceta/examples/secret_07_trs_4_top.proof.xml
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only proof that we did not formalize in Isabelle/HOL) and that the whole theorem did not

hold (by means of a counterexample).

An interesting direction for future work is to unify termination (via relative DP problems)

with relative termination. One reason is that this would allow to reduce the formalization

effort, since results for termination are expected to be corollaries carrying over from relative

termination.

Acknowledgments We would like to thank Jörg Endrullis and an anonymous referee for

pointing out that our attempt to characterize relative termination using the relative DP

framework is unsound. It remains as interesting open problem to give such a characterization.
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Abstract

For term rewrite systems (TRSs), a huge number of automated termination analysis techniques

have been developed during the last decades, and by automated transformations of Prolog pro-

grams to TRSs, these techniques can also be used to prove termination of Prolog programs. Very

recently, techniques for automated termination analysis of TRSs have been adapted to prove

asymptotic upper bounds for the runtime complexity of TRSs automatically. In this paper, we

present ongoing work to transform Prolog programs automatically into TRSs in such a way that

the resulting TRSs have at least the same asymptotic upper complexity bound. Thus, tech-

niques for complexity analysis of TRSs can be applied to prove upper complexity bounds for

Prolog programs.

1998 ACM Subject Classification D.1.6 - Logic Programming, F.2 - Analysis of Algorithms and

Problem Complexity, F.3.1 - Specifying and Verifying and Reasoning about Programs, F.4.2 -

Grammars and Other Rewriting Systems, I.2.3 - Deduction and Theorem Proving

Keywords and phrases Prolog, Complexity, Analysis, Term Rewriting, Automated Reasoning

1 Introduction

Automated complexity analysis of term rewrite systems has recently gained a lot of attention

(see e.g., [2, 3, 5, 7, 9, 10, 17, 18]). In particular, there are also new complexity categories

for TRSs at the annual International Termination Competition [16]. The reason why these

complexity categories are integrated in the termination competition is that the techniques

used to analyze asymptotic complexity of TRSs were adapted from techniques used for

automated termination analysis of TRSs.

Moreover, techniques for termination analysis of TRSs were used to analyze termination

of logic programs by transforming such programs into TRSs in a non-termination preserving

way (see e.g., [11, 12]). In fact, this transformational approach for termination analysis of

logic programs turned out to be more powerful than techniques to analyze termination of

logic programs directly.

While there already exists some work on direct complexity analysis for logic programs

(e.g., [6]), these approaches can only handle restricted classes of definite logic programs and

logic programs with linear arithmetic. Our goal is to achieve better results for automated

complexity analysis of logic programs by a transformational approach similar to the ones
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© T. Ströder, F. Emmes, P. Schneider-Kamp, and J. Giesl;

licensed under Creative Commons License NC-ND

WST 2012: 12th International Workshop on Termination.

Editor: G. Moser; pp. 84–88

http://creativecommons.org/licenses/by-nc-nd/3.0/


T. Ströder, F. Emmes, P. Schneider-Kamp, and J. Giesl 85

for termination analysis. However, just using the existing transformations to term rewriting

does not work, because they are not complexity-preserving. This is mainly due to the fact

that backtracking in the logic program is replaced by non-deterministic choice in the TRS.

Instead, we propose a new transformation based on a graph representing all possible

executions of a given logic program. This is similar to our approach for termination analysis

of Prolog in [13, 14] which goes beyond definite logic programs. In this way, the transforma-

tion is also applicable to Prolog programs using built-in predicates like cuts. In contrast to

previous transformations which could only be used for termination analysis, our new trans-

formation can also be used for complexity analysis. We briefly introduce some notations

and the considered operational semantics of Prolog programs in Section 2. Then we explain

very shortly the graph construction from [13, 14] in Section 3. Afterwards, we propose a

method to obtain TRSs from such graphs which have at least the same complexity as the

original Prolog program in Section 4. We conclude in Section 5.

2 Preliminaries

For the basics of term rewriting, see, e.g., [4]. For a TRS R with defined symbols Σd =

{root(ℓ) | ℓ → r ∈ R}, a term f(t1, . . . , tn) is called basic if f ∈ Σd and t1, . . . , tn do not

contain symbols from Σd. The innermost runtime complexity function ircR [7] maps any

n ∈ IN to the length of the longest sequence of
i
→R-steps starting with a basic term t with

|t| ≤ n. Here, “
i
→R” is the innermost rewrite relation.

