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1. Introduction

Rolf Hagedorn came up with the idea that the hadron mass spectrum should follow an exponen-
tial law in the 1960’s [1]. Resonances that follow that mass spectrum are known as Hagedorn states
and they become important close to the QCD critical temperature while they are exponentially
suppressed at lower temperatures. Their large masses open up the phase space for multi-particle
decays. A recent analysis of the experimental evidence for the Hagedorn spectrum can be found
in [2]. Moreover, thoughts on observing Hagedorn states in experiments are given in [3] and their
usage as a thermostat in [4]. Depending on the intrinsic parameters, Hagedorn states can also be
used to trigger the order of the phase transition [5, 6].

Bound and resonance states are due to strong interactions and all of them (including not-
yet discovered ones) must be included in order to simulate all the attractive hadronic interactions
[7]. Likewise, repulsive interactions in principle must also be included and that can be done,
for example, through volume corrections [7]. According to Hagedorn, the full spectrum is then
obtained by considering clusters that are formed of clusters [1]. Thus, Hagedorn proposed [1] that
the density of hadronic states with massm> 2 GeV should be

A

[m2+(m0)2]
5
4

e
m

TH (1.1)

in order to obtain the spectra fromp− p andπ − p scatterings. Above,A is a constant,m0 = 0.5
GeV, andTH is the Hagedorn temperature. At that time resonances were only known up to∆(1232),
which gave a Hagedorn temperature ofTH ≈ 160 MeV.

Recently, we have found that Hagedorn states can account forquick dynamical chemical equi-
libration times within the hadron gas phase [8, 9, 10, 11, 12]. Also, Hagedorn states have been
shown to contribute to the physical description of a hadron gas close toTc. The inclusion of Hage-
dorn states leads to a lowη/s in the hadron gas phase [13, 14], which nears the supergravity bound
η/s= 1/(4π) [15]. Calculations of the trace anomaly including Hagedornstates also fits recent
lattice results well and correctly describe the minimum of the speed of sound squared,c2

s, near the
phase transition found on the lattice [13]. Furthermore, ithas been shown [16, 17] that Hagedorn
states also play a (small) role in thermal model fits of hadronyield particle ratios.

2. Strangeness Enhancement

(Anti-)strangeness enhancement was first observed, primarily in anti-hyperons, multi-strange
baryons, and kaons, at CERN-SPS energies in comparison to p+p data. Originally, it was consid-
ered a signature for QGP because using binary strangeness production/exchange reactions

π + p̄ ↔ K̄+ Λ̄

K+ p̄ ↔ π + Λ̄ (2.1)

chemical equilibrium could not be reached within the hadrongas phase [18]. The estimated time
scale of chemical equilibration for binary reactions within a hadron gas model wasτ ≈ 1000 fm/c
[18], which is significantly longer than the estimated lifetime of a hadronic fireball of about 10 fm/c.
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The abundancies after a typical hadron lifetime were somewhere between 20-100 times lower than
the calculated chemical equilibrium values [18].

Looking into the quark gluon plasma phase, the quarks and gluons can efficiently produce
strange particles. The production ofss̄ quarks at the lowest order of perturbation QCD is through
the collision of 2 gluons or the annihilation of a light anti-light quark pair. Invariant matrix elements
can be calculated, which leads to the corresponding cross-sections. Including these cross sections
in rate equations, it was found that reactions involving gluons in the deconfined phase could more
quickly produce strange quarks. Therefore, it was conjectured that strangeness enhancement was a
signal for deconfinement because gluon fusion would be the primary contributor to the abundance
of strange particles following hadronization and rescattering of strange quarks [18].

At the time it was assumed that multi-mesonic collisions would not play a significant role in
strangeness production because their cross section would be too small. However, Rapp and Shuryak
showed [19] that for SPS energies it is possible for multi-pions to interact and form anti-baryons

p̄+N ↔ nπ, (2.2)

which has a cross-section ofσp̄N ≈ 50 mb. Using rate equations, one finds that the chemical
equilibration time is proportional to the inverse of the thermal reaction rate

τp̄ =
1

〈〈σp̄+N↔nπ vp̄N〉〉ρN
≈ 1−3 f m/c (2.3)

wherevp̄N ≈ 0.5c and the baryonic density isρN ≈ ρ0 to 2ρ0, which is typical for SPS. Greiner and
Leupold [20] extended this idea to anti-hyperons

Ȳ+N ↔ nπ +nYK, (2.4)

which also gives time scales on the order of Eq. (2.3). Therefore, due to multi-mesonic collisions,
the chemical equilibration time scales are short enough to account for chemical equilibration within
a cooling hadronic fireball at SPS energies.

