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Lattice calculations at non-zero chemical potential:
The QCD phase diagram
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The so-called sign problem of lattice QCD prohibits Monte Carlo simulations at finite baryon
density by means of importance sampling. Over the last few years, methods have been developed
which are able to circumvent this problem as long as the quark chemical potential is µ/T <∼1.
After a brief review of these methods, their application to a first principles determination of the
QCD phase diagram for small baryon densities is summarised. The location and curvature of the
pseudo-critical line of the quark hardon transition is under control and extrapolations to physical
quark masses and the continuum are feasible in the near future. No definite conclusions can as
yet be drawn regarding the existence of a critical end point, which turns out to be extremely quark
mass and cut-off sensitive. Investigations with different methods on coarse lattices show the light-
mass chiral phase transition to weaken when a chemical potential is switched on. If persisting on
finer lattices, this would imply that there is no chiral critical point or phase transition for physical
QCD. Any critical structure would then be related to physics other than chiral symmetry breaking.

8th Conference Quark Confinement and the Hadron Spectrum
September 1-6, 2008
Mainz. Germany

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ophil@uni-muenster.de


P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
0
1
1

Lattice calculations at non zero chemical potential

1. Introduction

The QCD phase diagram has been the subject of intense research over the last ten years. Once
fully determined, it will locate the regions of different forms of nuclear matter in the parameter
space spanned by temperature T and baryon chemical potential µB. Based on the fundamental
property of asymptotic freedom, one expects at least three different regions: hadronic (low µB,T ),
quark gluon plasma (high T ) and colour-superconducting (high µB, low T ). For chemical potentials
exceeding µB >∼1 GeV, the situation may be more complicated with possible additional phases. [1]

Unfortunately, a quantitative calculation of the phase diagram from first principles is extraor-
dinarily difficult. Since QCD is strongly coupled on scales <∼4 GeV, lattice simulations are the
only tool to eventually give reliable answers, provided that systematic errors are controlled. As
we shall see, at present it is still a long way to achieve this goal. In fact, lattice investigations at
finite density are hampered by the “sign problem”, and only approximate methods are available
that work at small quark densities, µ = µB/3<∼T . [2, 3] This adds further systematic errors to
those known from zero density thermodynamics, like finite volume and discretisation effects. Ac-
cordingly, in this contribution we shall only consider the quark hadron transition at small densities.
The widely accepted expectation is for a finite density first order phase transition terminating in a
critical endpoint, and an analytic crossover behaviour at µ = 0 (cf. Fig. 2 (left)).

2. The sign problem and calculational methods for finite density

Quark fields enter the QCD partition function quadratically and can be integrated out to give

Z =
∫

DU [detM(µ)] f e−Sg[U ] . (2.1)

However, straightforward Monte Carlo simulations at finite quark chemical potential are impossi-
ble. The Dirac operator obeys the hermiticity relation D/(µ)† = γ5D/(−µ∗)γ5, which means that for
colour group SU(3) and real chemical potential, the fermion determinant is complex. This prohibits
its use as a probability weight in Monte Carlo algorithms and is known as the “sign-problem”. The
same relation tells us that for imaginary chemical potentials, µ = iµi, or finite isospin chemical po-
tential, µu =−µd , the fermion determinant is real positive and can be simulated just as for µ = 0.
There are a number of methods that circumvent the sign problem, rather than solving it. All of
these introduce some degree of approximation. However, the systematic errors are rather different,
thus allowing for powerful cross-checks. Reviews specialised on the technical aspects can be found
in Refs. [2, 3].

2.1 Reweighting methods

An exact mathematical fix to the sampling problem is to rewrite the partition function as

Z =
∫

DU [detM(0)] f
[

detM(µ)
detM(0)

] f

e−Sg[U ] =

〈[
detM(µ)
detM(0)

] f
〉

µ=0

∼ e−const.V , (2.2)

i.e. generate the ensemble with the real positive determinant at µ = 0 and correct by multiplying
everything with a reweighting factor. However, Monte Carlo simulations by importance sampling
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Lattice calculations at non zero chemical potential

only use a few configurations where the integrand is peaked to estimate the integral, and the sam-
pling and target distributions will have their peaks at different positions in configuration space.
This is not a problem as long as there is sufficient overlap between the distributions, but the overlap
will get worse as µ/T gets larger. In order to increase the overlap when studying phase transitions,
one may reweight in both temperature and chemical potential such as to stay on the critical line [4].
Another problem of reweighting methods is that because of the fluctuating sign in the reweight-
ing factor, the signal is exponentially suppressed with volume, making finite size scaling analyses
prohibitively expensive.