See, e.g., [1] for the basics on logic programming. For Prolog programs, we consider the

operational semantics defined in [15] which is equivalent to the semantics defined in the ISO

standard [8] for Prolog. As in [8, 15], we do not distinguish between predicate and function

symbols. A query is a sequence of terms, where � denotes the empty query. A clause is

a pair h ← B where the head h is a term and the body B is a query. If B is empty, then

one writes just “h” instead of “h← �”. A Prolog program P is a finite sequence of clauses.

We often denote the application of a substitution σ by tσ instead of σ(t). A substitution

σ is the most general unifier (mgu) of s and t iff sσ = tσ and, whenever sγ = tγ for

some other unifier γ, there is a δ with Xγ = Xσδ for all X ∈ V(s) ∪ V(t). If s and t

have no mgu σ, we write mgu(s, t) = fail. Slice(P, t) are all clauses for t’s predicate, i.e.,

Slice(P, p(t1, ..., tn)) = {c | c = “p(s1, ..., sn)← B” ∈ P}.

To describe the semantics of Prolog, we use states. A state has the form 〈G1 | . . . | Gn〉

where G1 | . . . | Gn is a sequence of goals. Essentially, a goal is just a query, i.e., a sequence

of terms. In addition, a goal can also be labeled by a clause c, where the goal (t1, . . . , tk)
c

means that the next resolution step has to be performed using the clause c. The initial state

for a query (t1, . . . , tk) is 〈(t1, . . . , tk)〉, i.e., this state contains just a single goal.1 Then the

operational semantics can be defined by a set of inference rules on these states, cf. [15]. We

show the four inference rules for the core part of Prolog by which definite logic programs

can be defined in Figure 1.

So we define the runtime complexity function of a Prolog program w.r.t. a query as the

function that maps the term size of the query2 to the length of the maximal derivation that

is possible with these inference rules when starting in the initial state for the query. As

shown in [15], this is equivalent to the complexity according to the ISO standard for Prolog

1 We omit answer substitutions for simplicity, since they do not contribute to the complexity.
2 More precisely, we only measure the size of the input arguments of the query, i.e., of those arguments

which are guaranteed to be ground.
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� | S

S
(Suc)

(t, Q) | S

(t, Q)c1 | · · · | (t, Q)ca | S
(Case) if SliceP(t) = (c1, . . . , ca)

(t, Q)h :-B | S

(Bσ,Qσ) | S
(Eval) if σ = mgu(t, h)

(t, Q)h :-B | S

S
(Backtrack) if mgu(t, h) = fail

Figure 1 Inference Rules for the Subset of Definite Logic Programs

[8] (when using the asymptotic number of unification attempts as a complexity measure and

when attempting to find all solutions for a query). This complexity measure is also used

in the previous approach [6] for direct complexity analysis of logic programs. Note that

by using appropriate cuts, our approach can also easily be adapted in order to analyze the

complexity of finding only the first solution. The goal of our approach is to generate a TRS

R such that ircR is (asymptotically) an upper bound to the runtime complexity function of

the Prolog program.

3 Graph Construction
del2(T1, T2)

a

del2(T1, T2)
(1)

Case

del(T1, X1), del(X1, T2)

Eval

ε

Eval

del(T3, T4
)

b

Split

X1/T3, T2/T4

del(T1, X1)

b
′

Split

. . .
del(T3, T4

)
(2) | del(T3, T4

)
(3)

Case

� | del([T5|T6], T6)
(3)

c
Eval

T3/[T5|T6], T
4
/T6

del(T3, T4
)
(3)

d

Eval

del([T5|T6], T6)
(3)

Suc Inst

del(T8, T9)
(3)

EvalT3/[T
7
|T8]

T
4
/[T

7
|T9]

Inst

ε

Eval

Figure 2 Example Graph

By adapting the inference rules to clas-

ses of queries, one obtains derivation

trees instead of derivation sequences, be-

cause now the rules operate on abstract

states which represent sets of concrete

states. Thus, one abstract state may

represent states where a unification suc-

ceeds and also states where the same

unification attempt fails. For these ab-

stract states, we use abstract variables

representing fixed, but arbitrary terms.

Moreover, one can constrain the terms

represented by the abstract variables to

be only ground terms (depicted by over-

lining the abstract variable). However,

to obtain finite graphs instead of infinite

trees, one needs an inference rule which

can refer back to already existing states.

Such Inst edges can be drawn in our

derivation graph if the current state rep-

resents a subset of those concrete states that are represented by the earlier already existing

state (i.e., the current state is an instance of the earlier state). Moreover, we also need a

Split inference rule which splits up states in order to find such instances. In our example,

the sub-graph below node b
′ is analogous to the graph below node b. See [13, 14] for more

details, further inference rules, and more explanation on the graph construction.

