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i

Amoebas are fords between the shores of discrete and continuous mathematics;

a synthesis of discrete, tropical and algebraic geometry,

of complex analysis and algebraic topology.

Its tentacles reach into combinatorics and even applied topics.
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They inhabit huge parts of the mathematical ocean

—

hidden below the surface, where they are not discovered at a first glance.
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Deutsche Zusammenfassung

Amöben sind eine mathematische Entität im Grenzgebiet zwischen algebraischer und
tropischer Geometrie, die diese beiden Gebiete der Mathematik in natürlicher Weise
verbindet.

Der Terminus “algebraische Geometrie” wird gegenwärtig in derart vielfältiger Weise
verwendet, dass eine für jeden akzeptable Definition nicht leicht zu finden ist. Hier – und
dies ist sicherlich zumindest eine häufig vertretene Auffassung – verstehen wir die alge-
braische Geometrie als das Gebiet der Mathematik, das sich der Untersuchung algebrais-
cher Varietäten, d.h. der Nullstellenmengen polynomieller Gleichungssysteme, widmet.

Für unsere Zwecke betrachten wir Laurent-Polynome in n Variablen mit komplexen
Koeffizienten, deren Varietäten wir auf den algebraischen Torus, d.h. nicht-null Einträge,
beschränken. Demzufolge haben wir einerseits ein algebraisches Objekt in Form eines
Polynoms bzw. eines polynomiellen Gleichungssystems und andererseits ein geometrisches
Objekt, nämlich eine Varietät in Form einer (glatten) komplexen (n−1) Mannigfaltigkeit
im algebraischen Torus (C∗)n = Cn\{0}. Ziel ist es, die Beziehung zwischen diesen beiden
Objekten zu studieren und zu verstehen.

Bekanntermaßen ist dies ein sehr schwieriges Problem. Deshalb ist es naheliegend,
Vereinfachungen dieses Problems zu betrachten – beispielsweise Projektionen der ur-
sprünglichen Varietät.

Die komplexen Zahlen besitzen zwei natürliche Zerlegungen, nämlich einerseits in Real-
und Imaginärteil und andererseits in Absolutbetrag und Winkel. Letztere motiviert die
Definition von Amöben in kanonischer Weise, denn die Amöbe A(f) eines (Laurent) Poly-
noms f ist gerade das Bild der zu f gehörigen Varietät unter folgender Log-Abbildung:

Log : (C∗)n → Rn, (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).
D.h., die Amöbe ist die Menge der (komponentenweise logarithmierten) Absolutbeträge
aller Elemente der Varietät V(f). In analoger Weise definiert man die Coamöbe coA(f)
als das Bild der Varietät V(f) unter der Arg-Abbildung:

Arg : (C∗)n → (S1)n, (z1, . . . , zn) 7→ (arg(z1), . . . , arg(zn)),

d.h., als die Menge aller Winkel (Argumente) der Elemente in V(f). Ergo können Coa-
möben als natürliche duale Objekte von Amöben verstanden werden.

Schwerpunkt der tropischen Geometrie ist das Studium n-variater tropischer Laurent-
Polynome trop(f), d.h. von Laurent-Polynomen, die über dem tropischen Semiring
(R ∪ {−∞},⊕,⊙) definiert sind. Hierbei bezeichnet “⊕” das klassische Maximum und
“⊙” die klassische Addition. Die tropische Varietät T (trop(f)) eines derartigen tropi-
schen Polynoms ist definiert als die Menge aller Punkte im Rn, an denen das Maximum
mindestens zweimal, d.h. von mindestens zwei tropischen Monomen, angenommen wird.
Die so definierte Menge ist ein polyedrischer Komplex (s. Abb. 2.4).

Tropische Geometrie ist ein Gebiet der Mathematik, das etwa seit Beginn des neuen
Jahrtausends eine rasante Entwicklung erfahren hat. Der vornehmliche Grund hierfür
liegt darin, dass einerseits die untersuchten Objekte stückweise linear und insofern gut
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handhabbar sind, andererseits aber beim Prozess der Tropikalisierung die ursrüngliche
Struktur in überraschend hohem Maße erhalten bleibt und demzufolge viele klassische
Theoreme auch “im Tropischen” gelten (als allgemeine Referenz zu tropischer Geometrie
s. etwa [10, 22, 38, 42, 74]).

Amöben können als Brücke zwischen der klassischen und der tropischen Welt inter-
pretiert werden – maßgeblich aus zwei Gründen: Erstens, betrachtet man Amöben in
einer Folge, die, vereinfacht gesagt, durch Konvergenz der Basis eines Logarithmus gegen
∞ gegeben ist, so konvergieren die Amöben gegen eine tropische Hyperfläche. Zweit-
ens postuliert ein Kernresultat der Amöbentheorie zu jeder Amöbe A(f) die Existenz
einer bestimmten tropischen Hyperfläche, genannt “Gerüst” (im engl. “spine”), die De-
formationsretrakt von A(f) ist. Das bedeutet, die Homotopie jeder Amöbe ist tropisch
beschreibbar (s. Kapitel 2, Abschnitt 3 für weitere Details).

Überraschenderweise wurden Amöben (multivariater Polynome) erst vor 28 Jahren
erstmals von Gelfand, Kapranov und Zelevinsky in [23] definiert. Ihre ursprüngliche Mo-
tivation hierfür lag weder in der tropischen Geometrie (die zu dieser Zeit noch nicht
existierte), noch in der klassischen algebraischen Geometrie, sondern vielmehr darin,
strukturelle Eigenschaften von Polynomen, die im zugehörigen Newton Polytop (i.e., die
konvexe Hülle aller Exponentenvektoren) verborgen liegen, besser zu verstehen. Hierfür
geben sie Amöben als ein Beispiel an (siehe [23, Kapitel 6, S. 195]; s. außerdem Theorem
2.15 und anstehende Erläuterungen) und beweisen einige elementare Eigenschaften. Für
Coamöben lässt sich nicht mit Sicherheit sagen, wann diese zum ersten Mal definiert wur-
den. Vermutlich wurden sie zum ersten Mal 2004 von Passare während eines Vortrages
erwähnt (s. z.B. [54]).

Amöbentheorie begann sich insbesondere seit Anfang des neuen Jahrtausend rasch zu
entwickeln. Zentral hierfür waren strukturelle Resultate von Passare et al. auf Grundlage
komplexanalytischer Methoden (insbes. [20]), Mikhalkins wegweisende Resultate bzgl.
reell algebraischer Kurven, die u.a. auf Amöbentheorie beruhen ([41]) und Resultate von
Kapranov, Maslov, Mikhalkin, Viro et al. zur Verbindung zwischen Amöben und tropi-
scher Geometrie (s. Kapitel 2, Abschnitt 3; für Details s. auch [40, 88]). Außerdem
Rullg̊ards Dissertation 2002/03 ([77]), in der das Gerüst von Amöben eingeführt und eine
systematische Untersuchung von Konfigurationsräumen begonnen wird.

Seitdem lieferten verschiedene Autoren mannigfache Resultate mit unterschiedlichen
Fokussen (beispielsweise [29, 60, 61, 64, 70, 72, 85]) und die Untersuchung von Co-
amöben schritt voran (z.B. [21, 48, 49, 50, 53, 54]). Darüberhinaus sind inzwischen
Anknüpfungspunkte in verschiedene, andere Gebiete der Mathematik bekannt (etwa dy-
namische Systeme [16], die Berechnung unendlicher Reihen [58] oder statistische Ther-
modynamik [59]).

In dieser Dissertation lösen wir eine Reihe von Problemen innerhalb der bzw. mit
Bezug zur Amöbentheorie. Diese lassen sich grob in vier Hauptthemengebiete gliedern.
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(1) Die kombinatorischen Strukturen, die durch die Trägermengen von Polynomen
und ihren Amöben induziert werden.

(2) Der Rand von Amöben.
(3) Die geometrische und topologische Struktur von Amöben in Abhängigkeit der Ko-

effizienten und Exponenten eines (die Amöbe induzierenden) Laurent-Polynoms.
(4) Die Berechnung und Approximation von Amöben.

