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Abstract

All positive strand RNA viruses are known to replicate their genomes in close association with intracellular membranes. In
case of the hepatitis C virus (HCV), a member of the family Flaviviridae, infected cells contain accumulations of vesicles
forming a membranous web (MW) that is thought to be the site of viral RNA replication. However, little is known about the
biogenesis and three-dimensional structure of the MW. In this study we used a combination of immunofluorescence- and
electron microscopy (EM)-based methods to analyze the membranous structures induced by HCV in infected cells. We
found that the MW is derived primarily from the endoplasmic reticulum (ER) and contains markers of rough ER as well as
markers of early and late endosomes, COP vesicles, mitochondria and lipid droplets (LDs). The main constituents of the MW
are single and double membrane vesicles (DMVs). The latter predominate and the kinetic of their appearance correlates with
kinetics of viral RNA replication. DMVs are induced primarily by NS5A whereas NS4B induces single membrane vesicles
arguing that MW formation requires the concerted action of several HCV replicase proteins. Three-dimensional
reconstructions identify DMVs as protrusions from the ER membrane into the cytosol, frequently connected to the ER
membrane via a neck-like structure. In addition, late in infection multi-membrane vesicles become evident, presumably as a
result of a stress-induced reaction. Thus, the morphology of the membranous rearrangements induced in HCV-infected cells
resemble those of the unrelated picorna-, corona- and arteriviruses, but are clearly distinct from those of the closely related
flaviviruses. These results reveal unexpected similarities between HCV and distantly related positive-strand RNA viruses
presumably reflecting similarities in cellular pathways exploited by these viruses to establish their membranous replication
factories.
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Introduction

Hepatitis C virus (HCV) infection affects ,170 million people

worldwide and is a major cause of chronic liver disease including

liver cirrhosis and hepatocellular carcinoma [1,2]. In spite of the

recent approval of the first generation of HCV-specific protease

inhibitors, current therapeutic options are still limited by profound

side effects and eventually antiviral drug resistance [3]. Thus, there

is an urgent need to develop novel selective antiviral strategies, for

which fundamental understanding of the basic principles of HCV

replication is essential.

HCV is a positive-strand RNA virus belonging to the family

Flaviviridae (genus Hepacivirus). The viral genome, ,9.6 kb in

length, is an uncapped linear molecule that contains a single open

reading frame (ORF) flanked by 59 and 39 non-translated regions

(NTRs) [4]. After release of the viral RNA genome into the

cytoplasm, it serves as messenger RNA and is used for cap-

independent translation via the internal ribosome entry site (IRES)

located within the 59NTR (reviewed in [5]). The resulting

polyprotein is co- and post-translationally processed by cellular

and viral proteases into 10 different proteins that are required for

RNA replication and virion formation. The N-terminal region of

the polyprotein comprises the structural proteins core as well as

envelope proteins 1 and 2 (E1 and E2) that build up the virus

particle. C-terminal of E2 are p7 and nonstructural protein 2

(NS2) that are required for assembly of infectious HCV particles

(reviewed in [6]). The latter is in addition a cysteine protease

responsible for cleavage between NS2 and NS3 (reviewed in [4]).

The minimal HCV replicase comprises the remaining nonstruc-

tural proteins: NS3, NS4A, NS4B, NS5A and NS5B [7]. In fact,
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subgenomic RNAs (replicons) composed of only the NTRs and the

region encoding for these replicase proteins are capable of

autonomous replication in the human hepatoma cell line Huh7.

A common feature of all positive-strand RNA viruses is the

remodeling of intracellular membranes creating mini-organelles or

‘replication factories’ where RNA amplification and eventually

also virion assembly take place (reviewed in [8]). Formation of

such sites facilitates coordination of the different steps of the

replication cycle, but might also shield viral RNA, especially

double strand (ds) RNA replication intermediates, from recogni-

tion by innate sensors such as RIG-I (retinoic acid-inducible gene

I, also known as DDX58) or MDA5 (melanoma differentiation-

associated gene 5, also known as IFIH1 or Helicard). In the case of

flaviviruses such as Dengue virus or West Nile virus, it has been

shown that RNA replication occurs most likely within membrane

invaginations originating from the endoplasmic reticulum (ER)

[9,10]. Similar invaginations have been described e.g. for Flock

House virus or Semliki Forest virus, although in these cases

membrane alterations occur at other sites: the outer mitochondrial

membrane or the plasma membrane, respectively [11,12]. In

contrast, in case of the poliovirus, the prototype member of the

picornaviruses, complex membrane rearrangements have been

described that are formed most likely as protrusions originating

from cis-Golgi membranes and transforming in a time-dependent

manner from single membrane tubular compartments into double-

membrane structures [13]. Likewise, coronaviruses [14,15] and

arteriviruses [16,17] induce double membrane vesicles (DMVs)

that resemble exvaginations of ER-derived membranes.

In case of HCV, membrane rearrangements with a ‘membra-

nous web’ (MW)-like appearance [18,19] were originally detected

in cells over-expressing the viral polyprotein, or only NS4B.

Morphologically the MW is a cytoplasmic accumulation of highly

heterogeneous membranous vesicles that are embedded into an

amorphous matrix. A recent study suggests that the predominant

structures within the MW are DMVs and less frequently,

multivesicular membranes [20]. However, the 3D architecture of

the MW and its biogenesis are not known and it is unclear where

precisely viral RNA replication occurs.

Taking advantage of a combination of confocal microscopy,

electron microscopy (EM) and electron tomography (ET), in this

study we have dissected the composition, 3D architecture and

biogenesis of the various HCV-induced membrane alterations.

The results suggest that HCV and the distantly related picorna-

and coronaviruses, but not the closely related flaviviruses, share

strikingly similar morphology of remodeled intracellular mem-

branes likely reflecting the exploitation of common host cell

pathways by these viruses.

Results

HCV proteins localize to multiple membranous cell
compartments

To gain insight into the origin of the MW and its composition

with respect to involved subcellular compartments, we conducted

an extensive series of colocalization studies by using immunoflu-

orescence (IF) microscopy. HCV proteins were detected in Huh7

cells 48 hours post infection (hpi) by using mono-specific antisera

and cellular proteins were detected by antibodies recognizing

endogenous proteins or by ectopic expression of GFP-tagged

proteins (for details of used antisera and constructs see Table S1 in

Text S1). Subcellular compartments tested in this way included

ER, lipid droplets (LDs), mitochondria, early and late endosomes,

lysosomes, ER-Golgi intermediate compartment and others (for a

complete summary of tested markers and their abbreviations see

Table 1). Confocal images were analyzed by determining

Pearson’s correlation coefficient which is a measure for the degree

of overlap of the two images recorded in different channels and

thus indicative for a biological interaction [21,22]. Only values

higher than 0.5 were considered as colocalization. All examined

HCV proteins (core, E2, NS3, NS4B and NS5A, but not NS5B for

which no suitable antibody was available) colocalized with PDI, a

marker for the rough (r) ER (Figure 1A and Table 1). Similar

results were obtained with another rER marker protein: GRP94

(Table 1). HCV proteins also colocalized with Rab21 and Rab7A,

which are markers for early and late endosomes, respectively

(Figure 1B, C). Moreover, some HCV proteins colocalized with

markers for COP I (b-COP) or COP II (sec13) vesicles (Figure 1D

and supplementary Figure S1C, respectively). Colocalization was

also found between HCV proteins and mitochondria as revealed

by staining with MitoTracker Red (Figure S1A) as well as between

core, NS4B and NS5A and LDs that were detected by ADRP

staining (Figure S1B) or with the lipid dye BODIPY (Table 1).

Neither GFP-LC3, a marker for autophagosomes, (Figure S1D),

nor any of the markers for Golgi and lysosomes colocalized with

viral proteins (Table 1). We note that analogous results were

obtained when cells were analyzed already 24 hpi (supplementary

Figure S2), although at this time point HCV-specific signals were

very much reduced as compared to 48 hpi. In summary, these

data suggest that membrane alterations induced by HCV originate

primarily from the ER, but contain in addition membranes

derived from other subcellular compartments such as early and

late endosomes, as well as COP I/II transport vesicles. In addition,

the MW contains mitochondrial membranes and LDs, the latter

playing an important role in HCV assembly [6].

Correlative microscopy identifies sites of high
fluorescence as complex HCV-induced membranous
compartments

A main limitation of fluorescence microscopy is the difficulty to

allocate viral and cellular proteins to distinct subcellular structures.

Author Summary

All positive-strand RNA viruses replicate in the cytoplasm
in distinct membranous compartments acting as ‘replica-
tion factories’. Membranes building up these factories are
recruited from different sources and serve as platforms for
the assembly of multi-subunit protein complexes (the
‘replicase’) that catalyze the amplification of the viral RNA
genome. In this study we found that hepatitis C virus
(HCV), a major causative agent of chronic liver disease,
induces profound remodeling of primarily endoplasmic
reticulum-derived membranes. Surprisingly, the 3D archi-
tecture of these membrane rearrangements is similar to
those induced by the unrelated picorna- and coronavirus-
es, but in striking contrast to the closely related flavivirus-
es. Early in infection HCV induces double membrane
vesicles (DMVs) that emerge as protrusions of the ER; later
on, HCV induces in addition multi-membrane vesicles that
are probably the result of a cellular stress reaction and that
are reminiscent to an autophagic response. These pro-
found membrane rearrangements are induced by the
concerted action of HCV-encoded nonstructural proteins
of which NS5A is the only one capable to induce DMVs.
These results provide important insights into the 3D
architecture of the membrane alterations induced by HCV
and reveal unexpected similarities between HCV and the
very distantly related picorna- and coronaviruses.

