
A Call-by-Need Lambda-Calculus with
Locally Bottom-Avoiding Choice:

Context Lemma and Correctness of
Transformations

David Sabel and Manfred Schmidt-Schauß

Institut für Informatik,
Fachbereich Informatik und Mathematik,

Johann Wolfgang Goethe-Universität,
Postfach 11 19 32, D-60054 Frankfurt, Germany,

{sabel,schauss}@ki.informatik.uni-frankfurt.de

Technical Report Frank-24
Research group for Artificial Intelligence and Software Technology,

Institut für Informatik,
Fachbereich Informatik und Mathematik

J.W.Goethe-Universität Frankfurt,

13. Jan. 2006

Abstract. We present a higher-order call-by-need lambda calculus en-
riched with constructors, case-expressions, recursive letrec-expressions,
a seq-operator for sequential evaluation and a non-deterministic operator
amb, which is locally bottom-avoiding. We use a small-step operational
semantics in form of a normal order reduction. As equational theory we
use contextual equivalence, i.e. terms are equal if plugged into an arbi-
trary program context their termination behaviour is the same. We use
a combination of may- as well as must-convergence, which is appropriate
for non-deterministic computations. We evolve different proof tools for
proving correctness of program transformations. We provide a context
lemma for may- as well as must- convergence which restricts the number
of contexts that need to be examined for proving contextual equivalence.
In combination with so-called complete sets of commuting and forking di-
agrams we show that all the deterministic reduction rules and also some
additional transformations keep contextual equivalence. In contrast to
other approaches our syntax as well as semantics does not make use of
a heap for sharing expressions. Instead we represent these expressions
explicitely via letrec-bindings.

Table of Contents

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding
Choice: Context Lemma and Correctness of Transformations 1
David Sabel and Manfred Schmidt-Schauß
1 Introduction . 3

1.1 Motivation . 3
1.2 Related Work . 5
1.3 Overview . 5

2 The Nondeterministic Call-by-Need Calculus Λlet
amb 6

2.1 The Syntax of the Language . 6
2.2 Reduction Rules . 9
2.3 Normal Order Reduction . 12
2.4 Encoding of Non-deterministic and Parallel Operators 15
2.5 Convergence and Divergence . 15

2.5.1 An Alternative Definition of Divergence 17
3 Fair Normal Order Reduction . 18
4 Contextual Equivalence and Proof Tools . 23

4.1 Preorders for May- and Must-Convergence . 23
4.2 Context Lemmas . 25
4.3 Properties of the (lll)-Reduction . 28
4.4 Complete Sets of Commuting and Forking Diagrams 30

5 Correctness of (lbeta), (case-c), (seq-c) . 31
6 Additional Correct Program Transformations . 34

6.1 Diagrams for (gc) . 36
6.2 Diagrams for (cpx) . 36
6.3 Diagrams for (xch) . 37
6.4 Diagrams for (abs) . 37
6.5 Diagrams for (cpcx) . 38
6.6 Correctness of (opt) . 38

7 Correctness of Deterministic Reduction Rules . 42
7.1 Correctness of (case) . 42
7.2 Correctness of (lll) . 42

7.2.1 Diagrams for (lapp), (lcase) and (lseq) 43
7.2.2 Diagrams for (lamb) . 43
7.2.3 Diagrams for (llet) . 44
7.2.4 Proving Correctness of (lll) . 46

7.3 Correctness of (seq) . 50
7.4 Correctness of (cp) . 53

8 The Standardisation Theorem and an Application 56
8.1 Properties of the Reduction (amb) . 56
8.2 The Standardisation Theorem. 59
8.3 Proving Bottom-Avoidance . 59

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 3

8.4 On the Relation Between ≤↓
c and ≤⇓

c . 62
9 Conclusion and Further Research . 65

1 Introduction

1.1 Motivation

Higher-order lambda calculi with non-deterministic operators have been inves-
tigated in several works. Especially a non-deterministic choice operator, that
chooses one of its arguments as result, but never diverges if one of the arguments
is reducible to a value, is of relevance for modelling concurrent computation. It
enables to express search algorithms in a naturally way [Hen80,BPLT02] or per-
mits to implement a merge operator for event-driven systems like graphical user
interfaces e.g [HC95] or functional operating systems [Hen82].

Such a nondeterministic operator is McCarthy’s amb [McC63]. Its typical
implementation is to start two concurrent (or parallel) processes, one for each of
its arguments, and to choose the first one that terminates. Thus, amb is bottom-
avoiding: let ⊥ be an expression that cannot converge, then the expressions
(amb s ⊥) and (amb ⊥ s) are both equal to s. The bottom-avoidance of amb is
only local, because its evaluation is independent of the surrounding context, e.g.
the expression1

if (amb True False) then True else ⊥

may-diverge.
Together with constructs for explicit sharing and for sequential evaluation

many other non-deterministic operators can be defined within the language. e.g.
erratic-choice, locally demonic choice (see [SS92] for an overview of different
non-deterministic operators) and also a parallel operator that evaluates both of
its arguments in parallel and returns a pair of both values, e.g. [JH93] use such
an operator. Hence, in this paper we introduce a higher-order lambda-calculus
with a (weakly) typed case, constructors, letrec, seq and an operator amb.
letrec-expressions are used for explicit sharing of terms as well as for describing
recursive definitions. The binary operator seq evaluates to its second argument
if and only if its first argument converges, otherwise the whole seq-expression
diverges.

We will define a small-step operational semantics, which consists in rewriting
terms. Moreover, our semantics is defined in form of a normal order reduction
as a special strategy for finding a subterm for the next reduction. This strategy
is deterministic for amb-free expressions and in the other case it nondeterminis-
tically chooses one of the concurrently possible reductions. An advantage of our
approach is that we do not need to annotate the amb-expressions with resources
(as e.g. in [Mor98]), which makes it possible to define a small-step reduction

1 if b then s else t can be encoded in our calculus as caseBool b (True→ s) (False→
t)

4 D. Sabel, M. Schmidt-Schauß

semantics directly on the expressions, without using a heap nor modifying the
syntax by annotations before evaluation can be performed.

Based on normal order reduction we use as equational theory contextual
equivalence (also known as observational equivalence) which equates two terms
if their termination and additionally their non-termination behaviour in all pro-
gram contexts is the same. It is well known that only regarding may-convergence
is not sufficient for calculi with an amb-operator (e.g. see [Mor98]). Hence
our equivalence will test for must-convergence, too. Our predicate for must-
convergence is the logical inverse of may-divergence, where we only treat diver-
gences that are called strong in [CHS05] (based on distinguishing between strong
and weak divergence, introduced by [NC95]). I.e a term that has an infinite re-
duction but never loses the ability to converge is not seen as divergent. Our
normal order reduction will not fulfil the fairness property for amb, i.e. if s or t
converges, then normal order reduction not necessarily terminates while evalu-
ating amb s t. But we will prove that fair evaluation induces the same notions of
may- and must-convergence. [CHS05] have already shown this coincidence for a
call-by-name calculus with amb.

Proving contextual equivalence directly seems to be very hard, since all
program contexts need to be taken into account. On the other hand other
methods, like using bisimulation for proving contextual equivalence have not
been successful for call-by-need calculi with amb (see [Mor98] for a discussion).
[Man05,MSS06] have shown that bisimulation can be used as a proof tool for a
call-by-need calculus with non-recursive let and erratic choice. But there seems
to be no obvious way to transfer this result to call-by-need calculi with recursive
let and bottom-avoiding choice.

Thus, we will use the powerful technique of combining a context lemma for
may- as well as must-convergence with complete sets of forking and commuting
diagrams to prove the deterministic normal order reductions being correct pro-
gram transformations, i.e. their application keeps contextual equivalence. This
is of great value, since the reductions are formulated in a more general manner
than needed for normal order reduction, and hence can be used as optimisations
during program compilation, too. We will also show the correctness of some other
program transformations which are used in compilers of functional programming
languages for optimisation (e.g. [San95]).

We show that the equational theory defined by our normal order reduction
is exactly the same as for fair normal order reductions. In passing we also show
that resource annotations as in [Mor98] can be used to define a fair evaluation.

Another result is a standardisation theorem which states, that if there exists
a sequence of transformations or reductions to a weak head normal form then
there is also an evaluation in normal order to a weak head normal form. As second
part the theorem states that if there exists a sequence of transformations inside
surface contexts to a term that cannot converge, then normal order reduction can
also reduce to such a term. Using the Standardisation Theorem we show that our
amb-operator is indeed bottom-avoiding, i.e. amb Ω t ∼c t and amb t Ω ∼c t, where
Ω is a term that cannot converge. As final result we show that the contextual

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 5

equivalence that only takes may-convergence into account is included in the
contextual preorder for may- and must-convergence, i.e. s ≤c t =⇒ s ∼↓

c t.

1.2 Related Work

To our knowledge the only two papers about call-by-need calculi with locally
bottom-avoiding choice are [HM95,Mor98]. The work of [Mor98] is closely related
to ours, since he considers also a call-by-need calculus with an amb-operator.
His syntax is similar to ours, there are some small differences: He uses strict let
expressions, where we use a seq-operator for implementing sequential evaluation.
We use (weakly) typed case-expressions, whereas [Mor98] uses an untyped case.
Moran uses contextual equivalence, but our equational theory differs from his,
since the predicate for must-convergence is not the same (see Example 4.2).
The advantage of our approach is that our small-step semantics does not use
a heap and thus we are able to prove a context lemma for may- as well as
must-convergence, whereas [Mor98] only provides a context lemma (based on
improvement theory [MS99]) for may-convergence.

Our contextual preorder is similar to the one of [CHS05] for a call-
by-name calculus with amb, since [CHS05] also test only for strong diver-
gences. Call-by-name lambda calculi with amb-operators are also treated in
[HM95,LM99,Mor98,Las05], but as [Mor98] did for their call-by-need calculus
they also test for weak divergences in their contextual equivalence.

There is other work on call-by-need calculi with different choice operators, es-
pecially erratic choice. We compare some of them with our approach: The syntax
of the used languages in [SSSS04,SS03] is very similar to ours, since both pro-
vide recursive let-expressions and also case and constructors and unrestricted
applications. The last property does not hold for [MS99], since they allow only
variables as arguments. Whereas [SSSS04] only use (may) convergence for the
definition of contextual equivalence, [MS99,SS03] also use predicates for diver-
gence. [SS03] uses a combination of contextual equivalence together with a trace
semantics, where also only strong divergences are considered.

The proof technique of complete sets of commuting and forking diagrams
has been introduced by [KSS98,Kut00] for a call-by-need lambda calculus with
erratic choice and a non-recursive let. The same technique has also been used
in [SS03,SSSS04,Man05] for their call-by-need calculi with erratic choice. The
calculi in [Kut00,SS03,SSSS04,Man05] use a normal-order reduction as small-
step semantics, where [SSSS04] is most similar to ours, whereas [MS99] use an
abstract machine semantics.

Work on call-by-value calculi extended with bottom-avoiding choice has been
done in [Las98].

1.3 Overview

In section 2 we introduce the calculus Λlet
amb, and define the convergence predi-

cates. In section 3 we introduce a fair evaluation strategy. In Section 4 we define
the contextual preorder and contextual equivalence, we prove a context lemma,

6 D. Sabel, M. Schmidt-Schauß

then we show some important properties of reduction rules that adjust letrec-
environments and finally we introduce the notion of complete sets of commuting
and forking diagrams. In sections 5, 6 and 7 we prove the correctness of all
defined reduction rules and of some additional program transformations. In sec-
tion 8 we prove the Standardisation Theorem and show that our amb-operator is
indeed locally bottom-avoiding for a class of specific terms, that cannot converge.
The section ends discussing some properties of the used contextual preorder that
seem to be noteworthy. In the last section we conclude and give some directions
for further research.

2 The Nondeterministic Call-by-Need Calculus Λlet
amb

In this section we first introduce the syntax of the language of Λlet
amb, then we

define the reduction rules and the normal order reduction. After presenting en-
codings of other parallel and non-deterministic operators, we define different
predicates for convergence and divergence.

2.1 The Syntax of the Language

The language of Λlet
amb is very similar to the abstract language used in [SSSS04]

with the difference that Λlet
amb uses a bottom-avoiding choice-operator amb whereas

[SSSS04] uses erratic choice. The language of the non-deterministic call-by-need
lambda calculus of [Mor98] is also similar to ours, but we use an operator
seq to provide sequential evaluation instead of strict let expressions and our
case-expressions are weakly typed. In difference to the call-by-need calculus
of [AFM+95] Λlet

amb provides constructors, weakly typed case-expressions and of
course a nondeterministic amb-operator. The language we use also has only small
differences (aside from the amb-operator) to the core language from [PM02] which
is used in the Glasgow Haskell Compiler.

The language of Λlet
amb has the following syntax: There is a finite set of construc-

tors which is partitioned into (nonempty) types. For every type T we denote the
constructors as cT,i, i = 1, . . . , |T |. Every constructor has an arity ar(cT,i) ≥ 0.

The syntax for expressions E, case alternatives Alt and patterns Pat is de-
fined by the following grammar:

E ::= V (variable)
| (cT,i E1 . . . Ear(cT,i)) (constructor application)
| (seq E1 E2) (seq-expression)
| (caseT E Alt1 . . . Alt|T |) (case-expression)
| (E1 E2) (application)
| (amb E1 E2) (amb-expression)
| (λ V.E) (abstraction)
| (letrec V1 = E1, . . . Vn = En in E) (letrec-expression)

where n ≥ 1
Alt ::= (Pat → E) (case-alternative)
Pat ::= (cT,i V1 . . . Var(cT,i)) (pattern)

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 7

In addition to the presented grammar the following syntactic restrictions must
hold for expressions:

– E,Ei are expressions and V, Vi are variables.
– Within a pattern the variables V1 . . . Var(cT,i) are pairwise disjoint.
– In a caseT -expression, for every constructor cT,i, i = 1, . . . , |T |, of type T ,

there is exactly one case-alternative.
– The constructs case, seq, amb and the constructors cT,i are only allowed

when they occur fully saturated.
– The bindings of a letrec-expression form a mapping from variable names to

expressions, in particular that means that the variables on the left hand side
of the bindings are all distinct and that the bindings of letrec-expressions
are commutative, i.e. letrec-expressions with permuted bindings are syn-
tactically equivalent.

– letrec is recursive, i.e. in (letrec x1 = s1, . . . , xn = sn in t) the scope of
xi, 1 ≤ i ≤ n, is s1, . . . , sn and t.

– We use the distinct variable convention, i.e., all bound variables in expres-
sions are assumed to be distinct, and free variables are distinct from bound
variables. The reduction rules defined in later sections are assumed to im-
plicitly rename bound variables in the result by α-renaming if necessary to
obey this convention.

To abbreviate the notation, we will sometimes use:

– (caseT E alts) instead of (caseT E Alt1 . . . Alt|T |),
– (letrec Env in E) instead of (letrec x1 = E1, . . . xn = En in E). This

will also be used freely for parts of the bindings.
– (ci

−→si) instead of (ci s1 . . . sar(ci))
– {xf(i) = sg(i)}ni=j for the chain xf(j) = sg(j), xf(j+1) = sg(j+1), . . . , xf(n) =

sg(n), of letrec-bindings, where f, g : N0 → N0

– We assume application to be left-associative, i.e. we write (s1 s2 . . . sn)
instead of ((s1 s2) . . . sn)

Since = is already used as a symbol in the syntax of the language, we use ≡ to
denote syntactical equivalence of expressions.

Definition 2.1. A value is either an abstraction, or a constructor application.

In the following we define different context classes and contexts, where we
use different fonts for context classes and individual contexts. A context is a
term with hole, we denote the hole with [·].

Definition 2.2 (Context). The class C of all contexts is defined as follows.

C ::= [·] | (C E) | (E C) | (seq E C) | (seq C E) | λx.C| (amb C E) | (amb E C)
| (caseT C alts) | (caseT E Alt1 . . . (Pat → C) . . . Altn)
| (cT,i E1 . . . Ei−1 C Ei+1 . . . Ear(c))
| (letrec x1 = E1, . . . , xn = En in C)
| (letrec x1 = E1, . . . , xi−1 = Ei−1, xi = C, xi+1 = Ei+1, . . . , xn = En in E)

8 D. Sabel, M. Schmidt-Schauß

The main depth of a context C is the depth of the hole in the context C.
With C#i we denote a context of main depth i. Let t be a term, C be a context,
then C[t] is the result of replacing the hole of C with term t.

Let t, t1, t2 be terms and C1 6≡ C2 be contexts with t ≡ C1[t1], t ≡ C2[t2],
then we say that C1 and C2 are disjoint for t if there does not exist a context C3

with t ≡ C1[C3[t2]] or t ≡ C2[C3[t1]].

Definition 2.3 (Reduction Contexts). Reduction contexts R and weak re-
duction contexts R− are defined by the following grammar:

R− ::= [·] | (R− E) | (caseT R− alts) | (seq R− E)
| (amb R− E) | (amb E R−)

R ::= R−| (letrec Env in R−)
| (letrec x1 = R−

1 , x2 = R−
2 [x1], . . . , xj = R−

j [xj−1],Env in R−[xj])
where j ≥ 1 and R−,R−

i , i = 1, . . . , j are weak reduction contexts

For a term t with t ≡ R−[t0] where R− is a weak reduction context, we say R−

is maximal (for t) if there is no larger non-disjoint weak reduction context for
t, i.e. there is no weak reduction context R−

1 with t ≡ R−
1 [t′1] where t′1 6≡ t0 is a

subterm of t0.
For a term t with t ≡ R[t0], we say R is a maximal reduction context (for t)

iff R is either

– a maximal weak reduction context, or
– of the form (letrec x1 = E1, . . . , xn = En in R−) where R− is a maximal

weak reduction context and t0 6≡ xj for all j = 1, . . . , n, or
– of the form (letrec x1 = R−

1 , x2 = R−
2 [x1], . . . , xj =

R−
j [xj−1], . . . in R−[xj]), where R−

i , i = 1, . . . , j are weak reduction
contexts and R−

1 is a maximal weak reduction context for R−
1 [t0], and t0 6≡ y

where y is a bound variable in t.

Our definition of a maximal reduction context differs from the one in [SSSS04]
in so far as such a context is only “maximal up to choice-points”. As a conse-
quence the maximal reduction context for a term t is not necessarily unique as
the following example shows.

Example 2.4. For (letrec x2 = λx.x, x1 = x2 x1, x3 =
(amb (x2 x1) y) in (amb x1 x3)) there exist the following maximal reduc-
tion contexts:

– (letrec x2 = [·], x1 = x2 x1, x3 = (amb (x2 x1) y) in (amb x1 x3))
– (letrec x2 = λx.x, x1 = x2 x1, x3 = (amb (x2 x1) [·]) in (amb x1 x3))

The first maximal reduction context can be calculated by two different ways de-
pending on which argument is chosen for the amb-expression in the in-expression
of the letrec.

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 9

2.2 Reduction Rules

We define the reduction rules in a more general form than they will be used later
for the normal order reduction. Thus the general rules can be used for partial
evaluation and other compile time optimisations.

Definition 2.5 (Reduction Rules). The reduction rules of Λlet
amb are defined

in Fig. 1 and 2. We define the following unions of some reductions:

(amb-c) := (amb-l-c) ∪ (amb-r-c)
(lamb) := (lamb-l) ∪ (lamb-r)
(amb-in) := (amb-l-in) ∪ (amb-r-in)
(cp) := (cp-in) ∪ (cp-e)
(amb-e) := (amb-l-e) ∪ (amb-r-e)
(llet) := (llet-in) ∪ (llet-e)
(amb) := (amb-l) ∪ (amb-r)
(seq) := (seq-c) ∪ (seq-in) ∪ (seq-e)
(amb-l) := (amb-l-c) ∪ (amb-l-in) ∪ (amb-l-e)
(amb-r) := (amb-r-c) ∪ (amb-r-in) ∪ (amb-r-e)
(case) := (case-c) ∪ (case-in) ∪ (case-e)
(lll) := (llet) ∪ (lcase) ∪ (lapp) ∪ (lseq) ∪ (lamb)

Reductions are denoted using an arrow with superscripts: e.g. llet−−→. To explic-
itly state the context in which a particular reduction is performed we annotate
the reduction arrow with the context in which the reduction takes place. If no
confusion arises, we omit the context at the arrow.

The redex of a reduction is the term as given on the left side of a reduction
rule. We will also speak of the inner redex, which is the modified case-expression
for (case)-reductions, the modified seq-expression for (seq)-reductions, the mod-
ified amb-expression for (amb)-reductions and the variable position which is re-
placed by rule (cp). Otherwise, it is the same as the redex.

We denote the transitive closure of reductions by a +, reflexive transitive
closure by a ∗. We use uppercase words to denote (finite) sequences of reductions,
e.g. RED−−−→.

