PROCEEDINGS

OF SCIENCE

Hagedorn States and Thermalization

Carsten Greiner*
Goethe University Frankfurt
E-mail: car st en. gr ei ner @ h. physi k. uni -frankfurt. de

Jacquelyn Noronha-Hostler
Frankfurt Institute for Advanced Studies
E-mail: host | er @ h. physi k. uni -frankfurt. de

Jorge Noronha

Instituto de Fisica, Universidade de S&ao Paulo, Sdo PaurpB&azil
E-mail: nor onha@ f . usp. br

In recent years, Hagedorn states have been used to exptadtiilibrium and transport proper-
ties of a hadron gas close to the QCD critical temperatures&imassive resonances are shown to
lower n /sto near the AAS/CFT limit close to the phase transition. A parison of the Hagedorn
model to recent lattice results is made and it is found theh#idrons can reach chemical equilib-
rium almost immediately, well before the chemical freemétemperatures found in thermal fits
for a hadron gas without Hagedorn states.

XLIX International Winter Meeting on Nuclear Physics
24-28 January 2011
BORMIO, ltaly

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Hagedorn States and Thermalization Carsten Greiner

1. Introduction

Rolf Hagedorn came up with the idea that the hadron massrapeshould follow an exponen-
tial law in the 1960’s [1]. Resonances that follow that mageectrum are known as Hagedorn states
and they become important close to the QCD critical tempesaivhile they are exponentially
suppressed at lower temperatures. Their large masses ppbe phase space for multi-particle
decays. A recent analysis of the experimental evidencentoHagedorn spectrum can be found
in [2]. Moreover, thoughts on observing Hagedorn statexpegments are given in [3] and their
usage as a thermostat in [4]. Depending on the intrinsicnpaters, Hagedorn states can also be
used to trigger the order of the phase transition [5, 6].

Bound and resonance states are due to strong interactiahallaof them (including not-
yet discovered ones) must be included in order to simulathelattractive hadronic interactions
[7]. Likewise, repulsive interactions in principle mussalbe included and that can be done,
for example, through volume corrections [7]. According tagddorn, the full spectrum is then
obtained by considering clusters that are formed of claqtdr Thus, Hagedorn proposed [1] that
the density of hadronic states with mass- 2 GeV should be

A B (1.1)
[m? 4 (mo)?]*

in order to obtain the spectra from— p andm— p scatterings. AboveA is a constanting = 0.5
GeV, andTy is the Hagedorn temperature. At that time resonances wérdoown up toA(1232),
which gave a Hagedorn temperaturelgf~ 160 MeV.

Recently, we have found that Hagedorn states can accoumiithk dynamical chemical equi-
libration times within the hadron gas phase [8, 9, 10, 11, %o, Hagedorn states have been
shown to contribute to the physical description of a had@as gjose td.. The inclusion of Hage-
dorn states leads to a logy/sin the hadron gas phase [13, 14], which nears the supergiamind
n/s=1/(4m) [15]. Calculations of the trace anomaly including Hagedstates also fits recent
lattice results well and correctly describe the minimumhef speed of sound squared, near the
phase transition found on the lattice [13]. Furthermorbai been shown [16, 17] that Hagedorn
states also play a (small) role in thermal model fits of hagiietd particle ratios.

2. Strangeness Enhancement

(Anti-)strangeness enhancement was first observed, piynvaanti-hyperons, multi-strange
baryons, and kaons, at CERN-SPS energies in comparisorptdai#. Originally, it was consid-
ered a signature for QGP because using binary strangereigcfion/exchange reactions

T+p < K+A
K+p < m+A (2.1)

chemical equilibrium could not be reached within the hadyas phase [18]. The estimated time
scale of chemical equilibration for binary reactions withi hadron gas model was< 1000 fm/c
[18], which is significantly longer than the estimated lifie¢ of a hadronic fireball of about 10 fm/c.
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The abundancies after a typical hadron lifetime were soreesvhetween 20-100 times lower than
the calculated chemical equilibrium values [18].

Looking into the quark gluon plasma phase, the quarks angihglean efficiently produce
strange particles. The production ssfquarks at the lowest order of perturbation QCD is through
the collision of 2 gluons or the annihilation of a light alight quark pair. Invariant matrix elements
can be calculated, which leads to the corresponding cexgt®oas. Including these cross sections
in rate equations, it was found that reactions involvingoghuin the deconfined phase could more
quickly produce strange quarks. Therefore, it was conjedtthat strangeness enhancement was a
signal for deconfinement because gluon fusion would be finegpy contributor to the abundance
of strange particles following hadronization and rescaiteof strange quarks [18].

