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Deutsche
Zusammenfassung

Fiir die Modellierung des Gehirns kann auf unterschiedliche Ansitze zuriickge-
griffen werden. Zum einen konnen fiir die Modellbildung die konstituierenden
chemischen und biologischen Bausteine herangezogen werden. Man erhilt dann,
zusammen mit den grundlegenden physikalischen und chemischen Wechselwirkun-
gen, eine detaillierte mikroskopische Beschreibung. Zum anderen ist es moglich
Gehirnfunktionen auf einer makroskopischen Ebene zu beschreiben, welche ih-
rerseits den jeweiligen Zielsetzungen angepasst ist. Ziel konnte es z.B. sein die
Stoffwechselkosten zu untersuchen oder die Stabilitdt und Robustheit, sowie die
Frage nach der rechnerischen Effizienz. Das trifft auch fiir die synaptische Plastizi-
tdt zu, das heif}t fiir die zeitliche Adaption der interneuronalen Verbindungsstérken,
welche wir in der vorliegenden Arbeit untersuchen.

Insbesondere formulieren und untersuchen wir zwei unterschiedliche Modelle,
beruhend auf komplementidren Methoden, fiir synaptische Plastizitit: Mit einem
“top-down” Ansatz, bei dem eine Lernregel aus einem erzeugenden Prinzip fiir
frequenzkodierende Neuronen abgeleitet wird, und einer “bottom-up” Methode,
bei der eine einfache, aber biophysikalische Regel fiir zeitabhingige Plastizitét
aufgestellt wird.

Obwohl unterschiedliche Wege beschritten werden, ist ein gemeinsames Thema
in dieser Arbeit vorhanden: die Suche nach Einfachheit. Wir sind an Minimal-
Modellen interessiert, die die Essenz der Prozesse einfangen. Diesem liegt die
Uberzeugung zugrunde, dass Einfachheit und die Reduktion auf das Wesentliche
eines Phidnomens helfen kann, die Rolle der verschiedenen Komponenten in kom-
plexen Systemen besser zu verstehen.

In Kapitel 1 beginnen wir diese These mit einer Diskussion iiber die gegen-
wirtigen Herausforderungen der Computational Neuroscience, sowie die Rolle des
Physikers in diesem Forschungszweig. Auflerdem prisentieren wir einen allge-
meinen Uberblick iiber die Eigenschaften von Neuronen und ihren Verbindungen,
die Bausteine unserer Modelle, welche zudem die Einschriankungen fiir ihre For-
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mulierung bestimmen. Insbesondere prisentieren wir zwei Modelle fiir neuronale
Dynamik: ein frequenzkodierendes und ein spikekodierendes Modell, fiir die wir
spiter die jeweiligen Plastizitdts-Regeln entwickeln. Dariiber hinaus fithren wir
hier die Bezeichnungen und den Jargon des Feldes ein.

In Kapitel 2| entwickeln und untersuchen wir fiir die synaptischen Gewichte
eine lokale Plastizitits-Regel, welche Hebb’sch ist, online und selbstlimitierend.
Sie beruht auf dem oben erwihnten “top-down” Ansatz. Zuerst formulieren wir
das Prinzip der Stationaritdt beim statistischen Lernen, die besagt, dass, wenn das
Neuron die relevanten Merkmale einer stationidren Eingangsverteilung gelernt hat,
die Ausgangsverteilung auch stationédr werden sollte. Wir argumentieren dann, dass
eine notwendige Bedingung fiir die Stationaritét in einer Umgebung mit Rauschen,
die Stabilitdt der Losung ist, die das Neuron in dem Raum der synaptischen Ge-
wichte findet. Das bedeutet, dass diese Losung lokal unempfindlich fiir weitere
Anderungen der gefundenen synaptischen Gewichtungen sein sollte.

Um diese lokale Unempfindlichkeits-Bedingung auszudriicken, greifen wir in
Abschnitt 2.2.1 auf die Fisher-Information zuriick, ein Maf3 fiir die durchschnitt-
liche Empfindlichkeit einer Wahrscheinlichkeitsverteilung auf einen gegebenen
Parameter. In diesem Fall nutzen wir die Fisher-Information der Ausgangswahr-
scheinlichkeitsverteilung in Abhingigkeit der synaptischen Gewichte. Um sicher-
zustellen, dass die Lernregeln als Funktion lokaler Information (an einer Synapse)
formuliert werden, nutzen wir die “local synapse extension” der eindimensionalen
Fisher-Information. Sobald die Zielfunktion definiert wurde, leiten wir dann in
Abschnitt 2.2.2 eine online Regel der synaptische-Plastizitit iiber das stochastische
Gradientenverfahren her.

Die daraus resultierende Lernregel besteht aus zwei Faktoren: eine Hebb’sche
Funktion (proportional zum Produkt von prid- und postsynaptischen Aktivitidten)
und eine selbstlimitierende Funktion, die das Vorzeichen des Lernens umkehrt,
wenn die neurale Aktivitdt zu hoch oder zu niedrig ist. Bei diesem Vorgehen wer-
den sowohl das neuronale Aktivitdtsniveau als auch die synaptischen Gewichte
reguliert. Ein expliziter Gewicht abklingender Ausdruck ist in dieser Weise nicht
notwendig.

Um die Rechenkapazitit eines Neurons zu testen, das sich nach diesen Regeln
entwickelt (in Verbindung mit einer bereits vorhandenen intrinsischen Plastizitits-
Regel), filhren wir in Abschnitt 2.3 eine Reihe von numerischen Experimenten
durch, in denen wir das Neuron mit verschiedenen Eingabeverteilungen trainie-
ren. Wir beobachten, dass fiir Eingabeverteilungen, die stark einer multivariaten
Normalverteilung dhneln, das Neuron zuverlissig die erste Hauptkomponente der
Verteilung auswihlt. Das Neuron zeigt, ansonsten, eine starke Préferenz fiir Rich-
tungen mit groBer negativer Exzess Kurtosis. Insbesondere finden wir, dass das
Neuron zu bimodalen Richtungen selektiv ist und geeignet fiir binire Klassifizie-



rung. Dariiber hinaus zeigen wir in Abschnitt2.3.3, wie unsere Regel eine deutliche
“Fading Memory” Funktion zeigt, mit sehr unterschiedlichen Zeitskalen fiir das
Lernen und Verlernen, und eine besondere Robustheit gegen Rauschen.

In Kapitel 3 untersuchen wir die Zuverldssigkeit der Lernregel, die wir in
Kapitel 2 abgeleitet haben, in Bezug auf Verdnderungen in der neuronalen Modell-
Ubertragungsfunktion. Insbesondere finden wir eine #quivalente kubische Form
der Regel, die es aufgrund ihrer funktionalen Einfachheit ermoglicht analytisch
die Attraktoren (stationdre Losungen) aus dem Lernverfahren in Abhédngigkeit
der statistischen Momente der Eingangsverteilung zu berechnen. Auf diese Weise
ist es uns moglich in Abschnitt 3.2.1, die numerischen Ergebnisse aus Kapitel 2
analytisch zu erkldren. Zudem sind wir in der Lage, die Stabilitit dieser Attraktoren
zu bewerten und die Eigenwerte der Jacobi-Matrix auf die statistischen Momente
der Eingangsverteilung zu beziehen.

Diese Ergebnisse ermdglichen es uns, eine Vorhersage zu formulieren: Wenn
das Neuron zu Nicht-GauB3-Eingangsrichtungen selektiv ist, sollte es fiir Indepen-
dent Component Analysis (ICA) geeignet sein. Am Ende des Kapitels 2 testen wir
diese Vorhersage, indem wir unsere Lernregel auf das “non-linear bars problem”
anwenden. In dieser Aufgabe stellen die Eingédnge zu dem Neuron Pixel von einem
quadratischen Bild dar, die zwei Werte annehmen konnen: hell oder dunkel. Das
Bild besteht aus einer Reihe von horizontalen und vertikalen Streifen, in dem ein
Streifen eine vollstindige Reihe oder Spalte von dunklen Pixeln ist. Am Schnitt-
punkt eines horizontalen und eines vertikalen Streifen hat das Pixel den gleichen
Dunkelwert wie im Rest des Streifens (es ist nicht die Summe der Intensititen),
was das Problem nicht-linear macht. Wir trainieren zunichst das Neuron mit einem
Trainingssatz, in dem jeder Streifen unabhingig zufiéllig gezogen wird, mit einer
konstanten Wahrscheinlichkeit. Wir testen dann den Fall, in dem in jedem Bild
mindestens eine horizontale und eine vertikale Leiste vorhanden ist (permanente
partiale Verdeckung). In beiden Fillen finden wir, dass das Neuron in der Lage ist,
die einzelnen Streifen des Trainingssatzes zu lernen, obwohl diese Streifen dem
Neuron nie isoliert prisentiert wurden.

Die Relevanz dieser Ergebnisse liegt in ihrer Allgemeinheit: Will man eine
Lernregel, die Hebb’sch fiir einen bestimmten Bereich von Aktivititen ist, aber
dann seine Steigung und schlieBlich sein Vorzeichen umkehrt, wenn die neuronale
Aktivitit zu grofl oder zu klein wird, ist die kubische Form (hier im weitesten
Sinne des Wortes Form) die minimale Konstruktion, die man sich vorstellen kann.
Was wir hier zeigen ist, dass eine solche minimale Konstruktion (und Aquivalente,
solange die allgemeine Form beibehalten wird) rechnerisch bereits sehr méchtig ist.

In Kapitel 4 folgen wir dem entgegengesetzten Weg, indem wir ein einfaches
biophysikalisches Modell fiir zeitabhéngige Plastizitit (STDP) entwickeln. Eine
phdnomenologische paarweise Lernregel ist nicht genug um STDP zu erkliren.
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Dies wird deutlich, wenn man die Nichtlinearitéten in Triplett-Ergebnissen betrach-
tet. Deshalb bendtigt man ein Modell, dass das Zusammenwirken mehrerer Spikes
beinhalten kann.

Das Modell, das wir hier entwickeln, ist in Bezug auf zwei abklingende Spuren
formuliert, die in der Synapse vorhanden sind: Zum einen der Anteil der aktivierten
NMDA-Rezeptoren und zum anderen die Calciumkonzentration. Diese Spuren
dienen als Uhren, die die Zeit der pri- und postsynaptischen Spikes messen. Trotz
der Tatsache, dass wir das Modell in Bezug auf die biologischen Schliisselelemente
konstruieren, die an dem Prozess beteiligt sind, haben wir die funktionalen Ab-
hingigkeiten der Variablen so einfach wie moglich gehalten, um eine analytische
Losung zu ermoglichen.

Wir behaupten nicht, mit diesem Modell die volle biologische Komplexitit des
Prozesses zu erfassen. Das dargestellte Modell ist ein effektives Modell fiir STDP,
in dem die Effekte von einer groen Anzahl biologischer Komponenten innerhalb
einiger Variablen zusammengelegt werden. Wir sind davon iiberzeugt, dass diese
Vereinfachung, die wir brauchen um die Regel analytisch zu untersuchen, auch im
Hinblick auf ein einfacheres Verstindnis der allgemeinen beteiligten Regeln ein
Vorteil ist.

Wir zeigen zuerst, dass trotz seiner Einfachheit das Modell mehrere experimen-
telle Ergebnisse reproduzieren kann. In Abschnitt 4.3.1| zeigen wir analytisch, dass
fiir ein Paar Spikes (einen pri- und einen postsynaptischen Spike), das Modell in der
Lage ist, die typische paarweise STDP Form nachzubilden. Das heif3t, Paare in einer
kausalen Ordnung induzieren Potenzierung, wihrend Paare in einer anti-kausalen
Ordnung Depression des synaptischen Gewichts erzeugen, mit einem reduzierten
Effekt fiir langere Intervalle zwischen den Spikes. Dariiber hinaus berechnen wir
in Abschnitt 4.3.2 die analytischen Vorhersagen des Modells fiir Spike-Tripletts, in
entweder PraPostPra- oder PostPraPost-Ordnung. In Abschnitt 4.4| vergleichen wir
Experimentelle- und Modellergebnisse, sowohl in einer Kultur von Nervenzellen
aus dem Hippocampus als auch in L 2/3 kortikalen Neuronen. Dank der funktio-
nalen Einfachheit des Modells sind wir in der Lage diese Ergebnisse analytisch zu
berechnen und eine direkte und transparente Verbindung zwischen den internen Pa-
rametern des Modells und der qualitativen Merkmale der Ergebnisse zu etablieren.

In diesem Sinne beobachten wir, dass wihrend Spurenakkumulation fiir Triplett-
Nichtlinearitdten in Hippocampus-Neuronen verantwortlich zu sein scheint, domi-
nieren starke Sittigungseffekte in kortikalen Neuronen. Dies steht im Einklang mit
den Ergebnissen fritherer phdnomenologischer Regeln, die durch eine verminderte
Wirksamkeit von zukiinftigen Spikes, Triplett-Ergebnisse in kortikalen Neuronen
erklart.
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Zum Schluss, um eine Verbindung zu der synaptischen Plastizitét fiir fre-
quenzkodierende neuronale Modelle herzustellen, trainieren wir in Abschnitt 4.5
die Synapse mit Poisson unkorrelierten prd- und postsynaptischen Pulsziigen und
berechnen die erwartete synaptische Gewichtsdnderung in Abhingigkeit der Fre-
quenzen dieser Pulsziige.

Interessant ist, dass ein Hebb’sches (im frequenzkodierenden Sinne des Wortes),
BCM-ihnliches Verhalten fiir Hippocampus-Neuronen in diesem Setup beobachtet
wird: Wir finden, dass die resultierende Kraft-Modifikation an einer bestimmten
Schwellenfrequenz von Depression zu Potenzierung iibergeht, wobei diese Schwel-
le eine monoton zunehmende Funktion der prisynaptischen Frequenz ist. Dariiber
hinaus kann der Wert des Schwellenwerts geregelt werden, wihrend immer noch
Paarweise- und Triplett-Ergebnisse reproduziert werden konnen.

Andererseits scheint dominierende Depression unvermeidlich zu sein fiir Pa-
rameterkonfigurationen, die experimentell Triplett-Nichtlinearititen in der L 2/3
kortikalen Neuronen reproduzieren konnen. Potenzierung kann jedoch in diesen
Neuronen wiederhergestellt werden, wenn Korrelationen zwischen pri- und post-
synaptischen Spikes vorhanden sind. Wir weisen an dieser Stelle darauf hin, dass
gleichzeitige Entkorrelation der neuronalen Aktivitit und Depression im Kortex in
sensorischen Deprivations-Experimenten gefunden wird.

Wir beenden Kapitel 4 mit einer Diskussion in Abschnitt 4.6 tiber das Verhiltnis
dieser Ergebnisse zu bestehenden experimentellen Ergebnissen und wir formulieren
offene Fragen und Vorhersagen fiir zukiinftige Experimente.

Ubersichtskarten der Modelle, zusammen mit Auflistungen der relevanten Va-
riablen und Parameter, werden fiir einen leichteren Zugang und permanente
Referenc fiir den Leser, am Ende der Doktorarbeit priisentiert.
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Abstract

Different approaches are possible when it comes to modeling the brain. Given its
biological nature, models can be constructed out of the chemical and biological
building blocks known to be at play in the brain, formulating a given mechanism in
terms of the basic interactions underlying it. On the other hand, the functions of the
brain can be described in a more general or macroscopic way, in terms of desirable
goals. This goals may include reducing metabolic costs, being stable or robust, or
being efficient in computational terms. Synaptic plasticity, that is, the study of how
the connections between neurons evolve in time, is no exception to this.

In the following work we formulate (and study the properties of) synaptic plas-
ticity models, employing two complementary approaches: a top-down approach,
deriving a learning rule from a guiding principle for rate-encoding neurons, and
a bottom-up approach, where a simple yet biophysical rule for time-dependent
plasticity is constructed.

We begin this thesis with a general overview, in Chapter 1, of the properties
of neurons and their connections, clarifying notations and the jargon of the field.
These will be our building blocks and will also determine the constrains we need
to respect when formulating our models. We will discuss the present challenges of
computational neuroscience, as well as the role of physicists in this line of research.

In Chapters 2 and 3, we develop and study a local online Hebbian self-limiting
synaptic plasticity rule, employing the mentioned top-down approach. Firstly, in
Chapter 2 we formulate the stationarity principle of statistical learning, in terms
of the Fisher information of the output probability distribution with respect to the
synaptic weights. To ensure that the learning rules are formulated in terms of
information locally available to a synapse, we employ the local synapse extension
to the one dimensional Fisher information. Once the objective function has been
defined, we derive an online synaptic plasticity rule via stochastic gradient descent.

In order to test the computational capabilities of a neuron evolving according
to this rule (combined with a preexisting intrinsic plasticity rule), we perform a
series of numerical experiments, training the neuron with different input distribu-
tions. We observe that, for input distributions closely resembling a multivariate
normal distribution, the neuron robustly selects the first principal component of the

13
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distribution, showing otherwise a strong preference for directions of large negative
excess kurtosis.

In Chapter 3 we study the robustness of the learning rule derived in Chapter 2
with respect to variations in the neural model’s transfer function. In particular, we
find an equivalent cubic form of the rule which, given its functional simplicity,
permits to analytically compute the attractors (stationary solutions) of the learning
procedure, as a function of the statistical moments of the input distribution. In this
way, we manage to explain the numerical findings of Chapter 2 analytically, and
formulate a prediction: if the neuron is selective to non-Gaussian input directions,
it should be suitable for applications to independent component analysis. We close
this section by showing how indeed, a neuron operating under these rules can learn
the independent components in the non-linear bars problem.

A simple biophysical model for time-dependent plasticity (STDP) is developed
in Chapter 4. The model is formulated in terms of two decaying traces present
in the synapse, namely the fraction of activated NMDA receptors and the calcium
concentration, which serve as clocks, measuring the time of pre- and postsynaptic
spikes. While constructed in terms of the key biological elements thought to be
involved in the process, we have kept the functional dependencies of the variables
as simple as possible to allow for analytic tractability. Despite its simplicity,
the model is able to reproduce several experimental results, including the typical
pairwise STDP curve and triplet results, in both hippocampal culture and layer
2/3 cortical neurons. Thanks to the model’s functional simplicity, we are able to
compute these results analytically, establishing a direct and transparent connection
between the model’s internal parameters and the qualitative features of the results.

Finally, in order to make a connection to synaptic plasticity for rate encoding
neural models, we train the synapse with Poisson uncorrelated pre- and postsynap-
tic spike trains and compute the expected synaptic weight change as a function of
the frequencies of these spike trains. Interestingly, a Hebbian (in the rate encoding
sense of the word) BCM-like behavior is recovered in this setup for hippocampal
neurons, while dominating depression seems unavoidable for parameter configura-
tions reproducing experimentally observed triplet nonlinearities in layer 2/3 cortical
neurons. Potentiation can however be recovered in these neurons when correlations
between pre- and postsynaptic spikes are present. We end this chapter by discussing
the relation to existing experimental results, leaving open questions and predictions
for future experiments.

A set of summary cards of the models employed, together with listings of the
relevant variables and parameters, are presented at the end of the thesis, for easier
access and permanent reference for the reader.



Chapter 1

General Background

“Mind” can only be regarded, for scientific purposes, as the activity
of the brain, and this should be mystery enough for anyone...
Donald Hebb. The Organization of Behavior.

In this chapter, a brief description of the goals and challenges of modern Neu-
roscience, at the crossroads of multiple disciplines is presented, with a focus on the
role of physics in this grand scheme. Fundamental concepts such as the biological
and computational aspects of the brain are introduced, and the specific jargon of the
field is clarified.

1.1 Scope and challenges of computational neuro-
science

Understanding how the brain works is surely one of the greatest challenges for
present day science. Containing on the order of a hundred billion neurons [[6]], with
several thousand connections each , the human brain constitutes an incredibly
complex system, rendering its study (at least in a systematic quantitative way)
practically intractable up to the second half of the twentieth century. The need
for a greater comprehension of the brain’s functioning, is however urgent, with
neurological disorders constituting a major source of impairment and accounting
for 12% of total deaths globally, according to the World Health Organization [[88].

In the past fifty years, development of a wide range of experimental techniques,
together with the availability of more potent computers, have enabled scientists
to begin to shed light on the problem of understanding the brain. As an illustra-
tion of this, the number of articles containing the word neuron, listed in PubMed

15
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Figure 1.1: Number of articles containing the word “neuron”, per publication year,
in the PubMed database (http://www.pubmed. gov)

database !, per year of publication, is presented in Fig. 1.1. A steady increase in the
number of publications in the field, starting in the sixties, is evident in the plot.

The current relevance of the field has recently been made evident by the Eu-
ropean Union’s decision to grant / billion Euro []1]] over the course of ten years to
The Human Brain Project *, with a similar initiative, known as the BRAIN Initiative
announced in the United States by the Obama administration in 2012 ).

The term Neuroscience refers to the scientific study of the brain, or more gen-
erally the nervous system. Given the very nature of its object of study (a biological
system, in charge of acquiring, processing, and storing information, with the pur-
pose of performing cognitive and behavioral tasks), neuroscience is an intrinsically
interdisciplinary field, attracting the attention of biologists, physiologists, medical
doctors, psychologists, computer scientists, mathematicians, engineers, and physi-
cists, among others. Each field, contributing to the general understanding of the
brain by bringing its own tools, methodologies, mind-frameworks, and sometimes
biases, into the field.

In this context, physics has an important role to play. Devoted to understanding
the fundamental laws of nature, physics already counts in many cases with the ap-
propriate mathematical formulation to describe and predict the behavior of complex
systems. With a different interpretation of the variables, two problems from com-
pletely different fields, may follow the exact same mathematical equations. Even
when that is not the case, the analysis and modeling skills proper to physics can

"http://www.pubmed.gov
https://www.humanbrainproject.eu
Shttp://www.braininitiative.nih.gov
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be applied to all sorts of other systems, once the key ingredients have been iden-
tified by those with empiric knowledge of a particular system. This is usually the
approach employed in the branch of Complex Systems in general, and in Com-
putational Neuroscience in particular. A usual goal of physicists working in the
field of Neuroscience is to construct or find general principles, operating behind the
phenomenological rules known to be at play in neural systems. In this sense, a ma-
jor question regarding the brain is how information is computed and how learning
is achieved. Precisely how neurons interconnect, and specifically which principles
guide the creation and modification of these connections (a process known as synap-
tic plasticity) remains, in many respects, an open question. Prototypical examples
of the the contribution of physicists to the tackling these questions include:

e John Hopfield’s content addressable memory [58]; an artificial neural net-
work in which the evolution of the system is guided by an Ising model-type
of Energy function [4]], whose minima correspond to the stored memories,
providing one of the first models for understanding human memory, using an
artificial neural network.

e Leon Cooper’s */and Paul Munro’s contribution to the BCM theory of synaptic
plasticity [[14]].

e Christoph von der Malsburg’s contribution to the theory of temporal binding
in the brain [114]).

e Karl Friston’s theory of perception or active inference based on the Free En-
ergy Principle [41]].

e Laurenz Wiskott’s Slow Feature Analysis (SFA) learning algorithm [[116],
for extraction of slowly varying features in an input signal, allowing to obtain
self-organized receptive fields.