Structure and Biogenesis of HCV Membranous Web
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For instance, it is unclear whether HCV-positive punctae,

frequently observed in infected or transfected cells represent mere

accumulations of viral proteins or distinct membranous compart-

ments. To overcome this limitation we conducted correlative light

electron microscopy (CLEM) by using a replication-competent

subgenomic replicon containing a GFP-tagged NS5A [23].

Relevant fluorescent structures were allocated by fluorescence

microscopy of live cells grown on patterned sapphire discs

(Figure 2A) and cells were immediately processed for EM

(Figure 2B). We found that highly fluorescent GFP-positive areas

often corresponded to accumulations of double membrane vesicles

(DMVs) surrounding LDs and residing in close proximity of ER

(Figure 2C). These structures were not observed in mock-infected

cells, arguing for an HCV-specific phenotype. We therefore

concluded that the highly fluorescent structures are not mere

aggregates of viral proteins, but instead correspond to complex

HCV-induced membranous compartments containing LDs and

DMVs.

HCV infection induces massive rearrangements of
intracellular membranes in a time-dependent manner

With the aim to study HCV-induced alterations of intracellular

membranes at the ultrastructural level, we first defined the EM

method giving best preservation of the MW. We compared

embedding of cells grown on glass coverslips or prepared as a

pellet and embedded in epon (Protocol S1 in Text S1) with

embedding of cells grown on sapphire discs and preserved by high

pressure freezing – freeze substitution (HPF-FS) prior to embed-

ding into epon (supplementary Figure S3). Best preservation of

membranes was achieved with chemical fixation of cells (which

was required for biosafety reasons to inactivate infectious HCV),

prior to HPF-FS and subsequent embedding of cells into epon

resin (supplementary Figure S3C). Under these conditions

membrane bilayers were clearly discernable and therefore, this

method was used for all EM analyses.

We then studied the kinetics of appearance of HCV-induced

membrane alterations. Huh7.5 cells were infected with the highly

assembly-competent HCV genome Jc1 [24], cells were fixed 4, 8,

12, 16, 24, 36 and 48 h post-infection (hpi) and processed for EM

by using HPF-FS and epon embedding as described above. Mock-

infected cells served as negative control (Figure 3A). At very early

time points after infection (4–12 hpi), no virus-specific alterations

of intracellular membranes were detected (not shown). At 16 hpi

vesicles with two clearly distinguishable and closely apposed

membrane bilayers were observed only in infected cells and these

DMVs were the predominant structures (Figure 3B). They had an

average diameter of ,125 nm (623 nm; n = 90) and resided

primarily in the area surrounding rER cisternae suggesting that

the DMVs originate from this compartment. At 24 hpi the

number of DMVs per cell increased dramatically (for quantifica-

tion see below) and their diameter was slightly larger

(147 nm626 nm; n = 90) (Figure 3C). At 36 and 48 hpi multi

membrane vesicles (MMVs) became more predominant. They

were composed of more than two bilayers, displayed in a

concentric fashion and were abundant in the cytoplasm of late

stage-infected cells (Figure 3D, E). The size of MMVs was much

larger than the one of DMVs (337 nm682 nm; n = 90). Some of

the MMVs had an electron dense lumen, corresponding most

likely to engulfed cytosol, while others appeared ‘empty’ arguing

that they represent double membrane autophagosomes engulfing

DMVs and cytosol (labeled with a * in Figure 3E). At these late

time points after infection the cytoplasm was ‘filled’ with those

vesicular structures giving the cytoplasm a sponge-like appearance.

In addition, some of the DMVs displayed a larger tubular shape,

which we therefore called double membrane tubules (DMTs).

We note that a locally confined accumulation of membranous

vesicles originally referred to as MW was rarely observed when

using HPF-FS of HCV-infected or replicon-containing cells, which

is at variance to the study by Egger and co-workers who used

conventional EM [18]. We only observed such confined sites when

using expression of HCV proteins (see below). Nevertheless, in

order to stay consistent with the generally accepted nomenclature,

we use the term MW in the present report to indicate

accumulations of HCV-associated membranous vesicles even

Table 1. Summary of immunofluorescence-based
colocalization studies of HCV proteins and cellular marker
proteins.

cellular proteins viral proteins

organelle marker core E2 NS3 NS4B NS5A

dsRNA 0.41 0.3 0.34 0.23 0.36

rough ER PDI 0.58 0.67 0.63 0.53 0.52

GRP94 0.72 0.58 0.74 0.54 0.43

smooth ER EH 0.34 n.a. 0.43 n.a. 0.35

reticular subdomain of
rough ER

CLIMP-63 0.37 0.39 0.59 0.323 0.4

LD BODIPY 0.6 0.36 0.32 0.54 0.37

ADRP 0.82 0.42 0.42 0.44 0.56

mitochondria MitoTracker 0.48 0.53 0.6 0.62 0.5

ER-Golgi intermediate
compartment

GFP-ERGIC-53 0.3 0.31 0.31 n.a. 0.34

cis Golgi network GOS-28 0.29 0.53 0.34 0.24 0.4

trans Golgi network TGN46 0.27 n.a. 0.23 n.a. 0.24

early endosome GFP-Rab21 0.6 0.57 0.75 n.a. 0.71

Rab5 0.27 n.a. 0.26 n.a. 0.30

EEAI 0.2 n.a. 0.16 n.a. 0.28

autophagosome GFP-LC3 0.21 0.21 0.14 n.a. 0.03

vesicular
trafficking

COP I YFP-b COP 0.5 0.48 0.44 n.a. 0.52

COP II Sec13 0.43 n.a. 0.34 n.a. 0.35

recycling compartment Rab11 0.3 n.a. 0.39 n.a. 0.36

GFP-Rab11 0.33 0.63 0.28 n.a. 0.51

late endosomes Lamp-3 0.32 0.17 0.19 0.19 0.25

GFP-Rab7A 0.75 0.7 0.54 n.a. 0.78

multivesicular bodies LBPA 0.40 0.30 0.36 0.3 0.3

Naı̈ve high-passage Huh-7 cells were infected with 30 TCID50/cell of Jc1 and
48 h later processed for indirect immunofluorescence. Signal intensities were
quantified by using Intensity Correlation Analysis (ICA) of the Image J software
package and are given as Pearson’s correlation coefficient (PCC). PCC can range
from 21 to 1, corresponding to no or perfect colocalization. Only values higher
than 0.5 were considered as colocalization.
n.a., not applicable owing to incompatible antibodies.
ADRP, adipose differentiation-related proteins or adipophilin; CLIMP-63,
cytoskeleton linking membrane protein 63; COP I, coat protein I; COP II, coat
protein II; EEA1, early endosome antigen 1; EH, epoxide hydrolase; ERGIC-53, ER
Golgi intermediate compartment; GOS-28, Golgi SNARE protein 28; GRP94,
glucose related protein 94; Lamp-3, lysosome-associated membrane protein-3;
LBPA, lysobisphosphatidic acid; LC-3, light chain protein 3; PDI, protein
disulphide isomerase; Rab5, Ras-related GTP binding protein 5; Rab7A, Ras-
related GTP binding protein 7A; Rab11, Ras-related GTP binding protein 11;
Rab21, Ras-related GTP binding protein 21;. sec13, secretory protein 13; TGN46,
Trans Golgi network protein 46.
doi:10.1371/journal.ppat.1003056.t001

Structure and Biogenesis of HCV Membranous Web

PLOS Pathogens | www.plospathogens.org 3 December 2012 | Volume 8 | Issue 12 | e1003056



Structure and Biogenesis of HCV Membranous Web

PLOS Pathogens | www.plospathogens.org 4 December 2012 | Volume 8 | Issue 12 | e1003056



though they were rarely confined to distinct subcellular areas

under the used conditions.

Localization of viral proteins to HCV-induced membrane
structures

To determine localization of HCV proteins at distinct

membranous structures, we performed immunolabeling of thawed

cryo-sections. Surprisingly, conditions that we had used earlier to

detect Dengue virus replication and assembly sites [9] and that

supported high membrane preservation and antigenicity, failed in

case of HCV-infected cells. After standard fixation and prepara-

tion of thawed cryo-sections for immunolabeling on cells 48 hpi,

membranous areas appeared heavily extracted; membranes were

no longer detectable and the cytoplasm appeared full of holes (not

shown). Thus, to facilitate the analysis cells were fixed already

16 hpi, because at this time point HCV-induced membrane

rearrangements were of rather low complexity and thus easier to

preserve and interpret. Moreover, membrane preservation was

increased when cells were post-fixed with osmium tetroxide

(OsO4) [25], resulting in a much better overall structure

preservation, although labeling efficiency was reduced by this

method (Figure 4A, B). Of all antibodies tested we found that

NS5A- and NS3-specific antibodies showed specific labeling on

infected cells. The majority of the label was associated with small

50–70 nm diameter single membrane vesicles (SMVs) residing in

close proximity of the Golgi complex (Figure 4Aa and 4Ac) and

the rER (Figure 4Ab and 4Ad). Both antibodies also labelled

DMVs (Figure 4Af and 4Ag), but to a much lesser extent. In

addition, NS5A was found associated with LDs (Figure 4Ae) as

described earlier [26].