A problem arises if we use the same multi-mesonic reactions in the hadron gas phase at RHIC
temperatures where experiments show that the particle abundances reach chemical equilibration
close to the phase transition [21]. At RHIC, assumingT = 170 MeV, we use Eq. (2.3) whereσ ≈
30 mb andρeq

B = ρeq
B̄

≈ 0.04 fm−3 (Note that at RHIC there is approximately an equal number of
baryons and anti-baryons [22]. Additionally, the density can be calculated within a grand canonical
model.), and find that the equilibrium rate ofΩ is τΩ ≈ 10 fm

c , which is considerably longer than
the fireball’s lifetime ofτ < 4 fm

c in the hadronic stage. Moreover,τΩ ≈ 10 fm
c was also obtained

in [23] using the fluctuation-dissipation theorem and Ref. [24] found thrice lower populations than
experiments for various anti-hyperons in the 5% most central Au+Au collisions (also see [25]).
These discrepancies led to the suggestion that the hadrons are “born" into equilibrium i.e. the
system is already in a chemically frozen out state at the end of the phase transition [26, 27].

2.1 Model

Hagedorn states are massive resonances that have large decay widths, which can open up
the phase space to multi-particle collisions. Because Hagedorn states decay so quickly they can

3



P
o
S
(
B
o
r
m
i
o
 
2
0
1
1
)
0
3
3

Hagedorn States and Thermalization Carsten Greiner

catalyse quick reactions between hadrons that would otherwise have smaller cross-sections and
take longer to reach chemical equilibrium. These reactionsfollow the general form

nπ ↔ HS↔ nπ +XX̄ (2.5)

whereXX̄ = pp̄, KK̄, ΛΛ̄, or ΩΩ̄. Our idea is that these very massive Hagedorn states exist and
are so large that they decay almost immediately into multiple pions andXX̄ pairs. We note that in
this work we consider only non-strange, mesonic Hagedorn states.

The exponential in Eq. (1.1) arises from Hagedorn’s original idea that there is an exponentially
growing mass spectrum. Thus, asTH is approached, Hagedorn states become increasingly more
relevant and heavier resonances “appear". The factor in front of the exponential may appear in
various forms [2, 4]. While the choice in this factor can vary, it was found in [2] that the present
form gives lower values ofTH , which more closely match the predicted lattice critical temperature
[28, 29, 30]. Further discussion on the parameters can be found in [31, 32].

Returning to Eq. (1.1), we assume thatTH =Tc, and then we consider the two different different
lattice results forTc: Tc = 196 MeV [28, 30] (Hot Quarks collaboration), which uses an almost
physical pion mass, andTc = 176 MeV [29] (BMW collaboration). Note that there have been
updated lattice results for the lower temperature region [33] that we have yet to publish results on
but has been discussed in [32]. Furthermore, we need to take into account the repulsive interactions
and, therefore, we use the volume corrections in [13, 34, 35].

In order to find the maximum Hagedorn state massM and the “degeneracy" A, we fit our
model to the thermodynamic properties of the lattice. In theRBC-Bielefeld collaboration the ther-
modynamical properties are derived from the quantityε − 3p, the so-called interaction measure,
which is what we fit in order to obtain the parameters for the Hagedorn states. Thus, we obtain
TH = 196 MeV,A= 0.5GeV3/2, M = 12 GeV, andB= (340MeV)4. The fit for the trace anomaly
Θ/T4 is shown in Fig. 1. We also show the fit for the entropy density in Fig. 2. Both fits are within
the lattice error bars and mimic the behavior of the lattice results. As discussed in [13], a hadron
resonance gas model with Hagedorn states is able to fit the lattice data whereas a hadron resonance
gas without Hagedorn states (but with excluded volume corrections) misses the general behavior
displayed by the lattice data at high temperatures. Here we follow Hagedorn’s idea [7] and do not
neglect the repulsive interactions between the hadrons.

BMW obtains the thermodynamical properties differently than RBC-Bielefeld and, therefore,
we fit only the energy density as shown in Fig. 3. From that we obtain TH = 176 MeV, A =

0.1GeV3/2, M = 12 GeV, andB= (300MeV)4. We also show a comparison to the entropy density
in Fig. 4 Our results with the inclusion of Hagedorn states are able to match lattice data near the
critical temperature but do not match as well at lower temperatures in Fig. 1 and Fig. 2. For a
detailed discussion of hadron gas models and their ability to match lattice data see [37].

2.1.1 Master Equations

In order to describe the dynamics of Eq. (2.5) we use master equations. They include both
the forward and back reactions, which ensures that detailedbalance is mantained, and the state
of chemical equilibrium is a fixed point of the rate equations. Additionally, master equations are
naturally suited to describe multi-particle reactions whereas the transport equations used in UrQMD
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Figure 1: Comparison between the trace anomaly
using a hadron resonance gas model with Hagedorn
states [8] (solid black line) and without (black dashed
line) [36]. Lattice data points for thep4 action with
Nτ = 6 [28] are also shown.
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Figure 2: Comparison of entropy density to lattice
QCD results from [28, 30] whereTc = 196 MeV. HS
is in reference to our model including Hagedorn states.
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Figure 3: Comparison of energy density to lattice
QCD results from [29] whereTc = 176 MeV. HS is
in reference to our model including Hagedorn states.
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Figure 4: Comparison of entropy density to lattice
QCD results from [29] whereTc = 176 MeV. HS is in
reference to our model including Hagedorn states.