In the present thesis, we will also bring from physics useful tools to study the in-
teraction of neural activity and synaptic plasticity. In particular, this interaction will
be analyzed from the perspective of Dynamical System’s Theory and Information
Theory. But before plunging into the specifics of the problem, a general overview of
neural systems, together with the terminology employed in the field, are presented
in the following subsections of this chapter.

1.2 Neurons, synapses, and spikes

Constituting roughly half of the cells in the brain [[6]], neurons are very specialized
cells, capable of integration and transmission of electrical and chemical signals
from and to other cells (neurons, muscle fibers, among others) . As it can be
observed in Fig. 1.2, neurons can be functionally divided into three distinct parts:

“Nobel Prize laureate in Physics for the BCS-Theory of Superconductivity
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Figure 1.2: [llustration of the main parts of a neuron, and the chemical communi-
cation mechanism between two cells. The three main parts of the neuron are: the
soma (or body of the neuron), the dendrites, which receive the incoming signals from
other cells, and the axon, which propagates the output of the neuron. In the sketch,
one neuron (the presynaptic neuron) emits an electric impulse (after integration of
previous inputs), which travels along its neural axon up to the synaptic terminals
(see inset), where a chemical substance (termed neuro-transmitter) is released and
later detected by another neuron (the postsynaptic neuron), which in turn starts a
new integration process. Source: Wikimedia Commons

the soma (or body of the neuron), the dendrites, which receive the incoming signals
from other cells, and the axon, which propagate the output of the neuron to deliver
it at the dendritic terminals of other cells.

The connection between two neurons is called synapse. These connections
can be either electrical (also called gap junctions), or chemical. In the first case,
an electric current flows directly from one cell to the next. In a chemical type of
synapse, on the other hand, one neuron releases a chemical signal (termed neuro-
transmitter), which in turn opens a channel in the target neuron (by binding to the
channel’s neurotransmitter receptor), letting current flow in or out of the second
neuron (see inset in Fig. 1.2). In this scheme, the sender of the signal is called
presynaptic neuron, and the receiver postsynaptic neuron.
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Both the intracellular and the extracellular medium, consist of a solution with
different concentration of ions (Nat, KT, Ca?*, Cl7). The difference in ion
concentrations inside and outside the cell produce a voltage difference across the
neuron’s membrane, termed membrane potential [25]. In absence of incoming
signals, the membrane potential remains at a constant value, termed resting poten-
tial, which is usually between —60mV and —70mV [44]]. Incoming signals via
synapses can either hyper-polarize or depolarize the neuron. If a neuron is depolar-
ized enough (reaching a so called threshold potential) a chain reaction occurs in the
cell, producing a stereotypical voltage excursion, denoted action potential, or spike
(see Fig.|1.3). When this happens, the neuron is said to have spiked or fired. This
strong voltage perturbation, is able to travel along the neuron’s axon, and trigger
the release of neurotransmitter, and therefore communicate to other neurons that
the neuron has fired.

Signals inducing the neuron to depolarize, drive the membrane potential closer
to threshold and therefore facilitate firing. Synapses producing this effect are
therefore termed excitatory. On the contrary, if a signal hyperpolarizes the neuron,
the synapse is said to be inhibitory. In real physiological neurons one particular
connection can only be either excitatory or inhibitory, depending on the particular
type of neurotransmitter it employs. Moreover, all the outgoing synapses from
one particular neuron are always found to be either excitatory or inhibitory, which
allows to classify the whole neuron as either excitatory or inhibitory. This empirical
finding is called Dale’s Law [44]]. In modeling of neural networks this condition is
sometimes relaxed, building networks of a single type of neuron whose synapses
can be either positive or negative, summarizing in a single connection between two
neurons the effect that would other wise need to be mediated by a third neuron of
the appropriate type.

In section 4.2.1 of Chapter 4, we will discuss in more detail the case of
excitatory synapses, and in particular the case of synapses that use glutamate as
neurotransmitter.

1.3 Of times and rates

In the previous section we described the generation process of an action potential,
and how neurons signal to each other that they have fired. In this section, we present
two complementary views about how the activity of a neuron can be quantified,
and we then present two simplified models that allow to simulate the dynamics of a
neuron or network of neurons, in these two paradigms.

The two mentioned paradigms differ in whether one quantifies the activity of
neurons by their firing-rate, that is to say the frequency with which a neuron emits a
spike; or by the precise timing of each spike. These two views imply two different
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Figure 1.3: Sketch of an action potential. In absence of incoming signals, the
membrane potential remains at the resting potential. If a stimulus is strong enough
to depolarize the neuron up to the threshold potential, a chain reaction occurs in the
cell, producing a stereotypical voltage excursion denoted action potential, or spike.
After each spike, the neuron becomes hyperpolarized for a time period denoted
refractory period. Source: Wikimedia Commons

possible neural codes. As we will later show throughout the text, both views have
their own merit, and allow to explain different experimental phenomena. Depend-
ing on whether we work within one paradigm or the other, we will talk about
rate-encoding or time-encoding neurons, respectively.

A second classification, when it comes to neural models is whether one consid-
ers the particular spacial structure of neurons when computing the neural activity,
or not. In the first case, one talks about multiple-compartment models, in which
dendrites, the soma, and axon, are considered different compartments with physical
extensions that influence the dynamics; and where the membrane potential of the
neuron can be defined and evaluated at each compartment. At the other end, as
an extension of a typical physical simplification method, one can consider point
neurons, in which a single scalar quantity defines the neural activity, and where a
reduced set of scalar parameters define the whole configuration of the neuron. In
this thesis, we will consider this second type of models, sacrificing a more detailed
description for analytical tractability. As we will see, this approach allows however
to reproduce a wide range of experimental findings.
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1.3.1 A rate-encoding neural model

A simple neural model for rate-encoding neurons we will later employ in this thesis,
is the linear non-linear model [55]. We consider in this case instantaneous point
neurons, in which the activity level y of the neuron is given by:

1 all
y=g(z) =0z —b), U(Z):ma xzzwj(yj—ﬂj)7 (1.1)
j=1

representing the rescaled average firing rate of the neuron (by mapping the neuron’s
activity range to [0, 1]). Function ¢ relates the total integrated input x to the output
y of the neuron, and is termed transfer function (also sometimes called activation
function). Here we have chosen for g a monotonically increasing sigmoidal func-
tion o(z), which maps any input also to the range [0, 1]. In future sections we will
discuss several options for g, and their properties. N,, stands for the number of
inputs y;, each of which represents either an external input or the activity of another
neuron in the network. w; represents the connection strength between presynaptic
neuron ¢ and the postsynaptic neuron, and b is a bias in the neuron’s sensitivity
determining how high the overall activity has to be to produce a significant output
activity. Finally, the ¥; represent a trailing average of the input activity, so that only
deviations from this average contribute to the integrated input.

In this model, the output of each neuron is then simply a non-linear function of
a weighted average of the outputs of the neurons connecting to it.

We have described this model as instantaneous, since the output activity of each
neuron is a function of the present activities of the other neurons; no differential
equation has been involved so far. While this approach proves useful in simple
scenarios, for extended neural networks with recurrent connections, the problem of
how to simultaneously update the activities of the neurons in the network arises. To
avoid this problem, and a simple extension in the form:

N
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can be employed when necessary. Eq. 1.1, becomes in this case the stationary
solution to Eq. 1.2, for a constant input.

1.3.2 A spiking neural model

For completion, we present here a model for input integration in spiking neurons.
In the present work, we will however study time-dependent plasticity (termed
STDP), at the single synapse level only. We will nonetheless need to keep this
type of model for neural integration in mind to express the variables in our model
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in a language compatible with spike integrations models, for extensions of our work.

The term Integrate and fire models refers to a family of models, employed in
a wide range of fields, to describe systems of coupled pulsating elements; such
as networks of pacemaker cells in the heart [90]], flashing extended populations of
fireflies [17,[53]], and, as in this case, neural networks. In these models, evolution
(in between pulses, flashes, or spikes) of a continuous internal state variable V' is
governed by an equation of the shape:

™V = f(V)+ 1. (1.3)

7 is here the characteristic adaptation timescale of V', with f condensing the intrin-
sic dynamics of each unit. I represents the overall input to the unit (both from other
units and from external stimuli). Whenever V' reaches a threshold value Vj, a pulse
is emitted (the only information carried to other units) and the internal variable is
reset to Vi.qq.

In the particular case of neurons, the continuous state variable V' in Eq. (1.3),
represents the neuron’s membrane potential. When this voltage reaches and a
threshold value Vj, a spike is emitted, and the neuron’s membrane potential is
returned to its resting state, simulating the dynamics of physiological action po-
tentials (see Fig. 1.3). A discrete state variable y indicates whether the neuron has
fired a spike (y = 1) or not (y = 0) at a particular point in time. Consistently with
this type of model, in Chapter 4, we represent spikes as delta functions, which are
numerically implemented as a brief pulse of height 1.

So far, we have not specified the shape of function f. We present here as an op-
tion the conductance-based integrate-and-fire (COBA) model from [[I13]], in which
the evolution of each neuron 7 in the network is described by:

Vi = (Viest = Vi) + 65 (Boy — Vi) + g™ (Bini, — Vi) (1.4)

where F., and E;,;, represent the excitatory and inhibitory reversal potentials, and 7
is the membrane time constant. The conductances g; z/inh i1 (1.4) have the mediate
the effect of presynaptic spikes on the postsynaptic neuron. decaying on the other

side in absence of inputs:

.ex/inh ex/inh
Tex/inh Y; = —0; ) (15)
where 7., i, are the conductance time constants and where incoming spikes

from other neurons, on the other hand, produce an increase in the conductances:
gerlint s gerlinh 4 A€/ The size of this change is proportional to the
connection strength w between the neurons. Both in the context of rate- and time-
dependent plasticity the strength of interaction between two neurons is quantified
by the value of w. In the following section we deal with how w is modified and

how it evolves in time.
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1.4 Synaptic Plasticity and Learning

As it was previously mentioned, a major question regarding the brain is how infor-
mation is acquired, processed, and stored, and how learning is achieved. Precisely
how neurons interconnect, and specifically how these connections evolve accord-
ing to the activity in the network is still, in many respects, an open question. In
section |1.2, we introduced the concept of a synapse: the connection between two
neurons. These connections are however not static, they are constantly changing:
which neuron is connected to which other neuron, but also, how effective is the
connection. The synaptic efficacy between a pair of neurons ¢ and j in the network
(usually denoted w;;) is a measure of how much impact the activity in neuron j
has on the activity of neuron 7. The process of modifying the value of a neural pa-
rameter in the model is termed in this context plasticity. In particular, the action of
changing the synaptic efficacy w;; is known as synaptic plasticity, which, combined
with the adaption of other intrinsic parameters in neurons (intrinsic plasticity), is
believed to be at the basis of long lasting learning and memory [44].

One of the first theories put forward in this sense was Hebb’s rule [56]], which
could be roughly summarized as: neurons that fire together, wire together. But
it was only in the 70s that the first precise mathematical formulations proposing
how that wiring takes place were formulated, being Oja’s rule [86] and BCM [[14]
among the ones with the greatest impact. These learning rules, in the form of dif-
ferential equations, were based on experimental evidence indicating that synapses
in the cerebral cortex are bidirectionally modified by sensory experience [61}/62].
These first rules considered the firing-rate (the frequency at which a neuron fires),
as the fundamental unit of information transmitted between neurons. These neu-
ronal models are thus referred to as rate-encoding neurons. In more recent years,
experiments were performed that could only be explained by taking into account
the specific timing of pairs of pre- and post-synaptic spikes, a form of plasticity
known as spike-timing dependent plasticity (STDP) [43]], generating thus two major
lines of research in Synaptic Plasticity, namely rate-encoding vs. time-encoding
modeling. How exactly this two forms of plasticity interact in different neurons,
remains unclear and currently new rules of plasticity are still regularly formulated
that consider more and more detailed features in the time structure of spike patterns
such as triplets [91]] or even quadruplets of spikes [[T15].

While successful at explaining experimental findings to which they were tai-
lored, many of these rules are circumscribed to the specific setting at hand, without
incorporating the results into a broader theory in the form of higher principles
governing learning processes in general in the brain. As counter-side of this, other
learning rules, derived from higher principles, do not yet count with a possible bio-
logical implementation. Ideally, one would wish to find a reduced set of governing
principles determining the evolution of all the relevant variables in the brain. These
principles should be expressed in a clear mathematical formulation allowing to
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derive the equations of evolution for these variables. Finally, the results should also
be independent of the fine tuning of internal parameters of the model; any result
should be robust enough to be feasible in a biological context of great variability.
With these requisites in mind, the concept of Self-Organized Criticality (SOC) [8]
seems to provide an adequate framework in which to formulate these governing
principles. Dynamical systems presenting SOC are those where a critical state
attracts the dynamics of the system and this behavior is independent of the tunning
of the model’s parameters. The system self-regulates to reach equilibrium.

An example of such self-regulating mechanisms is that of Homeostasis, ubiq-
uitous in the bodies of living organisms. By this process, a certain property
is regulated to keep a constant value. Regulation of body temperature, for in-
stance, allows an animal to survive in a wide range of exterior temperatures. In
an analogous way, homeostasis permits a neuron to function in a wide range of
conditions [[T10]]. These types of mechanisms are then good candidates to express
the higher principles we are looking for, counterparts of low level formulations that
build up on local properties.

The challenge is then how to bridge these two worlds; how to formulate a
principle such as that of homeostasis in a precise and useful mathematical way,
and how then to derive the local plasticity mechanisms. Procedures in other fields
of Physics, such as classical mechanics already exist that permit to determine the
evolution of every variable in a system by minimizing a certain value over the
all the possible paths in configuration space. Such a procedure can be extended
by defining Objective functions for neural systems [64]. Furthermore, by use of
informational theoretical measures, such as Information Entropy [T7], one can
express several Objective functions in terms of neurons’ firing statistics and study
how different principles, present simultaneously in the brain, could interact [[LI0§].
Moreover, the concept of homeostasis for a single scalar value can be extended
by use of this formalism to regulate the system’s evolution in terms of the whole
distribution of states in a procedure known as polyhomeostasis |[18]).

1.5 Complementary approaches to Plasticity

At least two complimentary approaches exist when developing a synaptic plas-
ticity rule: one may either employ a so called bottom-up approach, building up
rules which reproduce certain aspects of experimental observations, in terms of
the biological elements known to be involved in the process (as we will later do
in Chapter 4); or a top-down approach, where synaptic plasticity rules are de-
rived from a guiding principle, expressed in terms of desirable goals for the brain
(metabolic, computational, or related to the stability of the system). This is the
approach we follow in Chapters 2 and 3.
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Examples of bottom-up methods include the formulation long-term potentiation
(LTP) and long-term depression (LTD) in terms of the chemical and configurational
effects of spikes in pre- and postsynaptic neurons [48}[66][97,[T00,[IT1]]. An alter-
native approach is to build the model as a purely phenomenological rule, without
trying to establish a connection to the particular elements that the variables involved
might represent [[7J42]]. A wide spectrum of possibilities then exist between simplis-
tic phenomenological rules, and highly detailed biophysical models. In Chapter 4
we will show how a compromise can be made, by formulating a plasticity rule in
terms of the key biological ingredients thought to be involved, albeit with a highly
simplified mathematical expression.

A useful concept when following a top-down approach, is that of objective func-
tions (also termed generating functionals within dynamical system theory [S1}[74]),
which allow for a wide theoretical perspective of synaptic plasticity (and learning in
general), in the context of dynamical systems. These objective functions allow us to
express general principles in the shape of a concrete mathematical expression, from
which then the equations for the evolution of a system (in our case the plasticity
rules) can be derived [9}[64]]. In the following section we discuss a particular family
of tools, originating from the field of information theory, which are helpful when
dealing with objective functions in the context of probabilistic systems.

1.6 Use of information-theoretical quantities

As previously mentioned, when one deals with probabilistic systems whose goal is
to process information, tools from the field of information theory come in handy. In
particular, a wide variety of information measures stem from Shannon’s information
entropy [[77]], defined for a probability distribution P(z) as:

H= - / p(a) log (p(a)) de (1.6)

A family of functions can then be defined out of the information entropy, such as:
the joint entropy between two processes, the conditional entropy, or the mutual
information between input and output of a process [[77]]. These measures allow to
quantify how much information is transmitted or lost in a given process, and are
then helpful to express computational guiding principles in the form of objective
functions, from which plasticity rules can be derived [[64}[67][791[92][93][106][108]].
In the past, ideas such as as maximizing the output entropy of a system giving
certain constraints have been used as a way of finding parameter configurations that
maximize the representational capabilities of the neural code [I0§]]. In other work,
the mutual information between input and output of a system (or the transmitted
information) is maximized, for instance for signal separation and deconvolution
in networks [J]], or to derive receptive fields in primary visual cortex [25]]. This
type of approach brings useful information to the discussion about to what extent is
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the brain optimal, by comparing the predictions of such computational optimality
principles to the connections actually observed in the brain.

Another associated measure, and one we will employ in this work, is the Fisher
Information, defined as:

Fy = / p(y) (%m (p(y)))zdy : (1.7)

which is a measure of the average sensitivity of the probability distribution p(y)
with respect to parameter #. This quantity will become useful for the formulation
of our guiding principle and we will come back to this point in section 2.2.1, when
we present our objective function.

To conclude this section, we present other past uses of the Fisher Information
as a criterion for optimality, in information transmission and parameter estimation.

The Fisher Information can be related to the mutual information between input
and output of a probabilistic system [[16]]. If one considers ¢ not as a parameter, but
as a variable, which we will call x to avoid confusion, where x represents the input
to the system, and p(y|z) is the output probability for a fixed input x, (1.7) can be
rewritten as

E, = /p(ylx) (%ln (p(y|x)))2dy, (1.8)

which then represents the sensitivity of the output with respect to the input for a
particular input. If one finally averages (1.8) over the input probability distribution

p(z), one obtains an alternative measure of the information that the output conveys
about the input [[T6]].

Finally, the Fisher Information, or rather its inverse, is commonly employed,
via the Cramer-Rao theory [52][89L[99], as a lower bound for the variance when
estimating an external parameter. In this case, the external parameter can be bet-
ter estimated when the Fisher information is larger, that is when the distribution
considered is highly sensitive to the parameter of interest. In this context one
maximizes the Fisher Information with respect to an external parameter. In our
work, however, we are not interested in the estimation of an external parameter,
but rather in the adaption of internal network parameters, namely the strength of
the synaptic weights. For this reason, in the following chapter we will follow a
very different approach, actually minimizing the Fisher information with respect to
internal parameters of our neural system.
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An objective function for self-limiting
Hebbian learning rules

Echeveste, R., & Gros, C. (2014). Generating Functionals for Computational
Intelligence: The Fisher Information as an Objective Function for Self-Limiting
Hebbian Learning Rules. Frontiers in Robotics and Al 1, 1.

In section 1.4, the need for a set of principles guiding plasticity, and learning
in general, was introduced. In this chapter, we discuss how generating functionals
can serve to guide the evolution of dynamical systems and, in particular, con-
stitute a useful formalism in which to frame synaptic plasticity. Working within
the framework of rate-encoding neurons, we propose and examine here a novel
objective function from which plasticity rules for the afferent synaptic weights are
then derived. These adaption rules are Hebbian and self-limiting.

The behavior of the new learning rules is then examined via a series of nu-
merical simulations in various scenarios, observing that the synaptic weight vector
aligns with the direction of the first principal component when the input distribution
closely resembles a multivariate normal distribution. We will show however that
when two or more input directions have the same standard deviation, but differ in
their higher statistical moments, directions characterized by a high negative excess
kurtosis, are preferentially selected. In particular, the rule tends to perform binary
classification when the input distribution is bimodal in at least one direction.

Finally, we test the robustness in performance and show how a full homeostatic
adaption of the synaptic weights results as a by-product of the objective function
minimization. This self-stabilizing character makes stable online learning possible
for arbitrary durations. The neuron is however able to acquire new information if the
input statistics are modified at a certain point of the simulation; showing however
distinct timescales for learning and unlearning.

27
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2.1 Introduction

As presented in section |1.4, synaptic plasticity refers to the modification of the
strength of synaptic connections as a function of pre- and postsynaptic neural activ-
ity. In this chapter we are interested in developing a synaptic plasticity rule within
the framework of rate encoding neurons (see section 1.3). A minimal requirement
for such rules, if one wants them to reproduce plasticity in the brain, is for them
to be Hebbian, as discussed in Chapter 1. This is however not enough for stable
learning. The principle of Hebbian learning on its own [57], is not stable; in the
sense that strong synapses -which induce correlations in neural activities- are in
turn made even stronger, leading (without an additional homeostatic regulative
processes [[110], such as synaptic scaling [2]]) to runaway synaptic growth. Namely,
it is not enough to state when should weights grow, but it is also necessary to define
when should that growth stop, or even be reversed.

From a computational point of view, people have tackled this problem in differ-
ent ways. Either by re-normalizing the synaptic connectivity matrix every certain
number of learning steps, or by adding an explicit weight decay term to their
learning rules (see for instance [[14}[38 46/[86]). What we will show here is how,
from one single principle, one can obtain a learning rule that is -“out of the box™-
Hebbian and self-limiting. Moreover, this will not achieved, as we will show, by an
explicit constraint on the synaptic weights, but will result from a constraint on the
desirable activity range of the neuron.

It has been shown in the past that Hebbian learning, inducing synaptic com-
petition, tends to result in principal component analysis (PCA) [82,[86], in the
sense that, after learning, the neuron becomes sensitive to input directions of high
variance, by means of aligning its synaptic weight vector to the input direction
having the highest variance, usually denoted the first principal component (FPC).
In this way, neurons would select information coming from directions potentially
less affected by noise. One of the first things we will test is whether this feature is
present with our rule and in which context.

Now, an interesting question is, beyond this tendency to produce PCA, what
computational capabilities will a neuron have, depending on the details of the
learning rule. Concretely, to what features will it become selective if we make the
input covariance matrix close to unity, but allow for different higher moments of
the input distribution. This is a highly relevant question for biological and artificial
applications since deviations from Gaussian statistics -given by higher moments of
the input distribution- may contain relevant information, as observed, for instance
in natural image statistics [I01}[102]. For this reason, we will perform a series of
numerical tests in this chapter to try to determine to what features is the learning
rule selective.
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A normal distribution is characterized only by its mean and standard deviation.
So one could choose any of the higher moments of an input distribution to quantify
deviations from normality. For symmetric distributions, the first non-vanishing
higher moment is the excess kurtosis [26]] (or forth moment of an input distribu-
tion). This quantity is, by construction, zero for normal distributions. A neuron may
then be selective to either large positive or negative excess kurtosis, and indeed,
examples exist of neural models which are selective for directions with heavy tails
(corresponding to a large positive excess kurtosis) [I08]l, as a way of detecting
non-normal directions.