Next we wanted to substantiate these data and determined the

relative labeling distribution [27] by comparing infected to

uninfected cells with and without OsO4 post-fixation. Results

obtained in this way confirmed that irrespective of OsO4 post-

fixation the structures most abundantly labelled by both NS5A-

and NS3-specific antibodies were the rER and small vesicles,

whereas in uninfected cells we detected only background labeling

(Figure 4C). While the labeling on ER and Golgi-associated

vesicles reflects the sites of synthesis (rER) and likely of

accumulation, respectively, we were surprised to detect little

HCV protein labeling on DMVs. For this reason we performed

immunolabeling by using other EM-embedding methods (supple-

mentary Figure S4A, Protocol S2 in Text S1), but conditions with

high structure preservation were unfavourable for antigen

detection and vice versa. Likewise, attempts to localize double-

strand (ds) RNA by immuno-EM using a dsRNA-specific antibody

were ambiguous (supplementary Figure S4B–F, Protocol S3 in

Text S1). Even though in HCV-infected cells dsRNA labeling was

higher as compared to mock-infected cells (supplementary Figure

S4D), labeling could not unambiguously be allocated to a distinct

membranous compartment (supplementary Figure S4E). The only

exception were DMVs; ,20% of these structures could be labeled

either on the membrane or inside the vesicle and in ,20% of cases

the dsRNA label was in close proximity of DMVs (supplementary

Figure S4B, F). However, attempts to corroborate these results by

labeling HCV RNA metabolically were not successful, even

though Dengue virus RNA could be detected with this method in

infected Huh7 cells (not shown). In conclusion, the majority of

HCV-specific antigen labeling resided at the ER and at small

SMVs whereas DMVs were labeled with only low efficiency for

HCV protein and dsRNA. These results are consistent with the

important role of the ER for MW formation.

Kinetics of DMV formation correlates with HCV RNA
replication

Given the difficulty to unambiguously detect viral RNA by

immunolabeling methods, we used an alternative approach and

determined whether the kinetics of RNA amplification correlated

with the kinetics of membrane alterations. Huh7.5 cells were

infected with HCV (clone Jc1) at 100 TCID50/cell and kinetics of

spread of infection were determined by quantifying the number of

NS5A-expressing cells during a time period of 4–48 h (Figure 5A).

Infected cells were first detected 16 hpi and their number

increased steadily thereafter. Owing to high amounts of input

viral RNA, amplification of intracellular HCV RNA became first

detectable 16 hpi and increased ,100-fold during the subsequent

8 h (Figure 5B). This kinetic was corroborated when cells were

analyzed by immunofluorescence microscopy to detect dsRNA,

the presumed RNA replication intermediate, and its colocalization

with NS5A, a replicase component (Figure 5C). We observed a

time-dependent increase of the dsRNA- and NS5A-specific signals

in Jc1-infected Huh7.5 cells, whereas no such signal was found in

mock-infected control cells (not shown). Furthermore, the degree

of colocalization between dsRNA and NS5A increased remarkably

from ,20% at 16 hpi up to ,60% at 36 hpi, presumably as a

result of dsRNA accumulation at replication sites. Importantly,

quantification of the number of DMVs in these infected cells

revealed an analogous rise in DMV abundance (Figure 5D). At

16 hpi only ,50 DMVs were detected per cell section, but this

number increased ,6-fold during the following 8 h. Thereafter,

DMV number per cell remained rather constant. In contrast, the

number of MMVs was much lower throughout the observation

period and their abundance increased only at later time points.

Thus, the striking correlation between the kinetics of viral RNA

amplification and DMV formation suggests that DMVs might play

an important role for HCV RNA replication. In contrast, MMVs

appeared in high abundance only after the exponential RNA

amplification phase arguing that they are only of minor relevance

for replication.

Electron tomography identifies DMVs as protrusions
from the ER

To gain insight into the 3D architecture of membrane

alterations induced by HCV we carried out electron tomography

(ET) analysis of 250 nm thick sections of Huh7.5 cells infected

with Jc1 for 16 or 36 h. As shown in Figure 6, the outer (cytosolic)

membrane bilayer of a large fraction of DMVs (,45% of the

vesicles that were fully included in the volumes of a total of 149

Figure 1. Colocalization of HCV Proteins with organelle-specific markers in HCV infected cells. Huh7 cells were infected with HCV (strain
Jc1) using 30 TCID50/cell and 48 h later cells were fixed and processed for fluorescence microscopy. In case of samples shown in panels B–D, cells
were first transfected with expression constructs specified in the left of each panel and 24 h later cells were infected as described above. Samples
were analyzed with a Nikon TE2000-E inverted confocal microscope at 606magnification. (A)–(D) Colocalization of HCV proteins specified in the top
of each panel with protein disulphide isomerase (PDI; an ER marker), GFP-Rab21 (marker for early endosomes), GFP-Rab7 (marker for late endosomes)
or bCOP-YFP (marker for COP I vesicles). The upper panels represent a low magnification overview; boxed areas are shown as enlargement in the
corresponding panel below. The nucleus was stained with DAPI (blue). Scale bars represent 10 mm (top panels) and 2 mm (lower panels). The
quantification of the degree of colocalization (Pearson’s correlation coefficient) is given at the top of the enlarged pictures.
doi:10.1371/journal.ppat.1003056.g001
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vesicles examined in 19 different tomograms at different time

points) were continuous with the ER membrane. Surprisingly, in

contrast to our earlier observations made with Dengue virus-

infected Huh7 cells [9], HCV-induced DMVs appeared as

exvaginations, connected via a short neck-like structure to the

ER membrane bilayer. This is exemplified by the consecutive

snapshots and the 3D surface rendering of a tomogram generated

from cells analyzed 16 hpi (Figure 6B and supplementary Movie

S1). The fact that these DMVs were linked to the rER only via

their outer membrane suggests that these connections might

represent an intermediate stage of DMV formation, eventually

prior to their separation from the ER. In fact, ,40% of the DMVs

were tighly apposed to ER membranes, but without a visible neck-

like structure whereas ,15% of DMVs were not at all linked to

ER membranes.

If DMVs would be sites of HCV RNA replication, viral

replicase could either reside on the DMV surface, and thus

oriented towards the cytosol as discussed e.g. for the poliovirus

[28,29] (see below), or in the interior of the DMV. In the latter

case one would expect that the vesicle would have a pore to allow

entry of e.g. NTPs and exit of viral RNA progeny. We therefore

studied DMV morphology in more detail by ET and 3D

reconstructions. Most of the DMVs appeared as closed structure

and only in a minority of cases (,8%) an opening (‘pore’) towards

the cytosol was found (an example is shown in Figure 6C). Thus,

either only a small fraction of DMVs is actively engaged in HCV

RNA replication at a given time point or the viral replicase might

reside on the surface of DMVs. We also noted that most DMVs

have two tightly apposed bilayers. However, in a small fraction of

DMVs an intermembrane space was observed (Figure 6D).

Whether this represents another intermediate step in the

formation of DMVs or is caused by sample preparation is not

known.

Late during HCV infection, in addition to DMVs, MMVs and

DMTs increased in abundance (Figure 7 and supplementary

Movie S2), with the latter corresponding most likely to elongated

versions of DMVs (Figure 7B). In fact, at 36 hpi numerous

enwrapping events could be observed including DMVs containing

smaller DMVs inside (Figure 7C). It is likely that the extensive

enwrapping and curling of membranes leads to the formation of

MMVs. Their formation might be due to high abundance of the

viral proteins accumulating at the ER membrane at this late stage

of infection or be caused by an autophagic host cell response. In

any case, the late appearance of MMVs argues that they are not

the major sites of HCV RNA replication.

A concerted action of HCV replicase proteins is required
for membranous web formation

With the aim to gain insight into the mechanism of HCV-

induced membrane alterations, we first determined the contribu-

tion of individual viral proteins to this process. In the first set of

experiments we analyzed intracellular membrane alterations

detected in cells that had been transfected with subgenomic

replicons encoding NS2 to 5B or NS3 to 5B polyprotein

fragments, respectively (Figure 8A, B). In both cases DMVs were

detectable resembling morphologically those found in HCV-

infected cells. However, MMVs were virtually absent in replicon-

transfected cells arguing that the structural proteins themselves or

a stress response triggered by these proteins is the primary

determinant for MMV formation. Moreover, cells transfected with

the NS2-5B replicon contained lower numbers of DMVs, which

correlated with its lower replication efficiency as compared to the

NS3-5B replicon (not shown). The very same membrane

alterations were found upon expression of a NS3-5B polyprotein

fragment demonstrating that formation of DMVs is induced by

viral proteins independent from HCV RNA replication (Figure 8C;

quantified in panels I–K). Interestingly, expression of a NS3 to 5A

polyprotein fragment lacking NS5B induced the formation of small

clusters of DMVs and elongated double membrane tubules

(DMTs) (Figure 8D) having a highly variable diameter

(166 nm692 nm; n = 90; Figure 8I). This result indicates that

apart from its role as RNA-dependent RNA polymerase, NS5B

also affects morphology of the MW. Nevertheless, formation of

DMVs does not require this HCV protein.