We give a short comparison of our rules and the rules of the call-by-need
calculus with recursion of [AFM+95, Section 7.2]. The rule (lbeta) is the sharing-
respecting variant of beta reduction, and is defined as rule (βneed) in [AFM+95].
The rule (lll) adjusts letrec-environments, and is similar to the rules (lift),
(assoc) and (associ) of [AFM+95] where we have more rules, since we have the
constructs case, seq and amb. The rule (cp) is analogous to rule (deref) and
(derefi) of [AFM+95] with the difference that we allow only abstractions to be
copied, and do not copy variables. The consequence is that we need more variants
for most of the reduction rules, since we explicitely follow the bindings during
the reduction, instead of removing indirections. Another reason for having more
rules than [AFM+95] is that our syntax has case-, seq- and amb-expressions,
which are not present for the call-by-need calculus of [AFM+95]. The special

10 D. Sabel, M. Schmidt-Schauß

(lbeta) ((λx.s) r)→ (letrec x = r in s)

(cp-in) (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env in C[xm])
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env in C[(λx.s)])

(cp-e) (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env , y = C[xm] in r)
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env , y = C[(λx.s)] in r)

(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)

(llet-e) (letrec x1 = s1, . . . , xi = (letrec Env2 in si), . . . , xn = sn in r)
→ (letrec x1 = s1, . . . , xi = si, . . . , xn = sn,Env2 in r)

(lapp) ((letrec Env in t) x)→ (letrec Env in (t x))

(lcase) (caseT (letrec Env in t) alts)→ (letrec Env in (caseT t alts))

(lseq) (seq (letrec Env in s) t)→ (letrec Env in (seq s t))

(lamb-l) (amb (letrec Env in s) t)→ (letrec Env in (amb s t))

(lamb-r) (amb s (letrec Env in t))→ (letrec Env in (amb s t))

(seq-c) (seq v t)→ t, if v is a value

(seq-in) (letrec x1 = v, {xi = xi−1}mi=2,Env in C[(seq xm t)])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[t]), if v is a value

(seq-e) (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[(seq xm t)] in r)
→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[t] in r), if v is a value

(amb-l-c) (amb s v)→ v, if v is a value

(amb-r-c) (amb v s)→ v, if v is a value

(amb-l-in) (letrec x1 = v, {xi = xi−1}mi=2,Env in C[(amb xm s)])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[xm]), if v is a value

(amb-r-in) (letrec x1 = v, {xi = xi−1}mi=2,Env in C[(amb s xm)])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[xm]), if v is a value

(amb-l-e) (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[(amb xm t)] in r)
→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[xm] in r),

if v is a value

(amb-r-e) (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[(amb t xm)] in r)
→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[xm] in r),

if v is a value

Fig. 1. Reduction rules of the calculus

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 11

(case-c) for the case ar(cT,i) = n ≥ 1: Let yi be fresh variables, then

(caseT (cT,i
−→
ti) . . . ((cT,i

−→yi)→ t) . . .)→ (letrec {yi = ti}ni=1 in t)

(case-c) for the case ar(cT,i) = 0 : (caseT cT,i . . . (cT,i → t) . . .)→ t

(case-in) for the case ar(cT,i) = n ≥ 1: Let yi be fresh variables, then

letrec x1 = (cT,i
−→
ti), {xi = xi−1}mi=2,Env

in C[caseT xm . . . (cT,i
−→zi → t) . . .]

→ letrec x1 = (cT,i
−→yi), {yi = ti}ni=1, {xi = xi−1}mi=2,Env

in C[(letrec {zi = yi}ni=1 in t)]

(case-in) for the case ar(cT,i) = 0 :
letrec x1 = cT.i, {xi = xi−1}mi=2,Env in C[caseT xm . . . (cT,i → t) . . .]
→ letrec x1 = cT,i, {xi = xi−1}mi=2,Env in C[t]

(case-e) for the case ar(cT,i) = n ≥ 1: Let yi be fresh variables, then

letrecx1 = (cT,i
−→
ti), {xi = xi−1}mi=2,Env ,

u = C[caseT xm . . . (cT,i
−→zi → r1) . . .]

in r2

→ letrec x1 = (cT,i
−→yi), {yi = ti}ni=1, {xi = xi−1}mi=2,Env ,

u = C[(letrec {zi = yi}ni=1 in r1)]
in r2

(case-e) for the case ar(cT,i) = 0 :
letrec x1 = cT,i, {xi = xi−1}mi=2,Env ,

u = C[caseT xm . . . (ci → r1) . . .] in r2

→ letrec x1 = cT,i, {xi = xi−1}mi=2,Env , u = C[r1] in r2

Fig. 2. Reduction rules of the calculus (continued)

12 D. Sabel, M. Schmidt-Schauß

variants of (case) for constants are necessary to ensure not to introduce empty
letrec-environments and hence the reduction rules generate only syntactically
correct expressions.

2.3 Normal Order Reduction

Let R be a maximal reduction context for a term t and t ≡ R[s]. The normal
order reduction applies a reduction rule of Definition 2.5 to s or to the direct
superterm of s. For establishing understanding we start with describing how a
position of a normal order redex can be reached by using a nondeterministic
unwinding algorithm UW. After that we will define the normal order reduction.

Let s be a term. If s ≡ (letrec Env in s′) apply uw to the pair
(s′, (letrec Env in [·])), otherwise apply uw to the pair (s, [·]).

uw((s t), R) → uw(s,R[([·] t)])

uw((seq s t), R) → uw(s,R[(seq [·] t)])

uw((case s alts), R) → uw(s,R[(case [·] alts)])

uw((amb s t), R) → uw(s,R[(amb [·] t)]) or uw(t, R[(amb s [·])])

uw(x, (letrec x = s,Env in R−)) → uw(s, (letrec x = [·], Env in R−[x]))

uw(x, (letrec y = R−, x = s,Env in t))
→ uw(s, (letrec x = [·], y = R−[x], Env in t))

uw(s,R) → (s,R) if no other rule is applicable

If a term contains a cycle, it may be the case that the algorithm does not
terminate, e.g. for the term (letrec x = y, y = x in x):

uw(x, (letrec x = y, y = x in [·]))→ uw(y, (letrec x = [·], y = x in x))
→ uw(x, (letrec x = y, y = [·] in x))→ uw(y, (letrec x = [·], y = x in x))
→ . . .

If the algorithm starting with term s terminates, the result is a pair (s′, R),
where R is a maximal reduction context for s and R[s′] ≡ s.

Definition 2.6. We say the unwinding algorithm visits a subterm during exe-
cution, if there is a step, where the subterm is the first argument of the pair, to
which uw is applied, or if the subterm is the whole term.

Lemma 2.7. During evaluation the unwinding algorithm visits only subterms
that are in a reduction context. If s ≡ R[s′] then there exists an execution (by
making the right decision if the algorithm crosses an amb-expression) that visits
s′.

We now define the normal order reduction. We apply a reduction rule by
using a maximal reduction context for the term that should be reduced. It may

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 13

be the case that the unwinding algorithm finds a maximal reduction context,
but no reduction is possible. E.g. that happens, if the first argument of a case-
expression has the wrong type, or if a free variable occurs inside the maximal
reduction context.

Definition 2.8 (Normal Order Reduction). Let t be an expression. Let R
be a maximal reduction context for t, i.e. t ≡ R[t′] for some t′. The normal order
reduction no−−→ is defined by one of the following cases:

If t′ is a letrec-expression (letrec Env1 in t′′), and R 6≡ [·], then there are
the following cases, where R0 is a reduction context:

1. R ≡ R0[(seq [·] r)]. Reduce (seq t′ r) using rule (lseq).
2. R ≡ R0[([·] r)]. Reduce (t′ r) using rule (lapp).
3. R ≡ R0[(caseT [·] alts)]. Reduce (caseT t′ alts) using rule (lcase).
4. R ≡ R0[(amb [·] s)]. Reduce (amb t′ s) using rule (lamb-l).
5. R ≡ R0[(amb s [·])]. Reduce (amb s t′) using rule (lamb-r).
6. R ≡ (letrec Env2 in [·]). Reduce t using rule (llet-in) resulting in

(letrec Env1,Env2 in t′′).
7. R ≡ (letrec x = [·],Env2 in t′′′). Reduce t using (llet-e) resulting in

(letrec x = t′′,Env1,Env2 in t′′′).

If t′ is a value, then there are the following cases:

8. R ≡ R0[caseT [·] . . .], t′ ≡ (cT . . .), i.e. the top constructor of t′ belongs to
type T . Then apply (case-c) to (caseT t′ . . .).

9. R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env in R−
0 [caseT xm (cT,j

−→yi →
r) alts] and t′ ≡ (cT,j

−→
ti). Then apply (case-in) resulting in

letrec x1 = (cT,j
−→zi), {xi = xi−1}mi=2, {zi = ti}ni=1,Env

in R−
0 [(letrec {yi = zi}ni=1 in r)]

10. R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env in R−
0 [caseT xm (cT,j →

r) alts] and t′ ≡ cT,j. Apply (case-in) resulting in letrec x1 =
cT,j , {xi = xi−1}mi=2,Env in R−

0 [r].
11. R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−

0 [caseT xm (cT,j
−→yi →

r) alts] in r′,
and t′ ≡ (cT,j

−→
ti), and y is in a reduction context. Then apply (case-e)

resulting in
letrec x1 = (cT,j

−→zi), {xi = xi−1}mi=2, {zi = ti}ni=1,Env ,
y = R−

0 [(letrec {yi = zi}ni=1 in r)]
in r′

12. R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−
0 [caseT xm (cT,j →

r) alts] in r′, and t′ ≡ cT,j, and y is in a reduction context. Then apply
(case-e) resulting in
letrec x1 = cT,j , {xi = xi−1}mi=2,Env , y = R−

0 [r] in r′.
13. R ≡ R0[([·] s)] where R0 is a reduction context and t′ is an abstraction. Then

apply (lbeta) to (t′ s).

14 D. Sabel, M. Schmidt-Schauß

14. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−
0 [xm]) where R−

0 is
a weak reduction context and t′ is an abstraction. Then apply (cp-in)
and copy t′ to the indicated position, resulting in (letrec x1 =
t′, {xi = xi−1}mi=2,Env in R−

0 [t′]).
15. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−

0 [xm] in r) where R−
0 is a

weak reduction context, y is in a reduction context and t′ is an abstraction.
Then apply (cp-e) resulting in (letrec x1 = t′, {xi = xi−1}mi=2,Env , y =
R−

0 [t′] in r).
16. R ≡ R0[(seq [·] r)]. Then apply (seq-c) to (seq t′ r) resulting in r.
17. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−

0 [(seq xm r)]), and t′ is a
constructor application. Then apply (seq-in) resulting in
(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−

0 [r]).
18. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−

0 [(seq xm r)] in r′) where
y is in a reduction context, and t′ is a constructor application. Then apply
(seq-e) resulting in (letrec x1 = t′, {xi = xi−1}mi=2,Env , y = R−

0 [r] in r′).
19. R ≡ R0[(amb [·] r)]. Then apply (amb-l-c) to (amb t′ r).
20. R ≡ R0[(amb r [·])]. Then apply (amb-r-c) to (amb r t′).
21. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−

0 [(amb xm r)]), and t′ is a
constructor application. Then apply (amb-l-in) resulting in
(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−

0 [xm]).
22. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−

0 [(amb r xm)]), and t′ is a
constructor application. Then apply (amb-r-in) resulting in
(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−

0 [xm]).
23. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−

0 [(amb xm r)] in r′)
where y is in a reduction context, and t′ is a constructor application.
Then apply (amb-l-e) resulting in (letrec x1 = t′, {xi = xi−1}mi=2,Env , y =
R−

0 [xm] in r′).
24. R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−

0 [(amb r xm)] in r′)
where y is in a reduction context, and t′ is a constructor application.
Then apply (amb-r-e) resulting in (letrec x1 = t′, {xi = xi−1}mi=2,Env , y =
R−

0 [xm] in r′).

The normal order redex is defined as the subexpression to which the reduction
rule is applied. This includes the letrec-expression that is mentioned in the
reduction rules, for example in (cp-e).

Some of our proofs will use induction on specific lengths of sequences of
normal order reductions which are defined as follows:

Definition 2.9. The number of reductions of a finite sequence RED consisting
of normal order reductions is denoted with rl(RED). With rl(\a)(RED) we
denote the number of non-a reductions in RED where a is a specific reduction.

Example 2.10. Let RED =
no,seq−−−−→ no,lapp−−−−→ no,lbeta−−−−−→ no,llet−−−−→. Then rl(RED) = 4,

and e.g. rl(\lll)(RED) is number of non-lll in RED, i.e. rl(\lll)(RED) = 2.

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 15

2.4 Encoding of Non-deterministic and Parallel Operators

Fig. 3 shows the encoding of other non-deterministic or parallel operators within
our language. The operator par activates the concurrent evaluation of its first

par ≡ λx.λy.amb (seq x y) (seq y y)
spar ≡ λx.λy.amb (seq x (seq y (Pair x y))) (seq y (seq x (Pair x y)))
dchoice ≡ λx.λy.amb (seq x (seq y x)) (seq y (seq x y))
choice ≡ λx.λy.((amb (λz1.x) (λz2.y)) True)
or ≡ λx.λy.(amb (if x then True else y) (if y then True else x))
merge ≡ letrec m = λxs.λys.amb (caseList xs ([]→ ys) (z : zs→ z : m zs ys))

(caseList ys ([]→ xs) (z : zs→ z : m xs zs))
in m

Fig. 3. Encoding of Operators

argument, but has the value of its second argument (Glasgow parallel Haskell
has such an operator, see e.g. [THLP98]). The operator spar evaluates both
arguments in parallel and returns the pair of values (e.g. this is the par operator
suggested in [JH93]). The locally demonic dchoice non-deterministically chooses
one of its arguments if and only if both arguments converge. Erratic choice non-
deterministically chooses one if its arguments before evaluating the arguments.
The parallel or is non-strict in both of its arguments, i.e. if one of the arguments
evaluates to True then the or-expression evaluates to True. The merge-operator
implements bottom-avoiding merge of two lists.

2.5 Convergence and Divergence

The notion of a weak head normal form will be required:

Definition 2.11. An expression t is a weak head normal form (WHNF) if one
of the following conditions holds:

– t is a value, or
– t is of the form (letrec Env in v), where v is a value,
– or t is of the form (letrec x1 = cT,i t1 . . . tar(cT,i), x2 = x1, . . . xm =

xm−1,Env in xm)

Lemma 2.12. A WHNF has no normal order reduction.

We now introduce predicates for may- and must-convergence as well as may-
and must-divergence. Informally, a term may-converge if the it may evaluate to
a WHNF using normal order reductions. If the opposite holds, a term must-
diverge. I.e., there does not exist an evaluation in normal order that ends in a
WHNF.

16 D. Sabel, M. Schmidt-Schauß

In difference to e.g. [Mor98] the existence of an infinite evaluation is not a
sufficient criterion for may-divergence. In Λlet

amb a term may-diverge if there exists
an evaluation that leads to a must-divergent term. Hence, it may happen that a
term has infinite evaluation, but every contractum has the ability to converge.
If there exists such an infinite evaluation for a term, [CHS05] say the term is
weakly divergent.

The predicate for must-convergence is the opposite of may-divergence, hence
weakly divergent terms are must-convergent in Λlet

amb. The advantage of reason-
ing with the chosen predicates is that our semantics fulfils a fairness property,
without explictly using scheduling of concurrent evaluations (see section 3). We
now formally define the predicates:

Definition 2.13 (May- and Must-Convergence). For a term t, we write t↓
iff there exists a sequence of normal order reductions starting from t that ends
in a WHNF, i.e.

t↓ := ∃s : (t
no,∗−−−→ s ∧ s is a WHNF)

If t↓, we say that t may-converge. The set of finite sequences of normal order
reductions of an expression t ending in a WHNF is denoted with CON (t), i.e.

CON (t) := {RED | t RED−−−→ s, s is a WHNF,

RED contains only normal order reductions}
We allow finite sequences of normal order reductions to be empty, i.e. if t is a
WHNF then CON (t) contains an empty reduction sequence.

For a term t must-convergence is defined as

t⇓ := ∀s : (t
no,∗−−−→ s =⇒ s↓)

Definition 2.14 (May and Must Divergence). For a term t we write t⇑ iff
there exists no sequence of normal order reductions starting with t that ends in
a WHNF. Then we say t must-diverges, i.e.

t⇑ := ∀s : (t
no,∗−−−→ s =⇒ s is not a WHNF)

Let NC be the set of all terms that must-diverge i.e. NC = {s | s⇑}.
For a term t, we say t may-diverge, denoted with t↑ iff t may reduce to a

term that must-diverge, i.e.

t↑ := ∃s : (t
no,∗−−−→ s ∧ s⇑)

For a term we define the set of all finite sequences of normal order reductions
that lead to a term that must-diverge as follows:

DIV(t) := {RED | t RED−−−→ s, s⇑, RED contains only normal order reductions}

We allow those sequences to be empty, i.e. if t⇑ then DIV(t) contains an empty
sequence.

The following lemma shows some relations between convergence and divergence.

Lemma 2.15. Let t be a term, then (t⇓ ⇐⇒ ¬(t↑)), (t↓ ⇐⇒ ¬(t⇑)), (t⇓ =⇒
t↓) and (t⇑ =⇒ t↑).

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 17

2.5.1 An Alternative Definition of Divergence Inspired from [Gor95] we
give a co-inductive definition of the terms that must-diverge.

Definition 2.16. Let

MD(X) := {s | (∀t : (s no−−→ t =⇒ t ∈ X)) ∧ s is not a WHNF}

We define the set BOT as the greatest fixed point of MD, i.e. BOT :=
gfp(MD).

We inductively define the sets mdi for all i ∈ N0:

md0 = Λlet
amb

mdi =MD(mdi−1)

We now prove some properties of terms in BOT .

Lemma 2.17. The operator MD is monotonous w.r.t. set-inclusion.

Proof. We need to show: X ⊆ Y =⇒ MD(X) ⊆ MD(Y). Let X ⊆ Y hold
and there is s ∈MD(X). We split into two cases:

– s has no normal order reduction. Then s ∈ Y and hence s ∈MD(Y)
– For all t with s

no−−→ t follows that t ∈ X. Since X ⊆ Y , we have for all t:
t ∈ Y . Thus, s ∈MD(Y).

ut

Lemma 2.18. s ∈ BOT iff ∀j : s ∈mdj.

Proof. SinceMD is monotonous and set-inclusion forms a complete lattice, the
greatest fixed point can be represented as gfp(MD) =

⋂
i mdi. ut

Lemma 2.19. Let s, t be terms with s
no−−→ t. If s ∈ BOT then t ∈ BOT .

Proof. We use Lemma 2.18. From s in BOT we have, for all j: s ∈ mdj . Since
s

no−−→ t, we have ∀j > 0 : t ∈ mdj . It remains to prove t ∈ md0, but that holds
by definition. ut

Corollary 2.20. If s
no,∗−−−→ t with s ∈ BOT . Then t ∈ BOT

Lemma 2.21. BOT = NC

Proof. BOT ⊆ NC: By definition of BOT we have that BOT does not contain
terms in WHNF. Then Corollary 2.20 shows the claim.
NC ⊆ BOT : By co-induction it is sufficient to prove that NC isMD-dense,

i.e. NC ⊆MD(NC). Let s ∈ NC then we split into two cases:

– s has no normal order reduction. Since s cannot be in WHNF s ∈MD(NC)
– s has at least one normal order reduction. For every t with s

no−−→ t we have
that t cannot have a terminating normal order reduction, otherwise there
would CON (s) would not be empty. Since all such t have no terminating
normal order reduction we have ∀t : s

no−−→ t =⇒ t ∈ NC and since s is not
in WHNF we have s ∈MD(NC).

ut

18 D. Sabel, M. Schmidt-Schauß

3 Fair Normal Order Reduction

In this section we show that the defined normal order reduction causes the same
notions for may- and must-convergence as a fair reduction strategy does. Infor-
mally, a fair reduction strategy never does not reduce a normal order redex in
infinite reduction sequences. Note, that for our normal order reduction this does
not hold, e.g. the term t ≡ (amb (letrec x = λy.(y y) in (x x)) True) has an
(amb-r)-redex, but normal order reduction may never reduce this redex. Never-
theless, t is must-convergent in our calculus. Hence, our notion of convergence
already introduces a kind of fairness. A similar observation has already been
made in [CHS05] for a call-by-name calculus with amb.

For implementing fair evaluation, we use resource annotations for amb-
expressions:

Definition 3.1. An annotated variant of a term s is s with all amb-expressions
being annotated with a pair 〈m,n〉 of non-negative integers, denoted with
amb〈m,n〉. The set of all annotated variants of a term s is denoted with ann(s).
With ann0(s) we denote the annotated variant of s with all pairs being 〈0, 0〉. If
s is an annotated variant of term t, then let da(s) = t.

Informally, a (inner) redex within the subterm s (t, respectively) of the ex-
pression (amb〈m,n〉 s t) can only be reduced if resource m (n, respectively) is
non-zero. Any reduction inside s decreases the annotation m by 1. Fairness
emerges from the fact that resources can only be increased if both resources m
and n are 0, and the increase for both resources must be strictly greater than 0.

We extend the notions of contexts and WHNFs to annotated variants:

Definition 3.2. If C is an annotated variant of a term with a hole, then C is
a context iff da(s) is a context. An annotated variant s of a term is a WHNF iff
da(t) is a WHNF.

We now give a description of a non-deterministic unwinding algo-
rithm UWF that leads to fair evaluation. The algorithm performs four tasks:
It finds a position where a normal order reduction can be applied, it decreases
the annotations for the path that leads to this position and if necessary it per-
forms scheduling by increasing the annotations. Furthermore, the unwinding
algorithm decreases the annotation for a subterm that cannot be reduced, since
it has a typing error (e.g. caseList True . . .) or it is a term with a blackhole, e.g.
(letrec x = x in x). [Mor98] uses an additional reduction rule for this cases.
We decrease the annotation by executing the unwinding algorithm again with
another variant of the same term, where annotations are decreased.

Let s be an annotated variant of a term. If s ≡ (letrec Env in s′) then
apply uwf to the pair (s′, (letrec Env in [·])), otherwise apply uwf to the pair
(s, [·]).

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 19

uwf((s t), R)→ uwf(s,R[([·] t)])

uwf((seq s t), R)→ uwf(s,R[(seq [·] t)])

uwf((case s alts), R)→ uwf(s,R[(case [·] alts)])

uwf((amb〈m+1,n〉 s t), R)→ uwf(s,R[(amb〈m,n〉 [·] t)])

uwf((amb〈m,n+1〉 s t), R)→ uwf(t, R[(amb〈m,n〉 s [·])])

uwf((amb〈0,0〉 s t), R)→ uwf((amb〈m,n〉 s t), R), where m,n > 0

uwf(x, (letrec x = s,Env in R−))→ uwf(s, (letrec x = [·], Env in R−[x]))

uwf(x, (letrec y = R−, x = s,Env in t))
→ uwf(s, (letrec x = [·], y = R−[x], Env in t))

uwf(s,R)→ (s,R) if no other rule is applicable

Now, it may happen that the unwinding algorithms loops, e.g. for the subterm
(letrec x = y, y = x in x). Another case is that the algorithm terminates, but
for the maximal reduction context found no normal order reduction is applicable,
e.g. this holds for the pair ((letrec x = x in x), amb〈m,n〉 [·] s). In both cases
the annotations for all arguments of amb-expressions that have been visited are
decreased and then with the modified annotations, the algorithms performs a
new search: we assume that the fair unwinding algorithm has a loop detection
which starts a new search when visiting a binding for a second time during
execution, i.e. we add the rule:

uwf(x, (letrec y = R−, x = s,Env in t))
→ execute UWF with (letrec y = R−[x], x = s,Env in t) if there was a

preceding step with intermediate result uwf(s′, (letrec Env′, x = [·] in t′)).

