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Zusammenfassung

Motivation

Trotz umfangreicher Forschung auf dem Gebiet der Neurowissenschaften besteht bisher noch
Unklarheit über die grundlegenden Prinzipien der Informationsverarbeitung im Neokortex. Im
wesentlichen stehen sich zwei Hypothesen gegenüber, die einander nicht ausschließen müssen.
Die “single-neuron doctrine” (Barlow, 1972) sieht die differenzierte Feuerrate einzelner Neu-
rone mit spezifischen Antworteigenschaften und deren hierarchische Verknüpfung und Kon-
vergenz auf Zellen mit hoch spezialisierten Stimuluseigenschaften als wesentliches Element
der Informationsverarbeitung. Aufgrund konzeptueller Schwächen dieser Theorie (siehe z.B.
Engel et al., 1992) wurde vorgeschlagen, daß Gruppen (Assemblies) von Neuronen und deren
zeitlich fein koordinierte Feueraktivität zur Informationsverarbeitung beitragen (v.d. Malsburg,
1981; Abeles, 1982b).

Fragestellung

In dieser Arbeit wird eine Methode entwickelt und diskutiert, mit deren Hilfe man Daten, die
bei der experimentellen Untersuchung der zeitlich abgestimmten Aktivität von Nervenzellen an-
fallen, hinsichtlich gleichzeitiger und fast-gleichzeitiger Feueraktivität analysieren kann. Aus
parallelen diskreten binären Prozessen stammende Daten sollen auf korrelierte Feueraktivität
hin untersucht werden, um überzufällig häufig auftretende gleichzeitige Aktivität zu detek-
tieren. Ziel ist dabei außerdem, festzustellen, welchen Untergruppen der beobachteten Prozesse
eine erkannte Korrelation zuzuordnen ist. So fallen durch zufällige Ko-aktivierung von einzel-
nen Neuronen und/oder echt korrelierten Gruppen von Neuronen zufällige Koinzidenzen höherer
Ordnung an (“Scheinkorrelationen”), die nicht als “echte” Korrelationen erkannt werden sollen.

Modellbeschreibung

Im ersten Teil der Arbeit wird ein Modell (Modell of Independent Interaction Processes, “MIIP”)
vorgestellt, mit dessen Hilfe die Analyse von “echten” Korrelationen, die sich durch überzufäl-
lig häufige gleichzeitige Feueraktivität ausdrücken und nicht - wie die Scheinkorrelationen - auf
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Korrelationen niedrigerer Ordnung zurückführbar sind, ermöglicht wird. Es enthält Prozesse���
, ��� ���
	�	�	��� , die die beobachtete Feueraktivität der  Neurone beschreiben sollen und

Superpositionen von unabhängigen Basisprozessen darstellen. Alle Basisprozesse ����������� � � ���
	�	�	����� sind stationäre Bernoulli Prozesse mit eigenen Feuerwahrscheinlichkeiten� � � �"!#�
�%$ , wobei jeder nicht-leeren Teilmenge
�

der Menge & der  Neurone genau ein
Basisprozeß zugeordnet wird, der pro Zeitpunkt ' mit Wahrscheinlichkeit

� � feuert und dabei
zur gleichen Zeit ' Aktionspotentiale in allen beobachtbaren Prozessen

�(�
mit �)� � erzeugt.

Formal: �*�,+-'.$/�0�1�3254/�6+-'.$ mit 47�,+-'.$ Bernoulli + � �8$9�
alle �*� unabhängig, und��� +:'.$<;=� sup

� �*�6+:'.$%>?�@�� � �A� ���
	�	�	�����B�C�/� � � �D�0���
	�	�	���D	
Die Basisprozesse mit > � >*� � werden als unabhängige Hintergrundprozesse interpretiert,
wohingegen alle anderen Basisprozesse zu Korrelationen zwischen beobachtbaren Prozessen
führen.

ML-Schätzung und Asymptotische Varianz

Mit Hilfe des MIIP kann man sehr direkt und anschaulich zwischen beobachteten Korrelationen,
die sich in den Prozessen

�*�
ausdrücken, und “echten” Korrelationen, die in den Basisprozessen

mit
� � EF! erzeugt werden, unterscheiden. Mit Hilfe der Maximum-Likelihood (ML) Me-

thode werden die Feuerwahrscheinlichkeiten der Basisprozesse aus den relativen Häufigkeiten
der G5H beobachtbaren Feuerkonfigurationen pro Zeitpunkt geschätzt, da die ML-Schätzer einer
Multinomialverteilung genau die relativen Häufigkeiten der entsprechenden Ereignisse sind.
Eine Formel für die Maximum-Likelihood Schätzer im MIIP für  Neurone wird entwickelt
und bewiesen, mit deren Hilfe man unter Verwendung der multidimensionalen I -Methode die
asymptotische Normalität der ML-Schätzer für alle

� � zeigen und die asymptotische Varianz
ausrechnen kann, was für zwei und drei Neurone bei der Korrelation der jeweils höchsten Ord-
nung exemplarisch durchgeführt wird.
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Empirische und Asymptotische Eigenschaften des Tests

Die Teststatistik des Quotienten aus dem ML-Schätzer und seiner asymptotischen Varianz wird
in Bezug auf den empirischen und asymptotischen Fehler erster und zweiter Ordnung für ty-
pische Parameterbereiche diskutiert. In Simulationsstudien konnte gezeigt werden, daß der
Test konservativ ist, d.h. daß für die untersuchten Parameterbereiche der asymptotische Sig-
nifikanzlevel unterschritten wird. Des weiteren werden in analytischen Überlegungen prinzip-
ielle Zusammenhänge zwischen den beteiligten Variablen demonstriert, wie z.B. das Ansteigen
der Testmacht mit der Länge des untersuchten Datenstücks, mit fallenden Hintergrundraten
oder mit steigender Feuerwahrscheinlichkeit des Basisprozesses der Korrelation der höchsten
Ordnung, jeweils bei festgehaltenen verbleibenden Parametern. Zudem hängt die Testmacht für
konstante verbleibende Parameter im wesentlichen von dem Verhältnis aus “echten” Koinzi-
denzen und Zufallskoinzidenzen ab.

Erweitertes Modell für “Unscharfe” Koinzidenzereignisse

Modellbeschreibung

Experimentelle Daten deuten darauf hin, daß koinzidentes Feuern mit einer gewissen Unschärfe
einhergeht (Abeles et al., 1993; Riehle et al., 1997). Im zweiten Teil der Arbeit wird daher das
MIIP erweitert, um die Analyse von fast-gleichzeitiger Aktivität bei der Suche nach “echten”
Korrelationen in parallelen Prozessen zu ermöglichen. Ein weiterer Parameter J��LK,M bes-
timmt den maximalen Abstand (in Zeitschritten), den zwei Aktionspotentiale verschiedener
Zellen haben dürfen, um noch als koinzident interpretiert zu werden.

Für eine N -elementige Teilmenge
�

von Neuronen ( N EF� ) aus & wird der Begriff der
Konfiguration eingeführt: Eine Konfiguration von

�
unter der Verzögerung (“Jitter”) OP�� ���
	�	�	��QJ�� beschreibt genau eine Möglichkeit, eine “gejitterte” Koinzidenz der Neurone aus

�
mit Jitter O zu erzeugen, in der alle Neurone aus

�
in einem Fenster der Länge O feuern, wobei

das erste und das letzte Aktionspotential genau O Zeitschritte voneinander entfernt sind. Für
jede Teilmenge

�
und jede Verzögerung O�� � ���
	�	�	��QJ�� wird pro Konfiguration von

�
unterO je ein zusätzlicher stationärer Bernoulli Basisprozeß eingeführt, der Aktionspotentiale in den���

mit �R� � in der durch die Konfiguration bestimmten Reihenfolge erzeugt. Für jeden
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zusätzlichen Jitter-Basisprozeß existiert ein weiterer Parameter, der die Wahrscheinlichkeit der
entsprechenden Konfiguration festlegt.

Parameterschätzung

Mit Hilfe der Momentenmethode werden Formeln zur Berechnung der Parameter für sym-
metrisches und asymmetrisches Jitter bei zwei Neuronen und für  �TS , JU� � und sym-
metrisches Jitter gezeigt. Da die Unabhängigkeit zwischen den Zeitschritten im erweiterten
Modell nicht mehr gegeben ist, werden anhand exemplarischer Rechnungen verschiedene Schä-
tzungen für die beteiligten Wahrscheinlichkeiten evaluiert. In den diskutierten Fällen besitzt die
Schätzung, die viele, abhängige Intervalle verwendet, gegenüber derjenigen mit unabhängigen
Intervallen geringerer Anzahl eine reduzierte Varianz. Des weiteren hängt die Schätzung der
Hintergrundfeuerwahrscheinlichkeit von J ab. Da dies im Experiment nicht bekannt ist, wer-
den in einer Simulationsstudie für verschiedene Parameter und unterschiedliche J verschiedene
Schätzungen evaluiert. Die Ergebnisse legen nahe, das größte plausible J zu verwenden.

Eigenschaften des Tests

Da die durch das Jitter J injizierten Abhängigkeiten der zur Schätzung verwendeten Intervalle
von endlicher Reichweite sind, besitzen auch die Schätzer für die Parameter im erweiterten
Modell asymptotische Normalverteilung. Anhand eines eingeschränkten Modells für zwei
Neurone, in dem die Wahrscheinlichkeit jeder Konfiguration gleich hoch ist, werden exem-
plarisch Signifikanzlevel und Testmacht der vorgeschlagenen Teststatistik untersucht. Diese
wird gebildet aus dem Quotienten der Summe der geschätzten Koinzidenzwahrscheinlichkeiten
über alle Jitter O , O@�V���
	�	�	��XW , wobei W das angenommene J ist, und deren empirisch ermittel-
ter Standardabweichung. Der Signifikanzlevel liegt für alle untersuchten W sehr nahe an dem
vorgegebenen Wert. Die Testmacht ist für WY�ZJ maximal für konstantes J . Eine Wahl vonW�E[J führt zu einer geringfügigen Reduktion der Testmacht, wohingegen W]\^J dieselbe stark
reduziert.
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Ausblick

Die durchgeführten Analysen und Simulationen weisen darauf hin, daß das MIIP gut geeignet
ist, um die Struktur der Korrelationen innerhalb einer Gruppe von Neuronen zu untersuchen.
Die Maximum-Likelihood Schätzer der Modellparameter sind trotz der Komplexität des Mo-
dells anschaulich und besitzen kurze Formeln. Dagegen hat das Modell einige Einschränkun-
gen, so u.a. die mangelnde Analysierbarkeit systematischer Desynchronisation der Prozesse
und die exponentielle Zunahme der Anzahl der zu schätzenden Parameter mit der Anzahl der
Neurone. Des weiteren ist das MIIP zur Analyse von stationären Prozessen entwickelt worden.
Um auf nichtstationäre Daten angewandt werden zu können, müssen weitere Untersuchungen
durchgeführt werden, die eine Erweiterung des Ansatzes ermöglichen. Zur Anwendung des
Modells in der experimentellen Praxis sollten somit weitere Studien durchgeführt werden, um
abweichendes Verhalten der Teststatistik unter weniger idealen Bedingungen einschätzen und
aufgrund dieser Erkenntnisse die Ergebnisse der Datenanalyse kritisch beurteilen zu können.
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1 Introduction

During the last century, the amount of research in the field of neuroscience has grown enor-
mously in the struggle to reveal the mechanisms underlying the immense variety of the brain’s
capabilities. Despite this fact, we are far from understanding the principles of information pro-
cessing in the cortex.

The human neocortex contains about �1! _-� neurons, which are thought to be the basic el-
ements of information processing. Communication between neurons is carried out by short,
transient electrical signals ("spikes") of about one millisecond duration, which are transmitted
across synapses - the physical connections between nerve cells - and can be measured with a
microelectrode.

In a simplified view, the flow of information is unidirectional for a single nerve cell: the
dendrites propagate their synapses’ electrical input to the soma of the cell, where all inputs are
integrated. If this sum reaches threshold, a spike is evoked, which then travels along the axon to
the synapses connecting the cell with other neurons (for a detailed description see e.g. Kandel,
Schwartz and Jessell, 1996, chapter 2).

The human neocortex is highly interconnected. One neuron receives about 20000 inputs
from other cells. These connections are far from being organized in a unidirectional way. There
are feed-forward as well as feedback and intrinsic connections (DeYoe and von Essen, 1988).

Regarding anatomical properties, there is relatively large agreement among neuroscientists.
Yet, concerning the way information is coded by the electrical signals, two different hypotheses
have been proposed, which could as well be complementary.

1.1 Rate Coding and the Single Neuron Doctrine

The first hypothesis made use of the known fact that neurons ’respond’ to special stimuli by a
change in their firing rate. Based on this observation, Barlow (1972, 1992a, b, c, d) formulated
the "single neuron doctrine" that regards single neurons as the main building blocks of infor-
mation processing. Every neuron responds optimally to a single feature or a combination of
features, and an enhancement of its firing rate signals the presence of the corresponding stim-
ulus. Simple neurons situated at the sensory periphery converge onto more complex neurons
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with highly specific response properties. “Cardinal cells” at the highest level were claimed to
respond to the appearance of entire objects.

A cell’s firing response is usually measured with a Peri-Stimulus-Time Histogram (PSTH).
Across several trials, time is divided into short intervals to measure the neuron’s mean firing
frequency and to detect the time of its enhancement.

Consistent with Barlow’s approach, specialization can be found on different levels in the
brain: On a global level, localized lesions of the brain cause special behavioral defects, a fact
which led to the conceptual division of the brain into different regions which are thought to be
essential for vision, audition, motor control or speech. A more detailed view shows that single
brain areas responsible for vision or motor control are organized into cortical maps, which
means e.g. that objects next to each other in the visual field are represented by adjacent areas in
the visual cortex (for a detailed description see e.g. Kandel et al., 1996, chapter 1). And finally,
on the micro-level, each segment that represents a small area in the visual field contains various
specific cells that respond to special stimulus properties such as orientations of moving light
bars or colors (e.g. Hubel and Wiesel, 1962).

During the last two decades, more and more experimental evidence and theoretical consid-
erations evoked doubt that the described mechanism is the only way information is processed
in the cortex.

First, if the single neuron doctrine were true, the robustness of the signal against the loss of
single neurons should be expected to be much smaller than is now known. Also the speed of
information processing would be much slower than measured in psychophysical experiments
(Thorpe, Fize and Marlot, 1996), if several hierarchical layers of neurons needed to integrate
their firing input over time. As Singer, Engel, Kreiter, Munk, Neuenschwander and Roelfsema
(1997) conclude, “decisions must be reached on the basis of the first few spikes that are sent
by the preceding processing stage (because) maximally it takes a few tens of milliseconds per
processing stage to perform the computations necessary for the analysis and recognition of
patterns”.

Apart from that there is a combinatorial problem. "The possible combinations that con-
front the visual system are virtually unlimited" (Singer and Gray, 1995). Thus, the requirement
regarding the immense number of cardinal cells representing complex percepts can never be
fulfilled. If we needed one cardinal cell for any special grouping of objects in every possi-
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ble combination and from any possible perspective, not only for visual but also for auditory
and sensory objects and their combinations, the existent variety and adaptiveness of perception
could not be accomplished.

Moreover, for any new object or new combination of objects, spare cells needed to be re-
served. On the other hand, cells that are extremely specialized could be idle for decades, which
would reduce the efficiency of information processing (see e.g. Engel, König, Kreiter, Schillen
and Singer, 1992).

And finally, bottleneck problems would arise (see e.g. Singer, 1999): Just as any visual
scene at first evokes the activation of thousands of neurons, the same number is necessary for
the planning and execution of a movement. It is hardly conceivable that a single cardinal cell
that finally represents the percept of the visual scene is able to coordinate that complex response.

1.2 Assembly Coding and Synchrony

To accomplish for these and other restrictions, groups of neurons ("assemblies") have been
proposed to represent objects with their coordinated spiking activity. Hebb (1949) was the first
to put forward the idea that information is to be found in the coherent activity within functional
groups of neurons.

From an anatomical point of view, the immense interconnectivity mentioned at the begin-
ning conforms with a high degree of divergence and convergence. Braitenberg and Schüz (1991)
concluded from anatomical and mathematical considerations that "no neuron is farther than two
synapses away from any other neuron ... (which implies that) ... any sufficiently large portion
of the cortex is informed about the activity in the rest of the cortex".

Assembly coding would allow individual cells to participate at different times in the rep-
resentation of different patterns and thus reduce the number of cells required as well as allow
for a greater flexibility in the generation of new representations (Singer et al., 1995). It would
as well be more robust against the loss of single neurons, because the joint assembly activity
remains nearly unchanged by the lack of one neuron.

Taking into consideration that assembly coding is used by the cortex, another question
arises: How can a given subset of cells that represents a percept be identified by the cortex?
In the literature, this is commonly referred to as the "binding problem" (Singer et al., 1995).



1 INTRODUCTION 8

The required enhancement of the signal’s saliency could be accomplished by an enhance-
ment of the firing rate. This would give rise to ambiguities, because the discharge rates of
feature-selective cells which vary as a function of the match between stimulus and receptive
field properties would not be distinguishable from the modulations signaling the relatedness of
responses (Singer et al., 1997).

Thus, an additional property of the signal has been proposed to solve the binding problem,
namely synchronization of individual discharges of neurons of the same assembly (v. d. Mals-
burg, 1981; Abeles, 1982b). Parallel recordings of different neurons were introduced to allow
for the study of synchronicity in the millisecond range.

The next paragraphs will be a summary of evidence as well as theoretical considerations
indicating that exact spike timing is important for cortical information processing. This presen-
tation claims by no means to be complete but should instead give the reader an overview over
this work’s experimental background.

Already Hebb (1949) suggested that coincident firing was important for the dynamical for-
mation of assemblies. Support for Hebb’s rule - in its short version to be read as “cells that fire
together wire together” - could be found recently by Makram, Lübke, Frotscher and Sakmann
(1997), who showed that synaptic efficacy can be regulated by - roughly speaking - coincident
activity of both pre- and postsynaptic cell. To continue with evidence on the cellular level,
Mainen and Sejnowski (1995) showed that under certain circumstances, neurons are capable
of precise and stable timing of the moment of their firing, which is a necessary condition for
the coordination of joint spiking activity. In a theoretical work, Abeles (1982a) showed that
a neuron is more sensitive to a few synchronous excitatory inputs than to the same number of
inputs arriving in an asynchronous random manner, which led to the notion of a neuron as a
"coincidence detector" rather than an integrator over its input rate (Abeles, 1982a; König, En-
gel, Singer, 1996). As König et al. (1996) pointed out, coding by coincidence has multiple
advantages. First, the processing time is fast, as only one event of synchronous input evokes a
response. Secondly, the brain would be less susceptible to noise, because only noise that coin-
cides is considered. Finally, by the additional use of another temporal property of the signal,
information processing becomes resistant to amplitude fluctuations.

From a theoretical point of view, the binding problem can be solved. The temporal binding
model “predicts that neurons that respond to the same sensory object might fire in temporal
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synchrony with a precision in the millisecond range. However, no such synchronization should
occur between cells that are activated by different objects in the sensory periphery” (Engel,
Fries, Singer, 2001). This selective mechanism would allow the system to enable figure-ground
segregation by establishing a distinct representational pattern for each object. It is important to
mention that one single cell can take part in many different assemblies. This reduces redundancy
and allows for adaptive combinations of neuronal groups to new percepts. It has been found
that assemblies can form dynamically, depending on the context and nature of the computational
task (Vaadia, Haalman, Abeles, Bergman, Prut, Slovin, Aertsen, 1995; Riehle, Grün, Diesmann,
Aertsen, 1997, Grün, Diesmann, Aertsen, 2002b).

Fries, Roelfsema, Engel, König and Singer (1997) showed that "upon dichoptic stimulation,
neurons responding to the stimulus that continued to be perceived increased the synchronicity
(...) of their (...) patterning, while the reverse was true for neurons responding to the stimulus
that was no longer perceived", using a paradigm of inter-ocular rivalry (Fries, Schröder, Singer,
Engel, 2001). This provided great support for the hypothesis that response synchronization
could serve as a mechanism for perceptual grouping as pointed out in the last paragraph.

Finally, synchrony has been shown to be correlated to expectation of a stimulus and motiva-
tion (Riehle et al., 1997). During a delayed-pointing task the recorded neurons in the primary
motor cortex of macaque monkeys showed spike synchronization without modulation of dis-
charge rates in relation to internal events such as expectation. Coincidence was found to provide
information beyond that expected by simple rate changes and independence of neuronal firing.

1.3 Mathematical Analysis Methods

Now that was pointed out why synchrony is thought to be important for information processing
in the cortex, a short description will follow regarding some analytical methods used to inter-
prete the recorded data. Of course, there is a wide variety of methods, however those will be
discussed that are of direct relevance for the work here.

As mentioned above, a microelectrode can measure the voltage changes of the electrical
potential of a nerve cell. The times of spiking events are detected by defining a threshold:
Whenever the potential crosses threshold from below, a spike is detected. An upper bound
avoids the detection of artefacts whose fluctuations considerably exceed those of spikes. The
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times of spiking events provide the raw data that underly many of the techniques used. They
are often represented as “spike trains”, i.e. time series of point processes, displayed as vertical
bars at the time of spike occurrences.

