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1. Introduction

The order of the phase transition in the case of two-flavor QCD in the divitéilremains
an open question. While with Wilson quarks [1, 2] the transition is found toonepatible with
a second order phase transition in the universality class of @(&d spin model, a first order
transition seems to be favoured in analyses with staggered fermibhs=a4 [3, 4].

The thermal equation of state (EoS) constitutes a relevant ingredient irytinedynamic
evolution of the quark-gluon plasma created in heavy-ion experimentan lbe determined non-
perturbatively in lattice calculations. In the recent past the EoS has heiadextensively using
the staggered type of quark discretization, mostly Wth= 2+ 1 flavors at the physical point
[5, 6]. The much more compute-intensive Wilson-like discretizations arérlesstigated however
[7, 8]. In the latter study the fixed scale approach is used as comparestwtie traditional fixed
N; approach.

2. Lattice Setup

The lattice setup in our ongoing investigations equals the one employed by tbhpean
Twisted Mass Collaboration (ETMC) for thelM; = 2 simulations [9]. It employs the twisted
mass action in terms of the twisted fielgs= exp(—imys13/4) Y

SRR Zx — KDw(xy)[U] +2ikauysTadcy) X (Y) - 2.1)

in the quark sector, while the gauge sector is described by the tree-jgwan@ik improved gauge
action

Sglsym[U] = <Co Z[l - %ReTr(Up)] +c1 Z [1— %ReTr(UR)]) . (2.2)

The latter two sums extend over all possible plaquet®@s(d all possible planar rectangldd),(
respectively.

3. Pseudo-Critical Temperaturesand Chiral Limit

For the present study of the chiral limit we rely on simulations With= 12 at pion masses
mps ~ 320 MeV, 400 MeV and 470 MeV that have been analyzed in Ref. [1d)] fifstorical
reasons we call these ensembles A12, B12 and C12). Our determinatioe p$eudo-critical
temperature is based on the measurement of the variangg ofver the gauge ensemble

oGy = 3 ((0)?) — (@w)?) 3Y)
It corresponds to the disconnected part of the usual chiral susitigpilnd should show a maxi-
mum in the region of;.. This is indeed the case for all our ensembles and two representatase cas
are shown in the two left panels of Fig. 1. From fitting Gaussian function tdatuaofol%w around
the maxima we infer values of the pseudo-critical couplifgshat are converted to a physical
value ofT; using an interpolation od(f3) [10]. At leading order in chiral perturbation theory and
for a phase transition of second order the pion mass dependefiges@xpected to be given as

To(My) = To(0) + A/ PO (3.2)
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whereTc(0) is the critical temperature in the chiral limit aqﬁjandé are critical exponents cor-
responding to the universality class of second order phase transiti@hawé restricted our-
selves to the chiral scenarios discussed in Ref. [10] including a fiddr acenario as well as
the O(4) andZ(2) second order scenarios, for the latter assuming a second ordetlirgridpated
atmyc = 0 MeV or alternatively atn;. = 200 MeV. The result of fits of Eq. (3.2) to our data
is shown in the right most panel of Fig. 1. As the fitted curves are all dsgrthe given data
quite well we conclude that the present set of pion mass values can notiiigte among the
different chiral scenarios that have been studied. ForGf® model the fit prefers a value of
T(0) = 152(26) MeV.
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Figure 1. Determination ofT; from O'L%w using a Gaussian fit to the maximum for the A12 and B12 ensem-
bles. Comparison of different scenarios for the chiral fiafiT.

4. The Trace Anomaly

For the EoS we concentrate on one of the values of pion masses used liir#hdrit study
above, namely the one correspondingrigs ~ 400 MeV. We have added at the same pion mass
additional runs at smallé; = 4, 6 and 8 (henceforth denoted by B4, B6, B8. Apart from the
latter, for whichNg = 28 has been chosen, all lattices have a spatial eitgnt 32. Moreover,
further ensembles aps ~ 700 MeV (further on referred to as the D mass) were generated with

sizesN2 x Ny = 24° x 10, 20° x 8 and 18 x 6 (referred to as D10, D8 and D6).

