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Abstract

A comprehensive evaluation of seasonal backward trajectories initialized in the North-
ern Hemisphere lowermost stratosphere (LMS) has been performed to investigate the
origin of air parcels and the main mechanisms determining characteristic structures in
H,O and CO within the LMS. In particular we explain the fundamental role of the transit
time since last tropopause crossing (¢7g7) for the chemical structure of the LMS as well
as the feature of the extra-tropical tropopause transition layer (ExTL) as identified from
CO profiles. The distribution of H,O in the background LMS above ©=320K and 340K
in northern winter and summer, respectively, is found to be governed mainly by the
saturation mixing ratio, which in turn is determined by the Lagrangian Cold Point (LCP)
encountered by each trajectory. Most of the backward trajectories from this region in
the LMS experienced their LCP in the tropics and sub-tropics. The transit time since
crossing the tropopause from the troposphere to the stratosphere (f157) is independent
of the H,O value of the air parcel. TST often occurs 20 days after trajectories have en-
countered their LCP. CO, on the other hand, depends strongly on tg1 due to its finite
lifetime. The EXTL as identified from CO measurements is then explained as a layer of
air just above the tropopause, which on average encountered TST fairly recently.

1 Introduction

The lowermost stratosphere (LMS) gained increasing attention in recent years due to
its sensitivity to perturbations of ozone and its feedback on climate (e.g. Lacis et al.,
1990; Forster and Shine, 1999). Bounded by the extratropical tropopause and the
© =380K surface it is the region where isentropes cross the tropopause (Holton et al.,
1995). Therefore isentropic transport from the troposphere to the stratosphere occurs
preferably in the region of the subtropical and polar jet (e.g. Lelieveld et al., 1997).
The breaking of planetary waves along isentropic surfaces induces horizontal shear.
This leads to stirring and mixing (Appenzeller et al., 1996a; Wirth and Szabo, 2007)
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associated with structures which decay on the microscale involving radiative and tur-
bulent processes (Wirth and Szabo, 2007). Also breaking gravity waves associated
with the topography (Schilling et al., 1999) or convection (Wang, 2003) can lead to
tracer injection into the stratosphere (Fischer et al., 2003). From a dynamical point
of view irreversible exchange across the tropopause requires an increase of potential
vorticity (PV) of the involved air parcels to become part of the stratosphere. Since PV
is conserved under adiabatic conditions diabatic processes are required to allow an
irreversible exchange of air in both directions such as radiation, latent heating or clear
air turbulence (e.g. Shapiro, 1980).

All these processes involve a broad range of temporal and spatial scales, thus the
effect of cross tropopause transport on the distribution of photochemical tracers de-
pends critically on properties of the tracer, particularly its lifetime and source and sink
characteristics.

Trajectory experiments, which investigated cross tropopause transport mostly fo-
cussed on distinct processes and regions (e.g. Bourqui, 2006; Konopka et al., 2007,
2009). A Lagrangian climatology by James et al. (2003) showed that the distribution
of trace gases in the LMS is a function of time since tropopause crossing. Sprenger
and Wernli (2003) identified preferred regions for exchange in the extratropics and a
pronounced seasonality, in particular of the potential temperature where transport from
the troposphere to the stratosphere occurs. Especially the seasonality of the strength
of the PV-gradient at the subtropical jet has been identified to play a crucial role for the
trace gas budget of the extratropical lowermost stratosphere with a much weaker jet
and higher permeability allowing more exchange during summer than in winter (Haynes
and Shuckburgh, 2000). A recent study by Berthet et al. (2007) based on Lagrangian
trajectories found a strong contribution for air from the tropical troposphere in the ex-
tratropical LMS peaking in summer consistent with earlier findings based on tracer
measurements (Hoor et al., 2005; Hegglin et al., 2006). They further concluded that
the probability of an air parcel to enter the LMS shows a strong decline which is col-
located with the dynamical tropopause over a broad range of mid latitudes. Thus the
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tropopause indicates a change of probability for an air parcel to enter the stratosphere.

To determine an upper boundary of the tropospheric influence in the LMS from pho-
tochemical tracers different species and methods have been used. Of particular in-
terest are tracers with a well defined stratospheric background like H,O or CO. Tracer
mixing ratios exceeding these stratospheric background values are an indication for
tropospheric influence. Dessler et al. (1995) and Pan et al. (2000) concluded from
airborne profiles of H,O that irreversible transport across the extratropical tropopause
and subsequent mixing has taken place. Fischer et al. (2000) introduced scatter-plots
of CO and ozone to identify transport from the troposphere and subsequent mixing
as indicated by a region of intermediate CO mixing ratios between stratospheric and
tropospheric values. Using airborne trace gas measurements in northern Europe and
mid latitudes over continental North America Hoor et al. (2002) determined a layer
depth with a weak seasonality using potential temperature relative to the 2 PVU dy-
namical tropopause. Based on airborne measurements over Europe between 35°N
and 75° N Hoor et al. (2004) concluded that the mixing region around the tropopause
follows the local tropopause rather than isentropes. Pan et al. (2004) refined the cor-
relation method by using probability density functions (PDF’s) of the mixing region to
determine the thickness of the layer and inferred a depth of 2—3 km for the chemical
transition layer in the extratropics corresponding to 25-30K in potential temperature
units (Hoor et al., 2004). On the basis of H,O measurements obtained during SPURT
Krebsbach et al. (2006) found a layer top exceeding the values from Hoor et al. (2004).
This discrepancy is also evident in the study of Hegglin et al. (2009) who found different
upper boundaries for the transition region based on the analysis of CO and H,O obser-
vations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer
(ACE-FTS) onboard the canadian SCISAT-1 satellite. They interpreted the discrepancy
as a result of the different lifetimes of the two tracers.