With the goal to detect fine temporal relationships between the firing of different cells,
it became necessary to use parallel recordings. Thus, the data that need to be analyzed are
represented by parallel point processes. Moreover, the used data are often averaged over many
trials in order to improve the statistics.

In a first attempt to describe the data with a view to temporal coordination of spike-timing,
cross-correlation histograms (CCH, Perkel, Gerstein, Moore, 1967) are computed. They can
deal with the data of two parallel processes and are based on the assumption that the firing rates
of the recorded cells do not change during the observed period. A CCH provides information
about precise spike-timing of the two cells in question. For two spike trains { _ +-'.$ and { a +-'.$ of
length

v
with { � +-'.$/� �w�� � k _ I9�?� � � ���0���jGt�

where '<� � ���
	�	�	�� v � and ' � � , O��L���
	�	�	��X& � indicate the times of spike occurrences in spike train� , the cross-correlation function can be written as (see e.g. Eggermont, 1990, p. 143):��� g � h +-�y$/� �v � g� � k _ � h� � k _ I9�w��� g �9� � h:���
This means that per time shift � , the empirical frequency of cell 1 to fire � time units before
cell 2 is plotted. Theoretical considerations about the relation between the shape of the cross-
correlogram and the connectivity between the cells can be found in Aertsen and Gerstein (1985)
and in Gerstein and Aertsen (1985). In Epping and Eggermont (1987) and Eggermont (1990),
theoretical and experimental findings are integrated. Detailed discussions of experimental find-
ings about cross-correlation analysis can be found in Toyama, Kimura and Tanaka (1981a, b),
Nelson, Salin, Munk, Arzi and Bullier (1992), Munk, Nowak, Nelson and Bullier (1995), and
Nowak, Munk, Nelson, James and Bullier (1995). Usually, centered peaks are observed, which
means that the participating cells have a tendency to fire in synchrony, i.e. without a delay. Still,
the peaks have a certain width which implies that synchronous firing does not occur without a
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small imprecision of a few milliseconds (Nowak et al., 1995; Grün, Diesmann, Grammont,
Riehle, Aertsen, 1999).

As the cross-correlogram can only be applied onto pairs of neurons, the Unitary-Event (UE)
method (Grün, 1996; Grün, Diesmann, Aertsen, 2002a, b) was developed that could deal with
virtually any number of neurons. The method uses multiple-trial data from parallel recordings
and is based on the assumption that the times of spiking events of one single neuron can be
described as a stationary Poisson process and on the null-hypothesis of full independence be-
tween all recorded neurons. Rate fluctuations that are the same over all trials can be treated
by applying the method in sliding-window fashion. Time is first discretized and thus the spike
trains are assumed to be describable as Bernoulli processes. The occurrence of at least one
spike in a time-unit ("bin") is coded as a one, whereas the counter-event is coded as a zero, such
that every bin is coded as a binary vector of length  , where  denotes the number of neurons.
Whenever at least two neurons fire a spike in a designated bin, this event is called a coincidence.
In the UE method, all G H ~,�~�� binary vectors describing coincidences are analyzed in parallel
to find those subgroups of neurons which emit significantly more coincidences than expected
under full independence.

In a given period of stationary firing rates, one can compare the expected number of coinci-
dences with its observed number for all subgroups. The expected number can easily be derived
in the following way:

On the basis of the number of spikes � ��� � , ��� ���
	�	�	��� , �0� ���
	�	�	��j� per neuron � and
trial � in a time segment of length

v
(in bins), the firing probabilities o � of the neurons are

estimated over all trials as co � ;=�  �¡�¢ �¤£ ¡¥w¦ . Thus the expected number n§b¨ª© of coincidences
with spikes in a subset of neurons

� � & , & � � ���jGt�
	�	�	���u� and non-spikes in &¬« �
is `§b¨ª©@� v �� ��® � co �  � ® �/� � +ª�(~ co � $ , because the null-hypothesis assumes independence
between all processes. �§¯¨ª© parameterizes the Poisson distribution used to identify those coinci-
dences whose number exceeds the expected number more than up to a pre-defined significance
level. They are called "Unitary Events".

This method can be used to treat relatively short pieces of data and many neurons. It has
been used to identify dynamical changes in assembly formation (Riehle et al., 1997). The
method was extended to allow for the analysis of near-coincidences (Grün et al., 1999).
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1.4 Statement of the Problem

In the UE-method, detection of “Unitary Events”, i.e. the occurrence of significant excess co-
incidences, implies existence of correlations between the processes. Due to the null-hypothesis
of full independence of the processes, deviation from expectation due to a correlation within a
subgroup of neurons is not identified. Thus, if coincidences of a group of more than two neu-
rons are found to occur more often than expected by full independence, one cannot clarify the
following question:

“Is a correlation between all neurons of the group necessary to explain the coincidences,
or is the existence of lower-order correlations sufficient to produce the observed amount of
events?”
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Figure 1: Visualization of the difference between genuine and chance coincidences.

The work presented here focuses on the identification of those (sub-)groups of neurons par-
ticipating in “genuine” higher-order correlations, defined here as those coincidences that cannot
be explained by any kind of chance co-activated firing of subgroups or single neurons. Figure
1 demonstrates the difference between genuine and chance coincidences. The correlations (ar-
rows) between the neurons (numbers in circles) show up in coincident firing of spikes (vertical
bars). On the left, a chance co-activation of two genuine pairwise correlations produces a
chance quadruplet. This can as well happen on the right side. However, a genuine quadruplet
correlation is added, which produces genuine coincidences of order four. This work provides
methods for deciding which one of all G al° � H � _ possible combinations of genuine correlations is
underlying the joint spiking activity of the observed neurons. Here, every subgroup of neurons
showing a genuine correlation is interpreted as an assembly.
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The model used in this work to describe spiking activity of groups of neurons should meet
the following constraints based on assumptions about information processing in the cortex:

1. Following the hypothesis that coincident activity expresses activation of cell assemblies,
the model should provide methods to distinguish between independence and correlation
of the observed neurons on the basis of fine temporal structuring. It will thus contain pro-
cesses for independent background activity as well as processes describing correlations
between the neurons.

2. All G H ~±²~3� subgroup-correlations are allowed to exist in the observed time period.
Thus, assemblies can as well overlap or include one another. This is consistent with
the hypothesis that single neurons can take part in different assemblies to allow for the
recombination to different but overlapping representations.

3. Considering the hypothesis that different assemblies activated by distinct parts of the
same percept can be distinguished by synchronization among cells of the same group and
desynchronization between the groups, the processes representing correlations between
different assemblies must be independent. This implies that the co-activation of two
different assemblies can only occur on a chance level.

Finally, the model should be able to deal with data from single trials. Therefore, everything is
done on a single-trial basis. If stationarity can be assured over the trials, the use of the data from
all trials leads to an increase of the length of the data piece and thus to an improvement of the
statistics.

In the first part, a model for the analysis of exact coincidences is developed that can treat
any subgroup correlation separately from the others. With the help of this model, which is
formulated for any number of neurons, it is possible to estimate the probability of synchronous
firing for each subset of neurons and to evaluate the significance of the number of coincidences
based on the existence of subgroup correlations. The performance of the proposed analysis
method is demonstrated for two and three neurons.

In the second part, the model is extended to allow for coincidences with a time-lag (“jitter”).
Exemplary considerations will show the usefulness of the extended model and its applicability
onto two and more neurons.



14

Part I

The Model for Exact Coincidences

2 A General Framework for the MIIP

The model on the basis of which the analysis methods are developed will be presented now.
It conforms with all constraints made in the introduction and thus provides adequate means to
analyze neuronal spike trains if the assumptions are met. The model will be named ’MIIP’
(Model of Independent Interaction Processes). In part II, an extension of the model will be
developed to allow for the analysis of less exact coincidences. This extended version will be
called ’E-MIIP’.

Like in the original Unitary Event method (Grün, 1996), the observed individual spike trains
will be assumed to be describable as stationary Poisson processes. Due to the discretization of
time, these will always reduce to Bernoulli processes of length

v
(in bins of length ³ (in ms)),

where every spike is coded as a 1 and every non-spike as a 0. To distinguish between indepen-
dent and correlated firing, the observed activity of one single neuron is assumed to consist of an
independent part, which will be referred to as “background”, and a part that is correlated with
groups of other neurons. Moreover, as it is necessary to decide which correlations exist, the
correlated part needs to be split up into different processes representing the correlations with all
the different subgroups of neurons.

In order to allow for all these different processes, one must distinguish between “observable”
and “basic” processes. Each observable process

�´�
, �µ�T���
	�	�	��� which represents the firing

activity of one observed neuron is assumed to be a superposition of several basic processes. As
a whole:¶ Let &·;¸� � ���Q	�	�	��¹�� be the set of  observed neurons,¶ ���
	�	�	�� v the indices of the time steps in the observed period of time, 'º� � ���
	�	�	�� v �B	¶ For each of the G»H(~^� non-empty subsets of neurons

� � & , a basic process r/�6+:'.$ is
introduced.



3 TWO NEURONS 15¶ All rD� are assumed to be stationary Bernoulli processes with firing probabilities
� �¼��"!#�
�%$ , and independent.¶ Those rD� with > � >��L� represent the independent background processes. Per time step,

they produce a spike in that same
���

with
� �?�µ� � with probability

� � . From now on
they will be named ��� (“background”).¶ All other rD� represent correlation processes. A success at time ' produces one spike in
each observable process

��� +-'.$ with �(� � at time ' . These basic correlation processes
will be called ½¾� (“correlation”).

Thus, to observe the event
� ��� +-'.$/�L�»� - “a spike in

���
is observed at time ' ”, either

� � � +:'.$¿�L���
must occur, or some of the

� ½)�,+:'.$*�V��� with ��� � , or both. Every ½)� is the origin of the
genuine correlation between the subgroup of neurons that is given by

�
. A genuine correlation

between all members of
�

is said to exist if and only if
� � EZ! . It can lead to a chance

correlation that is observed between the members of another subgroup
�3À

with
� Á[��À

. The
estimation of all parameters

� � will help to extract the genuine correlations. In subsection 4.2,
a general formula for the maximum-likelihood estimates of all

� � in the MIIP will be proven.

3 Two Neurons

3.1 The Model and Its Estimates

For &s� � ���jGÂ� , there are only three non-empty subsets of & :
� ��� , � GB� and

� ���jGÂ� . Two of them
lead to background processes, and the third produces coincidences between the two observed
neurons. Figure 2 shows the effect this superposition has on both observed processes. For
simplicity, in the examples, the processes r¿� and their firing probabilities

� � , where� � �1Ã _ � Ã a �
	�	�	�� ÃqÄ � � & are denoted shortly as r�¨ g � ¨ h �ÆÅÆÅÆÅÆ� ¨9Ç and
� ¨ g � ¨ h �ÆÅÆÅÆÅÆ� ¨9Ç , respectively.

The two observed processes are correlated if and only if the firing probability
��_ba

of the pro-
cess ½ _ba is positive. The question of higher- and lower-order correlations is not approached in
the two-neurons-case because only one correlation can exist at all, and its absence is equivalent
to independence of the processes.
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Figure 2: MIIP for two neurons: events from the background processes are copied onto the
corresponding observed processes, whereas events in the correlation process are copied onto
both observed processes to produce genuine coincidences.

One approach to estimate the firing probabilities is the method of moments: For all fixed'<� � ���
	�	�	�� v � oCMlM ;¸� r�+ � � _ +:'.$7��!#� � a +:'.$/�^!t�»$¿��+ª�)~ ��_ $È+?�¾~ �wa $Q+ª�)~ ��_ba $ (1)owMªÉ ;¸� r�+ � � _ +:'.$7��!t�»$/�Ê+ª��~ �`_ $È+?�)~ �`_ba $ (2)oyÉCM ;¸� r�+ � � a +:'.$7��!t�»$/�Ê+ª��~ �wa $È+?�)~ �`_ba $9� (3)

which implies +ª�¾~ ��_ $·� oCMlMowÉCM (4)+ª�¾~ �ya $·� oCMlMoCMªÉ (5)+ª�)~ ��_ba $·� oCMªÉtoyÉCMowMlM 	 (6)
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Lemma 1

The maximum-likelihood estimates of the probabilities oqMlM1�ËowMªÉD�ËowÉCM are the relative frequencies
of the corresponding events.

Proof

As this is also needed in later parts of this work, it will directly be shown for all numbers of
neurons  .

The joint observed process

+ � +-'.$.$ª� k _ �ÆÅÆÅÆÅÆ� ¦ ;=� ÌÍÍÎ � _ +:'.$...� H +-'.$
ÏQÐÐÑ � k _ �ÆÅÆÅÆÅÆ� ¦

has values in
� !t�
���%H for every ')� � ���
	�	�	�� v � . As every single + �*� +-'.$.$ª� k _ �ÆÅÆÅÆÅÆ� ¦ is a superposition

of stationary and independent Bernoulli processes, every bin is independent from every other
bin, and the probabilitiesoy�6+-'.$º;¸�[r]+ � ��� +-'.$/�^!�ÒÓ�/� � � � � +-'.$/�Ô��Ò#Oµ�Õ&V~ � �»$
are constant for '<� � ���Q	�	�	�� v � and will thus be written as oÓ� . Thus, the random vectorÖ ;¸�Ê+.+ Ö �8$.��× � $
is multinomial + v �Ëoq�ÙØ/Ú%Û�$ for

Ö � ;¸�AÜ ¦� k _ +ª�%ÝßÞ � �¸� � k M%à ��® �´áâ2ã�%ÝßÞ � ��� � k _ à � ® �/� �´á¹$ .
It remains to be shown that for any multinomial + v �¯o _ �
	�	�	��Ëo � $ distribution with outcomesÖ _ �
	�	�	�� Ö ¦ � �5ä _ �
	�	�	�� ä � � , the maximum-likelihood estimates for the o � �w�]� ���
	�	�	��jå are the

relative frequencies æ � ;¸� H �¦ with  � ;¸�AÜ ¦� k _ � Ý¯ç � kCè � á .
The probability of getting the sequence (

Ã _ �
	�	�	�� Ã ¦ ) of outcomes is given by:r¿� © g �ÆÅÆÅÆÅÆ� © �ª� + Ö _ � Ã _ �
	�	�	�� Ö ¦ � Ã ¦ $¿�éo H g_ o H ha 2ã	�	�	�2�o H ��
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leading to the log-likelihoodê � © g �ÆÅÆÅÆÅÆ� © �ª� + Ö _ � Ã _ �
	�	�	�� Ö H � Ã H $7�ë _tì�í�î o _zï 	�	�	 ï  � ì�í�î o �
Maximization with the constraint Ü �� k _ o � �0� and a Lagrange multiplier

�
gives the equationsð êð o � + co � $D~ � ðð o �(ñ

�� � k _ o �óò �0��� ���Ô���
	�	�	��jåô]õ  �co � ~ � �^!�ö co � �  �� � ���L���
	�	�	��jå
With ���

�� � k _ co � � ��
�� � k _  � � v �

follows
� � v and thus co � � H �¦ �Aæ � . ÷

Corollary 1

With � � � ;¸� ¦� � k _ � ÝßÞ g �¸� � k ��� Þ h ��� � k � á ���.�lO�� � !#�Q��� (7)

�`MªÉ ;¸� ¦� � k _ �%ÝßÞ g �¸� � k M?á (8)

��ÉCM ;¸� ¦� � k _ � ÝßÞ h �¸� � k M?á � (9)

the maximum-likelihood estimates of the probabilities oÓMlM
�ËowMªÉ��ËoyÉCM arecoCMlM<� �`MlMv¼ø cowMªÉ�� �`MªÉv ø coyÉCMº� ��ÉCMv 	 (10)
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Indeed, note that v � �`MlM ï � _ M ï �`M _zï � _l_� ��ÉCM ï �`M _zï � _l_� �`MªÉ ï � _ M ï � _l_ �
and the probability oyMªÉ (and in analogy oqÉCM ) corresponds to the union of the disjoint events� � _ �3!#� � a �Ô!Â�)ù � � _ �A!t� � a �Ê��� . Thus, the probability of this latter event is the sum of
the single probabilities.
A direct consequence of (10) together with (4)-(6) is+ª��~úc�`_ $·� �`MlM��ÉCM (11)+ª��~úc�wa $·� �`MlM�`MªÉ (12)+ª��~úc��_ba $·� �`MªÉn��ÉCM�`MlM v (13)c �`_ � � _ M��ÉCM (14)c �wa � �`M _�`MªÉ (15)c �`_ba � �`MlM%+¯�`MlM ï �`M _zï � _ M ï � _l_ $D~ë+Ë�`MlM ï �`M _ $È+Ë�`MlM ï � _ Mj$�`MlM v (16)� �`MlMj� _l_ ~û�`M _ � _ M�`MlM v (17)

3.2 Developing a Test for the Hypothesis H ü : ý<þ¹ÿ�� �
After having computed the maximum-likelihood estimates, the original question concerning
the existence of correlations can be approached. The hypothesis ��M²; ��_ba �·! needs to be
tested against its alternative � _ ; �`_ba Es! . The question that needs to be answered now is
the following: what is the probability that c ��_ba has at least the same amount as found in the
data, given the model holds true and

�n_ba �0! ? To cope with that problem, we construct a test:
Define an interval � such that (error of first order) the probability that c ��_ba falls outside of � ,
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given
��_ba �^! does not exceed a given level }Ù� i.e.r]+ c �`_ba����� >5�8M9$��ë}Ù	 (18)

With the pre-defined significance level, one can examine the test power, i.e. the probability
that c ��_ba falls outside of � , given

�n_ba E ! , i.e. r]+:c �`_ba	��
� >5� _ $7� ;w�¾~�� .
In the described model, the estimates have asymptotic normal distribution (see subsection

3.2.1). With the asymptotic variance, a test with the asymptotic property (18) can be developed.

3.2.1 Asymptotic Normality and Variance of c ��_ba
To show the asymptotic normality of the maximum-likelihood estimates and to compute their
asymptotic variance, the multivariate I -method will be used (see e.g. Bishop, Fienberg, Hol-
land, 1991, pp. 486-502). It is a generalized version of the one-dimensional delta-method, and
based on a Taylor-expansion up to the second term around the components’ expected values.

Proposition 1 (Multidimensional I -method)

Let c� ¦ be a � -dimensional random vector: c� ¦ �Ê+ßc� ¦ � _ �
	�	�	��jc� ¦ �  $ ,
let
�

be a � -dimensional vector parameter:
� ��+ � _ �
	�	�	�� �� $ .

Let further c� ¦ have asymptotic normal distribution in the sense that����� v +ßc� ¦ ~ � $���~%~w~��¦������ +¯!t����+ � $¹$9�
where ��+ � $ is the �! "� asymptotic covariance matrix of c� ¦ . This implies that for large

v
, c� ¦

has approximately � + � � v � _ ��+ � $.$ distribution.
Let further æ²; � � # be defined on an open subset

� � # .
Let æ have a differential at

�
, i.e. æ has the following expansion as

Ã � �
:

æâ+ Ã $/�^æâ+ � $ ï � � k _ + Ã � ~ � � $ ð æð Ã �%$$$$ ¨ k'& ï ä +j>�> Ã ~ � >�>"$j�
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or in matrix notation: æâ+ Ã $7�^æâ+ � $ ï + Ã ~ � $)( ð æð �+* � ï ä +j>�> Ã ~ � >�>"$9	
Then the asymptotic distribution of æâ+lc� ¦ $ is given by� � � v +Ëæâ+Ëc� ¦ $D~éæâ+ � $¹$ � ~%~w~��¦'���,� - !#�/.�0210 &43 ��+ � $+.50610 &43 �87 	
The asymptotic variance of æD+ªc� ¦ $ is�v �� � �:9 k _ d ��� 9 + � $ ( ð æð � � * ( ð æð � �;9 *
Corollary 2

The maximum-likelihood estimate c �`_ba of the parameter
��_ba

has asymptotic normal distribution
with asymptotic varianced ae f
g�h � +?�¾~ �`_ba $Q+ �`_ba +ª��~ �`_ $È+?�)~ �wa $ ï �`_.�ya $v +?�)~ �`_ $Q+ª��~ �ya $ (19)

Proof of Corollary 2

This will be shown by application of the multidimensional I -method: Take � �[S andc� ¦ ;¸� + c� ¦ � _ � c� ¦ � a � c� ¦ � m $<;=� (<( �`MlMv * ¦ � ( ��ÉCMv * ¦ � ( �`MªÉv * ¦ *� ;¸� + � _ � � a � � m $º;=�Ê+ owMlM1�ËowÉCM
�ËowMªÉn$j	
All � � � , �¹�ßOû� � !#�
��� are binomially distributed random variables with parameters o � � and

v
.