At the time it was assumed that multi-mesonic collisions Moot play a significant role in
strangeness production because their cross section wetihdismall. However, Rapp and Shuryak
showed [19] that for SPS energies it is possible for multiRgito interact and form anti-baryons

p+ N < nr, (2.2)

which has a cross-section of; ~ 50 mb. Using rate equations, one finds that the chemical
equilibration time is proportional to the inverse of therthal reaction rate
1

Ty = ~1-3fm/c 2.3
P <<O-5+NennV5N>>pN / 23)

wherevpy =~ 0.5c and the baryonic density sy ~ pg to 200, which is typical for SPS. Greiner and
Leupold [20] extended this idea to anti-hyperons

Y +N < nr+nyK, (2.4)

which also gives time scales on the order of Eq. (2.3). Tlheeefdue to multi-mesonic collisions,
the chemical equilibration time scales are short enoughdount for chemical equilibration within
a cooling hadronic fireball at SPS energies.

A problem arises if we use the same multi-mesonic reactiotise hadron gas phase at RHIC
temperatures where experiments show that the particledaimges reach chemical equilibration
close to the phase transition [21]. At RHIC, assumilhg 170 MeV, we use Eq. (2.3) where =
30 mb anologq = pgf‘z 0.04 fm—3 (Note that at RHIC there is approximately an equal number of
baryons and anti-baryons [22]. Additionally, the dens#yn e calculated within a grand canonical
model.), and find that the equilibrium rate Qfis 7o ~ 10 f% which is considerably longer than
the fireball’s lifetime oft < 4 f% in the hadronic stage. Moreoveag ~ 10 f% was also obtained
in [23] using the fluctuation-dissipation theorem and R24] ffound thrice lower populations than
experiments for various anti-hyperons in the 5% most ceAtwaAu collisions (also see [25]).
These discrepancies led to the suggestion that the hadrertb@n" into equilibrium i.e. the
system is already in a chemically frozen out state at the &titbghase transition [26, 27].

2.1 Model

Hagedorn states are massive resonances that have large wdetlas, which can open up
the phase space to multi-particle collisions. Because #agestates decay so quickly they can
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catalyse quick reactions between hadrons that would otkerliave smaller cross-sections and
take longer to reach chemical equilibrium. These reactiol@w the general form

Nt < HS ¢ N+ XX (2.5)

whereXX = pp, KK, AN, or QQ. Our idea is that these very massive Hagedorn states exist an
are so large that they decay almost immediately into meltgbns andXX pairs. We note that in
this work we consider only non-strange, mesonic Hagedatie st

The exponential in Eq. (1.1) arises from Hagedorn’s origiohea that there is an exponentially
growing mass spectrum. Thus, §s is approached, Hagedorn states become increasingly more
relevant and heavier resonances “appear”. The factor it fibthe exponential may appear in
various forms [2, 4]. While the choice in this factor can varyas found in [2] that the present
form gives lower values ofy, which more closely match the predicted lattice criticahperature
[28, 29, 30]. Further discussion on the parameters can balfou[31, 32].

Returning to Eq. (1.1), we assume that= T, and then we consider the two different different
lattice results fofTe: T = 196 MeV [28, 30] (Hot Quarks collaboration), which uses amast
physical pion mass, ant. = 176 MeV [29] (BMW collaboration). Note that there have been
updated lattice results for the lower temperature regi@j fi3at we have yet to publish results on
but has been discussed in [32]. Furthermore, we need toritkadcount the repulsive interactions
and, therefore, we use the volume corrections in [13, 34, 35]

In order to find the maximum Hagedorn state mibksnd the “degeneracy” A, we fit our
model to the thermodynamic properties of the lattice. InRIBEC-Bielefeld collaboration the ther-
modynamical properties are derived from the quardity 3p, the so-called interaction measure,
which is what we fit in order to obtain the parameters for thgéttorn states. Thus, we obtain
Ty = 196 MeV,A = 0.5GeV?/2, M = 12 GeV, andB = (340Me\/)4. The fit for the trace anomaly
©/T%is shown in Fig. 1. We also show the fit for the entropy densitiig. 2. Both fits are within
the lattice error bars and mimic the behavior of the lattesufts. As discussed in [13], a hadron
resonance gas model with Hagedorn states is able to fit tieeldata whereas a hadron resonance
gas without Hagedorn states (but with excluded volume cto®s) misses the general behavior
displayed by the lattice data at high temperatures. Hereolanf Hagedorn’s idea [7] and do not
neglect the repulsive interactions between the hadrons.

BMW obtains the thermodynamical properties differentlgntiRBC-Bielefeld and, therefore,
we fit only the energy density as shown in Fig. 3. From that weiably = 176 MeV, A =
0.1GeV¥2, M = 12 GeV, anB = (300Me\/)4. We also show a comparison to the entropy density
in Fig. 4 Our results with the inclusion of Hagedorn statesable to match lattice data near the
critical temperature but do not match as well at lower terapges in Fig. 1 and Fig. 2. For a
detailed discussion of hadron gas models and their abilitpatch lattice data see [37].