In this chapter, on the other hand, we study a rule which allows the neuron
to discover directions having large negative excess kurtosis, an example of which
are bimodal directions. Performing a binary classification, by linear discrimina-
tion of objects in the input data stream, has been proposed as a central aspect
of unsupervised object recognition, for instance while performing slow feature
analysis [28|[I17]]. Using supervised learning to train a neuron to binary classify a
set of linearly separable data is already a well documented process [68]]. What we
will show here, however, is how a single neuron, guided by an objective function
favoring input directions with large negative excess kurtosis, is able to perform this
task unsupervised.

A second application for the preference for non-Gaussian input directions in
general, and of our rule in particular, will be later discussed in Chapter 3, sec-
tion 3.4.

As it was mentioned in section 1.5, one can think of at least two complimentary
approaches when developing a synaptic plasticity rule. One may either employ a
bottom-up approach, building rules which reproduce certain aspects of experimen-
tal observations, in terms of the biological elements involved (as we will later do in
Chapter 4); or a top-down approach, where an objective function is constructed in
terms of general principles, from which the plasticity rules are then derived [9}[64].
Objective functions (also termed generating functionals in the context of dynamical
system theory [51][74]]), allow for a wide theoretical perspective, and have been
used for instance to perform a stability analysis of Hebbian-type learning in au-
tonomously active neural networks [29].

As discussed in section 1.6, the Fisher information is a measure of the
sensitivity of a probability distribution with respect to a given parameter. While
usually associated with the task of parameter estimation via the Cramér-Rao
bound [[52}[89}[99]], it is its property as a sensitivity encoder, which makes it a useful
tool, both in the context of optimal population coding [[10}[36][70]l, or as in the
present work, for the formulation of objective functions. Indeed, this procedure
has been successfully employed in the past in Physics, to derive, for instance, the



30 2. An objective function for self-limiting Hebbian learning rules

Schrodinger Equation in Quantum Mechanics [96].

The proposal in the present work, is that a self-limiting learning rule can be
expressed in terms of a principle we denote the stationarity principle of statistical
learning, stating that:

“Once a neuron has extracted the relevant features of a stationary input distri-
bution, the output distribution should also be stationary.”

For this to be possible in the context of a noisy environment, we require this
final state to be stable, in the sense that the output probability distribution should
be locally insensitive to changes in the synaptic weights. This is where the Fisher
Information comes into play, allowing us to formalize this condition of minimal
sensitivity, as a minimal Fisher Information condition. In a multidimensional
parameter space (as is the case of the synaptic weights) a particular generalization
of the one-dimensional Fisher Information will be chosen to ensure local learning
rules. Indeed, as we will later show in section 2.3, the synaptic plasticity rules
obtained in this way have a set of attractive features; being Hebbian, local, and at
the same time, self-limiting.

As mentioned in section |1.6, this is not the first initiative to use tools from
information theory to derive plasticity rules, other examples include the use of the
transfer entropy [[112]], or the Kullback-Leibler divergence to a target distribution,
which one may use for instance to adapt intrinsic neural parameters [[79,[T08]]. We
will indeed use such an intrinsic plasticity rule in our work, which will complement
the synaptic plasticity rule we derive. With the right choice of target distribution,
minimizing the Kullback-Leibler divergence can be equated to maximizing Shan-
non’s information content or output entropy of the neuron’s firing statistics [L0§]].
Interestingly, the combination of both rules, will result in an effective sliding thresh-
old of the synaptic activity, similar in a broad sense to that of the BCM rule [[14].
In Chapter 3, we will be able to expand on these ideas, once we are able to study
the attractors of the learning rule analytically.

2.2 Theory

In this chapter we consider rate-encoding (point) neurons, as presented in 1.3.
Namely, we will quantify the activity level of the neurons by their rescaled output
firing rate y € [0, 1], where for each neuron the output y is a monotonic function
g of its integrated input x (also usually denoted in this context as the membrane
potential) computed as:

Ny
y=g(), =Y wily —7). 2.1)
7=1



2.2 Theory 31

N, 1s the dimension of the input space, that is the number of input synapses. w;
and y; are respectively the synaptic weights and input firing rates. The values ¥;
represent the trailing averages of y;,

d_ y;j—y;
yj_ )
dt T,

(2.2)

with T}, the averaging time-scale, so that only deviations from the average firing
rate value influence postsynaptic activity. This is a frequent assumption for synaptic
plasticity, usually implemented by either trailing averages or by preprocessing of the
input data. The synaptic weights w may take, for simplified rate encoding neurons,
both positive and negative values. This is a simplification. As we commented in
section|1.2, real neurons respect Dale’s Law: they are either excitatory or inhibitory.

So far we haven’t specified the functional form of g, and since the exact shape
of the learning rules will depend on g, throughout this work we will explore several
possibilities for it. We begin in this section by considering the sigmoidal transfer
function g we presented in (1.1), which we here recall:
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y=ygx)=ox-"b), o(z) (2.3)
where o(z) (usually denoted Fermi function in Physics), has a fixed gain or slope.
The neuron has therefore a single intrinsic parameter, namely the bias b. We have
not included an explicit gain parameter (as in [[108]]), acting on x since any multi-
plicative constant can in our case be absorbed into the w;s.

In the following sections we will first define a guiding principle (section 2.2.1),
and then derive synaptic plasticity rules for the synaptic weights (section 2.2.2),
which we will analyze in conjunction with an intrinsic plasticity rule for b.

2.2.1 Motivation in terms of the Fisher Information

In section 1.6, we introduced the Fisher information:

Fy = / p(y) (% In (p(y)))z dy (2.4)

which encodes the average sensitivity of a given probability distribution p(y) with
respect to a certain parameter 6. As mentioned in section 2.1, the proposal of the
present work is to derive a synaptic plasticity rule from the stationarity principle of
statistical learning, stating that, for a stationary input distribution, once the extrac-
tion of the relevant features has been completed, the output probability distribution
should also be stationary. In terms of the stability of such a final state, we should
expect this output distribution to be stable, and therefore minimally sensitive, to
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local changes of the weight vector. The Fisher Information, being a measure of
sensitivity for probability distributions, will therefore be a useful tool in this regard.

If we only had one incoming synapse vy, integrated by a single parameter wy,
we could simply consider:

Frp=1 = / (wliln (p(y(yl))))ZP(yl)dyl, (2.5)

8w1

where w10/0w; is a dimensionless differential operator corresponding to the log-
derivative of the synaptic weight. Since we are interested in a stochastic learning
rule for the synaptic weights, with one input instance per time-step, we have defined
the average sensitivity in terms of the input probability distribution, with the output
probability distribution being a function of the input distribution:

p(y(y1))dy = p(yr)dy, py(n)) = 8];%3/1 .

In this way, we can rewrite 2.5, exclusively in terms of y; and w, as:

N 0 p(y) \\°
FNy=1 = / (wl D, In <8y/8y1)) p(y1)dy: - (2.7)

The problem arises when one tries to extend this concept to a multidimensional in-
put space with a weight vector of size /V,,. One possible approach would be to con-
sider the full Fisher Information matrix, defined by all the partial derivatives with
respect to every synaptic weight. This approach has the serious problem of being
non-local, in the sense that the cross terms produce a learning rule for each synapse
that explicitly depends on the value of every other synapse. Here we are interested,
however, in local learning rules, in which each synapse is only allowed to “know”
its own value, plus neuron-wide variables = and y. Defining withy = (y1,...,yn,)
the vector of afferent synaptic weights and with p(y) the corresponding probabil-
ity distribution, we propose the following extension, which we denote the Local
Synapse Extension:

=, 0 w) \\
Syn — , plY;
T /(;wjawj " (8y/8yj)> Py)dy 28)

This form of extension will, as will we see, yield local learning rules, avoiding
explicit cross-talk between the synapses.

(2.6)

The integral in 2.8 is weighted by the input probability distribution, and can
therefore be expressed as an expectation value:

oL ) V)
R Dy N G s

J=1
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Indeed, we begun by considering the Fisher Information as the average sensitivity
(which is nothing more than the expected value of the derivative of the probabil-
ity distribution) with respect to the parameter in consideration. Now, by rewriting
the derivatives in the previous expression in terms of x, and noting that the input
distribution p(y;) does not depend explicitly on w;, f*¥" can be expressed as:

7

2
fovm — (N+ x;{ > , (2.10)

where 3/ and y” represent the first and second derivatives of the transfer function
y = g(x) with respect to x. The constant N, originally comes out as an N,, in the
derivation, which we chose to handle as an independent parameter for the learning
rule. This last point will be discussed in more detail in the following chapter, when
the properties of the learning rule are studied analytically.

In the form of equation 2.10, the dependence of the objective function on the
exact choice of the transfer function y = g(z) has become explicit. In the following
chapter the effect of this particular choice will be studied in detail. In this chapter,
however, we will continue to work with the already presented sigmoidal 2.3. With
this particular choice, the objective function takes the form:

Fr = B = E[(N +2(1-2y))]. @11

It is from this final form that we will derive the learning rules in the following
section.

2.2.2 Derivation of the learning rules

As previously stated, we are interested in deriving local, instantaneous plasticity
rules, defined in terms of the pre- and postsynaptic firing rates y; and y. We hence
proceed by performing a stochastic (or online) gradient descent on the objec-
tive function (2.11). That is, instead of taking the gradient of the full expectation
value of the objective function F*¥" (denoted as batch gradient descent), which
would require individual neurons to count with (at least) an estimate of the prob-
ability distributions, we compute the gradient of the inner function f*¥", and take
one learning step per input instance:

wW; o< = —a%jfsy” = —6% (N +2(1—2y))%] . (2.12)
Making use of the fact that 0x/0w; = (y; — y;), and that, for the Fermi sigmoidal
function (2.3), dy/0w; = (y; — y;)(1 — y)y. We can finally write:

w; = ewG(@)H(2)(y; = 4)), (2.13)

with
G(z) = N + z(1 — 2y(z)),

H(z) = (2y(x) — 1) + 22(1 — y(2))y(x) . (2.14)
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Figure 2.1: The roots of the adaption factors. Left: Plasticity functions G and H,
as defined by (2.14), here expressed entirely in terms of the output activity y € [0, 1],
for clarity. As an illustration, parameters b = 0 and N = 2, have been used. H
(when multiplied by (y; — y;)) constitutes the Hebbian part of the rule, while G acts
as a limiting factor, reverting the sign of (2.13) when the neural activity comes too
close its extreme values of 0/1. Right: Effect of the bias b on the objective function
" of Eq. (2.11).

Since y is a monotonic function of x, synaptic functions G and H can also be en-
tirely expressed either in terms of x or y, as shown in Fig. 2.1. As it can be observed
in the plot, H(y) is an essentially linear function with positive slope within most
of the activity range of the neuron, only saturating for y — 1/0. Therefore, the
product H (y)(y; — ;) constitutes the Hebbian part of the synaptic plasticity rule
(2.13), increasing the size of the synaptic weight w; whenever the input y; and the
output y are correlated.

Function G/(y), on the other hand, serves as a limiting factor, reverting the sign
of the learning rule if the neural activity approaches the extremes, y — 1/0, keeping
the membrane potential x close to the roots of G(z). For this reason, the synaptic
weight will also remain finite, making the adaption rules in (2.13) self-limiting.

As a side note, for N = 2 the two synaptic functions are proportional to each
other’s derivatives: H(x) = —G'(x), and G(x) = 2y(1 — y) H'(x), and the reversal
of the learning rate takes place when the Hebbian factor is maximal/minimal [33]].
For this reason, we will often employ N = 2 for our simulations. The effect of
parameter /N on the learning rule is discussed in detail in Chapter 3.

Although the learning rule presents no explicit cross-terms, as avoided by the
local synapse approximation, it is important to note that synaptic competition is
present implicitly in the rule via the membrane potential x, which integrates all
individual contributions.
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Finally, regarding the adaption rate €, in Eq. (2.13), we have tested that the
Plasticity rule (2.13) works robustly for a wide range of parameter values. For all
simulations we will present in this chapter we have used €,, = 0.01.

So far we have focused only in the adaption of the synaptic weights. We also
count, however, with an intrinsic parameter in the model, namely the bias b, which
could be regulated. In section 2.2.3, we study how this parameter can be adapted
to scale the average activity level up or down, and how both rules (synaptic and
intrinsic) interact.

2.2.3 Intrinsic plasticity rule

Parameter b was introduced in (2.3) as a bias, shifting the response curve of the
neuron. Its adaption, via an intrinsic plasticity rule, will then determine the overall
neural activity level.

There is, however, a second effect of b on the neuron’s dynamics. Since the
synaptic plasticity rules depend on the output y, which depends in turn on b, the
bias also shifts our objective functions. As an illustration, on the right-hand side of
Fig. 2.1, f*¥" as a function of y is presented for several values of b.

To quantify this effect, we first invert g via z = b —log ((1 — y) /y) and express
the synaptic function H solely in terms of y:

H(y)=(2y—1) + 2y(1—y) [b—log (1 —v)/y)] (2.15)

For b = 0, we have H(1/2) = 0, which, as we can observe in Fig. 2.1, is the
only root of . We call this root y7;. The bias b then regulates the position of yj;,
representing the crossing point from anti-Hebbian (for low neural activity y < yj;)
to Hebbian learning (for large firing rates y > yj;). The dependence of y7; on b,
together with that of the roots of G (which will be discussed in section 2.2.4), are
shown in Fig. 2.2. The monotonic relation between the Hebbian turning point and
b, allows us to consider the bias also as a sliding threshold, analogous to the one
present in the BCM theory [[14]], which regulates the crossover from anti-Hebbian
to Hebbian learning with increasing output activity and which is adapted in order
to keep the output activity within a given working regime. In BCM theory, the
threshold is computed explicitly as a function of the mean activity. Here, however,
we will adapt the bias by use of an additional objective function, as proposed

in [[TOS]].

The Kullback-Leibler divergence

Dk, = /dyp(y) log (%) , (2.16)
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Figure 2.2: Roots of the Hebbian and limiting factor in the plasticity rule. Left:
The roots G(xj,) = 0 and H(x*) = 0 (see Eq. (2.14)), respectively, as a function
of the bias b. Right: The corresponding values y(x*) for the output activity. Note:
the roots never cross.

is a measure of the distance between two probability distributions p(y) and ¢(y)
[77]]. In particular, it can be used to quantify the distance between the actual firing-
rate distribution p(y) and a given target distribution p, (y):

Dgp = /dyp(y) log (M> o m) =+ (2.17)
pA(Y)

where the exponential distribution chosen here, maximizes the entropy, and there-

fore the information content, of the neural activity given the constraint of a fixed

mean u. Dy, will be minimal if py(y) is approximated as well as possible by

p(y), maximizing the output entropy. We observe that for A — 0 a uniform target

distribution is obtained with a target mean activity p — 0.5.

The bias b can therefore be adapted in order to minimize Dy . The procedure,
involving a very similar derivation via stochastic gradient descent to the one here
presented for the synaptic weights has already been developed in the past (see
[108]]) and will not be presented here. We simply present the final expression for the
intrinsic adaption that we will use in this chapter for the numerical simulations:

b= —e(1—2y+y(l—y)N), (2.18)

where ¢, is the adaption rate for the bias. For the simulations carried out in
this chapter, we have used ¢, = 0.1. We observed the actual value of the adaption
rate had only a marginal influence on the overall behavior of the adaption processes.

As a final remark, we note that minimizing the Kullback-Leibler divergence and
the Fisher information are examples of polyhomeostatic optimization [[78][79], as
one optimizes an entire probability distribution function, here p(y), instead of a sin-
gle scalar quantity. This concept is an extension of the concept of basic homeostatic
control, which aims to regulate a single scalar quantity, such as the mean firing rate.
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2.2.4 Roots of the limiting function G

In the previous section we discussed the behavior of yj;: the root of the Hebbian
part of the synaptic plasticity function. The limiting factor G(x), on the other hand,
has two roots zf,(1) and x(2), (see Fig. 2.2). For b = 0 the roots are symmetric
around 0, and one finds x7, ~ 2.4, which corresponds to firing-rates y;, = 0.083
and y;, = 0.917 respectively. The self-limiting feature of the synaptic plasticity
rules (2.13) results from the two roots of G/(x), as both too large and too low activity
levels will reverse sign of the learning rule.

Moreover, as one can see in Fig. 2.1, the roots of GG correspond to the minima
of f*¥". Since the learning rule is looking to minimize f*¥", the fact that G has two
roots will generate a tendency to perform a binary classification, setting it apart from
other objective functions for synaptic plasticity rules [[64]]. This feature will become
evident in the numerical simulations of section [2.3, and will be discussed in detail
in the following chapter, when the attractors of the learning rules are computed
analytically. As a first illustration of this behavior we consider the case of a set of
discrete input patterns

yna n:17"'7Npatt7 (219)

where the number of input patterns N, is smaller than the number of afferent
neurons ( N, < N,,) and where at each time-step we randomly select the inputs
(y1,--.,yn,) =y out of the set (2.19). Under this conditions, we find numerically
that the learning rules result in a synaptic vector w dividing the space of input
patterns into two groups:

(v —=v) = 24(1 f N,y tat l
w-(y"—¥) 93*@() or TNy states y” (220)
G

w-(y"—y5) = z5(2) for (1 —~)Npar states y"

which is a solvable set of N, equations for NN, variables (wy,ws,...). Here
y = (Zn y”) /Npatt is the mean input activity, and v and (1 — +y) are the fractions
of patterns mapped to x(1) and z(2), respectively. Since v determines the
amount of times the output y will be low or high, and therefore the mean firing rate
of the neuron, it is determined self-consistently via the adaption of the bias b, trying

to approximate as closely as possible the target firing-rate distribution o< exp(\y),
see Eq. (2.17).

Since the membrane potential x = w -y takes in the end two values for all inputs
y drawn from the the set of input patterns, the result of this learning procedure is
the binary classification of the IV, vectors.
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2.3 Numerical results for continuous input distribu-
tions

In the previous section we had a first flavor of what the learning rule can perform,
with a computational example consisting of the binary separation of a discreet input
set. To test the learning behavior of the neuron described by rules (2.13/and 2.18)),
when presented with different continuous stationary input distributions, a series of
numerical simulations have been performed, aimed at assessing the neuron’s ca-
pabilities for principal component extraction and linear discrimination. In section
2.3.3, these results are then extended to a scenario of time-varying input distribu-
tions, where a fading memory effect found.

2.3.1 Principal component extraction

We begin by considering the case of N, input neurons with Gaussian activity
distributions p(y;) (truncated so that y € [0, 1]), where a single direction has larger
standard deviation o, and all other V,, — 1 directions have a smaller standard
deviation of ¢/2, as illustrated in Fig. 2.3(A). We have selected, without loss of
generality, y; as the direction of the principal component, since it will make the
visual interpretation of the evolution of the synaptic weights simpler. It is important
to note that, since the input x is computed as the scalar product of the input vector
and the synaptic weight vector, it is rotational invariant, and so are the plasticity
rules. We have nonetheless verified this independence by running simulations with
dominant components selected randomly in the space of input activities.

In Fig. 2.3 we present the numerical results for a neuron with /V,, = 100 input
directions, where we have taken A\ = —2.5 for the target distribution p,(y) (see
Eq. (2.17) in section 2.2). For the initial conditions, the synaptic weights {w; } were
chosen initially small (randomly drawn from [—0.005 : 0.005]), so that the learning
rule is initially exclusively Hebbian, that is to say the membrane potential x is
substantially smaller than the roots x, of the limiting factor G(x) (see Fig. 2.3(B)
where z and the roots x7, are given by the blue/red dots).

We observe that Hebbian learning leads to larger weights, with the weight along
the first principal component (here w;, red line in Fig. 2.3(F)) taking the largest
value. As the membrane potential = grows, it starts to cross the roots z¢, of the
limiting factor G(x), and a stationary state results. This is evidenced by the way
the weight along the principal component saturates. The smaller weights, corre-
sponding to the directions of small standard deviation, seem to perform a random
walk around 0. We find that this stationary state, with continuously ongoing online
learning, remains stable for arbitrary long simulation times. In Chapter 3 we will
be able to explain this solution and its stability analytically.
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Figure 2.3: Alignment of the synaptic weight vector to the direction of the first
principal component. Numerical simulation results for a neuron with N,, = 100
input directions, each with Gaussian input distributions, where one direction (the
first principal component) has twice the standard deviation of the other N,, — 1 di-
rections. (A) Sketch of the input distribution density p(y1, vz, - . . ), with « the angle
between the direction of the first principal component (PC) and w, the synaptic
weight vector. (B) Time series of the membrane potential x (blue), the bias b (yel-
low), the roots x§, of the limiting factor G(x) (red) and the root =7, of the Hebbian
factor H(x) (green). (C) The evolution of the angle « of the synaptic weight vec-
tor w with respect to the direction of the first principal component and (inset) the
output distribution p(y) (red) compared to the target exponential distribution(blue).
(D) Time series of the output y (blue) and of the roots y, of the limiting factor G(y)
(red) and the root 3, of the Hebbian factor H (y) (green). (E) Distribution of synap-
tic weights p(w) in the stationary state for large times. (F) Time evolution of the
first ten synaptic weights {w,}, separately focusing on the first principal component
(upper panel) and on the nine other orthogonal directions (lower panel).
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Figure 2.4: Scaling behavior of the adaption rules with the number of afferent di-
rections. Left: The signal to noise ratio S,, = |w|/0y,,, where w; is the strength of
the synaptic weight along the FPC and o, is the standard deviation of the synaptic
weights in the orthogonal directions (see Eq. (2.23) in section 2.3.1.1). Right: the
mean angle between weight vector and the first principal component. Shown are re-
sults for incoming signal-to-noise ratios of: 2:1, 4:1, 8:1, 16:1 and 32:1, defined as
the ratio of the standard deviations between the large and the small components of
the input distributions p(y;). While the output signal-to-noise ratio Sy, = |w1|/0w,
remains essentially flat as a function of N,,; the increase observed for the average
angle « is a statistical effect, produced by the increasingly large dimensionality of
the input and synaptic weight space, as discussed in section 2.3.1.1: while all indi-
vidually small in magnitude, the influence of the orthogonal weights becomes large
for an increasing N,,.

In Fig. 2.3(C), we observe how the final firing rate y(¢) covers the whole avail-
able interval [0, 1], and the output distribution (see inset in panel (C)) tries to mimic
the target exponential distribution o< exp(Ay) in the Kullback-Leibler divergence of
Eq. (2.17). The sliding threshold y7},;, determined by b, as described in the previous
sections, settles in this case to y7; ~ 0.4, (green dots in Fig. 2.3(D)).