Thus, as
v

tends to infinity, all co � � ;¸� ¢ � �¦ have asymptotic normal distribution with mean o � �
and variance d a� � � © � ��= � _ � © � � �¦ (local limit theorem for the binomial distribution, e.g. Krengel
(1991, p. 80)). One can thus approximate every ¢ � �¦ by a normally distributed variable with
mean o � � and variance d a� � , i.e. ¢ � �¦ > o � � ï d � � 4 � � for some standard normal random variable4 � � . This yields
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With ��+ � $7� ÌÍÎ owMlM5+ª��~ owMlM9$ owMlM5+?�)~�oyÉCMX$ owMlM5+?�)~�owMªÉn$owMlM5+ª��~ oyÉCM9$ oyÉCM%+?�)~�owÉCM9$VoCMlMÙ~�owÉCMßowMªÉowMlM5+ª��~ owMªÉz$ owMlMÙ~ oyÉCMßowMªÉ oCMªÉ¿+?�)~�owMªÉz$

Ï ÐÑ
The formulas for the covariances in ��+ � $ can be derived as follows:

Cov ( �`MªÉv � �`MlMv?* (20)� �v a�@�A ñ ¦�� g¯k _ �%ÝßÞ g �¸� g � k M?á ¦�� hlk _ �%ÝßÞ g �¸� h � k Þ h ��� h � k M?á ò ~�owMªÉtoCMlM v aCB (21)

� �v a�@ ¦�� g¯k _ A +ª�%ÝßÞ g ��� g � k Þ h �¸� g � k M?áX$ ï ¦�� g � � hßk _ED � g:Fk � h A +ª�%ÝßÞ g ��� g � k Þ h �¸� h � k M?áX$D~�owMªÉtowMlM v a B (22)� �v aHG v oCMlM ï v + v ~±�1$-owMlMËoCMªÉ@~ v a owMªÉÂowMlMJI�� oCMlM5+?�)~�owMªÉz$v (23)

In an analogous way one gets

Cov ( ��ÉCMv � �`MlMv * � owMlM%+ª��~�owÉCMj$v and Cov ( �`MªÉv � ��ÉCMv * � owMlMÙ~ owMªÉ#oyÉCMv 	
Take now æL;K# m ~L� # with æâ+ Ã $ ;=�·æâ+ Ã _ � Ã a � Ã m $6;=� ¨ h ¨�M¨ g . æ has a differential at

�
forowMlMûE ! and

v E ! . Note that æD+ � $²� +?�8~ ��_ba $ . This æ was used in order to simplify
the computation, because

�n_ba
has normal distribution iff ��~ �n_ba has normal distribution, and

Var +ª��~ ��_ba $¿� Var + �`_ba $ .� õ æâ+ßc� ¦ $ has asymptotic normal distribution with asymptotic variance

Var +¯æâ+ c� ¦ $¹$<~%~w~2�¦���� �v m�� � � 9 k _ d ���:9 + � $ ( ð æð � � * ( ð æð � � 9 *
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� owMlM%+ª�)~�owMlMj$-o aMªÉ o a ÉCMv o � MlM ~ûG owMlM%+ª��~�owÉCMj$-o aMªÉ oyÉCMv o mMlM ~�G owMlM5+?�¾~�oCMªÉn$-owMªÉ#o aÉCMv o mMlMï oyÉCM%+ª��~ oyÉCM9$-o aMªÉv o aMlM ï G + owMlM/~�owMªÉÂoyÉCM9$-owMªÉÂoyÉCMv o aMlM ï owMªÉ¿+ª�)~�owMªÉn$-o aÉCMv o aMlM� owMªÉtowÉCMv o aMlM N ~/owMªÉ#oyÉCM7~�oyÉCM7~�owMªÉ ï G9owMlM ï oyÉCMßowMªÉowMlM O� +ª��~ ��_ba $v +?�¾~ �`_ $Q+ª�)~ �ya $ ��~(� ï ��_�ï �yaDï GC+ª�)~ ��_ $È+?�¾~ �wa $D~�+?�)~ �`_ $Q+ª�)~ �ya $È+?�¾~ �`_ba $EP� +?�)~ �`_ba $Q+ ��_ba +?�)~ ��_ $Q+?�)~ �wa $ ï �`_.�wa $v +ª��~ �`_ $È+?�)~ �wa $ ÷
Thus, the asymptotic variance of c ��_ba isd ae f
g�h 	� +?�)~ �`_ba $Q+ ��_ba +ª�)~ ��_ $È+?�¾~ �wa $ ï �`_.�wa $+ª��~ �`_ $È+?�)~ �ya $ 2 �v (24)

or if
�`_ba �[! : d ae f
g�hXi f
g�hlk M 	� �`_.�wa+?�)~ ��_ $Q+?�)~ �wa $ 2 �v (25)

Unfortunately, the exact value of d ae f
g�h cannot be derived from the data. Just like the firing prob-
abilities, it needs to be estimated. Still, as

v
tends to infinity, c dyef
g�hQ� dCef1g�h , and consequentlye f g�heR�ST g�h > f
g�h É R ST g�hJUR�ST g�h for a standard normal distributed random variable 4 . Hence:

r ñ c �`_bacd e f
g�h E { ò 	�[r ñ ��_baDï d#ef
g�hj4d e f
g�h E { ò �[r]+Ë4AE { $/�Ô��~WV�+ { $ (26)

where V�+ { $7�YX ��Z� �� G\[!]�^�_ +ª~ Ã a � G�$;� Ã 	 (27)

for a standard normal distributed random variable 4 and
�z_ba �^! .
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3.2.2 Test Power for dCef
g�hji f
g�hlk M and dCef
g�h
From what was just stated, it follows that for the test, the probability to find

e f
g�he R`ST g�h outside the

interval � ;¸� (- a , { | ), given
��_ba �0! , is for large

v
asymptotically ��~bV�+ { | $ (for example for{�| �0��	dcfe , we have a significance level of 2.5%)

This is true when using either of both equations (24) or (25), because they are equal under�8M . Thus, the asymptotic significance level is the same when using equation (24) or (25).
However, for both methods, one needs to know the test power, i.e. the probability to find a test
statistics

e f
g�he R`ST g�h outside the interval (- a , {ã| ), given
��_ba E±! .

Notation and asymptotics derived for the significance estimation in equation (26) can be
used: r ñ c ��_bacd#ef
g�h E { | ò 	�^r ñ �`_ba�ï d e f
g�hj4d#ef
g�h E { | ò �^r ñ �`_badCef1g�h ï 43E { | ò
which using dCef
g�h�i f1g�hlk M is the following

�^r ñ 4ÔE { | ~ �`_ba � v�g +ª�)~ ��_ $ g +?�)~ �wa $� �`_.�wa ò � power R S T g�h:h T g�h�ikj (28)

and using d e f
g�h the following

�^r ñ 4ÔE { ~ �`_ba � v g +ª�¾~ ��_ $ g +?�)~ �wa $g +ª�¾~ ��_ba $ g ��_ba +ª�)~ ��_ $È+?�¾~ �wa $ ï �`_.�wa ò � power R S T g�h (29)

This shows that using dCef
g�hji f
g�hßk M , one is (at least asymptotically) able to detect
�n_ba E±! with

a higher probability than with dCef
g�h .
Indeed for

��_ba E±! :��_ba � vlg +?�)~ �`_ $ g +ª��~ �wa $� ��_.�wa mE �`_ba � v�g +ª��~ �`_ $ g +?�)~ �wa $g +?�)~ �`_ba $ g �`_ba +?�)~ �`_ $Q+ª�¾~ �ya $ ï �`_¹�ya



3 TWO NEURONS 25ô]õ +ª�)~ ��_ba $È+ �`_ba +?�)~ �`_ $Q+ª��~ �ya $ ï ��_.�wa $<E �`_¹�waô]õ �`_ba +?�)~ �`_ $Q+ª�)~ �ya $¿~ � a _ba +ª��~ ��_ $È+?�¾~ �wa $D~ ��_ba9�`_.�wa E !ô]õ +ª�)~ ��_ ~ �wa $D~ ��_ba +ª�¾~ ��_ $Q+?�)~ �wa $<E !
This is true as the following parameter ranges are assumed:

�u_ba �0!#	¸!t� and ! \ ��_ � �wa �0!#	¸G
with ³)�0� ms, leading to+?�)~ �`_ ~ �wa $D~ �`_ba +?�)~ �`_ $Q+ª�)~ �ya $ºE !#	de�~�!t	¸!#�(E !t	
The firing probabilities can directly be transformed into mean firing rates n»�,+ in Hz $¿� f Øx � in sec � ,
leading to a range of !R\on _ �Jn a �PG�!�! Hz and !p�qn _ba �F�1! Hz, which is thought to be the
physiologically relevant range of frequencies (e.g. White, Chow, Ritt, Soto-Trevi rno and Kopell,
1998; Grün et al., 1999).

The above result is also described in Bishop et al. (1991, p. 499), namely that using the
variance of c �`_ba assuming

��_ba �^! increases the power of the test. It would thus seem reasonable
to only use dCef
g�h�i f
g�hlk M . Still, as we will see, this leads to a bad performance of the test for short
pieces of data. In the following subsections, it is thus proposed to use the full formula (24) to
make sure that the pre-defined significance level is obtained for small

v
, too.

3.3 Performance of the Proposed Test

In the following subsection the properties of the proposed test will be discussed. Mainly two
aspects must be considered:

1. Which constraints need to be imposed onto the data to ensure that the asymptotic method
can be applied? This has been examined in simulation studies and will be discussed in
subsection 3.3.1.

2. Given that the asymptotics are applicable, how good is the performance of the method?
This question can be approached on a theoretical basis. Problems like the required num-
ber of time steps to reach a certain test power or the dependency of the required value of�`_ba

on the background firing probabilities are discussed in subsection 3.3.2.
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3.3.1 Applicability to Finite Strings of Data

As was mentioned in the introduction, experimental spiking data are subject to non-stationarity
over time. The Unitary Event analysis copes with rate-changes over time that are constant
over all trials by application of a sliding-window analysis. The method introduced in this work
however concentrates on the analysis of single-trial data that can become available in studies
where the investigator cannot by any external measures identify repetitions of certain events
(e.g. Schmidt, Grün, Singer and Galuske, 2001). When dealing with single-trial data, questions
concerning the required length of the data piece arise. They will be dealt with in this subsec-
tion. On the other hand, the method that is presented here can as well deal with multiple-trial
data when stationarity over time and trials can be granted in the inspected time period. Then,
depending on the length of the trial, the answers provided in this subsection can give an idea
concerning the number of trials that need to be accomplished.

We will now discuss the question of the minimal size of
v

necessary to reach the predefined
significance level and test power. As one spike has a length of about one millisecond, the time
resolution ³ is often chosen to be 1 ms. With background rates smaller than 200 Hz (e.g. White
et al., 1998), coincidence rates up to 10 Hz and a time resolution of ³<�L� ms, parameter values��_ � �ya \A!#	¸G and

��_ba \[!#	�!#� need to be examined. This subsection will also serve to compare
the two test statistics 4Ô;¸� c �`_bacd#ef
g�h (30)

and 4¿M�;¸� c ��_bacd#ef g�h i f9k M (31)

that use different estimations of the variance of c �`_ba , the latter leading to a higher test power. It
will be shown that among the two test statistics 4 and 4ÙM , only the use of 4 can be considered
reasonable for small pieces of data.

3.3.1.1 Significance Level
In the figures 3 and 4, the pre-given asymptotic significance level ( } � !t	¸!ãGfs , solid line)
is compared with the empirical significance level derived from simulations. This is done for
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different lengths
v

(corresponding to 0.1, 0.5, 1, 5, 10 and 50 seconds, ³¾�0� ms). Figure 3 uses4 as test statistics, whereas in figure 4, 47M is applied.
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Figure 3: Comparison of empirical and asymptotic significance level for different
v

(100, 500,
1000, 5000, 10000, 50000). On the abscissa, the background firing probabilities

�D_ � �ya , which
are chosen to be equal, range from 0 to 0.2.

�z_ba � ! . The solid line represents the pre-given
asymptotic significance level } . For the data points of the dash-dotted curves, the two processes� _ � � _ �y� a � � a with firing probabilities

��_ � �wa were simulated 10000 times. The relative
number of experiments with 43E[��	dc4e is plotted (see equation (30)).

The data points of the dash-dotted curves represent the empirical percentage of experiments
with 4 E ��	tc4e and 4/M�EU��	dcfe , respectively. For every

v
and every parameter set

�z_ � �wa �� !#�X!#	�!�!/sÂ�X!#	�!#���
	�	�	��X!#	�!fuC��!#	¸!4st�X!#	�!4e#�
	�	�	��X!t	¸!4vt�X!#	����X!t	��%Gt�Q	�	�	���!t	¸GÂ� , 10000 datasets consisting of the
processes

� _
and
� a

were generated. For the derivation of the significance level by definition
the correlation process ½ _ba is absent + ��_ba �s!ã$ , so that in this case

� _ �F� _ and
� a �F� a .

The parameters
��_

and
�ya

were chosen to be equal in order to reduce the parameter space.
In subsection 3.3.2.2, inequality of both background firing probabilities will be discussed and
shown to reduce to - roughly speaking - the product of the background rates, such that for these
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considerations the limitation
�n_ � �wa does not represent a strong restriction of the parameters.

Figure 3 demonstrates that for the given parameters and the test statistics 4 , nearly all
empirical significance values stay below the required significance level of 0.025. This shows
that under ��M�; ��_ba � ! , the probability to reject the null-hypothesis is even smaller than
required, leading to a conservative test.

In contrast, figure 4 shows that - except for
�z_ � �ya � ! where c �`_ba�w ! and thus the

empirical significance level is 0, too - all empirical significance values are higher than the pre-
defined }�� !#	�!ãG4s . Due to the asymptotic properties, the empirical curves approximate the
value of } with growing

v
, still as long as background rates and

v
together do not produce

“enough” coincidences to obtain an approximately normal distribution of counts, the required
significance level is exceeded up to more than 400% of its value.
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Figure 4: Comparison of empirical (dash-dotted) and asymptotic (solid) significance level for
different lengths x of data. Used test statistics: y{z (equation (31)). All parameters and simula-
tions as in figure 3.
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To summarize the above results:¶ The asymptotics are not applicable for small
v

and small background rates. This is true
for the use of both test statistics. Although one might think that small background rates
improve the clarity because less chance coincidences “disturb” the detection of genuine
coincidences, another fact proves to be more important: All counts - especially the co-
incidence counts � _l_ , of which there are in general very few - need to be approximately
normally distributed. As Sachs (1971) pointed out, for

v 2 � 2#+?��~ � $}|~c , one can use
the normal approximation of the binomial distribution with parameters

�
and
v

. In table
1, the minimal background firing probability (given

�z_ � �ya ) that fulfills this condition is
shown for every

v
that was used in the simulations.

The graph of
� +ª�w~ � $ between 0 and 1 is a � -shaped curve with maximum

_� at
� � _a and

two minima with value zero at the borders
� � � !#�Q��� . Thus, using the p-q-formula, one

gets
� � _a ~�� _� ~?�¦ , considering only the cases where

� \Ô!#	ds . The probability of a

chance coincidence under �µM is the product of the background rates
©`� g:g� _ � f
g�h � � �`_¹�wa � � a _

due to the independence of the basic background processes. One can observe the corre-
spondence between table 1 and the figures 3 and 4. For

v �qs�!�!�!�! , already a very low
background firing probability leads to an effective significance level close to }û��Gt	ds4� .
In contrast, for

v ���1!�! , even for the very high background firing probability of 0.2, the
effective significance level stays above even G 2ã} for 4ÙM (figure 4) and around � a for 4
(figure 3).

T minimal
�`_ � �wa (rounded)

� a _ (rounded)
100 0.3162 0.1
500 0.1354 0.0183

1000 0.0953 0.0091
5000 0.0425 0.0018

10000 0.0300 0.0009
50000 0.0134 0.0002

Table 1: Minimal background firing probability at
�z_ba �^! to reach

v 2 �`_ba 2Â+ª�)~ ��_ba $�|�c .¶ In spite of the non-applicable asymptotics, the test using the test statistics 4 stays conser-
vative. It can thus be applied onto short pieces of data without risking to falsely rejecting
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for small pieces of data and small background rates and should thus be applied only for
large

v
and higher background firing probabilities.

In the following subsection, the test power of both tests will be discussed. The consideration
of the test with test statistics 47M is only added for reasons of completeness, as its shortcomings
concerning the significance level are considered to be grave, especially because in a usual ex-
perimental situation the analysis of short pieces of data is necessary due to non-stationary firing
rates, as mentioned above.

3.3.1.2 Test Power
In the figures 5 (test statistics: 4 , equation (30) on page 26) and 6 (test statistics: 4<M , equa-
tion (31) on page 26), empirical (dash-dotted) and asymptotic (solid) test power are compared.
Again for the empirical curves, the relative number of significant experiments out of 10000 is
plotted. A relatively high coincidence firing probability of

�z_ba �¬!#	¸!�!fu was chosen for the
figures. Per simulation experiment, the independent Bernoulli processes � _ �X� a and ½ _ba were
simulated for

v
time steps with firing probabilities

�n_ � �wa � and
��_ba

and merged onto the ob-
servable processes

� _
and
� a

, from which the test statistics was computed and compared with{�| �0��	dcfe .
1. The first remarkable fact is that - as described in subsection 3.2.2 - the empirical as well

as the asymptotic test power is considerably larger for 4ºM than for 4 , especially for small
pieces of data and small background rates. This corresponds to the fact that in those
parameter ranges, the error of first order is very high for 4ºM . Moreover, the asymptotic
curves in figure 6 starts at a test power of nearly 100% for background rates close to zero
(the test power is not defined for the extreme case

�z_ � �wa �[! ). This does not seem plau-
sible, especially for small pieces of data and small coincidence rates. Accordingly, the
empirical curve belonging to

v �U�1!�! deviates strongly from the corresponding asymp-
totic solid curve, especially for small background rates. This is not the fact for the test
statistics 4 , although for small

v
the asymptotics do not fit well either.

2. Still, not surprisingly, with growing
v

the asymptotic and the empirical curve approach
more and more for both test statistics.
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Figure 5: Comparison of empirical (dash-dotted) and asymptotic (solid) test power for
v � 100,

500, 1000, 5000, 10000, 50000 and
�z_ba � !#	¸!�!fu . ��_ and

�ya
like in figures 3 and 4. Solid:

The empirical test power is derived as the relative number of experiments with 4 E ��	dcfe . Per
parameter set, the processes

� _
and
� a

of length
v

were generated 10000 times.

3. Two main factors influence the test power:¶ The relation between the number of chance coincidences and the number of genuine
coincidences plays a role. The more excess coincidences relative to the randomly ex-
pected coincidences, the higher the probability to reject �]M . For example for

v ��s�!�!�! ,�`_ � �wa �^!#	�!4e and
�`_ba ��!#	¸!�!fu , there are !t	¸!�!�S4e<2�s�!�!�!��0�5v chance coincidences to be

expected, plus !#	¸!�!fu´2fs»!�!�! �ÔG�! genuine coincidences. As one would expect, an excess
of “20 more than 18” can easily be detected (test power of about 0.9 for 4 and nearly 1
for 4/M ).¶ Consider the case

v ��s�!�! with the same firing probabilities as in the previous paragraph.
Then 1.8 chance coincidences need to be compared to 2 genuine coincidences. As it is
very likely to get an “excess” of more than one coincidence just by chance, two genuine
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coincidences are likely to be left undetected. Thus, a high quotient of
f
g�hf � is needed, plus

a relatively large number of random coincidences to reduce random fluctuations. Similar
results can be found in Grün et al. (2002a) and in Roy, Steinmetz and Niebur (2000),
who discuss the relation between the firing rate and the number of excess coincidences
necessary for the detection of Unitary Events in the UE method.
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Figure 6: Comparison of empirical (dash-dotted) and asymptotic (solid) test power. Simula-
tions, and parameters like in figure 5. Used test statistics for the empirical curves: y�z .
3.3.2 Discussion of the Asymptotic Test Power

In this subsection, the asymptotic properties of the test will be discussed. One needs to keep in
mind that the real properties may deviate from the results, especially for small x . Still, one can
learn about general interdependencies between the parameters.

3.3.2.1 Relations between Background, Coincidence Rate and Test Power
Due to the high number of parameters x��6�����6�����6���8�5�`�4� and the test power, the number of dimen-
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sions needs to be reduced when visualizing interdependencies. Hence in this first subsection,
the background rates will be set equal, and the test power and {t| will be reduced to some typ-
ical values. When necessary, also

�z_ba
and
v

will take on only some characteristic values. 4
(equation (30) on page 26) will be the used test statistics, meaning that the full formula (24) on
page 23 is used for d e f
g�h .
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Figure 7: Required length
v

of data, depending on equal background firing probabilities
��_ ��ya � +b!#�X!#	¸G\P and different

��_ba � � !#	�!�!#���X!t	¸!�!�Gt�
	�	�	��X!#	�!�!/sÂ� to reach an asymptotic test power of
0.975 at {�| �L��	dc4e .

