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Euclidean strong coupling expansion of the partition function is applied to lattice Yang-Mills the-

ory at finite temperature, i.e. for lattices with a compactified temporal direction. The expansions

have a finite radius of convergence and thus are valid only forβ < βc, whereβc denotes the near-

est singularity of the free energy on the real axis. The accessible temperature range is thus the

confined regime up to the deconfinement transition. We have calculated the first few orders of

these expansions of the free energy density as well as the screening masses for the gauge groups

SU(2) and SU(3). The resulting free energy series can be summed up and corresponds to a glue-

ball gas of the lowest mass glueballs up to the calculated order. Our result can be used to fix

the lower integration constant for Monte Carlo calculations of the thermodynamic pressure via

the integral method, and shows from first principles that in the confined phase this constant is

indeed exponentially small. Similarly, our results also explain the weak temperature dependence

of glueball screening masses belowTc, as observed in Monte Carlo simulations. Possibilities and

difficulties in extractingβc from the series are discussed.
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Strong coupling expansion for Yang-Mills theory at finite Temperature Jens Langelage

1. Introduction

Contrary to weak coupling expansions, strong coupling expansions are known to be convergent
series with a finite radius of convergence. In the early days of lattice gauge theory they were used to
get analytical results for some physical quantities of interest, such as glueball masses or the energy
density of lattice Yang-Mills theories. These calculations were done at zero temperature, i.e. at
infinite volumeN3

s and temporal extentNt of the lattice.
Here we calculate such series expansions for the free energydensity and screening masses

with an infinite spatial volume and a compactified temporal extensionNt of the lattice. In this way
finite temperature effects are generated, giving us the opportunity to study the physical, temperature
dependent free energy density in the confined phase. The physical deconfinement phase transition
then corresponds to a finite convergence radius of the series, which one may try to estimate from
the behaviour of the coefficients.

2. Free energy density

2.1 Cluster expansion

The partition function of the lattice Yang-Mills theory is given by a functional integration of
the exponentiated Wilson action over the corresponding SU(N) group space,

Z =
∫

DU exp

[

∑
p

β
2N

(

TrU +TrU†−2N
)

]

, (2.1)

β =
2N
g2 .

An expansion in the lattice couplingβ by group charactersχr(U) and a cluster expansion yields
the free energy density [1]

f̃ ≡−
1
Ω

lnZ = −6ln c0(β )−
1
Ω ∑

C=(X
ni
i )

a(C)∏
i

Φ(Xi)
ni . (2.2)

whereΩ = V ·Nt is the lattice volume andc0 is the expansion coefficient of the trivial represen-
tation, which has been factored out. The combinatorial factor a(C) is introduced via a moment-
cumulant-formalism, and equals 1 for clustersC which consist of only one so-called polymerXi.
The quantity in eq. 2.2 is customarily called a free energy, even at zero physical temperature, be-
cause the path integral corresponds to a partition functionif one formally identifiesβ with 1/T.
Here we are interested in a physical temperatureT = 1/(aNt), realized by compactifying the tem-
poral extension of the lattice. The physical free energy is then obtained by subtracting the formal
(Nt = ∞) free energy, which is analogous to a subtraction of the divergent vacuum energy in the
continuum. Thus the physical free energy density reads

f (Nt ,u) = f̃ (Nt ,u)− f̃ (∞,u). (2.3)

The contributing polymersXi have to be objects with a closed surface, since
∫

dUχr(U) = δr,0. (2.4)
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Nt

Figure 1: Graph contributing to the lowest orderf1(Nt ,u) of the expansion of the physical free energy
density at finite temperature.

This means the group integration projects out the trivial representation at each link. To calculate
the group integrals one uses the integration formula

∫

dUχr(UV)χr(WU−1) = χr(VW). (2.5)

For a more detailed introduction to strong coupling calculations we refer to [1].