To study the contribution of individual HCV proteins to the

formation of the MW, we expressed NS3/4A, NS4B, NS5A or

NS5B proteins separately in Huh7-Lunet cells and assessed by EM

membrane alterations in cell sections after epon embedding. We

did not express NS3 and NS4A on their own, because both

proteins form a stable membrane-associated complex and only this

complex is physiologically relevant [30]. In agreement with an

earlier report [18], in cells expressing the NS3/4A complex, we

detected swollen ER sheets as well as SMVs of variable diameter

(203 nm693 nm; n = 90) (Figure 7E and I–K). Strikingly, the

individual expression of NS4B (Figure 8F) induced the formation

of only SMVs (325 nm6168 nm; n = 90) whereas DMVs were not

observed (Figure 8K) even though NS4B is considered to be the

main inducer of the MW. To our great surprise, in cells expressing

NS5A we observed curling of ER membranes and formation of

MMVs containing several lipid bilayers in a concentric manner

and with an average diameter of 125 nm (635 nm; n = 90)

(Figure 8G, K). Interestingly, some of these vesicles displayed only

2 lipid bilayers and their morphology was indistinguishable from

DMVs observed in HCV-infected cells or cells containing a

subgenomic replicon. Expression of NS5B induced enlarged ER

sacs with an average diameter of 370 nm (6150 nm; n = 90) and

occasional curvature (Figure 8H and I–K). In summary, none of

the HCV proteins was capable on its own to induce formation of

the MW, which requires the concerted action of two or more

replicase proteins. Importantly, NS5A was the only protein

inducing the formation of DMVs arguing that NS5A is a major

contributor to MW biogenesis.

Figure 2. Correlative light-electron microscopy of cells containing a GFP-tagged subgenomic replicon. (A) Epifluorescence microscopy
of live cells containing a subgenomic replicon with a GFP-tagged NS5A. Huh7-Lunet cells were transfected with replicon RNA and seeded onto
carbon-patterned sapphire discs. Twenty-four hours later cells were analyzed by fluorescence microscopy and immediately processed for EM. (a)
Fluorescence image; (b) enlarged fluorescence image of the cell of interest; (c) merge of bright field and fluorescence images. Coordinates etched
onto the surface of the sapphire disc were used to record the position of the selected cells. White squares in a and c enclose the cell shown in b. (B)
EM micrograph of the cell boxed in panel Ab overlapped with the fluorescence image. Areas marked with a green dotted line indicate regions of
intense fluorescence. Note that the images do not match perfectly because the fluorescence image corresponds to the complete cell whereas the EM
image represents one 60 nm ultrathin section of the same cell. (C) Higher magnification images of the two different regions, labeled 1 and 2 in panel
B, corresponding to regions with intense fluorescence (1) or a region corresponding to the intersection of high to low fluorescence (2). Region 1 (top
panel) corresponds to a DMV-containing area residing in close proximity of the ER; region 2 (bottom panel) corresponds to a LD-enriched area
containing DMVs in very close proximity. Areas marked with white squares in the left images are magnified in the corresponding right panels. LD,
lipid droplet; ER, endoplasmic reticulum; DMV, double membrane vesicle; m, mitochondrium; if, intermediate filaments.
doi:10.1371/journal.ppat.1003056.g002
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Figure 3. Time course of membrane alterations upon HCV infection. (A) Images of mock-infected high-pressure-frozen and freeze-
substituted Huh7.5 cells. (B–E) Micrographs of high pressure frozen freeze-substituted Huh7.5 cells harvested 16, 24, 36 and 48 h after infection with
Jc1 (100 TCID50/cell). Yellow squares indicate the areas that are shown at higher magnification on the right of each subpanel. Note the time-
dependent increase of complexity of HCV-induced membrane alterations. ER, endoplasmic reticulum; m, mitochondria; MVB, multi-vesicular bodies;
LD, lipid droplet; DMV, double membrane vesicle; MMV, multi membrane vesicle; DMT, double membrane tubule (labeled with a black arrow).
doi:10.1371/journal.ppat.1003056.g003
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Figure 4. Immuno-EM localization of NS5A and NS3 in HCV-infected cells. Huh7.5 cells were infected with 100 TCID50/cell of Jc1 and fixed
16 h post-infection. (A) Cells shown in panels b, c and e to g were post-fixed with 0.1% OsO4 providing best membrane preservation, especially in
case of DMVs (f and g) and LDs (e). Both NS5A and NS3 localize predominantly to the ER (b and d) and 50–70 nm diameter single-membrane vesicles
(SMVs; subpanel a, c and d). NS5A also localizes to lipid droplets (e). (B) Amount of gold particles per mm2 in Jc1-infected versus mock-infected cells
after immunolabeling with NS3- and NS5A-specific primary antibodies. Note the higher immunolabeling with samples prepared without OsO4, but
also the lower membrane preservation under this condition. (C) Relative labeling distribution of NS3 and NS5A. Thawed cryosections of cells post-
fixed or not with OsO4 were labelled with NS3- or NS5A-specific antibodies by using two different blocks and 3 different labeling experiments. Per
labeling experiment two grids were considered, counting ,100–200 gold particles per grid and attributing the particles to the indicated structures. In
the case of uninfected cells only background labeling in the cytoplasm, on mitochondria and undefined structures was seen. Numbers refer to the
percent of total gold particles counted per sample. ER, endoplasmic reticulum; SV, small vesicles; Cyto, cytosol; Mito, mitochondria; n.d., non-defined
structures; NE, nuclear envelope; EE/LE, early/late endosomes; PM, plasma membrane; DMV, double membrane vesicle; LD, lipid droplet.
doi:10.1371/journal.ppat.1003056.g004
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Figure 5. Correlation between HCV RNA replication and appearance of double membrane vesicles. (A) Time course of spread of HCV
infection in Huh7.5 cells infected with 100 TCID50/cell of Jc1. Infected cells were detected by immunofluorescence using an NS5A-specific antiserum
(upper panels). The graph shown below represents the result of counting ,200 cells for each time point to determine the percentage of infected cells.
Scale bars represent 50 mm. (B) Time course of accumulation of intracellular HCV RNA in infected Huh7.5 cells. The graph shows the result of two
independent experiments (3 replicas each). Whiskers indicate the minimum and maximum values. (C) Colocalization of dsRNA and NS5A in cells infected
with Jc1 (10 TCID50/cell). Cells were fixed at time points specified in the left of each panel row and NS5A and dsRNA were detected by indirect
immunofluorescence microscopy. DNA was stained with DAPI (blue). Boxed areas in the left panels indicate areas that are shown as enlargements in the
corresponding right panels. The quantification of the degree of colocalization (Pearson’s correlation coefficient) is given in the enlarged pictures. Scale
bars represent 10 mm and 2 mm (left and right panels, respectively). (D) Time course of accumulation of DMVs and MMVs. For each time point, 10 cellular
profiles were counted. The Mann-Whitney (non-parametric) test was applied to determine statistical significance. Error bars refer to the standard
deviation. Note the striking correlation between the increase of intracellular HCV RNA and DMV number between 16 and 24 hpi.
doi:10.1371/journal.ppat.1003056.g005
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Discussion

In this study we conducted a detailed analysis of the 3D

morphology and biogenesis of the intracellular membrane

structures induced by HCV. Our results have several implications

for our understanding of the HCV replication cycle and its relation

to replication strategies of other positive-strand RNA viruses.

Origin of HCV-induced membrane rearrangements
By using an extensive IF-based analysis, we demonstrate that

the main component of the HCV-induced MW is membranes

derived from the ER. Moreover, we detected markers of early and

late endosomes, COP vesicles, mitochondria and LDs. These

results support earlier studies showing the association of the MW

with ER membranes and LDs [19,31,32]. Although we observed

colocalization of HCV proteins with mitochondria, at variance to

previous reports we did not detect morphological alterations of

mitochondrial membranes as compared to uninfected cells [33].

We also detected colocalization of HCV proteins with Rab

proteins found in early and late endosomes and these proteins

have been identified as host factors required for HCV genome

replication [34–36]. Since they are involved in regulating vesicle

budding, transport and fusion with target membranes we assume

that endosomes are involved in the trafficking of NS proteins or

viral RNA to distinct sites within the MW such as sites of RNA

translation, replication or virus assembly/exit. In fact, by using

immunolabeling we found that NS5A and NS3 localize to SMVs,

that were found in close proximity to the Golgi complex and the

ER, hence representing potential COP vesicles. Likewise, we

observed COP I vesicles in close proximity of DMVs and LDs (not

shown) supporting the important role of COP I components and

lipid/LD homeostasis for HCV replication [37].

A recent report by Ferraris and co-workers described the

detection of LC3-II at HCV-induced membranes [20] arguing

that formation of HCV replication sites is linked to autophagy.