Die Geometrie und Topologie von Amöben. Hinter der Untersuchung der Ge-
ometrie und Topologie von Amöben verbirgt sich gewöhnlich die Frage, wie die Existenz
von Komplementkomponenten einer Amöbe A(f) von der Wahl der Koeffizienten von f
abhängt. Hierbei nimmt man an, dass die Menge A ⊂ Zn der Exponenten von f fix-
iert ist. D.h., man betrachtet alle Amöben von Polynomen innerhalb eines (durch A)
fixierten Konfigurationsraumes CA. Dieser Ansatz wurde bereits von Gelfand, Kapranov
und Zelevinsky verwendet und später erfolgreich von Rullg̊ard und anderen übernommen.

In der Terminologie von Konfigurationsräumen besteht die Untersuchung geometrischer
und topologischer Eigenschaften von Amöben im Wesentlichen aus der Untersuchung von
Mengen UA

α ⊆ CA, bestehend aus allen Polynomen, deren Amöben über eine spezifische
Komplementkomponente verfügen (präziser gesprochen: über eine Komplementkompo-
nente mit einer bestimmten Ordnung α ∈ conv(A) ∩ Zn. Siehe Kapitel 2, Abschnitt
2 für weitere Details). Im Falle linearer Polynome ist diese Beziehung vollständig ver-
standen ([20]). Außerdem lieferte Rullg̊ard eine Reihe allgemeiner, struktureller Resultate
([76, 77]; siehe auch Kapitel 2, Abschnitt 4). Jenseits dieser Ergebnisse sind allerdings,
abgesehen von einem einzigen, sehr speziellen Beispiel von Passare und Rullg̊ard (siehe
[63, 77]), für keine (spezielle) Klasse von Polynomen konkrete Eigenschaften jedweder
Art bewiesen oder auch nur vermutet. Die Problematik ist seit langem bekannt, aber
dennoch es gab in diesem Gebiet keinerlei nennenswerte Fortschritte innerhalb der letzten
zehn Jahre.

Insbesondere drei Probleme bezüglich des Konfigurationsraumes können als zentral
erachtet werden:

(1) Wo liegen (scharfe) Schranken für die Koeffizienten eines Polynoms f (mit fix-
ierten Exponenten), so dass die zugehörige Amöbe über eine Komplementkom-
ponente mit einer bestimmten Ordnung α verfügt (d.h. f ∈ UA

α ).
(2) Sind die Mengen UA

α zusammenhängend?
(3) Unter welchen Bedingungen gilt UA

α 6= ∅, falls vorausgesetzt wird, dass α ∈
(conv(A) ∩ Zn) \ A.

Das erste Problem (formal: Problem 2.25) wurde bereits von Gelfand, Kapranov und
Zelevinksy als “das” kanonische, offene und schwierige Problem bzgl. Amöben charak-
terisiert (genauer gesagt, ist es das einzige Problem, dass sie bereits mit der Definition
von Amöben und den Grundlagen der zugehörigen Theorie erkennen und benennen; siehe
[23, Kap. 6, Bem. 1.10, S. 198]). Das zweite Problem wurde von Rullg̊ard als offene
Frage in seiner Dissertation gestellt ([77, S. 39]; hier formal: Problem 2.22). Rullg̊ard
beweist in seiner Dissertation, dass das Komplement (UA

α )
c jeder Menge UA

α sogar zusam-
menhängend entlang jedes Schnittes mit einer beliebigen projektiven, komplexen Geraden
ist. Doch obwohl die von ihm gestellte Frage insofern eine sehr natürliche ist und eine
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positive Antwort überzeugend erscheint, ist die Frage vollkommen offen, mit Ausnahme
des linearen Falles, der trivial ist, da hier UA

α = CA für jedes α ∈ conv(A) ∩ Zn gilt.
Das dritte Problem schließlich führt Rullg̊ards Liste offener Probleme der Amöbentheorie
innerhalb seiner Dissertation an ([77, S. 60]; hier formal: Problem 2.20).

Wir lösen das erste Problem für alle n-variaten Polynome, deren Newton Polytop ein
Simplex ist und die darüber hinaus genau über n + 2 Monome verfügen, wobei der Ex-
ponent des (n + 2)-ten Monoms im Inneren des Newton Polytops liegen muss. Derartige
Amöben können als “Amöben mit minimal abhängigem Träger” charakterisiert werden
(siehe etwa [4, 68]). Die hierdurch beschriebene Menge von Polynomen ist überraschend
reichhaltig und (Träger-)Mengen dieser Form wurden in einer Reihe anderer Zusam-
menhänge untersucht (s. z.B. [1, 73]). Für Polynome innerhalb dieser Klasse mit n ≥ 2
zeigen wir, dass die zugehörige Amöbe über höchstens eine beschränkte Komplementkom-
ponente verfügt (Theorem 4.1). Für die Existenz dieser beschränkten Komplementkom-
ponente liefern wir untere und obere Schranken. Desweiteren beweisen wir, dass die obere
Schranke optimal ist, in dem Sinne, dass sie unter bestimmten Extremalbedingungen
scharf wird (s. Theoreme 4.8, 4.10 and 4.13).

Darüber hinaus können wir sogar eine vollständige, explizite Beschreibung der unter-
suchten Menge UA

α angeben, falls zusätzlich der innere Gitterpunkt genau dem Schwer-
punkt des Simplexes entspricht, das das Newton Polytop darstellt. Wir zeigen, dass ihr
Komplement lokal (innerhalb des Konfigurationsraumes CA) exakt der Fläche entspricht,
die durch die Trajektorie einer bestimmten (evtl. rotierten) Hypozykloide berandet wird
(Theorem 4.20). Dieses Resultat löst nicht nur das erste der oben genannten Probleme,
sondern erlaubt es uns zudem den Zusammenhang der Mengen UA

y in dieser Klasse zu
beweisen (Korollar 4.25). Ferner stellt es eine starke Verallgemeinerung des einen, bekan-
nten Beispiels von Passare und Rullg̊ard zur Struktur von Konfigurationsräumen dar, das
weiter oben erwähnt wurde.

Die im zweiten Problem gestellte Frage können wir außerdem positiv für alle uni-
variaten Polynome beantworten, deren Träger A genau mit conv(A) ∩ Z übereinstimmt
(Theorem 3.12; wir nennen derartige Polynome minimal dünnbesetzt – s. Kapitel 3, Ab-
schnitte 2 und 3).

Jenseits dieser Resultate untersuchen wir außerdem den univariaten Fall von Poly-
nomen mit minimal abhängigem Träger, d.h. Trinome von der Form zs + p + qz−t mit
p, q ∈ C. Die Frage, wie die beiden Koeffizienten zu wählen sind, derart dass die Null-
stellen des Trinoms bestimmte Eigenschaften aufweisen, ist ein klassisches Problem, dessen
Ursprünge in das späte neunzehnte und frühe zwanzigste Jahrhundert zurückreichen (s.
beispielsweise [8, 33, 45]). Ein typisches Problem, dem wir uns hier widmen, ist die
Frage, wie die Koeffizienten zu wählen sind, derart dass eine ganz bestimmte Anzahl von
Nullstellen höchstens über einen bestimmten Absolutbetrag verfügen. Diese Frage wurde
algebraisch im Jahre 1908 von Bohl beantwortet ([8]) – die geometrischen und topologis-
chen Strukturen im zugehörigen Konfigurationsraum sind jedoch, obwohl inzwischen über
einhundert Jahre vergangen sind, weiterhin vollkommen unbekannt.
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Wir übersetzen diese Frage in die Terminologie von Amöben und zeigen, dass hinter
den algebraischen Eigenschaften eine reichhaltige Geometrie verborgen liegt. Wir be-
weisen, dass ein Trinom über eine Nullstelle mit Betrag |z∗| ∈ R>0 verfügt dann und
nur dann, wenn der Koeffizient p auf der Trajektorie einer bestimmten, explizit berechen-
baren (evtl. rotierten) Hypotrochoide liegt, deren Parameter von s, t, q und |z∗| abhängen
(Theorem 4.32). Darüber hinaus zeigen wir, dass ein Trinom zwei Nullstellen des gleichen
Betrages besitzt dann und nur dann, wenn p auf einem explizit berechenbaren 1-Fächer
liegt, der genau durch die nodalen Singularitäten bestimmter Hypotrochoiden induziert
wird (Theorem 4.40).

