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Abstract: Rho GTPases are involved in homing and mobilization of hematopoietic stem and progenitor cells due to their 

impact on cytoskeleton remodeling. We have previously shown that inhibition of Rho, Rac and Cdc42 clearly impairs ad-

hesion of normal and leukemic hematopoietic progenitor cells (HPC) to fibronectin and migration in a three-dimensional 

stromal cell model. Here, we identified the Ras GTPase-Activating Protein SH3 Domain-Binding Protein (G3BP) as a target 

gene of Rho GTPases and analysed its role in regulating HPC motility. Overexpression of G3BP significantly enhanced 

adhesion of murine 32D HPC to fibronectin and human umbilical vein endothelial cells, increased the proportion of adherent 

cells in a flow chamber assay and promoted cell migration in a transwell assay and a three-dimensional stromal cell model 

suggesting a strong impact on the cytoskeleton. Immunofluorescent staining of G3BP-overexpressing fibroblasts revealed a 

Rho-like phenotype characterized by formation of actin stress fibers in contrast to the Rac-like phenotype of control fibroblasts. 

This is the first report implicating a role for G3BP in Rho GTPase-mediated signalling towards adhesion and migration of 

HPC. Our results may be of clinical importance, since G3BP was found overexpressed in human cancers. 

Keywords: G3BP, Rho GTPases, 32D progenitor cells, adhesion, migration, homing, toxin B, lethal toxin. 

INTRODUCTION 

 Proteins of the Ras superfamily such as Ras, Rac, Rho, 
and Cdc42 have a determinant role in cell growth, differen-
tiation, and malignant transformation and control cell ad-
hesion and motility by remodelling of the cortical actin 
cytoskeleton [1]. GTPases are molecular switches that cy-
cle between an active GTP-bound and an inactive GDP-
bound state. Activation is mediated by guanine nucleotide 
exchange factors (GEFs) that favor GTP binding while 
deactivation is regulated by GTPase-activating proteins 
(GAPs) that accelerate hydrolysis of GTP to GDP via a 
catalytic domain [2]. A major down-regulator of Ras, Ras-
GAP, contains additional structural motifs including an 
SH3 domain, that is involved in cytoskeleton reorganiza-
tion, cell adhesion and induction of gene expression in a 
Ras-dependent manner [3, 4]. The Ras-GTPase activating 
protein SH3 domain binding protein (G3BP) has been 
identified as one of only four proteins known to interact 
with RasGAP via its SH3 domain [5]. G3BP is composed 
of 466 amino acids and has a predicted molecular mass of 
52 kDa. Three isoforms of the gene G3BP-1 and two alter-
natively spliced isoforms of mouse and human G3BP-2 
(G3BP-2  and G3BP-2 ) have been described. While  
the isoforms G3BP-2  and -2  have been mapped to  
4q12-4q24, G3BP1 is located on 5q14.2-5q33.3 [6]. G3BP  
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is overexpressed in several human cancer cell lines and various 
cancer tissues and stimulates S-phase entry in cultured cells 
[7]. In addition, G3BP expression has been positively corre-
lated with the presence of lymph node metastasis and has been 
shown to promote invasion of cancer cells [8].  

 The bone marrow (BM) microenvironment constitutes a 
homing compartment for transplanted hematopoietic stem and 
progenitor cells. Homing is defined as the specific migration 
of circulating hematopoietic stem and progenitor cells through 
the vasculature to the BM, which is a prerequisite for the en-
graftment in specialized BM niches that support and regulate 
maintenance, proliferation and differentiation of hematopoietic 
stem and progenitor cells [9, 10].  

 Previously, we investigated the contribution of different 
Rho GTPase members to migration of human CD34

+
 stem and 

progenitor cells: in a three-dimensional BM stromal cell envi-
ronment, migration was significantly inhibited by cell perme-
able, Rho GTPase-blocking bacterial toxins: Toxin B derived 
from C. difficile inactivates Rho, Rac and Cdc42 [11], whereas 
lethal toxin of C. sordellii predominantly inactivates Rac and 
also to some degree Cdc42, but not Rho [12]. Here, we iden-
tify G3BP as one of several genes downregulated by toxin B 
and lethal toxin and characterize its impact on adhesion and 
migration of HPC.  