In figure 7, the required number of time steps to reach an asymptotic test power of 97.5% at{�| �0��	dcfe is plotted depending on the background firing probabilities for different
�u_ba

.
Transforming equation (29) on page 24:r�+¯43E { | ~ �`_ba � v g +ª��~ ��_ $È+?�¾~ �wa $g +?�)~ �`_ba $Q+ �`_ba +ª��~ �`_ $È+?�)~ �ya $ ï �`_.�ya $ $¿� power R ST g�h ;¸�[!#	tc/�4s (32)

leads to ��	tc4e*~ ��_ba � v������ g +?�)~ �`_ $Q+ª�)~ �ya $g +ª��~ �`_ba $Q+ ��_ba +?�)~ �`_ $Q+?�)~ �wa $ ï �`_.�wa $ �0~(��	tc4e
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and hence vL����� � u´2���	tc4e a 2Â+?�)~ �`_ba $Q+ ��_ba +ª��~ ��_ $È+?�¾~ �wa $ ï �`_.�ya $� a _ba 2B+ª�)~ ��_ $D2Â+ª�)~ �ya $� u´2���	tc4e a 2Â+?�)~ �`_ba $Q+ ��_ba +ª��~ ��_ $ a ï � a _ $� a _ba 2Â+?�)~ �`_ $ a 	
Not surprisingly, the required number of time steps increases with growing background firing
probabilities and falling

�n_ba
. The smaller the relation between genuine coincidences and chance

coincidences, the more time steps are needed to detect the genuine coincidences.
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Figure 8: Required minimal ���8� at � � �5�4�4�4� , � � ��¡t�/¢4£ ( ¤4¥Y� �4¡t¦4§ ) and �K¨�© ª« ��¡t¬�`��¡t¦�`��¡t¦/£ZJ��¡d¦4®4£Z`��¡t¦4¦�J��¡d¦f¦/£°¯ , depending on equal background rates �±�+�²�³� (x-axis).

In figure 8, the number of time steps is left constant at ���´�5�4�f�4� . For the fixed significance
level ���µ��¡t�/¢4£ ( ¤4¥¶���4¡t¦4§ ), the minimal required genuine coincidence firing probability is
plotted at six different values for the test power ��¨·©¸����¨W¹}º»¤4¼¾½ for
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��	tvãGt�Q��	de4st�
��	tc4e#�jGÂ	¸S�St�jGt	dsfvt� . The corresponding formula is derived fromr]+Ë4AE { | ~ ��_ba � v g +?�)~ �`_ $Q+ª��~ �wa $g +?�¾~ �`_ba $Q+ ��_ba +?�)~ ��_ $Q+?�)~ �wa $ ï �`_.�wa $ $·� �)~WV�+ { À $ô�õ ~���	tc4e ï �`_ba � v�g +ª��~ �`_ $È+?�)~ �ya $g +?�)~ ��_ba $È+ �`_ba +?�)~ �`_ $Q+ª�)~ �ya $ ï ��_?�ya $ � { À
by solving for

��_ba
and setting

��_ � �wa :
��_ba � +ª��	tc4e ï { À $ a +?�)~éG ��_ $GC+ v ï +ª��	tc4e ï { À $ a $Q+ª�¾~ ��_ $ aï +?��	tc4e ï { À $ � +?�)~ûG �`_ $ a ï u � a _ +ª��	dcfe ï { À $ a + v ï +ª��	dcfe ï { À $ a $Q+ª��~ �`_ $ auy+ v ï +ª��	dcfe ï { À $ a $ a +ª�)~ ��_ $ � �

as
�`_ba |ë! and for

��_ � �wa E !�)~ûG �`_ \ � +?�)~ûG �`_ $ a ï u � a _ +?�)~ �`_ $ a 	
One can see that the required

�n_ba
needs to be larger for high background rates as well as for a

higher test power, which shows the foregoing results from another view.

3.3.2.2 Different Background Firing Probabilities
In all previous considerations, the background firing probabilities were set equal for reasons of
dimension reduction. However in the experimental situation, the background firing rates do not
have to be equal. Therefore the situation for different background rates needs to be discussed.
It seems to be plausible that the test power is highly connected to the relation between the prob-
ability of a chance coincidence on the one hand and the probability of a genuine coincidence
on the other. As the probability of a chance coincidence, conditioned on the non-firing of the
doublet process, is

�n_.�wa
, the test power will be discussed for fixed background rate product��_ 2 �ya . For that reason, figure 9 shows the asymptotic test power depending on one background

firing probability, with fixed
v � �1!�!�!�! , �n_ba �V!#	�!�!fu , }��V!#	�!ãG4s and

��_ 2 �ya �V!#	¸!4s a . The
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scaling is logarithmic to account for the symmetry of
�z_

and
�wa

.

0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.15 0.2

0.9975

0.998

Asymptotic Test Power

1−
β

λ
1

Figure 9: Asymptotic test power in relation to
�n_

for fixed background rate product
�z_ 2 �ya �!#	�!/s a at

v �L�
!�!�!�! , }Õ�[!#	�!ãG4s and
��_ba �^!#	�!�!fu .

One can see that the test power is maximal for
�z_ � �wa , namely at !#	�!/s . This might seem a

bit alerting since it says that in the previous subsections only the best case among all fixed
�D_?�ya

has been inspected. But the difference is relatively small. This is stressed in figure 10. Part (A)
shows a three-dimensional graph of the minimal required

�u_ba
, depending on both background

firing probabilities. The solid curves are the level lines of this hillock at the same
��_ba

for a
given test power of !#	tc/�4s . The dashed curves represent those combinations of the background
rates which have the same rate product as the level lines at the main diagonal. There, they
require the same

��_ba
to reach the pre-defined test power. Further to the left and right, the curves

for constant
��_¹�ya

deviate upwards and run towards levels of larger required
�z_ba

to reach a test
power of !t	dc/�fs . Solid and dashed curves are shown as projections in figure 10 (B). Mainly
the same result is to be seen in figure 9, showing that for

�z_ � �wa the test power is maximal
for constant

��_ba
and
�`_.�ya

or that the minimal required
�n_ba

is minimal for constant test power
and constant

��_.�wa
. Still, it shows another important fact: The deviation of the curves with equal

background rate product from their corresponding level lines with constant minimal
��_ba

is much
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Figure 10: Comparison of the curves of equal background firing probability product (dashed)
and curves of equal minimal required

�z_ba
to reach a test power of 0.975 at

v �U�
!�!�!�! (solid).
The level lines (solid) are chosen such that

�z_ba 2:�1!�!�!���K . Every level line and its corresponding
dashed curve intersect at the main diagonal. (A) three-dimensional plot (B) projections of the
level lines and of the curves with constant

�n_.�ya
.
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smaller than the distance to the other plotted curves even at the edges of the parameter range.
The values of

�n_ba
were chosen such that for a time resolution of ³<�L� ms, they cover the whole

range of integer frequencies in Hz corresponding to the plot. One can thus roughly say that for
fixed lengths of data and fixed

�z_ba
, the test power is essentially a function of the product of the

background rates.
Taking another look at figure 7 on page 33, one sees another aspect: e.g. for

��_ba �[!#	�!�!fu , the
minimal required number of time steps is plotted depending on the background rates, assumed
as equal. This represents the “movement” of the point of intersection of the level line for��_ba �P!t	¸!�!¿u of figure 10 (B) with the main diagonal along the diagonal when

v
changes. To

explain this in more detail: for large
v

, one can obviously detect
�u_ba EA! more easily. On the

other side, the larger
v

, the larger may the background firing probabilities be without disturbing
the detection of

��_ba E^! . So, for growing
v

, the level line for
�n_ba �0!#	�!�!fu in figure 10 (B) (as

all the others) moves upwards and to the right along the main diagonal. The situation resulting
for
v �Ys»!�!�!�! is plotted in figure 11.
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Figure 11: Comparison of the curves of equal background firing probability product (dashed)
and curves of equal minimal required

�z_ba
to reach a test power of 0.975 at

v ��s»!�!�!�! (solid).
Compare to figure 10 (B).
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4 Three and More Neurons

This section will deal with the extension of the MIIP onto three neurons. In principle, the same
considerations are made, and the same simulations and evaluations are carried out. The main
difference between section three and four is to be found in the conceptual background. As
described in the introduction, the main goal was to develop a tool that allows to distinguish
between genuine and chance coincidences in the context of higher-order correlations. The
problem for two neurons can as well be approached by the described Unitary-Event method,
as for A� G , absence of correlation is equivalent to independence of the processes. Yet for
three neurons, this is no longer the case. The absence of a genuine triplet correlation does
not prevent pairwise correlations, such that the null-hypothesis of the UE method needs to be
modified to allow for sub-correlations. This section serves as a demonstration of the usefulness
of the MIIP in the context of the original problem when applied onto more than two neurons.
Therefore, all discussions are carried out in detail to show the direct extensibility of the model
onto more than two parallel processes.

This section also contains a part that deals with general properties of the MIIP for  neu-
rons. In subsection 4.2, a general formula for the maximum-likelihood estimates of all basic
processes’ firing probabilities will be shown for all numbers of neurons Õ�²K . This will allow
to draw conclusions about the estimates’ asymptotic normality and variance.

4.1 The Model for Three Neurons

The model will now be demonstrated for three neurons. Mainly the correlation of highest order
will be discussed, as the pairwise correlations can in principle be examined as described in
section 3. Small modifications in the analysis of pairwise correlations will be accounted for in
subsection 4.3.

The step from two to three neurons is regarded characteristic for the increase in complexity
from  to  ï � neurons. This complexity can already be seen in figure 12. The three observ-
able processes now represent a superposition of seven basic processes. Three different triplet
coincidences can be seen in the figure, one due to the triplet correlation and two due to pairwise
correlations and/or background. To visualize this complexity more systematically, figure 14
shows all possibilities to get chance triplets. As we have seen that roughly the problem reduces
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Figure 12: The MIIP for three neurons. There are G m ~[� basic processes of which three pro-
duce background spikes, three others are the origin of pairwise coincidences, and one produces
genuine triplets. The basic processes are merged to get the observed processes (on the right).
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Figure 13: Difference between overlapping and non-overlapping events: Detailed representa-
tion of a part of figure 14. On the left, all four non-overlapping events produce each observed
spike exactly once. In the overlapping events of which five are depicted on the right, at least
one observed spike originates in at least two basic processes.
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Figure 14: Visualization of all possible events that produce chance triplets. The variables below
represent the probability of the events marked above.
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to a comparison of chance and genuine coincidences, the increase in complexity from two to
three neurons becomes quite obvious in the following: For two neurons, there was only one
single possibility to get a chance coincidence, namely by a chance co-activation of both back-
ground processes. For three neurons, there are 45 combinations of successes and non-successes
in the basic processes which produce a chance triplet. For later use, those will be conceptually
subdivided into “overlapping” and “non-overlapping” events as follows:

In the left part of figure 13, the spikes produced in the basic processes are chosen such that
in each observed process, only one spike is evoked. These will be called “non-overlapping”
chance coincidences. In the right part, at least one spike per chance triplet is produced by at
least two of the basic processes. Those chance coincidences will be referred to as “overlapping”
events (for  �[S : 41 out of 45).

4.2 Maximum-Likelihood Estimates for n Neurons

The formulas for the maximum-likelihood estimates developed in section 3 can be extended
onto larger models with more parallel processes. In spite of the increased complexity, the
formulas are relatively small.
The notation is chosen as such:
Let &s� � ���jGt�
	�	�	���u� be the set of observed neurons,

� � & a subset of them.[q�U;¸�[r]+ � ��� ��! Ò*�/� � �»$ denotes the probability to find no spike in the observed processes
of the neurons in

�
at any fixed time '�� � ���
	�	�	�� v � . For two neurons, this has been expressed

with the symbol ’+’: [`Ý _ áº��owMªÉ or [ÓÝ _ � a áº�ûowMlM . Note that [³À<�éoyÉwÉ�� 1.
Due to Lemma 1, the following Lemma remains to be shown.

Proposition 2

For all
� M � & with

� M���[��)~ � � j �  ��×t� j � i � iÁFk�i � j imod
a [ � �/� � � ��×t� j � i � i k�i � j imod
a [�� �/� � � (33)
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In particular one gets for  �[S :�)~ �`_balm � oCMlMlMßoyÉwÉCMËoyÉCMªÉtoCMªÉwÉoyÉCMlMßowMªÉCMßowMlMªÉ (34)

Formula (34) will be used in large parts of this section.
For the sake of completeness, we will now include a proof of Proposition 2.

Proof

Proposition 2 will be shown by induction over  .
For @�AG it was already shown in section 3.1 (the indices of the

�
are again written without

brackets: e.g.
� Ý _ á � ; ��_ ): �¾~ �`_ � [ �/� À[ �/� Ý _ á � owMlMoyÉCM �

analogous for �)~ �qa , and �)~ �`_ba � [ �/� Ý _ á [ �¿� Ý a á[ �¿� À:[ �/�t� � oyÉCM¯owMªÉowMlM �
as &¼� � ���jGÂ� .

To show what will be the main argument for the step from  to  ï � , this will be done
exemplarily for  �AG .

1. For  � G , all parameters
�n_

,
�ya

and
��_ba

are determined by the following system of
equations (recall the formulas (4)-(6) on page 16):owMlMT� +ª�¾~ ��_ $Q+?�)~ �wa $Q+ª�)~ ��_ba $oyÉCMT� +ª�¾~ �ya $Q+?�)~ �`_ba $owMªÉ � +ª�¾~ ��_ $Q+?�)~ �`_ba $owÉwÉ � �
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2. For  �[S and & É ;¸� � ���jGÂ�XSt� , there are more equations:oCMlMlMT� +ª��~ ��_ $È+?�)~ �wa $Q+?�¾~ �wm $È+?�)~ ��_ba $Q+?�)~ �`_bm $Q+ª�)~ �yalm $È+?�)~ �`_balm $ (35)� owMlM Â��× �%Ã � m ® � +?�)~ � �8$owÉCMlMT� +ª��~ �ya $È+?�)~ �wm $Q+?�¾~ �`_ba $Q+ª�¾~ ��_bm $È+?�¾~ �walm $Q+ª�¾~ ��_balm $� oyÉCM Â��× � Ã � m ® � +?�)~ � �8$oCMªÉCMT� +ª��~ ��_ $È+?�)~ �wm $Q+?�¾~ �`_ba $Q+ª�¾~ ��_bm $È+?�¾~ �walm $Q+ª�¾~ ��_balm $� owMªÉ Â��× � Ã � m ® � +?�)~ � �8$oCMlMªÉ � +ª��~ ��_ $È+?�)~ �wa $Q+?�¾~ �`_ba $Q+ª�¾~ ��_bm $È+?�¾~ �walm $Q+ª�¾~ ��_balm $oyÉwÉCM � +ª��~ �ym $È+?�)~ �`_bm $Q+?�)~ �walm $Q+ª�)~ ��_balm $� oyÉwÉ Â��× �%Ã � m ® � +?�¾~ � �8$oyÉCMªÉ � +ª��~ �ya $È+?�)~ �`_ba $Q+?�)~ �walm $Q+ª�)~ ��_balm $owMªÉwÉ � +ª��~ ��_ $È+?�)~ �`_ba $Q+?�)~ �`_bm $Q+ª�)~ ��_balm $oyÉwÉwÉ � �
3. As far as the parameters

�n_
,
�ya

and
��_ba

are concerned, the following is obvious:+?�)~ �`_ $/� owMlMoyÉCM � owMlMlMoyÉCMlM and +?�)~ �`_ba $/� owMªÉtoyÉCMowMlMËoyÉwÉ � oCMªÉCMßoyÉCMlMoCMlMlMßoyÉwÉCM �
because the same factors are added to the corresponding formulas. For symmetry reasons,
the analogous is true for

�qm
,
�`_bm

and
�walm

.

4. It remains to show that formula (33) is true for
�z_balm

. For this, equation (35) will be solved:+?�¾~ �`_balm $¬� owMlMlM+?�)~ �`_ $Q+?�¾~ �wa $È+?�)~ �ym $Q+?�)~ �`_ba $Q+ª�)~ ��_bm $È+?�)~ �walm $Q+ª��~ �`_balm $� owMlMlMÙ2 owÉCMlMoCMlMlM 2 oCMªÉCMoCMlMlM 2 owMlMªÉowMlMlM 2 owMlMlMßowÉwÉCMoyÉCMlMßoCMªÉCM 2 oCMlMlMßoyÉCMªÉowÉCMlMßowMlMªÉ 2 owMlMlMßowMªÉwÉowMªÉCMßowMlMªÉ� owMlMlMßoyÉwÉCMËoyÉCMªÉÂowMªÉwÉoyÉCMlMËowMªÉCMßoCMlMªÉ �
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which gives formula (34).

Thus for the step from  to  ï � , which will be analogous, we need the following notations:

1. Let equation (33) be true for  neurons, i.e. the system of equations containing the for-
mulas for all [q� ,

� � & � � ���
	�	�	���u� is solved when replacing all factors +?�(~ � �8$
with the right side of equation (33). Note that the numbers ���
	�	�	��� are just labels of the
neurons indicating that a set of  neurons is analyzed. One could as well replace these
numbers by any kind of labeling.

2. For  ï � neurons, let & É ;¸� � ���
	�	�	������ ï ���B	 The system of equations for all [ � Ã ,� É � & É will be shown to lead to equation (33).

3. In the third step we want to show that all parameters that were already existent in the
model with  neurons can be estimated with the same formulas as before by replacing
all used probabilities with those of the model with  ï � neurons, where the additional
neuron is restricted to non-firing (compare to 3. in the step from two to three neurons).
Let now ���¼& É be one fixed element of & É . We define & � � � ;=� & É « � �?� . For� � � � � & � � � , let [ �ÅÄ �tÆ ;¸� r�+ � � � � !#�ÙOA� � � � � �»$ be defined in the model with 
neurons with labels in & � � � . Let further [ É�ÅÄ �tÆ ;¸� r]+ � � � � !#�ÙO^� � � � � ù � �?�ã�»$ be
defined in the model with  ï � neurons with labels in & É . For example for  �[Gt�
���[St�� � � � � � ��� : [ �ÅÄ �tÆ �^oCMªÉ and [ É�ÅÄ �tÆ �^owMªÉCM . For step 3 it is enough to show that for all� � � � the following holds true[ É�ÅÄ �tÆ �Ç[ � Ä �tÆ Â� Ã × � Ã � ��® � Ã +?�)~ � � Ã $9	
This is obvious, as in the model that additionally contains the neuron with label � , no
process must fire that would lead to a firing of neuron � .
For symmetry reasons, this holds true for all � �Ê& É and thus equation (33) has been
shown to be true for all +ª�¾~ � �8$ with !8\Ê> � >°�± .

4. It remains to show equation (33) for
� �%Ã : Again, the formula for [ �ÈÃ will be used. By



4 THREE AND MORE NEURONS 46

replacing all factors +?�)~ � �8$ with the right hand side of equation (33), one gets[ �ÈÃ � Â��× �ÈÃ � � Fk À +?�)~ � �8$� [   ° Ã g� i g + ° Ã g� $ � � _ � �CÉ»g�ÈÃ 2�Âi � i k H [   ° � ikj + ° � $ � � _ � � Ã g� 2 Âi � i k H � _ [   ° É�g� ikj + ° É»g� $ � � _ � � Ã g� 2ã	�	�	�22 Âi � i k _ [ _ � _� 2����
which is true becauseÊ� � k M ( N å * +?~(�%$

� ��+ª�¾~±�%$ Ê �[!#� and thus

Ê� � k _ ( N å * +ª~��1$
� � _ �L��	

As all +?��~ � �8$ with !Õ\ > � >%�  have been shown in 3. to fulfill equation (33), the

same formula for +?�)~ � �ÈÃ $ has thus been proven. ÷
Remark

With the help of the Propositions 1 and 2, one can see that the maximum-likelihood estimates
of the MIIP have asymptotic normal distribution for all �| G . The asymptotic variance can
be derived as in subsection 3.2.1. For [� S it will be computed explicitly in the following
subsection.