Topologisch hat dieses Resultat auf der Seite von Amöben zur Folge, dass für Trinome
die Mengen UA

α für α 6= 0 auf eine (s + t)-blättrige Überlagerung der S1 deformations-
retrahiert werden können (Theorem 4.51). Dies erlaubt uns nicht nur die Probleme (1)
und (2) für Trinome zu lösen, sondern liefert außerdem die Fundamentalgruppe für die
Mengen UA

α und beweist damit insbesondere, dass diese nicht einfach zusammenhängend
sind, was bisher für keine Klasse von Polynomen gezeigt werden konnte.

Desweiteren hat Theorem 4.40 Konsequenzen für Problem (3). Rullg̊ard liefert in
seiner Dissertation eine notwendige und (davon verschiedene) hinreichende Bedingung
dafür, dass UA

α 6= ∅ wobei α ∈ (conv(A) ∩ Zn) \ A (Theorem 2.19; siehe auch [77, The-
orem 11]). Leider weist, wie wir zeigen, sein Beweis bzgl. der hinreichenden Bedingung
eine kleine Lücke auf, da er einen nicht trivialen Beweisschritt lediglich mit einer Heuris-
tik begründet. Mit oben genanntem Theorem über Trinome können wir besagte Lücke
schließen (Theorem 4.43) und desweiteren das, soweit mir bekannt, erste explizite Beispiel
einer Amöbe eines multivariaten Polynoms konstruieren, die über eine Komplementkom-
ponente verfügt, deren Ordnung nicht im Träger des definierenden Polynoms enthalten
ist (Beispiel 4.44; s. außerdem Abb. 4.10).

Kombinatorische Aspekte und Dünnbesetztheit. Ein weiteres Themengebiet,
dem wir uns in dieser Dissertation widmen, lässt sich folgendermaßen motivieren: Einer-
seits hat es sich als sehr brauchbar erwiesen, den Konfigurationsraum CA von Amöben
als die Menge aller Polynome mit Träger A ⊂ Zn und Koeffizienten in C∗ = C \ {0}
zu definieren. Andererseits entsteht für jede Folge (cr)r∈N ∈ C∗ eines Koeffizienten mit
limr→∞ cr = 0 im Limes keine (neue) Komplementkomponente in der zugehörigen Amöbe,
die nicht bereits für Koeffizienten innerhalb der Folge existierte. Deshalb ergibt es Sinn,
neben dem gewöhnlichen auch einen augmentierten Konfigurationsraum CA

♦ zu betrachten,
in dem Koeffizienten den Wert 0 annehmen dürfen, solange durch das Verschwinden des
zugehörigen Monoms das Newton Polytop nicht variiert (Letzteres garantiert, dass das
“logarithmic limit set”, d.h., bildlich gesprochen, “die Richtung der Tentakel” erhalten
bleibt).

Wir zeigen, dass für jedes Gitterpolytop P die Menge aller Konfigurationsräume CA

mit conv(A) = P einen boolschen Verband L(P ) bzgl. einer Relation ⊑ bildet, die durch
mengentheoretische Inklusion auf den Mengen A ⊂ Zn induziert wird (Theorem 3.2).
Diese Verbandsstruktur löst obigen Konflikt elegant, da wir zeigen können, dass jeder
augmentierte Konfigurationsraum CA

♦ genau mit der Menge
⋃

CB⊑CA CB übereinstimmt,
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d.h., gerade die Vereinigung über alle Elemente des Ordnungsideals O({CA}) von CA bzgl.
L(P ) ist (Korollar 3.3).

Ferner respektiert der Verband die Struktur der Mengen UA
α ⊆ CA derart, dass gilt:

wenn UA
α = ∅, dann UB

α = ∅ für alle CB ⊑ CA, d.h., für alle Elemente des Ordnungsideals
O({CA}) von CA. Diese Beobachtung liefert insbesondere eine (unabhängige) Motivation
für folgende prominente Frage (s. hier Problem 3.4) von Passare und Rullg̊ard ([62]; s.
auch [66]):

(4) Haben maximal dünnbesetzte Polynome solide Amöben?

Hierbei heißt eine Amöbe “solide”, falls jede Komplementkomponente der Amöbe (bzgl.
ihrer Ordnung) zu einer Ecke im Newton Polytop korrespondiert. Ein Polynom heißt
“maximal dünnbesetzt”, falls der Exponent jedes seiner Monome eine Ecke des zugehörigen
Newton Polytops ist. Der Konfigurationsraum, der die maximal dünnbesetzten Polynome
bzgl. eines Gitterpolytops P enthält, stellt genau das minimale Element des boolschen
Verbandes L(P ) dar. Insofern ist die obige Frage tatsächlich durch unser Theorem 3.6
(re-)motiviert, da es, vereinfacht gesagt, impliziert, dass falls ein UA

α in irgendeinem Kon-
figurationsraum leer ist, dann auch im Konfigurationsraum der “zugehörigen” maximal
dünnbesetzten Polynome.

Das Problem (4) wurde in der Vergangenheit bereits von Nisse behandelt [52]. Wir
lösen das Problem hier nicht vollständig, liefern allerdings unabhängige, weitgehend ele-
mentare Beweise für reichhaltige Klassen von Polynomen (Theoreme 3.9 und 3.10).

Der Rand von Amöben. Da Amöben abgeschlossene Mengen sind, stellt die Charak-
terisierung ihres Randes ein evidentes Problem dar. Offensichtlich kann ein Punkt nur
dann ein Randpunkt sein, wenn er Bild eines kritischen Punktes unter der Log-Abbildung,
eingeschränkt auf die zugehörige Varietät, ist. Die Menge all dieser Bilder kritischer
Punkte nennen wir die Contour der Amöbe. Mikhalkin konnte zeigen (s. [41, 43]),
dass die Punkte in V(f), die kritisch unter der Log-Abb. sind, genau übereinstimmen
mit der Menge der Punkte S(f), die ein reelles Bild haben unter der logarithmischen
Gauß-Abbildung

γ : V(f) → Pn−1
C , (z1, . . . , zn) 7→

(
z1 ·

∂f

∂z1
(z) : · · · : zn ·

∂f

∂zn
(z)

)
.

Die logarithmische Gauß-Abbildung ist eine Komposition des komplexen Logarithmus und
der gewöhnlichen Gauß-Abbildung, die jeden Punkt einer (nicht singulären) Varietät auf
den (projektiven) Normalenvektor seines korrespondierenden Tangentialraumes abbildet.
Anders ausgedrückt bedeutet dies, dass ein Punkt w ∈ Rn nur im Rand ∂A(f) einer
Amöbe A(f) liegen kann, falls innerhalb des Schnittes seiner Faser Fw (bzgl. der Log-
Abb.) und der Varietät V(f) ein Punkt existiert, der in der Menge S(f) der kritischen
Punkte unter der logarithmischen Gauß-Abbildung enthalten ist (s. Korollar 3.14).

Unglücklicherweise ist die Contour im Allgemeinen eine strikte Obermenge des Randes
einer Amöbe (s. z.B. [66]) und es ist bislang vollkommen unklar, wodurch die Mengen
voneinander unterschieden werden können. Wir liefern ein Kriterium zur Unterscheidung,
indem wir zeigen, dass ein Punkt w ∈ Rn nur dann Randpunkt einer Amöbe A(f) sein
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kann, falls jeder Punkt z im Schnitt seiner Faser Fw und der Varietät V(f) in S(f) en-
thalten ist (Theorem 3.15).

Approximation von Amöben. Der Startpunkt für die Berechnung und Approxi-
mation von Amöben und Coamöben, an dem wir uns orientieren, ist Purbhoos Artikel
[70]. Die Problematik wurde erstmals von Theobald in [85] behandelt, wo er insbeson-
dere Amöben durch die Berechnung ihrer Contour (s.o.) approximiert. Heutzutage gilt es
jedoch als kanonischer Ansatz, folgendes Membership Problem (s. Problem 2.26) effizient
zu lösen:

(5) Sei f ein multivariates Laurent-Polynom und w ∈ Rn. Entscheide, ob w in der
Amöbe A(f) von f enthalten ist.