2.1.1 Master Equations

In order to describe the dynamics of Eq. (2.5) we use masigatins. They include both
the forward and back reactions, which ensures that dethddahce is mantained, and the state
of chemical equilibrium is a fixed point of the rate equatioAglditionally, master equations are
naturally suited to describe multi-particle reactions velas the transport equations used in UrQMD
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Figure 1: Comparison between the trace anomaly

using a hadrgn resonance gas rpodel with Hagedor&igure 2: Comparison of entropy density to lattice
states [8] (solid black line) and without (black dashedQCD results from [28, 30] wher& = 196 MeV. HS

line) [36]. Lattice data points for thp4 action with isin reference to our model including Hagedorn states.
N; = 6 [28] are also shown.
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Figure 3: Comparison of energy density to lattice Figure 4: Comparison of entropy density to lattice
QCD results from [29] wherd. = 176 MeV. HS is QCD results from [29] wheré; = 176 MeV. HS is in
in reference to our model including Hagedorn states. reference to our model including Hagedorn states.

[38] are better suited to describe the dynamics of binarlisomhs. Furthermore, the Hagedorn
spectrum is discretized by using mass bins of 100 MeV. Eachisbdescribed by its own rate
equation.

The rate equations for the Hagedorn resonafgegionsN,;, and theXX pair Ny

2
. N n N <ni.x> Ny o
N =T - NS B < ") _ N':| 4w | NSD <_n> XX N
i i,m [ i Z 1,n N;_e[q I i,XX i N?[q Neq I

XX
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Nn:IZrer Ni (i) — N; ;Bi,nn N—]eTq +|Zri7X)Z<ni"x> Ni — N; N—]eTq NEL
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N = 3 Moo |N Neq<Nn><ni‘x> ) 26)
XX = XX | NN e NET . .
- W) ANG

The decay widths for thé" resonance argj  (for the decay into multiple pions) arg xx (for
the decay into multiple pions andXX pair), the branching ratio iBin (clearly 5 ,Bin = 1), and
the average number of pions that each resonance will detaysin;). The equilibrium values
N€9 are both temperature and chemical potential dependent.ettawhere we sat, = 0, which
is a good approximation for collisions at largs.

2.1.2 Branching Ratios

The branching ratioB; , is the probability that thé" Hagedorn state will decay intopions.
Since we are dealing with probabilities, thgnB; » = 1 must always hold. We have the condition
that each Hagedorn resonance must decay into at least 2 pioas, our average number of pions
must be normalized to ensure that 2 andy B, = 1. The branching ratios for the reaction
HS+ nmrare assuemd to follow the Gaussian distribution

1 _-m?
e (2.7)

which has its peak centered @) and the width of the distribution ig?.

Assuming a statistical, microcanonical branching for teeay, we can take a linear fit to
the average number of pions in Ref. [39] to fifrg;) such that{n;) = 0.9+ 1'2% is the average
pion number that each Hagedorn state decays into wimgres the mass of the proton. In the
microcanonical model the volume\s= M; /¢ wheree is the mean energy density of a Hagedorn
state (taken as = O.S%’). Further discussions regarding this can be found in [39, Al¥e width
of the distrubtion iss? = (O.5mﬂp)2, which roughly matches the canonical description in [41f W
have the condition that each Hagedorn resonance must decegtileast 2 pions. Thus, after we
normalize for the cutoffi > 2, we haven;) ~ 3— 34 ando? ~ 0.8 — 510. For the average number
of pions when AKX pair is present, we again refer to the micro-canonical mod@9, 40]

(Nix) = (%) (0.3+0.4m)~2—T7. (2.8)

wherem; is in GeV. In this paper we do not consider a distribution aiher only the average
number of pions when 34X pair is present. We assume thiatx) = (ni p) = (nix) = (Nia) = (Nig)
for when a proton anti-proton pair, kaon anti-kaon pai, or QQ pair is present.
2.1.3 Decay Width

We used a linear fit for the decay width considering only thyhtli non-strange, mesonic
resonances up td = 2 GeV given in [43] and exclud&(600) because it is an extreme outlier

[[GeV] = 0.15m [GeV]| — 0.03, (2.9)

which ranges froni; = 250 MeV to 1800 MeV. The total decay width has been separatedwo
parts in Eq. (2.6): one for the reactioRsS «» nrt, I'; , and one for the reactiod S <+ nim+ XX,
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[ xx, Wherebyl'y = T 7 + I xx, Which ensures that Egs. (2.6) are zero at equilibrium. Then,
the relative decay width; xx modeled after the decay width in reference Ref. [39] is treraye
number ofXX in the systemX) multiplied by the total decay width;,

Fixx = (X) Ti. (2.10)
That means thdt;  is then
Fin = (1= (X))l (2.11)

The (X) taken from a micro-canonical model for the protons and kgdfs 39] and our own
canonical model for the lambdas and omegas [44] such that

p = 0.058m —0.10~ 0.01— 0.6
+ = 0.075m +0.047~ 0.2—0.95 (2.12)

and the decay widths @f andQ arel’; \5 = 3—250 MeV and’; o5 = 0.01—4 MeV (see [44]).

