
The Necessity of Timekeeping in Adversarial
Queueing

Maik Weinard

Institut für Informatik,
Johann Wolfgang Goethe–Universität Frankfurt am Main,

Robert-Mayer-Straße 11-15
60054 Frankfurt am Main, Germany

weinard@thi.informatik.uni-frankfurt.de

Abstract. We study queueing strategies in the adversarial queueing
model. Rather than discussing individual prominent queueing strategies
we tackle the issue on a general level and analyze classes of queueing
strategies. We introduce the class of queueing strategies that base their
preferences on knowledge of the entire graph, the path of the packet and
its progress. This restriction only rules out time keeping information like
a packet’s age or its current waiting time.

We show that all strategies without time stamping have exponential
queue sizes, suggesting that time keeping is necessary to obtain subex-
ponential performance bounds. We further introduce a new method to
prove stability for strategies without time stamping and show how it can
be used to completely characterize a large class of strategies as to their
1-stability and universal stability.

1 Introduction

We study the problem of contention resolution for packet routing in networks.
A network is represented as a graph with vertices representing the access points
of the network (routers) and edges representing the established connections be-
tween routers. Users will insert data – organized in packets of roughly same size –
into the access points of the network. Each packet has a destination and routing
policies assign a simple path from its source to its destination.

This paper focuses on queueing strategies. Queueing strategies are used to
decide which packet may proceed whenever more than one packet intends to
traverse an edge. Throughout this paper we will concentrate on greedy strategies.
These are strategies that allow one packet to cross an edge e whenever there is
a packet ready to cross edge e.

We analyze queueing strategies in a distributed online model, i.e., decisions
need to be made on the fly, independent of future input, with local information
only, as a router is realistically neither aware of packets that will be inserted
into the network in the future nor of packets that are currently stored in other
nodes of the network.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 440–451, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

The Necessity of Timekeeping in Adversarial Queueing 441

We work within the model of adversarial queueing theory [6], a worst-case
setup which allows to establish performance guarantees. Packets are inserted by
an adversary at arbitrary times and with arbitrary assigned paths. Of course
the strength of the adversary needs to be restricted, since no queueing strategy
can cope with an adversary, who continuously inserts more packets which seek
to cross a specific edge e than edge e can handle.

Definition 1. An adversary is an (r, b)-adversary, if for every time interval I
and every edge e at most r · |I| + b packets with edge e in their path are inserted
into the network during I. We call r the rate and b the burstiness.

Hence for r ≤ 1 an adversary cannot just simply overload an edge by new
insertions. While for some queueing strategies like First-In-First-Out (FIFO)
there exist graphs for which an upper bound for the total traffic in a network
cannot be guaranteed even for arbitrarily small r > 0 [5, 8], others like Nearest-
To-Source (NTS) have bounded total traffic in every graph even for r = 1 [7].

Definition 2. 1. A queueing strategy is r-stable, if for every graph G and every
b ∈ IN there exists a bound cG,r,b such that for every sequence of insertions
by an (r, b)-adversary into G the total number of packets in G never exceeds
cG,r,b.

2. A queueing strategy is universally stable, if it is r-stable for every r < 1.

Apart from the number of packets in the system, one is also interested in trans-
portation times, i.e., the time between the insertion of a packet into the network
and its arrival at the final node of its path. For r < 1 there is a straight forward
connection between the number of packets in the system and transportation
times [2]: if in a given network and against a given adversary the maximal size
of a queue is bounded, so are the number of packets in the entire network and
the transportation times. Hence for r < 1 we concentrate on analyzing the queue
sizes of strategies.

It is crucial to see that universal stability is a necessary but by no means
sufficient condition for a strategy in order to be “useful” in the r < 1 setup. A
transportation time superpolynomial in the number of vertices of the graph is
inacceptable if one has networks like the internet in mind and the fact, that this
is a constant for a fixed network, offers little comfort.