Let us consider an example program deleting two arbitrary elements from a list and the

corresponding derivation graph in Figure 2 when calling the program with queries of the

form del2(t1,t2), where t1 is ground.
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(1) del2(XS, YS) :- del(XS, ZS), del(ZS, YS).

(2) del([X|XS], XS).

(3) del([X|XS], [X|YS]) :- del(XS, YS).

This program has quadratic complexity due to backtracking. However, if one encodes

the clauses directly as rules in a TRS, the backtracking is lost and we generate a TRS with

linear complexity. To obtain a transformation which over-approximates the complexity of

the original program (i.e., where the innermost runtime complexity of the resulting TRS is

an upper bound for the complexity of the Prolog program), we encode the paths of the graph

representation of the program, which explicitly represents the backtracking possibilities.

4 Synthesizing TRSs

To obtain TRSs from the graph, we consider the different successors of Split nodes sep-

arately. So in our example, we first generate a TRS from the graph that results from

removing the sub-graph with root node b and then we generate a TRS from the graph that

(essentially) results from removing the sub-graph with root node b
′. Afterwards the runtime

complexities of these two TRSs are multiplied in order to obtain an upper bound for the

runtime complexity of the original logic program. The reason is that due to backtracking,

every solution for the query in the leftmost Split child triggers an evaluation of the query

in the rightmost Split child.

To generate TRSs from graphs, we encode each state s by two fresh function symbols

f in
s

and fout
s

. The arguments of f in
s

are the (ground) input arguments of s and for fout
s

, we

use the output arguments of s that are guaranteed to be ground after evaluating the query

in s. (To detect those arguments, we use a groundness analysis for the logic program.)

We generate rewrite rules for the paths that start in the initial node of the graph or in a

successor state of an Inst or Split node and that end in a Suc node or in a successor of an

Inst or Split node. Moreover, except for the first and last node of the path, the path may

not traverse successors of Inst or Split nodes. In our example we obtain a TRS R1 for

the graph where we disregard the subgraph with root node b and a TRS R2 for the graph

where we disregard the subgraph with root node b
′. So in R2 we obtain rules for the paths

from a to b (Rule (1)), b to c (Rule (2)), b to d directly (Rule (3)), b to d via c (Rule (4)),

and d to b (Rule (5)). We always apply all substitutions along the path to the left-hand

side of the resulting rewrite rule. See [12] for more details on how to encode clauses as rules

in a TRS. Moreover, the rule from a to b has to take into account that the input argument

T3 of b is the result of evaluating b
′. Thus, when computing the complexity of R2, we can

also use the rules of R1 for evaluating terms, but these evaluations do not contribute to the

complexity of R2. Such notions of complexity have already been used in existing frameworks

for complexity analysis of TRSs [7, 10, 18]. For space reasons, here we only present R2. The

TRS R1 is analogous to R2 except for R1’s first rule which is f in
a

(T1)→ f in
b′

(T1).

f in
a

(T1) → f in
b

(T3) | f in
a

(T1) →∗ fout
b′ (T3) (1)

f in
b

([T5 | T6]) → fout
b

(T6) (2)

f in
b

(T3) → fout
b

(T4) | f in
d

(T3) →∗ fout
d

(T4) (3)

f in
b

([T5 | T6]) → fout
b

(T6) | f in
d

([T5 | T6]) →∗ fout
d

(T6) (4)

f in
d

([T7 | T8]) → fout
d

([T7 | T9]) | f in
b

(T8) →∗ fout
b

(T9) (5)

To analyze these conditional TRSs for complexity, they are first transformed into uncon-

ditional TRSs using a standard transformation, cf. e.g., [11]. In our example, the resulting
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complexities of R1 and R2 are both linear. Since their complexities have to be multiplied

due to backtracking, this yields a quadratic upper bound for our example logic program.

5 Conclusion

We proposed a new method for automated complexity analysis of Prolog programs based

on automated complexity analysis of term rewriting. First experiments with a prototype

implementation have shown promising results. The next steps for this approach are formal

definitions and proofs of correctness, a complete implementation, and a thorough experi-

mental evaluation.
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1 Introduction

Tools that perform automated deductions are available in several areas. There are SAT solver,

SMT solver, automated theorem provers for first-order logic (FTP), termination analyzer,

complexity analyzer, etc. In most areas, the community was able to agree on a common

input format, like the DIMACS-, SMT-LIBv2-, TPTP-, or TPDB-format. Such a format is

beneficial for several reasons. For example, users can easily try several tools on a problem,

and it is possible to compare tools by running experiments on large databases of problems.

One problem when using tools for automated deduction is that they are complex pieces

of software, which may contain bugs. These bugs may be harmless or they can lead to wrong

answers. To this end, certification of the generated answers becomes an important task.