MATERIALS AND METHODOLOGY 

Cell Culture and Chemicals 

 RAT-1 cells were maintained in DMEM medium (Invitro-
gen, Karlsruhe, Germany) supplemented with 10% fetal calf se-
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rum (FCS; Hyclone, Greiner, Frickenhausen, Germany) with 
1% glutamine (200 mM) and 1% penicillin/streptomycin 
(Invitrogen). The murine myeloid progenitor cell line 32D 
(No. ACC411, DSMZ, Braunschweig, Germany) was cul-
tured in RPMI 1640 (Gibco-Life Technologies, Paisley, 
UK) supplemented with 10% FCS and 10 g/ml murine 
interleukin-3 (IL-3; Peprotech, London, UK). The human 
CD34

+ 
cell line TF-1 (No. CRL-2003, American Type

 
Cul-

ture Collection, Manassas, VA) was cultured in RPMI 
1640

 
with 10% FCS in the presence

 
of human IL-3 (R&D 

Systems, Wiesbaden, Germany)
 
and granulocyte macro-

phage-colony stimulating factor (GM-CSF;
 
10 ng/ml each; 

Essex Pharma, Munich, Germany). TF-1 cells were incu-
bated with 100 ng/ml toxin B or lethal toxin in IMDM/10% 
FCS

 
for 6 hours at 37°C (toxins were kindly provided by 

H. Barth
 
and K. Aktories, Institute of Pharmacology and 

Toxicology, University
 
of Freiburg, Germany). The murine 

BM stroma
 
cell line M2-10B4 (kindly provided by D. 

Hogge, Terry Fox Laboratory,
 
Vancouver, Canada), modi-

fied to produce human IL-3 and GM-CSF,
 
was maintained 

in RPMI 1640 with 10%
 
FCS, 0.06 mg/ml hygromycin B 

(Calbiochem, Bad Soden, Germany),
 
0.4 mg/ml geneticin, 

and 8 mM HEPES (both from Gibco-Life Technologies). 
Human umbilical vein endothelial cells (HUVEC) were 
maintained in medium

 
199 (M199) with Earle's salts 

(Sigma Chemical, St. Louis, MO)
 
supplemented with 10% 

heat-inactivated fetal bovine serum (FBS; Sigma-Aldrich, 
Steinheim, Germany), 1% antibiotic-antimycotic solution 
(Sigma-Aldrich),

 
2 mM L-glutamine, 120 g/ml heparin 

(Sigma-Aldrich), and 100 g/ml endothelial
 
cell growth 

supplement (Collaborative Biomedical, Bedford, MA).  

Microarray Analysis 

Hybridization of total RNA to the HuGeneFL oligonucleo-
tide microarray (Affymetrix Inc., Santa Clara, CA) was 
performed as described previously [13]. Briefly, at least 8 

g of total RNA were reverse transcribed by Superscript II 
reverse transcriptase (Invitrogene, Grand Island, NY) using 
T7-(dT)24 primer containing a T7 RNA polymerase pro-
moter site. After synthesis of the second cDNA strand, this 
product was used in an in vitro transcription reaction to 
generate biotinylated complementary cRNA. Fifteen mi-
crograms of fragmented cRNA was hybridized to a 
HuGeneFL microarray for 16 hours at 45° C with constant 
rotation at 60 rpm according to the Affymetrix protocol. 
The fluorescence intensity was scanned by the Affymetrix 
GeneChip Scanner and normalized by global scaling to the 
average fluorescence intensity for the entire microarray. 
Data analysis was performed with the GeneSpring software 
version 4.2 (Silicon Genetics, San Carlos, CA) and Mi-
croarray Analysis Suites 4.01 (MAS 4.01, Affymetrix, 
Inc.). Selection of differentially expressed genes required 
at least a 2-fold change in normalized expression values. 