[38] are better suited to describe the dynamics of binary collisions. Furthermore, the Hagedorn
spectrum is discretized by using mass bins of 100 MeV. Each bin is described by its own rate
equation.

The rate equations for the Hagedorn resonancesNi, pionsNπ , and theXX̄ pair NXX̄

Ṅi = Γi,π

[

Neq
i ∑

n
Bi,n

(

Nπ

Neq
π

)n

−Ni

]

+Γi,XX̄



Neq
i

(

Nπ

Neq
π

)〈ni,x〉
(

NXX̄

Neq
XX̄

)2

−Ni





Ṅπ = ∑
i

Γi,π

[

Ni〈ni〉−Neq
i ∑

n
Bi,nn

(

Nπ

Neq
π

)n]

+∑
i

Γi,XX̄〈ni,x〉



Ni −Neq
i

(

Nπ

Neq
π

)〈ni,x〉
(

NXX̄

Neq
XX̄

)2



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ṄXX̄ = ∑
i

Γi,XX̄



Ni −Neq
i

(

Nπ

Neq
π

)〈ni,x〉
(

NXX̄

Neq
XX̄

)2


 . (2.6)

The decay widths for theith resonance areΓi,π (for the decay into multiple pions) andΓi,XX̄ (for
the decay into multiple pions and aXX̄ pair), the branching ratio isBi,n (clearly ∑nBi,n = 1), and
the average number of pions that each resonance will decay into is 〈ni〉. The equilibrium values
Neq are both temperature and chemical potential dependent. However, here we setµb = 0, which
is a good approximation for collisions at large

√
s.

2.1.2 Branching Ratios

The branching ratio,Bi,n, is the probability that theith Hagedorn state will decay inton pions.
Since we are dealing with probabilities, then∑n Bi,n = 1 must always hold. We have the condition
that each Hagedorn resonance must decay into at least 2 pions. Thus, our average number of pions
must be normalized to ensure thatn ≥ 2 and∑nBi,n = 1. The branching ratios for the reaction
HS↔ nπ are assuemd to follow the Gaussian distribution

Bi,n ≈
1

σi
√

2π
e
− (n−〈ni 〉)2

2σ2
i , (2.7)

which has its peak centered at〈ni〉 and the width of the distribution isσ2.
Assuming a statistical, microcanonical branching for the decay, we can take a linear fit to

the average number of pions in Ref. [39] to find〈nπ〉 such that〈ni〉 = 0.9+1.2 mi
mp

is the average
pion number that each Hagedorn state decays into wheremp is the mass of the proton. In the
microcanonical model the volume isV = Mi/ε whereε is the mean energy density of a Hagedorn
state (taken asε = 0.5GeV

f m3 ). Further discussions regarding this can be found in [39, 40]. The width

of the distrubtion isσ2
i = (0.5 mi

mp
)2, which roughly matches the canonical description in [41]. We

have the condition that each Hagedorn resonance must decay into at least 2 pions. Thus, after we
normalize for the cutoffn≥ 2, we have〈ni〉 ≈ 3−34 andσ2

i ≈ 0.8−510. For the average number
of pions when aXX̄ pair is present, we again refer to the micro-canonical modelin [39, 40]

〈ni,x〉=
(

2.7
1.9

)

(0.3+0.4mi)≈ 2−7. (2.8)

wheremi is in GeV. In this paper we do not consider a distribution but rather only the average
number of pions when aXX̄ pair is present. We assume that〈ni,x〉= 〈ni,p〉= 〈ni,k〉= 〈ni,Λ〉= 〈ni,Ω〉
for when a proton anti-proton pair, kaon anti-kaon pair,ΛΛ̄, or ΩΩ̄ pair is present.

2.1.3 Decay Width

We used a linear fit for the decay width considering only the light, non-strange, mesonic
resonances up toM = 2 GeV given in [43] and excludef0(600) because it is an extreme outlier

Γi[GeV] = 0.15mi [GeV]−0.03, (2.9)

which ranges fromΓi = 250 MeV to 1800 MeV. The total decay width has been separated into two
parts in Eq. (2.6): one for the reactionsHS↔ nπ, Γi,π , and one for the reactionHS↔ nπ +XX̄,

6
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Γi,XX̄ , wherebyΓi = Γi,π +Γi,XX̄ , which ensures that Eqs. (2.6) are zero at equilibrium. Then,
the relative decay widthΓi,XX̄ modeled after the decay width in reference Ref. [39] is the average
number ofXX̄ in the system〈X〉 multiplied by the total decay widthΓi ,

Γi,XX̄ = 〈X〉 Γi. (2.10)

That means thatΓi,π is then

Γi,π = (1−〈X〉)Γi. (2.11)

The 〈X〉 taken from a micro-canonical model for the protons and kaons[40, 39] and our own
canonical model for the lambdas and omegas [44] such that

p = 0.058mi −0.10≈ 0.01−0.6

K+ = 0.075mi +0.047≈ 0.2−0.95 (2.12)

and the decay widths ofΛ andΩ areΓi,ΛΛ̄ = 3−250 MeV andΓi,ΩΩ̄ = 0.01−4 MeV (see [44]).