2.1.4 Initial Conditions

The equilibrium values are found using a statistical mo@é]| jwith the light and strange
particles from the PDG [43] and also including effectivetjgdes from resonances. Throughout
this work our initial conditions a (the point of the phase transition into the hadron gas ptease)

@ = {5 (10), B = n(to) andp = 15X (o). (2.13)

NEa
N7 | XX

which are chosen by holding the contribution to the totatagy from the Hagedorn states and
pions constant, i.e.,

Srad(To, 0)V (to) + Ss(To, i)V (to) = SHad+Hs(To)V (to) = const (2.14)

and the corresponding initial condition configurations sttewn in Tab. 1.5454(To, a) is the en-
tropy density at the initial temperature, i.e., the critieanperature multiplied by our choice in.
Because the hadron gas is dominated by pions we can assuneertdj@esents the initial fraction
of pions in equilibrium.sys(To, ;) represents the entropy contribution from the Hagedorestait
T, multiplied by the initial fraction of Hagedorn states in édium. We holda as a constant and
then find the appropriatg .

2.1.5 Expansion

In order to include the cooling of the fireball we need to finekationship between the tem-
perature and the time, i.€l,(t). Thus, we apply a Bjorken expansion where the total entrepy i
held constant

dNn
const =g(T / (2.15)

wheres(T) is the entropy density of the hadron gas with volume comesti The total number of

pions in the 5% most central collisioys Ny = /%55 {idy =874 can be found from experimental

results in [45]. TheS;/Ny in our model is~ 6 (see [46])
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a=MAqto) | Bi=Ailto) | @=Axx(to)
ICq 1 1 0
IC, 1 1 05
IC3 1.1 05 0
IC4 0.95 1.2 0

Table 1: Initial condition configurations, recalling Eq. (2.13).

The effective volume at mid-rapidity can be parametrized asiction of time. We do this by
using a Bjorken expansion and including accelerating tdidna

2
V(t) = mct <r0+vo(t—to)+}ao(t—to)2> (2.16)

2

where the initial radius isy(tp) = 7.1 fm. ForTy = 196 we haveélgG) ~ 2fm/cand forTy =176

we allow for a longer expansion before the hadron gas phasached and, thus, calculate the
appropriatetélm) from the expansion starting at; = 196, which ist((,l76> ~ 4fm/c. TheT(t)
relation has almost no effect on the results (see [9]). Thezewe chooseg/c = 0.5 andag/c? =

0.025fm ™! for the remainder of this work.

2.1.6 Effective Numbers

Because the volume expansion depends on the entropy awgaodEq. (2.15) and the Hage-
dorn resonances contribute strongly to the entropy onlgecto the critical temperature, the equi-
librium values actually decrease with increasing tempeeatlose tol. for the hadrons as seen
in Fig. 5 and Fig. 6. Therefore, one has to include the pakcbntribution of the Hagedorn
resonances to the pions as in the case of standard hadrgoicarees, e.g. a-meson decays
dominantly into two pions and, thus, accounts for them byctofatwo. Including the Hagedorn
state contribution, we arrive at our effective number ohgio

Nrxx = Nrt 3 N (2= (6)) (i) =+ (X (nix)] (2.17)
|

which are shown in Fig. 5. In Fig. 5 we see that after the inclusf the effective pion numbers
that the number of pions only decreases with decreasingdeatyse. Furthermore, in Fig. 5 the
total number of Hagedorn stategNieq is also shown. While there are by far fewer Hagedorn
states present than pions, we see that they are importaatigeof their large contribution to the
entropy density.