4.3 Asymptotic Variance of Ë ý þ�ÿ�Ì
The asymptotic normality of the estimate as well as its asymptotic variance will be shown
by application of the multidimensional I -method as in subsection 3.2.1 for Ê� G . For the
definition of the function æ recall equation (34) on page 43:�)~ �`_balm � oCMlMlMßoyÉwÉCMËoyÉCMªÉtoCMªÉwÉoyÉCMlMßowMªÉCMßowMlMªÉ
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For the application of Proposition 1, we use �8�Y� ,c� ¦ ;¸� + c� ¦ � _ �
	�	�	�� c� ¦ � Í $<;=�Î(<( �v * 2Â+¯�`MlMlM1�j��ÉCMlM
�j�`MªÉCM1�j�`MlMªÉ��j��ÉwÉCM
�j��ÉCMªÉD�X�`MªÉwÉn$ * ¦� ;¸� + � _ � � a �
	�	�	�� �5Í $º;=�Ê+ owMlMlM1�ËowÉCMlM
�ËowMªÉCM1�ËoCMlMªÉD�ËoyÉwÉCM
�¯oyÉCMªÉD�ËowMªÉwÉ`$
With the same argument as for  �AG one gets� � c� ¦ � ~%~w~2�¦��)�Ï� + � � v � _ ��+ � $.$9�
with

��+ � $¬�
ÌÍÍÍÍÍÍÍÍÍÍÍÎ
owMlMlM5+ª�)~�owMlMlM9$ oCMlMlM5+?�)~�oyÉCMlM9$ oCMlMlM5+?�)~�owMªÉCMj$owMlMlM5+ª�)~�oyÉCMlMj$ owÉCMlM5+?�)~�oyÉCMlM9$ owMlMlMº~ oyÉCMlMßowMªÉCMowMlMlM5+ª�)~�owMªÉCMj$ owMlMlM7~�oyÉCMlMËowMªÉCM owMªÉCM1+?�)~�owMªÉCMj$owMlMlM5+ª�)~�owMlMªÉn$ owMlMlM7~�oyÉCMlMËowMlMªÉ owMlMlMº~ owMªÉCMßowMlMªÉowMlMlM5+ª�¾~�oyÉwÉCMj$ owÉCMlM5+?�)~�oyÉwÉCM9$ owMªÉCM1+?�)~�oyÉwÉCMj$owMlMlM5+ª�¾~�oyÉCMªÉn$ owÉCMlM5+?�)~�oyÉCMªÉz$ owMlMlMÙ~ owMªÉCMßoyÉCMªÉowMlMlM5+ª�¾~�owMªÉwÉn$ owMlMlM7~�oyÉCMlMËowMªÉwÉ owMªÉCM1+?�)~�owMªÉwÉn$

	�	�	

	�	�	
owMlMlM5+?�)~�owMlMªÉz$ owMlMlM5+?�)~�oyÉwÉCMj$ owMlMlM5+?�)~�oyÉCMªÉz$ owMlMlM5+?�)~�owMªÉwÉ�$owMlMlM7~�oyÉCMlMËowMlMªÉ owÉCMlM%+?�)~�oyÉwÉCMj$ oyÉCMlM5+?�)~�oyÉCMªÉ�$ owMlMlM7~�oyÉCMlMßowMªÉwÉowMlMlM7~�owMªÉCMËowMlMªÉ oCMªÉCM%+?�)~�oyÉwÉCMj$ owMlMlM7~�owMªÉCMËoyÉCMªÉ owMªÉCM%+?�)~�owMªÉwÉ�$owMlMªÉ/+?�)~�owMlMªÉz$ owMlMlM7~�owMlMªÉ#oyÉwÉCM owMlMªÉ/+?�)~�oyÉCMªÉ�$ owMlMªÉ¿+?�)~�owMªÉwÉ�$owMlMlM7~�owMlMªÉ#oyÉwÉCM owÉwÉCM%+?�)~�oyÉwÉCM9$ oyÉCMlM7~�oyÉwÉCMËoyÉCMªÉ owMªÉCM7~�oyÉwÉCMßowMªÉwÉowMlMªÉ/+?�)~�oyÉCMªÉz$ oyÉCMlM/~�oyÉwÉCMËoyÉCMªÉ oyÉCMªÉ/+?�¾~�oyÉCMªÉ�$ owMlMªÉ ~�oyÉCMªÉ#owMªÉwÉowMlMªÉ/+?�)~�owMªÉwÉz$ owMªÉCM/~�oyÉwÉCMËowMªÉwÉ owMlMªÉ ~�oyÉCMªÉtowMªÉwÉ owMªÉwÉ¿+?�)~�owMªÉwÉ�$

ÏQÐÐÐÐÐÐÐÐÐÐÐÑ
The formulas for the covariances in ��+ � $ can be derived as in subsection 3.2.1.
Take now æÊ;Ð# Í ~Ñ� # with æD+ Ã $ ;¸� æD+ Ã _ �
	�	�	�� Ã Í $ ;=� ¨ g ¨6Ò¯¨�ÓË¨6Ô¨ h ¨�M¯¨�Õ . æ has a differential at

�
for oyÉCMlM
�ãowMªÉCM
�ãowMlMªÉÊEs! and

v Es! . Again, æâ+ � $]�T+?� ~ ��_balm $ . It follows that æâ+lc� ¦ $ has
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asymptotic normal distribution with asymptotic variance

Var +¯æâ+ßc� ¦ $¹$<~%~w~2�¦���� �v Í�� � � 9 k _ d ��� 9 + � $)( ð æð � � * ( ð æð � � 9 *
� owMlMlMßoyÉwÉCM¯oyÉCMªÉtowMªÉwÉv o a ÉCMlM o aMªÉCM o aMlMªÉ 2

N +?�)~�owMlMlM9$-owÉwÉCMËoyÉCMªÉtowMªÉwÉ ï +?�)~�oyÉCMlMj$:owMlMlMßoyÉwÉCMßoyÉCMªÉtoCMªÉwÉoyÉCMlMï +?�)~�owMªÉCM9$:owMlMlMßoyÉwÉCMËowÉCMªÉtowMªÉwÉowMªÉCM ï +ª��~�oCMlMªÉn$-owMlMlMßowÉwÉCMËoyÉCMªÉ#owMªÉwÉowMlMªÉï +?�)~�oyÉwÉCMX$-owMlMlMßoyÉCMªÉÂowMªÉwÉ ï +?�)~�oyÉCMªÉ�$-owMlMlMßoyÉwÉCM¯owMªÉwÉï +?�)~�owMªÉwÉ�$-owMlMlMßoyÉwÉCM¯oyÉCMªÉ@~�G +?�)~�oyÉCMlMj$:owMlMlMßoyÉwÉCMËowÉCMªÉtowMªÉwÉoyÉCMlM~�G +?�)~�owMªÉCMj$:owMlMlMßoyÉwÉCMËowÉCMªÉtowMªÉwÉowMªÉCM ~éG +?�)~�oCMlMªÉz$-owMlMlMßoyÉwÉCM¯oyÉCMªÉtowMªÉwÉowMlMªÉï GC+?�¾~�owÉwÉCMj$-owMlMlMßowÉCMªÉtowMªÉwÉ ï GC+ª�¾~�oyÉCMªÉn$-oCMlMlMßoyÉwÉCMËowMªÉwÉï GC+?�¾~�oCMªÉwÉn$-owMlMlMßowÉwÉCMËoyÉCMªÉ ï G +¤owMlMlM/~�oyÉCMlMßowMªÉCMj$:owMlMlMßoyÉwÉCMËoyÉCMªÉÂowMªÉwÉowÉCMlMßowMªÉCMï G + oCMlMlM7~�owÉCMlMßowMlMªÉn$-oCMlMlMßoyÉwÉCMËoyÉCMªÉ#owMªÉwÉoyÉCMlMßoCMlMªÉ ~éG#+?�)~�oyÉwÉCMj$:owMlMlMßoyÉCMªÉtowMªÉwÉ~�GC+?�)~�oyÉCMªÉn$:owMlMlMßoyÉwÉCMËoCMªÉwÉ ~ûG + owMlMlM7~�oyÉCMlMßowMªÉwÉ�$-owMlMlMßoyÉwÉCM¯oyÉCMªÉoyÉCMlMï G + oCMlMlM7~�oCMªÉCMßowMlMªÉn$-oCMlMlMßoyÉwÉCMËoyÉCMªÉ#owMªÉwÉowMªÉCMßoCMlMªÉ ~éG#+?�)~�oyÉwÉCMj$:owMlMlMßoyÉCMªÉtowMªÉwÉ~�G + owMlMlM7~�owMªÉCMËowÉCMªÉn$-owMlMlMßowÉwÉCMßowMªÉwÉowMªÉCM ~éGC+?�)~�owMªÉwÉ�$-owMlMlMßoyÉwÉCM¯oyÉCMªÉï GC+ oCMªÉCM7~�owÉwÉCMËowMªÉwÉn$:owMlMlMßoyÉCMªÉ ï GC+¤owMlMªÉ ~�oyÉCMªÉ#owMªÉwÉn$:owMlMlMßoyÉwÉCM~�GC+?�)~�owMªÉwÉn$:owMlMlMßoyÉwÉCMËowÉCMªÉ ï GC+ owÉCMlMÙ~�owÉCMªÉtoyÉwÉCM9$-oCMlMlMËowMªÉwÉ~�G + owMlMlM7~�owMlMªÉtowÉwÉCMj$-owMlMlMßowÉCMªÉ#owMªÉwÉowMlMªÉ ~éGC+?�)~�oyÉCMªÉ�$-owMlMlMßoyÉwÉCM¯owMªÉwÉ O
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� owMlMlMËowÉwÉCMßoyÉCMªÉtowMªÉwÉv o a ÉCMlM o aMªÉCM o aMlMªÉ 2 N oCMlMlMËoyÉwÉCMßoyÉCMªÉtoCMªÉwÉ!Öº~ �owMlMªÉ ~ �owMªÉCM ~ �oyÉCMlM�×ï G9o aMlMlM owÉwÉCMËoyÉCMªÉ#owMªÉwÉ Ö �owMlMªÉ#oCMªÉCM ï �oyÉCMlMßowMlMªÉ ï �oCMªÉCMßowMlMªÉ ×ï G9owMlMlM � oyÉwÉCMËoCMlMªÉ ï owMªÉwÉ#oyÉCMlM ï owÉCMªÉ#owMªÉCMQ��~�owMlMlMßoyÉwÉCMËoyÉCMªÉÂowMªÉwÉ~/owMlMlM � oyÉCMªÉ#oyÉwÉCM ï oyÉCMªÉÂowMªÉwÉ ï oyÉwÉCMßowMªÉwÉu� ï oyÉwÉCMËoyÉCMªÉtoCMªÉwÉ~�G9o aMlMlM Ö owMªÉwÉtoyÉwÉCMowMªÉCM ï oyÉCMªÉ#oyÉwÉCMoyÉCMlM ï oyÉCMªÉÂowMªÉwÉoCMlMªÉ × O� owMlMlMËowÉwÉCMßoyÉCMªÉtowMªÉwÉv o a ÉCMlM o aMªÉCM o aMlMªÉ 2 N owMlMlMßoyÉwÉCMßoyÉCMªÉtoCMªÉwÉoyÉCMlMßowMªÉCMËoCMlMªÉ 22 � ~/owMlMªÉ#owMªÉCMËowÉCMlM ï G9owMlMlM5+ owÉCMlM ï owMªÉCM ï owMlMªÉz$D~�oCMlMªÉ#owMªÉCMÙ~ owMlMªÉ#oyÉCMlM7~�oyÉCMlMßowMªÉCMQ�ï owMlMlM � ~7owÉCMªÉtoyÉwÉCM7~�oyÉCMªÉ#owMªÉwÉ6~�oyÉwÉCMËoCMªÉwÉ��ï G9owMlMlM � oyÉwÉCMËoCMlMªÉ ï oyÉCMªÉ#owMªÉCM ï oCMªÉwÉ#oyÉCMlMQ� ï oyÉwÉCMËowÉCMªÉtowMªÉwÉ~�G9o aMlMlM Ö owMªÉwÉtoyÉwÉCMowMªÉCM ï oyÉCMªÉ#oyÉwÉCMoyÉCMlM ï oyÉCMªÉÂowMªÉwÉoCMlMªÉ × Od ae f
g�h M � +ª��~ �`_balm $v +?�¾~ �`_ $Q+ª�)~ �ya $È+?�)~ �wm $Q+ª�¾~ ��_ba $È+?�¾~ �`_bm $Q+?�¾~ �walm $ 2�¤~7owMlMlM ï S�~éS � �`_�ï �waâï �ym � ï G ��_.�waDï G �`_.�wmDï G �wa9�ym~ +?�)~ ��_ $Q+?�)~ �wa $Q+ª�¾~ ��_ba $D~±+?�)~ ��_ $Q+?�)~ �wm $Q+ª�)~ ��_bm $~ +?�)~ �ya $Q+?�)~ �wm $Q+ª�¾~ �yalm $ ï GC+?�¾~ �`_ $È+?�)~ �ya $Q+?�)~ �wm $D22 � +ª�¾~ ��_ba $Q+?�)~ �`_bm $ ï +ª�)~ ��_ba $È+?�)~ �walm $ ï +?�¾~ �`_bm $Q+ª�¾~ �yalm $X�~�GC+?�)~ �`_ $Q+ª�¾~ �ya $È+?�)~ �wm $ � �)~ ��_bmDï �)~ �walmDï �)~ ��_ba � ï ��P
� +ª��~ �`_balm $v +?�¾~ �`_ $Q+ª�)~ �ya $È+?�)~ �wm $Q+ª�¾~ ��_ba $È+?�¾~ �`_bm $Q+?�¾~ �walm $ 2��+?�)~ �`_ $Q+ª��~ �wa $È+?�)~ �ym $Q+?�)~ �`_ba $Q+ª�)~ ��_bm $È+?�)~ �walm $ �`_balmï +?�¾~ �`_ $Q+ª�)~ �ya $È+?�)~ �wm $Q+ ��_baj�`_bmDï �`_ba9�yalm�ï �`_bm9�walmâï ��_baj�`_bm9�walm $ï +?�¾~ �`_ $Q+ª�)~ �ya $ ��_ba9�wm�ï +ª��~ �`_ $È+?�)~ �wm $ �`_bmj�yaï +?�¾~ �wa $Q+ª�)~ �ym $ �yalm9�`_�ï �`_.�wa9�ym P (36)
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This formula will be used to construct the test statistics 40;¸� e f
g�h MR S T g�h M , which will be compared to{�| ;¸�²V � _ +ª��~Y}â$ just like in the two-neurons-case.
For the lower-order correlations the formula for the variance changes slightly to account for

the additional parameters introduced in the model. By analogous computation, one gets

Var +?�)~ c �`_ba $7� +ª�)~ ��_ba $È+ �`_ba +?�)~ �`_ $Q+ª�¾~ �ya $ ï ��_.�wa $v +?�)~ �`_ $Q+?�¾~ �wa $È+?�)~ �ym $Q+?�)~ �`_bm $Q+ª�)~ �yalm $È+?�)~ �`_balm $ 	
Compared to equation (19) on page 21, the numerator stays the same, whereas the denominator
now additionally contains all factors +ª�)~ � � $ , where

� �A� ���XGt�XSt� and Sµ� � .

4.4 Performance of the Test

Just like in the two-neurons-case, the following questions need to be approached:

1. What happens as long as the piece of data is not long enough to grant the applicability of
the asymptotics?

2. What requirements regarding the size of
v

need to be met to use the asymptotics?

3. Given the asymptotics are applicable, what do we learn about the relation between the
different parameters

v
, } , �/� �n_ � �wa � �wm , ��_ba � �`_bm � �walm and

�`_balm
? Not all interdependencies

between the variables can be discussed here. So mainly the same considerations as for �AG will be made.

4.4.1 Applicability to Finite Strings of Data

As in subsection 3.3.1, the empirical significance level and test power derived from simulations
will be compared with their asymptotic correspondents for different firing probabilities and
lengths

v
of the data set. As the number of parameters has increased, typical values need

to be inspected in order to reduce the computational effort necessary for the simulations in
this subsection. Therefore, situations with equal background firing probabilities as well as
equal pairwise coincidence probabilities were examined. Furthermore, the pairwise coincidence
probabilities are chosen to take on the values !#�X!#	�!�!ãG and !#	�!�!fu , and the triplet firing probability
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was chosen to be either ! or !#	�!�!ãG . For

v
, the values �1!�!�!�! and s�!�!�!�! were inspected.

As in general, the results are analogous for other values of either firing probabilities or
v

, the
chosen values are considered sufficient to show the effects of a change in those variables.
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Figure 15: Comparison of empirical and asymptotic (solid) significance level for the test and
the MIIP for  �VS . } � !#	�!ãG4s , ��_ � �ya � �ym � � !#�X!#	¸Gt�X!#	ÁuC�
	�	�	��X!t	=GÂ� , ��_ba � ��_bm � �yalm �� !#�X!#	�!�!ãGÂ�X!#	�!�!fu#�B� �`_balm � ! , 10000 trials simulated per data point. All simulations done forv �0�
!�!�!�! (dashed) and

v �Ys�!�!�!�! (dash-dotted).

Figure 15 compares the asymptotic significance level (chosen to be 0.025, solid curve) with
the empirical significance level derived from simulations. The dashed curves show the relative
number of significant experiments for

v �V�1!�!�!�! depending on equal background rates, split
up into three different curves corresponding to the three different pairwise firing probabilities.
The dash-dotted curves show the analogous for

v �Øs»!�!�!�! . Per parameter set, 10000 experi-
ments were simulated, i.e. 10000 data sets of length

v
, consisting of the three background and

the three pairwise correlation processes, were simulated and merged onto the three observable
processes

� _ � � a and
� m

to calculate the test statistics 4^� ef g�h MR`ST g�h M , which was then compared to
the value { | �U��	tc4e . The number of experiments with 4�E { | is plotted. One can observe the
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same as in the analogous figure for  �AG :¶ The test does not reach the pre-defined significance level for “small”
v

.¶ The smaller
v

and the smaller the background and pairwise firing probabilities, the larger
the difference between the empirical and the asymptotic significance level.¶ Still, the test stays conservative, meaning that the probability to falsely reject�8M�; �`_balm �^! is smaller than required.¶ One additional observation is that the empirical significance level for both

v
in question

is even smaller than its analogous in the two-neurons-case (compare to figure 3), meaning
that the probability to falsely find

�n_balm EU! is even smaller. This is considered to be a
border effect in the used parameter ranges, as the background firing probabilities and the
pairwise firing probabilities are so small that too few events are produced by chance.

In figure 16, empirical and asymptotic test power are compared for
�u_balm � !#	¸!�!ãG and two

different
v

. As for  �[G , one can see that¶ the matching of asymptotic and empirical test power improves with increasing
v

,¶ both empirical and asymptotic test power grow with
v

,¶ and the higher the pairwise correlation firing probabilities and the background firing prob-
abilities, the smaller is the test power.¶ Additionally, the dashed and the dotted lines represent the analogous values for the same
parameter sets and Y�UG . One can see that the test power has increased, which will be
discussed in subsection 4.4.2.2.

4.4.2 Discussion of the Asymptotic Test Power

We will now discuss theoretical relations between the parameters. Just as for  �AG , the minimalv
and minimal

��_balm
to reach a pre-given test power at given background and pairwise coinci-

dence firing probabilities will be examined. One additional aspect - background reduction - will
be introduced to explain some of the results.
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Figure 16: Comparison of empirical and asymptotic test power for the test and the model for �[S .
solid: asymptotic test power for ���S and

�n_balm ��!#	�!�!ãG , all other parameters as in figure 15.v �0�
!�!�!�! , v �²s»!�!�!�! as indicated in the figure.
dash-dotted: empirical test power for corresponding parameter sets (  �[S , �u_balm �[!#	�!�!ãG ).
dashed: asymptotic test power for  �AG , �n_ba ��!#	�!�!ãG and

v �L�
!�!�!�! , v �Ys�!�!�!�! as indicated.
dotted: empirical test power for  �^G , �n_ba �^!#	¸!�!ãG and

v �L�1!�!�!�! , v �Ys»!�!�!�! as indicated.
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4.4.2.1 Minimal Required Number of Time Steps T
In figure 17, the minimal number of time steps to reach a test power of �8~A�P� !#	tc/�4s is
plotted depending on the background firing probabilities (

�u_balm �[!t	¸!�!�G and
�`_ba � �`_bm � �yalm �� !#�X!#	�!�!#���
	�	�	��X!#	�!�!/sÂ� ). Like in the two-neurons-case,¶ the minimal required

v
grows with increasing background and pairwise firing probabili-

ties, because they disturb the detection of genuine triplets.¶ Moreover, the required
v

is smaller than for ±�FG when comparing the data points at
equal background firing probabilities (compare with figure 7). This is considered to be
due to the same effect as the increase in test power for the same parameter sets, and will
be discussed in the following subsection.
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Figure 17: Minimal required number of time steps to reach a test power of 0.975 for
��_balm �!#	�!�!ãG , ��_ � �ya � �wm ��� !#��!#	=GkPË� �`_ba � �`_bm � �yalm � � !#��!#	¸!�!#���
	�	�	��X!#	�!�!/sB� .
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4.4.2.2 About probabilities of chance coincidences - “Background Reduction”
We have seen that for corresponding parameter sets, the empirical and asymptotic test power at
the tested parameters are higher for é� S . Also we have seen that the required

v
to reach a

pre-defined test power is smaller for  �US and equal background firing probabilities. In this
subsection, an effect called “background reduction” will be introduced on the basis of which
one can understand the mentioned results. In this place, only the symmetrical case will be
discussed, i.e. equality of all background firing probabilities and equality of all pairwise coin-
cidence probabilities. The last subsection of 4.4 will deal with deviations from this assumption.
“Background reduction” means that for the same parameter set, the probability of a chance
triplet (for  �[S ) is (for the used parameter ranges and symmetry) smaller than the probability
of a chance doublet (for �� G ). This may at first seem counter-intuitive because of the many
ways to get a chance triplet. But it is plausible when considering two facts: First, the proba-
bility to get any chance triplet is considerably smaller than the probability of a chance doublet,
which is not astonishing, because - roughly speaking - more spikes need to be produced, and
the probability of a spike is smaller than that of a non-spike. Secondly, the biggest part of the
probability of a chance triplet is due to only four configurations, namely the non-overlapping
chance triplets as illustrated in figure 14 on page 41. The effect of the background reduction
will now be stated and proven. Let

1. owp _l_ be the probability to get a chance doublet for ��3G , conditioned on the non-firing of
the doublet process,

2. owp _l_l_ be the probability to get a chance triplet for R�ÔS , conditioned on the non-firing of
the triplet process,

3.
� � a �_ � � � a �a � � � a �_ba be the firing probabilities for  �[G ,

4.
� � m �_ � � � m �a � � � m �m � � � m �_ba � � � m �_bm � � � m �alm � � � m �_balm be the firing probabilities for  �[S , where� � a �_ � � � m �_ � � � a �a � � � m �a � � � m �m � ; �wx and

� � m �_ba � � � m �_bm � � � m �alm � ; � p and�wx �é+b!#�X!#	¸G\P , � p �é�"!#�X!#	�!#��P ,
5. and let the higher-order firing probabilities be of the same size:�

ho � � � a �_ba and
�

ho � � � m �_balm , respectively (where ’ho’ stands for ’higher order’).
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6. It will further be assumed
�qx E ! and

�yx |Ùs 2 � p . This condition is sufficient, as will
be seen in the proof on page 57. Because of the usually very small size of

� p , this is
not a strong restriction, meaning that for relatively large values of pairwise coincidence
rates, the background rate needs to be “large enough”, i.e. for high

� p �A!#	�!#� we require�wx |A!#	¸!4s . The normal experimental situation is confronted with a much larger quotient
than
f�Úf � �os , which is not astonishing, as the whole debate about coding by coincidence

would not arise if about one sixth of a neuron’s spikes took part in coincident firing. Note
however that

�yx \qs � p does not affect the general procedure of the data analysis at all.
Only the existence of background reduction cannot be guaranteed any more.