A randomized protocol with polynomial queue size was introduced in [2].
This protocol however can only be derandomized in a centralized manner: to-
tal knowledge of all insertions is necessary. In [3] another randomized strategy,
following similar high level ideas, with polynomial delay is introduced and deran-
domized in a distributed manner: each router can do the necessary computations
only with the knowledge of the packets inserted into the network via this router.
So also deterministic queueing strategies with polynomial queue size do exist.

The question remains as to whether there exist simple queueing strategies
that achieve the same goal. Longest-In-System (LIS) is the only prominent strat-
egy for which the upper bound of 2O(d) could only be matched by a lower bound
of Ω(d), where d is the diameter of the graph. It is known [1], that on directed

442 M. Weinard

acyclic graphs the queue size for LIS is indeed O(d), whereas a proof for the
general case requires new techniques [4]. Also in [4] it is shown, that the trans-
portation time under LIS can be exponential in the path length of a packet.
(These paths however turn out to be short in comparison to the diameter.) This
result is then extended to a class of vulnerable queueing strategies.

We also seek results about entire classes of queueing strategies. We associate
a queueing strategy S with a priority function that maps the state of a packet
and available knowledge of the network to a priority. Among packets competing
for the same edge, S then prefers a packet of highest priority. Classes arise by
specifying which parameters a strategy bases its priority on. Our goal is a study
of the large class of strategies without time stamping.

Definition 3. We say that a queueing strategy Sf operates without time stamp-
ing if it assigns priorities f(G,P, a), where G is the graph of the network, P is
the path of the packet and a is the number of edges already traversed. We call
strategies that operate without time stamping WTS-strategies for short.

Prominent WTS-strategies include Nearest-To-Source (NTS), Farthest-From-
Source (FFS), Nearest-To-Go (NTG), and Farthest-To-Go (FTG) with priority
functions fNTS(G,P, a) = −a, fFFS(G,P, a) = a, fNTG(G,P, a) = a − |P | and
fFTG(G,P, a) = |P | − a respectively.

In Section 3 (Theorem 1) we show that each WTS-strategy has queue size
2Ω(

√
n), where n is the number of vertices. Moreover the diameter d turns out

to coincide asymptotically with
√

n and hence the queue size is 2Ω(d).
This result suggests that time keeping is crucial to obtain good performance

bounds, as the only reasonable quantities that WTS-strategies ignore, are times,
such as the age of a packet – as used in LIS – or the current waiting time of a
packet – as used in FIFO.

In [9] the term eternal packet is introduced for a packet that gets stuck in a
network indefinitely. For greedy strategies this effect only arises at the critical
arrival rate r = 1. Observe that there are strategies that avoid eternal packets at
r = 1 but are instable for every r < 1 like FIFO, while others are even 1-stable
but fail to avoid eternal packets at r = 1. In fact no strategy can avoid eternal
packets and be 1-stable [9].

All WTS-strategies produce eternal packets at r = 1. For burstiness b ≥ 1 this
observation can be easily verified with a one edge network: in step one insert two
packets that seek to traverse the edge and in every later step one more packet.
As a WTS-strategy is incapable of distinguishing between any of these packets,
one can be stuck forever.

In Section 4 we introduce the technique of push-around-cycles that can be
used to prove 1-stability for WTS-strategies. Using this technique we provide a
complete classification of 1-stable distance-based strategies: these strategies base
their decision on the number of edges a packet has already crossed and the length
of its path. It turns out that in this class of strategies 1-stability and universal
stability coincide. Conclusions and open problems are discussed in Section 5.

The Necessity of Timekeeping in Adversarial Queueing 443

2 Notation and Conventions

Throughout this paper we let G denote the graph of the network, PG the set of
all simple paths in G and n,m, d the number of vertices, number of edges and
the diameter of the graph in question. We assume that the network operates in
consecutive steps, where each step breaks down into three substeps:

1. Insertion: New packets with assigned paths are inserted by the adversary.
2. Transportation: Packets move along edges.
3. Clean Up: Packets that have crossed the last edge of their path are removed

from the system.