Moreover, if UWF terminates with result (s,R), but no normal order reduction
is applicable to R[s] (using R as maximal reduction context for determining the
normal order reduction) then execute UWF with R[s].

Lemma 3.3. If s ∈ ann(t) and uwf(s′, R) is an intermediate result of UWF ,
then R[s′] ∈ ann(t). The same holds for the resulting pair of UWF .

Proof. This holds, since UWF only changes the annotations. ut

Lemma 3.4. Let s be an annotated variant and (s′, R) be an result of executing
UWF starting with s. Then there exists an execution of the unwinding algorithm
UW for da(s) that has result (da(s′), da(R′)).

Proof. Use the steps of the last search of the execution of UWF . By replacing
all amb〈m,n〉 constructs with amb, we can perform every step with the algorithm
UW, too. ut

Fair normal order reduction fno−−→ on annotated variants is defined as follows:

20 D. Sabel, M. Schmidt-Schauß

Definition 3.5 (Fair Normal Order Reduction). Let s be an annotated
variant of a term. If s is a WHNF, then no fair normal order reduction is pos-
sible. Otherwise, execute UWF starting with s. If the execution terminates with
(s′′, R), then apply a normal order reduction to R[s′′] with maximal reduction
context R, where annotations are inherited like labels in labeled reduction (see
[Bar84]). Let the result be t. Then s

fno−−→ t.

A fair normal order reduction sequence (denoted with F as subscript) is a se-
quence consisting of fair normal order reductions. Note, that it may happen,
that the execution of the normal order reduction does not terminate, then there
is no fair normal order reduction defined.

Definition 3.6. Fair May- and must-convergence and -divergence for annotated
variants is defined as:

t↓F := ∃s : (t
fno,∗−−−→ s ∧ s is a WHNF)

t⇓F := ∀s : (t
fno,∗−−−→ s =⇒ s↓F)

t⇑F := ∀s : (t
fno,∗−−−→ s =⇒ s is not a WHNF)

t↑F := ∃s : (t
fno,∗−−−→ s ∧ s⇑F)

A term t fair may-converge (denoted with t↓F) iff ann0(t)↓F , a term t fair must-
converge (denoted with t⇓F) iff ann0(t)⇓F .

Lemma 3.7. If s
fno−−→ t, then da(s) no−−→ da(t).

Proof. Follows from Lemma 3.4 and the definition of fair normal order reduction.
ut

Corollary 3.8. Let s be a term, s′ ∈ (ann(s)) and s′↓F , then s↓.

Lemma 3.9. If s
no,∗−−−→ t, then there exists t′ ∈ ann(t) with with ann0(s)

fno,∗−−−→
t′.

Proof. Let s
RED−−−→ t, where RED is a sequence of normal order reductions. If

RED is empty then the claim follows with t′ = ann0(t). Otherwise, let RED =
red1 . . . redk. From the definition of the normal order reduction it follows, that
before every redi there is an execution of UW that finds a maximal reduction
context, which is used to apply redi. Let si be the term to which redi is applied,
and let (Ri, s

′
i) be the corresponding maximal reduction context and term in

the hole, i.e. Ri[s′i] ≡ si. Further, let e1, . . . , ek be the executions of UW that
terminate with result (s′i, Ri). Obviously, it is sufficient to show that for every
redi there is an execution of UWF , that terminates with (s′′i , R′′

i) where R′′
i [s′′i] ∈

ann(si). Now, let m be the sum of all steps uw((amb t1 t2), R)→ . . . that happens
in the executions e1, . . . , ek. Now for every ei build an execution e′i of UWF ,
by performing the corresponding steps, with the difference that when arriving
at uwf(amb〈0,0〉, R

′) then insert the step uwf(amb〈0,0〉, R
′) → uwf(amb〈m,m〉, R

′).
Now it can be seen easily that all other steps are possible, since there are always

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 21

enough resources to apply the corresponding steps. Note, that since there is
always a normal order reduction possible using (Ri, s

′
i), UWF never needs to

restart. ut

Corollary 3.10. Let s be a term with s↓, then s↓F .

Proposition 3.11. For all terms t: t↓ iff t↓F .

Proof. Follows from Corollaries 3.10 and 3.8. ut

Lemma 3.12. Let s be term, s′ ∈ ann(s) and s⇑, then s′⇑F .

Proof. Assume the claim is false, then s′↓F and hence there exists a sequence
of fair normal order reductions, that lead from s′ to a WHNF, but then with
Lemma 3.7 it follows, that s↓. Hence a contradiction. ut

Lemma 3.13. Let s be a term with s↑ then ann0(s)↑F .

Proof. Let RED ∈ DIV(s), then s
RED−−−→ t and t⇑. Lemma 3.9 shows that

ann0(s)
fno,∗−−−→ t′, with t′ ∈ ann(t). From Lemma 3.12 we have t′⇑F and thus

ann0(s)⇑F . ut

For the remaining part, i.e. to show that if s must-converge then ann0(s)⇓F

we will use co-inductive definitions of must-convergence. Let ANN (Λlet
amb) = {s |

s′ ∈ Λlet
amb, s ∈ ann(s′)}.

Definition 3.14. The operators MC : Λlet
amb → Λlet

amb and MCF : ANN (Λlet
amb)→

ANN (Λlet
amb) are defined as:

MC(X) =

s ∈ X
(∀s′ : s

no−−→ s′ =⇒ s′↓ ∧ s′ ∈ X)
∧

(s has no normal order reduction =⇒ s is a WHNF)


MCF (X) =

s ∈ X
(∀s′ : s

fno−−→ s′ =⇒ s′↓F ∧ s′ ∈ X)
∧

(s has no normal order reduction =⇒ s is a WHNF)


Lemma 3.15. The operators MC and MCF are monotonous w.r.t. set inclu-
sion.

Proof. We only show the property forMC, the proof forMCF is analogous. We
need to show: X ⊆ Y =⇒ MC(X) ⊆ MC(Y). Let X ⊆ Y hold and there is
s ∈MC(X). We split into two cases:

– s has no normal order reduction and is in WHNF. Then s ∈ X and hence
s ∈ Y and finally s ∈MC(Y).

– For all t with s
no−−→ t follows that t↓, t ∈ X. Since X ⊆ Y , we have for all t:

t ∈ Y . Thus, s ∈MC(Y).
ut

22 D. Sabel, M. Schmidt-Schauß

Definition 3.16. Let mci and mci
f be inductively defined as

mc0 = Λlet
amb mc0

f = ANN (Λlet
amb)

mci =MC(mci−1) mci
f =MC(mci−1

f)

Lemma 3.17. The greatest fixed point ofMC orMCF , respectively can be pre-
sented as the infinite intersection of all mci or mci

f , respectively. I.e.

– s ∈ gfp(MC) iff ∀j : s ∈mcj.
– s ∈ gfp(MCF) iff ∀j : s ∈mcj

F .

Proof. SinceMC andMCF are monotonous and set-inclusion forms a complete
lattice, their greatest fixed points can be represented as

⋂
i mci, or

⋂
i mci

F ,
respectively. ut

Lemma 3.18. Let s be a term with s⇓, s no−−→ s′ then s′⇓.

Proof. Assume the claim is false, i.e. s⇓, s no−−→ s′ but s′↑, then there exists t′

with s′
no,∗−−−→ t′ and t′⇑. By combining the reductions, we have s

no,∗−−−→ t′ and
¬(t′↓). Hence, we have a contradiction. ut

Using the same reasoning we can show:

Lemma 3.19. Let s ∈ ANN (Λlet
amb) with s⇓F , s

fno−−→ s′ then s′⇓F .

Lemma 3.20. Let s be a term with s ∈ gfp(MC) and s
no−−→ s′. Then s′ ∈

gfp(MC).

Proof. From s ∈ gfp(MC) follows for all i: s ∈ MCi(Λlet
amb) and thus ∀i ≥ 0 :

s′ ∈MCi−1(Λlet
amb). ut

Using the same arguments we can show:

Lemma 3.21. Let s ∈ ANN (Λlet
amb) with s ∈ gfp(MCF) and s

fno−−→ s′. Then
s′ ∈ gfp(MCF).

Lemma 3.22. For all s : s⇓ iff s ∈ gfp(MC)

Proof. We show by induction on i, that ∀s : s⇓ =⇒ s ∈ mci. Obviously, the
claim holds for i = 0. For i > 0, by the definition of must-convergence together
with Lemma 3.18 it follows that all s⇓ =⇒ (∀s′ : s

no−−→ s′, s′⇓). Hence, these
s′ are all in mci−1. The second condition that, if s is irreducible then s is a
WHNF, follows obviously.

Now we show the other direction. Let s ∈ gfp(MC). Let s
no,k−−−→ t, with

k ≥ 0. We show t↓ by induction on k. If k = 0, then we need to show s↓. Since
s ∈ gfp(MC) either s is a WHNF and thus s↓, or s

no−−→ s′ and s′↓ and hence
s↓. If k > 0, then let s

no−−→ s1
no−−→ . . .

no−−→ sk. From Lemma 3.20 we have
s1 ∈ gfp(MC). Using the induction hypothesis we have t↓. ut

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 23

Lemma 3.23. For all s ∈ ANN (Λlet
amb) : s⇓F iff s ∈ gfp(MCF)

Proof. We show by induction on i, that ∀s ∈ ANN (Λlet
amb) : s⇓F =⇒ sF ∈mci

F .
Obviously, the claim holds for i = 0. For i > 0, by the definition of must-
convergence together with Lemma 3.19 it follows that all s⇓F =⇒ (∀s′ : s

fno−−→
s′, s′⇓F). Hence these s′ are all in mci−1

F . The second condition that, if s is
irreducible then s is a WHNF, follows obviously.

Now we show the other direction. Let s ∈ gfp(MCF). Let s
fno,k−−−→ t, with

k ≥ 0. We show t↓F by induction on k. If k = 0, i.e. we need to show s↓F . Since
s ∈ gfp(MCF) either s is a WHNF and thus s↓, or s

fno−−→ s′ and s′↓ and hence
s↓. If k > 0, then let s

fno−−→ s1
fno−−→ . . .

fno−−→ sk. From Lemma 3.21 we have
s1 ∈ gfp(MCF). Using the induction hypothesis we have t↓F . ut
Lemma 3.24. Let s ∈ gfp(MC) and s′ ∈ ann(s). Then s′ ∈ gfp(MCF).

Proof. We show by induction on i that s′ ∈ mci
F if da(s′) ∈ gfp(MC). If i = 0

then this is obvious. If i > 0 then for showing s′ ∈mci
F it is sufficient to prove:

1. s′ ∈mci−1
F .

2. If s′ has no fair normal order reduction then s′ is a WHNF.
3. ∀s′′ : s′

fno−−→ s′′ =⇒ s′′↓F ∧ s′′ ∈mci−1
F .

1 follows from the induction hypothesis. 2 holds, since s′ ∈ mci−1 and thus if
s′ has no fair normal order reduction, it must be a WHNF. For proving 3 let
s′

fno−−→ s′′. Since s′ ∈mci−1
F we have s′′↓F . With Lemma 3.7 we have da(s′) no−−→

da(s′′). Since da(s′) ∈ gfp(MC), using Lemma 3.20 we have da(s′′) ∈ gfp(MC).
By the induction hypothesis we have s′′ ∈mci−1

F . ut
Corollary 3.25. Let s be a term with s⇓, then s⇓F .

Theorem 3.26. For all terms t: (t↓ iff t↓F) and (t⇓ iff t⇓F).

Proof. Follows from Proposition 3.11, Lemma 3.13 and Corollary 3.25. ut

4 Contextual Equivalence and Proof Tools

4.1 Preorders for May- and Must-Convergence

We define different preorders resulting in a combined preorder which tests for
may-convergence and must-convergence in all contexts. Contextual equivalence
is then the symmetrisation of the combined preorder.

Definition 4.1. Let s, t be terms. We define the following relations:

s ≤↓
c t iff (∀C ∈ C : C[s]↓ ⇒ C[t]↓)

s ≤⇓
c t iff (∀C ∈ C : C[s]⇓ ⇒ C[t]⇓)

s ≤c t iff s ≤↓
c t ∧ s ≤⇓

c t

The contextual equivalence is then defined as:

s ∼c t iff s ≤c t ∧ t ≤c s

24 D. Sabel, M. Schmidt-Schauß

Note, that for all three preorders C[s] may be an open term. Our con-
textual equivalence is the same as [CHS05] use for their call-by-name calcu-
lus where so-called weak divergences are not considered. This is in contrast to
[HM95,Mor98,Las05] where may-divergence includes terms that have an infinite
normal order reduction but never lose the ability to converge. A consequence is
that our equational theory is different from the one of [Mor98]:

Example 4.2. The example of [CHS05, p.453] is applicable to our calculus. Let
the identity function I, a fixed-point operator Y and a must-divergent term Ω
be defined as

I ≡ λx.x
Y ≡ (letrec y = λf.(f (y f)) in y)
Ω ≡ (letrec x = x in x)

then
I ∼c Y (λx.(choice x I)) 6∼c choice Ω I.

Now, we consider a contextual equivalence ∼M that is the same as ∼c with
the only difference that a term t must-converge iff all sequences of normal order
reductions that start with t are finite and lead to a WHNF. The relation ∼M is
analogous to the contextual equivalence used by [Mor98]. Then

I 6∼M Y (λx.(choice x I)) ∼M choice Ω I.

A well-known property (see [LLP05]) for lambda calculi with locally bottom-
avoiding choice holds for Λlet

amb, too:

Example 4.3. Ω is not least w.r.t. ≤c. This follows, since for the context C ≡
(amb (λx.λy.x) [·]) Ω) the term C[I] may-diverge whereas C[Ω] must-converge,
hence Ω 6≤c I.

A precongruence � is a preorder on expressions, such that s � t ⇒
C[s] � C[t] for all contexts C. A congruence is a precongruence that is also
an equivalence relation.

Proposition 4.4. ≤c is a precongruence, and ∼c is a congruence.

Proof. We firstly show that ≤c is transitive. Let s ≤c t, t ≤c r, let C1, C2 be
contexts such that C1[s]↓ and C2[s]⇓. From s ≤c t then follows C1[t]↓ and C2[t]⇓
and with t ≤c r we have C1[r]↓ and C2[r]⇓, i.e. s ≤c r

Further let s ≤c t and let C1 be a context. To show C1[s] ≤c C1[t], let C2 be
an arbitrary context. If C2[C1[s]]↓, use the context C2[C1[·]], then with s ≤c t it
follows that C2[C1[t]]↓. If C2[C1[s]]⇓ we can reason in the same way. ut

The following lemma will be used during the proofs of correctness of reduc-
tions. By using the contrapositive of the implication in the preorder for may-
convergence and Lemma 2.15 the following is true:

Lemma 4.5. Let s, t be terms, then s ≤↓
c t iff ∀C ∈ C : C[t]⇑ =⇒ C[s]⇑.

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 25

Let s ≤↓
c t, i.e. ∀C ∈ C : C[s]↓ =⇒ C[t]↓. The contrapositive is then ∀C ∈ C :

¬(C[t]↓) =⇒ ¬(C[s]↓). With Lemma 2.15 we have ∀C ∈ C : C[t]⇑ =⇒ C[s]⇑.
As an important part of this paper we will prove that all deterministic re-

duction rules are correct program transformations:

Definition 4.6 (Correct Program Transformation). A binary relation ν
on terms is a correct program transformation iff ∀ terms s, t : s ν t =⇒ s ∼c t.

In the remaining subsections we develop some tools that will help us to prove
correctness of program transformations.

4.2 Context Lemmas

The goal of this section is to prove a “context lemma” which enables to prove con-
textual equivalence of two terms by observing their termination behaviour only
in all reduction contexts instead of all contexts of class C. [Mor98] also provides
a context lemma for his call-by-need calculus, but only for may-convergence.
We improve upon his work by providing a context lemma for may- as well as
must-convergence.

The structure of this section is as follows: We firstly show some properties
that will be necessary for proving a context lemma for may-convergence and a
context lemma for must-convergence. The section ends with a context lemma for
the combined precongruence.

In this section we will use multicontexts, i.e. terms with several (or no) holes
·i, where every hole occurs exactly once in the term. We write a multicontext
as C[·1, . . . , ·n], and if the terms si for i = 1, . . . , n are placed into the holes ·i,
then we denote the resulting term as C[s1, . . . , sn].

Lemma 4.7. Let C be a multicontext with n holes then the following holds:
If there are terms si with i ∈ {1, . . . , , n} such that

C[s1, . . . , si−1, ·i, si+1, . . . , sn] is a reduction context, then there exists a
hole ·j, such that for all terms t1, . . . , tn C[t1, . . . , tj−1, ·j , tj+1, . . . , tn] is a
reduction context.

Proof. We assume there is a multicontext C with n holes and there are terms
s1, . . . , sn with Ri ≡ C[s1, . . . , si−1, ·i, si+1, . . . , sn] being a reduction context.
Since Ri is a reduction context, there is an execution of the unwinding algorithm
UW starting with C[s1, . . . , sn] which visits si (see Lemma 2.7). We fix this
execution and apply the same evaluation to C[·1, . . . , ·n] and stop when we arrive
at a hole. Either the evaluation stops at hole ·i or earlier at some hole ·j . Since
the unwinding algorithm visits only positions in a reduction context, the claim
follows. ut

Lemma 4.8. Let s, t be expressions, σ be a permutation on variables, then

– (∀R ∈ R : R[s]↓ =⇒ R[t]↓) =⇒ (∀R ∈ R : R[σ(s)]↓ =⇒ R[σ(t)]↓), and
– (∀R ∈ R : R[s]↑ =⇒ R[t]↑) =⇒ (∀R ∈ R : R[σ(s)]↑ =⇒ R[σ(t)]↑).

26 D. Sabel, M. Schmidt-Schauß

Proof. Let s ,t be terms that the precondition holds, i.e. ∀R : R[s]↓ =⇒ R[t]↓.
Let σ be a permutation on variables names. Let R0 be a reduction context with
R0[σ(s)]↓. We can construct a reduction context R1 by renaming these bound
variables in R0 which capture a free variable in σ(s) or σ(t) such that R1[s]↓,
with the precondition we have R1[t]↓. By undoing the renaming of R1 we can
observe that R0[σ(t)]↓. The proof for the other part is analogous. ut

We now prove a lemma using multicontexts which is more general than needed,
since the context lemma for may-convergence (Lemma 4.10) is a specialisation
of the claim.

Lemma 4.9. For i = 1, . . . , k, k ≥ n let si, ti be expressions. Then

∀i : ∀R ∈ R : (R[si]↓ ⇒ R[ti]↓)
=⇒

∀ multicontexts C : C[s1, . . . , sn]↓ ⇒ C[t1, . . . , tn]↓.

Proof. Let RED ∈ CON (C[s1, . . . , sn]), we use induction on the following lexi-
cographic ordering of pairs (l, n):

1. l = rl(RED)
2. n=The number of holes in C.

The claim holds for all pairs (l, 0), since if C has no holes there is nothing to show.
Now, let (l, n) > (0, 0). For the induction step, we assume the claim holds for all
pairs (l′, n′) that are strictly smaller than (l, n). We assume that there exist si, ti
with i ∈ {1, . . . , n} such that the precondition holds, i.e. ∀i : ∀R ∈ R : (R[si]↓ ⇒
R[ti]↓). Let C be a multicontext with n holes and RED ∈ CON (C[s1, . . . , sn])
with rl(RED) = l, we split into two cases:

– At least one hole of C is in a reduction context. We assume hole ·j is in
a reduction context. With Lemma 4.7 we have: There is a hole ·i with
R1 ≡ C[s1, . . . , si−1, ·i, si+1, . . . , sn] and R2 ≡ C[t1, . . . , ti−1, ·i, ti+1, . . . , tn]
being reduction contexts. Let C1 ≡ C[·1, . . . , ·i−1, si, ·i+1, . . . , ·n].
From C[s1, . . . , sn] ≡ C1[s1, . . . , si−1, si+1, . . . , sn] we have RED ∈
CON (C1[s1, . . . , si−1, si+1, . . . , sn]). Since C1 has n − 1 holes, we can
use the induction hypothesis and derive C1[t1, . . . , ti−1, ti+1, . . . , tn]↓, i.e.
C[t1, . . . , ti−1, si, ti+1, . . . , tn]↓. From that we have R2[si]↓. Using the pre-
condition we derive R2[ti]↓, i.e. C[t1, . . . , tn]↓.

– No hole of C is in a reduction context. If l = 0, then C[s1, . . . , sn] is a WHNF
and since no hole is in a reduction context, C[t1, . . . , tn] is also a WHNF,
hence C[t1, . . . , tn]↓. If l > 0 then the first normal order reduction of RED
can also be used for C[t1, . . . , tn]. We now argue that this normal order
reduction can modify the context C, the number of occurrences of the terms
si and the positions of the terms si and the elimination, duplication, variable
permutation for every si is the same for every ti. More formal, we show: For
i = 1, . . . ,m let (s′i, t

′
i) ≡ (sj , tj) or (s′i, t

′
i) ≡ (ρ(sj), ρ(tj)) for some j, where

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 27

ρ is a permutation on variables. If C[s1, . . . , sn]
no,a−−−→ C ′[s′1, . . . , s

′
m] then

C[t1, . . . , tn]
no,a−−−→ C ′[t′1, . . . , t

′
m]. We can firstly verify by going through the

cases of Definition 2.8 that the modified part of a normal order reduction is
also in a reduction context. Now we consider what can happen to the terms
si and ti:
• If ·i is in an alternative of case, that is discarded by a (case)-reduction,

or ·i is in the argument of a seq- or amb-expression that is discarded by
a (seq)- or (amb)-reduction, then si and ti are both eliminated.

• If the normal order reduction is not a (cp)-reduction that copies a su-
perterm of si or ti, and si and ti are not eliminated as mentioned in the
previous bullet, then si and ti can only move their position.

• If the normal order reduction is a (cp)-reduction that copies a superterm
of si or ti, then renamed copies ρs,i(si) and ρt,i(ti) of si and ti will
occur, where ρs,i, ρt,i are permutations on variables. W.l.o.g. for all i:
ρs,i = ρt,i. Free variables of si or ti can also be renamed in ρs,i(si) and
ρt,i(ti) if they are bound in the copied superterm. But with Lemma 4.8
we have: The precondition also holds for ρs,i(si) and ρt,i(ti), i.e. ∀R ∈ R:
R[ρs,i(si)]↓ =⇒ R[ρt,i(ti)]↓.