In panel (C) of Fig. 2.3 we observe how the angle a between the synaptic weight
vector w and the direction of the first principal component of the input distribution
is initially large, close to 7/2 (the random value in large dimensional spaces), de-
scending rapidly as synaptic adaption progresses, indicating that the neuron aligns
its weight vector to the direction of the first principal component. Finally, in panel
(E) we plot the distribution of the w; obtained from several simulations, with a
separate scale for the principal component, here w; ~ 9.1 (as averaged over 100
runs). The small components are found to be normally distributed around zero with
a standard deviation of o/ ~ 0.23, resulting in a a large signal-to-noise ratio
Sp = |wi|/ow™ ~ 9.1/0.23 ~ 40. In the following section, the interpretation of
this ratio, compared to the angle « is discussed.
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2.3.1.1 Signal-to-noise scaling

Biological neurons in the neocortex of mammals possess in the order of tens of
thousands of synapses each [27], for this reason, for any synaptic adaption rule to
be biologically meaningful, even if simplified in its details, it needs to be able to
scale up for large numbers of input dimensions. In our case, this means making
sure that the rule shows a stable performance even for large NV,,, without the need
for fine-tuning of the parameters. Fortunately, this is the case for our plasticity
rules, as we will show in this section.

We will consider two possible performance measures to asses the scaling behav-
ior of the learning rule: the angle a between the weight vector and the direction of
the first principal component, and the signal-to-noise ratio of the output (defined as
Sw = |wy|/oy, where wy is the synaptic weight along the principal component and
oy, the standard deviation of the remaining synaptic weights), each as a function
of N,.

We have considered both a large range for the number N,, of input directions
and an extended range for the incoming signal-to-noise ratio (.5;), defined as the
ratio between the standard deviation along the FPC (o;) and that one along the
perpendicular directions (0,): S; = o1/0,. As in the previous section, the input
activity distributions p(y;) are Gaussians with standard deviations o, = o, for
(j =2,...,N,). We consider here values for S; of 2:1, 4:1, 8:1, 16:1 and 32:1. In
Fig. 2.4 we present both performance measures as a function of NV, for each value
of S;. All simulation parameters are kept otherwise constant.

Although the two measures would a priori quantify the same property (how
strongly the weight vector signals the FPC), we observe a very different behavior
of these two measures with increasing N,,. While the outgoing signal-to-noise
ratio is remarkably independent of the actual number N,, of afferent neurons, the
performance deteriorates in terms of the angle o, which increases steadily with N,,.

This discrepancy is, as we show in what follows, purely a statistical effect,
originating from the dependence of angles on the dimensionality of the space.

In our simulations with N, Gaussian input distributions p(y;) the synaptic
weight vector adapts to

w = (wy,wy, ..., wy,), wy > wy (k>2), (2.21)

where p(y;) has the largest standard deviation oy, with all other p(yy), for & =
2,..., N, having a smaller standard deviation o . The angle o between the synap-
tic weight vector w and the direction &; = (1,0, ...,0) of the FPC is hence given
by:

cos(a) = W&l [l (2.22)

~lwlllled] \/w?+2k>1wi'
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If we now denote with:

ol = <Z w,%) /(N, — 1), (2.23)

k>1

the standard deviation of the non-principal components (which have a vanishing
mean), we can rewrite (2.22) as:

|U)1‘ 1 |w1\ . 1

CJer ez, Ve VR
W

cos()

Sw (2.24)

This means that for a constant signal-to-noise ratio 5, (like the one we find in our
simulation), « will grow with N,,.. Moreover, for any arbitrarily small signal to
noise ratio, the angle will always approach 7/2 in the limit of large N,,, making
the angle between the FPC and the weight vector a poor performance estimator.
Moreover, from the point of view of biological neurons, the S, seems like a more
adequate measure than an angle which would require non-local information to be
computed.

2.3.1.2 Comparison to other learning rules

At this point, we would like to compare the results of our synaptic plasticity rule to
other well established models.

Oja’s rule [87], introduces an additive weight decaying term to the purely Heb-
bian rule y(y; — y;):

u')j = €oja [y(yj - g]) - awaj] . (225)

The original formulation, designed for linear neurons, was proposed with o = 1
for the relative weighting of the decay term in (2.25). In the case of non-linear
neurons as the ones considered here (see Eq. (2.1)), we numerically found that
Oja’s rule does not converge for a 2 0.1. In Fig. 2.5/ we present the results obtained
when adapting the bias using (2.18)), and comparing the results for Oja’s rule (2.25)
and our plasticity rule (2.13), with the same training set from section 2.3.1. The
parameter €,;, was chosen in order to match the learning times (or the number of
input patterns) needed for convergence for both rules (in this case €,;, = 0.1).

Since in Oja’s rule one can manually set the importance of the weight decaying
term, and therefore set the size of the weights, by setting &« — 0, one can achieve
arbitrarily large S,,. When that happens, the resulting p(y) becomes binary (see
Fig.2.5) because of the sigmoidal transfer function saturating for both large positive
and negative z, as expected. The price of high S, is then large weights, and with
it binary output distributions, determining a trade-off between signal-to-noise and
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Figure 2.5: Comparison of the final output distributions together with their signal-
to-noise ratios Sy, when employing our learning rule (2.13) and Oja’s rule (2.25),
in this last case, for several weight decay parameters o. We have used here the
same parameters and input distribution as in Fig. 2.3, Depending on the param-
eter a, controlling the strength of the weight decay term in (2.25), arbitrary large
signal-to-noise ratios S,, can be achieved, making however the output distributions
increasingly binary. The general shape of p(y) is otherwise comparable, for similar
signal-to-noise ratios, using both rules. Oja’s rule tends to produce a more compact
response however for small S,,.

usage of the representational range of the firing rates. In other words, if one wishes
to obtain smooth output firing-rate distributions p(y), the level of .S, one can obtain
is limited also in this case. As a note, Sanger’s rule [98]] reduces to Oja’s rule for
the case of a single neuron, as considered here.

Finally, we also attempted to make a comparison with the BCM learning rule
[T4,23]]64]l, when applied to the same neural model as the one here employed. While
the BCM update rule was also able to find the direction of the FPC, we always found
runaway synaptic growth in the case of the type of neurons considered in our study
(non-linear with bound y € [0, 1]). We believe the reason for this is that the upper
cut-off of the firing rate limits the value of the sliding threshold, so that it cannot
raise to high enough values to induce sufficient synaptic weight decay. To sum up
for the neural model here employed, and with the input distribution of section 2.3.1,
runaway synaptic growth could not be avoided for the BCM rule.
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2.3.2 Learning in terms of higher moments of the input distri-
bution

So far we have shown that, for (bound) multivariate normal input distributions,
our learning rule is able to find the first principal component (FPC). This is hardly
surprising since most Hebbian learning rules, such as Oja’s and BCM [[14],
do precisely this. Our rule is however non-linear for large and low activity levels,
and it is precisely in this way that it is able to revert the sign of the synaptic update
rule to keep weights bound. This nonlinearity, inspires us to think that the rule
could in fact be sensitive also to higher moments of the input distribution. To
test this hypothesis, we perform a series of numerical experiments, in which input
distributions with different characterestics in terms of their higher moments (but
same mean and variance) are made to compete.

In Fig. 2.6 we present the results of our simulations, in which the neuron is
presented with an input distribution in which the two dominant directions (without
loss of generality we chose y; and y-) have the same standard deviation o ~ (.22,
with the remaining N,, — 2 directions having a smaller standard deviation o /4.

As a first experiment, we chose the first direction, y;, to be Gaussian, with
the second direction, y, being bimodal (see Fig. 2.6(A)). The bimodal direction
is composed of two superposed Gaussian distributions along y, having individual
widths o /4, with the distance between the two maxima adjusted so that the overall
standard deviation along - is also o.

We observe that, in this situation, the learnt synaptic weight vector lies always
in the plane of y; and y,, as expected since the largest variance is still in this plane.
Within this plane, it aligns for most randomly drawn starting ensembles {w; } to the
direction of the bimodal distribution (ys) (see Fig. 2.6(C)). Moreover, the system
adjusts the synaptic the weights w and bias b so that the two peaks of the bimodal
component are close to the two zeros x(1/2) (see red symbols in Fig. 2.6(B))
corresponding to the minima of the objective function (compare Fig. 2.1). The sys-
tem performs, therefore, a linear discrimination of the input, this time continuous
(compare the analysis of section 2.2.4| for discreet inputs), having a bimodal output
firing rate distribution (Fig. 2.6(D)).

Indeed the system seems to prefer bimodal to normal distributions. In order
to provide a more general characterization, we will study the input distributions in
terms of their higher moments. One way to characterize the non-normality of a
given probability distribution, is its excess kurtosis [26]], which we here denote with

k=4 -3 Q= /(yj —9)'p(y;)dy;,  0f = /(yj — ;) p(y;)dy;
(2.26)
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Figure 2.6: Selectivity to higher moments of the input distribution. As in Fig.2.3,
now for two input directions having the same variance, one Gaussian and one bi-
modal, and the other N, — 2 directions having a standard deviation four times
smaller. (A) Sketch of the input probability distribution p(y1,vs,...). (B) Time
evolution of the membrane potential x (blue), the bias b (yellow), the roots z{, of
the limiting factor G(x) (red) and the root x7; of the Hebbian factor H(x) (green).
(C) Evolution of the angle 3 between the synaptic weight vector w and the bimodal
direction. (inset) The output distribution p(y) (red) together with the target expo-
nential py (blue). (D) Time series of the output y (blue) and of the roots y;, of the
limiting factor G(y) (red) and the root y;; of the Hebbian factor H(y) (green). (E)
Probability distribution functions employed for the pairwise comparisons. (F) Evo-
lution in time of the first ten synaptic weights {w;}, separately for the principal
component (upper panel) and for nine other orthogonal directions (lower panel).

with the Gaussian distribution having, by construction, a value of x = (. Bimodal
distributions, and in general distributions with most of their weight far from the
mean, have a large negative excess kurtosis, reaching its minimum of —2 for the
distribution composed of two d-peaks [26]. On the other end, very peaked dis-
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tributions, or distributions with heave tails, tend to have a large positive excess
kurtosis. As a note, the excess kurtosis tends to be small or negative on a finite
support p; € [0,1]. Indeed, truncating distributions to fit within [0, 1] (as we do
here) generically produces distributions with negative excess kurtosis. This is also
true for the truncated Gaussians used in our simulations.

Having now a measure of non-normality, we generalize the previous experiment
by studying pairwise competition between two out of three distributions having all
the same standard deviation o, but different kurtosis, as depicted in Fig. 2.6(E),
namely: a bimodal distribution with k = —1.69, a truncated Gaussian distribution
with Kk = —0.63, and a unimodal double exponential with k = —0.43.

Generating ng,; = 1000 instantiations of the simulation, with randomly drawn
initial conditions, we found that the direction with lower « (larger negative excess
kurtosis) was chosen by the neuron 88.8% / 65.4% / 64.0% of the times, when the
competing directions were bimodal vs. double exponential / Gaussian vs. double
exponential / bimodal vs. Gaussian, respectively. We never found a case where both
wy and w, were simultaneously large.

In Chapter 3 we will present a systematic analytical study of the attractors of
the learning rule in terms of the higher moments of the input distribution, which
will justify these numerical findings. For the time being, we simply state that the
reason for this relies on the the two minima of the objective function F;, (2.10), to
which for instance the maxima of the binary distribution were mapped.

Finally, we have repeated these simulations using the modified Oja’s rule (2.25),
with & = 0.1 and €,j, = 0.1, finding the following relative selection rates: 97.0% /
99.8% / 42.1%, as before, when the competing directions were bimodal vs. double
exponential / Gaussian vs. double exponential / bimodal vs. Gaussian. The last pair
breaks the pattern and we then see no direct link between kurtosis and selection rate.

2.3.3 Continuous online learning - fading memory

Up to now we have studied the behavior of the learning rules when faced with a
stationary distribution. It is relevant, however, to study the behavior of synaptic
plasticity rules during continuous online learning, when the statistics of the inputs
change in time, since for any real world application, a neuron should be able to
adapt to changing statistics robustly. That is, adapting to new information without
runaway growth of the synaptic weights.

Although permanent adaption is clearly necessary, the way and speed with
which this should be achieved is still an open question and the optimal solution
will probably depend on the application at hand. Concretely, whether the neuron
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should adapt immediately, forgetting what was learnt, at a very short time scale,
or whether it should show a certain resilience, to be safe from noise, will largely
depend on the context of application. In this section we will study the behavior
of the adaption rules when the input statistics changes, and we will compare the
results to the behavior of Oja’s rule in the same context.

In Fig. 2.7, we present the evolution of the synaptic weights (as in panel (F)
of Figs. 2.3 and 2.6), when we now change the direction of the FPC, at certain
points in time, or even make the input distribution completely spherical. Both
learning rules recognize the new statistics autonomously, however, with very differ-
ent timescales. While Oja’s rule learns and unlearns the new statistics in the same
timescale, our rule presents very different timescales, with a strong resilience to
unlearn the previously acquired information about the input statistics. We call this
feature of plasticity rules (2.13) a fading memory.

As in section 2.3.1, we used for the simulations N,, = 100 inputs or afferent
neurons, with multivariate normal input distributions of standard deviation o along
the FPC (if any, see (a), (b) and (d) in Fig. 2.7) component and ¢ /2 for the remain-
ing N,, — 1 directions. As a note, since the input distributions p(y;) are symmetric
with respect to their means (here 0.5), the sign the synaptic weights are irrelevant.
During the numerical experiment, the direction of the FPC changed several times,
everything else remaining otherwise unchanged. As a test, we also include a period
(c) in Fig. 2.7, with no principal component, that is during which all standard
deviations are the same (0/2). The initial values for the synaptic weights were
drawn randomly from [—0.005 : 0005]. For Oja’s rule (2.25), we used o = 0.1
(which yields the same signal-to-noise ratio, compare Fig. 2.5), and €,;, = 0.1, so
that the initial learning time (achieving 90% of the stationary value for the principal
component) are the same for both updating rules.

We find the initial learning time T}, =~ 10? steps, for €,, = 0.01 and ¢, = 0.1
(same throughout this chapter). When a new direction is presented, the time the
neuron takes to adapt to this new information is on the order of T\ carn ~ 106,
that is two orders of magnitude larger than 77,,;;,;. That is to say, once the neuron
has learnt a given direction, it takes considerably longer to learn a new one. In
particular, when the neuron is presented with pure noise (the no FPC case during
phase (c) in Fig. 2.7), the neuron shows an even stronger resilience to forget the
previously learnt direction, taking roughly 5 - 107 steps (5000 times longer) to go
back to a fully random state of the synaptic weights. The synaptic plasticity rule
(2.13) is therefore extremely robust to periods of noise, leading to what we call an
extended fading memory.

As a note, we observe in Fig. 2.7 an initial overshoot of the larger synaptic
weight whenever we change the direction of the FPC. We need to remember that
the stability feature of our learning rule results from the neuron trying to keep
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Figure 2.7: Continuous online learning for changing input statistics and fading
memory effect. Top: for our synaptic updating rule (2.13). Bottom: with Oja’s rule
(2.25). For both rules the same inputs are used. During time periods denoted as
(a), (b) and (d), the FPC lies along v, vy», and ys, respectively, with a standard
deviation o for the FPC, and o /2 for all other directions (same as in Fig. 2.3).
At (c) there in no principal component, that is, the standard deviation along every
direction is the same (0/2). As in Figs. 2.3 and 2.6, we used N,, = 100 afferent
neurons, with initial weights randomly drawn from [—0.005 : 0005]. In the figure
we show the time evolution of a representative set of weights. In the case of our
plasticity rule, we observe a longer timescale for forgetting than for learning a new
input direction. In contrast, for Oja’s rule, learning and unlearning happen at the
same timescale.

the membrane potential x (and not directly the weight) within its working regime.
When the FPC is changed, the membrane potential is initially too low, since the big
weight is now allocated to a direction of small variance around 0. The system then
reacts by increasing the weights to try to bring the membrane potential up. This is
purely a transient effect, until the new direction is learnt.

We begun the derivation of our learning rule by stating that we wanted to
minimize the local sensitivity of the output distribution with respect to the synaptic
weights. Once learning has been completed, the neuron is precisely at a very
stable point, from where it is extremely hard to get out. This is true even once one
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changes the statistics of the inputs as we here did. We will study the properties of
this attractors in detail in the following chapter, when take an analytic approach and
perform a dynamical system’s study of the learning rules.

From the point of view of the biological relevance of the fading memory ef-
fect, it is yet not completely clear which form of unlearning is present in the brain,
particularly at the level of individual neurons. On the one hand, studies carried
out in pre-frontal cortex have shown full learning and unlearning of different cat-
egories in binary classification tasks (associated in this context to the concept of
adaptive coding) [31]]. On the other hand, there is a tendency in more complex
behavioral responses to show slow or incomplete unlearning, as is the case for ex-
tinction of paired cue - response associations within the paradigm of Pavlovian con-

ditioning [[83][95]].

2.4 Discussion

In this chapter we have presented an objective function (2.10), motivated from
the stationarity principle of statistical learning, from which a set of self-limiting,
Hebbian plasticity rules (2.13) could be derived.

Beyond the particular objective function here presented, objective functions, or
more generally generating functionals, can be used to derive equations of motion
for variables or parameters in different fields. In the particular case of neuroscience,
they can be used to derive adaption rules for both intrinsic and synaptic parameters.
In particular, objective functions based on information theoretical principles in
general, have played an important role in neuroscience [47,[64},/67.[71]] as well as in
applications to artificial intelligence and robotics [[5/[103]]. Many of these objective
functions make use of Shannon’s information content and related measures, such as
the Kullback-Leibler distance [[I08]], or the Mutual Information [[69]]. The objective
function we present here can be either interpreted in terms of the Fisher Informa-
tion, as we have done in section 2.2.1, or practically, in terms of its properties for
self-limiting Hebbian learning.

We have already shown numerically in this chapter how the learning rule is
sensitive to higher moments of the input distribution. In particular, we have shown
that neurons evolving according to our rule show a strong preference for bimodal
input directions. Such a preference may be particularly useful for modeling of neu-
ral systems in cortical areas. Transient bursting in the brain has been proposed as a
mechanism for precise information transmission [[76]]. Examples of neurons show-
ing this type of behavior are bursting pyramidal neurons in layer 5 of somatosensory
and visual cortical areas [I9]]. This kind of neurons, switching between low (or
quiet) activity states and bursting, would have bimodal rate distributions (and
therefore a negative excess kurtosis). Neurons in higher cortical areas, using such a
principle would be able to tune their intra-cortical receptive fields to be selective to
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bursting neural populations. We have to date, no experimental evidence that these
neurons are employing our proposed principle, and it would be interesting to test
these predictions in future work, in collaboration with experimental groups.

The full application range of the rule will however become more clear in the
following chapter, when we relate the selectivity for non normal directions to the
task of independent component analysis. Neurons obeying our learning rules will
turn out to be natural independent component seekers.

Finally, we have shown how our rules exhibit a distinct fading memory feature,
with very different timescales for learning and unlearning, and a particular robust-
ness vs noise.

From a wider perspective, the kind of adaptation rules here presented, where no
fine tunning of the parameters is necessary to ensure the stability of the rules, falls
into the framework of self-organizing processes governed by target objectives, or
guiding principles [41},[50,[74,[94]]. The difference with Oja’s rule, in this regard,
became evident when we discussed the dependence of convergence, signal-to-noise
ratio, and final weight size, with the parameter « setting the strength of the weight
decay term. The fact our rule is expressed in terms of the membrane potential x
and not directly in terms of the weights, means that the overall size of the weights
will automatically scale up or down with the size of the system or the activity level
of the presynaptic neurons, to ensure the output activity is at its correct working
range.

Here we have combined a novel objective function for synaptic plasticity with
an existing rule of adaption for the intrinsic parameters. The interplay of different
objective functions is important for several reasons [[I0§]]. From a mathematical
point of view, any rule determined exclusively as the gradient of a single quantity
can only show point attractors, not being able to capture the complexity of neural
processes. The joint behavior of multiple generating functionals has been shown to
exhibit highly nontrivial dynamics [[51}[74].

Moreover, each objective function may represent different biological con-
straints, ranging from metabolic to computational objectives, and their interaction
may only occur via the biological agent itself. In this case, it may not be possible to
incorporate the multiple generating functionals into a single overarching objective
function. In the case here presented, a synaptic plasticity rule motivated in terms of
a stationarity principle, together with the intrinsic adaption rule, defined in terms of
a computational principle (maximal information) and a metabolic constraint (fixed
mean firing rate), has proven to be a viable solution to the problem of simultaneous
synaptic and intrinsic adaption.
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In Chapter 2, we presented a synaptic plasticity rule, motivated by the idea
of stationarity of the output distribution, once learning of the relevant features of
an also stationary input distribution is completed. Stationarity was expressed as
a minimal local sensitivity condition, quantified by the Fisher information of the
output distribution with respect to the synaptic weights. The resulting learning rule,
was found to be Hebbian and self-limiting, avoiding in this way unbounded weight
growth. Moreover, we found numerically that a neuron operating under these rules
is able to find the first principal component (FPC) of multivariate Gaussian input
distributions but, when presented with directions of high negative excess kurtosis,
the neuron exhibits a strong preference for these non-normal directions.

While the numerical experiments provided a first intuition about the properties
of the rules, questions remain about how precisely the neuron will respond in a
more general case. When exactly, for instance, will the neuron switch from PCA, to
higher moment sensitivity, in terms of the distribution’s higher moments. In other
words, what determines the working regime of the neuron, and the stability of the
learnt directions. In this chapter we will study the learning rules from the point of
view of Dynamical Systems, finding the attractors of the plasticity rule, that is to
say, the states of the synaptic weights to which the learning rule can converge, and

51
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their stability.

Another point that we will discuss is the generality of the rules. In Chapter 2
we showed that the exact shape of the objective function (and therefore of the
learning rule) depends on the particular choice of transfer function y = g¢(z),
relating the integrated input or membrane potential x, and the output firing rate y
(see Eq. (2.10)). It is therefore important to understand how the results depend on
this choice and whether they are robust to quantitative changes of g. In this chapter
we will show how, for different qualitatively similar transfer functions (the family
of sigmoidals, for instance), one obtains qualitatively equivalent learning rules. The
robustness of the result makes an approximate functional implementation of the
rule by a biological system, for instance, plausible, and it is therefore an important
check.

We begin in section 3.1, with the robustness of the learning rule with respect to
the particular choice of nonlinearity in the neural model. Once this robustness has
been established, we will make a particular choice for g that will greatly simplify
the analytic study of the attractors and their stability in later sections.