Of course, to certify an answer, the result of an automated deduction tool must not be

just a simple yes/no-answer, but it must provide an accompanying sufficiently detailed proof

which validates the answer. For satisfiability proofs and nontermination proofs, this is often

simple by given the satisfying assignment or a looping derivation; however, it can become

more complex for FTP where a model may be infinite, and it may also be hard to represent

complex nonterminating derivations in a finite way. In contrast, for proofs of unsatisfiability

or termination, often proof are compositional and consist of several basic proof steps.

We discuss some differences of these compositional proofs in order to illustrate the special

demands that arise for a format for termination proofs of term rewrite systems (TRSs).

Complexity of basic proof steps: A proof of unsatisfiability for SAT can be performed in

various frameworks (natural deduction, resolution, DPLL), which all have very simple

inference rules. Also for FTP, the basic proof steps are rather easy (natural deduction,

resolution, superposition, basic step in completion procedure). In contrast, basic proof

steps in SMT solvers can be complex (apply decision procedures for supported theories)

and also for termination proofs of TRSs a single proof step can be complex. For example,

for removing rules via matrix interpretations [6] one has to compute matrix multiplications;

and for a single application of the dependency graph processor [1], one has to approximate

an undecidable problem.

Number of basic proof steps in a compositional proof : In comparison to SAT, SMT, and

FTP, the number of proof steps in a termination proof is rather low. Consequently,

termination proofs are usually small.

Frameworks: In some frameworks the inference rules are mostly fixed (e.g., natural

deduction or resolution). Nevertheless, efficiently finding proofs in these frameworks

requires lots of research, e.g., by developing strategies how to apply the inference rules.

In the DP framework for proving termination, the set of techniques is not at all fixed.

Often, the power of termination tools is increased by the invention of new ways to prove

termination, e.g., by inventing new reduction pairs, new transformations, etc.

Determinism of basic proof steps Several proof steps are completely determined, like the

rules of natural deduction or a resolution step. But there are also basic proof steps that
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Figure 1 Certification of termination proofs before CPF

need further information to determine the result. For example, from one conflict in DPLL

one can learn different conflict clauses; and for an application of the dependency graph

processor, the result depends on the used approximation.

To summarize, termination proofs are usually small, but each basic proof step is complex.

Moreover, the set of applied termination techniques is constantly growing.

In this report, we shortly present the certification problem format (CPF), a format

developed to represent termination proofs. It has four major benefits. First, it is easy for

termination tools to generate CPF files; second, it is easy to add new techniques to CPF;

third, it provides enough information for certification; finally, it is a common proof format

that is supported by several tools and certifiers.

All details on CPF and several example proofs are freely available at the following URL.

http://cl-informatik.uibk.ac.at/software/cpf/

2 The Certification Problem Format

Before any certifiers for termination proofs have been developed, each termination tool for

TRSs provided proofs in a human-readable HTML or plain text file. From these files it was

hard to extract the relevant proof steps since parameters of termination techniques are mixed

with human readable explanations. Moreover, the output was not standardized at all, but

every tool produced proofs in its own output format.

Hence, when the first certifiers for termination proofs have been developed (Rainbow/CoLoR

[2], CiME3/Coccinelle [4], and later CeTA/IsaFoR [19]), each of the certifiers demanded a proof

written in their own format as input. Hence, to support certifiable proofs using all certifiers,

a termination tool had to write several proof routines output, as illustrated in Figure 1.

To reduce the number of required proof outputs for termination tools, the three groups of

the certifiers decided to develop one proof format that should be supported by all certifiers,

namely CPF. Therefore, for generation of certifiable proofs, termination tools now only have

to support CPF output. As CPF was also developed with several feedbacks from various

termination tools it is widely accepted in the community and it is currently used as the only

format during the termination competition for certified categories.

CPF is an XML-format. Choosing XML instead of ASCII was possible as termination

proofs are rather small. So, the additional size-overhead of XML documents does not play

such a crucial role as it might have played for (large) unsatisfiability proofs for SAT or SMT.

Using XML has several advantages: it is easy to generate, since often programming

languages directly offer libraries for XML processing; even before certifiers can check the

generated proofs, one can use standard XML programs to check whether a CPF file respects

the required XML structure; and finally, it was easy to write a pretty printer to obtain

http://cl-informatik.uibk.ac.at/software/cpf/
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Figure 2 Certification of termination proofs using CPF

human readable proofs from CPF files. This pretty printer is written as XSL transformation

(cpfHTML.xsl), so that a browser directly renders CPF proofs in a human readable way.