Für Coamöben lässt sich das Problem analog formulieren (s. Problem 2.33). Purbhoo
präsentierte eine erste Lösung des obigen Problems (5). Er liefert ein Zertifikat, das er
als “Lopsidedness-Bedingung” bezeichnet, dafür, dass ein Punkt im Komplement einer
Amöbe enthalten ist, wobei er sogar die Ordnung der Komplementkomponente anhand
des Zertifikates bestimmen kann. Mit zusätzlicher Hilfe einer Relaxierung des gegebe-
nen Polynoms, basierend auf iterierten Resultanten, ist es möglich die zugehörige Amöbe
bis auf eine ε-Umgebung des Randes zu approximieren (s. Theorem 2.28 sowie [70]).
Der Grad des relaxierten Polynoms wächst hierbei exponentiell in der Anzahl der Relax-
ierungsschritte.

Darüber hinaus hat sich die Lopsidedness-Bedingung als genuines Beweisinstrument
struktureller Aussagen über Amöben erwiesen. Wir verwenden es beispielsweise, um ex-
plizite Wege in Konfigurationsräumen zu konstruieren (Theorem 4.24) oder um die Lage
reeller Nullstellen von reellen Trinomen zu charakterisieren (Theorem 4.39).

Dennoch ist Purbhoos Ansatz nicht frei von Schwierigkeiten, die eine weitere Unter-
suchung von Problem (5) nahelegen. Erstens lässt sich Purbhoos Resultat lediglich auf
Amöben und nicht auf Coamöben anwenden. Zweitens ist sein Zertifikat kein algebraisches
Zertifikat im strikten Sinne, d.h. es basiert nicht auf einer polynomiellen Ungleichung, die
anhand des gegebenen Polynoms und Punktes w ∈ Rn bestimmbar ist. Drittens existiert
kein kanonischer Ansatz, um Purbhoos Resultat zu implementieren. Zwar gibt es keine
generellen Hindernisse für eine Implementierung, aber sein Algorithmus lässt sich nicht
unmittelbar mit existierenden Berechnungsansätzen oder etablierter Software verknüpfen.

Wir lösen hier diese Probleme durch einen alternativen, Zertifikat-basierten Ansatz auf
Grundlage semidefiniter Programmierung (semidefinite programming – SDP) und Sum-
men von Quadraten (sums of squares – SOS). Semidefinite Programmierung ist eine Ve-
rallgemeinerung linearer Optimierung. Der Unterschied besteht darin, dass nicht über
den positiven Orthanten, sondern über den Kegel der semidefiniten Matrizen optimiert
wird und die Nebenbedingung nicht durch lineare Ungleichungen, sondern durch lineare
Matrixungleichungen gegeben sind (s. beispielsweise [6, 35, 39]). Ein reelles Polynom
f (vom Grad 2d) heißt Summe von Quadraten, falls es sich als Summe f =

∑r
j=1 s

2
j

schreiben lässt, wobei die sj reelle Polynome (vom Grad d) sind.
Unser Ansatz besteht darin, ein gegebenes n-variates, komplexes Polynom in zwei

2n-variate, reelle Polynome f re und f im zu transformieren, indem wir jede Variable zj
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durch xj + i · yj ersetzen und anschließend den Real- und Imaginärteil von f bestimmen.
Auf diese Art und Weise lässt sich das Membership Problem als reelles, polynomielles
Gleichungssystem reformulieren. Der reelle Nullstellensatz (Theorem 5.3; s. z.B. [7])
garantiert nun, dass dieses System keine Lösung besitzt dann und nur dann, wenn ein
Zertifikat der Form G+H +1 = 0 existiert, wobei G ein Polynom im durch die Nebenbe-
dingungen erzeugten Ideal und H eine Summe von Quadraten ist. Durch dieses Zertifikat
erhalten wir, sowohl für Amöben als auch für Coamöben, ein algebraisches Zertifikat für
das Membership Problem (Korollar 5.4 und Theorem 5.8).

Ein Standardresultat der reell algebraischen Geometrie besagt, dass ein Polynom
Summe von Quadraten ist genau dann, wenn eine bestimmte positiv semidefinite Matrix
existiert. Aufgrund dessen kann ein Zertifikat für das Membership Problem durch Nach-
weis der Unlösbarkeit eines bestimmten semidefiniten Optimierungsproblems erbracht
werden. Und da sowohl für die Übersetzung von SOS nach SDP als auch für die Lösung
von SDPs Standardsoftware existiert, können wir unseren Ansatz einfach implementieren.
Wir verwenden die Softwarepakete SOStools und SeDuMi und präsentieren eine Reihe
von Beispielen – sowohl für die Approximation von Amöben, als auch für verwandte Prob-
leme (s. Kapitel 5, Abschnitt 4 für weitere Details).

Da die drei Hauptprobleme, die bei Purbhoos Ansatz bestehen bleiben, durch unsere
Methode gelöst werden (bzw. sich dort nicht als Problem stellen), bleibt lediglich die Frage
bestehen, wie gut unser Ansatz (komplexitätstheoretsisch) im Vergleich zu Purbhoos ist.
Mit der Antwort liefern wir unser zentrales, theoretisches Resultat dieses Bereiches (Ko-
rollar 5.17), indem wir zeigen, dass unser SDP-basierter Ansatz dieselbe Komplexität hat
wie Purbhoos Lopsidedness-basierter Ansatz. Genauer gesagt zeigen wir: Angenommen,
es existiert ein Zertifikat vom Grad höchstens d dafür, dass ein Punkt w ∈ Rn nicht in
einer gegebenen Amöbe liegt, das von Purbhoos Ansatz gefunden wird. Dann liefert unser
Ansatz ein Zertifikat dafür, dass w ∈ Rn nicht in jener Amöbe liegt, und dieses Zertifikat
ist vom Grad höchstens 2d.
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Anders Jensen, Diane Maclagan, Hannah Markwig, Annette Werner and Josephine Yu.

Next to regularly attendance of conferences and workshops, I had the luck to be able
to visit a couple of places and groups due to personal invitations. At all these places local
people showed an incredible amount of hospitality I am truly thankful for as well as for the
invitations itself. Thus, I want to thank Arne Buchholz, Anders Jensen, Hannah Markwig
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CHAPTER 1

Introduction

Amoebas are a mathematical structure appearing at the border between algebraic and
tropical geometry and connecting these two topics in a natural way.

In contemporary mathematics the term “algebraic geometry” is used so widespreadly
that it is hard, to give a definition of it, which everybody can agree with. Here – and I
think this is at least one common point of view on algebraic geometry – we understand
algebraic geometry as the investigation of algebraic varieties, i.e., the zero set of a system
of polynomial equations.

For our purposes we will investigate Laurent polynomials in n variables with complex
coefficients. We restrict ourselves to such polynomials, which only vanish for non-zero
entries. Hence, on the one hand, we have an algebraic object in the form of a polynomial
resp. a system of polynomials depending of coefficients in C and exponents in Zn. On
the other hand, we have a geometrical object in the form of a variety given by a (smooth)
complex (n − 1)-manifold in the complex torus (C∗)n = Cn \ {0}. The relation between
these two objects is what we want to understand.

This is known to be hard. Thus, it is a convincing strategy to try to understand
simplifications of this problem – for example to try to understand the same relation for a
projection of the given variety.

The two most natural decomposition of complex numbers are either into real and
imaginary part or into absolute value and argument. This makes amoebas very genuine
objects of interests, since an amoeba A(f) of a (Laurent) polynomial f is nothing else
than the image of the corresponding variety V(f) under the Log-map

Log : (C∗)n → Rn, (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|),
i.e., the set of (componentwise logarithmized) absolute values of all elements in the cor-
responding variety V(f). Analogously, the coamoeba coA(f) is the image of the variety
V(f) under the Arg-map

Arg : (C∗)n → (S1)n, (z1, . . . , zn) 7→ (arg(z1), . . . , arg(zn)),

i.e., the set of arguments of all elements of V(f) and hence can be considered as the gen-
uine dual object of the amoeba.