2.2 Results

The graph contributing to the lowest order of the free energydensity is a tube of lengthNt with
a cross-section of one single plaquette (fig. 1). The contribution of these tubes together with inner
plaquettes is

SU(2): f1(Nt ,u) = −
3
Nt

u4Nt aNt , (2.6)

SU(3): f1(Nt ,u) = −
3
Nt

u4Nt
[

bNt +cNt
]

, (2.7)

whereu, v andw are the expansion parameters of the lowest dimensional representations of the
corresponding gauge groups,

SU(2): u =
β
4

+O(β 2) v =
β 2

24
+O(β 4),

SU(3): u =
β
18

+O(β 2) v =
β 2

432
+O(β 4) w =

β 2

288
+O(β 4), (2.8)

and we have used the abbreviations

a = 1+3v−4u2,

b = 1−3u−6v+8w,

c = 1+3u+6v+8w−18u2. (2.9)

Higher order contributions consist of such tubes with localdecorations of additional plaquettes
either in the fundamental or in higher representations. Forthe interesting cases SU(2) and SU(3),
these contributions up to the calculated orders are

SU(2): f (Nt ,u) = −
3
Nt

u4Nt aNt

[

1+12Ntu
4−

1556
81

Ntu
6 +

(

86N2
t +

35828
243

Nt

)

u8
]

,(2.10)
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SU(3): f (Nt ,u) = −
3
Nt

u4Nt cNt

[

1+12Ntu
4 +42Ntu

5−
115343
2048

Ntu
6−

1095327
2048

Ntu
7
]

−
3
Nt

u4Nt bNt

[

1+12Ntu
4 +30Ntu

5−
17191
256

Ntu
6 +63Ntu

7
]

, (2.11)

which are valid only forNt ≥ 5. For smallerNt there are modifications of these formulae coming
from polymers with cross-sections larger than one plaquette. The complete results forNt = 2 and
3 in SU(2) are

Nt = 2 : f (2,u) = −
3
2

u8
[

1−4u2 +
110
3

u4−
58472
405

u6 +
61529701

65610
u8

]

, (2.12)

Nt = 3 : f (3,u) = − u12
[

1−6u2 +50u4−
37966
135

u6 +
843898

405
u8

]

, (2.13)

2.3 Free energy density as a glueball gas

Recognizing the first orders of the corresponding glueball masses (see [2] and [3]) for SU(2)

m(A++
1 ) = −4ln u+2u2−

98
3

u4−
20984
405

u6−
151496

243
u8, (2.14)

m(E++) = −4ln u+2u2−
26
3

u4 +
13036
405

u6−
28052
243

u8, (2.15)

and SU(3)

m(A++
1 ) = −4ln u−3u+9u2−

27
2

u3−7u4−
297
2

u5 +
858827
10240

u6 +
47641149

71680
u7, (2.16)

m(E++) = −4ln u−3u+9u2−
27
2

u3 +17u4−
153
2

u5 +
1104587
10240

u6 +
29577789

71680
u7, (2.17)

m(T+−
1 ) = −4ln u+3u+

9
2

u3−
98
4

u4 +
33
4

u5−
36771
1280

u6 +
117897

448
u7, (2.18)

one can write

SU(2) : f (Nt ,u) = −
1
Nt

[

e−m(A++
1 )Nt +2e−m(E++)Nt +O(u4)

]

, (2.19)

SU(3) : f (Nt ,u) = −
1
Nt

[

e−m(A++
1 )Nt +2e−m(E++)Nt +3e−m(T+−

1 )Nt +O(u4)
]

, (2.20)

corresponding to a gas of non-interacting glueballs in a hadron-resonance-gas model [4], where

f '−T ∑
i

e−
Ei
T . (2.21)

This is a rather remarkable result. It allows to see from firstprinciples that the pressurep = − f
is exponentially small in the confined phase, and it explainsthe success of the hadron-resonance-
gas model in reproducing the confined phase equation of state. Since the partition function is not
directly measurable in Monte-Carlo simulations, the pressure is usually obtained by the integral
method [5], where the expectation values of derivatives arecomputed and then integrated numeri-
cally,

p
T4

∣

∣

∣

∣

β

β0

= N4
t

∫ β

β0

dβ ′ [S0−ST ] ,
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Figure 2: Left: Plot of the pressure densityp vs. β (L+M = 4 Padés for SU(2) andNt = 3. The plot range
corresponds to the confined phase up to the critical coupling. Right: Plot of p vs. T/Tc for SU(3) from
Monte Carlo data [5].

with S0 = 6P0 andST = 3(Pt +Ps), whereP0 denotes the plaquette expectation value on symmetric
lattices andPt,s are those of space-time and space-space plaquettes withNt < Ns. The lower inte-
gration limit is usually set to zero by hand, arguing with an exponentially small pressure in the low
temperature regime. Our results now justify this assumption from first principles.