Since this pretty printer is freely available, in principle it is no longer required for termination

tool authors to write their own human readable proof output: an export to CPF completely

suffices. A problem might occur if the tool uses some techniques that are not yet covered by

CPF, but then it is still easily possible to extend or modify the existing pretty printer.

Note that CPF also allows to represent partial proofs: The fact, that CPF does not

support all known (and in the future) developed termination techniques is reflected by

allowing assumptions and by allowing intermediate results as input.

So, after the invention of CPF, the workflow and required proof export routines for

certification have changed from Figure 1 to Figure 2.

3 Design decisions

In order to gain a wide acceptance for both certifiers and termination tools, representative

members of the whole community have been integrated in the design process of CPF.

One major decision was that CPF should provide enough information for all three certifiers.

Currently, there are some elements in CPF that are completely ignored by some certifier,

which in turn are essential for another certifier.

In order to keep the burden on termination tools low, after the required amount of

information has been identified, usually no further informations are required in CPF. One

exception is that the proofs must be sufficiently detailed to guarantee determinism.

◮ Example 1. One standard technique to prove termination of a TRS R is to remove rules

by using reduction orders [13, 10]. If the reduction order ≻ is provided, then usually the

result is clear: it is the the remaining TRS R \ ≻. So in principle, in CPF it should be

sufficient to provide ≻. However, since there are several variants of reduction orders and since

some reduction orders like polynomial orders are undecidable, it is unclear how ≻ is exactly

defined or how it is approximated. To be more concrete, if a polynomial interpretation over

the naturals is provided such that the left-hand side ℓ evaluates to pℓ = x2 + 1 and the

right-hand side r to pr = x, then some approximations can only detect ℓ % r whereas a finer

analysis delivers ℓ ≻ r. To avoid such problems in CPF, for rule removal it is required that

the remaining system R \ ≻ is also explicitly stated.

An alternative way to achieve determinism is to explicitly demand that in the proof the

exact variant or approximation of the reduction pair is provided, so that the certifier can

recompute the identical result. However, this alternative has the disadvantage that every

variant or approximation has to be exactly specified and even worse, a certifier has to provide

algorithms to compute all variants of reduction pairs that are used in termination tools. In

contrast, with the current solution the certifiers can just implement one (powerful) variant /

approximation of a reduction pair. Then during certification it must just be ensured that all

removed rules are indeed strictly decreasing (and the remaining TRS is weakly decreasing).
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Note that determinism of each proof step is also important for an early detection of errors.

Otherwise, it might happen that a difference in the internal proof state of the termination

tool and the state in the certifier remains undetected for several proof steps. And then errors

are reported in proof steps which are perfectly okay.

◮ Example 2. Let R = {f(s(x))→ f(t(x)), g(x)→ g(s(x))}. Consider a wrong proof where

first the polynomial order with Pol(h(x)) = x for all h ∈ {f, g, s, t} is used to remove the rule

g(x) → g(s(x)); second, the only dependency pair f♯(s(x)) → f♯(t(x)) is generated; finally,

termination is proven since the dependency graph contains no edges.

If during the certification one just applies the same techniques without checking the

intermediate results, then one first applies rule removal without removing any rule; second,

one computes the dependency pairs including g♯(x) → g♯(s(x)); and finally, the error is

reported that the dependency graph is not empty. Hence, the error in the first step is not

detected, but in the final step—although the final step in the termination tool is sound.

Minor design decisions had to be made for all supported techniques,1 e.g., the exact names

and the exact representation of the relevant parameters, etc. For these decisions, usually the

person who wanted to add a new technique to CPF was asked to provide a proposal. This

proposal was then integrated into a development version of CPF and put under discussion on

the CPF mailing list. Comments during the discussion were integrated in the proposal, and

after the discussion has stopped, the modified proposal was then integrated into the official

CPF version.

4 Problems and Future of CPF

Very recently, other classes than termination proofs were added to CPF, namely confluence

proofs, completion proofs (is a TRS convergent and equivalent to an equational theory?),

and equational proofs. Especially for completion proofs, the size of CPF files has grown

tremendously. In experiments, example proofs of over 400 megabytes have been generated.2

For these large proofs, both the completion tool and the certifier spend most of their time

for proof export or parsing of XML documents.

Hence, action is required to counter the size-overhead of XML documents. Possibilities

would include indexing of terms and rules. Moreover, for rule removal techniques, one

might change CPF in such a way that the removed rules have to be provided instead of the

remaining rules.3 The latter change would also allow to represent the rule removal techniques

for termination and relative termination in the same way, which in turn would allow to merge

the proof techniques for termination and relative termination.