Cloning of Full-Length G3BP 

A 1412 bp cDNA encoding full-length G3BP of human 
origin was obtained by PCR cloning using the One-step 
RT-PCR Kit (Invitrogen) and specific oligonucleotides 
G3BP_fwd (5'-AGCAATGGTGATGGAGAAGCC-3') and 
G3BP_rev (5'- CATGAAGATTACTGCCGAGGA-3'). 
The PCR product was cloned into the pCR2.1 vector with 
the TA-cloning kit (Invitrogen) according to the manufac-
turer’s instructions. An expression vector for G3BP was 

produced using the Gateway recombination technology 
(Invitrogen). Briefly, the cDNA encoding

 
full-length G3BP 

was first subcloned
 
into pENTR1A using an EcoRI restriction 

site and then transferred
 
into the GFP expressing destination 

vector pinco [14] by LR recombination following the
 

manufacturer's instructions (Invitrogen). The resulting vectors 
are referred to as control (pinco empty vector) and 
pinco_G3BP (full length G3BP in pinco vector).  

Retroviral Infection 

 Ecotropic Phoenix packaging cells were
 
transiently trans-

fected with the indicated retroviral vectors
 
as described before 

[15]. For the infection target cells were plated onto retronectin-
coated (Takara-Shuzo,

 
Shiga, Japan) non–tissue culture treated 

24-well plates
 
and exposed to the retroviral supernatant for 3 

hours at 37°C
 
in the presence of 4 g/mL polybrene (Sigma-

Aldrich). Cells were centrifuged at 2,200 rpm for 45 minutes.
 

Infection was repeated four times and infection efficiency had
 

to be at least 70% for each sample as assessed by detection
 
of 

green fluorescent protein–positive cells by FACS. 

Small Hairpin RNA  

 The small hairpin RNA (shRNA) sequences encoding in-
verted repeats of 21 nucleotides

 
(nts) separated by a 10-nt 

spacer were designed using publicly
 
available software tools 

(www.ambion.com/techlib/misc/silencer_siRNA_template.html).
 

Three shRNAs against different regions of the G3BP sequence 
were tested. The inverted repeats corresponded to bp 173-194 
(shRNA1), bp 450-471 (shRNA2) and bp 679-700 (shRNA3) 
of the murine

 
G3BP cDNA and

 
had at least 3 nt differences 

from any other murine gene. A shRNA derived from prokary-
otic lacZ gene served as unspecific control. The

 
oligos contain-

ing HpaI and BbsI restriction sites and hairpin
 
DNA were an-

nealed and ligated into the BbsI-HpaI-digested expression vec-
tor vPGKpuroU6FH [15].

 
The construct was controlled by 

sequencing and designated as si1-3. Retroviral infection of 
32D cells was carried out as described above. Efficiency of the 
shRNA

 
was confirmed by Western blotting.  

Western Blotting 

 Western blotting was done according to widely
 
used proto-

cols with the following antibodies: anti-G3BP (BD Transduc-
tion Laboratories, San Diego, USA) and anti- -tubulin (Di-
anova, Hamburg, Germany). All antibodies were diluted in 5% 
low fat dry milk. Blocking was performed in 5% low fat dry 
milk, washing was carried out in TBS containing 0.1% 
Tween20 (TBS-T). Densitometry was performed using Quan-
tity One Software from BioRad (Munich, Germany).  

Cell Adhesion Assay 

 Fibronectin (FN, 5 g/cm
2
; BD Biosciences, Heidelberg, 

Germany) diluted in PBS was adsorbed to wells of 6-well plates 
overnight at 4°C. Non-specific bindings

 
were blocked with 

PBS containing 2 % BSA for 1 hour at 37°C. RAT-1 or 32D 
cells were washed once in PBS and plated at 1 x 10

6 
cells in 3 

ml DMEM with 10% FCS. Cells were allowed to adhere to the 
coated plates for 3 hour at 37°C in a humidified atmosphere of 
5 % CO2.

 
After incubation, non adherent cells were washed away 

with PBS by gentle
 
agitation and adherent cells were counted.

  

Flow Chamber Assay 

 HUVEC of the second or third passage were grown to sub-
confluency on glass slides and activated by TNF-  (100 U/ml) 
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for 7 hours prior to the assay. The glass slides were assem-
bled as the lower wall

 
of the flow chamber (Circular Paral-

lel Plate Flow Chamber kit;
 
GlycoTech, Gaithersburg, MD, 

USA) and the flow
 
chamber was mounted on the stage of 

an inverted phase-contrast
 
microscope (Carl Zeiss, Jena, 

Germany). 32D cells (10
6
 cells/ml; mock-transfected or 

pinco_G3BP) were perfused through
 
the chamber at the 

desired flow rate generated with an automated
 

syringe 
pump (B. Braun Medical, Emmensbruegge, Switzerland). 
Initial application of the cells was performed

 
with a shear 

stress of 0.1 dyn/cm
2
. After 10 min, shear

 
stress was in-

creased to 2 dyn/cm
2
 for 20 min. Subsequent to

 
each perfu-

sion period, adherent cells were documented by photo-
graphs

 
of three independent fields using a gauged grid and 

counted [16]. 