The direct evaluation of pressupe=T ‘90"\‘/2 ‘T and energy density = \I/gl':]% ‘v from deriva-
tives of the partition functiorz is problematic given the lattice spacing dependence of both the
temperaturd = 1/(N;a) and the volum& = N2a®. The by now standard approach is the use of
the integral method to calculate the pressure as a temperature integral dattetivative of the

partition function with respect to the lattice spacing, the so called trace anomaly:

I e-3p_ T /dInZ
T4 T4 VT4\dina/g,
1 c _
=N7Bp 3y {Z" <ReTrZ Up> +3 <ReTr; UR> +BeXDwlU]X)sup  (4.2)
o't sub sub

— [2(ap)Bx + 2kc(ap)By] <)?iygr3x>sub} .
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Here, Bg, B, and By are related to thg-functions, the derivatives of the bare parameters with
respect to the lattice spacing, as follows:
dg 1 Jd(ap)

% =22 BTl op

_ OKc
=95
Itis necessary to subtract from each term in above expression tlespondingl’ = 0 vacuum con-
tribution (...)g,p = (.- -)720— (.- -)7_o IN Order to achieve a finite result. Details of the subtraction
on the basis of the available= 0 lattice data as well as on the evaluation of fhiinctions will be
given in the following section. In the left panels of Figs. 3 and 4 we showr#oe anomaly for the
two cases of pseudoscalar masses under investigation. In both casbsexee sizeable lattice ar-
tifacts in the height of the maximum and even in the falling edge at larger tempesaldoreover,
the precision in case of the smaller mass is not yet satisfactory, especsihakhtemperatures.

B« (4.2)

5. B-Functionsand T = 0 Subtraction

For evaluating the thre@-functions we consider fits to lattice data of the Sommer sggile
the chiral limit (denoted b)(%)). To this end the correct asymptotic behavior is built into the fit
functions explicitly following Ref. [11]. For instance we determBgvia the identity

By = <ac£> — (%) (‘ﬁ) B , (5.1)

by fitting ry /a to the formula

1+noR(B)?

I'x . _a(B)
(3) P = G rarEr RO

B a (Bsub) ©2)

The ratioR(p) is defined in terms of the known two-loop perturbative formaga(3) andBsyp =
3.9 has been chosen in above formula. The three parameter fit of eqcﬁE(.%) (see the left
panel of Fig. 2) yields(?/dof = 1.2. The thus obtaine@-function is shown in the middle panel
of Fig. 2. The interpolation provided by the fit of Eq. (5.2) has also beewl to set the scale using
the physical value ofy = 0.420(15) fm by ETMC [12].

The secongB-function associated with the mass is evaluated from a similar identity [11]:

Lo g, 10w

= = 5.3
H=aw) 0B P Tru op (5:3)
ryu as well as its derivative are obtained by fitting the following expressiog fio
1 ¥o/2Bo
= (22)7 R, PR = a1+ BRB)) (5.4

wherefy = (11— 2N¢ /3)/(4m)? andy = 1/(277). The third and remaining-function involving
By is calculated in the most straight-forward manner from an explicit deratiw. with respect
to B using the Padé interpolation of Ref. [13].
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In order to obtain(...)y,, I- €. to subtract th& = 0 expectation values, we have used all
available lattice data from ETMC. For these it has been necessary to ilaterpoau using spline
functions to match with the simulated bare mass at 0. Further additional' = O runs have been
simulated in order to perform the subtraction more reliably. However, nstralllation points at
finite temperature are supplemented with an associated simulation. Thus, we have performed
an interpolation i3 using a polynomial ansatz of fifth order. For the plaquette, the rectandle an
the Wilson hopping ternDy, we have obtained values for® per degree of freedom of 2, 23
and 29, respectively. The remaining term, for which no fit of reasonable quadityd be obtained
using this ansatz, has been interpolated using splines. For the D ensenthldarger mass,
sufficientT = 0 data newly generated is available. Hence, no interpolations in the baskncpu
and only few interpolations in the bare mass had to be done.
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Figure2: Left: Interpolation ofry /ain the bare coupling. The point At= 4.6 is not obtained from a chiral
extrapolation and is not included in the filiddle: The B8-function obtained according to Eq. (5.1). We also
show the perturbative 2-loop expectation at large couplBg(B) = —1280 — 72%. Right: Pion mass in
physical units for the B ensembles together with a constaovér all data points.