Now we can use the induction hypothesis: Since C ′[s′1, . . . , s
′
m] has a ter-

minating sequence of normal order reductions of length l − 1 we also have
C ′[t′1, . . . , t

′
m]↓. With C[t1, . . . , tn]

no,a−−−→ C ′[t′1, . . . , t
′
m] we have C[t1, . . . , tn]↓.

ut

Lemma 4.10 (Context Lemma for May Convergence). Let s, t be terms.
If for all reduction contexts R: (R[s]↓ ⇒ R[t]↓), then ∀C : (C[s]↓ ⇒ C[t]↓); i.e.
s ≤↓

c t.

Proof. The Lemma is a specialisation of Lemma 4.9. ut

Lemma 4.11 (Context Lemma for Must-Convergence). Let s, t be terms,
then ((

∀R ∈ R : R[s]⇓ =⇒ R[t]⇓
)
∧

(
∀R ∈ R : R[s]↓ =⇒ R[t]↓

))
=⇒

(∀C : C[s]⇓ =⇒ C[t]⇓)

Proof. We prove a more general claim using multicontexts and the contrapositive
of the first of the inner implications: Let si, ti be terms, then((

∀R ∈ R : R[ti]↑ =⇒ R[si]↑
)
∧

(
∀R ∈ R : R[si]↓ =⇒ R[ti]↓

))
=⇒

∀ multicontexts C : C[t1, . . . , tn]↑ =⇒ C[s1, . . . , sn]↑

We use induction on the lexicographical ordering of tuples, with the components:

– rl(RED) where RED ∈ DIV(C[t1, . . . , tn]).
– The number of holes in C.

28 D. Sabel, M. Schmidt-Schauß

The base case holds, since if C has no holes, there is nothing to show. For the
induction step we assume that claim holds for all pairs strictly smaller than
(l,m).

Let the precondition hold, i.e. for all R ∈ R : R[ti]↑ =⇒ R[si]↑ as well as

for all R ∈ R : R[si]↓ =⇒ R[ti]↓. Let C[t1, . . . , tm]
no,l−−→ t′ with t′⇑. We split

into two cases:

– At least one hole in C is in a reduction context. Then there is a hole ·j with
R1 ≡ C[t1, . . . , tj−1, ·, tj+1, . . . , tm] and R2 ≡ C[s1, . . . , sj−1, ·, sj+1, . . . , sm]
being reduction contexts. Let C ′ = C[·1, . . . , ·j−1, tj , ·j+1, . . . , ·m]. Since

C ′[t1, . . . , tj−1, tj+1, . . . , tm]
no,l−−→ t′ and C ′ has m − 1 holes, we can use

the induction hypothesis and have C ′[s1, . . . , sj−1, sj+1, . . . , sm]↑ and hence
R2[ti]↑. Using the precondition we have R2[si]↑, thus C[s1, . . . , sm]↑.

– No hole of C is in a reduction context. Then we split into two subcases:
• l > 0: Then we can perform the same first reduction for C[t1, . . . , tm]

also for C[s1, . . . , sm]. With the same reasoning as in the proof of
Lemma 4.10, we have that the results of the reduction are C ′[t′1, . . . , t

′
m′]

and C ′[s′1, . . . s
′
m′], where (t′i, s

′
i) = (ρ(t′j), ρ(s′j)) for a variable permuta-

tion ρ. With Lemma 4.8 we have that the precondition also holds for s′i,

t′i. Since C ′[t′1, . . . , t
′
m′]

no,l−1−−−−→ t′ we can use the induction hypothesis
and have C[s′1, . . . , s

′
m]↑. Since C[s1, . . . , sm] no−−→ C[s′1, . . . , s

′
m], we have

C[s1, . . . , sm]↑.
• l = 0: Then C[t1, . . . , tm]⇑. We assume that ¬(C[s1, . . . , sm]↑), i.e.

C[s1, . . . , sm]⇓. Then we also have C[s1, . . . , sm]↓. Using the precondi-
tion and Lemma 4.9, we have C[t1, . . . , tm]↓ which is a contradiction. ut

Corollary 4.12. If s ≤↓
c t and for all R ∈ R : R[t]↑ =⇒ R[s]↑ then s ≤⇓

c t

Proof. Let s, t be terms such that the precondition holds. From s ≤↓
c t we have

∀R ∈ R : R[s]↓ =⇒ R[t]↓. The second part of the precondition is equivalent to
∀R ∈ R : R[s]⇓ =⇒ R[t]⇓. Using Lemma 4.11 we have s ≤⇓

c t. ut

By combining the context lemma for may-convergence and the context lemma
for must-convergence we derive the following lemma.

Lemma 4.13 (Context Lemma). Let s, t be terms, then((
∀R ∈ R : R[s]⇓ =⇒ R[t]⇓

)
∧

(
∀R ∈ R : R[s]↓ =⇒ R[t]↓

))
=⇒ s ≤c t

Proof. Follows from Lemma 4.10 and Lemma 4.11. ut

4.3 Properties of the (lll)-Reduction

The following lemma shows that letrecs in reduction contexts can be moved to
the top level environment by a sequence of normal order reductions.

Lemma 4.14. The following holds:

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 29

1. For all terms of the form (letrec Env1 in R−
1 [(letrec Env2 in t)]) where

R−
1 is a weak reduction context, there exists a sequence of normal order (lll)-

reductions with

(letrec Env1 in R−
1 [(letrec Env2 in t)])

no,lll,+−−−−→ (letrec Env1,Env2 in R−
1 [t]).

2. For all terms of the form

letrec Env1, x1 = R−
1 [(letrec Env2 in t)], {xi = R−

i [xi−1]}mi=2

in R−
m+1[xm]

where R−
j , j = 1, . . . ,m + 1, are weak reduction contexts there exists a se-

quence of normal order (lll)-reductions with

letrec Env1, x1 = R−
1 [(letrec Env2 in t)], {xi = R−

i [xi−1]}mi=2

in R−
m+1[xm]

no,lll,+−−−−→ (letrec Env1,Env2, x1 = R−
1 [t], {xi = R−

i [xi−1]}mi=2 in R−
m+1[xm])

3. For all terms of the form R−
1 [(letrec Env in t)] where R−

1 is a weak reduc-
tion context, there exists a sequence of normal order (lll)-reductions with

R−
1 [(letrec Env in t)]

no,lll,∗−−−−→ (letrec Env in R−
1 [t])

Proof. This follows by induction on the main depth of the context R−
1 . ut

Another property of the (lll)-reduction is that every reduction sequence con-
sisting only of (lll)-reductions must be finite.

Definition 4.15. For a given term t, the measure µlll(t) is a pair (µ1(t), µ2(t)),
ordered lexicographically. The measure µ1(t) is the number of letrec-
subexpressions in t, and µ2(t) is the sum of lrdepth(s, t) of all letrec-
subexpressions s of t, where lrdepth is defined as follows:

lrdepth(s, s) = 0

lrdepth(s, C1[C2[s]]) =


1 + lrdepth(s, C2[s]) if C1 is a context of main

depth 1, and not a letrec

lrdepth(s, C2[s]) if C1 is a context of main

depth 1, and it is a letrec

Example 4.16. Let s ≡ (letrec x = ((λy.y) (letrec z = True in z)) in x) then
µlll(s) = (2, 1) where

lrdepth(s, (letrec z = True in z))
= lrdepth(((λy.y) (letrec z = True in z)), (letrec z = True in z))
= 1 + lrdepth((letrec z = True in z), (letrec z = True in z)) = 1 + 0 = 1

30 D. Sabel, M. Schmidt-Schauß

Proposition 4.17. The reduction (lll) is terminating, I.e. there are no infinite
reductions sequences consisting only of (C, lll)-reductions.

Proof. The proposition holds, since s
C,lll−−→ t implies µlll(s) > µlll(t), and ∀ t :

µlll(t) ≥ (0, 0). ut

4.4 Complete Sets of Commuting and Forking Diagrams

For proving correctness of the reduction rules and of further program trans-
formations we introduce complete sets of commuting diagrams and com-
plete sets of forking diagrams. They have already been successfully used in
[Kut00,SS03,Sab03,SSSS04,SSSS05,Man05] as a proof tool for proving contex-
tual equivalence of program transformations.

We start with defining so-called internal reductions:

Definition 4.18. Let s, t be terms, X be a context class. A reduction s
X,red−−−−→ t

is called X -internal, if it is not a normal order reduction for s, and X ∈ X . We
denote X -internal reductions with s

iX ,red−−−−→ t.

A reduction sequence is of the form t1 → . . . → tn, where ti are terms and
ti → ti+1 is a reduction or some other program transformation. In the following
we introduce transformations on reduction sequences, by using the notation

X,red−−−−→ .
no,a1−−−→ . . .

no,ak−−−−→ ;
no,b1−−−→ . . .

no,bm−−−−→ .
X,red1−−−−→

X,redh−−−−→,

where
X,red−−−−→ is a reduction inside a context of a specific class like C or an internal

reduction inside such a context class (e.g. iC).
Such a transformation rule matches the prefix of the reduction sequence

RED, if the prefix is: s
X,red−−−−→ t1

no,a1−−−→ . . . tk
no,ak−−−−→ t. The transformation rule

is applicable to the prefix of a reduction sequence RED with prefix s
X,red−−−−→

x1
no,a1−−−→ . . . xk

no,ak−−−−→ t, iff the following holds:

∃r1, . . . , rm+h−1 : s
no,b1−−−→ r1 . . .

no,bm−−−−→ rm
X,red1−−−−→ rm+1 . . . rm+h−1

X,redh−−−−→ t.

The transformation consists in replacing the prefix of RED with the result, i.e.
leading to s

no,b1−−−→ r1 . . .
no,bm−−−−→ rm

X,red1−−−−→ rm+1 . . . rm+h−1
X,redh−−−−→ t.

Since we will use sets of transformation rules, it may be the case that there is
a transformation rule in the set, that matches a prefix of a reduction sequence,
but it is not applicable, since the right hand side cannot be constructed. But in
a complete set there is always at least one diagram that is applicable.

Definition 4.19 (Complete Sets of Commuting / Forking Diagrams).

A complete set of commuting diagrams for the reduction
X,red−−−−→ is a set of

transformation rules on reduction sequences of the form

X,red−−−−→ .
no,a1−−−→ . . .

no,ak−−−−→ ;
no,b1−−−→ . . .

no,bm−−−−→ .
X,red1−−−−→

X,redk′−−−−−→,

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 31

depicted with a diagram of the form shown in Fig. 4 (a), where k, k′ ≥ 0,m ≥ 1,

such that in every reduction sequence t0
X,red−−−−→ t1

no−−→ . . .
no−−→ th, where t0 is not

a WHNF, at least one of the transformation rules is applicable to a prefix of the
sequence.

A complete set of forking diagrams for the reduction
X,red−−−−→ is a set of trans-

formation rules on reduction sequences of the form
no,a1←−−− . . .

no,ak←−−−− .
X,red−−−−→ ;

X,red1−−−−→
X,redk′−−−−−→ .

no,b1←−−− . . .
no,bm←−−−−,

depicted by a diagram of the form shown in Fig. 4 (b), where k, k′ ≥ 0,m ≥ 1,

such that for every reduction sequence th
no←−− . . . t2

no←−− t1
X,red−−−−→ t0, where

t1 is not a WHNF and t1
X,red−−−−→ t0 is not the same reduction with the same

(inner) redex as t0
no−−→ t1, at least one of the transformation rules from the set

is applicable to a suffix of the sequence.

·
X,red //

no,b1 ���
� ·

no,a1��
...

no,bm

���
�

...
no,ak

��
·

X,red1

//___ · · ·
X,redk′

//___ ·

·
X,red //

no,a1 ��

·
no,b1���

�

...
no,ak

��

...
no,bm

���
�

·
X,red1

//___ · · ·
X,redk′

//___ ·

·
X,red //

no ��

·
no��

...
no

��

...
no

��
·

X,red
// · · ·

X,red
// ·

(a) (b) (c)

Fig. 4. Commuting and Forking Diagrams and their common representation

The two different kinds of diagrams are required for two different parts of
the proof for the contextual equivalence of two terms. Commuting and forking
diagrams often have a common representation (see Fig. 4 (c)). We will give the
diagrams only in the common representation if the corresponding commuting
and forking diagrams can be read off obviously.

We abbreviate k reductions of type a with
a,k−−→. As another notation, we use

the ∗- and +-notation of regular expressions for the diagrams. The interpretation
is an infinite set of diagrams constructed as follows: Repeat the following step
as long as diagrams with reductions labeled with ∗ or + exist.

For a reduction
a,∗−−→ (

a,+−−→, respectively) of a diagram insert diagrams for all

i ∈ N0 (i ∈ N) with
a,∗−−→ (

a,+−−→) replaced by
a,i−−→ reductions into the set.

5 Correctness of (lbeta), (case-c), (seq-c)

In this section we use the context lemmas together with complete sets of commut-
ing and forking diagrams to prove that (lbeta), (case-c) and (seq-c) are correct
program transformations.

32 D. Sabel, M. Schmidt-Schauß

Lemma 5.1. Let red ∈ {lbeta, case-c, seq-c, amb-c, lapp, lcase, lseq, lamb}. If
s

red−−→ t then t ≤↓
c s.

Proof. Let red ∈ {lbeta, case-c, seq-c, amb-c, lapp, lcase, lseq, lamb}, s
red−−→ t and

R[t]↓. Then there exists RED ∈ CON (R[t]). Since every reduction red of the
kind mentioned in the lemma inside a reduction context is a normal order re-
duction, we have R[s]

no,a−−−→ R[t]. By appending RED to R[s]
R,red−−−−→ R[t] we

have R[s]↓. Hence, ∀R ∈ R : R[t]↓ =⇒ R[s]↓. Now, the context lemma for
may-convergence shows the claim. ut

Since the defined normal order reduction may reduce inside the arguments
of amb-expressions, the normal order reduction is not unique. I.e., normal order
reductions can overlap with other normal order reductions. To treat this situa-
tions it is not sufficient to use diagrams for (no, a), where a is a deterministic
reduction with all other normal order reductions. The diagrams cannot be closed
in general, this also holds if we regard all reduction contexts, e.g. if an (no, a)-
reduction overlaps with an (no, amb)-reduction, we require a non-normal order
a-reduction inside a context, that is not a reduction context:

(letrec z = r, y = (amb z (λx.x)) in y)
no,a //

no,amb
��

(letrec z = r′, y = (amb z (λx.x)) in y)

no,amb
���
�

(letrec z = r, y = (λx.x) in y)
C,a

//______ (letrec z = r′, y = (λx.x) in y)

The context C is not a reduction context, but a surface context, which are
contexts where the hole is not in the body of an abstraction.

Definition 5.2 (Surface Context). The class S of surface contexts is defined
as follows:

S ::= [·] | (S E) | (E S) | (seq E S) | (seq S E)
| (cT,i E1 . . . Ei−1 S Ei+1 . . . Ear(cT,i)) | (caseT S alts)
| (caseT E . . . (Pat → S) . . .) | (amb S E) | (amb E S)
| (letrec Env in S) | (letrec . . . , xi = S,Env in E)

Note that every reduction context is also a surface context, i.e. R ⊂ S.

Lemma 5.3. A complete set of forking diagrams for
S,red−−−→ with red ∈

{lbeta, case-c, seq-c} is:

· S,red //

no,a

��

·
no,a

���
�
�

·
S,red

//___ ·

· S,red //

no,a

��

·

no,a
���

�
�

�

·

a arbitrary a ∈ {case, seq, amb-l, amb-r}

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 33

Proof. This follows by inspecting all cases where an (no, a)-reduction overlaps
with an (S, red)-reduction with red ∈ {lbeta, case-c, seq-c}. The first diagram
is applicable, if both reductions are performed independently and hence can
be commuted. The second diagram is applicable if the redex of red is inside
an unused alternative of a case-expression, inside the first argument of a seq-
expression or inside an argument of an amb-expression, that is discarded by an
(no, case)-, (no, seq-c)- or (no, amb)-reduction, respectively. ut

Lemma 5.4. Let red ∈ {lbeta, case-c, seq-c} and s
iS,red−−−−→ t then s is a WHNF

iff t is a WHNF.

Lemma 5.5. Let red ∈ {lbeta, case-c, seq-c} and s
red−−→ t then s ≤↓

c t

Proof. By using the context lemma for may-convergence, we need to show, that
if s0

red−−→ t0, then for all reduction contexts R : R[s0]↓ =⇒ R[t0]↓. We will
show the same statement for all surface contexts. This is sufficient, since every
reduction context is also a surface context. Let s ≡ S[s0], t ≡ S[t0] with s

S,red−−−→
t. Further let RED ∈ CON (s). By induction on the length of RED we show
that t↓. The base case is covered by Lemma 5.4. Let RED be of length l > 0. If
the first reduction of RED is the same reduction as the (S, red)-reduction then
there is nothing to show. In all other cases we can apply a diagram from the
complete set of forking diagrams of Lemma 5.3 to a suffix of RED←−−− s

S,red−−−→ t.
Let RED′ be the suffix of RED of length l− 1, then we have the following two
possibilities:

s
S,red //

no,a ��

t
no,a���

�

s′ S,red
//___

RED′
��

t′

RED′′
��
�O

s
S,red //

no,a ��

t

no,azzu
u

u

s′

RED′
��

(1) (2)

(1) We use the induction hypothesis for RED′, thus t′↓. With t
no,a−−−→ t′ we have

t↓.
(2) If the second diagram is applicable, we can append RED′ to t

no,a−−−→ s′, i.e.
t↓. ut

Lemma 5.6. If s
red−−→ t with red ∈ {lbeta, case-c, seq-c} then s ≤⇓

c t.

Proof. We use Corollary 4.12. We have s ≤↓
c t from Lemma 5.5. It remains to

show ∀R ∈ R : R[t]↑ =⇒ R[s]↑. Let R be an reduction context, R[s]
R,red−−−−→

R[t] and R[t]↑. Since every reduction red ∈ {lbeta, case-c, seq-c} in a reduction
context is also a normal order reduction, we have R[s]↑. ut

Lemma 5.7. If s
red−−→ t with red ∈ {lbeta, case-c, seq-c} then t ≤⇓

c s.

34 D. Sabel, M. Schmidt-Schauß

Proof. We use Corollary 4.12. From Lemma 5.1 we have t ≤↓
c s. It remains to

show ∀R ∈ R : R[s]↑ =⇒ R[t]↑. We will show the statement for all surface
contexts. Let s0 ≡ S[s], t0 = S[t], s

red−−→ t and s0↑. We use induction on the
length k of a sequence RED ∈ DIV(s0). If k = 0, i.e. s0⇑, then the claim follows
from Lemma 5.1 using Lemma 4.5. Now, let k > 0. Since s0 cannot be a WHNF,
we can apply a forking diagram to a suffix of RED←−−− s0

S,red−−−→ t0. Let RED′ be
the suffix of RED of length k − 1. Then we have two cases:

s0

no,a ��

S,red // t0
no,a���

�

s′0
RED′

��
S,red

//___ t′0
RED′′

��
�O

s0

no,a ��

S,red // t0

no,azzu
u

u

s′0
RED′

��

(1) (2)

(1) We can apply the induction hypothesis to RED′

←−−−− s′0
S,red−−−→ t′0 and hence have

t′0↑. With t0
no,a−−−→ t′0, we have t0↑.

(2) For this case we have t0↑, since t0
no,a−−−→ s′0. ut

Proposition 5.8. The reductions (lbeta), (case-c) and (seq-c) keep contextual
equivalence, i.e. if s

red−−→ t with red ∈ {lbeta, case-c, seq-c} then s ∼c t.

Proof. This follows from Lemma 5.1, 5.5, 5.7 and 5.6. ut

6 Additional Correct Program Transformations

We now define some additional program transformations, which will be necessary
during the proofs of the correctness of the remaining reduction rules of Λlet

amb and
are also useful compile- or run-time optimisations.

Definition 6.1. In Fig. 5 some additional transformation rules are defined.
We define the following unions:

(gc) := (gc1) ∪ (gc2)
(cpx) := (cpx-in) ∪ (cpx-e)
(cpcx) := (cpcx-in) ∪ (cpcx-e)
(opt) := (gc) ∪ (cpx) ∪ (cpcx) ∪ (abs) ∪ (xch)

The transformation (gc) performs garbage collection by removing unneces-
sary bindings, (cpx) copies variables, (cpcx) abstract a constructor application
and then copy it, the rule (abs) abstracts a constructor application by sharing
the arguments through new letrec-bindings and the rule (xch) restructures two
bindings in an letrec-environment by reversing an indirection and the corre-
sponding binding.

We will now develop complete sets of commuting and complete sets of forking
diagrams for all additional transformations. After this we will combine the sets
to derive complete sets for (opt) and then prove correctness of (opt).