Hence a packet that is inserted into the system may proceed in the same step.
In each step each edge can be crossed by at most one packet. We use Qe(t)
to denote the set of packets ready to cross edge e in step t. We occasionally
use multiple edges; however, if desired, multiple edges can be eliminated by
introducing extra nodes. Whenever two packets of same priority reside in the
same queue we assume worst case tie resolution.

3 Queue Size of WTS-Strategies

We now see that WTS-strategies cannot avoid exponential queue size and hence
exponential transportation time.

Theorem 1. There is a family Gk of graphs with n = 2k2 + 6 nodes and diam-
eter d = 4k so that every WTS-strategy requires queues of size 2Θ(k) for r > 0.5
and b > 2rk

2r−1 .

Proof. We describe Gk = (Vk, Ek). Gk basically consists of k2 copies of the
gadget Gij (see Figure 1). Gk has 2k2 + 6 vertices and diameter 4k.

Let Ri be the set of paths from X to Z traversing only the gadgets of row i.
Let Cj be the set of paths from X ′ to Z ′ traversing only the gadgets of column
j. We will only work with these row and column paths.

For each of the x-edges xl
ij we determine a dominant path: i.e., a path in

Ri ∪ Cj that uses xl
ij and has a maximum priority in the queue of xl

ij . Hence in
the queue of xl

ij a packet on the dominant path has priority

max
{

max
P∈Ri

{f(Gk, P, 2j)|P uses xl
ij}, max

P∈Cj

{f(Gk, P, 2i)|P uses xl
ij}

}
.

Observe that a packet on a path in Ri [Cj] has traversed 2j edges [2i edges]
when reaching xl

ij . If a dominant path of xl
ij is in Ri we say that edge xl

ij is row
dominated, otherwise it is column dominated. Furthermore we say that gadget
Gi,j is row [column] dominated if at least k + 1 of its x-edges are row [column]
dominated. Hence each gadget is either row or column dominated.

We now focus on a row in which at least half of the gadgets are column
dominated or a column in which at least half of the gadgets are row dominated.

444 M. Weinard

Ai,j

x1
i,j

r1
i,j

rk+1
i,j

Bi,j

r1
i,j+1

rk+1
i,j+1

ck+1
i+1,j

Gi,j

x2k+1
i,j

x2
i,j

c1
i+1,j

c1
i,j ck+1

i,j
G1,1

Gk,1

G1,k

Gk,2

X

Y Z

X’ Y’

Z’

G2,1
rl
0

cl
0

Gk,k

G1,2

G2,2 G2,k

Fig. 1. Graph Gk contains k2 gadgets Gi,j and extra nodes X, Y, Z, X ′, Y ′ and Z′

arranged and connected as indicated on the left. A thick arrow represents a set of k+1
multiple edges. Each gadget consists of two internal nodes Ai,j , where all incoming
edges end, and Bi,j , where all outgoing edges originate, connected by 2k + 1 directed
edges named x1

i,j , . . . , x
2k+1
i,j . The incoming row edges (coming from Gi,j−1 resp. Y)

are labeled rl
i,j for 1 ≤ l ≤ k + 1. The incoming column edges (coming from Gi−1,j

resp. Y ′) are labeled cl
i,j for 1 ≤ l ≤ k + 1. The row edges [column edges] leaving Gi,k

[Gk,j] and entering Z [Z′] are named ri,k+1 [ck+1,j]. Finally we call the k + 1 edges
connecting X and Y [X ′ and Y ′] rl

0 [cl
0] for 1 ≤ l ≤ k + 1

Observe that at least one such row or column must exist. W.l.o.g. asssume that
there are q ≥ k

2 column dominated gadgets in row i0 and that in column dom-
inated gadgets Gi0,j edges x1

i0,j , . . . , x
k+1
i0,j are column dominated. The following

algorithm carefully chooses paths from Ri0 that we will use to insert packets.

1. Initially let L consist of the edge ri0,k+1, the edges rl
0 and rl

i0,j as well as
xl

i0,j for 1 ≤ j ≤ k and 1 ≤ l ≤ k + 1. We call edges in L legal and call a
path legal, if it only uses legal edges. Set z := q.