2.1.4 Initial Conditions

The equilibrium values are found using a statistical model [36] with the light and strange
particles from the PDG [43] and also including effective particles from resonances. Throughout
this work our initial conditions att0 (the point of the phase transition into the hadron gas phase)are

α ≡ Nπ

Neq
π
(t0) , βi ≡

Ni

Neq
i
(t0) ,andφ ≡ NXX̄

Neq
XX̄

(t0) , (2.13)

which are chosen by holding the contribution to the total entropy from the Hagedorn states and
pions constant, i.e.,

sHad(T0,α)V(t0)+sHS(T0,βi)V(t0) = sHad+HS(T0)V(t0) = const. (2.14)

and the corresponding initial condition configurations areshown in Tab. 1.sHad(T0,α) is the en-
tropy density at the initial temperature, i.e., the critical temperature multiplied by our choice inα .
Because the hadron gas is dominated by pions we can assume that α represents the initial fraction
of pions in equilibrium.sHS(T0,βi) represents the entropy contribution from the Hagedorn states at
Tc multiplied by the initial fraction of Hagedorn states in equilibrium. We holdα as a constant and
then find the appropriateβi .

2.1.5 Expansion

In order to include the cooling of the fireball we need to find a relationship between the tem-
perature and the time, i.e.,T(t). Thus, we apply a Bjorken expansion where the total entropy is
held constant

const. = s(T)V(t)∼ Sπ

Nπ

∫

dNπ

dy
dy. (2.15)

wheres(T) is the entropy density of the hadron gas with volume corrections. The total number of
pions in the 5% most central collisions∑i Nπ i =

∫ 0.5
−0.5

dNπ
dy dy= 874 can be found from experimental

results in [45]. TheSπ/Nπ in our model is≈ 6 (see [46]).
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α = λπ(t0) βi = λi(t0) φ = λXX̄(t0)

IC1 1 1 0
IC2 1 1 0.5
IC3 1.1 0.5 0
IC4 0.95 1.2 0

Table 1: Initial condition configurations, recalling Eq. (2.13).

The effective volume at mid-rapidity can be parametrized asa function of time. We do this by
using a Bjorken expansion and including accelerating radial flow

V(t) = π ct

(

r0+v0(t − t0)+
1
2

a0(t − t0)
2
)2

(2.16)

where the initial radius isr0(t0) = 7.1 fm. ForTH = 196 we havet(196)
0 ≈ 2 f m/c and forTH = 176

we allow for a longer expansion before the hadron gas phase isreached and, thus, calculate the
appropriatet(176)

0 from the expansion starting atTH = 196, which ist(176)
0 ≈ 4 f m/c. The T(t)

relation has almost no effect on the results (see [9]). Therefore, we choosev0/c= 0.5 anda0/c2 =

0.025fm−1 for the remainder of this work.

2.1.6 Effective Numbers

Because the volume expansion depends on the entropy according to Eq. (2.15) and the Hage-
dorn resonances contribute strongly to the entropy only close to the critical temperature, the equi-
librium values actually decrease with increasing temperature close toTc for the hadrons as seen
in Fig. 5 and Fig. 6. Therefore, one has to include the potential contribution of the Hagedorn
resonances to the pions as in the case of standard hadronic resonances, e.g. aρ-meson decays
dominantly into two pions and, thus, accounts for them by a factor two. Including the Hagedorn
state contribution, we arrive at our effective number of pions

Ñπ,XX̄ = Nπ +∑
i

Ni [(1−〈Xi〉) 〈ni〉+ 〈Xi〉〈ni,x〉] (2.17)

which are shown in Fig. 5. In Fig. 5 we see that after the inclusion of the effective pion numbers
that the number of pions only decreases with decreasing temperature. Furthermore, in Fig. 5 the
total number of Hagedorn states,∑i N

eq
i is also shown. While there are by far fewer Hagedorn

states present than pions, we see that they are important because of their large contribution to the
entropy density.

Moreover, it is useful to consider the effective number ofXX̄ pairs

ÑXX̄ = NXX̄ +∑
i

Ni〈Xi〉 (2.18)

because Hagedorn states also contribute strongly to theXX̄ pairs close toTc as seen in Fig. 6.
Again we see that only the effective number ofXX̄ pairs have consistent decreasing behaviour with

8
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Figure 5: Comparison of the effective pion numbers when (a)TH = 176 MeV or (b)TH = 196 MeV.
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Figure 6: Comparison of the total number ofXX̄ and their effective numbers when (a)TH = 176 MeV or
(b) TH = 196 MeV.

decreasing temperature whereas without the Hagedorn statecontributions we see a decrease close
to Tc.