However, the role of autophagy in the HCV replication cycle is a

matter of controversy. It has been proposed that autophagy is

involved in HCV RNA translation [38], initiation of RNA

replication [39,40], production of infectious virus particles [41]

or suppression of the innate antiviral defense [42,43]. While

autophagy has been shown to play a major role for the replication

of several other positive-strand RNA viruses such as poliovirus

[44,45], coronaviruses [46] or Dengue virus [47], we did not

detect colocalization of HCV proteins with LC3 (expressed

endogenously or as GFP-LC3 fusion protein). While this

observation is in complete agreement with reports by others

[38,39,41,48] it is well possible that individual factors of the

autophagy pathway, rather than the complete machinery, are

involved in the formation of the MW. Indeed it has been recently

reported that NS4B forms a complex with Rab 5 and Vps34 and

induces autophagy [49]. Moreover, NS5B appears to interact via

its thumb domain with Atg5 [40]. Interestingly, Atg5 initiates the

formation of DMVs via a crescent shape membrane and

colocalizes with NS5B [40]. It is therefore tempting to speculate

that proteins of the autophagy machinery, in close collaboration

with HCV proteins, induce formation of DMVs. Based on our

observation that NS5A triggers DMVs and MMVs and the recent

finding that NS5A is sufficient for induction of autophagy and

contributes to the fusion of autophagosomes and lysosomes [50],

we assume that NS5A plays a key role in the biogenesis of

membrane rearrangements.

In addition to DMVs, we also observed MMVs in HCV-

infected cells. The late appearance of these membrane structures

upon HCV infection argues against a direct role in RNA

replication. Instead MMVs might be an epiphenomenon induced

e.g. by a stress response potentially caused by massive membrane

rearrangements [49,51] or by the high abundance of membrane-

associated HCV proteins [52,53].

Biogenesis of DMVs and their possible role for HCV RNA
replication

The predominant membranous structures detected in HCV-

infected cells were DMVs. These structures as well as MMVs were

not an artifact caused by the used methods because they were

consistently detected under the following conditions (supplemen-

tary Figure S5):

a. with naı̈ve Huh7 cells infected with Jc1, thus excluding cell

clone-specific effects (Figure S5A);

b. with cells transiently transfected with a subgenomic JFH-1

(genotype 2) replicon and processed for EM analysis without

chemical fixation, thus excluding fixation artifacts (Figure

S5B);

c. with cells containing a stably replicating genotype 1b replicon

thereby excluding genotype-specific effects (Figure S5C);

d. with cells infected with low MOI and harvested at different

time points after infection (Figure S5D, E).

Thus, DMVs and MMVs are membrane rearrangements that

occur independent from the mode of viral RNA delivery and

fixation method and that do not depend on HCV genotype, a

particular cell clone, chosen MOI and time point of cell harvest.

By using single protein expression we found that each HCV

replicase factor induced distinct membrane alterations. In case of

the NS3/4A complex large SMVs were found whereas expression

of NS4B induced smaller and more homogenous SMVs.

Importantly, expression of NS5A led to the formation of DMVs

and MMVs whereas NS5B induced enlargements of the ER

occasionally containing invaginations. Interestingly, by using cell

lines inducibly expressing single HCV replicase proteins in U-2

OS human osteosarcoma cells, Egger and co-workers observed

analogous membrane alterations in NS3/4A- and NS4B-express-

Figure 6. 3D architecture of membrane rearrangements induced 16 h after HCV infection. (A) Huh7.5 cells were infected with 100 TCID50/
cell of Jc1, fixed 16 h later and after HPF-FS processed for ET as described in materials and methods. Left: slice of a dual axis tomogram showing the
various membrane alterations. Right: 3D reconstruction of the complete tomogram. Note the high number of DMVs. Panels B, C and D are part of the
tomogram displayed in panel A and their position in panel A is highlighted by either a yellow dashed square (B and C) or by a star (D). In the 3D
models shown on the right, the ER is depicted in dark brown, the inner membrane of DMVs and DMTs in yellowish brown and their outer membrane
in semi-transparent light brown. Single membrane vesicles are colored in pink, intermediate filaments in dark blue and the Golgi apparatus in green.
(B) Left: serial single slices through the same tomogram shown in panel (A) displaying a connection between the outer membrane of a DMV and the
ER membrane (black arrows). Right: 3D surface model showing the membrane connection. (C) Left: serial single slices through the same tomogram
illustrating a lasso-like structure of a DMV that after rendering reveals a pore-like opening that connects the interior of the DMV with the cytosol. The
position of this opening in the 2D slice is marked with a black arrow. Right: 3D view of this DMV showing the ‘pore’. (D) Left: serial single slices
through the same tomogram showing a DMV with a large inter-membrane space between its inner and outer membranes. Right: 3D view of this
DMV. Scale bars represent 100 nm. This tomogram is shown in movie S1.
doi:10.1371/journal.ppat.1003056.g006
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ing cells that corresponded to smooth SMVs and compact clusters

of vesicles, the latter called MW [18]. However, no membrane

alterations were detected in cells over-expressing NS5A or NS5B.

Importantly, in cells expressing the complete HCV polyprotein, in

addition to the smooth SMVs and the membranous web, so-called

contiguous vesicles were found, which could not be ascribed to

individual HCV protein(s) [18]. These contiguous vesicles were of

irregular shape and their membranes were in very close contact in

a way that the two lipid bilayers were often fused into a trilayer.

These vesicles thus resemble DMVs that we observed in HCV-

infected cells or in cells expressing NS5A. The reason why such

vesicles have not been observed by Egger and co-workers in cells

expressing only NS5A is not known, but might be due to the use of

different expression systems or different conditions of sample

preparation.

So far we can only speculate about the biogenesis of DMVs. In

one scenario, HCV proteins might provoke membrane invagina-

tions into the ER, similar to what we had described for the related

Dengue virus [9]. Such invaginations might enlarge and reach the

opposite ER membrane, thus leading to pairing of both lipid

bilayers and DMV formation (Figure 9A). In a variation of this

model, HCV proteins would induce local exvaginations from the

ER membrane leading to vesicles that might remain linked to the

ER via a short membranous stalk (Figure 9B). These initially

single-membrane vesicles might undergo a secondary invagination

to form DMVs. Consistent with this second model we detected a

significant proportion of HCV proteins at small SMVs (Figure 4).

Moreover, in this model DMVs with a ‘pore’ (Figure 6C) might

represent intermediates that are (still) actively involved in RNA

replication, whereas later on when DMVs become completely

sealed, they would represent remnants that are no longer actively

engaged in the RNA amplification process. Such a compact

structure might also shield HCV proteins and RNA from detection

by antibodies, which would explain the poor immunolabeling of

DMVs (Figure 4). Alternatively, one might hypothesize that the

HCV replicase resides on the cytosolic surface of DMVs analogous

to what is assumed for the poliovirus [54] (Figure 9C). Although

counter intuitive, also in this case viral RNA and proteins actively

engaged in RNA replication are shielded from degradative

enzymes, at least to some extent, presumably by tight clustering

of replication vesicles and positioning of the replicase towards the

center of vesicle clusters [54].

Clearly, a direct demonstration of the HCV replication site will

require the unequivocal detection of newly synthesized RNA.

Detection by dsRNA-specific antibody is not sufficient, because

this method does not discriminate between active and inactive,

dsRNA-containing replication complexes. It might also detect viral

RNA genomes containing secondary (ds) structures and engaged

e.g. in RNA translation or virion assembly. Unfortunately, several

attempts to detect newly synthesized HCV RNA by IF- or EM-

based methods were not successful (not shown). These included (i)

transfection of infected cells with 5-bromouridine 59-triphosphate

and subsequent detection with a bromodeoxyuridine-specific

antibody; (ii) the use of chemically modified nucleotides (5-ethynyl

uridine) suitable for detection by click-chemistry; (iii) the use of

correlative microscopy after dsRNA-specific immunofluorescence.

These failures are probably due to poor accessibility of viral RNA

to antibodies, the fragile nature of the MW and the rather low

replication of HCV. In support of this assumption, some of these

approaches allowed detection of newly synthesized Dengue virus

RNA that replicates to much higher levels in an easy to access ER-

derived membrane compartment (Lee et al., unpublished) [9].

We note that for HCV most immunolabeling was detected at

the ER and SMVs whereas DMVs were only sporadically labeled

(Figure 4 and supplementary Figure S4B). While labeling of the

ER is consistent with its role as primary source of the MW, the role

of SMVs in the HCV replication cycle is unknown. On one hand

they might serve as sites of viral RNA replication (Figure 9D)

whereas DMVs might be an epiphenomenon reflecting e.g. a stress

response. On the other hand, DMVs might be sites of HCV

replication (Figure 9 A–C) and their poor immunolabeling could

be due to poor accessibility of viral RNA and proteins to

antibodies; in this scenario SMVs might represent an epiphenom-

enon. In any case, in the absence of a robust method allowing

metabolic labeling of viral RNA, the exact site of HCV RNA

replication within the MW remains to be determined.