In tropical geometry we investigate n-variate Laurent polynomials trop(f) over the
tropical semi-ring (R ∪ {−∞},⊕,⊙), where “⊕” denotes the usual maximum and “⊙”
denotes the usual “+”. The tropical variety T (trop(f)) of such a tropical polynomial
is defined as the set of all points in Rn where the maximum is attained at least by two

3



4 1. INTRODUCTION

monomials. This object is a polyhedral complex, i.e., a discrete geometrical object (see
Figure 2.4). Tropical geometry has been an emerging field in mathematics within, say,
the last 12 years since, roughly spoken, on the one hand, the investigated objects are
piecewise linear and thus nice to handle. On the other hand, a tropicalization keeps an
surprisingly high amount of the original structure such that very many classical results
also hold tropically (as general references see e.g., [10, 22, 38, 42, 74]).

Indeed, amoebas are a bridge connecting the classical with the tropical world. Firstly,
if one lets for a given (classical) variety V(f) the the basis t of the logarithm in the Log-
map converge to ∞, then the corresponding amoeba A(f) will converge against a tropical
hypersurface. Secondly, a central result of amoeba theory states that for every amoeba
A(f) there exists a particular tropical hypersurface, the spine, which is a deformation
retract of A(f). I.e., the homotopy of every amoeba can be described tropically (see
Chapter 2, Section 3 for further details).

1. Historical Background

Surprisingly, amoebas (of multivariate polynomials) were defined only 28 years ago
by Gelfand, Kapranov and Zelevinsky in [23]. Gelfand, Kapranov and Zelevinsky write
that their intention is to show strong structural properties hidden in the Newton polytope
(i.e., the convex hull of all exponent vectors) of a given Laurent polynomial and they
introduce amoebas as one example (see [23, Chapter 6, p. 195]; what they basically
refer to is the connection between the amoebas’ tentacles and the Newton polytope – see
also Theorems 2.15 and the explanation behind). Furthermore, they realized that the
set of complement components of an amoeba A(f) is in bijective correspondence with all
possible Laurent series expansions of the Laurent polynomial f (see Theorem 2.2), which
makes amoebas interesting from the viewpoint of complex analysis. Coamoebas were,
according to the literature (and personal conversation), even defined only seven years ago
by Passare motivated by his studies of amoebas (see e.g., [54]).

After Gelfand’s, Kapranov’s and Zelevinsky’s initial results amoeba theory started
to develop strongly roundabout at the beginning of 21st century. Passare et. al. gave
structural results on amoebas mainly obtained by the usage of complex analytical methods
(in particular [20]). More or less at the same time Mikhalkin used amoebas to achieve
seminal results on real algebraic curves ([41]), mainly using topological methods, and
Kapranov, Maslov, Mikhalkin, Viro et. al. layed the foundations to reveal the connection
between amoebas and the emerging field of tropical geometry by figuring out that amoebas
can be understood as the bridge connecting the “classical world” with the “tropical world”
in the sense as described above (see Chapter 2, Section 3 for details, see also [40, 88]).

A second large step in amoeba theory was made in 2002/03. Theobald used results
by Mikhalkin to initialize research on computation and approximation of amoebas ([85]).
Furthermore, Rullg̊ard finished his PhD-thesis (mainly) on amoebas ([77]; under super-
vision of Passare). He and his coauthors presented a bundle of outstanding results on
amoebas. In particular, he strengthened the connection between amoebas and tropical
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geometry by proving that the homotopy of amoebas is encoded in a certain tropical hy-
persurface, which he denotes as “spine” (see Chapter 2, Section 3; see also [63]), and he
was the first one who systematically investigated the configuration space of amoebas (see
Chapter 2, Section 4; see also [76]). His results lead to many contemporary open key
questions on amoebas and as well to many problems investigated in this thesis.

In the following years advances were made in diverse directions (e.g., [29, 60, 61, 64,
72]) and the investigation of coamoebas began and emerged (see e.g., [21, 48, 49, 50,
53, 54]). One last paper, which, since it is central for this thesis, should be mentioned
at this point is [70] by Purbhoo. In this paper a first certificate based approximation
process of amoebas is yielded. But, the key condition called “lopsidedness“, which is used
by Purbhoo, additionally plays an important structural role for amoebas and will be used
in many different contexts in this thesis.

Until today amoeba theory did not only make big advantages itself and is considered
as one of the foundations of tropical geometry, but people also recognized that amoebas
appear in various fields of mathematics – concerning problems, which seem not to be con-
nected to amoebas at all at the first glance (e.g., dynamical systems [16], the computation
of infinite series [58] or statistical thermodynamics [59]).

2. Investigated Problems and Main Results

In this thesis we concentrate on amoeba related problems, which can roughly be divided
into four topics.

(1) The relation between combinatorial aspects of the support set of exponents of a
polynomial and its amoeba.

(2) The boundary of amoebas.
(3) The geometrical and topological structure of amoebas in dependence of the ex-

ponents and coefficients of a given initial Laurent polynomial.
(4) The computation and approximation of amoebas.

Notice that we re-discuss all main solutions and give an overview about the most
interesting resp. urgent problems in amoeba theory in the final Chapter 6.

2.1. The Geometrical and Topological Structure of Amoebas. When one is
interested in geometrical and topological questions about amoebas, the usual setting is
to fix an arbitrary set of exponent vectors A ⊂ Zn and ask about the correspondence
between the coefficients and the structure of the amoeba, which means here in particular
the existence of certain complement components. The set of all polynomials with this set
of exponent vectors A forms the configuration space CA. This approach was already used
by Gelfand, Kapranov and Zelevinsky and has later proved its effectivity in the works of
Rullg̊ard et.al..

In terms of the configuration space the investigation of geometrical and topological
properties of an amoeba transforms basically in the investigation of sets UA

α ⊆ CA con-
taining all polynomials whose amoebas have a specific complement component (i.e., a
complement component of order α ∈ conv(A) ∩ Zn, see Chapter 2, Section 2 for further
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details). For linear polynomials this correspondence is well understood ([20]) and a couple
of structural properties were proven by Rullg̊ard ([76, 77]; see also Chapter 2, Section
4). But besides that no facts are known (except one specific example by Passare and
Rullg̊ard; see [63, 77]) and no progress was made at all within the last ten years.

In particular, three problems on configuration spaces can be marked as central.

(1) Give bounds on the coefficients of a polynomial f (with fixed exponents) such
that its amoeba has a complement of a given order α (i.e., f ∈ UA

α ).
(2) Are the sets UA

α connected?
(3) Under which conditions is UA

α 6= ∅ if α ∈ (conv(A) ∩ Zn) \ A?
The first problem (here formally introduced as Problem 2.25) was already marked as

”the“ canonical open problem on amoebas by Gelfand, Kapranov and Zelevinsky (i.e., the
only open problem on amoebas they formulated together with the foundations of amoeba
theory; see [23, Chapter 6, Remark 1.10, p. 198]). The second problem was marked as
open question by Rullg̊ard ([77, p. 39]; here formally introduced as Problem 2.22). But
although it is, indeed, a very natural question, since Rullg̊ard proved connectivity of the
complement (UA

α )
c of every set UA

α intersected with an arbitrary complex line in CA (see
[77]; see also Theorem 2.21), it is widely open, except for the linear case, where it is trivial
since in this case every UA

α equals CA. The third problem was marked on top position
among “open problems on amoebas” by Rullg̊ard in his thesis ([77, p. 60]; here formally
introduced as Problem 2.20).

We solve the first problem for all multivariate polynomials with a simplex Newton
polytope with one additional monomial whose exponent is contained in the interior of
the Newton polytope. Polynomials in this class can also be regarded as supported on a
circuit (see e.g., [4, 68]) and are also investigated in other contexts (see e.g., [1, 73]). For
polynomials in this class we give upper and lower bounds for the existence of a bounded
complement component in the amoeba and prove furthermore that the upper bound is
optimal in the sense that it becomes sharp under extremal conditions (Theorems 4.8, 4.10
and 4.13).