2.2 Results

In our expanding fireball model we can calculate thep/π ratio where the black solid line in
each graph is the chemical equilibrium abundances, the colored lines are the dynamical calculations
for various expansions that follow the calculatedT(t) relationship, and the error bars are the exper-
imental data points. The pions, Hagedorn states, andXX̄ all are allowed to chemical equilibrate,
while we then vary the initial conditions and observe their effects. Note that in all the following
figures the effective numbers are shown so that the contribution of the Hagedorn states is included.
In Fig. 7 the ratio ofp/π+’s is shown. We see that forTH = 176 MeV that our results enter the
band of experimental data beforeT = 170 MeV and remains there throughout the entire expansion
regardless of the initial conditions. However, forTH = 196 MeV the ratios already match the ex-
perimental data early on atT ≈ 190 MeV. They are briefly overpopulated aroundT = 160−170
MeV but quickly return to the experimental values, except when the pions are overpopulated (this
could imply that there are too many Hagedorn states and a lower degeneracy of the Hagedorn states
may produce better results).
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Figure 7: Results for the ratio ofp/π− with various initial conditions for (a)TH = 176 MeV or (b)TH = 196
MeV. Note that for STAR [22, 47]p/π−0.11 and ¯p/π− = 0.082 and for PHENIX [48]p/π−0.10 (p/π+ is
actually measured but we convert it top/π− to match STAR) and ¯p/π− = 0.047 .
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Figure 8: Results for the ratio ofK+/π− with various initial conditions for (a)TH = 176 MeV or (b)
TH = 196 MeV. Note that for STAR [22, 47]K+/π− = 0.16 andK−/π− = 0.15 and for PHENIX [48]
K/π−0.174 (K/π+ is actually measured but we convert it toK/π− to match STAR) and̄K/π− = 0.162 .

In Fig. 8 the ratio of kaons to pions is shown forTH = 176 MeV and forTH = 196 MeV. For
TH = 176 MeV our results are roughly at the upper edge of the experimental values, while for
TH = 196 MeV our results are slightly higher than the experimental values. Regardless of initial
conditions, the results atT = 110 MeV are almost exactly those of the uppermost experimental
data point. The ratio ofΛ/π ’s is shown in Fig. 9. In both cases theΛ/π ’s match the experimental
values extremely well and the experimental values are reached already byT ≈ 170 MeV. We can
also use our model to investigate the possibility ofΩ’s. In [39], they discussed the possibility of
Ω’s being produced using Hagedorn states. We are able to adequately populate theΩΩ̄ pairs so that
they roughly match the experimental data. On the other hand,for the Ω particle the equilibration
time is short only very close toTc (see [9]). The scenario is thus more delicate. If one would take,
for example, one half the decay width of that of Eq. 2.9 or one fourth of the decay width the total
production ofΩ is not sufficient up to 25 %, or up to 50%, respectively, to meetthe experimental
yield (the other ratios are not significantly affected by such a change of the decay width). In a future
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Figure 9: Results for the ratio ofΛ/π−’s with various initial conditions for (a)TH = 176 MeV or (b)
TH = 196 MeV. Note that for STAR [22, 47]Λ/π− = 0.54 andΛ̄/π− = 0.41 andΛ/π is not measured for
PHENIX.
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Figure 10: Results for the ratio ofΩ/π−’s with various initial conditions for (a)TH = 176 MeV or (b)
TH = 196 MeV. Note that for STARΩ/π− = 9.5×10−4 andΩ̄/π− = 9.6×10−4 STAR [22, 47] andΩ/π
is not measured for PHENIX.

work, it would be interesting to observe the other decay channels that include exotic states, which
also occur in the spirit of Hagedorn states. In order to observe these decay channels a method, e.g.
a microscopic quark model, must be found to find the appropriate Hagedorn spectrum for strange
mesonic/baryonic Hagedorn states. Branching ratios couldbe calculted using [44].

A summary graph of all the results of this section is shown in Fig. 11. We see in our graph
that our freezeout results match the experimental data well. Thus, a dynamical scenario is able
to explain chemical equilibration values that appear in thermal fits byT = 160 MeV. In general,
TH = 176 MeV andTH = 196 give chemical freeze-out values in the range betweenT = 160−170
MeV. Moreover, the initial conditions have little effect onthe ratios and give a range in the chemical
equilibrium temperature of about∼ 5 MeV, which implies that information from the QGP regarding
multiplicities is washed out due to the rapid dynamics of Hagedorn states. Lowerβi does slow
the chemical equilibrium time slightly. However, as seen inFig. 11 they still fit well within the
experimental values.
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Figure 11: Plot of the various ratios including all initial conditionsdefined in Tab. 1. The points show the
ratios atT = 110 MeV for the various initial conditions (circles are forTH = 176 MeV and diamonds are for
TH = 196 MeV). The experimental results for STAR [22, 47] and PHENIX [48] are shown by the gray error
bars.