2. For j from k to 1 in descending order repeat:
(a) Choose e ∈ {rl

i0,j |1 ≤ l ≤ k + 1} ∩ L arbitrarily (a legal entrance to
Gi0,j).

(b) IF Gi0,j is column dominated:
i. Let Sz be a legal path that uses e and assigns a minimum priority

(restricted to legal paths using e) in Qe. (I.e., f(Gk, Sz, 2j − 1) is
minimal). Remove the edges Sz traverses before e from L.

ii. Let e′ ∈ {xl
i0,j |1 ≤ l ≤ k + 1} be a legal edge Sz does not use.

iii. Let Dz be the dominant path of e′. Set z := z − 1.
(c) ELSE: Choose e′ ∈ {xl

i0,j |1 ≤ l ≤ k + 1} ∩ L arbitrarily.
(d) Remove all edges rl

i0,j �= e and xl
i0,j �= e′ with 1 ≤ l ≤ k + 1 from L.

3. Choose a legal path S0 arbitrarily.

Observe that the choices of e and e′ are always well defined, since at start
there are for each j at least k + 1 legal rl

i0,j and xl
i0,j edges. At most k − 1 of

them are removed in steps 2(b)i before e and e′ are picked.

The Necessity of Timekeeping in Adversarial Queueing 445

We are now ready to start our insertion of packets. The insertion scheme
proceeds in q phases that correspond to the column dominated gadgets. Let
these be Gi0,j1 , Gi0,j2 , . . . Gi0,jq

. To start off the process we exploit burstiness
and launch b packets along path S0 in one step. We call this set of packets X0.

Phase t: Phase t starts, when the first packet of Xt−1 is ready to cross rl
i0,jt

and lasts for |Xt−1| steps. During phase t we insert packets along St and Dt in
parallel at rate r. Note that St and Dt are edge disjoint.

In the queue of rl
i0,jt

the packets from St collide with the packets of Xt−1 for
the first time. They have a priority not greater than any packet in Xt−1 as the
paths, the packets of Xt−1 are travelling on, were all legal when St was picked
minimally. Hence none of the r|Xt−1| packets from St is able to traverse Gi0,jt

in phase t.
After at most 2k steps of phase t the first packet on Dt arrives in Gi0,jt

and
from then on the xl

i0,jt
edge, the packets from Xt−1 intend to use, is occupied

r · (|Xt−1|−2k) steps by blocking packets. As Dt is a dominant path of the edge
at least r · (|Xt−1| − 2k) packets from Xt−1 do not traverse Gi0,jt

in phase t.
Let Xt be the union of these remaining Xt−1 packets and the newly inserted

packets from St. Then |Xt| ≥ 2r|Xt−1| − 2rk holds. Observe that for r > 1
2

and sufficiently large b (i.e., |X0| = b > 2rk
2r−1) the size of Xt has increased by a

multiplicative factor. As q = Θ(k) = Θ(d), the last set Xq has size 2Θ(d). �	

4 Stability of WTS-Strategies

In this section we provide a new method for proving 1-stability of WTS strategies,
that can be used to unify the proofs for NTS and FTG as well as for proving the
1-stability of entire classes of strategies. Besides providing a sufficient criterion
for 1-stability of WTS-strategies we also characterize universally stable distance-
based strategies.

Crucial for this approach is the concept of push-around-cycles. A push-
around-cycle is intuitively speaking a sequence of paths that intersect in a cyclic
manner so that the priorities allow to push packets around this cycle indefinitely.
Assume WTS-strategy Sf is used. We show that whenever the number of packets
in a network G can be driven beyond any bound (instability) then G contains a
push-around-cycle with respect to f . By contraposition we may then conclude
1-stability whenever a queueing strategy prevents push-around-cycles in every
single graph. We introduce the concept of a path prefix.

Definition 4. Let P = (e1, e2, . . . , ez) be a path. Then the path prefix [P, a] for
a ≤ z consists of the edges (e1, e2, . . . , ea).