6. Pressure and Energy Density

The evaluation of the pressure from the integral technique procedadselgyating the identity
4z = T4 (&) in temperature along the line of constant physics (LCP):
P po_ [T, &€-3p
LI d

(6.1)

LCP

We define the LCP in terms of the pion mass in physical units, which for the smadss run is
shown in the right panel of Fig. 2. As can be seen it is constant withinserFar the larger mass,
however, we observe a systematic risenpg towards larger coupling which amounts to a violation
of the LCP condition on the level of 10%.

We perform the integration Eq. (6.1) by fitting the available lattice datlé)gdb the ansatz [6]

(6.2)

L4 = exp(—hlt_— hzt_z) . (ho+

fo{tanh( fit + f2)}
T ) ’

1+ gat +got?

wheret = T/Tp and Ty is a free parameter in the fit. For the fit we use the tree-level corrected
data of the trace anomaly that we obtain by normalizing it with the lattice-to-comtimatio of



F. Burger

the Stefan-Boltzmann pressure in the free lipig/ psg! following Ref. [6]. We check the validity
of this approach by comparing the continuum limit values as obtained fronotiected as well
as uncorrected data for various temperatures and find compatible redihlésrirajority of cases.
As can be observed from Figs. 3 and 4, where the thus correctedaimacealy is shown for the
various availabléN;, the correction is efficient and overlays the data from diffeMgnt

In order to account for the large errors at small temperatures werpefits of Eq. (6.2) to the
upper and lower Iz deviations and keep the resulting difference as the error of the interpolatio
For the B (D) ensembles we have fitted data figm= 8,10 and 12 ; = 8 and 10) simultaneously
and obtain acceptable fits in both cases. We subsequently integrate thelatterpcurve numer-
ically in temperature. The integration constggtin Eq. (6.1) has been set to zero in the present
evaluation. The (yet preliminary) results for the pressure and energgitgt are shown in the right
panels of Figs. 4 and 3.
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Figure 3: Left: The trace anomaly for the D ensembles (see text) obtainedifierent values of the
temporal exteniN;. Middle: The trace anomaly after tree-level correction with a fit of 6.2). Right:
Preliminary results for the pressure and the energy density

10

Ut s e=3p ‘ IHt(‘l[[)\Ol’lthn 1 1.5 2 2.5 X%
IPYE g T 12 ‘ .=
B mass (“ 31))/T
10 6l 16
8 %i
T %ﬁﬂa@ 1 \ ] R
R
4r "X 1 2 A %g | '.,‘. tw«“z é&&é“@“é“é
2 JKX** e b \%“;‘4&* 2SN
ol £98,. 1 g 0 = @
2y ‘ ‘ ‘ L1 2t ‘ ‘ ‘ ‘
100 300 500 700 900 100 300 500 700 900
T [MeV] T [MeV]

Figure 4: The same as in Fig. 3 but for the B ensembles (see text).

7. Conclusions

We have presented results for the mass dependence of the pseudb-titiperature for
several small values of the pion mass in the rangegf~ 320 MeV andmps~ 470 MeV in a

1We usepkg/psg = 2.586,1.634,1.265,1.134,1.084 forN; = 4,6,8,10,12, respectively as obtained in Ref. [14].
The dependence on the magd{ is found to be very mild and below 1 % such that the same correction facised
for all temperatures.
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setup withN; = 2 Wilson twisted mass quarks ldt = 12. The comparison of different scenarios
in the chiral limit is so far inconclusive at the present masses. Furthehawe presented first,
yet preliminary, results of our ongoing project aiming at the determinationeoEt. The trace
anomaly has been computed for two values of the pseudoscalar massub#i@band 700 MeV
and has been tree-level corrected. The pressure has been cdlfulatehe integral method using
a smooth interpolation formula fitted to the corrected trace anomaly.
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