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 35

(gc1) (letrec x1 = s1, . . . , xn = sn in t)→ t
if xi, i = 1, . . . , n does not occur free in t

(gc2) (letrec x1 = s1, . . . , xn = sn, y1 = t1, . . . , ym = tm in t)
→ (letrec y1 = t1, . . . , ym = tm in t)

if xi, i = 1, . . . , n does not occur free in t nor in any tj , for j = 1, . . . , m

(cpx-in) (letrec x = y,Env in C[x])→ (letrec x = y,Env in C[y])
if x 6≡ y and y is a variable

(cpx-e) (letrec x = y, z = C[x],Env in s)→ (letrec x = y, z = C[y],Env in s)
if x 6≡ y and y is a variable

(cpcx-in) (letrec x = (c −→si),Env in C[x])

→ (letrec x = (c −→yi), {yi = si}ar(c)i=1 ,Env in C[(c −→yi)])
where yi are fresh variables

(cpcx-e) (letrec x = (c −→si), z = C[x],Env in r)

→ (letrec x = (c −→yi), {yi = si}ar(c)i=1 ,Env , z = C[(c −→yi)] in r)
where yi are fresh variables

(abs) (letrec x = (c −→si),Env in r)

→ (letrec x = (c −→yi), {yi = si}ar(c)i=1 ,Env in r)
where yi are fresh variables

(xch) (letrec x = s, y = x,Env in r)→ (letrec x = y, y = s,Env in r)

Fig. 5. Additional Transformation Rules

36 D. Sabel, M. Schmidt-Schauß

6.1 Diagrams for (gc)

Lemma 6.2. A complete set of forking diagrams and a complete set of com-
muting diagrams for (S, gc) can be read off the following diagrams:

· S,gc //

no,a

��

·
no,a

��
·

S,gc
// ·

· S,gc //

no,a

��

·

no,a
����

��
��

�

·

· S,gc //

no,lll

��

·

·
S,gc

@@�������

a arbitrary a ∈ {case, seq, amb} a arbitrary

Proof. This follows by inspecting all cases where an (S, gc)-transformation over-
laps with a normal order reduction or is followed by a normal order reduction.
The first diagram covers the cases where both rules are performed indepen-
dently and hence can be commuted. If the redex of the (S, gc)-transformation
is discarded by an (no, case)-, (no, seq)- or (no, amb)-reduction then the second
diagram is applicable. The last diagram covers the cases where an (no, lll) redex
is eliminated by an (S, gc)-transformation, e.g.

letrec x = (λy.y) in ((letrec z = (λz′.z′) in (z z)))

no,llet-in

��

S,gc // (letrec z = (λz′.z′) in (z z))

(letrec x = (λy.y), z = (λz′.z′) in (z z))

S,gc

22eeeeeeeeeeeeeeeeeeeeeeeeee

ut

6.2 Diagrams for (cpx)

Lemma 6.3. A complete set of forking diagrams and a complete set of com-
muting diagrams for (S, cpx) can be read off the following diagrams:

· S,cpx //

no,a

��

·
no,a

��
·

S,cpx
// ·

· S,cpx //

no,a

��

·

no,a
����

��
��

�

·

· S,cpx //

no,cp

��

·
no,cp

��
·

S,cpx
// ·

S,cpx
// ·

a arbitrary a ∈ {case, seq, amb, cp}
Proof. By case analysis we have the following possibilities for the overlappings
of (S, cpx) and a normal order reduction:
– The first diagram describes the cases, where the reductions can be com-

muted.
– The second diagram is applicable, if the redex or inner redex of the (S, cpx)-

transformation is discarded by an (no, case)-, (no, seq)- or (no, amb)-
reduction or if the target variable of (S, cpx) and an (no, cp)-reduction are
identical.

– The last diagram covers the cases where the target of the (S, cpx)-
transformation is inside the body of an abstraction that is copied by an
(no, cp)-reduction. ut

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 37

6.3 Diagrams for (xch)

Lemma 6.4. A complete set of forking diagrams and a complete set of com-
muting diagrams for (S, xch) can be read off the following diagrams:

·
no,a

��

S,xch // ·
no,a

��
·

S,xch
// ·

·
no,a

��

S,xch // ·

no,a
����

��
��

�

·

a arbitrary a ∈ {case, seq, amb}

Proof. Either an (S, xch)-transformation and a normal order reduction commute,
or the redex of (S, xch) is discarded by an (no, case)-, (no, seq)- or an (no, amb)-
reduction. ut

6.4 Diagrams for (abs)

Lemma 6.5. A complete set of forking and a complete set of commuting dia-
grams for (S, abs) can be read off the following diagrams:

· S,abs //

no,a

��

·
no,a

��
·

S,abs
// ·

·
no,a

��

S,abs // ·

no,a
����

��
��

�

·

· S,abs //

no,case

��

·
no,case

��
·

S,abs
// ·

S,cpx,∗
// ·

S,xch,∗
// ·

a arbitrary a ∈ {case, seq, amb}

Proof. By inspecting the overlappings between an (no, a)-reduction and an
(S, abs)-transformation we derive the three kinds of diagrams. If the rules are
performed independently, then the first diagram is applicable. The second di-
agram describes the cases where the redex of (S, abs) is discarded by a nor-
mal order reduction. The last diagram covers the cases where a normal order
(case)-reduction uses the same constructor application that is abstracted by the
(S, abs)-transformation. ut

38 D. Sabel, M. Schmidt-Schauß

6.5 Diagrams for (cpcx)

Lemma 6.6. A complete set of forking diagrams and a complete set of com-
muting diagrams for (S, cpcx) can be read off the following diagrams:

· S,cpcx //

no,a

��

·
no,a

��
·
S,cpcx

// ·

· S,cpcx //

no,a

��

·
no,a

��
·

S,abs
// ·

· S,cpcx //

no,a

��

·

no,a
����

��
��

�

·

a arbitrary a ∈ {case, seq, amb} a ∈ {case, seq, amb}

· S,cpcx //

no,cp

��

·
no,cp

��
·
S,cpcx

// ·
S,cpcx

// ·
S,cpx,∗

// ·
S,gc,∗

// ·

· S,cpcx //

no,case

��

·
no,case

��
·

S,abs
// ·

S,cpx,∗
// ·

S,xch,∗
// ·

· S,cpcx //

no,case

��

·
no,case

��
·
S,cpcx

// ·
S,cpx,∗

// ·
S,xch,∗

// ·

a arbitrary

Proof. The sets follow by case analysis of the overlappings between an (no, a)-
reduction and an (S, cpcx)-transformation. The first diagram describes the cases
where the rules commute. The second diagram is applicable if the target vari-
able of the (S, cpcx)-transformation is discarded by an (no, case)-, (no, seq)- or
(no, amb)-reduction, but the binding for the constructor application is not dis-
carded.

The third diagram covers the cases where the redex of the (S, cpcx)-
transformation is discarded by an (no, a)-reduction or where the (S, cpcx)-
transformation copies a constant into the first argument of a case-expression.

The 4th diagram is applicable if the target of the (S, cpcx)-transformation is
inside the body of an abstraction which is copied by an (no, cp)-reduction.

The last two diagrams cover the cases where the same constructor applica-
tion is used by an (no, case)-reduction and the (S, cpcx)-transformation: the 5th

diagram is applicable if the target is the to-be-cased variable; the 6th diagram
covers the cases where the target of the (cpcx)-transformation is inside an un-
used alternative of the case-expression. ut

6.6 Correctness of (opt)

We now combine the diagrams for all transformations of (opt).

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 39

Lemma 6.7. A complete set of forking diagrams and a complete set of com-
muting diagrams for (S, opt) can be read off the following diagrams:

·
no,a

��

S,opt // ·
no,a

��
·

S,opt
// ·

·
no,a

��

S,opt // ·

no,a
����

��
��

�

·

·
no,lll

��

S,opt // ·

·
S,opt

@@�������

·
no,a

��

S,opt // ·
no,a

��
·
S,opt,+

// ·

a arbitrary a ∈ {case, seq, amb-l, amb-r, cp} a ∈ {cp, case}

Proof. Follows from Lemma 6.2, 6.3, 6.4, 6.5 and 6.6. ut

Lemma 6.8. Let s
S,opt−−−→ t then the following hold:

– If s is a WHNF then t is a WHNF.
– If t is a WHNF then either s is a WHNF or also in case of an (S, gc)-

transformation s
no,llet−−−−→ s′ where s′ is a WHNF.

Proof. This follows from the Definition 2.11. For (S, gc) there are three special
cases:

– s ≡ (letrec Env in s′) where s′ is a WHNF.
– s ≡ (letrec Env2 in (letrec Env in s′)) where (letrec Env2 in s′) is a

WHNF.
– s ≡ (letrec Env2, x = (letrec Env in r) in s′), where (letrec Env2, x =

r in s′) is a WHNF.

In all cases an (no, llet)-reduction for s leads to a WHNF. ut

The claims that an application of (opt) inside surface contexts keeps may-
and must-convergence cannot be proved directly, since the inductions used in
the proofs would not work. Hence, we will prove stronger statements by using
different lengths of sequences of normal order reductions.

Lemma 6.9. If s
S,opt−−−→ t, then for all REDs ∈ CON (s) there exists REDt ∈

CON (t) with rl(REDt) ≤ rl(REDs)

Proof. Let s
S,opt−−−→ t and REDs ∈ CON (s) with length l. We use induction on

l to show the existence of REDt ∈ CON (t) with rl(REDt) ≤ l. If l = 0 then
the claim follows from the Lemma 6.8. If l > 0, we apply a forking diagram for
(S, opt) from the complete set of Lemma 6.7 to the sequence REDs←−−−− s

S,opt−−−→ t.
With RED′ being the suffix of REDs of length l − 1, we have the cases:

s
no,a ��

S,opt // t
no,a���

�

s′ S,opt
//___

RED′
��

t′
RED′

t��
�O

s
no,a ��

S,opt // t

no,azzu
u

u

s′

RED′
��

s
no,lll ��

S,opt // t
REDt

���O
�O

s′ S,opt

99rrrr

RED′
��

s
no,a ��

S,opt // t
no,a���

�

s′ S,opt,+
//___

RED′
��

t′
RED′

t��
�O

(1) (2) (3) (4)

40 D. Sabel, M. Schmidt-Schauß

(1) We can apply the induction hypothesis to RED′ and hence have RED′
t ∈

CON (t′) with rl(RED′
t) ≤ rl(RED′). By appending RED′

t to t
no,a−−−→ t′

we have REDt ∈ CON (t) with rl(REDt) ≤ rl(REDs).

(2) There exists REDt =
no,a−−−→ .

RED′

−−−−→ and rl(REDt) = l.
(3) By the induction hypothesis we have REDt ∈ CON (t) with rl(REDt) ≤

rl(RED′). With rl(RED′) = rl(REDs) + 1 the claim follows.
(4) We apply the induction hypothesis firstly for RED′ and then for every de-

rived normal order reduction leading to RED′
t ∈ CON (t′) with rl(RED′

t) ≤
rl(RED′). By appending RED′

t to t
no,a−−−→ t′ we have REDt ∈ CON (t) with

rl(REDt) ≤ l. ut

Lemma 6.10. If s
S,opt−−−→ t then for all REDt ∈ CON (t) there exists REDs ∈

CON (s) with rl(\lll)(REDs) ≤ rl(\lll)(REDt).

Proof. We use induction on the following measure µ on reduction sequences
s

S,opt−−−→ t
RED−−−→ with µ(s

S,opt−−−→ t
RED−−−→) = (rl(\lll)(RED), µlll(s)). We assume

the measure to be ordered lexicographically. If µ(s
S,opt−−−→ t

REDt−−−−→) = (0, (0, 0)),
then from µlll(s) = (0, 0) follows µlll(t) = (0, 0) since an (S, opt) transformation
does not introduce new letrec-expressions. Thus REDt must be empty and t be
a WHNF. From Lemma 6.8 we have that either s is also a WHNF or s

no,lll−−−→ s′

where s′ is a WHNF. In both cases we have a (possibly empty) REDs ∈ CON (S)
with rl(\lll)(REDs) ≤ rl(\lll)(REDt).

Now, let µ(s
S,opt−−−→ t

REDt−−−−→) = (l, m) > (0, (0, 0)). W.l.o.g. we assume that
REDt is nonempty, hence we can apply a commuting diagram from the complete
set of Lemma 6.7. Let RED′ be the suffix of REDt of length l− 1, we have the
following cases:

s
no,a ���

�
S,opt // t

no,a��
s′ S,opt

//___
RED′

s ��
�O

t′

RED′
��

s

no,a $$I
I

I
S,opt // t

no,a��
t′

RED′
��

s
no,lll ���

�
S,opt // t

REDt
��

s′ S,opt

99rrrr

RED′
s ��

�O

s
no,a ���

�
S,opt // t

no,a��
s′ S,opt,+

//___
RED′

s ��
�O

t′

RED′
��

(1) (2) (3) (4)

(1) We split into two cases:
– If the (no, a)-reduction is an (no, lll)-reduction, then µlll(s′) < m and

rl(\lll)(RED′) = rl(\lll)(REDt). Hence we can apply the induction

hypothesis to s′
S,opt−−−→ t′

RED′

−−−−→ and have RED′
s ∈ CON (s′) with

rl(\lll)(RED′
s) ≤ rl(\lll)(RED′). By appending RED′

s to s
no,a−−−→ s′ we

have REDs ∈ CON (s) with rl(\lll)(REDs) ≤ rl(\lll)(t).
– If the (no, a)-reduction is not an (no, lll)-reduction, then

rl(\lll)(RED′) < rl(\lll)(REDt) and we can apply the induction

hypothesis to s′
S,opt−−−→ t′

RED′

−−−−→ and have RED′
s ∈ CON (s′) with

rl(\lll)(RED′
s) ≤ rl(\lll)(RED′). Again, we append RED′

s to s
no,a−−−→ s′

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 41

and have a terminating normal order reduction REDs for s with
rl(\lll)(REDs) ≤ rl(\lll)(REDt).

(2) We have REDs =
no,a−−−→ RED′

−−−−→ and rl(\lll)(REDs) = rl(\lll)(REDt).

(3) Since µlll(s′) < µlll(s),we can apply the induction hypothesis to s′
S,opt−−−→

t
REDt−−−−→ and have RED′

s ∈ CON (s′) with rl(\lll)(RED′
s) ≤ rl(\lll)(REDt).

By appending RED′
s to s

no,lll−−−→ s′ the claim follows.
(4) Since rl(\lll)(RED′) < rl(\lll)(REDt), we can apply the induction hypothesis

multiple times for every (S, opt)-transformation leading to RED′
s ∈ CON (s′)

with rl(\lll)(RED′
s) ≤ l − 1. By appending RED′

s to s
no,a−−−→ s′ we have

REDs ∈ CON (s) with rl(\lll)(REDs) ≤ l. ut

Lemma 6.11. If s
opt−−→ t then s ≤↓

c t and t ≤↓
c s.

Proof. Let s
opt−−→ t. Using the context lemma for may-convergence it is sufficient

to show ∀S ∈ S: S[s]↓ =⇒ S[t]↓ and ∀S ∈ S: S[t]↓ =⇒ S[s]↓. The first part
follows from Lemma 6.9, the second part follows from Lemma 6.10. ut

Lemma 6.12. If s
S,opt−−−→ t then s⇑ iff t⇑.

Proof. Follows from Lemma 6.11 using Lemma 4.5. ut

Lemma 6.13. If s
S,opt−−−→ t, then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(REDt) ≤ rl(REDs)

Proof. Let s = S[s0], t = S[t0] with s0
opt−−→ t0. Let REDs ∈ DIV(s) with l =

rl(REDs). We show by induction on l that there exists REDt ∈ DIV(t) with
rl(REDt) ≤ l. For the base case let REDs be empty, i.e. s⇑, then Lemma 6.12
shows the claim. The induction step uses the same arguments as the proof of
Lemma 6.9. ut

Lemma 6.14. If s
S,opt−−−→ t then for all REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\lll)(REDs) ≤ rl(\lll)(REDt).

Proof. The claim follows by induction on the measure µ on reduction sequences
s

S,opt−−−→ t
RED−−−→ with µ(s

S,opt−−−→ t
RED−−−→) = (rl(\lll)(RED), µlll(s)). Let the

measure be ordered lexicographically. The base case is covered by Lemma 6.12.
I.e., let s = S[s0], t = S[t0] and s0

opt−−→ t0, then we have µ(s
S,opt−−−→ t

REDt−−−−→
) = (0, (0, 0)). Since µlll(s) = (0, 0) we have that µlll(t) = (0, 0) since an (S, opt)
transformation does not introduce new letrec-expressions. Thus rl(REDt) =
0, i.e. t⇑ and Lemma 6.12 shows the claim. The induction step uses the same
arguments as the proof of Lemma 6.10. ut

Lemma 6.15. If s
opt−−→ t then s ≤⇓

c t and t ≤⇓
c s.

42 D. Sabel, M. Schmidt-Schauß

Proof. We use Corollary 4.12. We already have s ≤↓
c t and t ≤↓

c s from
Lemma 6.11. Hence, it is sufficient to show ∀S ∈ S : S[t]↑ =⇒ S[s]↑ and
∀S ∈ S : S[s]↑ =⇒ S[t]↑. Let s

opt−−→ t and S be a context with S[t]↑. Then
with Lemma 6.14 follows that S[s]↑ . Now, let S be context with S[s]↑, then
Lemma 6.13 shows that S[t]↑. ut

Proposition 6.16. (opt) is a correct program transformation, i.e. if s
opt−−→ t

then s ∼c t.

Proof. Follows from Lemma 6.11 and Lemma 6.15. ut

7 Correctness of Deterministic Reduction Rules

In this section we prove the correctness of the remaining reduction rules.

7.1 Correctness of (case)

With the correctness of (opt) and (case-c) we show the following proposition.

Proposition 7.1. (case) is a correct program transformation, i.e. if s
case−−→ t

then s ∼c t.

Proof. From Propositions 6.16 and 5.8 we have that (cpx), (cpcx) and (case-c)
keep contextual equivalence. Let {xi = xi−1}mi=1 be the chain which is used
by a (C, case-in)- or (C, case-e)-reduction, then every (case-in)-reduction can be

replaced by the sequence
C,cpx,m−1−−−−−−−→ C,cpcx−−−−→ C,case-c−−−−−→:

letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[caseT xm . . . (c −→zi → r) . . .]

cpx,m−1−−−−−→ letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[caseT x1 . . . (c −→zi → r) . . .]

cpcx−−→ letrec x1 = c −→yi , {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env in C[caseT (c −→yi) . . .]
case-c−−−→ letrec x1 = c −→yi , {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env

in C[letrec {zi = yi}ar(c)i=1 in r]

Every (C, case-e)-reduction can also be replaced by the sequence
C,cpx,m−1−−−−−−−→ C,cpcx−−−−→ C,case-c−−−−−→, where the transformation is analogous to the
transformation for (C, case-in). ut

7.2 Correctness of (lll)

We will develop complete sets of diagrams for the reductions (lapp), (lcase),
(lseq), (lamb) and (llet). Then we combine them to derive complete sets of dia-
grams for (lll) and finally prove the correctness of (lll)

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 43

7.2.1 Diagrams for (lapp), (lcase) and (lseq)

Lemma 7.2. Let red ∈ {lapp, lcase, lseq}, a complete set of forking diagrams

for
S,red−−−→ is

· S,red //

no,a

��

·
no,a

���
�
�

·
S,red

//___ ·

· S,red //

no,a

��

·

no,a
���

�
�

�

·

a arbitrary a ∈ {case, seq, amb}

Proof. A case analysis of all overlappings shows that the reductions either com-
mute, or the redex of the reduction (S, red) is discarded by an normal order
reduction. ut

7.2.2 Diagrams for (lamb)

Lemma 7.3. A complete set of forking diagrams for (S, lamb) is

· S,lamb //

no,a

��

·
no,a

���
�
�

·
S,lamb

//___ ·

· S,lamb //

no,a

��

·

no,a
���

�
�

�

·

·no,lamb//

no,lll

��

·
no,lll,+

���
�
�

·
no,lll,+

//___ ·

·no,lamb//

no,a

��

·
no,lll,+

���
�
�

·
no,a

���
�
�

·
no,lll,+

//___ ·

· S,lamb //

no,amb

��

·
no,lll,∗

���
�
�

·
no,amb

���
�
�

·
S,gc−1

//___ ·

where for the first diagram a is arbitrary, for second diagram a ∈ {case, seq, amb}
and for the 4th diagram a ∈ {case, lbeta, cp, seq, amb}.

Proof. Follows by inspecting all cases where an (S, lamb)-reduction overlaps with
a normal order reduction. The first diagram describes the commuting case. The
second diagram covers the cases where the (S, lamb) redex is discarded by an
(no, case)-, (no, seq)- or (no, amb)-reduction. If after performing the (S, lamb)-
reduction, the (inner) redex of the (no, a) is no longer inside a reduction context,
then the third or the fourth diagram is applicable. Note that in all these case
the (S, lamb)-reduction is also a normal order reduction. An example for these

44 D. Sabel, M. Schmidt-Schauß

cases is:

letrec x1 = seq (λx.x) s,
x2 = (amb x1 (letrec y = t in ty))

in x2

no,seq-c

��

no,lamb-r //
letrec x1 = seq (λx.x) s,

x2 = (letrec y = t in (amb x1 ty))
in x2

no,llet-e��
letrec x1 = seq (λx.x) s, y = t,

x2 = (amb x1 ty)
in x2

no,seq-c��
letrec x1 = s,

x2 = (amb x1 (letrec y = t in ty))
in x2 no,lll,+

//
letrec x1 = s, y = t,

x2 = (amb x1 ty)
in x2

The last diagram covers the cases, where the (S, lamb) redex and the redex of
an (no, amb)-reduction are identical, e.g.

letrec x1 = tx in amb (λx.x) (letrec y = s in sy)

no,amb-l-c

��

S,lamb-r // letrec x1 = tx in
(letrec y = s in amb (λx.x) sy)

no,llet-in
��

letrec x1 = tx, y = s in amb (λx.x) sy

no,amb-l-c��
letrec x1 = tx in (λx.x) letrec x1 = tx, y = s in (λx.x)

S,gc
oo

ut
Lemma 7.4. A complete set of commuting diagrams for (iS, red) with red ∈
{lapp, lcase, lseq, lamb} is

· iS,red //

no,a

���
�
� ·

no,a

��
·

iS,red
//___ ·

· iS,red //

no,a
��=

=
=

= ·
no,a

��
·

a arbitrary a ∈ {case, seq, amb}

Proof. This follows by checking all cases where (iS, a) with a ∈
{lapp, lseq, lcase, lamb} is followed by a normal order reduction. The first diagram
covers the cases where the reductions commute. If the normal order reduction is
a (case)−, (seq)− or (amb)-reduction that discards the letrec-expression which
is the result of the (iS, a)-reduction, then the second diagram is applicable. ut

7.2.3 Diagrams for (llet)

Lemma 7.5. A complete set of forking diagrams for (S, llet) is

· S,llet //

no,a

��

·
no,a

���
�
�

·
S,llet

//___ ·

· S,llet //

no,a

��

·

no,a
���

�
�

�

·

·
no,a

��

S,llet // ·
no,lll,+

���
�
�

·
no,lll,+

//___ ·

a arbitrary a ∈ {case, seq, amb} a ∈ {lapp, lcase, lseq, lamb}

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 45

Proof. This follows by inspecting all cases where an (S, llet)-reduction overlaps
with a normal order reduction. The first diagram is applicable if the reduc-
tions can be commuted. The cases where the (S, llet)-redex is discarded by an
(no, case)-, (no, seq)- or (no, amb)-reduction are covered by the second diagram.
The third diagram is necessary for the cases that after the (S, llet)-reduction the
redex of the (no, a) with a ∈ {lapp, lcase, lseq, lamb} is no longer in a reduction
context. An example for this case is:

letrec E1 in
((letrec E2 in (letrec E3 in r)) s)

no,lapp ��

S,llet-in // letrec E1 in ((letrec E2, E3 in r) s)

no,lll,+

��
letrec E1 in
(letrec E2 in ((letrec E3 in r) s)) no,lll,+

// letrec E1, E2, E3 in (r s)

ut

Lemma 7.6. A complete set of commuting diagrams for (iS, llet) is:

· iS,llet //

no,a

���
�
� ·

no,a

��
·

iS,llet
//___ ·

· iS,llet //

no,a
��=

=
=

= ·
no,a

��
·

· iS,llet //

no,lll,+ ��=
=

=
= ·

no,lll

��
·

· iS,llet //

no,lll

���
�
� ·

no,lll

��
·

iS,lll,+
//___ ·

a arbitrary a ∈ {case, seq, amb}

Proof. This follows by checking all cases where an S-internal (llet)-reduction is
followed by a normal order reduction. The first diagram covers the cases where
the reductions commute. If the contractum of the (llet)-reduction is discarded
by an (no, case)-, (no, seq)- or (no, amb)-reduction, then the second diagram is
applicable. The 4th diagram covers the cases where an (no, lll)-reduction overlaps
with the (iS, llet)-reduction and the letrec-environment needs to be adjusted.