The observed distributions of CO and H,O from the ACE-FTS are shown in Fig. 1
for winter and summer, respectively. The isopleths of both tracers are tilted against
isentropes, but also show seasonally varying relationships against each other. The
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CO maximum in the subtropics at latitudes <40° N is shifted to higher latitudes during
summer thereby exhibiting higher H,O values for a given CO isopleth. Higher water
vapour mixing ratios (in parts per million by volume, ppmv) for given CO values (in
parts per billion by volume, ppbv) can also be observed further north as indicated by
the location of e.g. the H,O=30 ppmv isopleth relative to the CO=60 ppbv contour. In
particular north of 40° N and © < 340K the relation between H,O and CO shows large
seasonal variations with much drier air at given CO isopleths during winter. These find-
ings can only partly be attributed to seasonal variations of the dynamical conditions in
the LMS which change the relation between CO and H,O. However, also microphysical
and chemical processes determine the distribution of both tracers thereby interacting
with the underlying dynamics.

In this study we therefore want to investigate in particular the relation between trans-
port time and temperature, which both affect the abundance of CO and H,O in the
stratosphere using a Lagrangian approach. Previous studies have shown the poten-
tial of merging trace gas measurements with Lagrangian analyses (e.g. Hegglin et al.,
2004; Pan and Browell, 2006; James and Legras, 2009), but most of these where re-
stricted to case studies. For our analysis we used a statistical data set of 90 day back-
ward trajectories which were initialized in the LMS at two arbitrary days in winter and
summer, respectively. We focus in our analysis on transport time since last tropopause
crossing and the minimum temperature along the trajectory since these two quantities
strongly determine the distribution of particular water vapour and a tracer with finite
lifetime like CO.

In this paper we want to address the following questions:

1. What are characteristic transport time scales for TST- trajectories within the ex-
tratropical lowermost stratosphere?

2. What is the relation between dehydration and TST for air in the lowermost strato-
sphere?
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3. What controlls the abundance of water vapour and CO in the extratropical lower-
most stratosphere?

4. What are the consequences for the definition of an EXTL on the basis of these
two tracers?

Section 2 briefly introduces the trajectory analysis. The results are presented in Sect. 3,
which are discussed in Sect. 4.

2 Trajectory setup

To investigate the relationship of CO and H,O to transport properties we calculated 90
day backward trajectories initialized on 1 February 2008 and 1 August 2008 for win-
ter and summer, respectively, using the LAGRANTO tool as described in Wernli and
Davies (1997). The trajectories were initialized in the lowermost stratosphere of the
Northern Hemisphere (PV>2 PVU) in steps of 5 K on isentropic levels up to © = 380 K.
A horizontal grid spacing of 80x80 km was used which lead to typically 40 000 trajec-
tories on each isentropic surface depending on the area of the lowermost stratosphere
on each level. The trajectories were driven using horizontal and vertical winds from
high resolution operational ECMWF analyses (T799L91) interpolated onto a regular
grid with 0.5° horizontal resolution.

For a comparison of trajectories with CO and H,O and the investigation of those
transport properties, which are related to the abundance of both tracers in the
stratosphere we determined trajectories which indicate troposphere-to-stratosphere-
transport (TST). We further analyzed the trajectories for their Lagrangian cold point
(LCP) which is defined as the location where the coldest temperature appears along
the 90-day backward trajectory. We further calculated the H,O saturation mixing ratio
over ice for the temperature at the LCP similar to Fueglistaler et al. (2004) using the
formula of Marti and Mauersberger (1993).
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In the following we will use the following abbreviations and definitions:

The temperature and saturation mixing ratio at the LCP are denoted as 7 ¢p and
HoO\ cp sats respectively.

The elapsed time since LCP-encounter will be indicated by t, ;p and the time since
last TST #rg7, Which is equivalent to a stratospheric residence time of the respective
air parcel.

Trajectories were regarded as TST-trajectories when their PV decreased to levels
below 2 PVU and © < 380K backward in time. Additionally, we applied a residence
time criterion to the trajectory similar to Wernli and Bourqui (2002) requiring that the air
parcel remained for at least 24 h in the troposphere before the TST-event. We then de-
duced TST-properties such as TST-latitude, time since crossing and TST-temperature
from the first stratospheric point after tropopause crossing with PV>2 PVU. A sensitiv-
ity study using the last tropospheric point as crossing location did not reveal significant
differences to the aforementioned setup.

As discussed in Fueglistaler et al. (2005) it is clear that trajectories may not cover
all processes in detail which lead to a modification of water vapour mixing ratios along
trajectories particularly associated with microphysical processes and clouds. However,
as shown by Fueglistaler et al. (2005) and Fueglistaler and Haynes (2005) trajectories
on the basis of the synoptic and large scale circulation as resolved by the ERA-40 wind
fields are able to explain the observations of H,O from HALOE and SAGE as well as
radio sondes within 0.2 ppmv.