3.1 Robustness of the learning rule in terms of the
chosen nonlinearity

In Chapter 2, we showed how, for a neuron defined by:

Nuy

y=g(x), x=>Y wily—7). (3.1)

=1

the stationarity principle, when formulated in terms of the Fisher information, re-
sulted in objective function:

F = E[f*] = E[(N+A®@)*], A@==, (2

where we defined for convenience an auxiliary function A(z) containing the non
constant part of f*¥". We note in (3.2), that A depends on the choice of g, since
y' = dg/dx. For the exponential sigmoidal (or Fermi function) (2.3), employed in
Chapter 2, we have, for instance:

Acapl) = (1 2y(2). (3.3)

With this particular choice, the Hebbian self-limiting plasticity rules (2.13) were
obtained. We want to study now how these plasticity rules vary when other choices
for g are considered. In particular, when g is chosen within the family of sigmoidal
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transfer functions, a reasonable requirement to consider the rules as robust, is that
the plasticity rules be still qualitatively similar to (2.13).

We begin by considering the alternative transfer function:
1
Gtan(x) = —arctan(x —b) +1/2, (3.4)
T

with the same limits y — 0/1 when x — —oo/oo. This choice of g, in turn
determines the following version of A(x) [34]:

2x(x —b)

Aerl?) = TG

(3.5)
We observe that the objective function (3.2) is by construction strictly positive
(f*¥™ > 0), and the roots, determined by:

Ae:rp/tan(x) = —N, (36)

therefore correspond to global minima, as shown in Fig. 3.1(a). These minima
can then be graphically found by finding the intersection of the plot of A with a
horizontal at height — N (see Fig. 3.1(b)).

Moreover, also in Fig. 3.1(b), we show graphically that a mapping exists, so
that, given the roots of the objective function obtained for one choice of g, the same
roots can be selected for the other choice, by selecting an appropriate value of N.
In other words a bijection Ny, (Nesp, %) can be defined that preserves the roots of
the objective function.

As a side note, for A.,,(x) one finds global minima for all values of N > 0,
whereas N needs to be within [0, 2] for the case of A, (z). However, in both
cases, the exactly same values for the roots can be achieved. This is important since
N is merely an internal parameter of the model, while the roots have an external
observable correlate, namely the produced activity level.

It should be mentioned that, while the objective functions obtained by one
or another choice of g present a similar behavior, they are not exactly identical.
While A, (and therefore f7¥7) diverges for z — o0, keeping w tightly bound
(regardless of the dispersion in the input distribution), A;,, has bound minima for
r — 00, and therefore the maxima of fZ¥" are of finite hight. This means that
if the input dispersion is too strong, the weights may go on growing, making it in

principle unstable to very noisy input distributions.

Finally, we tested the equivalence of the rules numerically. As in Chapter 2,
we presented the neuron with a multivariate input distribution of N,, = 100 input
dimensions (see Fig. 2.3), with one direction y; (without loss of generality since
the rules are fully rotation invariant) having a larger standard deviation o4, and the
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Figure 3.1: (a) Plot of the objective function f*¥" (3.2), as used in Chapter 2, for
Acp(z) = (1 —2y(z)), b = 0 and N = 2. The synaptic weights are adapted
via (2.13), derived to minimize f*¥", so the membrane potential x is drawn towards
the function’s two minima. (b) Comparison of A(x), as defined by Egs. (3.2), (3.3),
and (3.5), corresponding to the exponential and the tangential sigmoidal transfer
functions g. As an illustration, we show the case b = 0. The roots of the objective
function " correspond to the solutions of A(a:)exp/tan = —N (see Egq. (3.2)),
which can be graphically solved by finding the intersection of the plot of A with a
horizontal at height —N. We observe that a mapping exists, so that given the roots
of the objective function for one choice of g, the same roots can be selected for
the other, by selecting an appropriate value of N, as we show graphically. Namely
a function Nigp(Neyp, ©*) can be defined that preserves the roots of the objective
function.
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Figure 3.2: Evolution during learning of the synaptic weights, when we employ
either the exponential (2.3)(Top) or the tangential (3.4) (Bottom) transfer function.
The continuous red line corresponds to w; (in the direction of the FPC). A repre-
sentative subset of the remaining N,, — 1 = 99 weights plotted with dotted lines.

other directions of o, = o/2. We observe in Fig. 3.2, how for both the exponential
or the tangential sigmoidal, the neuron is able to find the FPC.

The objective functions found so far, depend highly non-linearly on x, via g(x)
and non-linearities proper of the f*¥". This complicates further analytic treatment
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of the rule. However, the robustness in terms of the general shape of the objective
function encourages us to look for either an approximation or a more convenient
choice of g, so that the learning rule becomes analytically tractable, without losing
its properties. That is precisely what we do in section 3.2.

Note: An interesting case is that of an purely exponential transfer

function:
b

g(x) =€,
which corresponds to the exponential foot of the sigmoidal 2.3, and
is employed when activities are low compared to the upper bound-
ary, so that its effect can be neglected. In this case, A(x) becomes
equal to x (since y" = y') and the learning rule reads:

w; = eoH(y)(y; — ), with  H(y) = N +b+In(y).

That is, if the upper activity bound is neglected for the neural
model, it is also neglected by the learning rule, recovering a purely
Hebbian rule, without reversal.

3.2 Analytic treatment of the learning rule: attrac-
tors and their stability

In Chapter 2 we obtained a first understanding of the learning rule defined by
(2.13), with the help of numerical simulations. These simulations showed that for
bound multivariate normal distributions the rule was able to find the FPC (Fig.2.3).
On the other hand, when two directions having the same standard deviation were
made to compete (Fig.2.6), the neuron seemed to prefer directions of large negative
excess kurtosis. What is not clear is why this is the case, and also what happens
in between these two scenarios, that is when the input distributions have different
standard deviations and different higher moments.

To have a better understanding of the rule, we would like to be able to analyti-
cally find the stationary solutions of (2.13), as a function of the different moments
of the input probability distributions. As it was previously stated, this is very
complex when the learning factors are non-polynomial in x. For this reason, we
will consider a polynomial expansion in z, of Eq. (2.13), and we will do so with
polynomials of the lowest possible degree, around the roots of functions H and G,
that is, linear for H (which has a single root), and of degree 2 for G (which has 2
roots).

As a first step, we will consider b = 0. In this case, the two roots z3,(1/2) =
4z, of the limiting function G are symmetric (see Fig. 2.1 (a)). H, the Hebbian
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Figure 3.3: (a) The plasticity functions G and H (2.14), which we here express
solely in terms of the output activity y € [0,1] (by use of v = g~ '(y)). H is the
Hebbian term, while G serves as a limiting factor, reverting the sign of the learning
rule (2.13) when the output activity gets too close to its extreme values (0/1). (b)
Comparison of the original learning rule (2.13) and its cubic approximation (3.7),
as a function of x for the same parameters as in Chapter 2 (b = 0 and N = 2).

part of the learning rule, has a single root at x = 0 (y = 0.5). We therefore propose
the following cubic approximation for (2.13):

iy = eG)H(@)(y; —5) ~ —ewr(x —o)(x +20)(y; — 5;)/N?

= er(zt —2%)(y; — y;)/N?

where the scaling factor 1/N? > 0 has been introduced to also reproduce the
scaling of the height of the maximum in the plasticity function (found numerically).
For a fixed N, however, this factor can simply be absorbed into €,,.

(3.7)

For a graphic comparison of the original learning rule (2.13) to the cubic ap-
proximation (3.7) see Fig. 3.3|(b).

Now, to simplify the notation, let us now denote v; = (y; — ¥;). To find the
attractors (or steady state solutions of the learning rule), we are interested in com-
puting the time-average weight change:

1 Nu Nu 3
(Wj) = ewqmE | (Z wi%‘) g — (Z wm)
=1 =1

where, since we draw one input element of the input probability distribution per
time-step of the learning rule, we have equated the time average with expectation
value E[-], over the input distribution. As a simplification, we assume now uncor-
related and symmetric input distributions:

E[yi;) =0=ENT,

which results in vanishing odd moments. We note here that, as previously men-
tioned, since the learning rule is rotational invariant, the result is independent of

(3.8)

k=1,35,...
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the direction one chooses for the PCs, and we can choose, for instance the principal
axes of the distribution to match the axes of reference, therefore eliminating the
linear correlation terms.

Furthermore, by taking €, — 0 (in the limit of small adaption rates), we can
assume the weights on the right hand side of (3.8) to be stationary, resulting in:

, 1
(i) = ewmwjaf. (25 — wiolK; — 3®), (3.9)
where
Ely;j]
2 2 _ o 2 2
ol = E[i, K; = U;j — 3, o = Ej wio; (3.10)

denoting the standard deviation (SD) o; along direction j, the excess kurtosis
K, and a weighed average of input standard deviations that we have grouped for
convenience under term .

Finally, for the stationary solutions (or attractors) of (3.9), we have:
. 1 ! .
<'LUJ'> = EWWUJ]'O'JZ (13(2) — wfaij — 3(1)) = 0, ] = 1, 3, 5, cey Nw
(3.11)
relating the attractors or stationary solutions w; of the learning rule directly to the
input moments. For each j in the set of equations (3.11), we have two possible

solutions:

in line with numerical observations that for a fixed input distribution, the synaptic
weights would always converge in different iterations of the numerical experiment
to the same size. This is indeed a condition to obtain a fixed x, determined by the
roots of the objective function.

In Chapter 2 we trained the neuron with a multivariate normal distribution
(truncated to [0, 1] in every direction, for consistence with the neural outputs in
our model), where one direction (the FPC) had a large SD o, and all the perpen-
dicular directions had a smaller SD, which was a given fraction of ;. We showed
numerically how for this input distribution the neuron was able to find the FPC, by
aligning its weight vector to the direction of the FPC. This meant that w; (corre-
sponding in our simulations to the FPC direction) became large, with the remaining
synaptic weights w; ~ 0V j # 1. The numerical solution we had previously ob-
tained is therefore in line with the analytic solutions of (3.12), with the non-trivial
condition in (3.12) predicting (within the employed approximations):

(3.13)
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As already noted in 2.3.2, the negative excess kurtosis of any distribution has a
minimum of —2 , which means K7 + 3 > 0, and therefore the square root
in (3.13) is well defined. We will perform a detailed comparison of (3.13), to the
numerical results in Sect. 3.3.

3.2.1 Stability of the stationary solutions and sensitivity to the
excess kurtosis

In the previous section we found the stationary solutions of the learning rule,
under the cubic approximation. In this section we wish to study the stability of
these fixpoints, that is to say, whether a perturbation to the synaptic weights in the
vicinity of the solutions will tend to grow or decrease in time. A way to quantify
this is by calculating the eigenvalues of the Jacobian Matrix at the fixpoints, a
standard method in Dynamical Systems [50]]. Furthermore, since in Chapter 2 we
observed a preference of the neuron for directions of large negative excess kur-
tosis, we want to relate the stability of the stationary solutions to the excess kurtosis.

Since the competition in the simulations of section 2.3.2 took place between
the two directions with larger standard deviation (the smaller components seemed
to be a source of noise only), we will study here for simplicity the case of two
competing input directions with standard deviations and excess kurtosis o; and K;,
respectively, for ¢ = 1, 2. We then have three different types of solutions for (3.12):

(0,0),  (wy #0,0),  (wj #0,w; #0),

with the additional solution (0, w3 # 0) being simply an analog of (wj # 0, 0).

We now proceed to calculate the eigenvalues A; , for each type of stationary
solution to then determine their stability (in Fig. 3.4 we present a sketch of these
fixpoints). We have three cases:

o The trivial solution (0, 0), which we found to be always unstable, given that
it has positive eigenvalues:

2

x
Ai2(0,0) = ewﬁg (o7, 03) . (3.14)

o The case (w} # 0,0), for which we found the eigenvalues:

2 2
* _ "o , 03l
)\172(11)1 7& 0,0) = Ewm (-20’1 s Kl T 3) s (315)
where we see that \; is always negative, and the sign of A\, depends only
on K. The attractor (w; # 0,0) is therefore stable (unstable) for negative
(positive) excess kurtosis K. The same reasoning is of course valid for its
analogous (0, w3 # 0).



3.2 Analytic treatment of the learning rule: attractors and their stability 59
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Figure 3.4: Sketch of the stationary solutions of the learning rule after the cubic
approximation (3.9), in the case of two competing directions of synaptic weights
wy and wsy, as a function of the respective input excess kurtosis Ky and K,. Given
that the solutions for the weights are determined only up to a sign change, we plot
in the space of w?. Visual representation of the solutions’ stability: open circles
(unstable), full circles (stable), half-full circles (saddles).

¢ Finally, since the last term (3® — :cg) in (3.12) is the same for all synapses, the
case (w} # 0,w) # 0) is only possible if KK, > 0 (K, and K, must have
the same sign. Furthermore, it can be shown that this last case is only sta-
ble when both K; and K, are positive, simultaneously making the solutions
(3.15) unstable. In Fig. 3.4, the stability exchange between the the attractors
in the space of K; and K is sketched.

This means that the only stable attractors in the case of distributions with negative
excess kurtosis (as is the case for bound distributions covering a substantial portion
of their range as discussed in Chapter 2), are of the type (w] # 0, 0).

Now that we have found an expression for the attractors of the learning rule,
and their stability, we can try to explain the numerical results of Chapter 2.

Let us analyze the numerical finding that the update rules (2.13) perform a prin-
cipal component analysis (PCA) for truncated multivariate normal input distribu-
tions. Firstly we note that the solution of the type (w] # 0,0) (and its analogs)
are stable for all directions (as long as they have a negative K, which is the case
for truncated Gaussians). So why is the FPC selected if other directions are also
stable? We can answer this question in two different ways. In the first place, as
seen from (3.9), (w;) ~ sz, and therefore the synaptic weights corresponding to
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directions of large variance 0]2 will tend to grow faster and, since solutions with
more than one non-zero weight are not stable, the neuron will find the FPC solu-
tion first and then stay since it is stable. Another way of seeing it, is to take into
account the phase-space contraction factor (Aﬁ“‘) + )\ga)) , for the alternative
solutions w(@=1) = (w} # 0,0) and w(®=2 = (0,w} # 0). Looking at (3.15)
when K; = Ky < 0, we observe a faster contraction rate in phase space close to
w) if 02 > o2 (and vice versa), indicating that the neuron will approach faster the
attractors corresponding to directions with larger standard deviation.

3.2.2 Exact cubic learning rule

So far, we have studied the attractors and stability of the learning rule, via the cubic
approximation, with the hope that the results actually hold for the full expression
(2.13), given observed robustness of the learning rule as long as the roots are
preserved (as shown in section 3.1).

We recall, however, expression (3.2):

F = B = B[N+ A@)?], AW ="

in which the factor A is determined by the relation y = g(x). Interestingly, as it
was shown in [32,[37], it is possible to find a function g, so that the learning rule
becomes exactly cubic, with the same roots as the original (2.13). This is the case
for the rescaled error function:

Y= gerr(x) =

(z— b)/(sf L
“dz (3.16)

r— b
22
— e 22dz ,

defined as the integral of the normal distribution of variance s. Parameter s deter-
mines the slope of the transfer function and we only need to set s = 4/+/27 to even
have the same slope as for the Fermi function (2.3). One can now easily compute
the derivatives of (3.16), resulting in:

/ 1 _a=ty? " (JI — b) /

e 252 Yy = —

y:\/% Y 52 y?

which in turn produce the following version of the objective function:

(N - @)1 . (3.18)

(3.17)

Fn —

err
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Finally, we compute the corresponding synaptic plasticity rule via stochastic gradi-
ent descent (as we have done for (2.3), obtaining:

W = ey(z—1b/2) (Ns*—z(z—"b)) (y; — ¥;)
= ew(x—b/2) (zf — x(x = b)) (y; — 7)), (3.19)

where we have substituted Ns? by z2 (the squared roots for the case b = 0). Apart
from a scaling factor, Eq. (3.19) reduces exactly to previous cubic approximation
(3.19) when we set b = 0:

Wy = —€ux (T —x0) (x +20) (Yj — Yj) = € (xg — xz) (y;j —y;) . (3.20)
For non-zero b, we can express (3.19), as:

W = —€y(x—b/2) (x—27) (z—2") (y; — 7;) , (3.21)

b b
R —§i\/b2/4+x§ N =g E T, (3.22)

and where the approximation in (3.21) is valid for small b, simply shifting the entire
learning rule (3.20) by a factor b/2:

with

W; = —€y(x—0/2) (x — 29 — b/2) (x + 20 — b/2) (y; — 7j) - (3.23)

To obtain an analogous expression to (2.14), in terms of the product of a Hebbian
function H and a self-limiting one GG, we rewrite (3.19) as:

Wy = eoH(@)G(2)(y; —7;), H(x)=(x—-b/2), G(z)= (25— x(x-0b)) .
(3.24)
We plot these new versions of H and G in Fig. 3.5 (a) (compare with Figure 3.3 (a)).

This procedure allows us to compute the attractors of the learning rule (3.24) (as
we did for (3.7)), also in the case b # 0, and for non-symmetric input distributions,
resulting in:

. 2 2 b? 3b 2 2
<wj> = Gw’ij'j Ty — 5 + ?w]’O’ij — ’UJ]-O']-K]' — 3P s (325)
where the additional parameter (compare (3.9)) S; is the skewness of input distri-
bution y;, as defined by

B3]

L.
9;

S; =

(3.26)

The skewness, or third moment of an input distribution, is a measure of its asym-
metry, and vanished therefore in the original computation, given the symmetry
assumption. When it does not vanish, however, the second term of (3.25) generates
an interaction of the intrinsic and synaptic plasticity through b. This is in line with
the numerical finding in Chapter 2, that both rules interacted very weakly for the
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symmetric input distributions (S; = 0). In this case, small values of b (b* < 23/2)
merely produce a shift in the effective roots z.

As we mentioned before, for symmetric input distributions, the sign of the w; is
undetermined. This is however not the case for asymmetric distributions, where the
skewness, plus the sign of b, will define the sign of the w;.

As a final comment, we observe that, while the trivial solution w; = 0 is
predicted by this analysis to be stable for x3 — b?/2 < 0, we have not found this
case numerically, where b ~ 1, for target activity levels (y) as low as 0.1, whereas
xo 1s usually much larger (2.4 for N = 2).

3.3 Quantitative comparison of the numerical find-
ings and analytic results from the cubic approxi-
mation

Let us recall that in section 3.2) we found an analytic expression for the stationary
solution (w; # 0,0), under the cubic approximation, resulting in the predicted value

of:
Zo

0'1\/K1 +3 '

We are interested now in performing two comparisons. Firstly, we will compare
this analytic prediction to the numerical result produced by exact cubic learning
rule obtained for the rescaled error transfer function (3.24), since this would serve
as a check for the validity of the analytic procedure carried out while calculating the
attractors. Secondly, we will compare these two values for wy, with the numerical
value of w; found for the original learning rule. The three values need to be com-
puted for the same input distribution and, since the prediction of (3.13), determines
a relation between w; and K;, we choose for this purpose an input distribution,
whose kurtosis along the FPC can be continuously adjusted, from unimodal to in-
creasingly bimodal. We employ then p(y;):

1 1+2d 1—2d
AN (2= Nlzr—
o[V () o ()|

the sum of two normal distributions N (z, o), each with standard deviations o, and
peaks at +d from the mean (0.5). We will vary d and, in order to keep the overall
o constant, we adjust o as a function of d. We therefore get for each value of d a
different K, but always the same ;. For d = 0 we recover the normal distribution
(bound to y; € [0, 1]) with K ~ 0, though slightly negative because of the bounds.
At the other end, when d — o1, o — 0, and the input distribution becomes the
sum of two deltas (with K; — —2). We can therefore test the resulting stationary

] =
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Figure 3.5: (a) Synaptic plasticity functions G and H, as previously presented for
the original rule in Fig. 3.3 (a), now for (3.24). (b) Value of w, (corresponding to
the FPC) for the stationary solution, determined by either the original rule (2.13)
(in green) or the exact cubic form from the error function (3.19) (in blue), together
with the predicted value (3.13) of the cubic approximation, as a function of K.
Parameters: b = 0, oy = 0.1, 0,21 = 01/2, and N,, = 100. We find that the
prediction is in excellent agreement with the numerical result for the error transfer
function, while it is only qualitatively similar in the case of the original learning
rule (2.13).

value of w; for each K; € [—2,0) and any given o;. Finally, for the remaining
N, — 1 input directions, we use bound Gaussians of o; = 01/2, as in Chapter 2.

The results are plotted in Fig. 3.5 (b), where the numerical stationary value of
w; (both using the original and the exact cubic learning rule) is presented as a func-
tion of K, and compared to the predicted value (3.13) of the cubic approximation.
We employed in this case a constant b = 0, with 01 = 0.1, and 0; = 0, /2V i # 1.

We observe in Fig. 3.5 (b) that the analytic prediction returns the same value
as the numerical simulation for the exact cubic learning rule, validating thus our
procedure. While the qualitative behavior of the numerical result of the original
rule is preserved, we observe an increasing deviation for larger ;. When the input
distribution along y; is composed of two deltas, the three results match, since in this
case each of the two possible input values is mapped to one of the two minima of
the rules (which are the same in all three cases). As the input distribution becomes
more disperse, it senses more of the rule away from the minima, and the numerical
results reflect this. In other words, the quantitative deviation we observe between
analytic prediction (or equivalently numerical result for the exact cubic rule) and
the numerical result for the original rule, stems from the non-linearities away from
the minima. As a further confirmation of this, we expect from visual inspection
of Fig. 3.3/ (b), the cubic approximation to produce smaller values of w, than the
original rule, since the cubic rule reverts sign faster than the original rule for large
x. This is indeed the case in Fig. 3.5 (b).
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3.4 An application of the learning rule: Independent
Component Analysis.

We can imagine the input distribution received by the neuron is actually a mixture
of independent signals, which the neuron is trying to extract. The task of deter-
mining the independent signals from the mix is denoted Independent Component

Analysis (ICA) [22].

The central limit theorem states that the sum of a large number of independent
sources will approximate a Gaussian distribution [49]]. For this reason, if one is in-
terested in the independent components of a distribution, one can look for the input
directions that are most non-normal. To assess how non-normal or non-Gaussian a
probability distribution is, we can use its higher moments (for instance the excess
kurtosis K or the skewness .5), since they are 0 for a normal distribution. We
will not go into detail here on all the different principles employed by typical ICA
algorithms, but the interested reader can find an extensive and interesting review

in [[63]].

The fact that our rule has proven to be selective to non-normal input directions,
and furthermore we have been able to relate the stationary solutions of the rule pre-
cisely to the higher moments of the input distribution, encourages us to test whether
a neuron functioning under these learning rules could serve as an independent
component analyzer. If this were the case (which we will show it is), it is worth
mentioning that this feature has not been the product of explicitly maximizing a
given measure of non-Gaussianness (as carried out in [45][72]]), but rather it has
been an side-effect of the stationarity principle.