Comparison of HCV-induced membrane alterations with
those of other positive-strand RNA viruses

A common denominator of all positive-strand RNA viruses is

the induction of membranous replication compartments that

provide a physical scaffold for the assembly of macromolecular

complexes catalyzing the amplification of the viral RNA genome

[8]. Both the origin and the biogenesis of these compartments

differ very much between the virus groups. For instance, Flock

House virus induces ,50 nm diameter invaginations of the outer

mitochondrial membrane [11]. Plant pathogens like Tomato

Bushy Stunt virus induce a remodeling of peroxisomes and

chloroplasts [55]. The Semliki Forest Virus triggers exvaginations

(spherules) at the plasma membrane [12]. Spherule-containing

vesicles are internalized and fuse with acidic endosomes. As a final

result, spherules accumulate on the outer surface of large vacuoles

in the pericentriolar region. Even more complicated structures are

induced by severe acute respiratory syndrome (SARS) coronavirus

and Equine Arterivirus. Structures induced by these viruses are

composed of mixtures of convoluted membranes and large (200–

400 nm) DMVs [15–17]. In case of the Dengue virus belonging to

the same virus family as HCV, invaginations of ER membranes

are induced that are connected to the cytosol via 11 nm diameter

pores allowing exit of viral RNA [9]. Similar observations have

been made for another flavivirus, the West Nile virus [10]. Finally,

poliovirus extensively reorganizes membranes originating from

components of the anterograde membrane traffic system, giving

rise to 50–400 nm single and double-membrane vesicles forming a

complex meshwork [56,57]. A recent study by Belov and co-

workers proposed that poliovirus-induced DMVs are derived from

SMVs that undergo complex secondary invaginations and

enwrapping events [13]. In these respects, the HCV-induced

MW morphologically most closely resembles the membranous

replication compartment induced by poliovirus and members of

the order Nidovirales (coronaviruses and arteriviruses). This

similarity might reflect the use of common host cell pathways

such as the phosphatidyl-inositol (PIP) pathway that plays an

essential role in the formation and integrity of the membranous

replication sites of HCV and picornaviruses [58–60]. Interestingly,

morphological similarities also exist between the MW of HCV and

the replication compartment of arteriviruses [17]. It would

therefore be interesting to determine whether also this virus group

utilizes PI4-kinases to establish its replication site.

In conclusion, we describe the first 3D model of HCV-induced

membrane alterations that are associated with viral RNA

replication. The biogenesis and morphology of the MW reveals

an unexpected similarity to the distantly related picornaviruses,

coronaviruses and arteriviruses. We propose that this similarity

reflects the common use of host cell pathways for biogenesis and

functionality of the membranous structures induced by these

viruses.
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Figure 7. 3D architecture of membrane rearrangements induced 36 h after HCV infection. (A) Left: slice of a dual axis tomogram taken
from Huh7.5 cells 36 h after infection with 100 TCID50/cell of Jc1. Right: 3D reconstruction of the tomogram. Note the extensive membrane
reorganization and the appearance of MMVs predominating at late time points after infection. Black arrows show invaginations of DMVs. The white
star indicates a large MMV; due to its complexity only its middle part could be rendered. (B) Left: slices through the same tomogram highlighting a
DMT enwrapping a DMV and presumably leading to the formation of a MMV. Right: 3D surface rendering of this structure. (C) Left: slices through the
same tomogram highlighting a ‘self-invagination’ event of a DMV, also leading to the formation of a MMV. Right: 3D surface rendering of this late
structure, revealing an opening of this MMV towards the cytosol as a result of the self-invagination. Panels B and C are part of the tomogram
displayed in panel A and their positions are highlighted by yellow dashed squares in panel A. Scale bars represent 100 nm. For further details see
legend to Figure 6. This tomogram is shown in movie S2.
doi:10.1371/journal.ppat.1003056.g007
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Materials and Methods

Antibodies
Primary antibodies used for detection of HCV proteins or

cellular proteins are specified in Table S1 in Text S1. Immuno-

fluorescence analysis was performed using goat secondary

antibodies conjugated with AlexaFluor 568 and Alexa Fluor 488

(Molecular Probes, OR, USA). Cellular DNA was stained with 49,

69-diamidino-2-phenylindole dihydrochloride (DAPI; Molecular

Probes). Lipid droplets were visualized by staining with BODIPY

493/503 (Molecular Probes) and mitochondria were staining using

MitoTracker Red (Molecular Probes).

Cell culture
For virus production, infection assays and electroporation of

HCV-RNA we used the cell clone Huh7.5 that is derived from the

human hepatoma cell line Huh7 and that is highly permissive for

HCV RNA replication [61]. Owing to unfavorable morphology of

Huh7.5 cells, for all immunofluorescence assays we used high-

passage naı̈ve Huh7 cells that also efficiently support HCV

replication and virus production. Huh7-Lunet cells [62], another

highly permissive Huh7 subclone, was employed for electroporation

of subgenomic HCV replicon RNAs [23,63]. The use of these

replicons allowed preparation of cells without prior chemical fixation

and thus virus inactivation. Huh7-Lunet T7 cells were cultured in

the presence of 5 mg of zeocin/ml and used for transfection with

pTM-based expression plasmids [64]. Cells were grown in

Dulbecco’s modified Eagle medium (DMEM; Life Technologies,

Karlsruhe, Germany) supplemented with 2 mM L-glutamine,

nonessential amino acids, 100 units penicillin per ml, 100 mg

streptomycin per ml and 10% fetal calf serum (DMEM complete).

In vitro transcription and RNA transfection
PFK-based plasmids pFK-J6/C3 (Jc1), pFK-I389-neo-sg-JFH1,

pFK-I389-Luc-NS2-39_JFH_dg, pFK-I389Luc-NS3-39_JFH_dg,

the non-replicative mutant pFK-I389-Luc-NS3-39-NS5BDGDD_

Figure 8. Membrane alterations induced by expression of individual HCV proteins. Huh7.5 cells transfected with replicon RNAs (A, B) or
Huh7-Lunet-T7 cells transfected with pTM-based expression constructs (C–H) specified in the left of each panel, respectively, were high pressure
frozen 24 h after transfection, freeze substituted, embedded into epon resin and sections were analyzed by transmission EM. Representative images
showing HCV-induced membrane alterations are shown. (I) Average diameter of specific vesicular structures, either DMVs or SMVs, detected in cells
that had been transfected with constructs specified in the upper panels. Whiskers represent minimum and maximum values. (J) Number of vesicular
structures detected in profiles of 10 transfected cells. Cells transfected with the pTM expression vector without HCV insert were used as reference.
The number of vesicular structures per mm2 is given; whiskers represent minimum and maximum values. (K) Relative abundance of membranous
structures. Note that only upon expression of the NS3-5A polyprotein and NS5A two different structures were observed. In all other cases, only one
membranous structure was detected.
doi:10.1371/journal.ppat.1003056.g008

Figure 9. Hypothetical models describing the formation of double membrane vesicles and their possible role in viral RNA
replication. (A) By analogy to flaviviruses [9] HCV proteins induce invaginations of the ER membrane. Extensive invagination leads to a local
‘shrinking’ of the ER lumen. This model assumes that enzymatically active HCV replicase (green dots) reside in the lumen of the invagination and
remain active as long as the vesicle is linked to the cytosol. Upon closure of the DMV, the replicase would become inactive (grey dots). Alternatively,
closed DMVs might be connected to the cytosol via proteinaceous channels. (B) HCV proteins might induce tubulation of ER membranes that
undergo secondary invagination and thus double membrane wrapping. These DMVs could initially be open to the cytosol, but might close off as
replication/infection progresses. The resulting DMV might stay connected to the ER via a stalk or be released as a ‘free’ DMV (left or right drawing,
respectively). (C) Induction of DMVs follows the same pathway as described for panel B, but the viral replicase remains on their cytosolic surface as
discussed e.g. for the poliovirus [28,29]. (D) HCV RNA replication might occur on SMVs in close proximity of DMVs. In this case, DMVs might be an
epiphenomenon or serve some other purpose for the HCV replication cycle. For each model, structures identified in the 3D reconstructions are shown
next to or below the corresponding schematic drawing. For further details see text.
doi:10.1371/journal.ppat.1003056.g009
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JFH_dg, pFKi389LucNS3-39_dg_JFH-1_NS5Aaa2359_emGFP

and the full-length genome pFK-JFH-dg have been described

elsewhere [23,24,63,65]. Synthesis of in vitro transcripts and RNA

transfection by electroporation has been described in detail

elsewhere [66].

Preparation of virus stocks
Huh7.5 cells were transfected by electroporation with Jc1-derived

in vitro transcripts. Culture supernatants of transfected cells were

harvested 24, 48, 72 and 96 h after transfection and cleared by

passing through 0.45-mm pore size filters. Supernatants were pooled

and concentrated by using Centricon Plus-70 Centrifugal Filter

Units (Millipore). Concentrates were loaded on top of an 80%

Optiprep (Axis-Shield, Oslo, Norway) cushion in PBS and

centrifuged for 4 h at 4uC and 30,000 rpm in an SW 28 Ti rotor

(Beckman Coulter, Krefeld, Germany). Alternatively, supernatants

were precipitated by using PEG-8,000 as described elsewhere [67].

Precipitate was spun down at 8,0006g for 90 min and resuspended

in complete DMEM. Concentrated virus sample was collected and

infectivity titer was determined by limiting dilution assay.