Differing from the calculations of Fueglistaler et al. (2005) and Fueglistaler and
Haynes (2005) our calculations are based on operational ECMWF data with an un-
precedented resolution of T799L91 (Simmons et al., 2006; Uppala et al., 2008). The
higher resolution may limit potential artefacts caused by excessive vertical dispersion
when using 3-D wind fields instead of heating rates for the calculation of trajectories
as shown by Tegtmeier et al. (2008) and Kriger et al. (2008). However, these stud-
ies were based on ERA-40 data and operational ECMWF data with differing resolu-
tions. As shown in Liu et al. (2010) by systematically comparing kinematic and diabatic

12959

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
10, 12953-12991, 2010

UTLS transport time
scales and tracer
properties

P. Hoor et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/12953/2010/acpd-10-12953-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/12953/2010/acpd-10-12953-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

trajectories using ERA-40 and ERA interim data, respectively, the use of kinematic tra-
jectories in ERA interim results in only a relative small dispersion in @ for the kinematic
trajectories particular in the LMS. A study by Ploeger et al. (2010) shows that opera-
tional data in the tropics tend to give too rapid vertical upwelling in the tropics, but a
similar probability and budget for quasihorizontal inmixing into the TTL from the LMS,
which gives some confidence that the quasihorizontal exchange with the extratropics
is reasonable also for operational data. However, a systematic investigation of the
T799L91 operational data with focus on the extratropics is not available and uncertain-
ties remain. A potentially larger vertical dispersion of trajectories will have only a minor
effect on the quantities and the mean distribution of the parameters on which we focus
as discussed in Sect. 4.

3 Results

We analyze the trajectories from an experimentalist's view who is interested in the
composition of the lowermost stratosphere at a given time (¢=0). The abundance of
a tropospheric tracer in the LMS at a given time =0 can be regarded as the result of
mixing of individual air parcels with different transport histories, such as different f+g7,
photochemical processes or states of mixing. Trajectory calculations do not account for
mixing. However, we will analyze the trajectories by binning trajectory properties of our
statistical data set, which in turn leads to a mixture of individual trajectories in each bin.
We remapped the crossing parameters of the TST-trajectories to their starting grid at
time t =0 (i.e. the time of initialization). Thus, we obtain spatial maps of the history of
TST parameters of the last 90 days at the time of initialization (¢=0), which is equivalent
to a Lagrangian forward projection of air parcel properties as described in Liniger and
Davies (2003). In the following we will focus on the spatial distribution of transit times of
the trajectories since they crossed the tropopause (2 PVU) as described in the previous
section.
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3.1 TST trajectories and transit times

Figure 2 (left) shows the spatial distribution of 157 on the © = 345K isentrope for the
winter case (1 February 2008). White areas south of 40°N denote tropospheric air
since trajectories were initialized only in the LMS where PV>2PVU. Thus the 2PVU
isoline is identical to the transition from white to coloured regions between 20-30° N.
A gradient of t1g7 is evident, which indicates in general increasing transit times with
distance from the 2 PVU isoline. Particularly the region with transit times <20 days
tends to form a narrow band which follows the dynamical tropopause indicating an area
of recent and frequent TST. With larger distances the distribution of crossing times
becomes more diverse showing some filamentary structures of younger air over the
northern Atlantic as well as regions in the far north where the air had no tropospheric
contact within the last 90 days.

The similarity of the PV-distribution for the same day at {=0 (Fig. 2, right) particu-
larly for PV<5PVU with the patterns of frequent and short term exchange is striking.
Even the filamentary structures of the PV are evident in the distribution of short transit
times. For longer transit times the agreement with PV collapses showing no clear cor-
relation between PV and transit time. In these regions the PV is modified by dynamical
processes within the stratosphere such as differential advection leading to stirring and
mixing as well as radiative processes acting on longer timescales (Shepherd, 2007).
Therefore the clear relationship between TST-transit times and PV no longer holds.
However as indicated by the time distribution of the TST trajectories in Fig. 2 (left) tro-
pospheric air is not randomly distributed in the lowermost stratosphere and there’s still
a latitudinal gradient evident indicating an increasing “age” of the trajectories away from
the tropopause.

This behaviour is also evident in the global zonal mean distributions of tg7 (Fig. 3)
for northern winter and summer. The seasonal comparison confirms the finding of a
tropopause following layer for short transit times as discussed above (Fig. 2, left). Note
that the strong horizontal gradient of transit times which is evident above © = 320K
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changes to a vertical gradient at lower isentropes for latitudes > 40° N. Some seasonal
differences are also evident in Fig. 3. The tropopause following structure can be iden-
tified in both seasons. However, during summer the LMS is characterized by shorter
trst even in polar regions, which can be attributed to a combination of different effects.
In summer the isentropic PV-gradient is at minimum and the effective diffusivity shows a
maximum at the subtropical jet region (Haynes and Shuckburgh, 2000) facilitating TST
(Berthet et al., 2007) particularly at higher isentropes (Sprenger and Wernli, 2003).
On the other hand, the stratospheric downwelling of the Brewer-Dobson circulation is
strongest during winter (Appenzeller et al., 1996b) leading to a stronger diabatic de-
scent of TST trajectories with time during winter, which reduces the probability for TST
trajectories to stay in polar regions above 330 K.