1 Currently CPF supports several classes of reduction pairs (in alphabetical order): argument filters [1],
matrix orders [6], polynomial orders over several carriers [13, 12, 15], recursive path orders [5], and
SCNP reduction pairs [3]. Moreover, the techniques of dependency graph [1], dependency pairs [1, 8],
dependency pair transformations [1, 8], loops, matchbounds [7], root labeling [16], rule removal [13, 10],
semantic labeling [21], size-change termination [14, 18], string reversal, subterm criterion [10], switching
to innermost termination [9], uncurrying [11,17], and usable rules[1, 20,8] are supported.

2 We mention a completion proof for an example with 4 equations and 11 rules in the completed TRS.
In this proof, only to show that all rules in the TRS can be derived from the equations, ≈ 90, 000
reductions have been performed, and the accumulated terms in these derivations consists of over 5
million function symbols and variables. Since symbols are strings and since there is the XML-overhead,
in total, one obtains a 406 MB file (converting all symbols to integers still results in a 266 MB file).
CeTA spend only 1 % of its time for checking the proof, and 99 % for parsing.

3 If the remaining system has to specified, several steps of removing a single rule require quadratic size,
whereas if one specifies the removed rules, then the size of the overall proof is linear.
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However, these changes would be non-conservative changes which requires adaptations of

the proof generating tools and the certifiers. Therefore, we believe that it should be discussed

thoroughly by the community whether such changes should be made. Everyone is invited to

contribute in the discussion.
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Automating Ordinal Interpretations
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Abstract

In this note we study weakly monotone interpretations for direct proofs of termination which is

sound if the interpretation functions are “simple”. This is e.g. the case for standard addition and

multiplication of ordinal numbers. We compare the power of such interpretations to polynomial

interpretations over the natural numbers and report on preliminary experimental results.

1 Introduction

Polynomial interpretations [9] are a well-established termination technique. By now powerful

techniques are known for their automation [1, 5]. Recently it has been shown that allowing

different domains, (e.g., N, Q, R) results in incomparable termination criteria [11,14]. Matrix

interpretations consider linear interpretations over vectors or matrices of numbers (in N, Q,

R) and have been shown to be powerful in theory and practice [2,6,4,18]. However, for other

extensions (e.g., elementary functions [10, 12] or interpretations into ordinal numbers [16])

practical implementations remain an open problem.

In this note we revisit polynomial interpretations using ordinals as carrier [16]. Based on

recent results [17], we present an implementation for string rewrite systems (with interpreta-

tion functions of a special shape), which is the first one to our knowledge. Our efforts could

be seen as a first step towards automatically proving the battle of Hercules and Hydra [16]

terminating. However—for the encoding of the battle from [3]—Moser [13, Section 7] antic-

ipates that an extension of polynomial interpretations into ordinal domains is not sufficient.

In the remainder of this introductory section we recall preliminaries.

Ordinals: We assume basic knowledge of ordinals [8]. By O we denote the set of ordinal

numbers strictly less than ǫ0. Every ordinal α ∈ O has a unique representation in Cantor

Normal Form (CNF): α =
∑

16i6n ω
αi · ai, where a1, . . . , an ∈ N \ {0} and α1, . . . , αn ∈ O

are also in CNF, with α > α1 > · · · > αn. We denote standard addition and multiplication

on O (and hence also on N) by + and ·. We furthermore drop · whenever convenient.

Term Rewriting: We assume familiarity with term rewriting and termination [15]. Let >

be a relation and > its reflexive closure. A function f is monotone if a > b implies

f(. . . , a, . . .) > f(. . . , b, . . .) and weakly monotone if a > b implies f(. . . , a, . . .) > f(. . . , b, . . .).

A function f is simple if f(. . . , a, . . .) > a.

An F-algebra A consists of a carrier set A and an interpretation function fA : Ak → A

for each k-ary function symbol f ∈ F . By [α]A(·) we denote the usual evaluation function of

A according to an assignment α which maps variables to values in A. An F-algebra together

with a well-founded order > on A is called a (well-founded) F-algebra (A, >). Often we

denote (A, >) by A if > is clear from the context. The order > induces a well-founded order

on terms: s >A t if and only if [α]A(s) > [α]A(t) for all assignments α. A TRS R and

an algebra A are compatible if ℓ >A r for all ℓ → r ∈ R. A well-founded algebra (A, >)

is a monotone (weakly monotone / simple) algebra if for every function symbol f ∈ F the

interpretation function fA is monotone (weakly monotone / simple) in all arguments. By O

(N ) we denote well-founded algebras with the carrier O (N) and the standard order >.
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For (direct) termination proofs one typically exploits the following theorem.