Let QP
e (t) denote the set of packets in Qe(t) travelling along path P and QP (t) be

the set of packets travelling along path P at time t. (Hence QP (t) =
⋃z

i=1 QP
ei

(t).)
Furthermore set Q[P,a](t) =

⋃a
i=1 QP

ei
(t) as the set of packets in path prefix [P, a].

WTS-strategies define priorities between paths P and P ′ meeting in a com-
mon edge e: a packet reaching edge e on path P has the right of way over a

446 M. Weinard

eP
i−1 eP

i+1 eP
a−1eP

1 eP
2 eP

i eP
a

eP ′
1 eP ′

2

Path P

Path P ′

eP ′
a′

Fig. 2. An illustration for Lemma 1. The common edge eP ′
a′ = eP

i is distinguished

packet reaching e on path P ′ if f(G,P, j) > f(G,P ′, i) where e is the j-th (resp.
i-th) edge of P (resp. P ′). The Lemma 1 shows that for every heavily loaded
path prefix [P, a] there is another heavily loaded path prefix [P ′, a′] that has
priority over P in an edge e. Later we apply this method repeatedly to find a
necessary condition for instability at every r ≤ 1. Figure 2 illustrates Lemma 1.

Lemma 1. Assume WTS-strategy Sf (with priority function f) is used on a
graph G. Moreover assume that after a sequence of insertions for t steps by an
(1, b) adversary there is a path prefix [P, a] such that |Q[P,a](t)| ≥ c, where c is
a constant larger than b. Then there exists a path prefix [P ′, a′] such that

– P ′ has the right of way over P in a common edge e = eP
i = eP ′

a′ and
– the path prefix of P ′ ending in e has at some moment in time before time t

carried at least c
2·3d·|PG | − b

|PG | packets.

Proof. Assume that |Q[P,a](t)| ≥ c holds. Then choose t0 minimal such that at
time t0 there exists i ≤ a such that

|QP
ei

(t0)| >
c

3a−i+1 . (1)

Such a t0 ≤ t is well defined, since otherwise we have |QP
ej

(t)| ≤ c
3a−j+1 for

all j ≤ a and consequently

|Q[P,a](t)| =
a∑

j=1

|QP
ej

(t)| ≤
a∑

j=1

c

3a−j+1

= c · 3−a ·
a∑

j=1

3j−1 = c · 3−a 3a − 1
2

<
c

2
, a contradiction.

Choose i to be a minimal index satisfying inequality (1). Furthermore pick
t1 maximally with t1 < t0 such that QP

ei
(t1) = ∅. t1 exists, since all queues are

assumed to be empty in the beginning. Exploiting t1 < t0 and the minimality of
t0 we get |Q[P,i−1](t1)| =

∑i−1
j=1 |QP

ej
(t1)| ≤

∑i−1
j=1

c
3a−j+1 ≤ c

2·3a−i+1 .

Since |QP
ei

(t0)| > c
3a−i+1 , at most half of the packets in QP

ei
(t0) were already

in the system at time t1. We concentrate on the time interval J = (t1, t0] and

The Necessity of Timekeeping in Adversarial Queueing 447

assume that y packets are inserted into path P during J . Let x denote the
number of packets on path P that traverse ei during J . We then conclude

y − x ≥ c

2 · 3a−i+1 . (2)

Since QP
ei

(t) is nonempty during J , one packet traverses ei in every step of
J , and thus t0 − t1 − 1 = |J | packets traverse ei. Hence (t0 − t1 − 1 − x) packets
from paths that have priority over P in ei traverse edge ei during J . Due to the
restriction on the adversary at most (t0 − t1 − 1+ b) packets with ei are inserted
during J and at most (t0 − t1 − 1 + b − y) of them travel on paths other than P .
We may hence conclude – using (2) –, that at least

(t0 − t1 − 1 − x) − (t0 − t1 − 1 + b − y) = y − x − b ≥ c

2 · 3a−i+1 − b ≥ c

2 · 3d
− b

packets on paths with priority over P in ei are in the system at time t1 and that
they are somewhere before or on edge ei on their respective paths.