3. Transport Coefficients

The large azimuthal asymmetry of low-pT particles and the strong quenching of high-pT

probes measured at RHIC [22] indicate that the new state of matter produced in heavy ion col-
lisions is a strongly interacting quark-gluon plasma [50].The matter formed in these collisions
behaves almost as a perfect liquid [51] characterized by a very small value for its shear viscosity
to entropy density ratio, which is in the ballpark of the lower boundη/s≥ 1/(4π) [15] derived
within the anti-de Sitter/conformal field theory (AdS/CFT)correspondence [52]. It was conjec-
tured by Kovtun, Son, and Starinets (KSS) [15] that this bound holds for all substances in nature
(see, however, Refs. [53, 54] for possible counterexamplesinvolving nonrelativistic systems).

Recent lattice calculations [55] in pure glueSU(3) gauge theory have shown thatη/s remains
close to the KSS bound at temperatures not much larger thanTc. Additionally, calculations within
the BAMPS parton cascade [56], which includes inelastic gluonic gg↔ ggg reactions, indicate
that η/s∼ 0.13 in a purely partonic gluon gas [57]. Moreover, it was argued in [58] that this
ratio should have a minimum at (or near) the phase transitionin quantum chromodynamics (QCD).
This is expected becauseη/s increases with decreasingT in the hadronic phase [59] (because
the relevant hadronic cross section decreases withT) while asymptotic freedom dictates thatη/s
increases withT in the deconfined phase since in this case the coupling between the quarks and
the gluons (and the transport cross section) descreases logarithmically [60]. Note, however, that in
general perturbative calculations are not reliable close to Tc (see, however, Ref. [61]).

Thus far, there have been several attempts to computeη/s in the hadronic phase using hadrons
and resonances [62, 63, 64]. However, these studies have notexplicitly considered that the hadronic
density of states in QCD is expected to be∼ exp(m/TH) for sufficiently largem [1, 65], where
TH ∼ 150−200 MeV is the Hagedorn temperature.

Here a hadron resonance gas model which includes all the known particles and resonances
with massesm< 2 GeV [43] and also an exponentially increasing number of Hagedorn states
(HS) [8, 9, 49] is used to provide an upper limit onη/s for hadronic matter close to the critical
temperature that is comparable to 1/4π. Additionally, we show that our model provides a good
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Figure 12: c2
s for the model including HS with 2< m< 20 GeV (solid red line) and for our hadron gas

model that does not include HS (dashed black curve). The lattice results for thep4 action withNτ = 6 [28]
are depicted in the dotted curve.

description of the recent lattice results [28] for the speedof sound,cs, close toTc = 196 MeV.

3.1 Results

Using the model described in Sec. 2.1, we are able to study theeffects of Hagedorn states on
the transport coefficients of a hadron gas at high temperatures. In general, a very rapid increase
in the number of particle species (specifically heavier species) aroundTc is expected to strongly
reduce the speed of soundc2

s = dP/dε at the phase transition. Whilec2
s → 0 at the transition would

certainly lead to very interesting consequences for the evolution of the RHIC plasma [66], recent
lattice simulations have found thatc2

s ≃ 0.09 nearTc [28]. It is shown in Fig. 12 thatc2
s(T ∼ Tc)∼

0.09 in the model with HS while for the model without themc2
s ∼ 0.25 nearTc.

The total shear viscosity of our multi-component system computed within kinetic theory [67]
is ηtot ∼ α ∑i ni〈pi〉λi , whereni is the number density,〈pi〉 is the average momentum, andλi is
the mean free path for discrete states and HS (α ∼ O(1)). Moreover,λi =

(

∑ j n j σi j
)−1

, with
σi j being the scattering cross section. Due to their very large mass, the particle density of a HS
is much smaller than that of discrete states. Thus, one can neglect the small contribution to the
mean free path from terms involving the interaction betweenthe standard hadrons and the HS. In
this case,ηtot = ηHG+ηHS whereηHG is the shear viscosity computed using only the interactions
between the standard hadrons whileηHS =

1
3 ∑i ni〈p〉i λi includes only the contribution from HS,

which move non-relativistically sincemHS/T ≫ 1. Note that the approximation forηtot used here
provides an upper bound for this quantity since the inclusion of the interactions between HS and
the standard hadrons would only decreaseηtot. Using the results above, one sees that

(η
s

)

tot
≤ sHG

sHG+sHS

[

(η
s

)

HG
+

ηHS

sHG

]

. (3.1)