Then we get o p _l_ � � ax 2Â+?�)~ � ho $ (37)

and o p _l_l_ �Ê+?�¾~ � ho $D2ã��& � ï � P�� (38)

where & � ;=� � mx 2B+?�)~ � p $ m ï S�2 �wx 2 � p 2B+?�)~ �wx $ a 2Â+?�¾~ � p $ a (39)

is the probability of a non-overlapping chance triplet, given the process ½ _balm did not fire, and� ;¸� � +?�%$ ï � +¯G�$ ï 	�	�	 ï � +8cã$ (40)

is the probability to get an overlapping chance triplet, given the process ½ _balm did not fire, with� +?�1$ � S�2Â+?�)~ �wx $ m 2 � ap 2Â+ª��~ � p $ ï +?�)~ �yx $ m 2 � mp� +ËG�$ � c�2 �yx 2Â+?�)~ �wx $ a 2 � ap 2ã+?�)~ � p $� +¯S�$ � S�2 �yx 2Â+?�)~ �wx $ a 2 � mp� +8uã$ � c�2 � ax 2Â+?�)~ �wx $D2 � ap 2Â+ª�)~ � p $� +Ûs�$ � S�2 � ax 2Â+?�)~ �wx $D2 � mp� +»e�$ � S�2 � mx 2 � ap 2B+ª�)~ � p $� +Û��$ � � mx 2 � mp� +»v�$ � e�2 � ax 2Â+?�)~ �wx $D2 � p 2Â+ª�)~ � p $ a �
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and � +»cã$ � S´2 � mx 2 � p 2B+ª��~ � p $ a
(compare with figure 14). Thus� �^S�2 �yxl� p +ª��~ � p $È+?�)~ë+?�)~ �wx $ a +?�)~ � p $.$ ï �wxª� mp ï G*2 � ap +ª�)~ �yx $È+?�)~ � p $ ï � ap +?�¾~ �wx $
We will now show the main

Claim (background reduction): o p _l_ E�o p _l_l_ (41)

Proof

Recalling equations (38) and (39) we obtaino p _l_l_+?�)~ � ho $ � � mx +ª�/~ � p $ m ï��wxª� mp ï�� ap +?�/~ �wx $ ï S)2 �wxË� p +ª�/~ � p $ ï G<2 � ap +?�/~ �wx $È+?�/~ � p $ (42)

and with assumption no. 6: \ � mx ï S s � ax ï ��%G4s � � x ï SGfs +?�)~ �wx $ � ax (43)

It thus suffices to show �(E ��%G4s � ax ï G�GGfs �yxÓï �5vG4sô�õ � ax ï ���1! �wx ~éS/s \ !#�
which is true for the whole parameter range !�\ �Óx ��!#	¸G . ÷
4.4.2.3 Minimal Required

�n_balm
In this subsection, figure 18 (which is similar to figure 10) will be discussed. One should

learn something about the relation between the minimal required higher-order firing probability
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and all other firing probabilities for fixed test power (and fixed
v

). In figure 10 one could
observe that the minimal required higher-order firing probability was in principle a function
of the product of the background rates, which is the probability

© � g:g� _ � f
g�h � of a chance doublet,
conditioned on the non-firing of the higher-order process. For three neurons, the formula foro p _l_l_ is definitely more complex. It can be calculated with the equations (38)-(40). In order to
use it for the desired figure, a short approximation of the formula needs to be developed. In the
following paragraph it will turn out that (with

�z_ � �wa � �wm �8; �wx and
��_ba � ��_bm � �walm � ; � p )oÝÜ ©_l_l_ ;¸� � mx ï Su2 �wxl� p is a very good approximation for

© � g:g:g� _ � f
g�h M � . It is thus used in figure 18, which
compares the level lines of equal minimal required

�z_balm
(solid) with those curves of equal o Ü ©_l_l_

(dashed).
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Figure 18: Comparison of the level lines of minimal required
�u_balm

with the curves of constanto ap_l_l_ . Solid: minimal required
�n_balm

to reach a test power of 0.975 at
v � �
!�!�!�! , given

�z_ ��ya � �wm � ; �yx �Ê�"!#�X!t	=G\P and
��_ba � �`_bm � �walm � ; � p �L� !t�X!#	�!#��P . Dashed: Curves of equalo ap_l_l_ ;¸� � mx ï S �yxª� p . The value of o ap_l_l_ is chosen such that the corresponding curves intersect at� p �^!#	�!�!/s .
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The value of oÝÜ ©_l_l_ is chosen such that the curves intersect at
� p ��!#	¸!�!/s . The parameter

v
is

chosen to be 10000, and �Ù~Õ��;¸�[!#	tc/�4s . One can see that just like in the two-neurons-case, for
constant

v
and constant test power, the minimal required

�z_balm
is essentially a function of the

probability of a chance triplet, given the triplet-process did not fire:
© � g:g:g� _ � f g�h M � .

4.4.2.4 An Approximation for oqp _l_l_
We propose to use o ap_l_l_ ;¸� � mx ï S �wxª� p as an approximation for

©�� g:g:g� _ � f
g�h M � .
The heuristic argument is as follows: With the help of figure 14 on page 41, one can fig-

ure out that o ap_l_l_ contains the probabilities of most of the overlapping events additionally to
those represented by & � . Dividing up o ap_l_l_ into sums of probabilities, one sees that it correctly
contains 34 non-overlapping events. Thus, only 7 non-overlapping events are left out. Addition-
ally, 18 non-overlapping events are included a second time. Still, those incorrectly represented
events play a minor role for those parameter ranges in the experimental practice.
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Figure 19: Parameter ranges where the quotient å�;=� © � g:g:g© apg:g:g 2 _� _ � f
g�h M � can be found in the given
intervals. For

�yx |Çs � p , the quotient is not larger than 1.2 (mostly even not larger than 1.1).
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In figure 19 one can see that å�;=� ©�� g:g:g© apg:g:g 2 _� _ � f
g�h M � is never smaller than 0.98, and that for�yx | s � p , å´� ��	¸G . This means that for the parameter ranges considered essential for the
experimental situation, o ap_l_l_ is quite a good approximation of

© � g:g:g� _ � f1g�h M � .
4.4.2.5 Accounting for Inequalities

The results of subsection 4.4 are restricted to
�z_ � �wa � �wm and

�`_ba � �`_bm � �walm . Some
of them (as e.g. the increase of the required

v
for growing background and coincidence proba-

bilities) should remain valid also under inequality of the subgroup firing probabilities. Also the
fact that the minimal

�n_balm
depends essentially on the probability of a chance triplet (for fixed

v
and constant test power) is plausible and will thus remain unproved here.

Instead, very asymmetrical parameter combinations can prevent the effect of the background
reduction discussed above. An extreme case like

�z_ � �ya �Ô!t	¸!/s , ��_ba �A!#	�!#� , �wm �3!#	¸G would
lead to !#	�!�!ãG4s´� owp _l_+ª�¾~ ��_ba $ \ & ��Þ !#	�!�!�S#�

because by
©`� g:g� _ � f g�h � � ��_¹�wa , the parameter

�ym
is left unspecified and all

� � �
are only restricted

to
� � � � _ß min + ��_ � �ya $ . Thus, if

��_
and
�wa

are relatively small, but large enough to allow for a
very large

��_ba
, and if additionally the third background rate is very high, then the effect of the

background reduction is even inverted.
But one can develop a very rough guideline for the relation between

�u_ � �ya and
�ym

that is
sufficient for the validity of background reduction. The requirement will be a modification of
the previously used condition

�qx |Çs*2 � p :� � |Çs*2 � � � ÒÓ�¹�ßO��jå � � ���jGt�XSÂ�B�ãO���Aåq	
With a numerical computation, one can show that on the grid

�u_ � �ya � �ym � � !t	¸!#���X!#	�!ãGt�
	�	�	��X!#	¸GÂ�B���_ba � ��_bm � �yalm � � !#�X!t	¸!�!t���
	�	�	��X!#	���� ,!t	dc4c8\ o p _l_l_o ap_l_l_ 2 �+ª�)~ ��_balm $ \A��	=G
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for o ap_l_l_ � �`_.�ya9�wm�ï �`_.�walmâï �yaj�`_bmDï �wm9��_ba 	
This means that just like under equality of background and pairwise probabilities, respectively,o ap_l_l_ is a good approximation for & � ï � , i.e. the probability of a chance triplet, conditioned
on the non-firing of the triplet process. This means that background reduction is present if the
parameters fulfill�`_.�ya | + �`_.�waj�ymDï �`_.�walmâï �yaX��_bmDï �wm9��_ba $D2ã��	=Gô]õ se | Gs ï �wmDï �wms max + �`_ � �wa $ | �ym�ï �walm�ya ï �`_bm��_ ï �ym9�`_ba�`_.�waô�õ �ym � e4s max + �`_ � �wa $S�!w+ª� ï s max + �`_ � �wa $¹$
It must be said that for large max + �n_ � �wa $ , �wm can even be larger than allowed by the last equa-
tion, because then,

f9h Mf9h as well as
f
g Mf
g are smaller than

_ß .
In those parameter ranges where background reduction is not present, the observed effects

- the higher test power, the smaller required
v

or lower significance level - can be assumed as
being contrary, because the probability of a chance triplet is higher than that of a chance doublet
for the subgroup

� ���jGÂ� . Still, for symmetry reasons, one could also compare the probability of
a chance triplet with a chance doublet of the subgroup

� ���XSt� . Thus one can say that¶ the background reduction is present for
�z_ � �wa � �wm � ; �wx and

�`_ba � �`_bm � �yalm � ; � p
and
�wx |Çs*2 � p ,¶ and for arbitrary

��_ � �wa � �wm � +¯!#��!#	=GkP , ��_ba � �`_bm � �walm �T�"!#�X!#	�!#��P , as long as
� � | s 2� � � ÒÓ�¹�ßO��jå@� � ���jGt�XSt�B��O���Aå and

�ym � à ß max � f g � f h �m M¹� _ É ß max � f
g � fÈh ��� .¶ For symmetry reasons, one could always speak of background reduction when compar-
ing three neurons with one of the subgroups that contains the neuron with the highest
background firing probability.
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5 Conclusions of Part I

1. In order to cope with the experimentally derived hypotheses about information processing
in the cortex, a model has been developed. It has been shown to allow for the analysis of
higher-order coincident firing in two and more parallel processes, including the distinc-
tion between genuine and chance higher-order correlations.

2. With maximum-likelihood estimation, the parameters representing the genuine correla-
tions between all subgroups of observed neurons can be estimated. For any number of
neurons  , a formula for the maximum-likelihood estimates has been derived.

3. By use of the estimates’ asymptotic normality and asymptotic variance, a test has been
developed for two and three processes in order to decide whether a genuine correlation of
highest order is existent or not.

4. Empirical test power and significance level have been derived from simulations and com-
pared to the asymptotic values, thereby showing that the test stays conservative in ranges
where the asymptotics are not applicable.

5. Discussions of the asymptotic test power have demonstrated that for the examined pa-
rameter range and

��_ � �ya � �wa and
�`_ba � ��_bm � �walm ,

- for constant test power and fixed higher-order firing probability, the required
v

grows
with the background and subgroup firing probabilities,
- for constant

v
, the required minimal higher-order firing probability to reach a given test

power grows with the subgroup firing probabilities,
- the higher the higher-order firing probability at constant

v
and constant subgroup firing

probabilities, the higher is the test power,
- the probability of a chance higher-order coincidence essentially determines the size of
either the minimal required higher-order firing probability at constant

v
and test power

or the test power at fixed
v

and constant higher-order firing probability.

6. The transition from two to three processes has two main effects:
The complexity is increased, meaning that the number of parameters grows like G H , and
that the formulas for e.g. the asymptotic variance or for the probability of a chance triplet
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are more complex.
Background reduction: The properties of the test improve for

�Óx |os � p , ��_ � �ya � �ya
and
�`_ba � �`_bm � �walm . The test power is higher, and the number of time steps required

to reach a pre-defined test power is smaller than for two neurons. All this is due to the
fact that the probability of a chance higher-order coincidence decreases. If the condition
of equality of background and equality of pairwise firing probabilities is not met, back-
ground reduction is guaranteed when comparing all three neurons with one subgroup that
contains the neuron with the highest background rate. Note that background reduction is
no general effect. For

�yx \?s � p , it is not discussed. However, absence of background
reduction has no impact on the data-analysis procedure, which is generally applicable.

When developing an analysis method, one needs to keep in mind the structure of the data. As
any model can only be a compromise between the complexity of reality on the one hand and
analytical clarity on the other, the gap between the experimental situation and its mathematical
simplification must lead to an ongoing dialogue. As described in the introduction, correlations
found between neuronal pairs show an imprecision up to a few milliseconds. This implies that
when applying the model, only those spikes are found to be coincident whose time of occurrence
does not differ by more than one time-unit and which - due to an unlucky discretization of time
- are not distributed into adjacent bins. Hence, spikes that are not found in the same bin but
which would conceptually be considered to belong to a coincidence because of a small time
difference both reduce the estimated coincidence firing probability and additionally increase
the background. Thus the correlation is less easily detected (compare to Grün et al., 1999).

Unfortunately, this is not the only problem. Experimental data often show highly non-
stationary firing rates. This is approached by reducing the length

v
of the window to a size

where stationarity is assumed. But as the “real” firing rate can only be measured by averaging
the number of spikes in a time period, this measure is subject to rate fluctuations. Thus one can
never be sure whether the “real” firing rate has been constant in the observed period. It therefore
seems best to use the minimal size of

v
possible. But this on the other hand is restricted by the

time scale of less precise coincidences: If
v

is chosen too small, one could conceptually say
that in the extreme case exact coincidences are compared to those coincidences with a small
imprecision, which fatally changes the interpretation of the analysis’s result. Therefore in the
following part the analysis of less precise coincidences is dealt with in an extended model.
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Part II

’Jittered’ Coincidences
There is experimental evidence that the timing accuracy of spikes can be as precise as 1-5 ms
(Abeles, Bergman, Margalit and Vaadia, 1993; Riehle et al., 1997). Therefore in this part, the
analysis of coincidences with a small imprecision will be discussed. An extension of the de-
scribed MIIP will be presented that can in principle deal with any time lag between conceptually
“coincident” spikes and with any number of neurons. This part is not thought to be a complete
description of the analysis method for all possible parameter sets. Instead, it intends to present
the method and to show with simulations that it works well for the tested parameters.

6 The Extended Model

Let all parameters and processes be as in the MIIP, i.e.:¶ Let &·;¸� � ���Q	�	�	��¹�� be the set of  observed neurons,¶ ���
	�	�	�� v the indices of the time steps in the observed period of time, 'º� � ���
	�	�	�� v �B	¶ For each of the G»H(~^� non-empty subsets of neurons
� � & , a basic process r/�6+:'.$ is

introduced.¶ All rD� are assumed to be stationary Bernoulli processes with firing probabilities
� �¼��"!#�
�%$ , and independent.¶ Those rD� with > � >�� � represent the independent background processes. They are

called �*� (“background”).¶ All other rD� represent correlation processes. These basic correlation processes are called½¾� (“correlation”).

The MIIP is then extended to the E-MIIP by introducing additional stationary Bernoulli pro-
cesses for “coincidences” whose spikes do not fall into the same bin. Those will be called
“jittered” coincidences. For a description of the model, we need the following
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Definition

Let  be the number of neurons, O]�]K�« � !Â� the jitter-width. Let
� � & be a subset of observed

neurons, �´\Ê> � >»� ;ãNá�± . A configuration of M under j is an  -tuple + Ã _ �
	�	�	�� Ã H $ �=� � � � � where
a)
Ã � � � !#�
���
	�	�	��lO���a^�nÒÓ�u�0���
	�	�	���

b)
Ã � �Ya ö �/�²& ~ �

c) â¾� _ � � ; Ã � g �[!
d) â¾� a � � ; Ã � h � O

A configuration can be thought of as a jittered coincidence of specified neurons out of
�

, where
the first and the last spike are exactly O time steps away from each other. Additionally, for every
neuron �´� � , the exact timing of its spike in the window of length O ï � is specified by

Ã �
.

Condition b) means that the neurons that are not part of the subgroup
�

do not take part in the
configuration, because “their spike” is not observed in any finite piece of data.

The number of configurations ã»+bN²�lOÂ$ for m neurons and fixed jitter-size O can be computed
recursively: ã»+bN²�X!�$º;=�L�
and ã»+bN²�ßOt$/�L+�O ï �%$ Ê ~

� É _� � k a �"�n2kã»+bN²�lO(~�� ï �%$�Pã	
There are +�O ï �%$ Ê possibilities for the distribution of the spikes of N neurons in O ï � bins. Those
configurations with smaller maximal distance between two spikes are part of the configurations
with smaller O .

The model-extension is as follows:¶ Let J be the maximally allowed “jitter” for a coincidence,  be the number of neurons.¶ For every Oû� � ���
	�	�	��QJ�� and
� � & with > � >/Es� , one stationary Bernoulli processr ��¨ g �ÆÅÆÅÆÅÆ� ¨ ° � Ä Ø £ �ÛÆ with firing probability ä ��¨ g �ÆÅÆÅÆÅÆ� ¨ ° � Ä Ø £ �ÛÆ is added per configuration+ Ã _ �Q	�	�	�� Ã H $ �¤� � � � . A success r ��¨ g �ÆÅÆÅÆÅÆ� ¨ ° � Ä Ø £ �ÛÆ +:'.$¾�U� at time ' implies

��� +:' ï Ã � $¾�U� . Thus
all neurons i with

Ã � � ! fire at time ' , whereas the others from the subgroup
�

fire at
specified times in the time window between time ' and ' ï O .



6 THE EXTENDED MODEL 66¶ The additional processes belong to the basic processes, all of which are independent.¶ The processes r ��¨ g �ÆÅÆÅÆÅÆ� ¨ ° � Ä Ø £ �ÛÆ +-'.$ are defined for '<� � ~ºO�� v � in order to make sure that the
same conditions are valid for the whole data piece.¶ Note that for O8�^! we recover the processes ½�� , > � >ÂE[� discussed in part I.

6.1 n=2

The model will now be presented for  �VG . Recall that the MIIP for  � G contained three
basic processes � _ �X� a �X½ _ba . The only subgroup

�
of & with > � >ÂEA� is & itself. We thus getGÂJ additional processesr �=M � _ � Ä Û £ g Æ øXr � _ � M � Ä Û £ g Æ øXr �=M � a � Ä Û £ h Æ øXr � a � M � Ä Û £ h Æ ø
	�	�	�øXr �=M � å � Ä Û £ æ:Æ øXr � å¹� M � Ä Û £ æJÆ

Each of them produces spikes as shown in figure 20. As per O only two processes are introduced,
the firing probabilities ä are denoted shortly as ä � and ä À� .

µ1 µ1’ µJ

.  .  .

t                         t+J t                         t+J

µJ’µ2 µ2’

t           t+2 t           t+2t    t+1t    t+1

Figure 20: Schematic view of the configurations belonging to all additionally introduced pro-
cesses. The two rows represent the neurons 1 and 2. A success of process r ��¨ g � ¨ h � Ä Û £ �ÛÆ at time t
produces the corresponding spike-pattern.

6.1.1 Symmetrical Case

To start with, it will be assumed that the jitter is symmetrical, i.e. ä � �çä � 9 Ò)O � ���
	�	�	��QJ .
This is in agreement with experimental findings, as most cross-correlograms are symmetrically
shaped. The parameter

�n_ba
will be called änM , as it produces coincidences with zero time lag.

In the jitter-model, no maximum-likelihood estimation will be used, because the jittered
coincidences lead to dependencies between the time steps, such that the maximum-likelihood
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estimates of the probabilities are no longer the events’ relative frequencies. In the first step,
formulas will be developed where the parameters depend on probabilities of data pieces. Then,
a discussion of the estimation of those probabilities will lead to the estimates used.