Transfection of DNA expression constructs
GFP-Rab7, GFP-Rab11, GFP-Rab21 or YFP-b-COP expres-

sion constructs (kindly provided by Jeremy Simpson, EMBL,

Heidelberg) or the GFP-LC3 construct (kind gift from Nathan

Brady, Bioquant, Heidelberg) were transfected into Huh-7 high

passage cells. A total of 0.2 mg DNA was transfected into cells

seeded onto coverslips by using the Effectene transfection reagent

(Qiagen, Hilden, Germany) according to the instructions of the

manufacturer. Twenty-four hours later cells were analyzed by

epifluorescence microscopy and inoculated with 30 TCID50/cell

of Jc1 as described above. pTM vectors allowing expression of

JFH1-derived polyprotein fragments or individual proteins [68]

were transfected by using the Mirus TransIT-LT1 Transfection

Reagent (Mirus Bio LLC) according to the instructions of the

manufacturer. Twenty-four hours later cells were analyzed by EM.

Quantification of viral RNA
Total RNA from ,66105 HCV-infected or mock-treated

Huh7.5 cells was isolated by using the Total RNA Isolation

Nucleospin RNA II Kit (Macherey-Nagel, Düren, Germany)

according to the recommendations of the manufacturer. HCV

RNA was quantified by qRT-PCR using the One-step RT-PCR

Kit (Qiagen, Hilden, Germany). Briefly, 5 ml of isolated RNA was

added to a reaction mixture, containing 0.6 ml of enzyme mixture,

25 mM MgCl2, 100 mM of each primer (sense primer: 59-

TCTGCGGAACCGGTGAGTA-39; antisense primer: 59-

GGGCATAGAGTGGGTTTATCC-39), 10 mM of each dNTP

and 10 mM HCV-specific probe (59-6FAM (6-Carboxy-Fluores-

cine)- AAAGGACCCAGTCTTCCCGGCAATT- TAMRA

(Tetra-Chloro-6-Carboxy-Fluorescine)-39). Serial dilutions of a

standard RNA (108 to 102 HCV RNA copies per reaction) were

processed in parallel to determine absolute RNA amounts.

Reactions were performed on a PRISM 7000 Sequence Detection

System (Applied Biosystems, Darmstadt, Germany) using the

following program: 50uC for 30 min, 95uC for 15 min and 40

cycles as follows: 94uC for 15 s, 55uC for 30 s and 72uC for 30 s.

HCV RNA amounts in infected cells were normalized to the signal

obtained with RNA from mock-treated cells.

Immunofluorescence microscopy
Cells were seeded onto glass coverslips in 24-well plates and

infected with 30 TCID50/cell of Jc1. At time points specified in the

text cells were fixed with 3% paraformaldehyde (PFA; EM grade,

Electron Microscopy Sciences, PA, USA) for 15 min. In case of

detection of dsRNA, cells were fixed with methanol for 10 min at

220uC. After washing with PBS cells were permeabilized with

0.01% Digitonin or 0.5% TritonX-100 in PBS, washed with PBS

and incubated for 10 min in PBS containing 1% BSA. Cells were

incubated with primary antibody dissolved in PBS/1% BSA for

1 h at room temperature, washed extensively with PBS and

incubated with Alexa Fluor-conjugated secondary antibody

(diluted 1:1,000) for 1 h at room temperature in the dark. After

washing with PBS, DAPI stain (diluted 1:5,000) was added and

cells were incubated 1 min in the dark. Cells were washed with

PBS and water, mounted with Vectashield (Vector Laboratories

Inc., Burlingame, USA) and sealed with nail polish. For image

analysis we used a Perkin Elmer Ultraview ERS spinning disk on a

Nikon TE2000-E inverted confocal microscope equipped with a

Plan-Apochromat VC 606 objective (NA 1.20) and the Volocity

5.3 software package. Channels were recorded sequentially onto

an EM-CCD camera using 405 nm excitation and 445/460 nm

emission for DAPI, 488 nm excitation and 527/555 nm emission

for BODIPY and Alexa Fluor 488, and 568 nm excitation and

615/670 nm emission for Alexa Fluor 568 and MitoTracker.

Images were merged by using the ImageJ software package

(National Institutes of Health).

High pressure freezing and freeze substitution (HPF-FS)
Cells were seeded onto 3 mm sapphire discs (M. Wohlwend

GmbH, Sennwald, Switzerland) that had been carbon coated to

improve cell adhesion. At different time points after infection (Jc1,

100 TCID50/cell) or electroporation of HCV RNA (10 mg) cells

were fixed with 4% PFA, 0.1% GA in Na-cacodylate buffer

[pH 7.4] and subsequently frozen after immersion in 1-hexade-

cene (Merck, Hohenbrunn, Germany) using a high-pressure

freezer (M. Wohlwend GmbH). Frozen discs were stored in liquid

nitrogen until further processing. Freeze substitution was done in

acetone containing 0.2% (w/v) OsO4, 0.1% (w/v) UA, and 5% (v/

v) water by slowly warming the samples from 290uC to 0uC
during a period of 20 h [69]. Samples were kept at 0uC and at

room temperature for 30 min each, washed with acetone, and

embedded in two-step epon series (Fluka, Buchs, Switzerland)

using 1 h-incubation in 50% epon dissolved in acetone and

overnight incubation in 100% epon. Epon was exchanged,

polymerized for 3 d at 60uC and sapphire discs were removed

by immersion in liquid nitrogen. In case of cell pellet embedding

that we used for immunolabeling (see Protocol S3 in Text S1),

infected cells were scraped off the plate, pelleted by centrifugation,

resuspended in 20% dextran, subjected to HPF-FS as described

above and embedded into the methacrylate resin Lowicryl HM20,

[Polysciences Inc., PA, USA]) that is more suitable for immuno-

gold labeling. Resins were polymerized by treatment with UV light

for 4 days.

Immunolabeling of thawed cryo-sections
Infected cells were fixed by adding an equal amount of 8% PFA

and 0.2% GA in 0.2 M PHEM buffer (120 mM Pipes, 100 mM

Hepes, 4 mM MgCl2, 40 mM EGTA, pH 6.9) to the culture

medium for 1 h at room temperature. Cells were then fixed for 1 h

with 4% PFA, 0.1% GA and 1% Acrolein in 0.1 M PHEM at

room temperature. The fixative was removed and the cells were

stored at 4uC in 4% PFA in 0.1 M PHEM until further processing.

After extensive washing with 0.1 M PHEM and alternative fixing

with 0.1% osmium tetroxide for 30 minutes on ice [25], remaining

aldehyde groups were blocked with 30 mM glycine in 0.1 M

PHEM. Cells were scraped off the plate, embedded in 10%
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gelatine and infiltrated in 2.3 M sucrose overnight at 4uC. Cell

pellets were mounted onto sample holder pins, frozen and stored

in liquid nitrogen. 60 nm cryo-sections were prepared using a

Leica Ultracut UC6 microtome (Leica Microsystems, Wetzlar,

Germany) and a diamond knife (Diatome, Biel, Switzerland).

Sections were picked up with a mixture of 2% methylcellulose and

2.3 M sucrose (1:1) and after thawing transferred to 100 mesh

formvar and carbon-coated grids. Labeling of thawed cryosections

was performed essentially as described elsewhere [70]. In brief,

sections were molten by floating on 2% gelatine for 30 min at

37uC, incubated in 30 mM glycine in 0.1 PHEM for 10 min and

then in blocking solution (PBG: 0.8% [w/v] BSA [Sigma], 0.1%

[w/v] fish skin gelatin [Sigma] in PBS). Sections were then

incubated with primary antibody diluted in blocking buffer, for

30 min at room temperature. After 5 times washing (5 min each)

in blocking buffer, sections were incubated with rabbit anti-mouse

followed by protein A coupled to 10 nm gold (Cell Microscopy

Center, Utrecht, The Netherlands) diluted in blocking solution.

After washing with PBS and distilled water, grids were stained with

3% UA for 10 min at room temperature and incubated with a mix

of 2% methylcellulose and 3% UA (1:6) for 10 min on ice. The

relative labeling distribution was determined essentially as

described somewhere else [27].

Correlative light-electron microscopy
Huh7-Lunet cells were transfected with 10 mg in vitro

transcripts derived from the subgenomic replicon construct

pFKi389LucNS3-39_dg_JFH-1_NS5Aaa2359_emGFP [27] and

seeded onto sapphire discs (M. Wohlwend GmbH) carbon coated

with a finder grid (Electron Microscopy Sciences, Hatfield,

Philadelphia, USA) on top to create a pattern. Twenty-four hours

later, live cells were analyzed by fluorescence microscopy using a

Zeiss Observer.Z1 inverted microscope (Carl Zeiss Microscopy

GmbH, Germany) to identify cells containing the replicon and to

record their positions in the patterned discs. Cells were then

immediately fixed by HPF-FS and embedded into epon resin as

described above. A small area around the recorded region of

interest was trimmed and 60 nm thick serial sections were

collected on formvar-coated slot grids for EM analysis. EM

micrographs of GFP-positive areas were acquired at different

magnifications to correlate these areas with the corresponding

ultrastructural features. Images were taken on a Phillips CM 120

Biotwin microscope.

Electron tomography
Sections of 250 nm thickness were collected on palladium-

copper slot grids (Science Services, Munich, Germany) coated

with Formvar (Plano, Wetzlar, Germany). Protein A-gold

(10 nm) was added to both sides of the sections as fiducial

markers. Dual axis tilt series were acquired with a FEI TECNAI

F30 microscope operated at 300 kV and equipped with a 4 k

FEI Eagle camera [binning factor 2, binned pixel size 0.592 nm

(39.0006 for the 16 hpi sample) or 0.998 nm (23.0006 for the

36 hpi sample) on the specimen level] over a 265u to 65u tilt

range (increment 1u) and at an average defocus of 20.2 mm.