While the entropy dependent prefactor in Eq. (3.1) can be easily determined using our model,
the detailed calculation ofηHG andηHS requires the knowledge about the mean free paths of the
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Figure 13: η/s is shown for a gas of pions and nucleons [62] (upper dashed black line) and for a hadron
resonance gas with (constant) excluded volume corrections[63] (lower dashed black line). An upper bound
on the effects of HS onη/s is shown in solid red lines. The blue band between the curves is used to
emphasize the effects of HS. The solid black line at the bottom is the AdS/CFT lower boundη/s= 1/4π
[15].

different particles and resonances in the thermal medium. In the non-relativistic approximation, we
can set〈pi〉= mi〈vi〉=

√

8mi T/π in Eq. (3.1). Note that HS with very largemi ’s are more likely
to quickly decay. We assume thatλi = τi 〈vi〉 whereτi ≡ 1/Γi = 1/(0.151mi −0.0583) GeV−1 is
the inverse of the decay width of theith HS obtained from a linear fit to the decay widths of the
known resonances in the particle data book [8, 9, 42, 49]. Ourchoice forλi gives the largest mean
free path associated with a given state because it neglects any possible collisions that could occur
before it decays on its own. Note, however, that the decay cross section is in general different
than the relevant collision cross section for momentum transport that contributes toη according to
kinetic theory. Thus, it is not guaranteed a priori that these decay processes contribute toη in the
usual way.

We find thatηHS= 8T ∑i niτi/3π. The remaining ratio(η/s)HG has been computed in [62, 63,
64] using different models and approximations. Since our main goal is to understand the effects
of HS on (η/s)tot, here we will simply use the values for(η/s)HG obtained in some of these
calculations to illustrate the importance of HS. We chose toobtain (η/s)HG for a gas of pions
and nucleons from [62] and for a hadron resonance gas from [63]. Note that the results forη/s
obtained from the calculation that included many particlesand resonances [63] are already much
smaller than those found in [62]. A linear extrapolation of the results in [62, 63] was used to obtain
their η/s values at high temperatures. One can see in Fig. 13 that(η/s)tot drops significantly
aroundTc because of HS. This result is especially interesting because η/s in the hadronic phase
is generally thought to be a few times larger than the string theory bound. One can see that the
contributions from HS should lowerη/s to near the KSS bound close toTc. Thus, the drop inη/s
due to HS could explain the low shear viscosity nearTc already in the hadronic phase.
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4. Thermal Fits

Thermal fits computed within grand canonical statistical models are normally used to repro-
duce hadron yield ratios in heavy ion collisions [36, 68, 69,70, 71, 72]. Thermal models com-
puted at AGS, SIS, SPS, and RHIC energies can be used to construct a chemical freeze-out line
in the QCD phase diagram [73, 74]. For Au+Au collisions at RHIC at

√
sNN = 200 GeV, specifi-

cally, estimates for the chemical freeze-out temperature and baryon chemical potential range from
Tch = 155−169 MeV andµb = 20−30 MeV [69, 70, 72]. These thermal models give reasonable
fits to the experimental data, which leads to the conclusion that chemical freeze-out may be reached
in these experiments. Since Hagedorn states have been shownto affect the chemical equilibration
times, thermodynamic properties, and transport coefficients of hadron resonance gases close toTc

it is natural to expect that they may also be relevant in the thermal description of particle ratios.

5. Model

In order to calculate the baryonic chemical potentialµb and the strange chemical potentialµs

we use the following conservation relation

0 =
∑i niSi

∑i niBi
, (5.1)

so the total strangeness per baryon number is held at zero. Thereni is the density of theith particle
that has a corresponding baryon numberBi and strangenessSi . The Hagedorn states are imple-
mented in our model as previously discussed through the effective numbers. It is important to note
here that because the Hagedorn states always produce pairs of XX̄’s that the entire contribution to
ratios likeK+/K− must come from the known particles. Therefore, in our calculations the baryonic
chemical potential, which is directly related to the strange chemical potential, is somewhat inflated.
If we were to include baryonic and/or strange Hagedorn states thenµb would be lower. In order to
get an idea of the quality of the thermal fits, we defineχ2 as

χ2 = ∑
i

(

Rexp
i −Rtherm

i

)2

σ2
i

(5.2)

whereRtherm
i is our ratio of hadron yields calculated within our thermal model whereasRexp

i is the
experimentally measured value of the hadron yield with its corresponding errorσ2

i .
In this work we look at only the experimental values at mid-rapidity and we used only the

systematic error given by each respective experiment. We vary the temperature andµb according
to the conservation laws in Eq. (5.1) to minimizeχ2. We use data from STAR [47] and PHENIX
[48] for Au+Au collisions at RHIC at

√
sNN=200 GeV and observe:π−/π+, p̄/p, K−/K+, K+/π+,

p/π+, and(Λ+ Λ̄)/π+. All are calculated by STAR [47], however, onlyπ−/π+, p̄/p, K−/K+,
K+/π+, p/π+ are given by PHENIX. Because there is such a difference between p/π+ from
PHENIX and STAR we choose only the value from STAR so that we can compare are results to
[69] where they also excludep/π+ from PHENIX. It should be noted that [69] includes more ratios
than we do such as multi-strange particles and resonances. The purpose of the present study is not
to confirm their results but to compare thermal fits that with and without Hagedorn states.
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Figure 14: Thermal fits for Au+Au collisions at RHIC
at

√
sNN = 200 GeV when no Hagedorn states are

present.
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Figure 15: Thermal fits including Hagedorn states for
Au+Au collisions at RHIC at

√
sNN = 200 GeV.