2.2 Taylor expansion in µ/T

An alternative way to gain insight into the region of small density is to Taylor-expand observ-
ables around zero density,

〈O〉(µ) = 〈O〉(0)+ ∑
k=1

ok

(
µ

πT

)2k
. (2.3)

The coefficients ok are derivatives of the observable evaluated at zero density and can be calcu-
lated without sign problem. Note that only even powers of µ are appearing for observables without
explicit µ-dependence, due to the CP symmetry of QCD. This method is conceptually and compu-
tationally safe. Its drawback is that one has to compute the coefficients one by one and does not
have much control over the convergence until several coefficients are known. Moreover, the coeffi-
cients involve derivatives of the fermion determinant, which are increasingly complex expressions
with delicate numerical cancellations in higher orders.

2.3 Imaginary chemical potential and analytic continuation

Here one employs the positivity of the determinant at imaginary µ = iµi to simulate observ-
ables in a technically safe and straightforward way without further approximations. But in order to
get back to real µ , one has to approximate the full observable by a fit to truncated Taylor series,

〈O〉(µi) = ∑
k

ok

(
µi

πT

)2k
. (2.4)

This allows some control over the systematics, i.e. a check whether such a series converges or
not. If a fit by a few terms is possible, analytic continuation is straightforward. The disadvantage
of this method is that it is restricted to |µB|<∼500 MeV because of unphysical Z(3)-transitions
in the imaginary direction. Also, convergence properties might be quite different in the real and
imaginary directions for some observables.

2.4 The critical line Tc(µ)

The first task when studying the QCD phase diagram is to identify the phase boundary, i.e. the
critical coupling and thus Tc(µ). This has been done for a variety of flavours and quark masses
using different methods. For a quantitative comparison one needs data at one fixed parameter set.
Such a comparison is shown for the critical coupling in Fig. 1 (left), for N f = 4 staggered quarks
with the same action and quark mass m/T = 0.2 [5]. (For that quark mass the transition is first
order along the entire curve). One observes quantitative agreement up to µ/T ≈ 1.3, after which
the different results scatter. Thus, all methods appear to be reliable for µ/T <∼1, or µB <∼500 MeV.
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Azcoiti et al., 83

Fodor, Katz, 63

de Forcrand, Kratochvila, 63

de Forcrand, Kratochvila, 63

N f am t2 β -Function Method Ref.
2 0.1 0.69(35) non-pert. Taylor+Rew. [6]

0.032 0.500(54) 2-loop pert. Imag. [7]
3 0.1 0.247(59) non-pert. Taylor+Rew. [6]

0.026 0.667(6) 2-loop pert. Imag. [8]
0.005 1.13(45) non-pert. Taylor+Rew. [6]

4 0.05 1.86(2) 2-loop pert. Imag. [9]
2+1 0.0092,0.25 0.284(9) non-pert. Rew. [10]

Figure 1: Left: Comparison of different methods to compute the critical couplings [5]. Right: Coefficient t2
from the Taylor expansion of the transition line, Eq. (2.5), extracted on coarse lattices, Nt = 4.

The case of physical quark masses, after conversion to continuum units, is shown in Fig. 2
(left) [10]. One observes that Tc is decreasing only very slowly with µ . This is consistent with a
description by a series in (µ/πT )2 with coefficients of order one,

Tc(µ)
Tc(0)

= 1− t2(N f ,m f )
(

µ

πT

)2
+O

((
µ

πT

)4
)

. (2.5)

The leading coefficients for various cases have been collected from the literature [3] and are re-
produced in Fig. 1. The curvature grows with N f , which is consistent with ∼ N f /Nc behaviour
found in large Nc expansions [11]. Subleading coefficients are emerging at present but not sta-
tistically significant yet. Note that continuum conversions relying on the two-loop beta function
are certainly not reliable for these coarse lattices, while fits to non-perturbative beta functions tend
to increase the curvature, which otherwise falls significantly short of that of the experimentally
observed freeze-out curve, t2 ≈ 2.5 [12].