Moreover, it is useful to consider the effective numbeKof pairs

Ny = Nxx+ > Ni(Xi) (2.18)
|

because Hagedorn states also contribute strongly t&X¥@airs close tol. as seen in Fig. 6.
Again we see that only the effective numbepf pairs have consistent decreasing behaviour with
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Figure 5: Comparison of the effective pion numbers whenT@)= 176 MeV or (b)Ty = 196 MeV.
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Figure 6: Comparison of the total number ¥fX and their effective numbers when (&) = 176 MeV or

(b) Ty = 196 MeV.
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decreasing temperature whereas without the Hagedorncstatebutions we see a decrease close
tO TC-

2.2 Results

In our expanding fireball model we can calculate fyet ratio where the black solid line in
each graph is the chemical equilibrium abundances, theamlmes are the dynamical calculations
for various expansions that follow the calculated) relationship, and the error bars are the exper-
imental data points. The pions, Hagedorn states,XXdll are allowed to chemical equilibrate,
while we then vary the initial conditions and observe théieas. Note that in all the following
figures the effective numbers are shown so that the conibof the Hagedorn states is included.
In Fig. 7 the ratio ofp/m"’s is shown. We see that faiy = 176 MeV that our results enter the
band of experimental data befoFe= 170 MeV and remains there throughout the entire expansion
regardless of the initial conditions. However, fiyy = 196 MeV the ratios already match the ex-
perimental data early on dt~ 190 MeV. They are briefly overpopulated arouhd= 160— 170
MeV but quickly return to the experimental values, excepemwthe pions are overpopulated (this
could imply that there are too many Hagedorn states and a ldegeneracy of the Hagedorn states
may produce better results).
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Figure 7: Results for the ratio o/ 7~ with various initial conditions for (aJy = 176 MeV or (b)Ty = 196
MeV. Note that for STAR [22, 47p/m0.11 andp/mr~ = 0.082 and for PHENIX [48]p/ 1~ 0.10 (p/mr" is
actually measured but we convert itpgrr— to match STAR) angh/rr~ = 0.047 .
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Figure 8: Results for the ratio oK™ /m~ with various initial conditions for (a)ly = 176 MeV or (b)
Ty = 196 MeV. Note that for STAR [22, 47K" /m~ = 0.16 andK™ /i~ = 0.15 and for PHENIX [48]
K/m0.174 K/mt is actually measured but we convert itkg 7r~ to match STAR) an& /m~ = 0.162 .

In Fig. 8 the ratio of kaons to pions is shown fi = 176 MeV and forTy = 196 MeV. For
Ty = 176 MeV our results are roughly at the upper edge of the exygatial values, while for
Ty = 196 MeV our results are slightly higher than the experimevabues. Regardless of initial
conditions, the results & = 110 MeV are almost exactly those of the uppermost experiahent
data point. The ratio of\/7T's is shown in Fig. 9. In both cases th¢ 's match the experimental
values extremely well and the experimental values are sghalready byl ~ 170 MeV. We can
also use our model to investigate the possibilityQs. In [39], they discussed the possibility of
Q’s being produced using Hagedorn states. We are able to atidgpopulate th@Q pairs so that
they roughly match the experimental data. On the other Handhe Q particle the equilibration
time is short only very close t& (see [9]). The scenario is thus more delicate. If one wolkd,ta
for example, one half the decay width of that of Eq. 2.9 or aneth of the decay width the total
production ofQ is not sufficient up to 25 %, or up to 50%, respectively, to nieetexperimental
yield (the other ratios are not significantly affected bytsachange of the decay width). In a future

10
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Figure 9: Results for the ratio of\/mr’s with various initial conditions for (a4 = 176 MeV or (b)
Ty = 196 MeV. Note that for STAR [22, 477 /1 = 0.54 andA\/r = 0.41 andA/mis not measured for
PHENIX.
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Figure 10: Results for the ratio of2/mr’s with various initial conditions for (aJy = 176 MeV or (b)
Ty = 196 MeV. Note that for STARY /T~ = 9.5x 10~ andQ/m = 9.6 x 104 STAR [22, 47] andQ /1t
is not measured for PHENIX.

work, it would be interesting to observe the other decay nhkthat include exotic states, which
also occur in the spirit of Hagedorn states. In order to olestirese decay channels a method, e.g.
a microscopic quark model, must be found to find the apprtgtiagedorn spectrum for strange
mesonic/baryonic Hagedorn states. Branching ratios deeiichlculted using [44].

A summary graph of all the results of this section is shownig E1. We see in our graph
that our freezeout results match the experimental data Wélus, a dynamical scenario is able
to explain chemical equilibration values that appear inrtia fits by T = 160 MeV. In general,
Ty = 176 MeV andly = 196 give chemical freeze-out values in the range betWweerl60— 170
MeV. Moreover, the initial conditions have little effect thre ratios and give a range in the chemical
equilibrium temperature of about5 MeV, which implies that information from the QGP regarding
multiplicities is washed out due to the rapid dynamics of étdmyn states. Lowel; does slow
the chemical equilibrium time slightly. However, as seerkig. 11 they still fit well within the
experimental values.