3.2 Transit time and PV distribution

The relationship between t1gr and PV at t=0 for each individual trajectory confirms
these findings and reveals seasonal differences. Figure 4 shows the correlation of t1g7
and PV at t=0 in the LMS, where the trajectories were initialized. During winter the
transition from tropospheric PV to stratospheric background of approximately 8—9 PVU
occurs within 10 days up to © <330K indicating strong PV-modifications due to intense
diabatic processes. These enable tropospheric air parcels to become irreversibly trans-
ferred into the LMS and a part of stratospheric background in that region within less
than two weeks. At higher isentropes a shift to longer time scales is evident indicating
longer time scales for the processes leading to a TST-event. A comparison to Fig. 3
shows that during winter the region below © = 330 K is dominated by a quasi-isentropic
structure of tyg7. At higher isentropes the isolines for f1g7 are steeply tilted towards
isentropes in close vicinity to the tropopause. Figure 4 reveals a much more rapid tran-
sition during summer and more efficient diabatic processes which lead to shorter t1g7.
This is in line with a weaker PV-gradient at the subtropical jet and a higher potential
temperature at the extratropical tropopause.
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Importantly the correlation between f;gr and PV({=0) collapses when TST-air
parcels have reached their stratospheric background PV, which means that they are
from a dynamical point of view a part of the stratospheric background. At far distances
from the tropopause diabatic processes are decoupled from diabatic processes occur-
ring at tropopause levels or below, such as gravity wave breaking, clear air turbulence
at the jet, stirring and mixing associated with baroclinic waves or cloud condensation.
These might all contribute to the rapid transition at lower isentropes, i.e. close to the
tropopause. Within the stratosphere stirring and mixing driven by horizontal shear from
synoptic and planetary wave breaking occurs which leads to mixing as well as radiative
processes. However, since these processes are not related to the exchange process
itself, the transit time is no longer correlated to the PV.

3.3 Lagrangian Cold Points in the lowermost stratosphere

The saturation mixing ratio of water vapour which enters the stratosphere across
the tropopause is controlled by the temperature 7| cp of the TST-trajectories. LCP-
temperatures for 1 February and 1 August are displayed in Fig. 5 and are projected
to the initialization coordinates at ¢=0 (i.e. the “time of measurement”). During win-
ter mean T cp at the extratropical tropopause around © = 290K are around -66°C
decreasing to —80°C at © = 340K. The coldest T, cp can be found in the TTL region
above © = 360K where they fall below —87 °C. During summer the tropopause in the
extratropics can be found at higher isentropes around © = 310 K and exhibit higher 7| op
around —57°C. The LMS in general is warmer and the 7| op=-81 °C-isotherm is shifted
towards higher © = 365 K. Most importantly and as evident from Fig. 5 the lowermost
stratosphere shows an almost horizontal distribution of 7| .p. Moreover, although Fig. 5
(left) is generated using the same subset of data as in Fig. 3 it shows a totally differ-
ent structure. The quasi-isentropic distribution of 7, cp in the lowermost stratosphere
indicates, that irrespective of latitude (and hence the elapsed stratospheric trajectory
residence time t1g7) air parcels on the same isentrope experience very similar 7| ops.
We will discuss the consequences for H,O, ¢p ¢, in the next section.
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To investigate the effect of diabatic downwelling related to the Brewer-Dobson cir-
culation within the lowermost stratosphere Fig. 5 also shows the contours of potential
temperature ©,cp and Otgt Where each trajectory encountered its LCP (black) and
TST (yellow), respectively, both projected to 1=0. At mid and high latitudes during
winter ©, cp = 360K is found at © = 340K at =0, which indicates a diabatic descent
from the time of LCP to £=0. A displacement of ©,cp and Otg7 to lower isentropes
is evident above © = 330K indicating a diabatic downward component, which however
almost disappears during summer in accordance with the background circulation of air.
Note further, that © cp and Ot are different which indicates that TST and LCP occur
not at the same location. Consider an air mass which is located at =0 at © = 310K
at 60° N (Fig. 5, left). Its ©1g7 is 320K (yellow contour), but its ©, ¢p is between 320
and 340K (black lines). Since O ¢p is higher than ©1g7 and the stratosphere is domi-
nated by diabatic descent, this is an indication, that the air parcels become dehydrated
and subsequently descend before they undergo a TST. Therefore the assignment of
H,O\ cp sat t0 TST and transport into the lowermost stratosphere is arbitrary and not
unique, as will be discussed later.

3.4 Relation between LCP and TST

Since O cp and O+g7 differ significantly we investigate the relation between TST and
LCP in more detail. Figure 6 shows the temperature distribution 7 cp at the location
where each individual trajectory encountered its LCP. Lowest 7 cp are apparent in
the TTL region and higher T, cp throughout the extratropical LMS, the latter tied to a
strong seasonal cycle. A comparison with Fig. 5 reveals significant differences between
T.cp projected to t=0 and 7 cp at the LCP-location (Fig. 6). The latitudinal gradient
of T cp at the location and time of the LCP changes to a more isentropic structure,
when projected to =0, which can be attributed to a strong isentropic component of
stratospheric transport. Furthermore, in the extratropics north of 40°N mean T cp at
t=0 (Fig. 5) is colder everywhere in the LMS than at the location of LCP. Since both
figures show the same subset of trajectories, this indicates that a redistribution of 7, op
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occurred over time reducing mean T, cp in the extratropical LMS at =0. Notably a large
fraction of air parcels is advected from regions with low 7, -p to the extratropics where
T cp is higher during the time of LCP (Fig. 6) than at =0 (Fig. 5). Particularly during
summer transport of air with low LCP-temperatures to the extratropics is needed to
explain the LCP-temperature distribution at =0.

The black contours show the number density for LCP and indicate the preferred re-
gion for dehydration. During winter there’s a clear separation at © = 340 K: above, the
LCP is encountered in the TTL-region south of the region of TST which shows a maxi-
mum at 25° N. At lower altitudes a reverse pattern is evident indicating that dehydration
occurs at higher latitudes than the TST-transition (yellow contours). In summer, the
locations of LCP and TST have a greater overlap, implying that dehydration and TST
are closer related to each other. However, TST particularly above © = 340K appears
at higher latitudes whereas the LCP temperature minimum is encountered in the TTL
region.