Finally we observe that at least one path with priority over P in ei must
carry at least c

2·3d·|PG| − b
|PG| of these packets before or on ei and hence if P ′ is

this path and a′ is picked so that eP ′
a′ = ei we have verified the claim. �	

A repeated application of Lemma 1 leads to the concept of push-around-cycles.

Definition 5. A push-around-cycle with respect to a WTS-strategy with priority
function f and a network G is a sequence of paths P1, P2, . . . , Pr ∈ PG in G with
two distinguished edges ePi

xi
and ePi

yi
for every path with the following properties:

– ∀1≤i≤r xi ≤ yi: edge ePi
xi

precedes edge ePi
yi

on Pi,
– ∀1≤i≤r−1 ePi

yi
= e

Pi+1
xi+1 and ePr

yr
= eP1

x1
: The second distinguished edge of Pi is

the first distinguished edge of Pi+1 and the second distinguished edge of the
last path is the first distinguished edge of the first path.

– ∀1≤i≤r−1 f(G,Pi, yi) ≥ f(G,Pi+1, xi+1) and f(G,Pr, yr) ≥ f(G,P1, x1):
path Pi has the right of way over Pi+1 with respect to their common distin-
guished edge. Moreover Pr has the right of way over P1 with respect to their
common edge.

Figure 3 illustrates the concept of a push-around-cycle. We are now ready to
state the main result of this section.

Theorem 2. If a WTS-strategy Sf with priority function f is instable at r = 1
on a graph G, then there exists a push-around-cycle among the paths of G with
respect to Sf .

Proof. We define the following recurence in order to use Lemma 1: A(0) = b

and A(i) = A(i+1)
2·3d·|PG| − b

|PG| . As we assume instability, there is a sequence of
insertions that causes G to accomodate |PG| · A(d · |PG|) packets. Hence one
path accomodates at least A(d · |PG|) packets. Using this entire path P0 and
its entire length a0 := |P0| as a first path prefix [P0, a0] we apply Lemma 1

448 M. Weinard

P1

P2

eP3
x3

= eP2
y2

eP2
x2

= eP1
y1

eP1
x1

= eP4
y4

P3

eP4
x4

= eP3
y3

P4

Fig. 3. An illustration for a push-around-cycle consisting of four paths and their four
distinguished edges. A dashed line indicates that the respective path must yield priority

iteratively: if we have a path prefix [Pi, ai] that can be forced to accomodate
A(d · |PG|− i) packets, Lemma 1 provides a path Pi+1 that intersects [Pi, ai] and
has priority at that intersection. If we pick ai+1 according to Lemma 1, we know
that the path prefix [Pi+1, ai+1] can be forced to contain A(d · |PG| − (i + 1))
packets.

As we have picked A(d · |PG|) large enough, we can iterate the application of
Lemma 1 d · |PG| times, which is an upper bound on the number of path prefixes
in G. Hence a cycle must be closed in the process and we have our theorem. �	

By contraposition we get immediately that every WTS-strategy, that does
not allow push-around-cycles in a network G, is 1-stable in G. The following
corollary contains Nearest-To-Source and Farthest-To-Go as special cases.

Corollary 1. Assume a WTS-strategy Sf with priority function f is given.
If f is strictly decreasing along all paths P in all graphs G, i.e., f(G,P, i) >
f(G,P, i + 1), then Sf is 1-stable.

Proof. Assume G contains a push-around-cycle with respect to Sf , let P1, . . . , Pr,
x1, . . . , xr and y1, . . . , yr be defined in accordance to Definition 5. We then have
f(G,P1, x1) > f(G,P1, y1) ≥ f(G,P2, x2) > . . . > f(G,Pr, yr) ≥ f(G,P1, x1) as
a contradiction. Hence by Theorem 2 the strategy is stable at r = 1. �	
Remark 1. Assume that we have a WTS-strategy that does not depend on the
number of edges a packet has traversed so far. If the strategy assigns different
priorities to different paths in every G, then this strategy is 1-stable.

We say that a queueing strategy is distance-based, if its priority function only
depends on the the number x of traversed edges and the length y of the packet’s
path. We provide a complete classification of 1-stable distance-based strategies.