◮ Theorem 1.1. A TRS is terminating if and only if it is compatible with a well-founded

monotone algebra. ◭

However, monotonicity can be replaced by weak monotonicity, provided the interpreta-

tion functions are simple. This result is less known.

◮ Theorem 1.2 ([19, Proposition 12]). A TRS is terminating if it is compatible with a

well-founded weakly monotone simple algebra. ◭

2 Ordinal Interpretations

Although standard addition, multiplication and exponentiation on ordinals are in general

only weakly monotone, Theorem 1.2 nevertheless constitutes a way to use interpretations

into the ordinals with these operations in termination proofs.

The next example shows that (fairly small) ordinals add power to linear interpretations.

◮ Example 2.1. Consider the SRS R consisting of the rule a(b(x))→ b(a(a(x))). The linear

ordinal interpretation

aO(x) = x+ 1 bO(x) = x+ ω

is simple and proves termination of R since x + ω + 1 >O x + 1 + 1 + ω = x + ω. Linear

interpretations with coefficients in N are not sufficient. Assuming abstract interpretations

aN (x) = a1x+ a0 and bN (x) = b1x+ b0, we obtain the constraints

a1b1 > b1a1a1 a1b0 + a0 > b1a1a0 + b1a0 + b0

Since aN and bN must be simple (or monotone) a1, b1 > 1. From the first constraint we

conclude a1 = 1, which makes the second one unsatisfiable.

In the rest of this note we consider ordinal interpretations (for SRSs) of the following

shape

fO(x) = x · f ′ + ωd · fd + · · ·+ ω1 · f1 + f0 (1)

where f ′, fd, . . . , f0 ∈ N. Interpretations of the shape (1) will be called linear ordinal in-

terpretations (of degree d). Note that interpretations of the shape (1) are weakly monotone

and simple if f ′ > 1. To show the power of linear ordinal interpretations (with respect to

the derivational complexity) we define the parametrized SRS Rm.

◮ Definition 2.2. For any m ∈ N the SRS Rm consists of the rules

ai(ai+1(x))→ ai+1(ai(ai(x))) ai+1(x)→ x

for each 0 6 i < m.

Note that R0 is empty. We have the following properties.

◮ Lemma 2.3. For any Rm and i 6 m we have ai(a
n

i+1(x))→2n−1 an
i+1(a2n

i
(x)).

Proof. By induction on n. In the base case n = 0 and ai(x)→
0 ai(x). In the step case

ai(a
n+1
i+1 (x))→ ai+1(ai(ai(a

n

i+1(x))))→2n−1 ai+1(ai(a
n

i+1(a2n

i
(x))))

→2n−1 ai+1(an
i+1(a2n

i
(a2n

i
(x)))) = an+1

i+1 (a2n+1

i
(x))

◭
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shape yes time (avg.) timeout (60s)

linear interpretations 19 0.8 1

linear ordinal interpretations (degree 1) 40 2.5 1

linear ordinal interpretations (degree 2) 40 3.8 6

linear ordinal interpretations (degree 3) 38 2.1 21
∑

40 – –

Table 1 Evaluation on 720 SRSs of TPDB 7.0.2

◮ Lemma 2.4. We have a0(a1(· · · (am−1(an
m

(x)))))→∗
Rm

a0
22
·

·

·

2
n

(x) where the tower of 2’s

has height m.

Proof. By induction on m. In the base case m = 0 and the claim trivially holds. In the

step case we have

a0(· · · (am(an
m+1(x))))→2n−1 a0(· · · (an

m+1(a2n

m
(x))))→n a0(· · · (a2n

m
(x)))→∗ a0

22
·

·

·

2
n

(x)

where Lemma 2.3 is applied in the first step and the induction hypothesis in the last step. ◭

As a consequence of Lemma 2.4 we get that dcRm(n) = Ω(22 ·
·

·

2
n

) where the tower of

2’s has height m.

◮ Lemma 2.5. For every Rm with m ∈ N there exists a compatible linear ordinal interpre-

tation of degree m but not of degree m− 1.

Proof. To show the first item we take (ai)O(x) = x+ωi. Then ai(ai+1(x)) >O ai+1(ai(ai(x)))

because of x + ωi+1 + ωi > x + ωi + ωi + ωi+1 = x + ωi+1 and ai+1(x) >O x because of

x + ωi+1 > x for all x ∈ O. The second item follows from the claim that for any linear

ordinal interpretation compatible with Rm we have that at least ωi occurs in (ai)O(x). The

claim is proved by induction on m. ◭

From Lemma 2.5 we infer that allowing larger degrees increases the power of linear ordinal

interpretations and in connection with Lemma 2.4 it shows that linear ordinal interpretations

can prove SRSs terminating whose derivational complexity is multiple exponential.