Since the locations of TST and LCP are different (Fig. 6) we also investigated the
time shift between both. We therefore compared the time difference between the time
of TST (f1s7) and the time of LCP t ¢p. If dehydration is occurring close to TST this
difference should be close to zero, whereas large time differences indicate a tempo-
ral separation between the two events. As evident from Fig. 7 the distribution of this
difference is shifted to positive values particular during winter at ©-levels between 330—
360 K, somewhat less pronounced during summer. In winter, a significant fraction of
air masses show temporal separations of more than 30 days between TST and LCP.
During summer the separation is not as broad, but still on the order of 10 days for a
large fraction of air parcels.

Due to the large temporal separation and the different locations of TST and LCP
(Fig. 6) for a large fraction of the trajectories no clear relationship between the two
can be assumed. Therefore the corresponding H,O saturation mixing ratios are not
necessarily indicative for the conditions at the TST location. We will discuss this result
in more detail in the next section.
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4 Discussion
4.1 Water vapour and TST in the extratropics

As shown above TST trajectories, which originate in the tropical troposphere and ex-
hibit very low 7, cp also reduce the mean T, cp in the extratropical LMS. Since the max-
imum amount of water vapour in an air parcel is directly linked to this temperature via
H,O ) cp sat» this leads to a dilution of H,O in the extratropics rather than an enhance-
ment. The distribution of H,O, cp ot for all TST-trajectories projected to =0 in Fig. 8
thus resembles the structure of 7 op and shows the water vapour amount, which can
be transported into the lowermost stratosphere. A closer inspection of Fig. 8 reveals
that during winter the layer of H,O cp so1=5-7 ppmv coincides roughly with the ©=330-
340 K-isentrope whereas in summer the same isopleths appear at ©=360-370K in ac-
cordance with a higher T cp in Fig. 5. The seasonality of H,O, ¢p o indicates, that the
whole extratropical lowermost stratosphere can potentially receive more water vapour
during summer than in winter. This is in accordance with satellite based climatologies,
which show a similar behaviour with significantly higher H,O during summer compared
to winter (see Fig. 1).

We also investigated the tropospheric origin of a subset of TST-trajectories with
H,O\ cp sat > 5 Ppmv which potentially enhance stratospheric background water vapour.
The contours in Fig. 8 show the locations of LCP and TST for these trajectories (a sub-
set of countours in Fig. 6). They show that during both winter and summer a substantial
amount of air parcels with H,O, cp 5t > 5 ppmv originates in the lower part of the TTL
region between 350 and 360 K. During winter a secondary maximum for dehydration
is evident around © = 310K at 65° N where a substantial amount of air becomes dehy-
drated north of the preferred TST-locations at these isentropes. This bimodal pattern
for the distribution of dehydration disappears in summer.

Although a large number of TST trajectories with H,O\ cp sot > Sppmv enter the
stratosphere above © = 340K during winter and 370K during summer, respectively,
Fig. 8 shows that H,O\ cp oot at £=0 is lower than 5 ppmv at and above these isentropes
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particularly during winter. A contribution of TST-trajectories with H,O cp s5t < 5 ppmv
is therefore needed to explain the low H,O cp oo Values. Such trajectories carrying
H,O\ cp sat < 5 ppmv most likely originate from the upper part of the TTL above 350K,
where the coldest 7| cp occur (Fig. 5). In fact, the largest fraction of TST-air parcels
which contribute to the extratropical UTLS composition are dehydrated in the TTL re-
gion (Fig. 6, black contours). These trajectories dilute elevated H,O from TSTs at
lower isentropes and higher LCP-temperatures as already concluded from the analysis
of T cp in the previous section. During summer, the dilution effect is less pronounced
since T cp is higher in the TTL.

It can therefore be concluded that water vapour in the extratropical LMS is decou-
pled from the time and the location of TST. Particularly the abundance of H,O in the
extratropical LMS does not allow to differentiate between tropical and non-tropical ori-
gin since it is a mixture of moist extratropical tropospheric air with high H,O, cp ¢4t and
air which has passed the TTL-region with very low H,O, cp gqt-

To asses the effect of mixing with stratospheric background air on the LMS tracer
composition we performed a sensitivity study. We assigned a stratospheric H,O-
background value of 5 ppmv to all non-TST trajectories, which stay in the stratosphere
over the whole calculation period. All TST and non-TST trajectories are then binned
into 5° latitude by 5K potential temperature boxes, yielding water vapour mixing ratios
that approximate the mixed (and therefore final or observed) composition of the LMS.
This approach is a coarse approximation of the true conditions, since we do not ac-
count for seasonal variations of the stratospheric H,O background. However, since
we are interested in the structure rather than the absolute H,O values, the approach
provides a sensitivity test for the effect of stratospheric background air on the structure
of H,O isopleths. Figure 9 shows the resulting structure of H,O cp s5r When account-
ing for stratospheric air. Compared to Fig. 8 lower H,O cp oot iS evident throughout
the lowermost stratosphere during summer and even more pronounced during winter.
In addition slight modifications of the H,O, ¢p ¢, isopleth structures can be found with
a stronger shift to lower isentropes in winter. A weaker contribution of stratospheric
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background in summer is in accordance with a weaker downwelling from the strato-
sphere above © = 380K (Appenzeller et al., 1996b; Sprenger and Wernli, 2003), which
dilutes H,O, ¢p ¢4 leSS in this season. Rapid transport on shorter timescales (trgr,
Fig. 3) leads to a more efficient quasi-isentropic distribution of H,O, ¢p ¢, during sum-
mer compared to winter which is reflected in the weaker change of the HyO cp ¢ot-
isopleths in summer when considering stratospheric background. However, even dur-
ing winter the structure is still significantly different from the transit time distribution in
Fig. 3.