In the line of our result, we note that it has been shown in the past how under
certain conditions, a neural network employing a nonlinear principal component
analysis learning rule, is also capable of performing ICA [87]]. In this case, how-
ever, it is a single neuron that selects one of the independent components.

To test the hypothesis that our neurons are able to perform ICA, we will apply
them to the non-linear bars problem proposed in [40]]. In this example, the inputs
to the neuron will represent pixels from a square picture, which can take only two
values, corresponding to either a light or dark pixel. The picture will have a total
size of N, = L x L pixels, with L the length of the side of the square. The image
is comprised of a number of horizontal and vertical bars, where a bar is a complete
row or column of dark pixels (see Fig. 3.6). For each possible bar, the probability
of it being actually drawn on the screen will be p = 1/L (each bar is independently
drawn from the other). At the intersection of a horizontal and a vertical bar the pixel
takes the same dark value as in the rest of the bar (it is not the sum of the intensities),
which makes the problem non-linear. As a note, classical ICA is, strictly speaking,
defined for a linear mix of sources (in line with the central limit theorem), the task
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employed in and here corresponds therefore to a generalized or non-linear ICA.

In Fig. 3.6 we illustrate the task and show on the bottom-right examples of the
learnt synaptic weights when employing the synaptic plasticity rules (2.13). We
choose to show the weights graphically for clarity, where the darker the pixel, the
larger the corresponding weight. For the adaption of the bias we have tested both
using the intrinsic plasticity rule (2.18) derived from the Kullback-Leibler diver-
gence, as in the previous chapter, or the more direct homeostatic rule b o (y — p),
as employed in the original paper [40]], finding no major differences. As we can see,
the neuron becomes selective in different iterations to either individual bars, the
independent components of the input patterns, or points. To make things even more
interesting, we repeated the experiment taking out of the training set the inputs in
which, by chance, only vertical or only horizontal bar were present (no occlusion),
keeping sets with at least one of each type of bar. Interestingly, we found that
the neuron is able to become selective to a given bar, even if that bar was never
presented in isolation.

In future work, we would like to study an extended network of neurons of
this type, in which every neuron receives the same input (the bars), plus recurrent
connections from other neurons. In order to deal with the simultaneous update
of neurons with recurrent connections, we would need to slightly modify the in-
stantaneous model we have employed, via the time extension (1.2). It would be
interesting to evaluate whether the network is able to represent a complete set of
the independent components, or how this representation depends on the individual
frequency of bars in the training set.

3.5 Discussion

In the present chapter we have presented an analysis of the stationary solutions
to the learning rule of Chapter 2. We have shown the robustness of the rule to
variations in the nonlinearity of the neural model, observing that the rules remain
qualitatively equivalent, for the family of sigmoidal transfer functions. In particular,
we have compared the original learning rule to two new versions, obtained for the
tangential transfer function and for the rescaled error function. Importantly, we
have presented a cubic version of the learning rule, which can be obtained either as
an approximation of the original learning rule, as an expansion around the roots of
functions A and G, or as an exact form, derived from the error transfer function.

The found cubic form has allowed us to obtain analytic expressions for the
stationary solutions of the learning rules, and the stability of these attractors, in
terms of the moments of the input distributions. In this way, we have been able
to show that the solutions we had previously found numerically in Chapter 2,
actually correspond to these attractors. Moreover, from the stability analysis, and
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Figure 3.6: Illustration of the non linear bars task (as performed in [@] now with
our learning rule (2.13)) The input to the neuron is a set of images representing
the non-linear superposition of a random set of bars. We found that the neuron is
able to learns either single bars, or points, in different iterations of the simulations.
On the bottom-right corner, examples of the learned weights are presented, where
darker pixels correspond to larger weights. Moreover, we tested that the neuron was
able to become selective to a given bar, even if this bar had never been presented
in isolation in the input set. This experiment corroborates our hypothesis that our
learning rule is suitable for ICA.

particularly, from the dependence of the eigenvalues on the standard deviation of
the input distribution, we have concluded that for a multivariate normal distribu-
tion, the rule should converge with higher probability to the FPC, as was indeed
numerically observed. Furthermore, the analytic approach predicts the size of the
learnt weights, which we have contrasted with the numerical simulations, finding a
perfect agreement with the numerical simulations for the exact cubic rule (obtained
for the rescaled error function), and finding a good qualitative agreement with
original rule, being exact for delta distributions, and deteriorating for increased
input variance, since the distribution is then able to feel more the surroundings of
the minima, and not just the minima.

Finally, having established also analytically the predilection of the learning
rule for non-Gaussian input directions, we have tested the use of the learning rule
in the context of independent component analysis (ICA), finding that the rule is
indeed able to find the independent components of the input set corresponding to
the non-linear bars problem. In different iterations of the numerical experiment, a
single neuron is able to become selective to a single bar, even when this bar was
always partially occluded (never presented without at leas one other bar in the
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opposite direction).
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Chapter 4

A simplified biophysical model for
STDP

Echeveste, R., & Gros, C. Two-trace model for spike-timing-dependent synaptic
plasticity. Neural Comput. 2015, 27, 6724698.

So far, in Chapters 2 and 3, we have dealt with the problem of formulating a
synaptic plasticity rule using a top down approach, that is to say, starting from a
guiding principle which expresses some desired property of the system, we have
derived our learning rules. While we have payed attention to satisfy basic biologi-
cal constraints, such as the locality of the learning rules, the bounded minimal and
maximal activity levels, and the homeostatic constraints for the average activity, we
have not expressly related the resulting rule to the biological underpinnings, gov-
erning plasticity mechanisms in real cells. Moreover, we have so far only concerned
ourselves with plasticity from a rate encoding perspective. As mentioned in Sec-
tion 1.3, this is not the only available paradigm in neuroscience, with the timing of
spikes playing an important role in certain protocols involving neural plasticity [[12]].

In this chapter, we will take the opposite approach, building a time-dependent
online plasticity rule in a bottom-up fashion, using the key biological ingredients
thought to be taking place in this process. Since we will be interested in future work
to study the dynamical properties of systems employing this plasticity rule, we will
keep the learning rule as functionally simple as possible, while still producing a
reasonable fit of the experimental results.

The model we introduce here is an effective model (in the previously described
sense of analytic simplicity) for timing-dependent synaptic plasticity, known as
STDP. It is formulated in terms of two interacting traces (understood here as chem-
ical or configurational signals left by neural activity that decay after a certain time),
corresponding to: 1) the fraction of activated NMDA receptors, and 2) the C'a®*
concentration in the dendritic spine of the postsynaptic neuron.

69
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With this proposed model, we intend to bridge the so far existing two classes
of models: simplistic phenomenological rules, and highly detailed models. We
believe that the properties of our model make it a very practical tool for studying
the interplay between synaptic plasticity and neural activity neural networks.

4.1 Introduction

In past sections we had understood the principle of Hebbian learning (neurons
that fire together wire together) from a rate encoding perspective, meaning that,
if the average activity levels (over a long enough period to be able to talk about
rates) of both pre- and postsynaptic neurons was high, then the synapse should
be potentiated, and it should otherwise be depressed. Experiments have shown
however how plasticity can depend on the precise timing of pre- and postsynaptic
spikes [[13/[42,[07]. In these cases, only if the postsynaptic neuron fires within a
few milliseconds after the presynaptic one, implying causality, will the synaptic
connection be potentiated. If the order is reversed (anti-causal order) the synapse
will be depressed. Both effects show a decreased effect as the two spikes become
more separated in time. This time-dependence suggests that time should somehow
be encoded in the synapse or neuron. A “clock” is needed to determine the strength
of synaptic modification as a function of the inter-spike time.

From the use in other fields of a decaying substance to measure time (such as
the concentration of a radioactive isotope to date a fossil), we imagine that a possi-
ble mechanism to measure time in a cell could be the decaying concentration of a
certain ion or molecule, which is reset with each spike. In this work we generically
refer to such a substance as a trace. Traces will be here our time coders. While we
have no direct experimental evidence that time is indeed coded in that way in the
cell, we will show how candidates exist with reasonable timescales of decay, which
have been previously shown to be involved in the process, and via which we will be
able to formulate rules that closely reproduce experimental observations.

Our model is indeed not the first attempt to describe STDP. What makes it stand
out, is rather the fact that it is an extremely simple though biophysical model, with
strong explanatory power. A number of models have been proposed by other groups,
formulating LTP and LTD (see 1.5), in terms of traces [[7,48}[66/[07|[T00|TTT]]. Many
of them successfully explain experimental findings, such as: pairwise STDP, triplet
(and higher order) nonlinearities. They differ from the here proposed model in that
most of them require fitting of a large number of parameters for each experimental
setup, and employ highly non-linear functions of the trace concentrations. While
these models provide a possibly more realistic and detailed description of STPD,
the analytic study of extended neural networks from a dynamical point of view
results highly non-trivial. At the other end of the spectrum in terms of simplicity,
as set of phenomenological rules have been presented [[7,42]], which reproduce
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some of the experimental findings but completely do away with the biological
underpinnings, and are therefore hard to generalize to other settings. The triplet
rule from [42]], for instance, is built as a phenomenological rule to explain the
interaction of three spikes in cortical plasticity, but cannot reproduce the qualitative
triplet features of hippocampal STDP. At a similar level of complexity and expla-
nation power as our model, we find , which is still a phenomenological model,
since the authors do not establish a strong link between the employed variables and
the biological underpinnings. Other phenomenological learning rules expressed in
terms of abstract decaying markers or traces include [[3]] and [91]].

The model we will present in this chapter, can be classified as a member of the
the family of calcium-based spiking-neuron models (although we will actually em-
ploy two traces in our formulation, as explained in section 4.2). Previous examples
of models formulating synaptic plasticity entirely in terms of the calcium levels
include [48|[TTT]]. These models are successful in reproducing a restricted set of
experiments but show inconsistent results as soon as they are tested in more general
contexts. The model proposed in [[IT1]], for instance, shows non-vanishing synaptic
modification also in absence of presynaptic spikes. Similarly, plasticity is predicted
by [48]], in absence of either pre- or postsynaptic spikes. This happens because,
having a single trace for both pre- and postsynaptic spikes, their contribution cannot
be later distinguished. The resulting plasticity rules depend to a large extent on the
fine tuning of the employed thresholds.

The model we propose in this chapter formulates STDP in terms of two in-
teracting traces, namely the fraction of activated N-methyl-D-aspartate (NMDA)
receptors and the concentration of intracellular C'a®>* at the postsynaptic spine.
Being simple (employing polynomial expressions and a reduced number of pa-
rameters), and at the same time described in terms of the key biological elements
thought to take place in the process, we believe the model builds an interesting
bridge between the worlds of phenomenological rules and complex detailed bio-
physical models. In section 4.2 we first present the details of the model, and then
show analytically the predictions of the model for pairs and triplets of spikes. We
later fit the model’s parameters to experimental results for STDP in hippocampal
and cortical neurons, finding a good agreement between model and experiment.

4.2 The model

We are going to employ two traces in our model; two “clocks”, coding the timing
of pre- and postsynaptic spikes, respectively. We denote these two traces = and v,
which represent the fraction of open-state NMDA receptors (or NMDARS) (x) and
the Ca®* concentration in the dendritic spine of the postsynaptic neuron (y). In
order to understand this particular choice of variables, we will first briefly describe
the synaptic transmission process and one of the candidate mechanisms thought to
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Figure 4.1: Illustration of a glutamatergic synapse. The release of glutamate stored
at vesicles in the presynaptic neuron during a spike, activates primary AMPA recep-
tors (AMPAR) allowing the influx of a sodium current, depolarizing the postsynaptic
cell. If several of these signals occur during a short time period, depolarizing the
neuron enough, a chain reaction resulting in an action potential will result (see
section 1.2). At the same time, NMDA receptors (NMDAR) are also activated by
glutamate but only allow the influx of calcium if they are additionally unblocked by
the back-propagating action potential, which needs to remove the blocking M g**
on the channel’s pore. Additionally, current flows in through voltage gated calcium
channels (VGCC), also triggered by the back-propagating action potential (without
the need for glutamate).

take play during STDP, for glutamatergic synapses (See Fig. 4.1). This is indeed
not the only proposed mechanism for STDP in all cells in the mammalian brain,
and in section 4.4.2, we will comment on a presynaptic mechanism thought to be
involved in LTD in cortical neurons.

4.2.1 The biological mechanism

Within the framework of STDP, spikes have two roles in information transmission.
On the one hand, the spike of one neuron influences the activity of other neurons
connected to it. On the other hand, as previously mentioned, spike-timing signals
whether a synapse should be strengthened or weakened. Signal transmission in a
glutamatergic synapse is performed indirectly, via the release of the neurotransmit-
ter, in this case glutamate (see 1.2), which binds to receptors on the postsynaptic
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neuron, finally producing a current flow. Concretely, a presynaptic spike is signaled
by the release of glutamate across the synaptic cleft, which activates different
types of receptors on the postsynaptic spine. «-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors (or AMPAR) [81]], mainly serve the
first mentioned function of influencing the activity of the postsynaptic neuron, by
allowing an influx of Na™ ions, which depolarize the cell, and (if the collective de-
polarization of several of these channels is strong enough) may lead to the firing of
an action potential (see section 1.2). Glutamate can also induce a second cascade of
events, this time mediated by NMDA receptors, related now to the second function
of spikes in this paradigm: plasticity [81]]. While NMDA receptors can allow for
the flow of C'a®>* when activated by glutamate (an increase in z in our model), they
are usually blocked by M ¢ ions in the channel’s pore . They require a second
event to permit a current flow, and that is the removal of the magnesium block by
a back-propagating action potential (BAP) of the postsynaptic neuron. In this way,
NMDA receptors act as natural coincidence detectors. The back-propagating action
potential produces in this scenario two effects: it removes the mentioned M g**
block from NMDA receptors, and it activates the voltage-gated C'a** channels
(VGCC). Both result in an influx of C'a®>" ions, producing in an increase of postsy-
naptic Ca** concentration y. In the case of the VGCCs, only a postsynaptic spike
is required. In the following section we express these relations more concretely in
terms of the model’s variables.

4.2.2 Mathematical formulation: time evolution of the traces.

We begin by denoting the times of pre- and postsynaptic spikes as {t7, } and {t7, },
respectively. We will assume (and this is indeed a first simplification), that both
traces in the model (the fraction = of open but blocked NMDA receptors and the
concentration y of postsynaptic C'a*") decay regularly in the absence of spikes. We
know that glutamate in the synaptic cleft is cleared both by passive diffusion and
by glutamate transporters , and that C'a®>" concentration at the postsynaptic site

is also regulated back to equilibrium in absence of postsynaptic spikes [[I8]. We
propose [35]:

{ i =—Z + B,(x) Zafz(t—tfwe) 4.1)

y = _% + (IE + yc) Y y) Za 5(t - tgost)

where 7, and 7, represent the decay time constants for z and y. In (4.1), gluta-
mate release from presynaptic spikes produces an increase in the fraction = of ac-
tivated NMDA receptors, and postsynaptic spikes produce an increase in the C'a®*
concentration (y) through two terms: a constant term ¥, (which represents the influx
through VGCCs), and a term proportional to x (which represents the flow through
the fraction of previously activated NMDARSs). As a second simplification, we as-
sume in our model that every NMDAR channel still open from the presynaptic spike
is unblocked by the BAP, and contributes with the same amount of current, so that
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Figure 4.2: a) Limiting factor E,, as defined by (4.2), as a function of the trace
concentration x (the case of E, vs y is completely analogous). b) LTP threshold

function (y — b)0(y — b) of (4.3).

that current is modeled as o< x. As a note, in (4.1) we have absorbed in variables =
and y all constants that could be rescaled, as discussed further in the Appendix (A).
Two efficacy factors E, and E, are present in (4.1). They represent the limitation
of future spikes in increasing the trace levels, given the saturation of the traces. We
here chose the simple form:

z 0 z2<0

E,(2) =0(z — 2) (1 — Z_b) , 0(z) = { 1 220 (4.2)
where z can represent either z or y. We see in (4.2) that the efficacy of a spike
decreases linearly as a function of the existing concentration and, for trace levels
above the respective reference values z;, and y;, no additional increase is possible
(see Fig. 4.2/a)). Therefore, once this level has been reached, trace concentrations
can only decay exponentially (the solution to (4.2) for vanishing F,), defining an
effective refractory period (see the grated areas in Fig. 4.3). The length of this
period is here a function of both the decay time constant of the trace and the size
of the overshoot above the reference value. In absence of spikes, as the trace
concentration diminishes, £/ grows back asymptotically to its max value of 1. We
note here that similar mechanisms of reduced spike efficacy of future spikes by the
effect of previous spikes have been already employed in other models of STDP [42].

We can already start to speculate on how several spikes might interact at the level
of the traces. On the one hand, trace increments from several spikes accumulate via
(4.1), on the other, the efficacy factors limit the effect of future spikes. Depending
on the frequency of spikes and on how high or low the reference values x;, and
are, one or the other effect will dominate.
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Figure 4.3: Effect of the limiting factor on the trace dynamics. Above: Evolution of
the efficacy factor E, (dashed red line), according to Eq. (4.2) (see also Fig. 4.2), for
an illustrative pair of spikes (green vertical bars) at times tpre and tfm The height
of the bars is proportional to E, Below: Evolution of the trace dynamics (solid
blue line), as defined by Eq. (4.1). As an example we present here the evolution of
x (being analogous for y). In shaded gray areas we show the refractory periods,

defined by x > x}, where further input is ignored.

4.2.3 Synaptic plasticity rule

The traces, whose evolution we presented in (4.1), code for the timing of the spikes,
and therefore the next step is for us to relate the time evolution of the synaptic
weight to the trace levels. Indeed, it has been found that the C'a®** concentration
(in our model denoted by y) is involved in both LTP and LTD [24][84[T18]l, where
high calcium concentrations induce LTP, and moderate and low levels result in LTD.
Since two different enzymes mediate for LTP and LTD [21]], we will assign one term
to each of these two opposite mechanisms in the evolution equation for the synaptic
weight w:

W = ax(y — b)o( —bZé £ 5xy25t—t;;,e (4.3)

where 6 is the previously defined step function, playing the role of a lower bound or
threshold. Both LTP and LTD terms are here assumed to be triggered by pre- and
postsynaptic spikes. Parameters > 0 and § > 0 represent the relative strengths
of these two mechanisms. The first term in (4.3) corresponds to LTP and becomes
active whenever a postsynaptic spike occurs, but produces a non-zero contribution
only when y > b, where b represents an LTP threshold, in line with the previous
statement that only high levels of calcium result in LTP (as illustrated in Fig. 4.2 b)).
Such a threshold for LTP has indeed been observed experimentally [24]], and, while
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we here consider it as a constant, for simplicity, it has been shown to adapt to pre-
vious synaptic activity [59]]. The second term in (4.3), on the other hand, represents
the LTD contribution, and results in a reduction of the synaptic strength w. This
term is active even for low calcium concentrations, and it is the balance of both LTP
and LTD terms that will determine whether w grows or decreases. The fact that, in
both terms we find the product of x and y, determines that in absence of either pre-
or postsynaptic spikes no weight change takes place.

In our model, and as a simplification, it is the timing of pre- and postsynaptic
spikes t7 . /., Which marks the timing of the synaptic update. In reality this change
is not instantaneous [[12J|42]]. Since we do not have an explicit dependence on w on
the right-hand side of (4.3) (assuming the weights are far from saturation), we can
ignore this lag. Finally we will consider in this chapter d-like spikes. This means
that spikes will produce small but discreet jumps in both the traces and the synaptic
weights. Therefore the order for these two updates needs to be clarified: during the
numerical simulations we update first the traces via (4.1) and then the weights via
(4.3).

4.3 Analytic results

The mathematical simplicity of the model allows us to calculate analytically the ef-
fect of low frequency motifs of spikes on the synaptic weight, as employed by most
experimental protocols. This is precisely what we sought after when formulating
the model, since it will allow us to interpret the results in terms of the dynamics of
the biological variables at play. In the following sections, we present these results
for pairs and triplets of spikes.

4.3.1 Recovering the classic pairwise STDP rule

Several experimental protocols for STDP induction consist of low frequency
(< 1Hz) stimulation of the pre- and postsynaptic neurons, forcing them to fire with
a particular spike motif [12,42][IT5]]. The decay timescale of the traces involved,
however, is usually in the range of tens of milliseconds, as we will later discuss
when we compare the fits of the model. This means that in between consecutive
presentations of the motifs we can safely assume that the traces will have relaxed
to equilibrium. We then only need to compute the evolution of the traces during the
pattern length (no plasticity takes place in absence of spikes, as seen in Eq. (4.3)).

The most simple pattern or motif that can induce plasticity in this context is a
pair of spikes, consisting of a presynaptic spike and a postsynaptic spike in either
order. In this case, one can then measure or compute the increase in synaptic
efficacy Aw as a function of the time At between the pre- and the postsynaptic
spike (a positive value of At corresponds to a causal pre-post order and a negative
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value to an anti-causal order). The reader might be familiar with the typical STDP
plot from Fig. 4.4, whose shape is usually considered as the stereotypical STDP
function, despite the fact that, as has been shown experimentally [42][IT5], the
pairwise plasticity plot is not enough to describe the changes in synaptic connectiv-
ity produced by more general spike patterns. However, clearly any model aiming
at describing STDP should reduce to this plot for isolated spike pairs, and so we
begin our analytic calculations by showing how the classic pairwise STDP rule is
recovered by our model.

As previously mentioned, in the low-frequency regime, we can assume that each
pair is isolated, and we can simply integrate Eqgs. (4.1) and (4.3). We obtain:

—|At] /72 —|At| /72 —
Aw:{ae (e + Ye b) At > 0 (4.4)

_/Byce_‘At‘/Ty At < O

We observe then that if y. > b, LTP occurs for At > 0 and LTD for At < 0, and,
in particular, for b = y. the typical exponential shape for both LTP and LTD is
recovered. As a note, the choice of formulating LTP and LTD as two separate terms
in Eq. (4.3) requires in particular the LTP term to be always positive (otherwise
it would not be potentiating). Interestingly, if one were to relax the threshold
condition by removing the step function, and setting b > y., we would obtain a
depression window on the At > 0 side, as observed experimentally in CA1 cells
from rat hippocampal slices [85]]. In the case b < y. there is a small deviation from
the classical exponential shape, with a component of the LTP term decaying with a
timescale 7, and another one decaying with timescale 27,.