6. Results

For a hadron gas excluding Hagedorn states (see Fig. 14),Tch = 160.4 MeV andµb = 22.9
MeV, which gaveχ2 = 21.2. Our resulting temperature and baryonic chemical potential are almost
identical to that in [69]. The inclusion of Hagedorn states is our primary interest. Starting with
the fit for the RBC-Bielefeld collaboration, we obtainTch = 165.9 MeV, µb = 25.3 MeV, and
χ2 = 20.9, which is shown in Fig. 15. Theχ2 is slightly smaller than in Fig. 14. When we consider
the lattice results from BMW whereTc = 176 MeV, we findTch = 172.6 MeV, µb = 39.7 MeV,
and χ2 = 17.8. The lower critical temperature seems to have an impact on the thermal fit. The
lower χ2 is due to the larger contribution of Hagedorn states at atTch = 172.6 MeV, which is much
closer toTc. The contributions of the Hagedorn states to the total number of the various species
at this temperature and chemical potential are about 30− 50%. The difference in theχ2’s for
BMW and RBC-Bielefeld collaboration is directly related tothe contribution of Hagedorn states in
the model. Because the RBC-Bielefeld critical temperatureregion is significantly higher than its
corresponding chemical freeze-out temperature the contribution of the Hagedorn states is minimal
at only 4-11%. We find that the inclusion of Hagedorn states should not only provide a better fit
but they also affect the chemical freeze-out temperature and the baryonic chemical potential. The
more mesonic Hagedorn states are present the largerµb becomes. Furthermore, our fits also have
higherTch’s than seen in the fit without the effects of Hagedorn states.

7. Conclusions

Dynamical reactions with the known hadronic particles cannot account for the particle abun-
dances seen at RHIC. The chemical equilibration times are too long and do not fit within the calcu-
lated time scale of the hadronic fireball. This has led to the assumption that the chemical freeze-out
temperature and the critical temperature coincide. However, assuming that these heavy, quickly
decaying Hagedorn states exist, chemical equilibrium can be achieved on short enough time scales
that fit within a hadronic, cooling fireball i.e. on the order of ≈ 1−2 f m/c. Moreover, Hagedorn
states states provide a very efficient way for incorporatingmulti-hadronic interactions (with parton
rearrangements). This work indicates that the population and repopulation of potential Hagedorn
states close to phase boundary can be the key source for a dynamical understanding of generating
and chemically equilibrating the standard and measured hadrons.

Because of the success of decays from Hagedorn states in reproducing experimental particle
ratios, it was only logical to extend their use to other areas. Hadronic models with the known
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particles are not able to reproduce the low shear viscosity to entropy density ratio that seems to be
required to explain the large elliptic flow observed at RHIC.One might expect that by increasing
the number of particles in a gas the mean free path would subsequently decrease, which would
in effect decrease the totalη/s. In fact, including the “missing" Hagedorn states also decreases
η/s for hadronic matter nearTc near to the string theory value 1/(4π). Moreover, according to
the general argument that smallη/s implies strong jet quenching [75], the significant reduction of
η/s indicates that hadronic matter near the phase transition ismore opaque to jets than previously
thought. Since the system should spend most of its time nearTc (because of the minimum in the
speed of sound), the fact thatη/scan be very small in that region in the hadronic phase may imply
that the key observables for the QGP, i.e., the strong quenching of jets and the large elliptic flow,
can receive significant contributions from the hot Hagedornresonance gas.

We assumed that the particle ratios measured in Au+Au collisions at RHIC at
√

sNN = 200
GeV admit a purely statistical description at chemical freeze-out. Our results for thermal fits with-
out Hagedorn states concur well with other thermal fit models[69] where the chemical freeze-out
temperature (Tch = 160.4 MeV) is almost identical and the baryonic chemical potential (µb = 22.9
MeV) is only slightly larger. The thermal fit with the known particles in the particle data group
provides a decent fit withχ2 = 21.2. However, the inclusion of Hagedorn states provides an even
better fit to the experimental data whereχ2 = 17.8 for the BMW collaboration andχ2 = 20.9 for
the RBC-Bielefeld collaboration. This provides further evidence [8, 9, 11, 13] that Hagedorn states
should be included in a description of hadronic matter nearTc.
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