To estimate an upper boundary for extratropical TST based on H,O one tries to de-
termine the location where H,O starts to increase above its stratospheric background
values, which occurs at low H,O levels and high isentropes. To test the robustness
of HyO, cp ¢t Particular at highest isentropes to TST at the extratropical tropopause,
we excluded TST-trajectories with O@g1 < 320 K during winter and ©g7 < 340 K during
summer, when the tropopause at mid to high latitudes is found at higher isentropes.
The thresholds where chosen from Fig. 8 to be located roughly between the tropopause
at mid latitudes and the 5 ppmv contour.

Figure 10 shows the resulting distributions for H,O\ cp ¢t @and the locations of TST
and LCP for the remaining TST trajectories. Comparing to the full set of TST-
trajectories (Fig. 8) the location of the isopleths with lowest H,O cp o (€.9. the lo-
cation of HyO| cp sot=10 ppmv) are hardly affected when neglecting TST-trajectories at
low Orgr. In summer the structure of H,O ¢p o5 remains virtually unchanged down
to © = 330K, which illustrates the strong effect of exchange in the subtropics for the
H,O cp sat-Structure in the LMS. Note also the large number of TST trajectories enter-
ing the LMS in the subtropics, which are dehydrated in the TTL region. The bimodal
distribution for dehydration during winter remains, which indicates, that these trajecto-
ries undergo a TST at O;gt > 320K, and become subsequently dehydrated at higher
latitudes and lower isentropes. Figure 10 clearly indicates that the lowest values of
H,O, cp sat» Which serve as an upper boundary to indicate extratropical TST are hardly
affected by TST across the extratropical tropopause. An analysis using H,O as a proxy
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for TST is mainly sensitive to temperature variations at the (sub-)tropical LCP in the
region where H,O, ¢p ¢ is above typical stratospheric values.

4.2 Transit time and CO distribution

The conclusion that a mixing layer exists, that follows the local dynamical tropopause
was based on CO-observations during the SPURT-project (Hoor et al., 2004; Engel
et al., 2006), which investigated the UTLS region over Europe over two years. One
of the key findings that led to this conclusion was the distinct structure of CO, which
exhibits a pronounced “kink” when it is displayed as a function of potential temperature
relative to the local dynamical (A®) approximated by the 2 PVU-surface. To link the
results of our trajectory calculations directly to the measurements we focus on the
European sector as defined in Fig. 11. For each grid point where a trajectory was
initialized, we plotted the vertical profile of the times since TST (¢1g7) in the same way
as in Hoor et al. (2004) using A© as vertical coordinate. The resulting distribution is
shown in Fig. 11, where each black dot indicates the transit time of an individual TST-
trajectory. Although a large variation of transit times at a given AO level is found, an
increase with larger distances from the tropopause is evident. Moreover, the mean
transit time shows a “kink” at A© = 30 K, which is very similar to the observation during
SPURT (compare Fig. 6b in Hoor et al., 2004).

A direct comparison to CO data from various airborne campaigns during winter over
Europe reveals a structure similar to mean profile of transit times (Fig. 11). A rapid
decrease of CO directly above the local tropopause and a distinctly smaller gradient
above AO = 30K becomes evident. The local photochemical lifetime of CO in the
tropopause region on the order of two months roughly matches the trajectory transit
times. This gives a strong indication that the observed CO structure (the “kink”) is a
result of a change in the transit times since TST (i.e. t1g1). The transition is relatively
well pronounced for CO and appears around A© =25+5 K above the local tropopause,
where CO has decreased to 40 ppbv. The profile of 151 shows the gradient change
almost at the same distance to the 2 PVU surface at A© = 30K. A perfect agreement
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cannot be expected since the high resolution CO measurements between 1998—2003
are compared to t1gt Which has been obtained from the gridded ECMWF operational
data for 2008. However, the good match between both data sets strikingly illustrates
that the structure in both data sets is a climatological feature.

Interestingly the transit times seem to increase slightly at the highest levels, which
might be related to recent tropospheric intrusions occurring above the location of the
subtropical jet particularly during winter (Pan et al., 2009). The fact, that the “kink”
in the CO observations appears at lower potential temperature levels above the local
tropopause than indicated by the trajectories is most likely due to two main reasons:
First, the uncertainties of the vertical wind, which drives the trajectories might introduce
an offset to vertical velocities. Second, we only account for TST trajectories neglecting
mixing with background, which dilutes the tropospheric CO fraction depending on the
partitioning of stratospheric and tropospheric air. However, both effects lead to a shift
of the “kink”, but do not erase the vertical structure.

Note that the distribution of transit times does not show a sharp cut-off at 90 days or
is not skewed particularly at any given higher A®-level. This indicates, that calculation
time of 90 days covered typical time scales for TST in the lowermost stratosphere and
that the experiment is not limited by the 90-day calculation time.

Thus it can be stated that the tropopause following mixing layer below A© =30K is
the result of frequent and rapid exchange across the local tropopause with t1g7 ranging
from zero to 60 days during winter. Above A© = 30K f+gt remains relatively constant
at values exceeding 60 days on average. Consequently, the distribution of CO shows a
similar structure since its abundance is controlled by the limited photochemical lifetime,
which is on the same order of magnitude. The chemical structure of the extratropical
tropopause region can therefore be regarded as a result of the change in f1g7, which
in turn is related to the location of the local tropopause.