While we have included in (4.3) an LTP threshold (b), we did not do so for the
LTD term in the model. One could have had in principle employed an expression
(y — brrp)0(y — brrp) in the LTD term, analogous to the LTP one, which reduces
to the here presented rule for b, rp = 0 (note that y > 0). The reason for our choice
is explained in what follows, by exploring the effect on the LTD term of setting
brrp # 0. The LTD term is triggered at the time of the presynaptic spike, which
means that, for an isolated pair or spikes, x will be 1 at this point. This means that
the LTD threshold value would only represent a vertical shift by a constant factor
Bbrrp, in the region of At where y > Sbrrp (because of the step function). The
sign of the shift will be given by the sign of byrp. For byrp < 0, y is always
larger than by7p, which results in a constant downwards shift for all At < 0. This
means depression would occur even for infinitely separated spikes. Experimental
results suggest however that Aw — 0 for At — Foc. On the other hand,
for bprp > 0, the whole LTD plot is shifted upwards but, since the sign of the LTD
term needs to be negative, the exponential tail where y < Sbyrp is lost (w is set to
0 by the step function). From inspection of the experimental data (see Figs. 4.4/ and
4.0), it is hard to establish whether the exponential tail should be kept or not (the
data is indeed quite noisy). We decide here, given that no further resolution in the
data is currently available, to respect the original exponential fits proposed in the
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original experimental papers [11,42]], by setting b = y.. Furthermore, by simply
re-expressing the constants in the model as: o« = A", 5 = A~ /y., 7, = 27,, and
T, = T—, We obtain:

—AmeSU At < *>

+Atelal/m+ At > 0
Aw = {

namely the classical fit for pairwise STDP , where A*, A~, 7, and 7_ rep-
resent the maximal intensities, and timescales of LTP and LTD for isolated spike
pairs, respectively. We note here that the result in (4.5) does not depend on the
values of y., xp, and y,. We will determine these parameters by comparison to ex-
perimental data coming from more complex spike motifs. From now on we will
keep the new parameters related to the pairwise STDP function in our description,
rewriting the plasticity rule (4.3) as:

w=ATz(y — y.)0(y — y. 25 toost) a:yZé (t—1t7e)- (4.6)

This final form of the synaptic plasticity rule is the one we will employ until the
end of this chapter since it will allow us to interpret the results of more complex
spike motifs as higher order contributions to the pairwise STDP rule.

It is important to note that the presented learning rule is a local online synaptic
plasticity rule, as were the rules presented in Chapters 2 and 3, in the sense that
the weights are updated on the fly without the need for an external memory of the
timing of spikes. This is the advantage of working with the trace variables, which
present a biologically implementable type of memory.

4.3.2 Triplets of spikes

As previously mentioned, being able to reproduce the effect of a pair of spikes is not
the end of the story when it comes to STDP. It has been shown experimentally that
additional spikes interfere non-linearly with the pairwise result, in a qualitatively
different manner depending on the neural type [42L[TT5]. We will discuss this issue
in detail in sections 4.4.1 and 4.4.2, when we compare the model’s results with
experimental data from hippocampal and cortical neurons.

In this section we will describe our model’s prediction for the smallest higher
order contribution to the pair, namely adding either an extra pre- or postsynaptic
spike. This kind of motif is denoted as a triplet, and we will consider here triplets
of the kind PrePostPre or PostPrePost. For compactness, we will identify a Post-
PrePost triplet as At;PreAt, and a PrePostPre one as At;PostAt,, with At; and
Aty given in milliseconds.
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Examples:

e 10Post5 stands for a PrePostPre triplet defined by:
{t7..} = {-10,5}, {t0,} = {0} 4.7
e 15Prel0 stands for a PostPrePost triplet defined by:

{t..} ={0},  {to.}={-15,10}  (4.8)

J

Once again, for low frequency stimulation, we can consider the triplet as isolated
and integrate (4.6), obtaining

Aw = + A*exp( |Af‘>
[Aty]

ey (~120) [ ) [ o (-2 (- 1)

4.9
for PrePostPre triplets, and
Aw= — A exp —%—fﬂ
+ Atexp —% [1 + yeexp (_|At1|+\m2\ + \At2|> (1 _ erp(*lﬁzil/Tz)erc
T. Ty To

(4.10)
for PostPrePost triplets. For the calculation of this first expression we have assumed
that the traces are below their respective reference levels (x;, and 1) at the time of
the second spike (the case of the traces being above the reference levels when the
second spike arrives is presented later in (4.11) and (4.12)).

Learning rule (4.6) is an online learning rule, and it therefore respects causal-
ity, future spikes do not influence the past. This is observed in the first terms of
Eqgs. (4.9) and (4.10), which give the contribution of the first pair, exactly as in (4.5).
The second term of Eq. (4.9) is clearly a correction to the second pair predicted by
Eq. (4.9), because of the presence of the additional spike. This correction results
from the competition between two effects: the trace accumulation produced by
successive spikes, and the suppression effect produced by the reduced efficacy of
the second spike.

Now, if instead the third spike arrives during the effective refractory period when
the traces are fully saturated (compare Fig. 4.3), Egs. (4.9) and (4.10) become:

Aw = + A+6.2Ep( lAf')
- A” e:):p( |At2|> (1 + M) exp (_IAt1|+\At2\>

Tz

(4.11)

)
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for PrePostPre triplets, and:

T_

Aw = —A"exp (— |At1’) (4.12)

for PostPrePost triplets. The second term in Eq. (4.12) has now completely vanished
because of the LTP threshold. This last case is relevant only for high frequency
stimulation, and does not occur for the low frequency pattern stimulations that we
analyze here.

As anote, we have employed in our model sharp threshold functions. One could
however extend the model by employing soft bounds instead. The disadvantage
is an increase in the number of parameters, and potentially the loss of analytic
tractability.

4.3.3 Biological implementation of the variables and parameters
in the model

At this point it is important to remark that we are fully aware that the number
of substances and biological elements involved in the process of STDP is far
greater and the functional relations between them more complex than the simple
polynomial expressions we have chosen. The goal of this work is to present an
analytically tractable model which captures the essence of the biological process,
and is expressed in terms of biologically plausible mechanisms. In this sense, our
model can be categorized as an effective model. In this type of models, necessarily
the collective effect of a large number of agents is condensed into a smaller number
of variables.

Variable z, for instance, was defined in section 4.2.2, as the fraction of active
(but not necessarily unblocked NMDAR channels). These channels become un-
blocked only when a postsynaptic spike arrives. When this happens, the influx
of calcium through these channels is also modeled as x (since the proportionality
factors have been absorbed in the model, as explained in Appendix (A)). In this
way, x can also be associated with a transient calcium current. After fitting of the
results to the pairwise STDP function, the decay timescale for LTP is related to
T. by 7, = 27, (as we showed in section 4.3.1). From these two facts we can
associate 7, to the decay time-constant of the transient calcium current. In ,
the authors argue that the narrow LTP window is a consequence of AMPA-EPSPs:
fast excitatory postsynaptic potentials produced by AMPA channels located in the
postsynaptic spine. As explained in the same work, the whole spine functions as an
electrical amplifier, locally extending the duration of the depolarization at the spine.
For this reason, one finds different time constants in different neurons (and even for
different synapses belonging to the same neuron). We have not included an explicit
computation of AMPA currents in our model, nor did we consider the morphology
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of the spine, and simply condense all these effects into an effective 7,. In the same
way T, represents for us an effective decay time for the C'a®** concentration (y) at
postsynaptic site.

Finally, while it is clear that no more NMDAR channels can be unblocked than
those present in the spine, and that calcium concentration needs to be bounded for
the survival of the cell, the efficacy terms in (4.1), limiting further increase of traces
x and y as a consequence of past spikes, effectively encompass saturation effects
all along the cascade of events finally leading to LTP or LTD. A similar effective
mechanism had already been proposed by [42], to explain triplet results in visual
cortical neurons, which indeed evidence strong suppression effects.

4.4 Comparison to experimental results

In what follows we will compare the experimental results for pairs and triplets
of spikes in hippocampal and cortical neurons, with the results produced by our
model. To do so, we will adjust the seven parameters in Eqgs. (4.1) and (4.6). As we
saw in section4.3.1, A*, A=, 7,, and 7_, come directly from the pairwise rule (4.5)
and are experimentally determined. The remaining three parameters, namely vy, zy,
and y,, will be determined by the results of the triplet protocols in the same neurons.

4.4.1 Hippocampal neurons

' Experimental data: from (pairs), and (triplets).
Neural type: Cultured rat hippocampal neurons.
Training set: 60 repetitions of the pair/triplet motif at 1Hz.
In each case the protocol consisted of regular repetitive stimulation

of the motif (pair or triplet), by dual clamp: each neuron has an
electrode inserted that forces it to fire at a particular time.

In [[TT]], it was found by fit of the experimental data produced by the same group
in [[12]], for pairwise stimulation:

At =0.86/60, A~ =0.25/60, 7, =19ms, 7 =34ms. (4.13)
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Figure 4.4: Synaptic weight modification induced in hippocampal neurons by a
train of 60 pairs at a frequency of 1 Hz, as a function of the time At between the
two spikes in the pair. Red open circles correspond to the experimental data for
cultured rat hippocampal neurons [[I1}[I2]]. The continuous blue line corresponds
to model’s results. Parameters: AT = 0.86/60, A~ = 0.25/60, 7, = 19ms,
7_ = 34ms, (fit of the experimental data, as presented in ).

In Fig. 4.4 we compare these fits from experimental results with the ones pro-
duced by our model using the same protocol and parameters. We have tested the
validity of our low-frequency analytic approach by producing a numerical simula-
tion of Egs. (4.1) and (4.6) for this protocol, finding no visible difference between
the two.

As we showed in section 4.3.1, pairwise STDP does not depend in our model
on ¥y., Tp, and v, since traces cannot accumulate or saturate with only one pre- or
postsynaptic spike present. To select these parameters we resort to higher order
contributions, namely triplets. In Fig. 4.5 we compare experimental results [[115]]
for the same type of neurons, now produced by triplet stimulation, with the results
produced by our model (as described in section 4.3.2). Once again, the experi-
mental protocol consists 60 triplet repetitions at a frequency of 1 Hz. Also in this
case, we produced numerical simulations with the same protocol, without visible
differences with the analytic low-frequency results. The pairwise STDP parameters
(4.13) have been kept and only the remaining three free parameters vy., z;, and v,
have been fit by minimizing the standard deviation (SD) between the theoretical
and the experimental results. We obtained in this way: y. = 0.28, y, = 0.66, and
2, = 0.62 (SD of the best fit 6.76). The comparison of the results indicates a good
approximation of the experimental results by the model.

Regarding the fit of the parameters we encountered a smoothly varying SD with
the parameters, indicating a robust result (no fine tuning is required). Moreover, we
found that the three parameters can be adjusted with a certain flexibility, while still
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Figure 4.5: Synaptic weight modification induced in hippocampal neurons by Pre-
PostPre (see (4.7)) or PostPrePost (see (4.8)) triplets. The protocol consists of 60
repetitions of the triplet pattern at 1 Hz. Blue bars represent the model’s results.
The experimental data from is presented with empty red boxes. Green lines
indicate the linear addition of the individual effect that each of the two pairs (Post-
Pre and PrePost) included in a triplet would have. We observe how a triplet cannot
be computed simply as the sum of the pairs. Model’s parameters: AT = 0.86/60,
A~ =10.25/60, 7y = 19ms, 7_ = 34ms, y. = 0.28, x, = 0.62, and y;, = 0.66.

obtaining a reasonable fit, which could be used to also reproduce other experimental
effects. In Sect. 4.5 we will indeed use this fact to show how different results can
be obtained for high frequency stimulation, while still producing a good pairwise
and triplet fit.

We started this chapter by saying that knowing the effect of a pair of spikes
on the synaptic weight is not enough, and that higher order contributions need to
be considered. In Fig. 4.5 we included also in green lines the hypothetical weight
change that the two pairs (PostPre and PrePost) that compose each triplet would
produce if added up linearly. The result is clear; a triplet is not a sum of pairs, and
this is particularly true in the case of PrePostPre triplets. Moreover, a spike sup-
pression mechanism, as proposed in from cortical neurons, also fails to explain
the nonlinear deviations we find for hippocampal neurons, since suppression of
the second presynaptic spike in PrePostPre triplets would only reduce depression,
resulting in even more potentiation than the linear addition. The fact that our model
is able to reproduce this effect is due to the ability of our traces to accumulate.
Indeed, in PrePostPre triplets the LTD effect of the second pair is increased because
the presynaptic trace is larger due to the combined effect of the two presynaptic
spikes, explaining the observed deviation of our model’s results from the linear
addition, in line with the experiment.
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4.4.2 Cortical neurons

Experimental data: Courtesy of Robert Froemke and Yang Dan,
also partially in [42] (both pairs and triplets).

Neural type: Pyramidal neurons in layer 2/3 (L2/3) of rat visual
cortical slices.

Training set: 60 repetitions of the pair/triplet motif at 0.2 Hz.

In each case the protocol consisted of regular repetitive stimula-
tion of the motif (pair or triplet). Presynaptic stimulation was done
as a single extracellular pulse, whereas a brief depolarizing cur-
rent was injected to the postsynaptic neuron that induced an action
potential.

In this section we will repeat the analysis we carried out in the previous section,
now for cortical neurons. It may be argued that both cases should not be treated with
the same model since there is evidence of at least time dependent LTD involving
presynaptic NMDARSs and retro-cannabinoid signaling [103]], which we have not
included in our model. In this case, plasticity would take place on the presynaptic
side, with the chemical signal traveling backwards and activating cannabinoid
receptors on the presynaptic side. We will carry out the comparison nonetheless, in
the spirit of an effective model, to see to what extent the model is able to capture
the particular features of the results. It is possible that the functional dependence of
the variables remains valid, although the biological implementation is not the same.
In any case, for cortical neurons we should interpret these results with care.

We begin, as we did for hippocampal neurons, by setting the values of A™, A~
T+, and 7_ directly to the values resulting from the pairwise experiment, in this case
in L2/3 cortical neurons, from [42]. It yielded:

At =1.03/60, A~ =10.51/60, 7y = 13.3ms, 7_ = 34.5ms.
(4.14)
In Fig. 4.6 we present a comparison between model and experiment for pairwise
stimulation in these cortical neurons.

As in4.4.1, we determine y,, x3, and y, from triplet experimental results [42].
The data is in this case differently structured from that in hippocampal neurons,
where several measures were performed for a reduced number of triplet configu-
rations. In the case of the here studied cortical neurons, a large number of triplet
configurations covering the space of At;-At, (see section 4.3.2), were presented,
but each measured only once. We proceed nonetheless in the same way, fitting
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Figure 4.6: As in Fig. 4.4, now for visual cortical neurons. The protocol consists
of 60 repetitions at 0.2 Hz, both for the model and the experiment [42]]. The ex-
perimental data is presented with red open circles (courtesy of Robert Froemke and
Yang Dan) the model’s results are plotted with a continuous blue line. Parameters:
AT =1.03/60, A~ = 0.51/60, 7, = 13.3ms, 7_ = 34.5 ms (fit of the experimental
data presented in ).

the complete set, also by minimizing the mean square error. In order to visually
compare the results, and be able to present them in a similar way to the hippocampal
triplets, we perform a smooth interpolation of the data, using Gaussian filters of
width 5ms. This interpolation was not used for the fit, and only served a visualiza-
tion purpose. We present this data, together with the model’s results for the best
fit in Fig. 4.5. The parameters obtained by the fit are y. = 11.6, y, = 10.9, and
xp = 0.5, with an SD of 37.4, much larger than the one found for hippocampus. It
is important to note that the model captures the qualitative features of the triplets,
as seen in Fig. 4.5. While not as good as fit as for hippocampal neurons, the large
SD cannot be explained by these discrepancies alone. In order to understand the
reason for this large SD, we look into the dataset, noticing a huge variability be-
tween neighboring points. Indeed, when we calculate the SD between data and the
Gaussian filtered smoothing we used for visual representation we already get an SD
of 32.5 (which explains already most of the SD between model and experiment).
Therefore, any model which produces a smooth plasticity function in the At;-At,
space will have a high SD, simply because of the scattering of the data. In order to
further clarify this issue, more experimental data, perhaps with a similar protocol
used in hippocampal neurons, would be needed.

In the previous section we showed (see Fig. 4.5) how potentiation was heavily
attenuated (when compared with the linear sum of pairs) for PrePostPre triplets in
hippocampal neurons, whereas PostPrePost triplets were close to the linear model.
This was explained by presynaptic trace accumulation in the PrePostPre triplets,
which lead to increased depression. In Fig. 4.7, we observe a drastically different
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Figure 4.7: As in Fig. 4.5, now for visual cortical neurons. The protocol consists
of 60 repetitions at 0.2 Hz, both for the model and the experiment [42]]. Blue bars
represent the model’s results for the best fit. The experimental data is presented
with empty red boxes. Green lines indicate the linear addition of the individual
effect that each of the two pairs (PostPre and PrePost) included in a triplet would
have. Diamonds represent the model’s results for an alternative set of parameters.
Despite the larger deviation of the fit, the model is still able to reproduce the distinct
cortical triplet nonlinearities qualitatively (compare Fig. 4.5). Parameters: AT =
1.03/60, A~ = 0.51/60, 7, = 13.3ms, 7. = 34.5ms, Best fit: y. = 11.6, y, =
10.9, and x, = 0.5. Diamond points: y. = 1.0, y, = 0.9, and x, = 0.4. The
experimental data is courtesy of Robert Froemke and Yang Dan.

effect, with increased potentiation in PrePostPre triplets and very strong depression
for PostPrePost triplets. While the SD of our model’s fit is larger in this case,
the model is still able to capture this very different behavior. We then look into
the fitted parameters to shed light on what may be the reason for such qualitative
differences between hippocampal and cortical triplet nonlinearities. Looking at the
best fit parameters we find x;, < 1 and y, < y.. 1 is the rescaled contribution of
one spike to x, and the contribution of one spike to y is equal or larger than y..
This fits suggest that one spike is enough to saturate the traces, meaning a large
NMDA activation and calcium flow for a single spike. Moreover, we tested with
other parameter configurations -which would give the same qualitative tendency
(though slightly poorer fits)- and we consistently found that, for this kind of triplets
to be observed, the parameters forcefully needed to satisfy x;, < 1 and y, < y. (we
present with diamond symbols in Fig. 4.7 results from one of such configurations).
This means that our model is only able to explain these results when the parameters
are set to strong suppression. This is in line with the results in [42]], where the
authors propose a phenomenological suppression rule to explain their findings.
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While the mechanism for LTD may indeed have a different biological imple-
mentation in these neurons, the prediction from both models seems to aim at the
same conclusion, that strong suppression effects need to be in place to explain these
measured nonlinearities.

At this point it is also important to note that while the protocol used in
and [[T15]] for pairwise and triplet stimulation in hippocampal culture is symmetric;
with both pre- and postsynaptic neurons being intracellularly stimulated. In [42],
presynaptic stimulation is extracellular. Firstly, this induces an asymmetry between
PrePostPre and PostPrePost triplets. Probably more than one cell is excited by ex-
tracellular stimulation, producing network effects, potentially inducing other forms
of plasticity, such as local synaptic scaling [I09]]. Secondly, the larger degree of
variability observed could indeed be due to the larger number of variables involved
coming from the network. We point this out to try to understand the differences
observed, and not as a criticism of the experimental procedure. It needs to be noted
that these measurements are done in a cortical slice and not in culture as in the case

of and [[113]], with all the difficulties this involves.

As a final note, the best fit value of y. = 11.6, is much larger than the one
obtained for the hippocampal fit. The high level of noise in the data, creates a very
wide minimum region for the fit and indeed, it is possible to obtain a reasonable
fit to the data for y. = 1.0, by setting y, = 0.9, and z;, = 0.4 (corresponding
to the diamond symbols in Fig. 4.7), which we present as a reference. If we had
further information available, we could attempt a fit under the constraints of certain
boundary values for the parameters. Since we do not count with this information,
we simply show these possibilities, stressing that for the model to reproduce this
particular type of nonlinearities the condition of strong saturation is unavoidable,
regardless of the size of the selected v..

4.5 Frequency dependent plasticity: from spikes to
rates

In the past sections of this chapter we have worked with highly structured low-
frequency stimulation motifs. In this final section we will do the opposite, studying
the implications of our STDP plasticity rule to rate-encoding plasticity, by evalu-
ating the induced synaptic weight change produced by random uncorrelated spike
trains at different frequencies.

Up to this point, we have closely followed with our theoretical analysis, ex-
perimental protocols involving low frequency pre- and postsynaptic stimulation of
neurons from two different sources: hippocampal culture and cortical layer 2/3 neu-
rons. Since, for each type of neuron, consistent experiments were available, where
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pairwise and triplet results were obtained using the same stimulation technique, we
were able to determine a set of parameters for each type of neuron and perform a
direct comparison between experiment an model. We would like to now take one
more step, evaluating the effect of high frequency stimulation, or the dependence
of LTP and LTD on the stimulation frequency, in the same neurons, with the same
parameters of our model. A quantitative comparison of this kind is unfortunately
not possible.

While experiments testing frequency effects on LTP and LTD exist in the lit-
erature for other neural types and/or other stimulation protocols, such as in [[104]],
where frequency dependent plasticity is studied in layer 5 neurons in visual cortex,
we have found none using the same stimulation technique on the same neurons here
studied. And vice-versa: in the case of the layer 5 cortical neurons used in [[104],
no triplet data is available and the pairwise results observed with their protocol
are qualitatively very different from the one found in layer 2/3 by [42]], making a
quantitative comparison not possible.

The way we will proceed is then to perform numerical experiments with the
two neural types we have been using so far, keeping for each their already fitted
parameters. In each case, we will also perform the numerical experiments with at
least one other set of parameters, for comparison. For each neural type, we will
present the model’s predictions and contrast these qualitatively to experimental
results from other neurons and protocols.

We want to determine here the amount of synaptic modification induced by
uncorrelated Poisson trains of pre- and postsynaptic spikes. We will work with two
types of neurons, which we will call here as hippocampal-type and cortical-type.
Hippocampal neurons will be for us those defined by the pairwise parameters
(4.13), and non-saturated traces, which qualitatively reproduce the triplet nonlin-
earities from Fig. 4.5. We will consider two parameter configurations for this type,
the best fit presented in Fig. 4.5 (y. = 0.28, x;, = 0.62, and y, = 0.66.), and a
second set of parameters (y. = 0.8, x;, = 1.82, and y, = 1.34. SD 7.37, compared
to the 6.76 of the best fit) for illustration of the effect of y.. Analogously, cortical
neurons will be for us those defined by the pairwise parameters (4.14), and now
strongly saturated traces, which qualitatively reproduce the triplet nonlinearities
from Fig. 4.7. We also consider two parameter configurations for this type: the best
fit (y. = 11.6, , = 0.5, and y, = 10.9), and the parameters from the diamond
symbols (y. = 1.0, x, = 0.4, and y, = 0.9), both already presented in Fig. 4.7.