Transwell Assay  

 Transwell units (8 M pore size; BD Falcon, Heidel-
berg, Germany) were coated with FN (5 g/cm

2
) diluted in 

PBS over night at 4°C. RAT-1 cells or 32D cells were 
washed once in PBS and seeded in the upper chamber at  
1 x 10

4 
cells in the adequate medium. Cells were allowed to 

spontaneously migrate through the pores of the membrane 
for 3 hours at 37°C.

 
After incubation, filters were washed 

with PBS by gentle
 
agitation and migrated cells attached to 

the lower surface of the membrane were fixed with 3.7% 
formaldehyde and stained with coomassie staining solution 
(2% Coomassie Brilliant Blue; 45% methanol; 10% acetic 
acid). Stained cells were documented by photographs

 
of 

three independent fields and counted.  

Spheroid Assay 

 M2-10B4 spheroids were grown in 1% agarose-coated 
96-well plates as previously described [17]. Briefly, 2.5 x 10

4
 

cells were inoculated per well in 200 l Iscove’s modified 
Dulbecco’s medium (IMDM; Biochrom, Berlin, Germany) 
supplemented with 10% FCS. After 4 days, 1 x 10

4
 32D 

cells were added for cocultivation. Spheroid co-cultures 
were harvested 24 hours later, washed with PBS, and dis-
sociated with a 0.25% trypsin and 0.1% EDTA solution 
(1:3 in PBS; PAN Biotech, Aidenbach, Germany). Cell 
suspensions were filtered and incubated with FITC-
conjugated anti-human CD45 Ab (or anti-human IgG1Ab 
as control) to determine the percentage of hematopoietic 

cells in the spheroids. Analysis was performed on FACScan 
(BD Bioscience) using CellQuest and PC-Lysis software.  

Immunofluorescent Staining of Actin Cytoskeleton  

 2 x 10
4
 RAT-1 cells were transduced with bicistronic  

retroviral vectors expressing the enhanced green fluorescent 
protein (GFP) and full-length G3BP (pinco_G3BP) or GFP 
alone (pinco_control) and were seeded on fibronectin-coated 
(50 g/ml) coverslips and allowed to adhere for 3 hours at 37°C. 
Non adherent cells were removed by gentle washing with PBS 
and adherent cells were fixed with 3.7% formaldehyde/PBS 
for 15 min at room temperature. After washing with PBS  
cells were permeabilized for 10 min with PBS containing 0.5% 
Triton-X. After blocking with AbDil solution (0.1% Triton  
X in PBS, 2% BSA, 0.1% sodiumacide) actin cytoskeleton 
was stained using phalloidin-TRITC (0.5 g/ml in AbDil; 
Sigma-Aldrich). 

Statistical Analysis 

 Data were compared by a two-tailed Student t test; p values 
< 0.05

 
were considered to be significant. 

RESULTS 

G3BP is a Target Gene of Rho GTPases 

 The cell permeable toxins from Clostridium spec. lethal 
toxin and toxin B have previously been shown to significantly 
impair migration, homing and engraftment of hematopoietic 
stem cells [17, 18]. To further elucidate the molecular mecha-
nisms of this inhibition, we treated human CD34

+
 TF-1 cells 

with lethal toxin or toxin B and analyzed changes in gene ex-
pression using high-density microarrays. Within a list of 48 
and 116 genes showing differential expression after treatment 
with toxin B or lethal toxin, respectively, we identified several 
genes regulated by both toxins implicated in cellular motility, 
cell-cell contact or GTPase signalling which are listed in Table 
1. We focussed on RasGAP SH3 domain binding protein 
(G3BP) since the encoding gene is located on the long arm of 
chromosome 5, a chromosomal region frequently deleted in 
myelodysplastic syndromes and acute myeloid leukemia. The 
observed 2.5-fold downregulation of G3BP mRNA in toxin-
treated TF-1 cell compared to control cells was validated on 
the protein level by Western blot analysis using a monoclonal 
anti-G3BP antibody Fig. (1).  