The observations confirm the findings from the trajectory experiment indicating a
lifetime dependent tracer distribution. In the case of CO the distribution mirrors the
transport time since tropopause crossing at any point of the extratropical tropopause
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independent of the potential temperature at the tropopause itself. Since the water
vapour distribution reflects the combination of the temperature cycle at the subtropical
tropopause, both tracers mirror different properties of cross tropopause transport.

There is also observational evidence of a seasonality of TST and the underlying time
scales in the lowermost stratosphere. Hoor et al. (2005) concluded from CO measure-
ments that during summer to autumn about 60% of the air in the lowermost strato-
sphere over Europe was of recent tropospheric origin (i.e. within the life time of CO)
decreasing to 30% during winter. Based on the analysis of bimodal age spectra in the
lowermost stratosphere Bonisch et al. (2009) also deduced a significantly lower frac-
tion of tropospheric air during winter/spring in the lowermost stratosphere than during
summer with significantly lower transit times in summer compared to winter.

4.3 Consequences for an ExTL boundary

The structural differences between H, O\ cp oot and the distribution of /g1 deduced from
the trajectory analysis become evident when analyzing correlations of CO-O5 and H,O-
O3, respectively, following the method of Hegglin et al. (2009). The method determines
the highest potential temperature © at which the respective correlation starts to deviate
from the typical stratospheric “L-shape” or a defined background relationship. In the
case of water vapour the upper boundary is equivalent to the hygropause in the extrat-
ropics since it is the layer where H,O exceeds its stratospheric background abundance.
For CO the situation is different, since it has a finite lifetime and a canonical background
correlation for the lowermost stratosphere cannot be clearly defined. The stratospheric
part of CO-Og4 correlations is curved in the LMS and exhibits seasonally varying slopes.
These seasonal variations can result from the seasonality in TST and particular trans-
port time scales into and within the LMS (Fig. 3) altering the stratospheric background
composition in the LMS of both CO and O3. Therefore a canonical CO-O3 background
branch in the LMS cannot be defined. However, using the criteria of Hegglin et al.
(2009) allows us to obtain information on the aforementioned kink in CO and thus on
the EXTL structure, although the derived © values are not independent from the choice
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of the criterion for the stratospheric background. Particularly the main difference found
in the EXTL boundary derived from H,0-O4 versus CO-O5 (Hegglin et al., 2009) re-
mains. It can be explained by the fact that H,O is long-lived and controlled by tem-
perature, while in contrast the stratospheric CO abundance depends on the location
of the tropopause, which acts as a source for the LMS and the time for photochemical
degradation. Therefore a different structure of any CO-O4 defined boundary relative to
H,O can be expected, even though © deduced from CO-O5; may depend on the choice
for the stratospheric background criterion.

An analysis of CO and H,O from ACE-FTS as in Hegglin et al. (2009) reveals these
differences (Fig. 12). The figure shows the annual mean © bounds derived from the
ACE-FTS data on the basis of CO-O5 and H,0-Og, respectively, as a function of lati-
tude and ©. The EXTL top deduced from H,O can be found at higher isentropes and
is less tilted to isentropes than the CO based ExTL-top. The latter shows decreasing
O values towards the pole and intersects the H,O EXTL top at low latitudes. This be-
haviour is a direct consequence of the different control mechanisms, which determine
the respective stratospheric tracer abundance. For water vapour this is mainly 7, cp
which transfers into a H,O, cp sot- The latter can be transported throughout the LMS
since H,0 has virtually no photochemical sink in the LMS. In contrast, the abundance
of CO is affected by its finite lifetime and therefore f1g, which in turn is a function
of distance to the local tropopause (Figs. 3 and 11). A CO-O5 defined EXTL layer will
therefore show a downward sloping structure with latitude as well, since the tropopause
is at lower isentropes (and altitudes) at high latitudes.

5 Conclusions

The analysis of the TST trajectories showed that the distribution of {157 at a given day
roughly follows the location of the tropopause. Any tracer with a finite lifetime and a
tropospheric source and stratospheric sink will reflect this as long as the lifetime of
the tracer is in the order of the underlying transport processes. In contrast, T cp is
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distributed quasi isentropically in the lowermost stratosphere, and its value controls
the maximum saturation mixing for water vapour entering the LMS. It follows that the
abundance of H,O is fundamentally different from that of a tracer with a finite lifetime
since the stratospheric abundance of both tracers are controlled by different processes.

The following aspects therefore have to be considered when investigating the extent
of tropospheric influence in the extratropical stratosphere using H,O or CO:

1. The distribution of g7, i.e. the time since last TST for each trajectory in gener-
ally follows the dynamical tropopause leading to larger mean transit times with
increasing distance from the local tropopause. Thus, t1g7 is a function of distance
relative to the local tropopause.

2. The stratospheric CO distribution, which is observed to be different from that of
H,O (see Fig. 1), mirrors the distribution of ttg7. Frequent mixing at the extrat-
ropical tropopause enhances CO in a finite layer, which is here shown to reflect
the structure of the stratospheric residence time of the air parcels. As such the
CO distribution indicates the extent of TST within a given time interval (the lifetime
of CO). The abundance of CO is determined by its finite lifetime convolved with
the frequency of TST events: photochemical degradation at far distances from
the tropopause acts to slowly reduce its stratospheric entry value, which is solely
determined by its tropospheric sources.