For the special case that the interior lattice point y is the barycenter of the simplex,
which is the Newton polytope, we can even give a complete description of the set UA

y

by showing that its complement is locally (in CA) exactly the region bounded by the
trajectory of an (eventually rotated) hypocycloid curve (Theorem 4.20). This solves not
only the first problem for this class, but also allows us to show connectivity of the sets
UA
y , i.e., answers the second question (Corollary 4.25) and generalizes broadly the one

example by Passare and Rullg̊ard mentioned above. All these results can also be found
in the article [87].

Furthermore we are able to answer the second problem affirmatively for all univariate
polynomials where the set of exponents A equals conv(A)∩Z (Theorem 3.12; we call such
polynomials minimally sparse – see Chapter 3, Sections 2 and 3).

Besides these results we investigate the univariate case, i.e., trinomials of the form
zs + p + qz−t with p, q ∈ C. The question how to choose coefficients of trinomials such
that the absolute values of the roots show a specific effect are classical questions firstly
discussed in late 19th resp. early 20th century (see e.g., [8, 33, 45]). A typical question,
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which we investigate here, is how to choose the coefficients such that a certain number
of roots have at most a certain absolute value. Algebraically, this question was solved by
Bohl in 1908 ([8]), but the geometrical and topological structures behind it are, despite
the fact that more than a hundred years have passed, unknown.

We reinterpret these questions in terms of amoeba theory to discover a beautiful ge-
ometry and topology hidden behind the algebraic properties. We show that a trinomial
has a root of modulus |z∗| ∈ R>0 if and only if the coefficient p is located on the trajec-
tory of an explicitly computable (eventually rotated) hypotrochoid curve (Theorem 4.32).
Furthermore, we show that a trinomial has two roots of the same modulus if and only if
p is located on an explicitly computable 1-fan corresponding to nodes of hypotrochoids
(Theorem 4.40).

On the amoeba side these results imply that for trinomials every UA
α with α 6= 0 can,

roughly spoken, be deformation retracted to an (s+t)-sheeted covering of an S1 (Theorem
4.51). This does not only allow us to solve the problems (1) and (2) also for trinomials,
but additionally yields the fundamental group for the particular UA

α and proves in partic-
ular that they are not simply connected, which was done for no other class of polynomials
before.

Furthermore, the results on trinomials have an impact on question (3). There exists
a theorem by Rullg̊ard giving some necessary and some (different) sufficient conditions
for UA

α 6= ∅ for α ∈ (conv(A) ∩ Zn) \ A (Theorem 2.19; see also [77, Theorem 11]).
Unfortunately, we discover a gap in the proof about the sufficient conditions (see Chapter
2, Section 4). Fortunately, we can use our results on trinomials to close it (Theorem
4.43) and provide, to the best of my knowledge, the first explicit example of an amoeba
containing a complement component with an order α, which is not contained in the
support set A (Example 4.44; see also Figure 4.10).

2.2. Combinatorial Aspects and Sparsity. A further related topic, which we
discuss, is motivated by the fact that on the one hand, in configuration spaces CA by
definition all coefficients of polynomials are contained in C∗ = C \ {0}. But, on the
other hand, for every sequence (cr)r∈N ∈ C∗ of a coefficient with limr→∞ cr = 0 no (new)
complement component may appear in the corresponding amoeba in the limit if it does
not already exist for coefficients in the sequence. Thus, it makes sense to investigate
an augmented configuration space CA

♦ where we allow coefficients cα (and hence also the
corresponding monomial) to vanish unless α is a vertex in conv(A). We require the latter
since we want to preserve the Newton polytopes of polynomials in CA

♦ with respect to those
in CA and correspondingly the logarithmic limit set, i.e., the direction of the tentacles of
their amoebas.

We show that for a given lattice polytope P the set of all configuration spaces CA

with conv(A) = P forms a boolean lattice L(P ) with respect to a relation ⊑ induced by
set-theoretic inclusion on the sets A ⊂ Zn (Theorem 3.2). The lattice structure solves the
upper conflict nicely and naturally, since we can show that the augmented configuration
space CA

♦ is nothing else than
⋃

CB⊑CA CB, i.e., the union of all elements in the order ideal

O({CA}) of CA with respect to L(P ) (Corollary 3.3).
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Furthermore, if a set UA
α ⊆ CA is empty, then the lattice preserves this property for

the whole order ideal, since then for every CB ⊑ CA the corresponding set UB
α ⊆ CB is

also empty (Theorem 3.6). This result is in particular an independent motivation for a
prominent problem (see Problem 3.4 here) posed by Passare and Rullg̊ard ([62]; see also
[66]) asking

(4) Do maximally sparse polynomials have solid amoebas?

“Solid amoeba” means that the existing complement components of the amoeba corre-
sponds to vertices in the Newton polytope (via the order map) and “maximally sparse”
means that every monomial in the initial polynomial has an exponent, which is a vertex in
the Newton polytope. The configuration space, which contains maximally sparse polyno-
mials is exactly the minimal element of every lattice of configuration spaces. Hence, this
question is indeed motivated by our Theorem 3.6, since it, roughly spoken, implies that if
a UA

α is empty in some configuration space, then it is also empty in the “corresponding”
maximally sparse case.

Note that Problem (3) was treated and announced to be solved by Nisse in [52] using
a coamoeba approach. In this thesis we provide independent, rather elementary proofs
for rich classes of polynomials (Theorems 3.9 and 3.10).

2.3. The Boundary of Amoebas. Since amoebas are closed sets, another evident
problem is to describe their boundary. Obviously, a point may only be contained in the
boundary ∂A(f) of an amoeba A(f), if it is contained in the contour of A(f), i.e., the
image of all critical points of Log|V(f). Mikhalkin proved (see [41, 43]) that the points of
V(f), which are critical under the Log-map, coincide with the set S(f) of all points with
real image under the logarithmic Gauss map

γ : V(f) → Pn−1
C , (z1, . . . , zn) 7→

(
z1 ·

∂f

∂z1
(z) : · · · : zn ·

∂f

∂zn
(z)

)
.

which is a composition of a branch of the holomorphic logarithm and the usual Gauss map,
which maps every point of a (non-singular) variety on the (projective) normal vector of
its corresponding tangent space. In other words, a point w ∈ Rn may only belong to the
boundary ∂A(f) if in the intersection of its fiber Fw with respect to the Log map and the
variety V(f) exists a point z ∈ (C∗)n, which belongs to the set S(f) of critical points of
the logarithmic Gauss map (see Corollary 3.14).

Unfortunately, in general the contour is a strict superset of the boundary of an amoeba
(see e.g., [66]), but it is completely unknown, what separates these two sets. We provide
such a distinction here by proving that a point w ∈ Rn may only be contained in the
boundary ∂A(f) of an amoeba A(f) if for every point z in the intersection V(f) ∩ Fw

holds that z ∈ S(f) (Theorem 3.15).

2.4. Approximation of Amoebas. For the computation and approximation of
amoebas and coamoebas for us the starting point is Purbhoo’s outstanding article [70].
Although this topic was initiated by Theobald in [85] by computation of the contour of
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amoebas, which we just defined above, nowadays the canonical approach to approximate
amoebas is to find a way to solve the following membership problem (see Problem 2.26)

(5) Let f be a multivariate Laurent polynomial and w ∈ Rn. Decide, whether w is
contained in the amoeba A(f) of f .

Note that an analogue problem may be formulated for coamoebas (Problem 2.33). Purb-
hoo gave a first solution for Problem (5). He presented a certificate, which he denotes as
“lopsidedness”, for a point to be in the amoebas complement (and even to figure out, in
which complement component with respect to its order it is contained). With a relaxation
based on iterated resultants it is possible to use this certificate to approximate the amoeba
up to an ε-neighbourhood of its boundary (see Theorem 2.28; see also [70]). The degree
is hereby growing exponentially in the number of steps the approximation process takes.

A fact that makes this result even stronger is that the lopsidedness-condition turned
out to be a genuine instrument to prove structural results in amoeba theory. We use it
e.g., to construct a path in configuration spaces (Theorem 4.24) or to prove a statement
about the location of real roots in real trinomials (Theorem 4.39).