Table 1. Genes Regulated by Both Toxin B and Lethal Toxin (Identified by Gene Expression Profiling of Toxin Treated TF-1 

Cells) 

Gene Genbank 
Toxin B 

Fold Change 

Lethal Toxin 

Fold Change 
Description 

G3BP U32519 2.5 (-) 2.7 (-) Ras-GTPase-activating protein SH3-domain-binding protein 

DCN M14219 2.1 (-) 2.3 (-) Decorin 

CAPZA2 U03851 2.3 (-) 3.1 (-) Capping protein (actin filament) muscle Z-line, alpha 2 

P311 U30521 1.6 (-) 2.3 (-) P311 protein 

CD164 D14043 1.2 (-) 2.0 (-) CD164 antigen, sialomucin 

IQGAP1 L33075 1.1 (-) 3.1 (-) IQ motif containing GTPase activating protein 1 

PLEC1 Z54367 3.6 (+) 2.7 (+) Plectin 1, intermediate filament binding protein, 500kD 
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Fig. (1). Inhibition of small GTPases with Clostridium toxin B 

and lethal toxin inhibits expression of G3BP. TF-1 cells were 

treated for 6 hours with lethal toxin (LT) or toxin B (TB) to in-

hibit small GTPases of the Rho family. Western blot analysis of 

total cell lysates from treated cells or untreated controls (Co) was 

performed and anti-G3BP antibody (1:500) was used to deter-

mine G3BP expression level. Inhibition of GTPases by Clostrid-

ium spec. toxins markedly downregulated expression of G3BP 

protein. Tubulin was used as a loading control. 
 

G3BP Enhances Adhesion of 32D Progenitor Cells  

Under Shear Stress 

 Having identfied G3BP as a target gene involved in 
Rho GTPase signalling in human hematopoietic progenitor 
cells (HPC) we evaluated its impact for the homing of HPC 
to the bone marrow. The BM endothelium is the first an-

choring site for homing cells, supporting rolling and firm ad-
hesion of circulating leukocytes by constitutive expression of 
adhesion molecules and stimulating cytokines [9]. We thus 
studied the interaction of murine 32D progenitor cells with 
HUVEC, a well-established vascular endothelial cell system 
[19]. 32D cells were infected with bicistronic retroviral vectors 
expressing the enhanced green fluorescent protein (GFP) and 
full-length G3BP (pinco_G3BP) or GFP alone (pinco_control) 
with an efficiency of > 90% as determined by FACS Fig. (2A) 
and perfused over a HUVEC monolayer in a flow chamber 
applying low and elevated shear stress. Cells adhering to the 
endothelial cell monolayer were documented and counted as 
described after 10 min at 0.1 dyn/cm

2
 and after another 20 min 

at 2 dyn/cm
2
. G3BP increased the number of rolling HPC by 

23 ± 16 % (n = 4; p< 0.05; 0.1 dyn/cm
2
) and firmly adhering 

cells by 28 ± 15 % (n = 4; p< 0.05; 2 dyn/cm
2
) compared to 

mock-transfected controls Fig. (2B).  

 TNF-activated HUVEC support rolling and firm attach-
ment of HPC under physiological shear-flow by displaying 
high levels of E-selectin, ICAM-1, and VCAM-1 [20]. As 
VCAM-1 is a vascular ligand for the integrin very late antigen 
(VLA)-4, we studied the effect of G3BP overexpression on 
HPC adhesion on fibronectin, one of the major extracellular 
matrix (ECM) component containing binding sites for VLA-4 
(CD49d/CD29) and VLA-5 (CD49e/CD29). G3BP signifi-

 

Fig. (2). Impact of G3BP on integrin-mediated adhesion and migration of HPC. Infection efficiency confirmed by FACS measurement 

of GFP-positive cells was > 90% in mock- and G3BP-transduced cells (A). Adhesion of 32D to a cellular endothelial surface (HUVEC mon-

olayer) under low and elevated shear stress was tested in a flow chamber assay. G3BP significantly enhanced the number of firmly arrested 

cells compared to controls by 23 ± 16 % at 0.1 dyn/cm
2
 and 28 ± 15 % at 2.0 dyn/cm