3. Signals for a critical point

All calculational methods mentioned here also give signals for criticality. However, estab-
lishing those unambiguously is a much harder task and the comparison between the methods is
difficult because different groups work with different actions and parameter sets. A simulation
using reweighting methods was performed for quark masses tuned to give the ratios mπ/mρ ≈
0.19,mπ/mK ≈ 0.27, which are close to their physical values, on Nt = 4 lattices. The results put a
critical point at µE

B ∼ 360 MeV [10], Fig. 2 (left), supporting the standard expected scenario for the
QCD phase diagram. However, concerns have been raised about whether this critical point might
be in the region where the reweighting method starts to be unreliable [13], hence a check of this
result by other methods is desirable.

In principle the determination of a critical point is also possible via the Taylor expansion,
where a true phase transition will be signalled by a finite radius of convergence for the pressure se-
ries about µ = 0 as the volume is increased. The critical endpoint would thus signal the breakdown
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Figure 2: Left: Phase diagram from reweighting methods for physical quark masses on Nt = 4 [10]. Right:
Estimated radius of convergence for the pressure on Nt = 4 [15].

of the Taylor series. One possible definition is

p
T 4 = ∑

k=1
ck

(
µ

πT

)2k
,

µE

TE
= lim

k→∞

(∣∣∣∣ ck

ck+1

∣∣∣∣)1/2

, (3.1)

where the radius of convergence is given by the asymptotic ratio of Taylor coefficients. A critical
endpoint for the N f = 2 theory, based on this approach was reported in [32] for bare quark mass
m/Tc = 0.1. Taking the measured first four coefficients for the asymptotic behaviour of the series,
the estimate for the location of the critical point is µE

B /TE = 1.1± 0.2 at TE/Tc(µ = 0) = 0.95.
Similarly, Fig. 2 (right) shows estimates for the N f = 2 + 1 theory with quark masses near phys-
ical, based on three consecutive coefficients [15]. While the calculations of Taylor coefficients at
zero density are safe, the extraction of the critical signal might be problematic. There are other
definitions for the radius of convergence, which all agree asymptotically but not when only a few
coefficients are at hand. Also, it is known from the study of spin models that in some cases this
method works remarkably well, but in others several ten coefficients are needed before asymptotic
behaviour sets in [16].

4. The chiral critical line and surface

Rather than trying to tune the quark masses as close to their physical values as possible and
switch on µ , a more general strategy is to explore the occurence and nature of phase transitions in
the extended parameter space {mu,d ,ms,µ,T}. Understanding this will also shed light on the mech-
anisms and interplay of chiral symmetry breaking and confinement. The qualitative situation at zero
density is shown in Fig. 3 (left). In the limits of zero and infinite quark masses (lower left and upper
right corners), order parameters corresponding to the breaking of a global symmetry can be defined,
and one numerically finds first order phase transitions at small and large quark masses at some finite
temperatures Tc(m). On the other hand, one observes an analytic crossover at intermediate quark
masses, with second order boundary lines separating these regions. A convenient observable to
study the order of a phase transition is the Binder cumulant B4(X)≡ 〈(X −〈X〉)4〉/〈(X −〈X〉)2〉2,
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Figure 3: Left: Nature of the QCD phase transition as a function of quark masses, schematically. Right:
The chiral critical line on an Nt = 4 lattice with staggered fermions [8].

with X = ψ̄ψ . It is evaluated at the phase boundary, i.e. the temperature is tuned to its critical
value for each quark mass combination. In the thermodynamic limit B4 behaves as a step function,
assuming the value 1 in a first order region and 3 in a crossover region, respectively. At a second
order transition, B4 assumes a critical value dictated by the universality class of the transition. On
finite volumes the step function is smeared out to an analytic function whose approach to the the-
modynamic limit has to be studied in a finite size scaling analysis. Both lines have been shown to
belong to the Z(2) universality class of the 3d Ising model [17, 18, 19], for which B4 = 1.604.