R0[R
′
#1[(letrec Env in (letrec Env ′ in r′))]]

no,a
���
�

S,llet-in // R0[R
′
#1[(letrec Env , Env ′ in r′)]]

no,a
��

R0[(letrec Env in R′
#1[(letrec Env ′ in r′)])]

iS,lll,+
//______ R0[(letrec Env , Env ′ in R′

#1[r
′])]

The third diagram is for the same case except that the existential quantified
(lll)-reductions are normal order. An example for this case is:

R′
#1[(letrec Env in (letrec Env ′ in r′))]

no,a
���
�

S,llet-in // R′
#1[(letrec Env , Env ′ in r′)]

no,a

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(letrec Env in R′
#1[(letrec Env ′ in r′)])

no,lll,+ ���
�

(letrec Env , Env ′ in R′
#1[r

′])

ut

46 D. Sabel, M. Schmidt-Schauß

7.2.4 Proving Correctness of (lll) Now we can combine the diagrams to
derive complete sets of forking and commuting diagrams for (lll).

Lemma 7.7. A complete set of commuting diagrams for (iS, lll) is:

· iS,lll //

no,a

���
�
� ·

no,a

��
·

iS,lll
//___ ·

· iS,lll //

no,a
��=

=
=

= ·
no,a

��
·

· iS,llet //

no,lll,+ ��=
=

=
= ·

no,lll

��
·

· iS,llet //

no,lll

���
�
� ·

no,lll

��
·

iS,lll,+
//___ ·

a arbitrary a ∈ {case, seq, amb-l, amb-r}

Proof. Follows from Lemma 7.4 and Lemma 7.6. ut

Lemma 7.8. A complete set of forking diagrams for (S, lll) is:

· S,lll //

no,a

��

·
no,a

���
�
�

·
S,lll

//___ ·

· S,lll //

no,a

��

·

no,a
���

�
�

�

·

· S,lll //

no,lll

��

·
no,lll,+

���
�
�

·
no,lll,+

//___ ·

·no,lamb//

no,a

��

·
no,lll,+���

�

·
no,a

���
�

·
no,lll,+

//___ ·

· S,lamb //

no,amb

��

·
no,lll,∗���

�

·
no,amb���

�

·
S,gc−1

//___ ·

where for the first diagram a is arbitrary, for the second dia-
gram a ∈ {case, seq, amb-l, amb-r} and for the 4th diagram a ∈
{case, lbeta, cp, seq, amb-l, amb-r}.

Proof. Follows from Lemma 7.2, Lemma 7.3 and Lemma 7.5. ut

Lemma 7.9. If s
iS,lll−−−→ t then s is a WHNF iff t is a WHNF.

Lemma 7.10. If s
iS,lll−−−→ t then for all REDt ∈ CON (t) there exists REDs ∈

CON (s) with rl(\lll)(REDs) ≤ rl(\lll)(REDt).

Proof. Let the measure µ on reduction sequences be defined as µ(s
iS,lll−−−→ t

RED−−−→
r) = (rl(\lll)(RED), µlll(s)) and let µ be ordered lexicographically. For the base

case let µ(s
iS,lll−−−→ t

REDt−−−−→ r) = (0, (1, 1)) The measure µlll(s) cannot be smaller

than (0,(1,1)), since otherwise no (iS, lll)-reduction would be possible. If µ(s
iS,lll−−−→

t
REDt−−−−→ r) = (0, (1, 1)) the sequence RED cannot contain (no, lll) reductions

and thus RED is empty. Then t is a WHNF and with Lemma 7.9 s is also a
WHNF. Now, let µ(s

iS,lll−−−→ t
REDt−−−−→) > (0, (1, 1)). We apply a diagram from the

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 47

complete set of commuting diagrams for (iS, lll) to a prefix of s
iS,lll−−−→ t

REDt−−−−→.
With RED′ being REDt without the first reduction, the cases are:

s
iS,lll //

no,a ���
� t

no,a��
s′

RED′′
��
�O iS,lll

//___ t′

RED′
��

s
iS,lll //

no,a $$I
I

I t
no,a��

t′

RED′
��

s
iS,llet //

no,lll,+ $$I
I

I t
no,lll��

t′

RED′
��

s
iS,llet //

no,lll ���
� t

no,lll��
s′

RED′′
��
�O iS,lll,+

//___ t′

RED′
��

(1) (2) (3) (4)

Since cases (2) and (3) are trivial we only show the other cases:

(1) If the (no, a)-reduction is an (no, lll)-reduction then the we can apply the

induction hypothesis to the sequence s′
iS,lll−−−→ t′

RED′

−−−−→ since from s
no,lll−−−→ s′

follows that µlll(s′) < µlll(s) and rl(\lll)(RED′) = rl(\lll)(REDt). Hence, we
have RED′′ ∈ CON (s′) with rl(\lll)(RED′′) ≤ rl(\lll)(RED′). By append-

ing RED′′ to s
no,lll−−−→ s′ we have REDs ∈ CON (s) with rl(\lll)(REDs) =

rl(\lll)(RED′′).
If the (no, a)-reduction is not an (no, lll)-reduction, then we also can ap-

ply the induction hypothesis to the sequence s′
iS,lll−−−→ t′

RED′

−−−−→ since
rl(\lll)(RED) > rl(\lll)(RED′). Hence we have RED′′ ∈ CON (s′) with
rl(\lll)(RED′′) ≤ rl(\lll)(RED′). By appending RED′′ to s

no,a−−−→ s′ we have
REDs ∈ CON (s) with rl(\lll)(REDs) ≤ rl(\lll)(REDt).

(4) If the 4th diagram is applied, then the prefix s
iS,llet−−−→ t

no,lll−−−→ is replaced by

s
no,lll−−−→ s′

iS,lll,k−−−−→ t′ for some k > 0, i.e. there exist terms s′1 . . . s′k−1 with

s
iS,llet //

no,lll

��

t

no,lll

��
s′

iS,lll
//

RED′′

��
�O
�O
�O

s′1 iS,lll
//

RED′′
1

��
�O
�O
�O

. . .
iS,lll

// s′k−1 iS,lll
//

RED′′
k−1

�� �O
�O
�O

t′

RED′

��

It holds that µlll(s) > µlll(s′) > µlll(s′1) > . . . > µlll(s′k−1) > µlll(t′). Since
rl(\lll)(REDt) = rl(\lll)(RED′), we can apply the induction hypothesis to

the sequence s′k−1

iS,lll−−−→ t′
RED′

−−−−→ and have RED′′
k−1 ∈ CON (s′k−1) with

rl(\lll)(RED′′
k−1) ≤ rl(\lll)(RED′). Now, we can apply the induction hy-

pothesis multiple times for every s′i and finally for s′, i.e. we have RED′′ ∈
CON (s′) with rl(\lll)(RED′′) ≤ rl(\lll)(RED′). By appending RED′′ to

s
no,lll−−−→ s′, we have REDs ∈ CON (s) with rl(\lll)(REDs) ≤ rl(\lll)(RED).

ut

Lemma 7.11. If s
S,lll−−→ t then for all REDs ∈ CON (s) there exists REDt ∈

CON (t) with rl(\lll)(REDt) ≤ rl(\lll)(REDs).

48 D. Sabel, M. Schmidt-Schauß

Proof. We use induction on a measure µ on reduction sequences with µ(REDs←−−−−
s

S,lll−−→ t) = (rl(\lll)(REDs), µlll(s)) and the measure is ordered lexicographically.

Let s
S,lll−−→ t and REDs ∈ CON (s) with rl(\lll)(REDs) = l. If µlll(s) = (1, 1)

then either s is already in WHNF and Lemma 7.9 shows the claim, or REDs

consists of exactly one (no, lll)-reduction which leads to t, i.e. the reduction is
the same as the (S, lll)-reduction, then the claim trivially follows.

For the induction step, we use the complete set of forking diagrams for (S, lll)
of Lemma 7.8. If no diagram is applicable to REDs then there are two possibil-
ities:

– s is already in WHNF, then the claim follows from Lemma 7.9 and
Lemma 2.12.

– The first reduction of REDs is the same reduction as the (S, lll)-reduction.
By dropping the first reduction from REDs we have REDt ∈ CON (t) with
rl(\lll)(REDt) = l.

Otherwise, with RED′ being the suffix of REDs with length l − 1 we have
the cases:

s
S,lll //

no,a ��

t
no,a���

�

s′

RED′
��
S,lll

//__ t′

RED′′
��
�O

s
S,lll //

no,a ��

t

no,a���
�

s′

RED′
��

s
S,lll //

no,lll ��

t
no,lll,+���

�

s′

RED′
��
no,lll,+

//__ t′

RED′′
��
�O

(1) (2) (3)

s
no,lamb//

no,a

��

t
no,lll,+���

�

t′

no,a���
�

s′

RED′
��
no,lll,+

//__ t′′

RED′′
��
�O

s
S,lamb//

no,amb

��

t
no,lll,∗���

�

t′

no,amb���
�

s′

RED′
��

t′′
S,gcoo_ _

(4) (5)

(1) For the first diagram we split into two cases:
– The reduction s

no,a−−−→ s′ is not an (no, lll)-reduction. Since
rl(\lll)(RED′) = 1 + rl(\lll)(REDs), we can apply the induction hy-
pothesis, i.e. there exists RED′′ ∈ CON (t′) with rl(\lll)(RED′′) ≤
rl(\lll)(RED′). By appending RED′′ to t

no,a−−−→ t′ we have REDt ∈
CON (t) with rl(\lll)(REDt) ≤ rl(\lll)(REDs).

– The reduction s
no,a−−−→ s′ is an (no, lll)-reduction. Since rl(\lll)(REDs) =

rl(\lll)(RED′) and µlll(s) > µlll(s′) we can apply the induction hy-
pothesis and have a reduction sequence RED′′ ∈ CON (t′) with
rl(\lll)(RED′′) ≤ rl(\lll)(RED′).By appending RED′′ to t

no,a−−−→ t′ we
have REDt ∈ CON (t) with rl(\lll)(REDt) ≤ rl(\lll)(REDs).

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 49

(2) For the second diagram the existence of REDt ∈ CON (t) with
rl(\lll)(REDt) ≤ rl(\lll)(REDs) is obvious.

(3) Since rl(\lll)(RED) = rl(\lll)(RED′) but µlll(s′) < µlll(s) and (lll) decreases
the measure µlll strictly, we can an apply the induction hypothesis multiple
times for every (no, lll)-reduction in the sequence s′

no,lll,+−−−−→ t′. Thus, we
have RED′′ ∈ CON (t′) with rl(\lll)(RED′′) ≤ rl(\lll)(RED′). By appending

RED′′ to t
no,lll,+−−−−→ t′ we have REDt ∈ CON (t) with rl(\lll)(REDt) ≤ l.

(4) Since the first reduction of REDs is not an (lll)-reduction, rl(\lll)(RED′) =
l − 1. Hence, we can use the induction hypothesis multiple times for ev-
ery (lll)-reduction in s′

no,lll,+−−−−→ t′′ and derive RED′′ ∈ CON (t′) with

rl(\lll)(RED′′) ≤ l − 1. By appending RED′′ to t
no,lll,+−−−−→ t′

no,a−−−→ t′′ we
have REDt ∈ CON (t) with rl(\lll)(REDt) ≤ l.

(5) We can construct the reduction sequence t
no,lll,∗−−−−→ t′

no,amb−−−−→ t′′
S,gc−−→

s′
RED′

−−−−→ where RED′ ∈ CON (s′). From Lemma 6.10 we have that there
exists RED′′ ∈ CON (t′′) with rl(\lll)(RED′′) ≤ rl(\lll)(RED′). Hence,

we have the sequence REDt = t
no,lll,∗−−−−→ t′

no,amb−−−−→ t′′
RED′′

−−−−→ with
rl(\lll)(REDt) ≤ rl(\lll)(REDs).

ut

Lemma 7.12. If s
lll−→ t then s ≤↓

c t and t ≤↓
c s.

Proof. Using the context lemma it is sufficient to show, that if s0
lll−→ t0 then

∀S ∈ S: S[s0]↓ =⇒ S[t0]↓ and ∀S ∈ S: S[t0]↓ =⇒ S[s0]↓. For the first part
we split into two cases: If S[s0]

lll−→ S[t0] is a normal order reduction then the
claim is obvious, otherwise the claim follows from Lemma 7.11. The second part
follows from Lemma 7.10. ut

Lemma 7.13. If s
S,lll−−→ t then s⇑ iff t⇑.

Proof. Follows from Lemma 7.12 using Lemma 4.5. ut

Lemma 7.14. If s
iS,lll−−−→ t then for all REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\lll)(REDs) ≤ rl(\lll)(REDt).

Proof. Let µ be a measure on reduction sequences s
iS,lll−−−→ t

RED−−−→ r with
µ(s

iS,lll−−−→ t
RED−−−→ r) = (rl(\lll)(RED), µlll(s)). We use induction on the measure

µ, ordered lexicographically. µlll(s) cannot be smaller than (1, 1), since other-

wise no (iS, lll)-reduction would be possible. If µ(s
iS,lll−−−→ t

RED−−−→) = (0, (1, 1))
then µlll(t) < (1, 1), hence the RED cannot contain (no, lll)-reductions and thus
RED is empty, i.e. t⇑. Then Lemma 7.13 shows the claim. The induction step
is analogous as in the proof of Lemma 7.10. ut

Lemma 7.15. If s
S,lll−−→ t then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(\lll)(REDt) ≤ rl(\lll)(REDs).

50 D. Sabel, M. Schmidt-Schauß

Proof. This follows by induction on a lexicographically ordered measure µ de-
fined as µ(REDs←−−−− s

S,lll−−→ t) = (rl(\lll)(REDs), µlll(s)). The base case follows
from Lemma 7.13, and the induction uses the forking diagrams for (S, lll). ut

Lemma 7.16. If s
lll−→ t then s ≤⇓

c t and t ≤⇓
c s.

Proof. We use Corollary 4.12. We already have s ≤↓
c t and t ≤↓

c s from
Lemma 7.12. For the remaining part we show ∀S ∈ S : S[t]↑ =⇒ S[s]↑
and ∀S ∈ S : S[s]↑ =⇒ S[t]↑. Let s

lll−→ t and S be a context with S[t]↑. If

S[s]
S,lll−−→ S[t] is a normal order reduction, we have S[s]↑. Otherwise, the claim

follows from Lemma 7.14. Now let S be context with S[s]↑, then Lemma 7.15
shows that S[t]↑. ut

Proposition 7.17. (lll) is a correct program transformation, i.e. if s
lll−→ t then

s ∼c t.

Proof. Follows from Lemma 7.12 and Lemma 7.16. ut

7.3 Correctness of (seq)

Lemma 7.18. A complete set of forking diagrams for (S, seq) is

· S,seq //

no,a

��

·
no,a

���
�
�

·
S,seq

//___ ·

· S,seq //

no,a

��

·

no,a
���

�
�

�

·

· S,seq //

no,cp

��

·
no,cp

���
�
�

·
S,seq

//___ ·
S,seq

//___ ·

a arbitrary a ∈ {case, seq, amb-l, amb-r}

Proof. The reductions commute, or the (S, seq) is discarded by a normal order
reduction, or if the inner redex of the (S, seq) is in the body of an abstraction,
which is copied by an (no, cp)-reduction, then two (S, seq)-reductions are neces-
sary. ut

Lemma 7.19. If s
iS,seq−−−→ t then s is a WHNF iff t is a WHNF.

Lemma 7.20. If s
S,seq−−−→ t then for all REDs ∈ CON (s) there exists REDt ∈

CON (t) with rl(REDt) ≤ rl(REDs).

Proof. Let s
S,seq−−−→ t and REDs ∈ CON (s) with rl(REDs) = l, we use induction

on l. If l = 0 then s is a WHNF and the claim follows from Lemma 7.19. If l > 0
then let RED′ be the suffix of REDs of length l − 1. If the first reduction of
REDs is the same as the (S, seq)-reduction, then RED′ ∈ CON (t). Otherwise,

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 51

we apply a forking diagram to a suffix of REDs←−−−− s
S,seq−−−→ t and have the cases:

s
S,seq //

no,a
��

t
no,a

���
�

s1

RED′

��
S,seq

//___ t1
RED′′

���O
�O

s
S,seq //

no,a
��

t

no,a{{v
v

v

s1

RED′

��

s
S,seq //

no,cp
��

t
no,cp

���
�

s1
S,seq

//___

RED′

��

s′1
RED′′

���O
�O

S,seq
//___ t1

RED′′′

���O
�O

(1) (2) (3)

For case (1), we can apply the induction hypothesis to RED′

←−−−− s1
S,seq−−−→ t1. Case

(2) is trivial. For case (3) we apply the induction hypothesis twice, i.e. firstly to
RED′

←−−−− s1
S,seq−−−→ s′1 and secondly to RED′′

←−−−− s′1
S,seq−−−→ t1. ut

Lemma 7.21. A complete set of commuting diagrams for (iS, seq) is

·
no,a

���
�
�

iS,seq // ·
no,a

��
·

iS,seq
//___ ·

·

no,a
��=

=
=

=
iS,seq // ·

no,a

��
·

·
no,cp

���
�
�

iS,seq // ·
no,cp

��
·

iS,seq
//___ ·

iS,seq
//___ ·

·

no,a

��,
,

,
iS,seq// ·

no,a

��

·

no,seq

��,
,

,

·
a arbitrary a ∈ {case, seq, amb-l, amb-r} a arbitrary

Proof. The first three diagrams describe the same cases as for the forking di-
agrams. The second diagram is applicable, if the (iS, seq)-reduction becomes
normal order, e.g.

(letrec Env in (letrec Env ′ in seq v t))

no,llet
��

iS,seq // (letrec Env in (letrec Env ′ in t))

no,llet
��

(letrec Env ,Env ′ in seq v t)
no,seq

// (letrec Env ,Env ′ in t)

ut

Lemma 7.22. If s
iS,seq−−−→ t then for every REDt ∈ CON (t) there exists

REDs ∈ CON (s) with rl(\seq)(REDs) ≤ rl(\seq)(REDt).

Proof. Let s
iS,seq−−−→ t and REDt ∈ CON (t), we use induction on the mea-

sure µ ordered lexicographically with µ(RED) = (rl(\seq)(RED), rl(RED)). If
rl(REDt) = 0 then the claim follows from Lemma 7.19. If µ(REDt) = (l,m) ≥
(0, 1), i.e. REDt contains at least one normal order reduction, then we apply

a commuting diagram from Lemma 7.21 to a prefix of s
iS,seq−−−→ t

REDt−−−−→. With

52 D. Sabel, M. Schmidt-Schauß

RED′ being the suffix of REDt of length (m− 1) we have the cases:

s
no,a

���
�

iS,seq // t
no,a

��
s′

iS,seq
//___

RED′′

���O
�O

t′

RED′

��

s

no,a ##G
G

G
iS,seq // t

no,a
��
t′

RED′

��

s

no,cp
���
�

iS,seq // t
no,cp

��
s′

iS,seq
//___

RED′′

���O
�O

s′1

RED′′
1

���O
�O

iS,seq
//___ t′

RED′

��

s

no,a ��:
:
iS,seq // t

no,a

��
s′

no,seq ��:
:

t′
RED′

��

(1) (2) (3) (4)

For case (1) we apply the induction hypothesis to s′
iS,seq−−−→ t′

RED′

−−−−→. Cases (2)
and (4) are trivial. For case (3) we apply the induction hypothesis twice. ut

Lemma 7.23. s
seq−−→ t then, s ≤↓

c t and t ≤↓
c s.

Proof. Using the context lemma for may-convergence, it is sufficient to show that
∀S ∈ S: S[s]↓ =⇒ S[t]↓ and ∀S ∈ S: S[t]↓ =⇒ S[s]↓. The first part follows

from Lemma 7.20. For the second part let S[t]↓. If the reduction S[s]
S,seq−−−→ S[t]

is a normal order reduction, then the claim follows trivially, otherwise the claim
follows from Lemma 7.22. ut

Lemma 7.24. If s
S,seq−−−→ t then s⇑ iff t⇑.

Proof. Follows from Lemma 7.23 using Lemma 4.5. ut

Lemma 7.25. If s
S,seq−−−→ t then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(REDt) ≤ rl(REDs).

Proof. Let s = S[s0], t = S[t0], s0
seq−−→ t0 and REDs ∈ DIV(s) with

rl(REDs) = l. The claim follows by induction on l, where the base case is
covered by Lemma 7.24 and the induction step is analogous to the proof of
Lemma 7.20. ut

Lemma 7.26. If s
iS,seq−−−→ t then for every REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\seq)(REDs) ≤ rl(\seq)(REDt)

Proof. Let s = S[s0], t = S[t0], s0
seq−−→ t0 and REDt ∈ DIV(t), we use in-

duction on the measure µ(REDt) ordered lexicographically, where µ(RED) =
(rl(\seq)(RED), rl(RED)). If rl(REDt) = 0, then the claim follows from
Lemma 7.24. The induction step is analogous to the proof of Lemma 7.22. ut

Lemma 7.27. If s
seq−−→ t then s ≤⇓

c t and t ≤⇓
c s.