11
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Figure 11: Plot of the various ratios including all initial conditiodgfined in Tab. 1. The points show the
ratios afT = 110 MeV for the various initial conditions (circles are fipr = 176 MeV and diamonds are for

Ty = 196 MeV). The experimental results for STAR [22, 47] and PH¥EMS] are shown by the gray error

bars.

3. Transport Coefficients

The large azimuthal asymmetry of lops particles and the strong quenching of high-
probes measured at RHIC [22] indicate that the new state ttemproduced in heavy ion col-
lisions is a strongly interacting quark-gluon plasma [50he matter formed in these collisions
behaves almost as a perfect liquid [51] characterized byyasmaall value for its shear viscosity
to entropy density ratio, which is in the ballpark of the lovb®undn /s > 1/(4m) [15] derived
within the anti-de Sitter/conformal field theory (AdS/CFdgrrespondence [52]. It was conjec-
tured by Kovtun, Son, and Starinets (KSS) [15] that this lsbhbalds for all substances in nature
(see, however, Refs. [53, 54] for possible counterexampledving nonrelativistic systems).

Recent lattice calculations [55] in pure gl8&)(3) gauge theory have shown thatsremains
close to the KSS bound at temperatures not much largerfthakdditionally, calculations within
the BAMPS parton cascade [56], which includes inelastioiicigg <> ggg reactions, indicate
that n /s~ 0.13 in a purely partonic gluon gas [57]. Moreover, it was adjue [58] that this
ratio should have a minimum at (or near) the phase transiigonantum chromodynamics (QCD).
This is expected becausg/s increases with decreasing in the hadronic phase [59] (because
the relevant hadronic cross section decreases Witlvhile asymptotic freedom dictates thaf's
increases withl in the deconfined phase since in this case the coupling betihheequarks and
the gluons (and the transport cross section) descreasadthogically [60]. Note, however, that in
general perturbative calculations are not reliable closk {see, however, Ref. [61]).

Thus far, there have been several attempts to comp(gé the hadronic phase using hadrons
and resonances [62, 63, 64]. However, these studies haegpiatitly considered that the hadronic
density of states in QCD is expected to beexp(m/Ty) for sufficiently largem [1, 65], where
Ty ~ 150— 200 MeV is the Hagedorn temperature.

Here a hadron resonance gas model which includes all therkipanticles and resonances
with massean < 2 GeV [43] and also an exponentially increasing number ofddagn states
(HS) [8, 9, 49] is used to provide an upper limit gr's for hadronic matter close to the critical
temperature that is comparable tp4tr. Additionally, we show that our model provides a good
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Figure 12: cZ for the model including HS with 22 m < 20 GeV (solid red line) and for our hadron gas
model that does not include HS (dashed black curve). Thiedatsults for thg4 action withN; = 6 [28]
are depicted in the dotted curve.

description of the recent lattice results [28] for the spefsbund,cs, close toT, = 196 MeV.

3.1 Results

Using the model described in Sec. 2.1, we are able to studgfthets of Hagedorn states on
the transport coefficients of a hadron gas at high temp@&stun general, a very rapid increase
in the number of particle species (specifically heavier g@@roundT. is expected to strongly
reduce the speed of soungl= dP/de at the phase transition. Whi@ — 0 at the transition would
certainly lead to very interesting consequences for théugwea of the RHIC plasma [66], recent
lattice simulations have found theg ~ 0.09 nearT, [28]. Itis shown in Fig. 12 thatZ(T ~ T¢) ~
0.09 in the model with HS while for the model without thei~ 0.25 nearT..

The total shear viscosity of our multi-component system mated within kinetic theory [67]
iS Nt ~ a ¥ini(pi)Ai, wheren; is the number density,p;) is the average momentum, andis
the mean free path for discrete states and HS-(€¢(1)). Moreover, A; = (21 n; aij)_l, with
i being the scattering cross section. Due to their very largesmthe particle density of a HS
is much smaller than that of discrete states. Thus, one ogleaieahe small contribution to the
mean free path from terms involving the interaction betwihenstandard hadrons and the HS. In
this caseniot = NG + Nus Wherenug is the shear viscosity computed using only the interactions
between the standard hadrons whilgs = %zi ni(p)i Ai includes only the contribution from HS,
which move non-relativistically sinceys/T > 1. Note that the approximation fage used here
provides an upper bound for this quantity since the inclugibthe interactions between HS and
the standard hadrons would only decreagge Using the results above, one sees that

(%)tot = SHGSHfGSHS |:(%)HG+IS7HL§:| ) (3.1)

While the entropy dependent prefactor in Eq. (3.1) can béyedstermined using our model,
the detailed calculation ofg and nys requires the knowledge about the mean free paths of the