4.1 The chiral critical line for µ = 0

The boundary line for small quark masses is usually called the chiral critical line, as it bounds
the quark mass region with a first order chiral phase transition. Starting from the case with three
degenerate flavours, this line has been mapped out in [8], as shown in Fig. 3 (right). Indeed, the
physical point is on the crossover side of the line, implying an analytic quark hadron transition for
physical quark masses at zero density, as expected. The same conclusion is reached when analysing
the nature of the transition at the physical point by finite size scaling and on a sequence of finer and
finer lattices, such that a continuum extrapolation is feasible [20].

4.2 N f = 2 at zero density

The situation is less clear for the chiral phase transition in the theory with two degenerate
quarks in the upper left of Fig. 3 (left). The “derivations” of the generally expected QCD phase
diagram [21] start with the assumption that the chiral transition for N f = 2 is second order and
thus in the O(4) universality class, which implies the existence of a tricritical point at some strange
quark mass mtric

s . An extrapolation of the critical line in Fig. 3 (right) with the known tricritical
(mean field) exponents would put it at mtric

s ∼ 2.8Tc. (This is on a coarse Nt = 4 lattice and quark
masses receive large renormalisations on the way to the continuum.)

However, the nature of the N f = 2 chiral transition is far from being settled. Wilson fermions
appear to see O(4) scaling [22], while staggered actions are inconsistent with O(4) and O(2) (for
the discretised theory) [23]. A recent finite size scaling analysis using staggered fermions with
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Figure 4: Extension of the chiral critical line to a critical surface for finite chemical potential. The expected
QCD phase diagram is obtained for the case of positive curvature at zero density (left), while for negative
curvature there is no chiral critical point (right).

unprecedented lattice sizes was performed in [24]. Again, these data appear inconsistent with
O(4)/O(2), and the authors conclude a first order transition to be more likely. A different conclusion
was reached in [25], in which χQCD was investigated numerically. This is a staggered action
modified by an irrelevant term such as to allow simulations in the chiral limit. The authors find
their data compatible with those of an O(2) spin model on moderate to small volumes, which
would indicate large finite volume effects in the other simulations. Finally, from universality of
chiral models it is known that the order of the chiral transition is related to the strength of the UA(1)
anomaly [26]. In a model constructed to have the right symmetry with a tunable anomaly strength,
it has recently been demonstrated non-perturbatively that both scenarios are possible, with a strong
anomaly required for the chiral phase transition to be second order [27]. Should the chiral transition
turn out to be first order, the likely modification of Fig. 3 (left) would be the disappearance of the
tricritical point, with the chiral critical line intersecting the N f = 2 axis at some finite mu,d and
being Z(2) all the way.

4.3 The chiral critical surface

When a chemical potential is switched on, the chiral critical line will sweep out a surface, as
shown in Fig. 4. According to standard expectations [21], for small but non-zero mu,d , the critical
line should continuously shift with µ to larger quark masses until it passes through the physical
point at µE , corresponding to the endpoint of the QCD phase diagram. This is depicted in Fig. 4
(left), where the critical point is part of the chiral critical surface. Note, however, that there is no a
priori reason for this. In principle it is also possible for the chiral critical surface to bend towards
smaller quark masses, cf. Fig. 4 (right), in which case there would be no chiral critical point or
phase transition at moderate densities. For definiteness, let us specialise to the theory with three
degenerate quarks, which lives on the diagonal in the quark mass plane. Similar to the critical
temperature, the critical quark mass corresponding to the point on the chiral critical line can be
expanded as as function of chemical potential,

mc(µ)
mc(0)

= 1+ ∑
k=1

ck

(
µ

πT

)2k
. (4.1)
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Figure 5: Curvature (in µ) of the Binder cumulant on the chiral critical line for N f = 3 (left) [28] and
N f = 2+1 with physical strange quark mass (right).