Theorem 3. Let f be the priority function of a distance-based queueing strategy
Sf . Then Sf is 1-stable if and only if

∀(x, y) 1 ≤ x < y : f(x, y) < f(x − 1, y). (3)

It is not even universally stable otherwise.

The Necessity of Timekeeping in Adversarial Queueing 449

Proof. The 1-stability given (3) follows immediatly from Corollary 1, since f is
strictly decreasing along all paths. To complete the proof we need to carefully
embed and adapt the baseball graph from [2] and come up with an elaborate
insertion scheme.

Our proof exploits that Sf is only stable if it guarantees stability for every
possible choice among packets of same priority. Hence if two packets with iden-
tical x and y values collide, we may pick the one to be prefered in a worst case
manner. We consider the network of Figure 4.

A

A’

C’

e

e e

e’

e’e’

0

0

11 22

X

XX A’B’

Y

Y

Y

Y

Y

C

C’

A

C

B’

A Y B

B

A’B’

e
4

4
e’

X

B
F

G

G

H

1 1

2

2

S
?

H

Fig. 4. The graph used to prove instability of Af . We have central nodes A, B, C
and A′, B′, C′. Each central node has an entrance path starting at a node named
YA, . . . , YC′ . Each of these entrance paths consists of x − 1 nodes and x − 1 edges.
Hence for x = 1 these entrance paths disappear and the Y -node is identical with the
corresponding central node. Also A, B, A′ and B′ have an exit path ending in a node
named XA, . . . , XB′ . Each exit path has length y − x − 1. So for y = x + 1 these paths
vanish and the X-nodes are identical with their respective central node

We assume that there exists a time t such that if injection of new packets is
completely stopped after step t , there is still – for each of the next s steps – a
packet crossing e0. These packets (we call them set S) will have crossed precisely
x edges before e0, have destination XB and a total path of length y.

We intend to construct an injection process (Phases 1,2 and 3), such that
there is a set of more than s packets waiting to cross edge e′0, if injection is
stopped after step t′ > t. These packets will have crossed precisely x edges before
e′0, have destination XB′ and a total path of length y. This implies instability,
since the process can then be repeated arbitrarily.

In the caption of Figure 4 we have introduced the notion of central node,
entrance and exit path. All the packets that we are inserting in phases 1,2 and 3
have a path of length y. In the first central node of their paths they have crossed
x−1 edges, in the second central node they have crossed x edges. The necessary
insertions are listed in the following table along with references to the relevant
observations.

450 M. Weinard

Phase Duration Inserted Sets & Paths Size Observations

1 s F : (YA
∗→ A

e0→ B
e1→ A′ ∗→ XA′) rs (1),(2),(3),(4)

2 rs G1 : (YA
∗→ A

e0→ B
e2→ A′ ∗→ XA′) r2s (2),(4),(5)

G2 : (YB
∗→ B

e1→ A′ e′
0→ B′ ∗→ XB′) r2s (3),(4),(6)

3 r2s H1 : (YB
∗→ B

e2→ A
e′
0→ B′ ∗→ XB′) r3s (5)

H2 : (YC
∗→ C

e4→ B
e1→ A′ ∗→ XA′) r3s (6)

(1) In phase 1 the set S of s packets we assume to cross e0 complete their
journey. When F reaches A, it will be blocked by S, since f(x, y) ≥ f(x − 1, y)
holds. Observe that x− 1 steps pass before F ’s first packet reaches A. So in fact
not all of the rs packets of F can get to A before phase 1 ends, i.e., the last one
has just been inserted and needs another x − 1 steps to get to A. For s large
enough however this effect causes no problems.

After phase 1 S has vanished. (The last packets of S are actually still on their
way from B to XB , but they do not interfere with anything we are about to do
and we will consider them gone. The same argument in the next steps allows us
to regard every packet as out of the way once it’s on its exit path.)

(2) Set G1 collides with F in node A. Their path length and advance in the
path at this point are identical, hence we may choose that F is advanced over
e0.

(3) Set G2 collides with F in node B. Since F has traversed x edges and G2
has traversed x − 1 edges, F will be prefered.