Proof. We use Corollary 4.12. We already have s ≤↓
c t and t ≤↓

c s from
Lemma 7.23, hence it is sufficient to show ∀S ∈ S : S[s]↑ =⇒ S[t]↑ and
∀S ∈ S : S[t]↑ =⇒ S[s]↑. The first part follows from Lemma 7.25. The second

part follows from Lemma 7.26 or follows trivially if S[s]
S,seq−−−→ S[t] is a normal

order reduction. ut

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 53

Proposition 7.28. (seq) is a correct program transformation, i.e. if s
seq−−→ t

then, s ∼c t.

Proof. Follows from Lemma 7.23 and Lemma 7.27. ut

7.4 Correctness of (cp)

Lemma 7.29. A complete set of forking diagrams for (S, cp) is

· S,cp //

no,a

��

·
no,a

���
�
�

·
S,cp

//___ ·

· S,cp //

no,a

��

·

no,a
���

�
�

�

·

· S,cp //

no,cp

��

·
no,cp

���
�
�

·
S,cp

//___
S,cp

//___ ·

a arbitrary a ∈ {case, seq, amb-l, amb-r}

Proof. The reductions commute, or the redex of the target of the (S, cp)-
reduction is discarded by a normal order reduction, or the (S, cp)-reduction
copies into the body of an abstraction that is copied by an (no, cp)-reduction.
In detail: Follows by inspecting all cases where an (S, cp) and a normal order
reduction overlaps. The first diagram is applicable if both reductions commute.
If the redex or the target of the (S, cp) is discarded by an (no, case)-, (no, seq)-
or (no, amb)-reduction, then the second diagram is applicable. The third dia-
gram covers the cases, where the (S, cp)-reduction copies into the body of an
abstraction that is copied by a normal order (cp)-reduction. ut

Lemma 7.30. If s
iS,cp−−−→ t, then s is a WHNF iff t is a WHNF.

Lemma 7.31. If s
S,cp−−→ t, then for all REDs ∈ CON (s) there exists REDt ∈

CON (t) with rl(REDt) ≤ rl(REDs).

Proof. The proof is a copy of the proof of Lemma 7.20 using the complete set of
forking diagrams for (S, cp) from Lemma 7.29 and using Lemma 7.30. ut

For the other direction, i.e. s
cp−→ t, then t ≤↓

c s, we distinguish to kinds of
(cp)-reductions:

(cps) := the inner redex of the (cp) is of the form S[x], i.e. the target is
inside a surface context.

(cpd) := the inner redex of the (cp) is of the form C[λz.C ′[x]], i.e. the target
is inside the body of an abstraction.

Definition 7.32. Let s be a term, then µSx(s) is the number of occurrences of
variables in s where the occurrence is inside a surface context.

Lemma 7.33. Every (S, cps)- or (no, cp)-reduction strictly reduces the measure
µSx. Every (S, cpd)-reduction does not change the measure µSx.

54 D. Sabel, M. Schmidt-Schauß

Lemma 7.34. A complete set of commuting diagrams for (iS, cp) is

· iS,cp //

no,a

���
�
� ·

no,a

��
·

iS,cp
//___ ·

· iS,cps//

no,a

��,
,

, ·

no,a

��

·

no,cp

��,
,

,

·

· iS,cp //

no,a
��=

=
=

= ·
no,a

��
·

· iS,cpd //

no,cp

���
�
� ·

no,cp

��
·

iS,cpd
//___

iS,cpd
//___ ·

a arbitrary a arbitrary a ∈ {case, seq, amb-l, amb-r}

Proof. Follows by inspecting all cases where a (iS, cp)-reduction is followed by
a normal order reduction. The first diagram describe the case where the reduc-
tions commute. If the S-internal (cp)-reduction becomes normal order, then the
second diagram is applicable. The third diagram describes the case where the
contractum of the (iS, cp)-reduction is discarded by a normal order reduction.
The last diagram covers the cases, where the target of an (iS, cpd)-reduction is
inside the body of an abstraction that is copied by an (no, cp)-reduction. An
example for the second diagram is:

letrec y = (λx.s) in (seq (λz.z) y)
iS,cps−−−→ letrec y = (λx.s) in (seq (λz.z) (λx′.s[x′/x]))
no,seq−−−−→ letrec y = (λx.s) in (λx′.s[x′/x])

letrec y = (λx.s) in (seq (λz.z) y)
no,seq−−−−→ letrec y = (λx.s) in y
no,cp−−−→ letrec y = (λx.s) in (λx′.s[x′/x])

ut
Lemma 7.35. If s

iS,cp−−−→ t then for all REDt ∈ CON (t) there exists REDs ∈
CON (s) with rl(\cp)(REDs) ≤ rl(\cp)(REDt)

Proof. Let s
iS,cp−−−→ t and REDt ∈ CON (t). The claim follows by induc-

tion on the measure µ on reduction sequences with µ(s
iS,cp−−−→ t

REDt−−−−→) =

(rl(\cp)(REDt), µSx(t)). If µ(s
iS,cp−−−→ t

REDt−−−−→) = (0, 0), then from Lemma 7.33
we have that REDt must be empty. Thus Lemma 7.30 shows the claim. Now,
let µ(s

iS,cp−−−→ t
REDt−−−−→) = (l, m) > (0, 0). We apply a commuting diagram to a

prefix of s
iS,cp−−−→ t

REDt−−−−→. With RED′ being the suffix of REDt where the first
reduction is dropped, we have the cases

s
iS,cp //

no,a
���
� t

no,a
��

s′
iS,cp

//___

RED′′

���O
�O

t′

RED′

��

s
iS,cp //

no,a ��:
: t

no,a

��
s′

no,cp ��:
:

t′
RED′

��

s
iS,cp //

no,a ##G
G

G t
no,a

��
t′

RED′

��

s
iS,cpd //

no,cp
���
� t

no,cp
��

s′

RED′′′

���O
�O iS,cpd

//___ s′′

RED′′ ���O
�O iS,cpd

//___ t′

RED′

��

(1) (2) (3) (4)

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 55

(1) For the first diagram we have
– µSx(t′) < µSx(t) and rl(\cp)(RED′) = l if the (no, a)-reduction is an

(no, cp)-reduction, or
– rl(\cp)(RED′) < l, if the (no, a)-reduction is not an (no, cp)-reduction.

In both cases, we can apply the induction hypothesis to s′
iS,b−−→ t′

RED′

−−−−→ and
have RED′′ ∈ CON (s′) with rl(\cp)(RED′′) ≤ rl(\cp)(RED′). By append-
ing RED′′ to s

no,a−−−→ s′ we have REDs ∈ CON (s) with rl(\cp)(REDs) ≤ l.

(2) The sequence REDs =
no,a−−−→ no,cp−−−→ RED′

−−−−→ is in CON (s) and rl(REDs) ≤ l.

(3) We can construct the sequence REDs =
no,a−−−→ RED′

−−−−→ with REDs ∈ CON (s)
and rl(\cp)(REDs) ≤ l.

(4) Since t
no,cp−−−→ t′ we have with Lemma 7.33 that µSx(t′) < m. From

s′
iS,cpd−−−−→ s′′ and

iS,cpd−−−−→ t′ we also have with Lemma 7.33 that µSx(s′′) =
µSx(s′) < m. Since rl(\cp)(RED′) = l we can apply the induction hypothesis

to s′′
is,cpd−−−→ t′

RED′

−−−−→ and have RED′′ ∈ CON (s′′) with rl(\cp)(RED′′) ≤ l.
Since µ(s′′) < m we can apply the induction hypothesis for a second time to

s′
iS,cpd−−−−→ s′′

RED′′

−−−−→ and have RED′′′ ∈ CON (s′) with rl(\cp)(RED′′′) ≤ l.
Finally we append RED′′′ to s

no,cp−−−→ s′ and have REDs ∈ CON (s) with
rl(\cp)(REDs) ≤ l.

ut

Lemma 7.36. If s
cp−→ t then s ≤↓

c t and t ≤↓
c s.

Proof. Let s
cp−→ t, using Lemma 4.10 it is sufficient to show ∀S ∈ S : S[s]↓ =⇒

S[t]↓ and ∀S ∈ S : S[t]↓ =⇒ S[s]↓. The first part follows from Lemma 7.31.

The second part follows from Lemma 7.35 or follows trivially if S[s]
S,cp−−→ S[t] is

normal order. ut

Lemma 7.37. If s
S,cp−−→ t then s⇑ iff t⇑.

Proof. Follows from Lemma 7.36 using Lemma 4.5. ut

Lemma 7.38. If s
S,cp−−→ t, then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(REDt) ≤ rl(REDs)

Proof. The proof is a copy of the proof of Lemma 7.25 using the complete set
of forking diagrams for (S, cp) from Lemma 7.29 and for the base case using
Lemma 7.37. ut

Lemma 7.39. If s
iS,cp−−−→ t then for all REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\cp)(REDs) ≤ rl(\cp)(REDt)

Proof. The proof is analogous to the proof of Lemma 7.35 using Lemma 7.37.
ut

Lemma 7.40. If s
cp−→ t then s ≤⇓

c t and t ≤⇓
c s.

56 D. Sabel, M. Schmidt-Schauß

Proof. From Lemma 7.36 we have s ≤↓
c t and t ≤↓

c s. Using Corollary 4.12 it
is sufficient to show that ∀S ∈ S : S[s]↑ =⇒ S[t]↑ and ∀S ∈ S : S[t]↑ =⇒
S[s]↑. The first part follows from Lemma 7.38. The second part follows from

Lemma 7.39 if S[s]
S,cp−−→ S[t] is S-internal and otherwise the claim is trivial. ut

Proposition 7.41. (cp) is a correct program transformation, i.e. if s
cp−→ t then

s ∼c t.

Proof. Follows from Lemma 7.36 and Lemma 7.40 ut

8 The Standardisation Theorem and an Application

We summarise the results of the previous sections.

Theorem 8.1. All deterministic reductions of the calculus Λlet
amb keep contextual

equivalence, i.e. if s
a−→ t with a ∈ {lbeta, lll, case, seq, cp} then s ∼c t.

Proof. Follows from the Propositions 5.8, 7.17, 7.1, 7.28 and 7.41. ut

We will now develop properties of the reduction (amb), that will be necessary
for the proof of the Standardisation Theorem (Theorem 8.12).

8.1 Properties of the Reduction (amb)

Lemma 8.2. If s
iS,amb−−−−→ t then s is a WHNF iff t is a WHNF.

Proof. Follows by definition of WHNFs. ut

The following lemma shows that it is sufficient to consider (amb-c)-
reductions.

Lemma 8.3. Let s, t be terms with s
C,amb-in−−−−−→ t or s

C,amb-e−−−−−→ t. Then either
s

C,cp−−→ C,amb-c−−−−−→ C,cp←−− t or s
C,cpx,∗−−−−→ C,cpcx−−−−→ C,amb-c−−−−−→ C,cpcx←−−−− C,cpx,∗←−−−− t.

Proof. We show the transformation for a toplevel (amb-in)-reduction, the other
cases are analogous: In case of a constructor application:

letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[amb xm s]

cpx,m−1−−−−−→ letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[amb x1 s]

cpcx−−→ letrec x1 = c −→yi , {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env in C[amb (c −→yi) s]
amb-c−−−→ letrec x1 = c −→yi , {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env in C[(c −→yi)]
cpcx←−− letrec x1 = c

−→
ti , {xi = xi−1}mi=2,Env in C[x1]

cpx,m−1←−−−−− letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[xm]

In case of an abstraction:
letrec x1 = (λx.t), {xi = xi−1}mi=2,Env in C[amb xm s]

cp−→ letrec x1 = (λx.t), {xi = xi−1}mi=2,Env in C[amb (λx.t) s]
amb-c−−−→ letrec x1 = (λx.t), {xi = xi−1}mi=2,Env in C[(λx.t)]
cp←− letrec x1 = (λx.t), {xi = xi−1}mi=2,Env in C[xm]

ut

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 57

Lemma 8.4. If s
amb−−→ t then t ≤↓

c s.

Proof. For (amb-c) the claim has been proved in Lemma 5.1. For (amb-in) or
(amb-e) we replace the reduction using Lemma 8.3. Then Theorem 8.1, Propo-
sition 6.16 and Lemma 5.1 show the claim. ut

Remark 8.5. An (amb)-reduction may introduce must-convergence, e.g. consider
the terms s ≡ caseBool (amb True False) (True → Ω) (False → False) and
t ≡ caseBool False (True → Ω) (False → False). While t⇓, s may reduce to
Ω, i.e. ¬(s⇓).

Lemma 8.6. A complete set of commuting diagrams and a complete set of fork-
ing diagrams for (iS, amb-c) can be read off the following diagrams

·iS,amb-c//

no,a

��

·
no,a

��
·
iS,amb-c

// ·

·iS,amb-c//

no,a
��=

==
==

==
·
no,a

��
·

·iS,amb-c//

no,a

��

·
no,a

��
·
no,amb-c

// ·

a arbitrary a ∈ {case, seq, amb-l, amb-r} a arbitrary

Proof. Follows by case analysis. The reductions either commute or the redex of
the (S, amb-c) is discarded, or the internal (amb-c) reduction becomes normal
order. ut

Remark 8.7. A complete set of forking diagrams for (S, amb-c) does not exist.

There are forks that cannot be closed, e.g. 0
no,amb-l←−−−−− (amb 0 1)

no,amb-r−−−−−→ 1.
Nevertheless, the following lemmas hold for (amb-c)-reductions within all surface
contexts.

Lemma 8.8. If s
S,amb-c−−−−−→ t then s⇓ =⇒ t↓

Proof. Let s = S[s0], t = S[t0] with s0
amb-c−−−→ t0 and s⇓. We use induction on

l = rl(REDs) with REDs ∈ CON (s). If the (S, amb-c)-reduction is a normal
order reduction, then t⇓. Let the (amb-c)-reduction be S-internal. If l = 0 then
Lemma 8.2 shows the claim. If l > 0 then we apply a forking diagram from
Lemma 8.6 to REDs←−−−− s

iS,amb−−−−→ t. Let RED′ be the suffix of REDs of length
l − 1, then we have the cases:

s
iS,amb-c//

no,a
��

t
no,a

���
�

s′
iS,amb-c

//___

RED′

��

t′

RED′′

���O
�O

s
iS,amb-c//

no,a
��

t

no,a{{w
w

w

s′

RED′

��

s
iS,amb-c//

no,a
��

t
no,a

���
�

s′
no,amb-c

//___

RED′

��

s′′

(1) (2) (3)

(1) From s⇓ we have s′⇓. Since rl(RED′) = l − 1 we can apply the induction

hypothesis to RED′

←−−−− s′
iS,amb-c−−−−−→ t′ and have t′↓ and hence t↓.

58 D. Sabel, M. Schmidt-Schauß

(2) From s⇓ we have s′⇓ and hence t↓.
(3) From s⇓ we have s′⇓ as well as s′′⇓. Since t

n−→ s′′ we have t↓.
ut

Lemma 8.9. If s
S,amb-c−−−−−→ t then t↑ =⇒ s↑.

Proof. Let s
S,amb-c−−−−−→ t, then the claim can be shown by induction on the length of

RED ∈ DIV(t) using Lemma 8.8 and the commuting diagrams for (iS, amb-c).
Let s = S[s0], t = S[t0] with s0

amb-c−−−→ t0 and t↑. We use induction l = rl(REDt)
with REDt ∈ DIV(t). If the (amb-c)-reduction is normal order, then the claim
follows immediately. Let the (amb-c)-reduction be S-internal, if l = 0, i.e. t⇑,
then Lemma 8.8 shows the claim. If l > 0 then we apply a commuting diagram
from Lemma 8.6 to s

iS−→ t
REDt−−−−→. Let RED′ be the suffix of REDt of length

l − 1, then we have the following cases:

s
iS,amb-c//

no,a
���
� t

no,a
��

s′
iS,amb-c

//___

RED′′

���O
�O

t′

RED′

��

s
iS,amb-c//

no,a ##G
G

G t
no,a

��
s′

RED′

��

s
iS,amb-c//

no,a
���
� t

no,a
��

s′
no,amb-c

//___ s′′

RED′

��

(1) (2) (3)

In case (1) we apply the induction hypothesis to s′
iS,amb-c−−−−−→ t′

RED′

−−−−→ and hence
have that s′↑. With s

no,a−−−→ s′ we have s↑. Cases (2) and (3) are trivial. ut

Analogously to (cps), let (ambs) be the reduction (amb) where the inner redex
of (amb-in) or (amb-e) is inside a surface context.

Lemma 8.10. If s
S,ambs−−−−→ t then t↑ =⇒ s↑

Proof. Follows from Lemma 8.9 and 8.3 using Theorem 8.1 and Proposition 6.16.
ut

Remark 8.11. We are not able to prove Lemma 8.10 for all contexts. The context
lemma for must-convergence does not help, since the s ≤↓

c t does not hold. If
we used diagrams for (iC, amb-c) instead of (iS, amb-c), then we would have the
additional diagram

· iC,amb-c //

no,cp

��

·
no,cp

��
·
iC,amb-c

// ·
iC,amb-c

// ·

Including this diagram the induction in the proof of Lemma 8.8 does not work.

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 59

8.2 The Standardisation Theorem

We define the transformation (corr) as the union of the reductions and trans-
formations that have been shown correct. The transformation (allr) is then the
union of (ambs), (corr) and the inverse of (corr):

(corr) := (lll) ∪ (lbeta) ∪ (seq) ∪ (case) ∪ (opt)

(allr) := (corr) ∪ (corr)−1 ∪ (ambs)

The next theorem shows that for every converging sequence consisting of all
defined reductions and transformations there exists a normal order reduction
sequence that converges and also that for every diverging sequence of reduc-
tions inside surface contexts there exists a normal order reduction sequence that
diverges.

Theorem 8.12 (Standardisation).

1. Let t be a term with t
C,allr,∗−−−−→ t′ where t′ is a WHNF, then t↓.

2. Let t be a term with t
S,allr,∗−−−−→ t′ where t′⇑, then t↑.

Proof. 1. Let t ≡ t0
C,red1−−−−→ t1

C,red2−−−−→ . . .
C,redk−1−−−−−−→ tk ≡ t′ where t′ is a WHNF.

Using Theorem 8.1, Proposition 6.16 and Lemma 8.4 we have for every

ti
C,redi+1−−−−−→ ti+1 that if ti+1↓ then ti↓. Using induction on k we can show

t0↓.
2. Let t ≡ t0

S,red1−−−−→ t1
S,red2−−−−→ . . .

S,redk−1−−−−−−→ tk ≡ t′ where t′⇑. With Theo-

rem 8.1, Proposition 6.16 and Lemma 8.10 we have for every ti
S,redi+1−−−−−→ ti+1

that if ti+1↑ then ti↑. Using induction on k we can show t0↑. ut

8.3 Proving Bottom-Avoidance

Definition 8.13 (Ω-term). A term t is called an Ω-term in a context S, if
either t ≡ Ω (see Example 4.2), or t is a variable x and S contains a letrec-
binding x = x.

We define bottom-avoidance of amb as a program transformation:

(amb-l-o) (amb s t)→ s, if t is an Ω-term.
(amb-r-o) (amb s t)→ t, if s is an Ω-term.

Let (amb-o) be the union of (amb-l-o) and (amb-r-o). Now we will show the cor-
rectness of the transformation (amb-o). We proceed again by using commuting
and forking diagrams for the correctness proofs. Note, that there exists a com-
plete set of forking diagrams for (S, amb-o) in contrast to the (amb-c)-reduction,
since the case of Remark 8.7 is not possible because one argument of the amb-
expression cannot reduce to a value. From now on we extend the definition of
forking and commuting diagrams by allowing also the transformation (S, allr)
instead of normal order reductions in the existential quantified reductions on
the left and on the right of the diagrams. This is sufficient since Theorem 8.12
shows that for these cases also a normal order reduction exists.

60 D. Sabel, M. Schmidt-Schauß

Lemma 8.14. A complete set of forking diagrams for (S, amb-o) is:

·S,amb-o//

no,a

��

·
no,a

���
�
�

·
S,amb-o

//___ ·

·S,amb-o//

no,a

��

·

no,a
���

�
�

�

·

·S,amb-o//

no,a

��

·

·
S,amb-o

@@�
�

�
�

·S,amb-o//

no,a

��

·

S,gc−

���
�
�

·
S,amb-o

//___ ·

a arbitrary a ∈ {case, seq, amb-l, amb-r} a arbitrary a arbitrary

Proof. Follows by inspecting all cases where an (S, amb-o)-transformation and
a normal order reduction overlap. The first diagram covers the cases where
the reductions are performed independently. If the redex of the (S, amb-o)-
transformation is discarded by a normal order (case)-, (seq)- or (amb)-reduction,
then the second diagram is applicable. The third diagram covers the cases where
an (no, lamb) floats out an letrec-environment of the argument of the amb-
expression that is the result of the (amb-o)-reduction. The last diagram covers
the cases where an letrec-environment is floated out of the argument of the
amb-expression that is discarded by the (amb-o)-transformation. ut

Lemma 8.15. Let s, t be terms with s
iS,amb-o−−−−−→ t then s is a WHNF iff t is a

WHNF.