A strategy to learn about the chiral critical surface is now to tune the quark mass to mc(0) and
evaluate the leading coefficients of this expansion. In particular, the sign of c1 will tell us which of
the scenarios in Fig. 4 is realised.

The curvature of the critical surface in lattice units is directly related to the behaviour of the
Binder cumulant via the chain rule,

damc

d(aµ)2 =− ∂B4

∂ (aµ)2

(
∂B4

∂am

)−1

. (4.2)

While the second factor is sizeable and easy to evaluate in a simulation, the µ-dependence of the
cumulant is excessively weak and requires enormous statistics to extract. In order to guard against
systematic errors, this derivative has been evaluated in two independent ways. One is to fit the cor-
responding Taylor series of B4 in powers of µ/T to data generated at imaginary chemical potential
[8, 28], the other to compute the derivative directly and without fitting via the finite difference
quotient [28]

∂B4

∂ (aµ)2 = lim
(aµ)2→0

B4(aµ)−B4(0)
(aµ)2 . (4.3)

Because the required shift in the couplings is very small, it is adequate and safe to use the orig-
inal Monte Carlo ensemble for amc

0,µ = 0 and reweight the results by the standard Ferrenberg-
Swendsen method. Moreover, by reweighting to imaginary µ the reweighting factors remain real
positive and close to 1. The results of these two procedures based on 20 and 5 million trajectories
on 83×4, respectively, is shown in Fig. 5 (left). The error band represents the first coefficient from
fits to imaginary µ data, while the data points represent the finite difference quotient extrapolated
to zero. Both results are consistent, and the slope permits and extraction of the subleading µ4 coef-
ficient, while the combination of all data also constrains the sign of the µ6 term. After continuum
conversion the result for N f = 3 is [28]

mc(µ)
mc(0)

= 1−3.3(3)
(

µ

πT

)2
−47(20)

(
µ

πT

)4
− . . . . (4.4)

The same behaviour is found for non-degenerate quark masses. Tuning to the physical strange
quark mass on the critical line, i.e. to the point just left of the physical point in Fig. 3 (right), one

8
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of the first order transition region on finer lattices.

observes similar behaviour as shown in Fig. 5 (right), with a leading coefficient of about -24(11).
Hence, on coarse Nt = 4 lattices, the region of chiral phase transitions shrinks as a real chemical
potential is turned on, and there is no chiral critical point for µB <∼600 MeV.

4.4 Towards the continuum

The largest uncertainty in these calculations by far is due to the coarse lattice spacing a∼ 0.3
fm on Nt = 4 lattices. It is thus necessary to repeat all those studies on finer lattices. First steps
in this direction are being taken with Nt = 6,a ∼ 0.2 fm. Fig. 6 (left) shows a comparison of the
critical quark mass for µ = 0 in the N f = 3 theory extracted for these cases. It is observed to
dramatically shrink with decreasing lattice spacing [30]. The same observation is made for non-
degenerate quark masses [31] and similarly for N f = 2 [?]. Thus, in the continuum the gap between
the physical point and the chiral critical line is much wider than on coarse lattices, as indicated in
Fig. 6 (right). This demonstrates that on current lattices cut-off effects are much larger than finite
density effects, and thus the results obtained so far should not yet be taken for continuum physics.
Nevertheless, cut-off effects between Nt = 4,6 appear to make a chiral critical point for moderate
chemical potentials more unlikely, as it requires a very large positive curvature of the critical surface
on the finer lattice.

5. Conclusions

The last few years have seen a lot of progress towards reliable lattice calculations for small
quark chemical potentials µ/T <∼1. Finite density effects on the equation of state, screening masses
and the critical temperature Tc(µ) are under control and continuum extrapolations for those quan-
tities are feasible. A much more difficult task is the establishment of the order and nature of the
quark hadron transition. On coarse lattices the chiral phase transition gets weakened with chem-
ical potential, hence there is no chiral critical endpoint or phase transition for moderate densities
µB <∼600 MeV. This does not exclude a critical point or phase transition that is not connected to
chiral physics. Finer lattices are required to clarify these questions.
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