13



Hagedorn States and Thermalization Carsten Greiner

0.0L——
0.15 0.1€ 0.17 0.18 0.1¢
T [GeV]

Figure 13: n/sis shown for a gas of pions and nucleons [62] (upper dasheik lilee) and for a hadron
resonance gas with (constant) excluded volume correciiiglower dashed black line). An upper bound
on the effects of HS om /s is shown in solid red lines. The blue band between the cuweseéd to
emphasize the effects of HS. The solid black line at the boiwthe AdS/CFT lower bound /s= 1/4m
[15].

different particles and resonances in the thermal mediarthd non-relativistic approximation, we
can set(p;) = mi(vi) = v/8Mm T /min Eq. (3.1). Note that HS with very large’s are more likely

to quickly decay. We assume thit= T; (v;) wheret, = 1/I"; = 1/(0.151m; — 0.0583 GeV 1is
the inverse of the decay width of ti® HS obtained from a linear fit to the decay widths of the
known resonances in the particle data book [8, 9, 42, 49].dDbaice forA; gives the largest mean
free path associated with a given state because it neglegtsassible collisions that could occur
before it decays on its own. Note, however, that the decagscsection is in general different
than the relevant collision cross section for momentumsart that contributes tg according to
kinetic theory. Thus, it is not guaranteed a priori that ¢hdecay processes contributerton the
usual way.

We find thatnys=8T 3 niT; /3. The remaining ratidn /s), g has been computed in [62, 63,
64] using different models and approximations. Since ouinrgaal is to understand the effects
of HS on (n/s)t, here we will simply use the values fén /s),; obtained in some of these
calculations to illustrate the importance of HS. We choselitain (n/s)nc for a gas of pions
and nucleons from [62] and for a hadron resonance gas frofin [68te that the results fon /s
obtained from the calculation that included many partieled resonances [63] are already much
smaller than those found in [62]. A linear extrapolationtaf tesults in [62, 63] was used to obtain
their /s values at high temperatures. One can see in Fig. 13(th&),,, drops significantly
aroundT. because of HS. This result is especially interesting becgys in the hadronic phase
is generally thought to be a few times larger than the stiiregpty bound. One can see that the
contributions from HS should lower/sto near the KSS bound closeTg Thus, the drop im /s
due to HS could explain the low shear viscosity n&aalready in the hadronic phase.
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4. Thermal Fits

Thermal fits computed within grand canonical statisticableie are normally used to repro-
duce hadron yield ratios in heavy ion collisions [36, 68, B9, 71, 72]. Thermal models com-
puted at AGS, SIS, SPS, and RHIC energies can be used to wtinstchemical freeze-out line
in the QCD phase diagram [73, 74]. For Au+Au collisions at RHit,/Syy = 200 GeV, specifi-
cally, estimates for the chemical freeze-out temperatndebaryon chemical potential range from
Teh = 155— 169 MeV andu, = 20— 30 MeV [69, 70, 72]. These thermal models give reasonable
fits to the experimental data, which leads to the conclugiahdhemical freeze-out may be reached
in these experiments. Since Hagedorn states have been shaffact the chemical equilibration
times, thermodynamic properties, and transport coeffisiehhadron resonance gases clos&to
it is natural to expect that they may also be relevant in tkentlal description of particle ratios.

5. Model

In order to calculate the baryonic chemical potentigbnd the strange chemical potential
we use the following conservation relation

YinS
>iniB;’

0= (5.1)
so the total strangeness per baryon number is held at zeevefitis the density of thé" particle
that has a corresponding baryon numBerand strangenes§. The Hagedorn states are imple-
mented in our model as previously discussed through thetaenumbers. It is important to note
here that because the Hagedorn states always produce pxixesathat the entire contribution to
ratios likeK* /K~ must come from the known particles. Therefore, in our caliohs the baryonic
chemical potential, which is directly related to the stmagemical potential, is somewhat inflated.
If we were to include baryonic and/or strange Hagedorn st#ienuy, would be lower. In order to
get an idea of the quality of the thermal fits, we defifeas

eXP herm 2
I i
whereR™™is our ratio of hadron yields calculated within our thermaldal wherea®™Pis the
experimentally measured value of the hadron yield withdatsesponding erroo?.

In this work we look at only the experimental values at migidéity and we used only the
systematic error given by each respective experiment. \Wetkia temperature and, according
to the conservation laws in Eq. (5.1) to minimigé. We use data from STAR [47] and PHENIX
[48] for Au+Au collisions at RHIC at/Syn=200 GeV and observetr /mrt, p/p, K~ /K*, K /mrt,
p/m", and(A+A)/m". All are calculated by STAR [47], however, onty /7", p/p, K~ /K™,
K*/mt, p/m" are given by PHENIX. Because there is such a difference testyérrt from
PHENIX and STAR we choose only the value from STAR so that weaanmpare are results to
[69] where they also excludg/ " from PHENIX. It should be noted that [69] includes more ratio
than we do such as multi-strange particles and resonanbespurpose of the present study is not
to confirm their results but to compare thermal fits that witd aithout Hagedorn states.
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Figure 14: Thermal fits for Au+Au collisions at RHIC

at ,/Syn = 200 GeV when no Hagedorn states ar
present.