2
 (n = 4) (B). G3BP was able to induce adhesion of 32D 

cells to fibronectin compared to controls (7.5 x 10
5
 ± 0.5 x 10

5
 vs. 6.4 x 10

5
 ± 0.2 x 10

5
 adherent cells, n = 4) (C). G3BP increased the num-

ber of migrated 32D cells from 63 ± 29 to 189 ± 16 cells/ field (n = 4) (D). Migration of 32D cells into multicellular spheroids (MCS) was 

also increased by G3BP. The number of cells incorporated into the spheroids increased significantly from 14.1 ± 2.8% to 22.3 ± 2.8% (n = 4) 

(E). *P < 0.05. 
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cantly enhanced adhesion of 32D cells to fibronectin com-
pared to the corresponding controls Fig. (2C); 7.5 x 10

5
 ± 

0.5 x 10
5
 vs. 6.4 x 10

5
 ± 0.2 x 10

5 
adherent cells, n = 4; p< 

0.05. Enhanced interaction of HPC with ECM may im-
prove transendothelial migration and trafficking within the 
BM microenvironment [9]. G3BP significantly induced 
spontaneous migration of 32D cells through the pores of a 
fibronectin-coated transwell filter resulting in 189 ± 16 vs. 
63 ± 29 migrated cells/field Fig. (2D), n = 4; p< 0.05. Our 
data provide the first evidence that G3BP contributes to the 
regulation of adhesion and migration of HPC.  

G3BP Stimulates Migration of 32D Progenitor Cells 
into Stromal Cell Spheroids 

 Multicellular spheroids (MCS) serve as a model for 
engraftment in the stem cell microenvironment. We have 
previously shown that migration of human CD34

+
 stem 

and progenitor cells in a three-dimensional BM stromal 
cell environment is significantly inhibited by cell perme-
able Rho GTPase-blocking bacterial toxins [17] Since 
G3BP proved to be a target gene downregulated upon toxin 
treatment we aimed to confirm the impact of G3BP on 
motility of murine 32D cells by comparing G3BP- to 
mock-infected controls. Migration was quantified by 
counting the number of cells incorporated in the spheroids. 
G3BP enhanced the number of incorporated HPC signifi-
cantly from 14.1 ± 2.8% to 22.3 ± 2.8% (n = 4; p< 0.05; 
Fig. (2E). These results support the data obtained in the 
transwell assay and assures a role of G3BP in the regula-
tion of migration of HPC.  

 The impact of G3BP on adhesion and migration in 32D 
cells shown above was confirmed by shRNA experiments. All 
three shRNA vectors (sh1-3) applied were able to suppress 
protein expression in 32D cells as shown by western blotting 
Fig. (3A). Sh2 resulted in a 75% reduction of G3BP protein 
compared to the control vector and was chosen for further ex-
periments Fig. (3B). Suppression of G3BP by sh2 lead to a 
significantly decreased adhesion compared to controls (4.1 ± 
0.3 x10

5 
vs. 7.9 ± 0.5 x 10

5 
adherent cells; p< 0.05; Fig. (3C). 

As expected, shRNA accordingly inhibited migration in the 
transwell assay in a significant way 230 ± 70 vs. 127 ± 16 mi-
grated cells/field; p< 0.05; Fig. (3D). These data confirm that 
G3BP plays an essential role in adhesion and migration of 
HPC. 

G3BP Induces Cytoskeletal Rearrangements in RAT-1 
Cells  

 The RasGAP SH3 domain is involved in cytoskeletal reor-
ganization and cell adhesion [3, 4]. We thus aimed to study the 
effect of G3BP on cytoskeletal rearrangements by comparing 
the morphology of RAT-1 cells infected with pinco_G3BP to 
mock-infected control cells Fig. (4A). Control cells spread on 
the fibronectin coated surface and displayed formation of 
lamellipodia at the edges Fig. (4B, upper panel). Actin fibers 
are visible but not organized in stress fibers. In contrast, over-
expression of G3BP led to a dramatic induction of stress fibers 
Fig. (4B, lower panel) and increased the number of RAT-1 
fibroblasts adhering to a fibronectin-coated surface from 5.2 x 
10