Anyhow, some issues remain, which keep this Problem (5) very worthy to investigate.
Firstly, Purbhoo’s result only works for amoebas, not for coamoebas. Secondly, his certifi-
cate is not an algebraic certificate in the strict sense, i.e., it is not based on a polynomial
inequality, which can be computed out of the initial polynomial and the investigated point
w ∈ Rn. Thirdly, there is no canonical way to implement his result. Of course, there is no
obstruction against an implementation, but his algorithm does not connect canonically to
existing computational approaches or software.

We solve all these issues here with an alternative, certificate based approach via semi-
definite programming (SDP) and sums of squares (SOS). Semidefinite programming is a
generalization of linear programming with the difference that one optimizes over the cone
of positive semidefinite matrices instead of the positive orthant and the constraints are
given by linear matrix inequalities instead of linear inequalities (see e.g., [6, 35, 39]). A
real polynomial f (of degree 2d) is a sum of squares if it can be written as sum f =

∑r
j=1 s

2
j

of real polynomials sj (of degree d).
Our idea is to transform a given n-variate complex polynomial f into two 2n-variate

real polynomials f re and f im by rewriting every variable zj as xj + i · yj and then take
the real and imaginary part of f . With that it is possible to reformulate the membership
problem as a system of real polynomial equations. The Real Nullstellensatz (Theorem 5.3;
see e.g., [7]) guarantees that this system has no solution if and only if there is a certificate
of the form G+H+1 = 0 where G is a polynomial in the ideal defined by the constraints
of the problem and H is a sum of squares, which yields an algebraic certificate for the
membership problem as well for the amoeba as for the coamoeba case (Corollary 5.4 and
Theorem 5.8).

Since it is well known that a polynomial is a sum of squares if and only if a particular
positive semidefinite matrix exists, a certificate for the membership problem can be found
by proving infeasibility of a certain semidefinite optimization problem. And since there is
software available as well for the translation from SOS to SDP as for the solving of SDPs,
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our approach can be implemented straightforwardly. We use the software packages SOS-

tools and SeDuMi here and present a couple of examples as well for the approximation
of amoebas as for related problems, which can be tackled with our approach (see Chapter
5, Section 4 for further details).

Since the three remaining issues are solved, the final, important question is, how good
our approach (in terms of complexity) is compared to Purbhoo’s. Here, we show our main
theoretical result of this chapter (Corollary 5.17), stating that our SDP-based approach
has the same complexity as Purbhoo’s lopsided-based approach. More precise, we show
that for every certificate of degree at most d for a point w ∈ Rn not to be in a certain
amoeba, which can be found by lopsidedness and iterated resultants, we find a certificate
for the same point and the same amoeba of degree at most 2d.

3. Structure of the Thesis

In Chapter 2, the preliminaries, we present all known results needed for this thesis
and introduce most of the open problems, which we solve or partially solve.

Specifically, we begin with some basic properties about amoebas, e.g., regarding closed-
ness, convexity and the logarithmic limit set. As a next step we introduce the already
mentioned order map. We describe how it associates every complement component of an
amoeba uniquely to an integral point in the Newton polytope (of the defining polynomial).
We discuss elaborately the different connections between amoebas and tropical geometry.
Firstly, we give an introduction into tropical geometry, and afterwards we explain how
amoebas build a bridge between classical and tropical world via Maslov dequantization
and how the homotopy of an amoeba is encoded in its spine, a tropical hypersurface.

In the following we define the configuration space of amoebas and recall the most
important results on it. Since the configuration space is a central object of investigation
for us, we also formally provide most of the key problems here. Afterwards, we formally
introduce the membership Problem (5) and recall Purbhoo’s lopsidedness condition and
his main result to use this condition and a relaxation on the initial polynomial to solve
the membership problem. Finally, we give a short overview about coamoebas, present
some core results of the past years and formulate a membership problem for coamoebas.

We begin Chapter 3 with discussing the fiber structure (of amoebas) provided by the
Log-map. We show in particular that the naturally given fiber bundle of the Log-map
induces a fiber function, which will be the crucial puzzle piece connecting varieties and
configuration spaces.

In the following section we show that the set of all configurations spaces CA with
A ⊂ Zn and conv(A) = P , where P is an arbitrary given lattice polytope, has a genuine
boolean lattice structure with a relation yielded by a set-theoretical inclusion. We show
that this lattice structure not only generalizes notation nicely, but also harmonizes with
the structure of amoebas and motivates Passare’s and Rullg̊ard’s Problem (3). We have a
closer look at this problem by investigating maximally and minimally sparse polynomials.
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We answer Question (3) affirmatively for a large class of polynomials (Theorems 3.9 and
3.10) and prove Problem (2) for univariate minimally sparse polynomials (Theorem 3.12).

In the final section of this chapter we discuss the boundary of amoebas. We introduce
the Gauss- as well as the logarithmic Gauss-map and present Mikhalkin’s result on the
boundary of amoebas resp. its contour (Theorem 3.13). Afterwards, we improve this
result by showing that a point w ∈ Rn in the contour may only belong to the boundary,
if every point in the intersection of the variety and the fiber Fw is critical under the log-
arithmic Gauss-map (Theorem 3.15).

In Chapter 4 we focus on geometrical or topological questions of amoebas and present
all results of this thesis related to problems of this kind. The main class Py

∆ of investigation
contains polynomials with n+2 monomials and a simplex Newton polytope such that the
lattice point given by the (n + 2)nd monomial is contained in the interior. We show for
n ≥ 2 that the corresponding amoebas have at most one bounded complement component.
We provide a bundle of minor results, but in particular, we formulate and prove our main
Theorems 4.8, 4.10 and 4.13 providing bounds on the coefficients for the existence of a
bounded complement component in amoebas of polynomials in this class and thus solving
Problem (1).

In the following we have a close look at the special case of polynomials in Py
∆ where the

inner lattice point is the barycenter of the Newton polytope. For this class we give a full,
local, geometrical description of the configuration space by proving that the set (UA

y )
c of all

polynomials, where the amoeba has no bounded complement component, coincides exactly
with the region bounded by a certain hypocycloid curve (Theorem 4.20). Furthermore,
we solve Problem (2) by showing that UA

y is connected (Corollary 4.25).
The univariate elements of the class Py

∆ are trinomials. We show that many classical
19th resp. early 20th century problems on trinomials can be reinterpreted in terms of
amoeba theory, which allows us to derive an amazing rich geometrical and topological
structure hidden in the corresponding configuration space. As main theorems we show
that the existence of a root with a certain modulus is equivalent to the containedness
of a certain coefficient in the trajectory of an explicitly computable hypotrochoid curve
(Theorem 4.32) and the existence of a certain complement component of the amoeba is
equivalent to the non-containedness of a certain coefficient in a particular, explicitly com-
putable 1-fan (Theorem 4.40). This result allows us to close the gap in one of Rullg̊ard’s
proofs, which we discovered earlier (Theorem 4.43). Furthermore, we show that, in the
case of trinomials, at least for all but one α, the sets UA

α can be deformation retracted to
an (s + t)-sheeted cover of an S1 (Theorem 4.51). This result also solves en passant the
Problems (1) and (2) for trinomials. Finally, we use trinomials to disprove that comple-
ment components of amoebas are always monotonically growing in the absolute value of
its (via the order map) corresponding coefficient (Theorem 4.53).

In Chapter 5 we present a new approach to approximate amoebas with the use of semi-
definite programming and sums of squares. In particular, we show that this approach can



12 1. INTRODUCTION

solve the membership Problem (5) for amoebas and coamoebas via an algebraic certifi-
cate, which can in the amoeba case be computed as efficiently as Purbhoo’s lopsided-based
certificate, which is state of the art. In detail, we proceed as follows.