Tomograms were reconstructed using the weighted back-

projection method implemented in the IMOD software package

(version 3.11.5) [71]. Rendering of the 3D surface of the

tomograms was performed by using the AMIRA Visualization

software Package (version 5.2.2, Visage Imaging, Berlin,

Germany). Models were generated from unfiltered and 26
binned tomograms by manually masking areas of interest,

thresholding and smoothing labels.

Supporting Information

Figure S1 Colocalization of HCV proteins with cellular
marker proteins. Huh7 cells were infected with HCV (clone

Jc1) using 30 TCID50/cell and 48 h later cells were fixed and

processed for fluorescence microscopy. Detected HCV proteins

are specified in the top of each subpanel, cellular proteins are

given in the left of each panel. Upper panels represent a low

magnification overview; boxed areas are shown as enlargement in

the corresponding panel below. (A)–(C) Colocalization of HCV

proteins with mitochondria stained with MitoTracker, lipid

droplets labeled with ADRP, or COP II vesicles labeled with

sec13, respectively. (D) Cells were transfected with a GFP-LC3

expression construct and 24 h later cells were infected as described

above. DNA was stained with DAPI (blue). Samples were analyzed

with a Nikon TE2000-E inverted confocal microscope at 606
magnification. Scale bars represent 10 mm (top panels) and 2 mm

(lower panels). Representative images are shown. The quantifica-

tion of the degree of colocalization (Pearson’s correlation

coefficient) is given in the enlarged pictures. N.a., not applicable

due to cross-reactivity of antibodies.

(TIFF)

Figure S2 Colocalization of HCV proteins with cellular
marker proteins 24 h after infection. Huh7 cells were

infected with HCV (clone Jc1) using 30 TCID50/cell and 24 h

later cells were fixed and processed for fluorescence microscopy to

allow detection of NS3 and cellular proteins specified on the left of

each panel. In case of Rab-7 and Rab-21, cells were transfected

with expression constructs encoding GFP-tagged proteins 24 h

prior to infection with Jc1. Left panels represent low magnification

overviews; boxed areas are shown as enlargement in the

corresponding right panel. Scale bars represent 10 mm (left panels)

and 2 mm (right panels). Numbers in the right panels indicate

Pearson’s correlation coefficient as a marker for the degree of

colocalization.

(TIFF)

Figure S3 Impact of used EM method on morphology
and size of double membrane vesicles. (A) Huh7.5 cells

grown on 6 cm-diameter dishes were infected with Jc1 (MOI = 5)

and 48 h later cells were fixed, scrapped off the culture dish and

sedimented by gentle centrifugation prior to embedding of the cell

pellet in epon resin as described in Protocol S1 in Text S1. Owing

to centrifugation cells appear much thinner than cells fixed on

sapphire discs (used in most experiments) or coverslips (depicted in

panel B). DMVs were detected at high abundance in the

cytoplasm; average diameter was 170 nm (646 nm; n = 30). (B)

HCV-infected (MOI = 10) Huh7.5 cells grown on coverslips were

subjected to chemical fixation prior to embedding in epon

(Protocol S1 in Text S1). With this method the core of lipid

droplets is well preserved, but DMVs and MMVs display an

amorphous shape, which is at variance to their circular shape as

detected after HPF-FS and chemical fixation. This is most likely

due to dehydration of the cell occurring during sample

preparation. DMVs detected after epon embedding displayed a

diameter of ,186 nm (625 nm; n = 30). (C) HCV-infected

Huh7.5 cells grown on sapphire discs were subjected to chemical

fixation and subsequent HPF-FS as described in materials and

methods. Due to the excellent preservation of the cellular

membranes this was our method of choice for the EM analyses

(Figures 2, 3, 6, 7 and 8).

(TIFF)

Figure S4 Immuno-EM approaches and their impact on
detection of HCV antigen and dsRNA. (A) Jc1-infected cells
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(MOI = 30) were subjected to pre-embedding labeling (Protocol S2

in Text S1) by using the NS5A-specific monoclonal antibody 9E10

prior to incubation with secondary antibody conjugated with

nanogold particles and subsequent signal enhancement. Although

specific immuno-labeling was detected, structures were only poorly

preserved and therefore the allocation of NS5A to a specific

subcellular site was not possible. (B–F) Huh7.5 cells were infected

with 100 TCID50/cell of Jc1, fixed, subjected to HPF-FS and

embedded into the methacrylate resin Lowicryl HM20 (Protocol

S3 in Text S1). Labeling was performed by using the dsRNA-

specific antibody J2. (B) DsRNA labeling on infected cells. (C)

Overview pictures of mock-infected cells to reveal unspecific

labeling of the J2 antibody. (D) Amount of gold particles per mm2

in Jc1-infected versus mock-infected cells after immunolabeling

with the dsRNA-specific antibody. (E) Relative labeling distribu-

tion obtained with the dsRNA-specific antibody J2. Two different

labeling experiments were considered. Ca. 100 immuno-gold

clusters were counted per grid and allocated to subcellular sites

specified in the bottom. Numbers refer to the percent of total gold

clusters counted per sample. ER, endoplasmic reticulum; Cyto,

cytosol; Mito, mitochondria; NE, nuclear envelope; EE/LE,

early/late endosomes; PM, plasma membrane; if & m, interme-

diate filaments and microtubule; DMVs, double membrane

vesicles; LDs, lipid droplets. (F) Location of dsRNA labeling

relative to DMVs. Note that ,20% of DMVs were labeled either

on their membranes or in the interior of the DMV.

(TIFF)

Figure S5 Morphologies of the membranous web and
the double membrane vesicles are independent from
used cell clone, route of HCV RNA delivery, HCV
genotype and MOI. (A) Naı̈ve high-passage Huh7 cells were

infected with 100 TCID50/cell of Jc1 and processed after chemical

fixation by HPF-FS as described in materials and methods. Note

that these cells display the same kind of membrane alterations as

HCV-infected Huh7.5 cells (Figure 3) demonstrating that HCV-

induced membrane rearrangements are not cell clone dependent.

Average diameter of DMVs (172 nm623 nm, n = 30) was well

comparable to the one observed in infected Huh7.5 cells. (B)

Huh7-Lunet cells were transfected by electroporation with a

subgenomic JFH1 replicon RNA and 48 h later subjected directly

to HPF-FS without chemical fixation, which was necessary for

biosafety reasons when using complete viral genomes. Note the

high abundance of DMVs also in these native samples excluding

that DMVs are an artifact caused by chemical fixation. Also note

the minimal extraction of the cytosol surrounding the DMVs in

comparison to chemically fixed cells. DMVs detected under these

conditions had an average diameter of 162 nm (626 nm; n = 30).

(C) Huh7.5 cells containing a stably replicating subgenomic Con1

(genotype 1b) replicon, were subjected to chemical fixation prior to

HPF-FS and compared to the morphology observed in Jc1-

infected or JFH-1 replicon RNA-transfected cells. Note that

morphologies of DMVs and MMVs are well comparable in all

those cases. Thus, morphologies of DMVs and MMVs are

independent from the studied HCV genotype. DMVs observed in

Con1 replicon cells displayed an average diameter of 168 nm

(628 nm; n = 30). (D and E) Morphology of HCV-induced

membrane rearrangements is not affected by the MOI. Huh7.5

cells were infected with only 10 TCID50/cell of Jc1 and processed

after chemical fixation by HPF-FS 24 and 48 hpi (panels D and E,

respectively). DMVs have an average diameter of 129 nm

(623 nm; n = 30).

(TIFF)

Movie S1 Animation through a Z series of 1.184 nm
thick digital slices (total thickness ,135 nm) of a dual-
axis tomogram (corresponding to Figure 6), reconstruct-
ed from a ,250 nm thick section of a HCV-infected
Huh7.5 cell, fixed 16 hpi. Colored overlay shows a 3D surface

model of virus-induced membranes. ER membranes are depicted

in dark brown, inner DMV membranes in yellowish brown, outer

DMV membranes in light brown, small vesicles in pink,

intermediate filaments in dark blue and the Golgi stack in green.

Note that most of the DMVs are connected to ER membranes via

a neck-like structure.

(MP4)

Movie S2 Animation through a Z series of 1.996 nm
thick digital slices (total thickness ,140 nm) of a dual-
axis tomogram (corresponding to Figure 7), reconstruct-
ed from a ,250 nm thick section of a HCV-infected
Huh7.5 cell, fixed 36 hpi. Colored overlay shows a 3D surface

model of virus-induced membranes. ER membranes are depicted

in dark brown, inner DMV, MMV and DMT membranes in

yellowish brown, outer DMV, MMV and MMT membranes in

light brown, small vesicles in pink, intermediate filaments in dark

blue and the nucleoplasm in violet. Note that most of the DMVs

are connected to ER membranes via a neck-like structure.

(MP4)

Text S1 Supporting information. Supplementary materials

and methods (Protocols S1, S2 and S3) and supplementary Table

S1.

(DOC)
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