5
 ± 0.1 x 10

5
 to 7.5 x 10

5
 ± 0.2 x 10

5
 when counted 3 hours 

after plating Fig. (4C, n = 3, p< 0.05). Our findings are consis-

 

Fig. (3). RNAi of G3BP suppresses adhesion and migration in 32D cells. Three shRNA vectors (si1-3) applied were able to suppress 

G3BP expression in 32D cells as shown by Western blotting (A). The most effective one (si2) was chosen for further experiments verified by 

densitometry of the Western Blot shown above (B). The suppression of G3BP by introduction of si2 lead to a significantly reduced adhesion 

compared to controls (4.1 ± 0.3 x10
5 

vs. 7.9 ± 0.5 x 10
5 

adherent cells; n = 3) (C). As expected, RNAi significantly inhibited migration in the 

transwell assay (230 ± 70 vs. 127 ± 16 migrated cells/field; n = 3) (D). *P < 0.05. 
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tent with the previously described Rho-like phenotype in 
resting fibroblasts upon overexpression of RasGAP [3].  

DISCUSSION 

 Suppression of migration, short-term homing, hema-
topoietic cell regeneration and cell cycling by toxin B and 
lethal toxin has been reported [17,18], demonstrating 
impairment of stem cell functions by both toxins, similar to 
that published for selective inhibition of Rac and Cdc42. 
Here, we provide evidence that the Ras GTPase activating 
protein SH3 domain-binding protein (G3BP) is signifi-
cantly downregulated by toxin B and lethal toxin. Adhe-
sion and migration of HSC are considered to be important 
components of efficient HSC homing, a prerequisite of 
therapeutic stem cell transplantation. In order to home to 
the BM, HPC have to roll along and firmly adhere to the 
blood vessel, cross the endothelium barrier and finally traf-
fic within the BM microenvironment. [9] We utilized a 
variety of appropriate in vitro adhesion and migration as-
says to study the impact of G3BP on each sequential hom-
ing step [17, 20, 21]. Overexpression of G3BP in the mur-
ine HPC line 32D enhanced rolling and adhesion to endo-
thelial cells under physiological shear flow, improved 
transmigration through a fibronectin-coated permeable 
membrane and enhanced migration into three-dimensional 
spheroids composed of BM stromal cells. We further dem-
onstrate that knock-down of endogenous G3BP by shRNA 
caused impaired adhesion and migration of murine 32D 
HPC. Thus, our results indicate that at least a part of the 
toxin-induced effects on HPC are attributable to G3BP. 
Similar effects have been observed by inhibition of Rac or 
RhoA in primary HPC [22]. Furthermore, deletion of both 
Rac1 and Rac2 causes massive defects in stem cell prolif-
eration and survival in vitro and Rac1-deficient stem cells 
have reduced homing efficiency to the BM and fail to en-
graft [23,24]. 

 Integrin-dependent activation of Rho GTPases has been 
extensively studied in fibroblasts plated on fibronectin. 

Engagement of integrins with ECM leads to activation  
of Cdc42 and subsequently Rac. Together, these GTPases  
mediate cell spreading and membrane ruffling, while Rho  
is activated independently to induce stress fibers [25,26]. In 
this setting, overexpression of G3BP in RAT-1 fibroblasts 
produced a Rho-like phenotype characterized enhanced forma-
tion of stress fibers and lead to extension of thin processes 
instead of lamellipodia consistent with inhibition of Rac. This is 
in agreement with data demonstrating that RasGAP per se is able 
to trigger stress fiber formation by stimulating Rho activity 
whereas blocking of the SH3 domain of RasGAP specifically 
abrogates Rho-dependent cytoskeletal reorganization [3].  
Additional results obtained with the Drosophila homologue of 
G3BP suggest a role in both Ras and Rho signalling by serving 
as a link between these two GTPases [27].  

CONCLUSION 

 In conclusion, we identify G3BP as one of several genes 
significantly downregulated by toxin B and lethal toxin and for 
the first time define its major contribution to adhesion and 
motility of 32 D HPC and cytoskeletal alterations in fibro-
blasts.  
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