Each numerical simulation consists of a 1s presentation of pre- and postsynap-
tic Poisson spike trains of frequencies f,,. and f,.s, respectively. After training
is completed, we evaluate the induced synaptic weight change AW. Since func-
tion AW (fyre, fpost) depends on two variables, to represent it graphically, we will
produce two types of plots:
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o AW (fyre = const, fpost) for several constant values of f,.,
[ AW (fp'rey fpost = pre)'

The second kind could be considered as a case in which the output activity is a
function g of the input activity, in the most simple case in which f,.. = fpost. We
note that while the frequencies are the same, we keep the spike times uncorrelated.
The effect of correlated spikes is discussed at the end of the section.

The numerical results for hippocampal-type neurons are presented in Fig. 4.8,
and those for cortical-type neurons are plotted in Fig. 4.9.

Let us begin by analyzing the case of hippocampal neurons. In the plots for
constant presynaptic frequency, we generically find a switch from depression to
potentiation at a certain threshold frequency 6y, where this threshold is a a mono-
tonically increasing function of the presynaptic frequency 0y = 0y (fyre), With
Ou (fe) > Ou (f2e) if foe > f2.. For this reason we will refer to 0y as a
sliding threshold. Let us remember at this point that similar sliding thresholds are
usually employed in rate-encoding plasticity rules, such as BCM [[I4]. In those
cases, the threshold usually depends however on the time-averaged postsynaptic
activity. We have not included in our model any slow-varying variable that could
work as a memory of this kind, so our #y is a function of the present frequency
only. The fact that our sliding threshold depends on the presynaptic activity, means
that it is adjusted independently for each synapse of the neuron. At each synapse,
the presynaptic activity determines via 6y, the level of postsynaptic activity that
needs to be considered as significant to trigger potentiation. We can qualitatively
summarize the functional dependence of the weight change on the frequencies as:

AW fpre : (fpost - eH(pre))

By comparing the two sets of parameters, we observe that for small values of
y. (Fig. 4.8a)), O (fpre) > fpre, and therefore depression dominates in the plot
corresponding to fpost = fyre < Om (fpre). For larger values of y. (Fig. 4.8 b)),
O (fore) < fore. and potentiation dominates. In this way, if we counted with the
experimental data, we could restrict the value of y. during the triplet fit, to repro-
duce the frequency dependent plasticity results. As an example, if we wanted a
similar frequency dependence to that found in for L5 cortical neurons, where
potentiation dominates for large frequencies, we would select parameters closer to
those from Fig. 4.8 b).

We should note that y,. plays two roles in the model: determining the contribu-
tion of VGCCs to the calcium current, and setting the value of the LTP threshold,
which we fixed to y. to recover the pure exponential shapes for pairwise STDP. It
is therefore not trivial to associate the dependence of potentiation/depression on ¥,
to a single mechanism, in this case.
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Figure 4.8: Frequency dependent plasticity in hippocampal neurons induced by
uncorrelated Poisson pre- and postsynaptic spike trains. Full lines: varying fpost:
constant fy... Dashed lines: varying fpost = fpre-

Parameters: Pairwise STDP parameters from (4.13) plus:

a) y. = 0.28, y, = 0.66, and x;, = 0.62.

b)y.=0.8 ,y,=1.34, and x;, = 1.82.

In Fig. 4.9 we now present the the results of the numerical simulations for the
cortical-type neurons. A stark difference can be observed, since in this case for both
parameter configurations depression dominates for uncorrelated spike trains of all
frequencies. Indeed this feature was present for all parameter configurations repro-
ducing the cortical triplet nonlinearity of Fig. 4.7, which need to respect y, < y.,
as discussed in section 4.4.2. As a test, keeping the other parameters unchanged,
potentiation for large frequencies could be recovered by allowing y. < ¥, losing
at the same time the characteristic triplet nonlinearities. While this result might be
controversial when compared, for instance, with the already mentioned frequency
dependent results for LS cortical neurons from [[I04]], we show that they are directly
related to the particular triplet results of L2/3 cortical neurons from [42]. Unfortu-
nately, we do not count with triplet data for L5 cortical neurons as in [[I04]], and we
have already discussed the possible bias introduced by the asymmetric stimulation
protocol employed by [42]]. The model makes then interesting predictions for both
neural types, and it would be interesting to count in the future with the missing
experimental data.

The previous discussion is valid for high frequencies, where triplet interaction is
strong. For low frequencies we also observe a small level of LTD for uncorrelated
spikes. In the low frequency limit, triplets become less and less common in Poisson
spike trains, and pairwise plasticity dominates. Uncorrelated spikes then randomly
sample the pairwise STDP plot from Fig 4.6, and the resulting plasticity sign is then
determined by the ratio r of the areas below LTP and the LTD sides of the curve:

A+7'+

r=g (4.15)
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Figure 4.9: As in Fig. 4.8, now for visual cortical neurons. Full lines: varying fpost,
constant fy.e. Dashed lines: varying fpost = fpre-

Parameters: Pairwise STDP parameters from(4.14) plus:

a)y.=11.6, y, = 10.9, and x;, = 0.5.

b)y.= 1.0, y,= 0.9, and x, = 0.4.

We can easily compute this ratio for both cortical and hippocampal-type neurons,
finding: for cortex » = 0.77 (LTD wins) and for hippocampus r = 1.92 (LTP
wins). While hard to visually note from the plots, for both low f,,. and f,.s, and
uncorrelated Poisson spikes, LTP is small but prevailing in hippocampal neurons
while LTD (also small) prevails for cortical-type neurons. The effects are small
since, for low frequencies, uncorrelated random spikes tend to have a very large
average At.

This last feature is in line with other model’s findings, such as in [@], where
it is shown how a straightforward application of the linear pairwise rule to every
pair in the Poisson uncorrelated spike trains, always leads to depression for cortical
parameters. This result changes however when the authors consider first neighbor
pairs only, going from dominating LTD to BCM-like. It is however not clear how
such a first-neighbor interaction could be implemented, since it would probably
require hard reseting of the traces.

We have checked that potentiation is recovered in cortical-type neurons at high
frequencies if the spikes are correlated. As an example, for a Poisson train of fixed
PrePost pairs, with At = 5ms at 10Hz, a 9% increase in the synaptic connection
is found after 1s (corresponding to, on average, 10 pairs), or 54% after 60 pairs
(as used in 4.3.1). Along these lines, it would be interesting in future work to
study the effect from more realistic correlations generated by the neuron’s own
integration of inputs. To that end, we would need to add a neural model on top
of our single-synapse model, and feed the neuron with an N,, dimensional spike
time distribution, computing the corresponding output online, in a similar fashion
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to what we did in Chapter 2, now for time-encoding neurons.

We finally mention that the result of prevailing depression for uncorrelated spike
trains in our model cortical neurons, is in line with at least one interpretation of
deprivation experiments. In certain cortical areas which usually present topological
maps, deprivation of sensory input induces depression of the respective synaptic
connections [39/[I07]]. Simultaneously, correlations in areas projecting to cortex
are reduced after these procedures [[73]. While simultaneity does not determine
causality, one possible explanation of these results would be that decorrelation of
the spike trains (produced by the lack of input) results in depression of the respec-
tive cortical connections.

4.6 Discussion

In this chapter we have presented a simplified biophysical model for STDP, which
computes the evolution of the synaptic connection strength in terms of the calcium
concentration in the postsynaptic spine and the fraction of open NMDA receptors.
These traces, serve as two clocks, allowing the synapse to keep track of the timing
of pre- and postsynaptic spikes. The resulting online synaptic plasticity rule is
time-dependent and reproduces the experimentally observed plasticity results for
pairwise and triplet stimulation protocols in hippocampal and cortical neurons.

The model, we believe, strikes an interesting balance, with its functional sim-
plicity allowing us to analytically compute the induced synaptic change from
several protocols, including pairwise and triplet stimulation, as we have shown
here. Despite this simplicity, the model is able to capture most features of time-
dependent LTP and LTD, and relate these changes to the evolution of the underlying
traces.

Triplet non-linearities, as evidenced by triplet protocols in both hippocampal
and cortical neurons, make it clear that a simple pairwise rule is insufficient to
account for plasticity in more general scenarios, and nothing suggests that an
expansion approach, by computing separately, the contribution of several orders:
pairs, triplets, etc., would be any more successful. Moreover, such a model would
not improve our understanding of the process. We believe then that it is important
to count with an online learning rule, formulated in terms of biologically plausi-
ble variables, that can account for the observed plasticity results. The model we
propose, does exactly that: it computes plasticity online, locally, and it does so
with traces that have been experimentally found to be essential for LTP and LTD,
namely the calcium concentration and NMDA receptors.

It should be clear here, that we do not claim the model to capture the full biolog-
ical complexity of the process, and indeed, as mentioned several times throughout
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the chapter, we consider our model to be an effective model for STDP, where the
combined chain effect of a large number of biological elements is pooled together
within a few variables. This simplification, needed for analytic tractability, is also,
we believe, an advantage in terms of a simpler understanding of the general rules
at play. An example of this is the case of our application of our model to cortical
L2/3 neurons. While, as mentioned, other mechanisms seem to be at play -at least
during LTD- in these neurons, as previously discussed, the model is nonetheless
able to capture these neurons’ particular triplet profile. In previous work [42], a
phenomenological rule had been proposed for these neurons involving a suppres-
sion mechanism. With our model, we observe that only when the traces are strongly
saturated and suppression is strong, can this type of triplet profile be recovered,
supporting this previous intuition, now in terms of a trace model, therefore going
one step further in the understanding of the mechanism. This is clearly not the
end of the story, and further research, formulating plasticity in terms of a more
accurate description for cortical neurons is still needed to provide confirmation of
our predictions. Our model’s predictions, however, provide a hint of what to look
for. In a similar way, our model hints at trace accumulation as a source of triplet
nonlinearities in hippocampal neurons, with our model producing a very good fit of
the observed experimental results.

Moreover, as we discussed in the last section, the model still leaves room to
adapt the parameters to reproduce different types of frequency dependencies, at
least for hippocampal-type neurons. While we cannot directly compare our results
with experiment, since they have not been carried out for the same types of neurons
and with the same type of stimulation protocol, we show that both increasing poten-
tiation or depression can be achieved for hippocampal-type neurons, by adjusting
the model’s parameters, while still reproducing pairwise and triplet results. In
particular, the behavior of the observed sliding threshold is determined, as we have
shown, by the value of ., resulting in predominant LTP or LTD. In future work
simultaneous online adaptation of y. could be employed to functionally play the
role of an intrinsic plasticity mechanism [[75][79}[T08]], similar to that employed in
Chapters 2 and 3.

The triplet nonlinearities of cortical neurons impose very heavy restrictions in
terms of suppression, and at least with our model, depression for uncorrelated high
frequency stimulation can only be avoided by adding correlations between pre- and
postsynaptic spikes. As previously discussed, this might not be altogether unreal-
istic, as deprivation experiments show simultaneous decorrelation in the activity of
neurons projecting to cortical areas, and depression in the respective connections.
Further research is required along these lines, since many uncertainties remain.
The large variability in the data we count with, the mentioned asymmetry in the
the stimulation protocol employed in this case (using extracellular presynaptic
stimulation), and the additional presynaptic mechanism thought to take place in
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cortical LTD, all indicate that a long way still needs to be covered in this direction.

Finally, we believe that, at least for hippocampal neurons, the model has shown
to reproduce a wide enough range of features for both low frequency stimulation
and frequency dependent plasticity as to be tested in a wider range of applications.
Future research along these lines should include a model for neural integration,
such as that presented in |1.3.2, to go from the single synapse level to the whole
cell level, being able to test the predictions of the learning rule for arbitrary input
distributions, and output distributions produced by the neuron’s response function,
in a similar spirit as that of Chapters 2 and 3. We believe that our model’s analytic
simplicity makes it a good candidate for this kind of studies, where the complexity
tends to increase very fast as one builds extended networks.



Chapter 5

Conclusions

In this work we have presented two complementary approaches to synaptic
plasticity: a top-down approach, in which the learning rules are derived from a
guiding principle, and a bottom-up approach, building the plasticity rule out of the
key biological ingredients thought to take place in the process. Despite the different
paths taken, a common theme has been present throughout this journey: the quest
for simplicity. Finding minimal models that capture the essence of the processes at
hand. Not because of an aesthetic fetish, but out of the conviction that simplicity
and reduction to the essence of a phenomenon, can help better understand the role
of different components in complex systems.

The first of the two paths that we took was that of developing a synaptic plas-
ticity rule from a guiding principle, mathematically formulated as an objective
function. The idea of guiding principles is to express a set of goals a system might
have (computational, metabolic, homeostatic, among others), and to generate a set
of adaption rules that guide the system towards the satisfaction of these goals. In
the present work we have worked in particular with the stationarity principle of
statistical learning, simply stating that, once the relevant features of a stationary
input distribution have been learnt, the output distribution should also be stationary.
For this to be possible in a noisy environment, we have argued that the solution
found in the space of synaptic weights by the neuron needs to be stable, in the sense
that it should be locally insensitive to further changes of the synaptic weights.

To express this local insensitivity condition, we have resorted to the Fisher
Information, a measure of the average sensitivity of a probability distribution to a
given parameter. We have extended this quantity to a multidimensional parameter
space in a local way, termed the local synapse extension, and in this way derived a
local, online, self-limiting, and Hebbian learning rule. While this model does not
pretend to pass as a biophysically realistic model (it violates for instance Dale’s
law, by having synapses that can switch from excitatory to inhibitory in time),
we believe that any rule from which we intend to learn something about the brain
should be local and online. Contrary to an artificial neural network for machine

95
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learning applications, a real synapse cannot have direct information about the value
of every other synapse and also cannot store the whole history of a train of spikes for
later processing. This would result in fundamentally different learning algorithms.
For this reason, we have ensured with our local synapse approximation to keep
the learning rules local, and the stochastic gradient descent procedure produces
an online learning rule (in contrast to batch gradient descent, which computes an
average over the whole probability distribution on every step).

We have shown the robustness of the learning rule with respect to the choice
of transfer function in the neural model, finding in particular that the learning rule
is factorized into a Hebbian function and a self-limiting function, for sigmoidal
transfer functions. Altogether we have shown three examples of learning rules for
transfer functions within this family: the Fermi function (or exponential sigmoidal),
the arc-tangent function, and the re-scaled error function. All produce qualitatively
equivalent results. This kind or robustness is important for biological plausibility.
A learning rule requiring the system to reproduce a given function exactly would
prove of little use in real noisy systems.

In our quest for simplicity and analytic tractability, we have kept stripping the
learning rule of any degree of complexity that did not add to the computational
capabilities of the neuron, arriving finally to the cubic learning rule, either as an
approximation around the roots of any rule derived from a sigmoidal transfer func-
tion, or as the direct outcome of the objective function formulation when the error
function is employed as transfer function. This procedure has allowed us to com-
pute the attractors of the learning rule and their stability, in terms of the moments
of the input distribution. In this way, we have been able to justify analytically our
numerical findings that the rule picked up the FPC of input distributions resembling
a multivariate normal distribution, and had a preference for directions of large
negative kurtosis otherwise. Being able to compute this dependence analytically,
allowed us to go one step further and predict that the rule would be suitable for
ICA. We tested the prediction numerically by training a neuron operating under our
rule, with the input set from the non-linear bars problem. As expected, the neuron
was able to learn single bars (the independent components of the problem), even
when these were never presented in isolation (permanent partial occlusion).

The importance of these results resides in their generality. If one wants a learn-
ing rule that is Hebbian for a certain range of activities, but then reverses its slope
- and eventually its sign - when the neural activity gets too large or too small, the
cubic shape (here in the broad sense of the word shape), is the minimal construction
one can imagine. What we are showing here is that such a minimal construction is
already very powerful computationally and that it is highly robust to quantitative
deviations, as long as the general shape is maintained.
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The second path we took was that of building a synaptic plasticity rule for
STDP, out of the key elements thought to be involved in this process at gluta-
matergic synapses. Emphasis was once again made in constructing a local, online
synaptic plasticity rule, formulated in this case in terms of two traces, each serving
as a clock, timing the occurrence of pre- and postsynaptic spikes. The two traces,
namely the fraction of activated NMDA receptors and the calcium concentration at
the postsynaptic spine, interact, allowing for non linear spike effects.

Also in this procedure, simplicity, and capturing the essence of the problem,
have been constant goals, keeping the equations linear or polynomial, with a min-
imal amount of variables and parameters. This approach has paid off, since in this
way we have been able to analytically compute the model’s predictions for standard
low frequency experimental protocols involving pairs and triplets of spikes. Despite
the model’s simplicity, it is able to reproduce these results in both hippocampal and
cortical neurons. The transparent link between the model’s internal mechanisms
and their outcome in the observed plasticity results, allows us to learn more about
the underpinnings of the process and generate interesting predictions. While the
model is simplistic, and in many ways an effective model (pooling together the
effect of a large number of biological elements into a few variables), we believe
it makes important general predictions, to be tested experimentally and with more
detailed models.

One of these predictions is that trace accumulation is the main source of triplet
nonlinearities in hippocampal neurons, while saturation is dominant in L.2/3 cortical
neurons. Previous phenomenological learning rules had already proposed explicit
suppression as a way of explaining triplets in these cortical neurons. Here we
come to this conclusion without forcing it, from a more general model. Parameter
configurations that reproduce this kind of triplet nonlinearities present all strong
trace saturation effects, and vice-versa. While, again, STDP may very well be
implemented differently in these neurons, our model effectively predicts that strong
suppression effects should be present to explain these results.

To close the loop we started in the first chapters, we mapped the time-dependent
plasticity rule into a rate-dependent one, by evaluating the amount of synaptic mod-
ification induced by Poisson uncorrelated trains of pre- and postsynaptic spikes.
This allowed us to determine the weight change predicted by the model, as a func-
tion of the pre- and postsynaptic firing rates. Interestingly for hippocampal-type
neurons, a Hebbian (in the rate encoding interpretation of the word) rule emerges.
The synaptic weight change results proportional to the product of the frequencies,
with the postsynaptic frequency being affected by an LTP threshold that is a mono-
tonic function of the level of presynaptic activity. This has a strong reminiscence to
the BCM rule, except that our threshold is not a long-term average of the activity
(no such timescales can be generated in our model), an its based on the level of
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presynaptic activity, setting a different threshold for each synapse in the neuron.

In the case of L 2/3 cortical neurons, we observe with our model an unavoidable
link between triplet results and frequency dependent results. Parameter configura-
tions that reproduce cortical-type nonlinearities, also result in overall depression for
uncorrelated spike trains. While simultaneous decorrelation of neural activity and
depression is found in cortex during sensory deprivation experiments, we believe
more data is required. We consider that the extra-cellular form of presynaptic stim-
ulation in this experimental protocol, potentially resulting in strong network effects,
might explain the large variability in the data and might have an influence on the
observed triplet nonlinearities. While the experimental difficulties in conducting
these experiments are clear, and this is in no way a criticism of the employed
methods, we find it would be crucial for further understanding of the mechanism to
count with a complete and consistent set of data for pairwise, triplet, and frequency
dependent stimulation, all in the same type of neuron and with the same stimulation
technique.

Our STDP rule is defined for one synapse; we have not included a model of the
neuron’s integration of inputs, since the experiments we have reproduced force the
output activity and study one synapse at the time. A clear future line of work is to
include a whole neuron model (such as that presented in section 1.3.2), where the
output activity is computed directly as a function of the inputs, to then evaluate the
resulting rate-encoding rule. In particular, we would like to study whether the rule
is also self-limiting, or whether additional homeostatic mechanisms are needed to
achieve this.

Finally, in order to understand how synaptic plasticity and neural activity in-
teract and mutually condition each other, we would like in future work to study
either of the rules here presented in extended neural networks. The complexity
of the problem grows fast as one includes full network interactions, which means
that having a tractable neural and plasticity model is vital. We believe that the here
proposed rules, being minimal in their formulation are then ideal candidates for this
task.



Appendix

A. Dimensionality reduction in the STDP model

In section 4.2, we chose a compact form for Eq. (4.1), in which we have absorbed
several constants. In this section we clarify this point.

Let us begin by denoting here as 2’ and ¢’ the fraction of NMDA receptors and
the C'a®T concentration, whose evolution evolves according to:

i = _% +a By, 0(t—13,.,)
y/ - _g_y + (CQI/ + y:)Ey Za 6<t - tgost)

where also here 7, and 7, represent the decay time constants of 2’ and y’. Com-
paring to (4.1) one sees that two extra parameters c¢; and ¢, are present. c; repre-
sents the increase in the value of ' caused by a single presynaptic spike (which we
assume to be constant) and ¢, represents the increase of 3 per amount of x’. Fi-
nally y.. stands for the constant contribution to y’ of each postsynaptic spike (via the
VGCCs). Just as in section 4.2, a spike efficacy F is present in the model limiting
trace concentrations (we compute £ according to (4.2)).

It turns out that Egs. (4.1) and (5.1), are completely equivalent, and one can go
from one to the other by a change of variables:

(5.1)

z=1aler, m=mfa, y=y/lac,  ye=y/ac, g =y/ace.

(5.2)

For this reason, we have chosen to present the functionally equivalent, but more
compact form (4.1), in this work.
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Model summary cards

As a help to the reader we briefly summarize here both synaptic plasticity models.

1) Neural and plasticity models from Chapters 2 and 3:

Ny
y=g(x—=b), z=> wiy -7
j=1

wj = eG(x)H(x)(y; — U;)

Options for the bias:

s | | | b= 0
\Dﬁ/
= / \ by = ex(y; —p)

_17 \ b7 = —EbVFIZ(n[L/

ooy ] = —&(1 =2y +ui(1—y)N)

Variables and parameters:

Ny, : number of inputs to the neuron

yj - inpuft j

y; : trailing average of input j

x @ integrated input

y : neural output (input to other neurons)

w; : synaptic weight strength j

b : bias

€w and €, : synaptic and intrinsic learning rates

D : target activity level for simple homeostatic adaption

A : from the target exponential activity distribution p(y) < exp(—A\y)
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Model summary cards

2) STDP model from Chapter 4.

Presynaptic

/1:_%+E()E 5( pre)
0:0 Y= —% + (flf+yc) y(l/)z 5( post)
~—) =
z
. . °e o © ® EM(Z):H(Zb—Z)(l—;b), Z2=1I,Y
® . © ° o o o Glu

w=azx(y —b)0(y —b)Z 5( -t

ca2+

» Postsynaptlc

Variables and parameters:

x @ presynaptic trace (fraction of activated NMDA receptors)

y : postsynaptic trace (Ca*t concentration)

ye : VGCCs contribution to the Ca** concentration

7 and 7y : decay time constants of the traces

xy, and yy, : reference levels for the saturation functions E, and I,
w : synaptic weight strength

«a and B : LTP and LTD strength constants

b: LTP threshold

To obtain the classic pairwise STDP shape one sets:

b=y, a=A",8=A"ye, 7, =274, and 7y = 7_

post )

pre)

AY, A=, 7, and 7_ : maximal intensities and timescales of LTP and LTD for isolated

spike pairs
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