3. The location of LCP does mostly not coincide with the location of TST. Both events
can be separated by more than 20 days in time between ©=315-360K particular
during winter. Dehydration occurs mostly in the troposphere before the TST event.

4. The water vapour structure in the extratropical lowermost stratosphere is strongly
affected by the LCP in the tropical troposphere, which determines H,O cp oot fOr
air parcels subsequently undergoing TST in the subtropics.

5. HyO\cp st is distributed quasi isentropically in the LMS within less than 90 days
and undergoes mixing within the stratosphere, thereby loosing its relation to the
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TST event. Notably the hygropause in the LMS is determined by H,O, cp ¢t in the
tropical troposphere and subsequent TST in the subtropics, rather than exchange
in the extratropics.

The tropopause following mixing layer (or extratropical transition layer ExTL) as deter-
mined by Hoor et al. (2004) and confirmed from global observations by Hegglin et al.
(2009) on the basis of CO can thus be regarded as a region which is characterized by
frequent exchange and short transit times since tropopause crossing (Berthet et al.,
2007). It thus exhibits a tropospheric chemical signature and strong coupling to the
local tropopause as evident from high CO values and the CO,-seasonal cycle in phase
with the local troposphere (Hoor et al., 2004; Sawa et al., 2008). At larger distances
from the local tropopause the lowermost stratosphere is governed by larger transit
times. Stirring and mixing processes within the stratosphere lead to a collapse of the
relation between transit times and PV. Longlived tracers such as H,O are distributed
quasi-isentropically, slowly descending under the influence of the Brewer-Dobson cir-
culation. The strong seasonality of H,O, cp ¢5t,» Which is related directly to the LCP
in the TTL and exchange in the subtropics leads to higher H,O abundances during
summer. It has been suggested that the formation and strengths of the extratropical
tropopause inversion layer (TIL) (Birner, 2006) is related to the stratospheric water
vapour abundance (Randel et al., 2007). Our results would imply that the TIL at least
during summer is partly a (sub-)tropically generated phenomenon.

Our results indicate that changes of tropical upper tropospheric temperatures will
strongly affect H,O in the extratropical LMS, where it significantly contributes to the
radiative budget (Forster and Shine, 1999) and therefore can be expected to have a
strong impact on surface climate (Solomon et al., 2010).
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Fig. 1. Zonal mean distribution of H,O (blue dashed lines, in ppmv) and CO (red solid lines,
in ppbv) on isentropes for northern winter (November, December, January, NDJ) (left) and
summer (May, June, July, MJJ), respectively, as observed from the ACE-FTS instrument. Note

the intersecting isopleths.
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Fig. 2. Distribution of #1571 on the © = 345K isentrope for trajectories initialized in the LMS
at 00:00UTC, on 1 February 2008 (left), and PV distribution at the same time (right). White
areas at mid and high latitudes denote regions where no crossing trajectories are found. The
tropopause (2 PVU) corresponds to frgr = 0 at latitudes < 40° N. White areas south of 40° N
are tropospheric where no trajectories were initialized. The gradient from red to blue indicates
increasing t1g7 (left) as well as increasing PV (right) with distance from the tropopause.
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Fig. 4. Scatter plot of PV at time of trajectory initialization (=0) and time since last TST (¢1g7)
on different isentropes from ©=300-375K in steps of 15K for winter(left) and summer(right),
respectively. The colours show the number of data points binned in steps of 0.2 PVU and one
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day with higher number densities in yellow to red.
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Fig. 5. As Fig. 3 but for the Lagrangian cold point temperature 7, p of TST trajectories pro-
jected to t=0 for northern winter (left) and summer (right). Warm colours denote high tem-
peratures, contours show © surfaces during TST (yellow) and at LCP (black), which are also

projected to £=0.
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Fig. 6. Zonal mean cross section of 7 cp at the location of LCP of each TST trajectory for
northern winter (left) and summer (right). Colours are as in Fig. 5, black contours denote the
number of trajectories in 2.5° x 5 K-bins, yellow show the number density at the location of TST.
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Fig. 7. Normalized probability density functions for the time difference of LCP and TST for TST-
trajectories undergoing their TST at different potential temperatures (colour code) for northern
winter (left) and summer (right). Going forward in time positive values indicate that the air
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parcels encountered their LCP before they crossed the tropopause.
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Fig. 8. As Fig. 3 but for the saturation mixing ratio H,O, ¢p . Of all TST-trajectories projected
to =0 for northern winter (left) and summer (right). Colours from yellow to blue indicate the
transition from high to low water vapour mixing ratios. For those trajectories with LCP-saturation
H,O| cp sat > 5 ppmv black contours indicate the location of the LCP, yellow contours show the
location of TST.
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Fig. 10. Mean saturation mixing ratio from TST trajectories neglecting TST-events below
O = 320K (winter, left) and © = 340K (summer, right), colours as in Fig. 8. Black and yellow
contours indicate the locations of LCP and TST for these trajectories.
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Fig. 11. Left: Profiles of transit times since last tropopause crossing as a function of potential
temperature relative to the 2 PVU surface (A® for latitudes > 45° N over Europe (20° W—10°" E)
(left). Red symbols indicate the median, green the 1-¢ standard deviation. Right: CO profiles
over Europe as measured from various aircraft campaigns in winter between 1998 and 2004.
Red lines indicate the mean, dashed: 1-o standard deviation.
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Fig. 12. Annual mean location of the boundaries of a chemical defined ExTL on the basis
of H,O (red) and CO (grey). The data on display are taken from the ACE instrument and the
boundaries are determined following the method in Hegglin et al. (2009).
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