3 Implementation and Evaluation

We implemented linear ordinal interpretations for SRSs of the shape (1). As illustration, we

abstractly encode the rule a(b(x))→ b(a(a(x))) with d = 1. For the left-hand side we get

x · b′ · a′ + ω1 · b1 · a
′ + b0 · a

′ + ω1 · a1 + a0

which can be written in the canonical form

x · b′ · a′ + ω1 · (b1 · a
′ + a1) + (a1 > 0 ? 0 : b0 · a

′) + a0

where the (· ? · : ·) operator implements if-then-else, i.e., if a1 is greater than zero then the

summand b0 · a
′ vanishes. To determine whether

x · l′ + ω1 · l1 + l0 > x · r′ + ω1 · r1 + r0
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for all values of x, we use the criterion l′ > r′ ∧ (l1 > r1 ∨ (l1 = r1 ∧ l0 > r0)). Finally,

f ′ > 1 ensures that the interpretation fO is simple while the interpretation functions are

then weakly monotone for free. Hence the search for suitable coefficients can be encoded in

non-linear integer arithmetic.

The results1 are given in Table 1 where 4 bits are used to represent the coefficients

f0, . . . , fn, f
′ and 8 bits are allowed for intermediate calculations. The column labeled “yes”

indicates how many systems the given method could show terminating. Times are given in

seconds.

4 Conclusion

We conclude this note with a short discussion on the relationship of linear ordinal inter-

pretations with matrix interpretations [4]. In contrast to the latter the induced ordering

is still total which makes it valuable for ordered completion. Secondly as Lemmata 2.4

and 2.5 show interpretations of the shape (1) allow to prove termination of SRSs whose

derivational complexity is beyond exponential while matrix interpretations are restricted to

an exponential upper bound.

Concerning future work we want to investigate if and how Theorem 1.2 could make

automated termination and complexity tools more powerful.

For matrix interpretations over N (as defined in [4]) the answer is that Theorem 1.2 does

not increase the power of the method. The reason is that the condition for a function to be

simple (Mii > 1 for all 1 6 i 6 d where d is the dimension of the matrices) is a stronger

requirement than monotonicity demanding M11 > 1.

However, if one considers matrix interpretations over O then additional termination

proofs can be obtained (note that any linear ordinal interpretation corresponds to a matrix

interpretation over O).

Another natural question is whether Theorem 1.2 helps arctic interpretations. Because

of monotonicity requirements, direct proofs with arctic matrices are currently limited to

dummy systems (SRSs augmented with constants).

Finally we recall that Theorem 1.2 allows direct proofs with polynomial interpretations

augmented with “max”. This has already been observed in [19, example on p. 13] but seems

to have been forgotten. A similar statement holds for quasi-periodic functions [20].

As future work we want to consider linear ordinal interpretations for TRSs. The problem

for TRSs is that for comparisons of polynomials the absolute positiveness approach [7] might

not apply. To see this note that f1 > g1 and f2 > g2 does not imply x·f1+y ·f2 > y ·g2+x·g1
for all values of x and y if f1, f2, g1, g2 ∈ N and x, y ∈ O. To also cope with such cases we

propose a combination of standard and natural operations on ordinals, as illustrated in the

following example, where ⊕ denotes natural addition on O.

◮ Example 4.1 (Adapted from [17, Example 17]). Consider the TRS R consisting of the

single rule s(f(x, y)) → f(s(y), s(s(x))). The weakly monotone interpretation fO(x, y) =

(x ⊕ y) + ω and sO(x) = x + 1 is simple and induces a strict decrease between left- and

right-hand side:

(x⊕ y) + ω + 1 >O ((y + 1)⊕ (x+ 2)) + ω = (x⊕ y) + 3 + ω = (x⊕ y) + ω

1 Details are available from http://colo6-c703.uibk.ac.at/ttt2/tpoly/.
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Hence R can be oriented by a linear ordinal interpretation. Again, linear interpretations

with coefficients in N are not sufficient. Assuming abstract interpretations fN (x, y) = f1x+

f2y + f0 and sN (x) = s1x+ s0, we get the constraints

s1f1 > f2s1s1 s1f2 > f1s1 s1f0 + s0 > f1s0 + f2(s0 + s1s0) + f0

Since sN and fN must be simple (or monotone) s1, f1, f2 > 1. From the first two constraints

we conclude s1 = 1, such that the third simplifies to f0 + s0 > f0 + (f1 + 2f2)s0. This

contradicts f1 and f2 being positive.

Acknowledgments: We thank Bertram Felgenhauer and the reviewers for useful comments.
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