2.4 Phase transition

Physical phase transitions limit the radius of convergenceon the realβ -axis, signalled by a
singularity in the full free energy. We model the full function from the series coefficients by Padé
approximants[L,M] with

[L,M](u) ≡
1+a1u+ . . .+aLuL

b0 +b1u+ . . .+bMuM ,

and search for the zeroes of the denominator. The resultingL+M = 2,3,4 Padé tables forNt = 2,3
with the nearest real singularities are shown in table 1.

Zeroesu0 of the Padé approximant which are very close to a singularityoften indicate that the
singularity is superfluous and disappears as the full funtion is approached. Hence, removing the

SU(2): Nt = 2

[L,M] uc βc |uc−u0|

[1,2] 0.4143 1.8865 0.0642
[0,3] 0.4675 2.2201
[2,2] 0.5492 2.8350 0.3419
[1,3] 0.4753 2.2725 1.3038
[0,4] 0.4766 2.2816

SU(2): Nt = 3

[L,M] uc βc |uc−u0|

[1,2] 0.3467 1.5133 0.0219
[0,3] 0.5009 2.4538
[2,2] 0.4622 2.1853 0.2388
[1,3] 0.4347 2.0098 0.1373
[0,4] 0.4617 2.1820

Table 1: Zeroes of the denominator (uc) and the numerator (u0) of the [L,M] Padé approximants and the
corresponding value ofβc.
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singularities with a nearby zero, we obtain estimates for the critical couplings, which are not far
from the Monte Carlo resultsβc = 1.8800(30) for Nt = 2 andβc = 2.1768(30) for Nt = 3 [6].

TheL+M = 4 Padé’s forNt = 3, SU(2), are shown in figure (2). The spread in the curves gives
an estimate of the systematic error of the approximants at that order. The exponential suppression
in the confined phase as well as the onset of the pressure upon approachingTc is reproduced by the
strong coupling series.

3. Screening masses

3.1 Zero temperature

Screening masses are defined by the exponential decay of the spatial correlation of suitable
operators. We used plaquette operators in our calculations. Temporarily assigning separate gauge
couplings to all plaquettes, the correlator can be defined as[2]

C(z) = 〈TrUp1(0) TrUp2(z)〉 = N2 ∂ 2

∂β1∂β2
ln Z(β ,β1β2)

∣

∣

∣

∣

β1,2=β
. (3.1)

At zero temperature the exponential decay is the same as for correlations in the time direction, and
thus determined by the gluball masses, the lowest of which may be extracted as

m= − lim
z→∞

1
z

ln C(z). (3.2)

The leading order graphs for the strong coupling series are shown in fig. 3. This leads to the lowest
order contribution:

C(z) = Au4z = Ae−msz. (3.3)

Thus the leading order for the screening mass is given by

ms = −4ln u(β ). (3.4)

3.2 Finite temperature

The graph contributing to the lowest order of the differencebetween the screening masses at
zero and finite temperature is shown in figure (3). To lowest order the mass difference is

∆ms(Nt) = ms(Nt)−ms(∞) (3.5)

(3.6)

= −
2
3

Ntu
4Nt−6 (3.7)

Thus one can see that the finite temperature effect on the screening mass is very small belowTc, as
is also observed in Monte Carlo simulations (for references, see [7]).
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z

Nt

Figure 3: Graphs contributing to the lowest order of the expansion of the screening mass at vanishing and
finite temperature. The correlation-plaquettes are painted black.

4. Conclusions

We performed explorative studies of strong coupling expansions at finite temperature. Our se-
ries for the free energy density is to the lowest orders consistent with a free glueball gas. This result
justifies the neglect of the lower integration constant in numerical calculations of the equation of
state by the integral method from first principles. Moreover, it gives an explanation for the success
of the hadron-resonance-gas model in reproducing lattice data in the confined phase. By extrap-
olating the power series via Padé approximants and looking for the zeroes of the denominator, it
is possible to get estimates for the critical valueβc of the deconfining phase transition, although
higher order terms seem necessary in order to obtain some accuracy here. Finally, glueball screen-
ing masses show a weak temperature dependence in the confinedphase, consistent with what is
found in numerical simulations.
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