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Biological aging is accompanied by progressive and irreversible impairments of physiological 

functionality with concomitant increases in morbidity and mortality. Aging is governed by an intricate 

network of various molecular pathways that affect the cell. In many eukaryotic organisms studied so far, 

the powerhouses of the cell, mitochondria, are, on the one hand, mandatory to keep the cell alive due to a 

number of metabolic activities. On the other hand, these organelles were found to play a crucial role in 

processes like apoptosis and aging. While the former is initiated by the release of death-inducing factors 

like cytochrome-c, “apoptosis-inducing factor” (AIF), endonuclease G, and Smac/DIABLO from the 

mitochondria[1], reactive oxygen species (ROS) formed during respiratory activity are among the key 

factors that contribute to cellular aging, according to the “Mitochondrial Theory of Aging”[2]. Therefore, 

mitochondria have been the target of dedicated research in order to understand the cellular pathways these 

organelles effect and how their functionality is regulated[3,4]. 

An important regulatory factor of mitochondrial function is the dynamic morphology transitions of 

these organelles. Spherical mitochondria can be conveniently distributed within a cell and segregated to 

daughter cells. Mitochondrial fusion is essential during embryonic development and biogenesis of sperm 

cells in Drosophila melanogaster[5], and is important for content mixing of mitochondria[6]. Compounds 

such as metabolites, oxygen, proteins, lipids, and mtDNA can be efficiently transferred in the 

mitochondrial compartment. Mitochondrial fusion was shown to enable the complementation of mtDNA 

defects[7,8]. Moreover, the inner membrane potential (∆ΨM) can also be transmitted between fusing 

mitochondria, allowing “electric coupling” and efficient transfer of energy[9]. Groundbreaking insights 

into how mitochondrial morphological transitions are regulated have been gained from research on 

baker’s yeast Saccharomyces cerevisiae[10,11]. In yeast, fission is mainly performed by Dnm1p, Mdv1p, 

and Fis1p[12,13,14,15,16]. Fis1p is located in the outer mitochondrial membrane and interacts with 

Mdv1p. Mdv1p binds to Dnm1p via a WD40 domain. Dnm1p is a large GTPase, which is regarded as the 

“master regulator of mitochondrial fission” in yeast[10]. Homologs of Dnm1p have been identified in 

various organisms, including nematodes[17], flies[18], and mammals[19], suggesting an evolutionarily 

conserved mechanism of mitochondrial division. The molecular machinery executing mitochondrial 

fusion in yeast consists of Fzo1p, Ugo1p, and Mgm1p, in addition to regulatory proteins. Fzo1p is a large 

GTPase situated in the outer mitochondrial membrane, which is needed for tethering and outer-membrane 
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fusion of juxtaposed mitochondria[20,21,22,23,24]. The exact role of the outer membrane protein Ugo1p 

in the fusion process has not been clearly elucidated so far. Mgm1p belongs to the class of large GTPases 

and has been shown to be needed for inner membrane fusion and remodeling of the cristae 

membranes[22,25]. The human orthologue of Mgm1, OPA-1, is known to have different splice variants 

that can be proteolytically processed at different sites to generate different isoforms[26,27,28,29,30,31]. 

Importantly, OPA-1 deficiency and mutation, respectively, are associated with a number of diseases (e.g., 

ADOA [autosomal dominant optic atrophy], ataxia, deafness, multiple sclerosis–like 

disorders)[32,33,34,35]. 

Mitochondrial morphology transitions have been recently shown to affect the aging of fungal model 

systems such as yeast and the filamentous ascomycete Podospora anserina, which has been a convenient 

model organism for the study of aging for more than 50 years[36,37,38]. 

The P. anserina mutant PaDnm1::ble, which is impaired in mitochondrial fission due to the deletion 

of the fission gene PaDnm1, has been characterized in recent studies[39,40]. Interestingly, in contrast to 

most other P. anserina longevity mutants, PaDnm1::ble does not display phenotypic defects (e.g., slow 

growth rate, reduced fertility, sterility). Therefore, the healthy period of the lifetime, the health span, is 

extended in PaDnm1::ble. In PaDnm1::ble, the normally short filamentous mitochondria appear to be 

highly elongated and in some cases interconnected[39]. On standard complex growth medium, 

PaDnm1::ble isolates benefit from a highly increased mean lifespan (244 vs. 22 days wild-type). Factors 

proposed to be responsible for the beneficial effect on aging are (1) a stabilized mitochondrial genome, 

(2) delayed fragmentation of mitochondria, (3) decreased ROS generation, and (4) increased resistance to 

apoptosis stimulation[39,40]. The last point suggests that the activation of recently identified apoptotic 

components like metacaspases in the terminal stage of the P. anserina life[41,42] is also delayed in this 

particular mutant. Significantly, elevated resistance against apoptotic stimulation has also been 

demonstrated in Dnm1/Drp1 mutants of yeast[43], Caernorhabditis elegans[44], D. melanogaster[45,46], 

and mammalian cell lines[47,48,49,50] in which the gene that encodes the corresponding PaDNM1 

orthologue has been deleted or down-regulated. Collectively, the studies show that PaDnm1::ble not only 

displays an extended life span, but also a prolonged health span, underlining that P. anserina is a suitable 

model organism to study molecular pathways leading to healthy aging. 

In addition to apoptosis regulation, the control of mitochondrial dynamics has recently been identified 

to be important for processes that might also play vital roles for aging, autophagy of dysfunctional 

mitochondria (mitophagy), and resistance to ROS, respectively. Mitophagy is regarded as a pathway to 

recycle dysfunctional or damaged mitochondria[51]. Therefore, mitophagy plays an important role for the 

quality control of mitochondria. Recently, mitochondria were found to divide asymmetrically in a Drp1-

dependent manner[52]. One mitochondrion retained its normal membrane potential and was able to fuse 

with other mitochondria, whereas the other had a lowered ∆ΨM and decreased levels of the fusion protein 

OPA-1[52]. This way, the damaged mitochondrion was removed from the mitochondrial population, 

increasing the chance for its degradation by the autophagosome. At present, it is unclear whether this 

intriguing mechanism is decreased during aging and if this could also account for increased levels of 

dysfunctional mitochondria in old cells. 

The C. elegans homologue of OPA-1, EAT-3, was identified as an essential factor for resistance 

against ROS[53]. If in loss-of-function mutants of eat3, the sod2 gene, encoding a mitochondrial 

superoxide dismutase, is down-regulated, phenotypic defects like decreased brood size are enhanced. 

Moreover, the eat3 mutants are also much more sensitive to the addition of a metabolic generator of 

superoxide anions[53]. In a mammalian cell line, it was shown that transient treatment with the ROS 

H2O2 impairs mitochondrial dynamics and that in response to this stress, an up-regulation of various 

fusion and fission genes at the transcript level was found[54]. These intriguing results connect the 

regulation of mitochondrial morphology to the defense against oxidative stress, which might constitute a 

new link in the complex network that regulates aging at the cellular level. 

The identification and characterization of novel cellular pathways that might bear the potential to 

increase the healthy period of life is one of the desired aims of experimental aging research. 

Mitochondrial dynamics regulation has emerged as a candidate for achieving this goal, at least in two 
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fungal model systems, S. cerevisiae and P. anserina. It will certainly be interesting to see whether or not 

these molecular pathways also play similar roles in higher biological systems.  
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