The first step proves to be no more complicated than in the reduced MIIP: WithA � +:'.$T;¸� � � _ +:'.$/�0	�	�	Â� � _ +-' ï O�~±�1$¿� � a +-'.$¿�0	�	�	Â� � a +:' ï O�~ �%$/��!t�B�r � ;¸� r]+ A � +-'.$¹$/�L��+ª��~ �`_ $È+?�)~ �ya $Q+?�)~·ä`M9$EP �
� � _Â � k _ +?�)~·ä � $ a � � É

� � åÂ � k � +?�)~·ä � $ �
�

(44)r _ � +ª��~ ��_ $È+?�)~ �wa $Q+?�¾~èä`Mj$Q+ª��~èä _ $ � +ª�)~·ä a $ � 2ã	�	�	�2Â+?�)~èä å $ � (45)r a � ��+?�)~ �`_ $Q+ª��~ �ya $È+?�¾~èä�Mj$�P a +ª��~èä _ $ à +ª�)~èä a $Cé1+?�)~èä m $Eé72ã	�	�	ã2B+?�)~èä å $Cé (46)owMªÉ ;¸� r]+ � � _ +-'.$/�^!t�»$/�L+?�)~ ��_ $Q+?�)~·ä`M9$Q+?�¾~èä _ $ a +ª�)~èä a $ a 2�	�	�	ã2Â+ª�¾~èä å $ a (47)oyÉCM ;¸� r]+ � � a +-'.$/�^!t�»$/�L+?�)~ �ya $Q+?�)~·ä`M9$Q+?�¾~èä _ $ a +ª�)~èä a $ a 2�	�	�	ã2Â+ª�¾~èä å $ a � (48)

which implies +?�)~ �`_ $¿� r å É _oyÉCMXr å � +ª�)~ �ya $¿� r å É _owMªÉ�r å � (49)+ª��~êä�Mj$/� oyÉCMËoCMªÉowMlM (50)+ª��~èä _ $/� owMlM� r a (51)

and +?�)~·ä � $/� r �g r � � _ r � É _ �,O �L���Q	�	�	��ÈJ and r�M�;=�Ô��	 (52)

Note that equation (50) corresponds to formula (6) on page 16 in the MIIP.

6.1.1.1 Proof of equation (44) by induction over O :O �L� : r _ ��+?�)~ �`_ $Q+ª�¾~ �ya $Q+?�)~èä�MX$Q+?�)~·ä _ $ � +ª��~êä a $ � 2ã	�	�	�2Â+ª�)~èä å $ � 	
The first three factors are the same as in the reduced model. For the rest the following holds
true: The two processes belonging to each parameter ä � must not fire at any of the two times '
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or 'D~²O , which leads to an exponent of 4.
Assume now that for O¶|3� the following holds true:

r � �Ê��+ª�¾~ ��_ $Q+?�)~ �wa $Q+ª�)~èä�Mj$EP �
� � _Â � k _ +?�)~èä � $ a � � É

� � åÂ � k � +ª�)~·ä � $ �
� 	

Nowr � É _ � r � 2%r]+ � � _ +-' ï OÂ$¿� � a +-' ï OÂ$/�^!Â�w> A � +:'.$¹$� r � 2Â+ª��~ �`_ $È+?�)~ �wa $Q+?�)~·ä`Mj$Q+ª��~èä _ $ a 2ã	�	�	ã2B+ª�)~èä � $ a 2B+?�)~èä � É _ $ � 2ã	�	�	�2Â+ª�)~·ä å $ � �
because for ä � , �Ð� O , the condition that no spike occurred up to O bins before implies that
at time ' ï Oµ~±� those processes did not fire. Thus only the time ' ï O of the two processes
belonging to each ä � needs to be restricted to non-firing. For ä � , ��EëO , no condition is set for
the point ' ï O�~²� . Thus, per process, this point must as well be restricted to non-firing, leading
to an exponent of 4. We thus get

r � É _ ����+?�)~ �`_ $Q+ª��~ �ya $È+?�¾~èä�Mj$�P � É _ 2
�
Â � k _ +ª��~èä � $ a � � É

� É _ � 2 åÂ� k � É _ +?�¾~èä � $ � �
� É _ �

÷
6.1.2 Asymmetrical Model

In an analogous way, formulas can be shown for the general, asymmetrical model for  �VG .
For this, the following notation is needed:r �� � ;=��r�+8ë � $<;¸�^r]+ � � _ +-' ï �%$¿�L	�	�	Â� � _ +-' ï O(~ �%$/� � a +:'.$/�0	�	�	Â� � a +-' ï O�~ûG�$¿�[!t�»$r  9 � � ;=��r�+8ë À� $/�^r]+ � � _ +-'.$¿�L	�	�	Â� � _ +-' ï O(~éG�$/� � a +:' ï �%$¿�L	�	�	Â� � a +-' ï O(~±�%$¿�[!t�»$j	r �� � is the probability to find a piece of data of length j, where all data points are restricted
to zero except for the first bin of neuron 1 and the last of neuron 2. The letter ’d’ stands for
“diagonal”. r  9 � � is the mirrored correspondent of r �� � . All formulas from the symmetrical case
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need to be changed slightly:

r � � ��+?�)~ �`_ $Q+ª�¾~ �ya $Q+?�)~èä�MX$EP �
� � _Â � k _ ��+?�)~èä � $Q+?�¾~èä À� $EP � � É

� � åÂ � k � ��+ª�)~·ä � $È+?�)~·ä À� $EP a
�

(53)r _ � +ª�)~ ��_ $È+?�¾~ �wa $Q+ª�)~èä�Mj$Q+ª�)~·ä _ $ a +?�)~·ä À _ $ a 2ã	�	�	�2Â+?�)~·ä å $ a +ª��~èä À å $ aoCMªÉ � +ª�)~ ��_ $È+?�¾~èä�MX$Q+?�)~èä _ $Q+?�¾~èä À _ $D2ã	�	�	ã2B+ª��~èä å $Q+ª�)~èä À å $owÉCM � +ª�)~ �ya $È+?�¾~èä�MX$Q+?�)~èä _ $Q+?�¾~èä À _ $D2ã	�	�	ã2B+ª��~èä å $Q+ª�)~èä À å $r �� � � ��+?�)~ �`_ $Q+ª�¾~ �ya $EP � � _ +?�)~·ä�MX$ � 22
� � aÂ � k _ +ª��~èä � $ � É

� 2 åÂ� k � � _ +?�)~èä � $ a �
� � _ � 2

� � _Â � k _ +?�)~·ä À� $ � É
� � a 2 åÂ � k � +ª��~êä À� $ a �

� � _ �
(54)

For r  9 � � , we need to replace every ä � by ä À� and vice versa. From this it follows+?�)~ �`_ $¿� r å É _oyÉCMXr å � +ª�)~ �ya $¿� r å É _owMªÉ�r å � (55)

+?�)~èä�MX$7� oyÉCMËowMªÉowMlM � (56)

and +ª�)~èä � $7� r �g r � � _ r � É _ 2 r �� � É _r  9 � � É _ 2 r 
9 � �r �� � 2 r ��

� � _r  9 � � � _ 2 r 
9 � � � ar �� � � a 2ã	�	�	 (57)

for O��·���Q	�	�	��ÈJ and r�M]�¼r �� _ �Fr  9 � _ �Fr �� a �¼r  9 � a �¬��	 Equations (55) and (56) are the
same as in the symmetrical case. Equation (57) follows from equation (54) and its analogous
for r  9 � � . Due to symmetry reasons, only equation (54) will be proven. Equation (53) follows
directly from the symmetrical case and the corresponding equation.

6.1.2.1 Proof of equation (54) by induction over O .O8�AG :r �� a ��+?�¿~ �`_ $Q+ª�¿~ �ya $Q+?�/~
ä`Mj$ a +ª�/~
ä _ $ a +?�¿~
ä À _ $È+?�¿~
ä a $ a +ª�¿~�ä À a $ a 2
	�	�	
25+?�¿~�ä å $ a +ª�¿~
ä À å $ a �
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because no jitter-process may produce spikes in
� _ +-' ï �%$ and in

� a +-'.$ . Only for the one with
parameter ä À _ , this leads to only one restricted firing-time.

Let equation (54) be true for any O�EA� . It holdsr]+»ë � É _ $/�^r]+»ë � $D2%r�+b� � > ë � $D2%r]+»ë � É _ >Æ� � $9�
where � � ;¸� � � _ +:' ï �%$¿�L	�	�	Â� � _ +-' ï O(~ �%$¿� � a +:'.$/�0	�	�	Â� � a +-' ï O(~±�%$¿�^!t� describes
the event that out of O adjacent bins, all except the first of neuron one are restricted to zero (see
table 2).

t t+j t t+j
+1

+ 0
0 0 0

0...
...0 +

0+

0 0
0 0...

|+...

t+j

H  | D D     | Hj+1j j j

Table 2: Visualization of the events needed for the proof. The black letters represent given data
from the conditioning event, whereas the green letters stand for the conditioned event.

r�+b� � >�ë � $·� +?�)~ �ya $Q+?�)~èä � � _ $D2ã	�	�	�2Â+?�)~èä å $È+?�)~èä À _ $D2ã	�	�	�2Â+?�)~·ä À å $r]+»ë � É _ > � � $·� +?�)~ ��_ $Q+?�)~èä�MX$Q+?�)~·ä _ $D2ã	�	�	ã2B+ª��~èä å $Q+ª�¾~èä À� É _ $D2ã	�	�	ã2B+?�)~èä À å $
Thus r X� � É _ � r �� � 2Â+ª�)~ ��_ $È+?�)~ �wa $Q+ª��~êä�Mj$D22:+ª��~êä _ $D2ã	�	�	ã2B+ª�)~èä � � a $Q+?�)~èä � � _ $ a 2�	�	�	ã2Â+?�¾~èä å $ a 22:+ª��~êä À _ $D2ã	�	�	ã2B+ª�)~èä À� $Q+?�)~èä À� É _ $ a 2ã	�	�	ã2B+?�)~èä À å $ a� ��+ª�)~ ��_ $È+?�)~ �wa $EP � +ª��~êä�Mj$ � É _ 22

� � _Â � k _ +ª�¾~èä � $ � É
� É _ åÂ � k � +?�)~èä � $ a

� �Â � k _ +ª��~èä À� $ � É
� � _ åÂ� k � É _ +?�)~èä À� $ a

�
÷
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Now the used probabilities of data pieces need to be estimated, which will be presented in
section 7. Before, the model’s extensibility onto more than two neurons will be demonstrated.

6.2 n=3

In this subsection, some considerations will be made to show that the model is extensible onto
more than two neurons. In its most general form, the increase in the number of parameters
is not very practical to handle. Still, as in the last section, one can often reduce the number
of parameters considerably. Figure 21 shows all possible configurations for three neurons and
maximal introduced jitter Jú� � . In the figure, the parameters for the same subsets of neurons
and constant jitter-size are set equal.

µ µ23 µ12313µ12

Figure 21: Schematic view of the configurations belonging to all jitter-processes for  �[S andJ��L� . Equality of the firing probabilities for fixed
�

and O is assumed.

In the model given in figure 21, one can easily compute corresponding formulas for the
parameters and the probabilities of data pieces.

Let r � g � h � M
+-'.$ ;=� r�+ � ��� +:'.$7� O � �w�/� � �È> O � �� À ï À �ã�»$j�r � g � h � M � � g � h � M
+-'.$ ;=� r�+ � ��� +:'.$7� O � �w�/� � �È> O � �� À ï À �B� ��� +-' ï �%$¿�Aå � �y�7� � �È>"å � �� À ï À �ã�»$
Table 3 visualizes some examples of this notation.



7 SOME ESTIMATES 72ruMlMlM5+-'.$ r�ÉwÉCM%+-'.$ ruMlMlM � ÉCMlM5+-'.$ r�ÉCMlM � MªÉCM%+-'.$ÌÎ � _� a� m ÏÑ ÌÎ !!! ÏÑ ÌÎ ïï ! ÏÑ ÌÎ ! ï! !! ! ÏÑ ÌÎ ï !! ï! ! ÏÑ
Time t t t t+1 t t+1

Table 3: Examples of r � g � h � M and r � g � h � M � � g � h � M . The notations from above are the probabilities
of the data pieces from below. A ’+’ means that this data point can contain both a spike or a
non-spike, i.e. it is not restricted.

One thus gets �)~ ��_ � r aMlMlM � MlMlM r�ÉCMlMr aMlMlM � ÉCMlM ruMlMlM�)~ ��_ba � r�MlMlMjr�ÉwÉCMXr aMlMlM � ÉCMlM r aMlMlM � MªÉCMrDÉCMlMjruMªÉCMXr aMlMlM � MlMlM r aMlMlM � ÉwÉCM�)~ ��_balm � rDÉwÉCM�rDÉCMªÉ�ruMªÉwÉ�r�MlMlMrDÉCMlMXruMªÉCMjr�MlMªÉ�)~èä _ba � r�MlMlM � ÉCMlMjruMlMlM � MªÉCMr�MlMlM � MlMlMjr�ÉCMlM � MªÉCM�)~èä _balm � r�MªÉCMjruMlMªÉ�r�MlMlM � MlMlMjruMlMlM � MªÉwÉr�MªÉwÉ`r�MlMlMjr�MlMlM � MªÉCMjruMlMlM � MlMªÉ
Thus for Y��S , JY� � and symmetry, one can estimate the underlying parameters

��_ � �wa � �wm ���_ba � ��_bm � �walm � �`_balm ��ä _ba �Zä _bm �Zä alm � and ä _balm with the help of the formulas derived. This shows
that the model is extensible onto ëEUG . We will now restrict the discussion onto  �VG and
symmetry and go on with the estimation of the probabilities.

7 Some Estimates

In the last section, formulas have been developed that express the model’s parameters in terms
of probabilities of data pieces. For the MIIP from part I that only contained exact coincidences,
the maximum-likelihood estimates of all required probabilities were the relative frequencies of
the corresponding events. This is no longer the case due to the introduced dependencies between
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time steps. It is thus necessary to evaluate other methods of estimation of the probabilities of
data pieces as well as the parameters.

The considerations will be reduced to a small range of parameters to show principal prop-
erties. A discussion of the estimation of the required probabilities will be presented for Õ�ÔG ,J��L� , �`_ � �ya and symmetry of jitter: ä _ �Çä À _ .
7.1 Estimating Probabilities of Data Pieces

In the previously defined model, the parameters
�z_ �Jä`M and ä _ need to be estimated. The fol-

lowing probabilities play a role: oyMlM8�Pr _ �ËowÉCM
�ËowMªÉ and r a (defined in equation (46) on page
67). Exemplarily for all probabilities of data pieces of length one and two, r _ and r a will be
estimated here.

7.1.1 Estimation of r _
7.1.1.1 Disjoint Intervals As in the model without jitter, one could in principle count the
number of bins where no spike occurred in

� _
nor in

� a
. This estimation is subject to two

influences:

1. Many data points contribute to the estimation, reducing its variance.

2. Dependencies between adjacent bins increase the variance of the estimation, as the prob-
ability to get no spikes in one bin is increased if no spike occurred in the preceding one.

Let now �È� be the indicator function for the event
� � _ +-'.$¿� � a +-'.$/�^!t� , meaning that

�9�n�Øì � if
� _ +-'.$¿� � a +-'.$/�^!! else

	
Then the variance of the estimate cr _ �  ;¸� �v ¦� � k _ � �
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of r _ is

d a eí g £ î ;¸� Var ñ �v ¦� � k _ � ��ò � �v a ì ¦� � k _ Var � � ï G ¦y� _� � k _ Cov +ï� � �J� � É _ $\ð� �v a<ñ v r _ +ª�¾~ér _ $ ï GC+ v ~±�%$Q+br a ~�r a_ $5ò��
because for J��0� , only adjacent bins are correlated.

7.1.1.2 Independent Intervals A method that could be favored if there was a truly large
number of data points is the use of independent intervals. For J��Ô� , only adjacent bins are not
independent. One could thus use only every second bin for the estimation. This eliminates the
variance-increasing factor of interdependencies but increases the variance due to the fact that
only half of the intervals are used.

The variance of this estimate cr _ � � is (for
v

a multiple of 2):

Var + cr _ � � $¿� r _ +ª�)~ér _ $v � G � ;�d a eí g £ �
Remark

For !Ð�²ä _ �3!t	¸!#� : d a eí g £ î �Ad a eí g £ � , which implies that the use of disjoint intervals always leads
to a smaller variance of the estimate.
Indeed: G�r _ +ª�)~ér _ $v | �v a<ñ v r _ +ª�¾~ér _ $ ï GC+ v ~±�%$Q+br a ~�r a_ $5òô�õ r _ +ª�)~ér _ $ | GC+ v ~±�%$È+¯r a ~ér a_ $vô�õ r _ � v +?�¾~èä _ $ av +?�¾~èä _ $ a ï GC+ v ~±�%$È+?�¾~�+?�)~·ä _ $ a $
with { ;¸��+?�)~èä _ $ a �é�"!#	tc4v�!#���Q��P and r _ ��+?�)~ �`_ $Q+ª�)~ �ya $È+?�)~èä�Mj$È+?�)~èä _ $ � �L+ª��~èä _ $ � it
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remains to be shown { a � v {v { ï G#+ v ~ �%$Q+ª��~ { $ô�õ v { a ï GC+ v ~±�%$ { +?�)~ { $â~ v � !ô]õ v + { ~±�1$ a ï G { +?��~ { $ó| !
which is true, because �)~ { |ë! and + { ~ �1$ a |ë! . ÷
7.1.2 Estimation of r a
7.1.2.1 Overlapping Intervals For the estimation of r a , whose corresponding event con-
tains two adjacent bins, there is another obvious possibility: the use of overlapping intervals.
Let �È� be the indicator function for the event

� � _ +-'.$<� � a +-'.$¾� � _ +-' ï �%$¾� � a +-' ï �%$º�L!t� ,
meaning that

�9�z�Øì � if
� _ +:'.$/� � a +:'.$7� � _ +-' ï �%$¿� � a +-' ï �%$¿�^!! else

	 (58)

The estimation cr a � è ;=� �v ~±� ¦q� _� � k _ � �
contains

v ~é� data points, which keeps the variance small, but does not account for dependen-
cies between (near-)adjacent indicator variables. The estimate’s variance is the following:

d a eí h £ ô ;=� Var ñ �v ~ � ¦y� _� � k _ � � ò� �+ v ~ �1$ a ì ¦y� _� � k _ Var � � ï G ¦y� a� � k _ Cov +8� � �J� � É _ $ ï G ¦y� m� � k _ Cov +ï� � �J� � É a $\ð� �+ v ~ �1$ a ñ + v ~±�%$?r a +ª��~Yr a $ ï G#+ v ~ûG�$Q+br m ~ér aa $ ï GC+ v ~éSã$È+¯r � ~Yr aa $ ò
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7.1.2.2 Disjoint Intervals The use of disjoint intervals on the one hand reduces the variance
of the estimate by accounting for a part of the interdependencies and on the other enhances it
by reducing the number of contributing data points. Let �1� be as in equation (58). Then with

cr a �  ;¸� Gv ¦q� _�� k _ � � odd

� �
(for
v

a multiple of 2)

d a eí h £ î ;¸� Var ñ Gv ¦y� _�� k _ � � odd

� �óò
� uv a ì ¦q� _�� k _ � � odd

Var � � ï G ¦y� m�� k _ � � odd

Cov +ï� � �:� � É a $ ð� uv a Ö v G r a +?�)~ér a $ ï GC+ v G ~ �1$Q+¯r � ~ér aa $ ×
7.1.2.3 Independent Intervals Independent intervals seem at first to be the most clear way,
because all possible dependencies are eliminated. But of course, this is done at the expense of
the number of used data points. For

cr a � � ;=� Sv ¦y� _�� k _ � �öõ _ ��÷Cø m � �
(for
v

a multiple of 3)

Var

ÌÎ Sv ¦y� _�� k _ � m i � � � _ � � � ÏÑ � r a +ª��~ér a $v � S � ;�d a eí h £ �
Remark

As for r _ : d a eí h £ � |Êd a eí h £ î |0d a eí h £ ô holds in usual parameter ranges. That means that the depen-
dencies between adjacent bins are so small that the change in the number of contributing data
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points is of higher importance.¶ Proof of d a eí h £ � |±d a eí h £ î (in usual parameter ranges):uv a Ö v G r a +?�)~�r a $ ï GC+ v G ~±�1$Q+¯r � ~�r aa $ × � S�r a +ª��~ér a $vô]õ uw+ v ~�G�$Q+br � ~ér aa $ó� v r a +?�)~ér a $ô�õ uy+ v ~ûG�$.r a + �+ª�¾~èä _ $ a ~ �1$ó� v +ª��~ér a $ô�õ r a � v +ª�¾~èä _ $ av +ª��~èä _ $ a ï uw+ v ~�G�$Q+ª��~�+ª�¾~èä _ $ a $
It remains to show { � � v {v { ï uy+ v ~éG�$Q+ª�)~ { $
with { ;¸�Ê+ª��~èä _ $ a �é� !t	dc4v�!#���
��P and ä�Mù|úä _ , thusr a � +?�)~ ��_ $ a +?�)~ �wa $ a +ª��~èä`Mj$ a +ª��~èä _ $ à ��+ª��~èä _ $ é . The assumption that there are
at least as many exact coincidences as coincidences jittered to one direction by one bin is
no strong restriction, as in almost all cross-correlograms, center-peaks are observed.ô�õ v +bS { � ~èu { m ï �%$ ï v { m +ª��~ { $�|ë!
The function æâ+ Ã $6� S Ã � ~Yu Ã m ï � on # only disappears at

Ã � � . This is a local

minimum, as æ À +ª�%$¿�0�1G�~±�1G(�^! and æ À À +?�1$¿�[S4e�~éG¿uµE !#	 Thusv +¯S { � ~èu { m ï �%$ ï v { m +?�¾~ { $�|�! with “ � ” ö { �0��ö ä _ �^! . ÷¶ As for the comparison of the estimation with overlapping and disjoint intervals, it can not
be generally shown that d a eí h £ î |±d a eí h £ ô . This depends on all used parameters, including the
background and the zero-jitter-coincidence probability. For our considerations, äDM��´ä _
and
��_ � �ya shall be assumed, as this is especially important for the further sections. In

figure 22, one can see those parameter ranges with d a eí h £ î | d a eí h £ ô . The values for
v

say
which minimal

v
is sufficient for d a eí h £ î |Ld a eí h £ ô in the area with the same color. E.g., in

the light blue area,
v |ÊG�! is sufficient for d a eí h £ î |Êd a eí h £ ô . Thus the increase in variance
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that originates in the dependencies between overlapping intervals must be compensated
for over a sufficiently large time period. As the considerations made here concentrate on
asymptotic behavior,

v
is assumed to be large. Thus d a eí h £ î |sd a eí h £ ô holds true “almost

always”.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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Figure 22: Parameter ranges with d a eí h £ î | d a eí h £ ô for minimal
v

as indicated. Yellow area:v �Çu�! , Orange area:
v ��s�! . For the red area, the required

v
is larger.