(4) At the end of phase 2 F has vanished and both G1 and G2 are still in
the first central node of their paths.

(5) G1 completes its journey in phase 3. In node B the set G1 will block H1.
(6) In the first x steps of Phase 3 x packets of G2 cross e1 and are lost for

our purpose. After these x steps the stream of H2 packets has reached B. In B
packets from H2 will be prefered over G2-packets. Of course, as r < 1 holds, the
stream of H2 packets occupies e1 for r · (r2s − x) of the remaining r2s − x steps
of Phase 3. Hence (1 − r) · (r2s − x) more G2 packets slip through and are lost.

We define the end of phase 3 as the time t′. Observe that r(r2s − x) packets
from G2 and the entire H1 still need to cross e′0. Their combined size is |S′| =
2r3s−rx. So by having S and r sufficiently large we can guarantee, that |S′| > |S|
holds and we have successfully increased the number of packets in the system.
To start out the process we have to use a sufficiently large burstiness. �	

5 Conclusion and Open Problems

We have introduced the class of WTS-strategies and obtained general results
about this class itself and its subclass of distance-based strategies. Most impor-
tantly we have ruled out the existence of WTS-strategies with subexponential
queue size indicating, that some form of timekeeping is necessary to achieve poly-
nomial queue size. Furthermore we have introduced the concept of push-around-

The Necessity of Timekeeping in Adversarial Queueing 451

cycles and used it to classify the 1-stable and universally stable distance-based
strategies.

In order to be of practical use, queueing strategies need to be as simple as
possible. So the question remains whether queueing strategies simpler than the
one introduced in [3] and with polynomial queue size exist. Such a candidate is
Longest-In-System, as LIS is obviously one of the simplest queueing strategies
that does use timekeeping.

Acknowledgements

I would like to thank Gregor Gramlich, Matthias Poloczek and Georg Schnitger,
as well as an unknown referee for many helpfull comments.

References

1. Adler, Micah and Rosen, Adi, Tight Bounds for the Performance of Longest in
System on DAGs, Proc. of the 19th Symposium on Theoretical Aspects of Computer
Science, 2002, pp. 88-99

2. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., and Liu, Z., Universal-
Stability Results and Performance Bounds for Greedy Contention-Resolution Pro-
tocols, Journal of the ACM, Vol. 48, No 1, January 2001, pp. 39-69

3. Andrews, M., Fernández, A., Goel, A., Zhang, L., Source Routing and Scheduling
in Packet Networks, Proc. of the 42nd Symposium on Foundations of Computer
Science, 2001, pp. 168-177

4. Andrews, M., Zhang, L., The Effects of Temporary Sessions on Network Perfor-
mance, SIAM Journal of Computation, Vol. 33, No 3, pp. 659-673

5. Bhattacharjee, R. and Goel, A., Instability of FIFO at arbitrarily low rates in the
adversarial queueing model, Proc. of the 44th Symposium on Foundations of Com-
puter Science, 2003, pp. 160-167

6. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., and Williamson, D. P. Ad-
versarial queueing theory, Journal of the ACM, Vol. 48, No 1, January 2001, pp.
13-38

7. Gamarnik, David, Stability od Adaptive and Non-Adaptive Packet Routing Policies
in Adversarial Queueing Networks, SIAM Journal on Computing, Vol. 32, No 2,
2003, pp. 371-385

8. Koukopoulos, D., Mavronicolas, M., Spirakis, P., FIFO is Unstable at Arbitrarily
Low Rates (Even in Planar Networks), Electronic Colloq. on Computational Com-
plexity, 2003

9. Rosén, Adi and Tsirkin, Michael S., On Delivery Times in Packet Networks un-
der Adversarial Traffic, Proceedings of the 16th ACM Symposium on Parallelism in
Algorithms and Architectures, 2004, pp. 1-10

	Introduction
	Notation and Conventions
	Queue Size of WTS-Strategies
	Stability of WTS-Strategies
	Conclusion and Open Problems
	Acknowledgements
	References