Lemma 8.16. Let s, t be terms with s
S,amb-o−−−−−→ t and s↓ then t↓

Proof. We show by induction on the length l of a reduction sequence REDs ∈
CON (s), that there exists a sequence of (S, allr)-transformations starting with
t that leads to a WHNF. Then Theorem 8.12 part 1 shows that t↓. The base
case follows from Lemma 8.15. If l > 0 and the first reduction of REDs is same
reduction as the (S, amb-o)-transformation, the claim holds. Otherwise, we apply

a forking diagram from Lemma 8.14 to REDs←−−−− s
S,amb-o−−−−−→. Let RED′ be the suffix

of REDs of length l − 1, we have the following cases:

s
S,amb-o //

no,a
��

t
no,a

���
�

s′ S,amb-o
//___

RED′

��

t′

s
S,amb-o//

no,a
��

t

no,a{{w
w

w

s′

RED′

��

s
S,amb-o//

no,a
��

t

s′
S,amb-o

;;w
w

w

RED′

��

s
S,amb-o //

no,a
��

t

s′ S,amb-o
//___

RED′

��

t′
S,gc

OO�
�

(1) (2) (3) (4)

Case (2) is trivial, for the remaining cases we apply the induction hypothesis

to RED′

←−−−− s′
S,amb-o−−−−−→ and derive a sequence of (S, allr)-transformations for t that

ends in a WHNF. Hence, we obtain a sequence of (S, allr)-transformations that

starts with t′. By appending this sequence to t
no,a−−−→ t′, t

S,a−−→ t′ , t
S,gc←−−− t′ we

derive a sequence of (S, allr) reductions starting with t. ut

Lemma 8.17. If s
amb-o−−−→ t then s ≤↓

c t

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 61

Proof. Follows from Lemma 8.16 by using the context lemma for may-
convergence. ut

Lemma 8.18. A complete set of commuting diagrams for (iS, amb-o) is:

·S,amb-o//

no,a

���
�
� ·

no,a

��
·
S,amb-o

//___ ·

·S,amb-o//

S,a

���
�
� ·

no,a

��
·
S,amb-o

//___ ·

·S,amb-o//

no,a
��=

=
=

= ·
no,a

��
·

·S,amb-o//

no,lamb

���
�
� ·

·
S,amb-o

@@�
�

�
�

Proof. By inspecting all overlappings there are the cases: If the reductions are
commutable, then the first diagram is applicable. If the normal order reduction
becomes only normal order because the amb-expression has been eliminated,
then the second diagram is applicable. The third diagram covers the cases where
the the result of the (amb-o)-transformation is eliminated by a normal order
reduction. The last diagram covers the case where an (no, llet) is applicable to
the result of the (S, amb-o)-transformation but only because the amb-expression
has been eliminated, e.g.

letrec Env1 in amb Ω ((letrec Env2 in s))
S,amb-o−−−−→ letrec Env1 in ((letrec Env2 in s))

letrec Env1 in amb Ω ((letrec Env2 in s))
no,lamb−−−−−→ letrec Env1 in (letrec Env2 in amb Ω s)
S,amb-o−−−−−→ letrec Env1 in (letrec Env2 in s)

ut

Lemma 8.19. Let s, t be terms with s
S,amb-o−−−−−→ t and t↓, then s↓.

Proof. Let s = S[s0] and t = S[t0] with s
S,amb-o−−−−−→ t and t↓. We show by in-

duction on the lexicographically ordered measure (a, b) where b = µlll(s) and
a = rl(REDt) where REDt ∈ CON (t), that there exists a sequence of (S, allr)-
transformations starting from s that ends in a WHNF. Then from Theorem 8.12
part 1 follows that s↓. If the (S, amb-o) is also a normal order reduction, then
s↓. Otherwise, the base case is covered by Lemma 8.15 and for the induction
step we apply a commuting diagram from Lemma 8.18 to s

S,amb-o−−−−−→ t
REDt−−−−→.

With RED′ being the suffix of REDt of length a− 1 we have the cases:

s
S,amb-o //

no,a
���
� t

no,a
��

s′ S,amb-o
//___ t′

RED′

��

s
S,amb-o //

S,a ���
� t

no,a
��

s′ S,amb-o
//___ t′

RED′

��

s
S,amb-o//

no,a ##G
G

G t
no,a

��
t′

RED′

��

s
S,amb-o//

no,lamb ���
� t

REDt

��
s′ S,amb-o

;;w
w

w

(1) (2) (3) (4)

Case (3) is trivial, in cases (1) and (2) we apply the induction hypothesis to

s′
S,amb-o−−−−−→ t′

RED′

−−−−→. For case (4), µlll(s′) < µlll(s) holds. Hence, we apply

62 D. Sabel, M. Schmidt-Schauß

the induction hypothesis to s′, and append the derived sequence for s′ to the
reduction s

no,lamb−−−−−→ s′. ut

Lemma 8.20. If s
amb-o−−−→ t then t ≤↓

c s.

Proof. Follows from Lemma 8.19 by using the context lemma for may-
convergence. ut

Lemma 8.21. If s
S,amb-o−−−−−→ t then s⇑ iff t⇑.

Proof. Follows from Lemma 8.17 and Lemma 8.20. ut

Lemma 8.22. If s
S,amb-o−−−−−→ t and t↑, then s↑.

Proof. Induction on the measure (a, b) where b = µlll(s) and a = rl(REDt) with
REDt ∈ DIV(t) shows that there exists a sequence of (S, allr)-transformations
starting with s and ending in a term that must-diverge. The base case is cov-
ered by Lemma 8.21 and the induction step uses the commuting diagrams from
Lemma 8.18. As final step Theorem 8.12 part 2 shows that s↑. ut

Lemma 8.23. If s
S,amb-o−−−−−→ t and s↑, then t↑.

Proof. Induction on rl(REDs) with REDs ∈ DIV(s) shows the existence of
a sequence of (S, allr)-transformations from t to a term that must-diverge. The
base case for this induction is covered by Lemma 8.21, the induction step uses the
forking diagrams from Lemma 8.14. The last step uses Theorem 8.12 part 2 to
transform the sequence of (S, allr)-transformations into a normal order reduction
sequence REDt ∈ DIV(t). ut

Lemma 8.24. If s
amb-o−−−→ t then s ≤⇓

c t and t ≤⇓
c s.

Proof. Both parts follow by using Corollary 4.12. For s ≤⇓
c t we use Lemma 8.20

and 8.22, and for t ≤⇓
c s we use Lemma 8.17 and 8.23. ut

Proposition 8.25. If s
amb-o−−−→ t then s ∼c t.

Proof. Follows from Lemma 8.20, 8.17 and Lemma 8.24. ut

8.4 On the Relation Between ≤↓
c and ≤⇓

c

A consequence of the bottom-avoidance of amb is that s ≤⇓
c t implies t ≤↓

c s,
which we will show by similar arguments as [Mor98,Las98]. Let the context BA
be defined as BA ≡ (amb I (seq [·] (λx.Ω))) I.

Lemma 8.26. BA[s]⇓ iff s⇑.

Proof.
¬(s⇑) =⇒ ¬(BA[s]⇓) :

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 63

Let ¬(s⇑), i.e. s↓. Let REDs ∈ CON (s) and let REDs end in a WHNF s′.
We firstly perform the reduction inside the context BA, i.e. we construct the
sequence BA[s]

BA,REDs−−−−−−−→ BA[s′]. Then there are the following cases:
• s′ is a value, then

BA[s′]
S,seq−−−→ (amb I (λx.Ω)) I

S,amb−−−−→ (λx.Ω) I

lbeta−−−→ (letrec x = I in Ω)
gc−→ Ω

• s′ ≡ (letrec Env in v) where v is a value, then

(amb I (seq (letrec Env in v) (λx.Ω))) I
S,lseq−−−→ (amb I ((letrec Env in seq v (λx.Ω)))) I
S,seq−−−→ (amb I ((letrec Env in (λx.Ω)))) I
S,gc−−−→ (amb I (λx.Ω)) I
amb−−→ (λx.Ω) I
lbeta−−−→ (letrec x = I in Ω)
gc−→ Ω

• s′ ≡ (letrec x1 = (cT,i
−→si), {xi = xi−1}mi=2,Env in xm) then perform

some (cpx)-transformations such that xm is replaced by x1, then perform
a (cpcx)-transformation such that x1 is replaced by the constructor ap-
plication, and then append the transformation from the previous bullet.

In all cases the standardisation theorem shows that BA[s′]↑ and hence
BA[s]↑.

¬(BA[s])⇓ =⇒ ¬(s⇑):

Let RED ∈ DIV(BA[s]) where BA[s] RED−−−→ t and t⇑. Let RED′ be the
prefix of RED that only changes s or shifts letrec-environments out of s.
Note, that these letrec will be moved to the top, hence there is a sequence

BA[s] RED′

−−−−→ t′
RED′′

−−−−→ t, with RED = RED′RED′′ and t′ ≡ BA[s′] or
t′ ≡ (letrec Env in BA[s′). If the first reduction of RED′′ is an (amb-l)
reduction, then either

BA[s′]
no,amb-l−−−−−→ (I I)

no,lbeta−−−−−→ (letrec x = I in x)
no,cp−−−→ (letrec x = I in I)

or
(letrec Env in BA[s′])

no,amb-l−−−−−→ (letrec Env in I) I
no,lapp−−−−→ (letrec Env in I I)
no,lbeta−−−−−→ (letrec Env in (letrec x = I in x))
no,llet−−−−→ (letrec Env , x = I in x)
no,cp−−−→ (letrec Env , x = I in I)

64 D. Sabel, M. Schmidt-Schauß

Both cases are not possible, since the reduction sequences end in a WHNF.
Hence the first reduction of RED′′ must be a (seq)-reduction. We have the
cases: s′ is a value, or s′ is a variable that is bound to a value, where
the binding must be in Env . Now, we construct a normal order reduc-
tion sequence REDs as follows: Remove all (lll)-reductions from RED′ that
shift letrecs over the context BA. Now s

REDs−−−−→ t′′, with t′′ ≡ s′ or
t′′ ≡ (letrec Env in s′), i.e. t′′ is a WHNF, and hence s↓. ut

Proposition 8.27. ≤⇓
c⊆ (≤↓

c)
−1

Proof. Let s, t be arbitrary terms with s ≤⇓
c t hence ∀C ∈ C : C[s]⇓ =⇒ C[t]⇓

and thus also ∀C ∈ C : BA[C[s]]⇓ =⇒ BA[C[t]]⇓. Using Lemma 8.26 this is
equivalent to ∀C ∈ C : C[s]⇑ =⇒ C[t]⇑ and also ∀C ∈ C : C[t]↓ =⇒ C[s]↓,
hence t ≤↓

c s. ut

Let ∼↓
c be the symmetrisation of may-convergence, i.e. s ∼↓

c t iff s ≤↓
c t∧ t ≤↓

c

s.

Corollary 8.28. If s ≤c t then s ∼↓
c t.

A consequence of the previous corollary is that contextual equivalence can
be defined using only must-convergence.

Corollary 8.29. s ∼c t iff ∀C : C[s]⇓ ⇐⇒ C[t]⇓

The remaining two lemmas of this section show that ≤c is not an equivalence.

Lemma 8.30. Let s be an Ω-term and t be an arbitrary term, then s ≤↓
c t.

Proof. Let (rplom) be the transformation, that replaces an Ω-term by an arbi-
trary term. A complete set of forking diagrams for (S, rplom) is:

· S,rplom//

no,a

��

·
no,a

���
�
�

·
S,rplom

//___ ·

· S,rplom//

no,lll

��

·

no,gc−1

���
�
�

·
S,rplom

//___ ·

· S,rplom//

no,a

��

·

no,a
���

�
�

�

·

a arbitrary a ∈ {case, seq, amb-l, amb-r}

This follows by inspecting all cases where a normal order reduction overlaps
with an (S, rplom)-transformation. Either the reduction and the transformation
commute, or the environment of the Ω-term is floated out, via an (lll)-reduction,
then it needs to be deleted via an (S, gc)-transformation, or the Ω-term is deleted
by the normal order reduction.

Let s0 = S[s], t0 = S[t] and s0
S,rplom−−−−→ t0. Further, let s0↓ and REDs ∈

CON (s0). We show by induction on l = rl(REDs), that there exists a sequence
of (S, allr)-transformations that starts with t0 and ends in a WHNF. The stan-
dardisation theorem then shows t0↓. If l = 0 then s0 is a WHNF, and obviously

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 65

t0 is also an WHNF. If l > 0 then we apply a forking diagram to a suffix of
REDs←−−−− s0

S,rplom−−−−→. With RED′ being the suffix of REDs of length l− 1 we have
the cases:

s0
S,rplom//

no,a
��

t0
no,a

���
�

s1

RED′

��
S,rplom

//___ t1
RED′′

���O
�O

s0
S,rplom//

no,lll
��

t0

no,gc−1

���
�

s1

RED′

��
S,rplom

//___ t1
RED′′

���O
�O

s0
S,rplom//

no,a
��

t0

no,azzu
u

u

s1

RED′

��

(1) (2) (3)

For cases (1) and (2) we apply the induction hypothesis to RED′

←−−−− s1
S,rplom−−−−→ t1

and have a sequence RED′′ of (S, allr)-transformations starting with t1 that ends

in a WHNF. By appending t0
S,allr−−−→ t1 to RED′′ we have such a sequence for t0.

Case (3) is trivial.
Finally, the context lemma for may-convergence shows that s ≤ t. ut

Lemma 8.31. ≤c is not symmetric.

Proof. Let s ≡ choice Ω I and t ≡ I. From Lemma 8.30 we have s ≤↓
c t. For all

surface contexts S we can S[s] transform into S[t]:

S[s] ≡ S[(amb (λx.Ω) (λx.I)) True]
S,amb−−−−→ S[(λx.I) True]

S,lbeta−−−−→ S[(letrec x = True in I)]
S,gc−−−→ S[I] ≡ S[t]

From the Standardisation Theorem follows that for all surface contexts S[t]↑ =⇒
S[s]↑. Hence, using Corollary 4.12 we have s ≤c t. Obviously s↑ and t⇓. Thus,
the empty context shows that t 6≤⇓

c s. ut

9 Conclusion and Further Research

We presented a call-by-need lambda-calculus with a non-deterministic amb-
operator together with a small-step reduction semantics where the used equa-
tional theory takes fairness into account. Moreover, the Standardisation Theo-
rem shows that our normal order reduction is a standardising reduction strategy.
We have shown that all deterministic rules and additional program transforma-
tions keep contextual equivalence, where the combination of a context lemma
together with complete sets of commuting and forking diagrams turned out to
be successful.

With the developed proof tools, we may attempt to prove correctness of
further program transformations, e.g. a rule for inlining expressions, that are
used only once or that are deterministic (i.e. do not contain amb-expressions,
also satisfying some other conditions). Also, an analysis of non-terminating terms
and subterms should be subject to further investigations. By proving correctness
of program transformations used in Haskell [Pey03] compilers and switching off
incorrect transformations we could derive a correct compiler for Haskell extended
with amb.

66 D. Sabel, M. Schmidt-Schauß

References

AFM+95. Zena Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In Proc. POPL ’95, 22’nd Annual
Symposium on Principles of Programming Languages, San Francisco, Califor-
nia. ACM Press, January 1995.

Bar84. H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, Amsterdam, New York, 1984.

BPLT02. A. Du Bois, R. Pointon, H.-W. Loidl, and P. Trinder. Implementing declar-
ative parallel bottom-avoiding choice. In SBAC-PAD ’02: Proceedings of the
14th Symposium on Computer Architecture and High Performance Computing
(SCAB-PAD’02), pages 82–89, Washington, DC, USA, 2002. IEEE Computer
Society.

CHS05. Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the representa-
tion of McCarthy’s amb in the pi-calculus. Theor. Comput. Sci., 330(3):439–
473, 2005.

Gor95. Andrew Gordon. A tutorial on co-induction and functional programming. In
Functional Programming, Glasgow 1994, pages 78–95. Springer Workshops in
Computing, 1995.

HC95. Thomas Hallgren and Magnus Carlsson. Programming with fudgets. In Ad-
vanced Functional Programming, First International Spring School on Ad-
vanced Functional Programming Techniques-Tutorial Text, pages 137–182,
London, UK, 1995. Springer-Verlag.

Hen80. Peter Henderson. Functional Programming – Application and Implementation.
Series in Computer Science. Prentice Hall International, 1980.

Hen82. Peter Henderson. Purely Functional Operating Systems. In J. Darlington,
P. Henderson, and D. A. Turner, editors, Functional Programming and its
Applications, pages 177–192. Cambridge University Press, 1982.

HM95. John Hughes and Andrew Moran. Making choices lazily. In FPCA ’95: Pro-
ceedings of the seventh international conference on Functional programming
languages and computer architecture, pages 108–119, New York, NY, USA,
1995. ACM Press.

JH93. Mark P. Jones and Paul Hudak. Implicit and explicit parallel programming in
Haskell. Technical Report CT 06520-2158, Department of Computer Science,
Yale University, August 1993.

KSS98. Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-need
lambda calculus. In International Conference on Functional Programming
1998, pages 324–335. ACM Press, 1998.

Kut00. Arne Kutzner. Ein nichtdeterministischer call-by-need Lambda-Kalkül mit er-
ratic choice: Operationale Semantik, Programmtransformationen und Anwen-
dungen. Dissertation, J.W.Goethe-Universität Frankfurt, 2000. in german.

Las98. Søren Bøgh Lassen. Relational Reasoning about Functions and Nondetermin-
ism. PhD thesis, Department of Computer Science, University of Aarhus,
1998. BRICS Dissertation Series DS-98-2.

Las05. Søren Lassen. Normal Form Simulation for McCarthy’s amb. In 21st Annual
Conference on Mathematical Foundations of Programming Semantics, MFPS
XXI, 2005. preliminary version.

LLP05. Søren B. Lassen, Paul Blain Levy, and Prakash Panangaden. Divergence-
least semantics of amb is Hoare, September 2005. Short presentation
at the APPSEM II workshop, Frauenchiemsee, Germany. Available at
http://www.cs.bham.ac.uk/∼pbl/papers/.

A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice 67

LM99. Søren B. Lassen and Andrew Moran. Unique fixed point induction for Mc-
Carthy’s amb. In MFCS ’99: Proceedings of the 24th International Symposium
on Mathematical Foundations of Computer Science, pages 198–208, London,
UK, 1999. Springer-Verlag.

Man05. Matthias Mann. A Non-Deterministic Call-by-Need Lambda Calculus: Proving
Similarity a Precongruence by an Extension of Howe’s Method to Sharing.
Dissertation, Johann Wolgang Goethe-Universität, Frankfurt, 2005.

McC63. John McCarthy. A Basis for a Mathematical Theory of Computation. In
P. Braffort and D. Hirschberg, editors, Computer Programming and Formal
Systems, pages 33–70. North-Holland, Amsterdam, 1963.

Mor98. A. K. Moran. Call-by-name, Call-by-need, and McCarthy’s Amb. PhD thesis,
Department of Computing Science, Chalmers University of Technology and
University of Gothenburg, Gothenburg, Sweden, September 1998.

MS99. Andrew Moran and David Sands. Improvement in a lazy context: an op-
erational theory for call-by-need. In POPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 43–56, New York, NY, USA, 1999. ACM Press.

MSS06. Matthias Mann and Manfred Schmidt-Schauß. How to prove similarity a pre-
congruence in non-deterministic call-by-need lambda calculi. Frank report 22,
Institut für Informatik. J.W.Goethe-Universität Frankfurt, January 2006.

NC95. V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Zoltán
Fülöp and Ferenc Gécseg, editors, ICALP, volume 944 of Lecture Notes in
Comput. Sci, pages 648–659. Springer, 1995.

Pey03. Simon Peyton Jones, editor. Haskell 98 language and libraries: the Revised
Report. Cambridge University Press, 2003. www.haskell.org.

PM02. Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Com-
piler inliner. J. Funct. Programming, 12(4+5):393–434, July 2002.

Sab03. David Sabel. Realising nondeterministic I/O in the Glasgow Haskell Compiler.
Frank report 17, Institut für Informatik, J.W. Goethe-Universität Frankfurt
am Main, December 2003.

San95. André Santos. Compilation by Transformation in Non-Strict Functional Lan-
guages. PhD thesis, Glasgow University, Department of Computing Science,
1995.

SS92. H. Søndergaard and P. Sestoft. Non-determinism in functional languages.
Comput. J., 35(5):514–523, 1992.

SS03. Manfred Schmidt-Schauß. FUNDIO: A Lambda-Calculus with a letrec,
case, Constructors, and an IO-Interface: Approaching a Theory of
unsafePerformIO. Frank report 16, Institut für Informatik, J.W. Goethe-
Universität Frankfurt, September 2003.

SSSS04. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. On the safety of
Nöcker’s strictness analysis. Frank Report 19, Institut für Informatik, J.W.
Goethe-Universität Frankfurt, October 2004.

SSSS05. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. A complete proof
of the safety of Nöcker’s strictness analysis. Frank report 20, Institut für
Informatik. J.W.Goethe-Universität Frankfurt, April 2005.

THLP98. Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L.
Peyton Jones. Algorithm + Strategy = Parallelism. J. Funct. Programming,
8(1):23–60, January 1998.

http://www.ki.informatik.uni-frankfurt.de/papers/schauss/FUNDIO.pdf
http://www.ki.informatik.uni-frankfurt.de/papers/schauss/unioncalc.pdf
http://www.ki.informatik.uni-frankfurt.de/papers/schauss/frank20.pdf

	 A Call-by-Need Lambda-Calculus withLocally Bottom-Avoiding Choice: Context Lemma and Correctness of Transformations
	David Sabel and Manfred Schmidt-Schauß
	Introduction
	Motivation
	Related Work
	Overview

	The Nondeterministic Call-by-Need Calculus amblet
	The Syntax of the Language
	Reduction Rules
	Normal Order Reduction
	Encoding of Non-deterministic and Parallel Operators
	Convergence and Divergence
	An Alternative Definition of Divergence

	Fair Normal Order Reduction
	Contextual Equivalence and Proof Tools
	Preorders for May- and Must-Convergence
	Context Lemmas
	Properties of the (lll)-Reduction
	Complete Sets of Commuting and Forking Diagrams

	Correctness of (lbeta), (case-c), (seq-c)
	Additional Correct Program Transformations
	Diagrams for (gc)
	Diagrams for (cpx)
	Diagrams for (xch)
	Diagrams for (abs)
	Diagrams for (cpcx)
	Correctness of (opt)

	Correctness of Deterministic Reduction Rules
	Correctness of (case)
	Correctness of (lll)
	Diagrams for (lapp), (lcase) and (lseq)
	Diagrams for (lamb)
	Diagrams for (llet)
	Proving Correctness of (lll)

	Correctness of (seq)
	Correctness of (cp)

	The Standardisation Theorem and an Application
	Properties of the Reduction (amb)
	The Standardisation Theorem
	Proving Bottom-Avoidance
	On the Relation Between c"3223379 and c"322B37F

	Conclusion and Further Research