Figure 15: Thermal fits including Hagedorn states for
eAu+Au collisions at RHIC at /Syn = 200 GeV.

6. Results

For a hadron gas excluding Hagedorn states (see FigTd#% 1604 MeV andu, = 22.9
MeV, which gavey? = 21.2. Our resulting temperature and baryonic chemical patkate almost
identical to that in [69]. The inclusion of Hagedorn state®ur primary interest. Starting with
the fit for the RBC-Bielefeld collaboration, we obtaig, = 1659 MeV, u, = 25.3 MeV, and
X2 = 20.9, which is shown in Fig. 15. The? is slightly smaller than in Fig. 14. When we consider
the lattice results from BMW wheré. = 176 MeV, we findTe, = 1726 MeV, u, = 39.7 MeV,
and x2 = 17.8. The lower critical temperature seems to have an impacherhermal fit. The
lower x2 is due to the larger contribution of Hagedorn states @gat 1726 MeV, which is much
closer toT.. The contributions of the Hagedorn states to the total nurobéhe various species
at this temperature and chemical potential are about 30%. The difference in thg?'s for
BMW and RBC-Bielefeld collaboration is directly relatedtbh@ contribution of Hagedorn states in
the model. Because the RBC-Bielefeld critical temperatagton is significantly higher than its
corresponding chemical freeze-out temperature the toniton of the Hagedorn states is minimal
at only 4-11%. We find that the inclusion of Hagedorn statesishnot only provide a better fit
but they also affect the chemical freeze-out temperatudettas baryonic chemical potential. The
more mesonic Hagedorn states are present the laggleecomes. Furthermore, our fits also have
higherTgy's than seen in the fit without the effects of Hagedorn states.

7. Conclusions

Dynamical reactions with the known hadronic particles caratcount for the particle abun-
dances seen at RHIC. The chemical equilibration times arotay and do not fit within the calcu-
lated time scale of the hadronic fireball. This has led to 8sumption that the chemical freeze-out
temperature and the critical temperature coincide. Howessuming that these heavy, quickly
decaying Hagedorn states exist, chemical equilibrium eadhieved on short enough time scales
that fit within a hadronic, cooling fireball i.e. on the ordér01— 2 fm/c. Moreover, Hagedorn
states states provide a very efficient way for incorporatmuti-hadronic interactions (with parton
rearrangements). This work indicates that the populati@hrapopulation of potential Hagedorn
states close to phase boundary can be the key source for mighainderstanding of generating
and chemically equilibrating the standard and measuretbhad

Because of the success of decays from Hagedorn states adugjimg experimental particle
ratios, it was only logical to extend their use to other aredadronic models with the known
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particles are not able to reproduce the low shear viscasigntropy density ratio that seems to be
required to explain the large elliptic flow observed at RH@Me might expect that by increasing
the number of particles in a gas the mean free path would qubsdly decrease, which would
in effect decrease the totgl/s. In fact, including the “missing" Hagedorn states also dases

n /s for hadronic matter neaf; near to the string theory value/@m). Moreover, according to
the general argument that smalfsimplies strong jet quenching [75], the significant reductid

n /sindicates that hadronic matter near the phase transitiorore opaque to jets than previously
thought. Since the system should spend most of its time figrecause of the minimum in the
speed of sound), the fact thy's can be very small in that region in the hadronic phase mayimpl
that the key observables for the QGP, i.e., the strong quega jets and the large elliptic flow,
can receive significant contributions from the hot Hagedesonance gas.

We assumed that the particle ratios measured in Au+Au misat RHIC at,/Syn = 200
GeV admit a purely statistical description at chemicalZeseut. Our results for thermal fits with-
out Hagedorn states concur well with other thermal fit mo{&9$ where the chemical freeze-out
temperatureT, = 1604 MeV) is almost identical and the baryonic chemical potri, = 22.9
MeV) is only slightly larger. The thermal fit with the known npiales in the particle data group
provides a decent fit witly? = 21.2. However, the inclusion of Hagedorn states provides an eve
better fit to the experimental data whefé= 17.8 for the BMW collaboration angt? = 20.9 for
the RBC-Bielefeld collaboration. This provides furtheidmnce [8, 9, 11, 13] that Hagedorn states
should be included in a description of hadronic matter figar
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