7.1.3 Implications

What has been shown is that for  �AG , J��L� and symmetry, in usual parameter ranges¶ r _ can be estimated with smaller variance when using disjoint intervals, and¶ r a can be estimated with smaller variance when using overlapping intervals.

In the following subsections, some simulations will be shown, all of which are restricted toë� G , J²�Ùs , and symmetry. For all estimated probabilities, the estimation with the higher
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number of contributing data points (i.e. overlapping or disjoint, respectively) will be used
without proving its advantages. Still, as the coincidence firing probabilities and J are very
small, it seems plausible that the interdependencies between adjacent data points remain small.

7.2 Estimating the Parameters

Now the parameters from section 6.1 can be estimated with the formulas (49) to (52) on page
67. Only the formula for the background rates depends on J :+?�¾~ �`_ $/� r å É _owÉCMjr å � +?�)~ �wa $/� r å É _owMªÉnr å
This is a problem, as the real maximal jitter J in the data is not known. So the estimates will be+ª�)~ ��_ $/� r Ü É _oyÉCMjr Ü � +ª�)~ �ya $¿� r Ü É _owMªÉ�r Ü 	 (59)

The letter ’ W ’ means that for the computation, the real J in the data is ’assumed’ to be W . The
formula is still right when using W²EUJ , only the variance of the estimation increases. On the
other hand, the use of W,\AJ does not account for the existing parameters ä Ü É _ �
	�	�	��Jä å and thus
leads to a biased estimate, meanwhile keeping its variance low. In figure 23, the estimation
methods for

��_
are evaluated with the help of the standard error of the mean. Per data point,

10000 trials of length
v �P�1!�!�!�! were simulated. The average deviation of the estimate from

the real parameter was then computed. The x-axis represents the parameter J . Both background
rates were set equal, and the overall coincidence rate was kept at äÕ;¸��äuM ï G Ü å� k _ ä � ��!#	�!�!4e ,
with ä�MÙ��ä _ �Ô	�	�	Â��ä å . For each curve, the used W to compute the background rate is constant.
One can see that for constant J¶ the error is minimal for W8�3J ,¶ the use of W@\ÊJ produces a much larger error than W�EÊJ for any of the plotted combi-

nations.

Hence, the rise in variance for W�ELJ is outweighed by the bias for W�\ÊJ . It is thus proposed
to use the maximal plausible W .
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Figure 23: Standard error of the mean of the estimation of
�u_

. Per curve, one fixed W has been
used in formula (59). On the x-axis, the real J in the data is plotted. Per data point, 10000 trials
of length

v �Ô�1!�!�!�! were simulated. äÕ;¸��änM ï G/Ü å� k _ ä � ;=�^!#	¸!�!4e , �`_ � �ya .
8 Test Statistics and Underlying Model

After having estimated the model’s parameters, one needs to decide whether�8MY;�ä�M ï Ü å� k _ ä � � ! is kept or whether there is enough evidence to reject ��M in favor
of a hypothesis that includes (near-)coincident firing. For the exemplary computations made
here, the model is further specified by assuming äzMµ�µä _ �·	�	�	¿�ûä å . This would lead to a
rectangular-shaped cross-correlogram. One could as well assume any other interdependency or
even keep the full generality of parameters.

The proposed test statistics is 4 ÀÜ ;=�A� Ü � d À¢�ü
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with � Ü ;=� cä�M ï Ü� � k _ cä �
Again, the letter ’a’ represents the assumed value of the parameter J . The variance +bd À¢6ü $ a can
be derived from simulations for the estimated parameters. For the discussion of this method’s
significance level and test power, the variance per parameter set will be derived before in a
separate step in order to reduce the computational effort: In 10000 trials with ä�M��ýä _ � 	�	�	w�ä å and all other parameters as specified, the variance of � is estimated empirically. Thus the
used test statistics is modified to 4 Ü ;=�A� Ü � d ¢�ü
where d a¢ ü is the variance of cänM ï Ü Ü� k _ cä � under the real parameters

��_ � �ya �Jä�M
�Jä _ and J .
To present this more clearly, one can concentrate on the two values J and W .¶ If J��[W , then the analysis uses the ’right’ test statistics, meaning that all positive param-

eters ä � are included in the test statistics. It will turn out that this leads to the highest test
power for all W under fixed J .¶ If JL\ W , then all parameters ä å É _ �
	�	�	��Jä Ü are zero. But as all estimates are subject to
fluctuations, the estimates of these parameters will influence the test statistics and thus
reduce the test power.¶ If JÕE±W , then the positive parameters ä Ü É _ �
	�	�	��Jä å are not included into the test statistics,
whose value is thus reduced.

Before the examination of the significance level, remark that all test statistics 4 Ü have asymp-
totic normal distribution:

Note that to estimate r å É _ , intervals of length J ï � need to be examined. The use of
overlapping intervals for the estimation yields a distance of J ï � ï +lJú~Ô�%$8� GÂJ to grant
independence of the corresponding intervals. All other probabilities that need to be estimated
use smaller intervals. This implies that all � Ü are functions of indicator variables �Q� that are at
most GÂJ -dependent in the sense that ÒÓRE±GÂJ and ÒÑþÈ|ë! : +8� _ �
	�	�	��J� � $ and +ï� � É H �
	�	�	��J� � É H É'ÿ $ are
independent. By centering the indicator variables, one can apply a generalization of the classical



8 TEST STATISTICS AND UNDERLYING MODEL 82

central limit theorem which can be found e.g. in Billingsley (1986, p. 376). It says that for an
m-dependent and stationary sequence of bounded random variables

Ö H with A � Ö H P¾�s! and� H � Ö _�ï 	�	�	 ï Ö H , if d/+¯� H $<E !*� õ ¢ °R�� H ~L� � +¯!t�
�%$ .
Thus, all estimates of probabilities can be shown to have asymptotic normal distribution.

The I -method then implies asymptotic normal distribution of the 4 Ü . We will therefore use{�| �0��	dcfe and compare the empirical significance level with the asymptotic }Õ�^!#	¸!�G4s .
8.1 Significance Level

The new aspect in the jitter-model is the variety of test statistics 4 Ü , W@��!#�
���jGÂ�
	�	�	 on the one
hand and the number of possible underlying J , J �U!t�
���jGt�Q	�	�	 in the data on the other. In the
following subsection, we will therefore write 4 Ü � å for the test statistics 4 Ü when applied onto
data with underlying parameter J . This is not necessary in this subsection, because for the
significance level all coincidence firing probabilities are zero and thus the two processes are
independent and we do not need to distinguish between different underlying J .

Whereas in part I, only one test statistics needed to be investigated, there are now many
possibilities to choose W for the derivation of 4 Ü . At first we need to make sure that all of them
lead to a reasonable significance level in order to control the probability to falsely reject �,M . For
this, the significance level for a typical set of parameters is shown in figure 24 (upper part) for
six different test statistics 4 Ü , W8�[!t�
���
	�	�	���s . The relative number out of 10000 trials with 4 Ü E��	tc4e is plotted. For Wú�s! , the variance was computed per trial with the asymptotic formula
from part I. The plotted significance level corresponds to the empirical value for

v � �
!�!�!�!
at
��_ � �wa ��!#	�!/s in figure 3 on page 27. One can see that for the chosen parameters, all test

statistics for W±EF! lead to a significance level of about 0.025 when compared to { � ��	tc4e ,
while most of the tests stay conservative.

8.2 Test Power

To evaluate the test power of the different test statistics, different models with varying J must be
considered additionally, which leads to all possible combinations for 4 Ü � å , W��L!#�
���jGt�
	�	�	 , J��!#�
���XGt�
	�	�	 . The following parameter set is considered exemplarily: é� G , Jt�XWÕ� � !#�Q���
	�	�	���sÂ� ,��_ � �wa �^!#	¸!4s , ä�M ï Ü å� k _ ä � ��!#	�!�!4e , ä�M<��ä _ �0	�	�	Â�Çä å , v �L�
!�!�!�! . In the lower part of
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Figure 24: Evaluation of test statistics for
�n_ � �wa �s!#	�!/s and

v �·�1!�!�!�! . Per data point,
10000 trials were simulated. The relative number of trials with 4 Ü E ��	dcfe is plotted. d a¢ ü was
previously derived from simulations (in 10000 trials). For W²�P! , the variance was computed
per trial with the asymptotic formula from part I. Upper part: empirical significance level for
different test statistics 4 Ü , W8��!#�
	�	�	���s . Below: empirical test power for äú;¸�ÇänM ï G/Ü å� k _ ä � �!#	�!�!4e , ä�M*� 	�	�	q�~ä å and varying maximal introduced jitter J . Every curve represents the test
power for one special test statistics with constant W .
figure 24, the test power of the different tests is plotted depending on the J used to simulate the
spike trains. Per curve, the test statistics 4 Ü � å uses constant W . One can see that¶ the maximal possible test power decreases with growing J . This seems plausible, because

the overall coincidence rate, which stays the same, is “broadened” over a wider range.¶ Moreover, for constant J , the test power is maximal for W �PJ . This is not astonishing,
as the use of smaller W leaves out some positive ä � in � Ü , which reduces the test statis-
tics. Using a larger W enhances the variance d ¢�ü , because more parameters are included
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in � Ü . This reduces the test statistics. Analogous results can be found in Grün et al.
(1999), where two different methods were examined to detect jittered coincidences and
their coincidence width in a model for two parallel processes.¶ Still, the use of W EFJ leads to a smaller decrease in test power than for Wû\¼J . This
seems plausible, because the variance of � Ü should not increase considerably with W forW¶|AJ , because all ä � with O]E^J are zero. Only the fact that their estimates are included
into � Ü slightly enhances d ¢6ü .

9 Conclusions of Part II

Note that this section was not meant to be a complete presentation and discussion of the ex-
tended model and test. Instead, exemplary considerations should show its usefulness and point
towards further required research. The results are thus presented together with a critical evalu-
ation and implications for future work.

1. The MIIP from part I has been extended in order to allow for coincidences that are jittered
in time up to a delay of a few milliseconds. This is done by including one additional
independent and stationary Bernoulli process per subgroup of neurons M ( > � >*E � ),
jitter O �ZJ and configuration. The extension is applicable for more than two parallel
processes. In its most general form, it contains a large number of parameters that can be
reduced by further assumptions originating in experimental findings.

2. The method of moments was used to develop formulas for the estimation of the parame-
ters for {  �[G } and { @�[S , J �L� }. These formulas use probabilities of data pieces.

3. The maximum-likelihood estimates of the probabilities are no longer the events’ relative
frequencies. For ��TG , J�� � , and symmetry, a discussion of the estimation of r _
and r a showed that the estimation with the higher number of contributing data points
(i.e. overlapping or disjoint, respectively) leads to a smaller variance as compared to
the estimation with the smaller interdependencies between the data pieces used for the
estimation (for usual parameter ranges). This motivated the use of the former estimation
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method for all other probabilities, although it might be possible that for large J and large
jittered coincidence probability, this leads to a higher variance.

4. The only parameter whose estimation depends on J is the background firing probability.
An exemplary study showed for typical parameter-values that the rise in variance forW EFJ is outweighed by the bias for Wû\FJ , such that the maximal plausible W should
be used to estimate

�n_
and
�ya

. We believe that this behavior also carries over to the
non-examined parameter values in the parameter range +¯!t�X!#	¸G\P for the background rates.

5. A test was developed to decide whether coincidences have been introduced at all. The
used test statistics is 4 Ü � � Üd ¢6ü
with � Ü � cä�M ï Ü� � k _ cä � �W�� !#�
���
	�	�	���s . This has been done for the parameters: Ê�TG , JØ� s , äzMÕ� ä _ �	�	�	��,ä å , ä ;¸�,ä�M ï G/Ü å� k _ ä � , ä � � !#�X!t	¸!�!fet� , v � �1!�!�!�! , ��_ � �wa � !t	¸!/s , and{ | �L��	tc4e as threshold value for the rejection of �µM . The significance level was satisfying
in the sense that it was very close to the pre-defined }ë� !#	�!ãG4s . In order to reduce the
computational effort, the variance used for the test statistics has been derived before for
the same parameters. Thus the variance is assumed to be known, which does not happen
in the experiment where one has to deal with the results of the estimation. The results
show that the test power is maximal for W6�PJ and that the use of a smaller W leads to a
considerably larger decrease in test power than the application of higher W . It thus seems
to be reasonable to use a large but plausible W for the test statistics.

To sum up the above statements: The extended model is useful for the analysis of jittered
coincidences. It allows to conceptually discriminate between non-stationarity and jittered co-
incidences. The proposed test has a significance level of about 2.5% for the tested parameters.
The model in its most general form opens up a wide range of possible estimation methods and
tests that cannot be fully discussed in this work. General considerations need to be made in
order to restrict the parameter range and to reduce the number of possible hypotheses.
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Part III

Discussion
In this work we presented a model for the analysis of parallel stationary binary processes. It was
developed to very directly represent “genuine” interactions, expressed by coincident activity,
between subgroups of neurons that cannot be reduced to subgroup interactions. The introduced
Model of Independent Interaction Processes (MIIP) for exact coincidences contains one param-
eter per subgroup of neurons that indicates whether or not this subset tends to fire in synchrony
as a consequence of a genuine correlation between its members. The formulas derived for the
maximum-likelihood estimation of those parameters allow to analyze all subgroup interactions
independently from each other. One can thus identify any combination of correlations that is
possible among all specified neuronal subsets. As all used estimates have asymptotic normal
distribution with mean zero under the hypothesis that the correlation of interest does not ex-
ist, one can build up asymptotically standard normally distributed test statistics by dividing the
estimates by their standard deviation.

The test was applied onto sets of two and three parallel processes for different parameter
sets. With a chosen time scale of one millisecond per time step, background firing rates were
inspected up to 200 Hz, and coincidence firing rates up to 10 Hz, which is thought to be the
physiologically relevant range of frequencies (White et al., 1998). The use of a smaller time
scale leads to an increase of time steps and a decrease in firing probabilities per time step, which
does not impose any problems, because the results are valid for all studied background firing
probabilities up to 0.2 (corresponding to 200 Hz for ³ =1ms). The application of a larger time
scale implies a possible increase in firing probability up to values not inspected in our analysis.
Secondly, it poses binning problems, of which the increased probability for two spikes to fall
into one bin is only one. Further binning problems will be discussed in a later paragraph.

Following experimental evidence that the timing accuracy of spikes can amount to about 5
ms (Abeles et al., 1993; Riehle et al., 1997), the model was extended. The extended E-MIIP
additionally includes several processes that represent near-coincident activity of a given jitter
for all possible subgroups of neurons. One can directly estimate the parameters and thus get a
means to analyze the given spike trains concerning near-coincident activity up to the maximal
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jitter J of interest. Formulas for the parameters were presented for two parallel processes and for
symmetrical jitter for three neurons and J��0� . Also with the help of exemplary considerations
we argue in favor of the use of overlapping intervals (instead of disjunct or independent ones)
for the estimation of the parameters and in favor of the application of the maximal plausibleJ for the estimation of the background firing probabilities. For typical parameter sets in the
case of two neurons, the performance of the proposed test statistics was evaluated for a model
where the probability of any coincidence of jitter O up to J3�Îs was set equal. We suggest
to use the following procedure when applying the model onto experimental data: When given
parallel, stationary binary processes, one should at first ask for the maximal jitter J that can be
supposed to be given by the data. This can be derived from either general considerations and
other experimental findings as e.g. in Abeles et al. (1993) or Riehle et al. (1997), whose results
indicate highly precise (1-5 ms) coincident spiking activity between simultaneously recorded
neurons, or from a measure for the width of the peak of the data’s cross-correlograms as e.g. in
Toyama et al. (1981b) or Nelson et al. (1992). The chosen J should be “large enough” in the
sense that the effect when J is chosen too large is negligible when compared to the application
of a J that is smaller than in the data. With the given J one can estimate all probabilities of
coincidences up to the jitter J with the help of the formulas derived. We assume that the direct
formulas presented exemplarily carry over to higher numbers of neurons and larger J . We
propose to use the sum of all coincidence probabilities divided by its standard deviation as test
statistics. One can apply the I -method (e.g. Bishop et al., 1991) or derive the standard deviation
from simulations that use the estimated parameters.

Concerning the application of the analysis method onto experimental data, there are several
limitations. First, the model was developed to deal with stationary data. The performance of the
test when applied onto non-stationary data has not been discussed. Moreover binning problems
arise. The model works on the basis of (discrete) Bernoulli processes. However, the original
spikes that are emitted by the neurons exist on a continuous time scale that is divided artificially
into bins of a given length ³ . Thus a part of all “exact coincident” spikes with delay �ú\�³ is
detected as coincident, and the rest is divided into two adjacent bins (Grün et al., 1999). The
analogous is true for near-coincident spikes with jitter O�\�J . This reduces the number of found
exact coincidences.

The MIIP for the analysis of exact coincidences is highly related to approaches that use
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log-linear models for binary random variables to characterize the interaction structure between neurons (Martignon, von Hasseln, Grün, Aertsen and Palm (1995); Martignon, Deco, Lasky,
Diamond, Freiwald, Vaadia (2000); Amari, 2001). They are based on the same assumptions as
independence of adjacent bins and stationarity of the binary processes. Like the MIIP, they can
distinguish between the correlations of all neuronal subsets. But in contrast to the MIIP, they
are not directly extensible for the analysis of near-coincident spikes, because the requirement
of independence of adjacent bins is essential. Furthermore, log-linear models apply likelihood-
ratio tests to assess the statistical significance, whereas in the MIIP, the parameters’ estimates
can in a straightforward manner be transformed into test statistics for the null-hypothesis.

The analysis of a significant “lack” of coincidences of a given order is not included in the
MIIP, as it considers only superpositions of processes. Under the null-hypothesis, the param-
eters have normal distribution with expectation zero, so the estimates can be negative, which
could be interpreted as a lack of coincidences. However, a negative parameter cannot be inter-
preted in terms of the MIIP, because it lacks a mechanism to reduce the number of coincidences
that occur by chance. Future studies should extend the model to allow for the analysis of both
lacking and excess coincidences.

Moreover, we have seen that in the MIIP for the analysis of exact coincidences, the number
of parameters grows like G»H . For the extended E-MIIP including jittered coincidences, this
increase happens even faster. Therefore, screening methods need to be developed to previously
find out the orders of interaction of interest as has been proposed by Nakahara and Amari (2002)
and Gütig, Aertsen and Rotter (2002), who dispense with the distinction between neuronal
subgroups of the same order. One could as well try to reduce the interesting size of the jitter
and the full generality of the model by assuming special relations between some parameters, as
has been done in sections 6 to 8.

It remains to test the proposed method’s practicability by careful application onto exper-
imental data, as only then its actual significance will show up. This closes the loop back to
the original question about the function and the significance of coincident assembly activity
for information processing in the cortex. A genuine correlation between a specific set of neu-
rons could be interpreted to reflect common membership in a cell assembly. Thus, the analysis
method proposed in this work may help to identify assemblies and to describe their differen-
tiated activity in the context of the experimental situation. Its usefulness is dependent on the
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experimental design that must promote the specification of the relation between joint assembly
activity and external events.

This work represents only a tiny piece in the world of computational neuroscience. Much
more research - theoretical as well as experimental - will be needed before we may finally start
to realize how sophisticated neuronal interaction leads to perception and behavior. Only in
the intense cooperation between theoretical analysis and empirical experience can we hope to
reveal the mysteries that nature holds ready for us.
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