We begin with a short introduction into semidefinite programming and sums of squares.
In particular, we present the Real Nullstellensatz as main theoretical backbone of our
method. Afterwards, we show how the membership problem for amoebas and coamoebas
can be solved via usage of the Real Nullstellensatz (Corollary 5.4 and Theorem 5.8). More
precisely, we show how the Real Nullstellensatz can certify that a point w ∈ Rn is con-
tained in the complement of a given amoeba (analogously for coamoebas). Furthermore,
we prove that (for f ∈ C[z±1] and w ∈ Rn) if there is a lopsidedness-based certificate
of degree d, then our approach yields an SOS-based certificate of degree at most 2d and
thus our method is as efficient as Purbhoo’s (Corollary 5.17).Finally, we present examples
solved with the implementation of our approach and some possible further applications.

In Chapter 6 we give a resume and an overview about the in my opinion most inter-
esting problems in amoeba and coamoeba theory, which are resp. remain contemporarily
open.

Parts of this thesis were already published, accepted for publication or are part of
ongoing projects. The content of Chapter 4, Sections 1 and 2 is based on joint work with
Thorsten Theobald and is contained in [87]. The content of Chapter 5 is based on joint
work with Thorsten Theobald and is contained in [86]. The content of Chapter 3, Section
4 is part of an ongoing project joint with Franziska Schröter.



CHAPTER 2

Preliminaries

In this section we introduce amoebas as projection of varieties in the complex torus
(given by a Laurent polynomial) on its componentwise logarithmized absolute values.
We present all relevant known properties as well as the open problems on amoeba theory,
which we investigate in this thesis. Furthermore, we present some background information
about related topics as e.g., tropical geometry. For general background on amoebas see
e.g., [42, 66, 77].

In Section 1 we define amoebas, fix the basic notation we use and present some first,
classical, elemental results – e.g., concerning closedness of amoebas, convexity and bi-
jective correspondence between complement components and Laurent series expansions.
Furthermore, we discuss the logarithmic limit set.

In Section 2 we explain how complement components of an amoeba can be uniquely
related to lattice points in the Newton polytope of its corresponding polynomial via the
order map.

In Section 3 we point out the connection between amoebas and tropical geometry.
Next to an introduction into tropical geometry itself we explain how amoebas connect
the “classical world” with the “tropical world”. Furthermore, we show that crucial infor-
mation about an amoeba, specifically its homotopy, is encoded in an associated tropical
hypersurface – the spine.

In Section 4 we introduce the configuration space, which contains all polynomials
formed by a sum of monomials with a particular fixed set of exponents. In this section
we additionally provide a major part of the problems we tackle in this thesis (see Section
4) – in particular the key Problems 2.22 and 2.25 – since most contemporary problems
concerning the topology or geometry of can be formulated in terms of subsets of the
configuration space. In order to motivate these problems and to give an overview we recall
the most important amoeba related results on the configuration space (mostly proven by
Rullg̊ard who initiated a systematic investigation of this space as part of his thesis; see
[77]).

Next to the geometrical and topological structure of amoebas, the second part of this
thesis takes charge of the approximation of amoebas. It culminates in the membership
problem (see Problems 2.26 and 2.27), which we present in Section 5. It asks to decide
efficiently whether a given point in Rn is contained in a given amoeba. Next to the problem
itself, we recall the main known results on this topic based on Purbhoo’s lopsidedness
condition and iterated resultants (see also [70]).

In Section 6 we have a look on coamoebas, which can be understood as dual objects
to amoebas since they are given by the projection of a variety in the complex torus on

13
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its arguments. We provide a selection of main results and open questions on coamoebas.
In particular, we introduce the membership problem (Problem 2.33) for coamoebas, for
which we present a solution in Chapter 5.

1. General Aspects of Amoebas

In this section we introduce amoebas – the key objects of this dissertation. We intro-
duce the notation for coefficients, support and varieties of Laurent polynomials and define
their amoebas and unlog-amoebas afterwards. We mention some very basic properties of
amoebas with respect to closedness, convexity, continuous behavior of the complement
under changing of coefficients (Theorem 2.3) and their structure at infinity given by the
logarithmic limit set.

Let C[z±1] = C[z±1
1 , . . . , z±1

n ] denote the ring of complex Laurent polynomials. Every
of its elements is of the form

f =
∑

α∈A

bαz
α,

where the support set A ⊂ Zn is finite and the coefficients satisfy bα ∈ C∗ = C \ {0}.
Note that we will omit to write down the assumption of finiteness of support sets A for
the rest of the thesis.

To every Laurent polynomial f of the upper form we associate a Newton polytope
New(f), which is the convex hull of the support set A

New(f) = conv(A),

see e.g., Figure 2.2.
For a complex Laurent polynomial f ∈ C[z±1] the variety V(f) is given by the subset

of the algebraic torus (C∗)n = Cn \ {0} where f vanishes, i.e.,

V(f) = {z ∈ (C∗)n : f(z) = 0}.
The amoeba A(f) of a Laurent polynomial f (introduced by Gelfand, Kapranov, and

Zelevinsky; [23]) is the image of its variety V(f) under the Log-map

Log : (C∗)n → Rn, (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|),
where |z| denotes the complex absolute value of a complex number z. In Figure 2.2 we
show some examples for amoebas in R2.

The definition of amoebas can be generalized straightforwardly from hypersurfaces to
varieties of ideals I ⊆ C[z±1]. Let the variety of an ideal I ⊆ C[z±1] be given by

V(I) = {z ∈ (C∗)n : f(z) = 0 for all f ∈ I}.
Then, we define the amoeba of I byA(I) = Log(V(I)). In most parts of the thesis we focus
on the hypersurface case of amoebas; only some of our results about the approximation
of amoebas in Chapter 5 will deal with amoebas of ideals.
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Figure 2.2. The amoebas of the polynomials f = z1 + z2 + 1 and f =
z31z

3
2 − 9z21z

3
2 + z1z

5
2 − 4z1z

4
2 − 4z1z2 + 1 and their corresponding Newton

polytopes.

In some special contexts it is more convenient to investigate the unlog amoeba U(I) of
an ideal I (or equivalently of a single polynomial f). The unlog amoeba is given as the
image of the variety V(I) under the componentwise absolute value map

| · | : (C∗)n → Rn
>0, (z1, . . . , zn) 7→ (|z1|, . . . , |zn|).

We present some general, basic facts about amoebas.

Theorem 2.1 (Gelfand, Kapranov, Zelevinsky [23]). For f ∈ C[z±1] the amoeba A(f) is
a closed set with non-empty complement component.

Let (A(f))c denote the complement of an amoeba A(f). We say E ⊆ (A(f))c with
E 6= ∅ is a complement component of A(f) if E and (A(f))c \ E are not connected.
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Theorem 2.2 (Gelfand, Kapranov, Zelevinsky [23]). Let f ∈ C[z±1]. Every complement
component of the amoeba A(f) is convex. The set of all complement components of A(f)
corresponds bijectively to the set of all Laurent expansions of 1/f centered at the origin.

The upper theorem gives not only a strong motivation to investigate amoebas, but
it allows us furthermore to distinguish between different complement components via
different Laurent series expansions of 1/f . Thus, an expression like “the” or “a certain
complement component” is well defined. In the following Section 2 we will be able to
simplify the language of complement components even more with the introduction of the
order map.

For a Laurent polynomial f ∈ C[z±1] with fixed support set A ⊂ Zn the size and even
the existence of a certain complement component of its amoeba A(f) depends on the
choice of the coefficients of f . We discuss this fact and the bundle of problems implied by
it in detail in Section 4, when we introduce the configuration space of amoebas. For the
moment, we only point out that complement components behave nicely with respect to
the fact that they do not vanish due to a small change of coefficients.

Theorem 2.3 (Forsberg, Passare, Tsikh [20]). Let A ⊂ Zn and f =
∑

α∈A bαz
α with

bα ∈ C∗ and V(f) ⊂ (C∗)n. Then the number of complement components of A(f) is lower
semicontinuous under changing of the coefficients of f .

This theorem will be generalized in Theorem 2.17 such that it becomes in particular
obvious that “the same” complement components of A(f) (in the sense of the order map,
which we introduce in Section 2) are preserved under a slight changing of the coefficients.

An amoeba has finitely many “tentacles” with different directions, which were the
reason for the term “amoeba” (see, again, e.g., Figure 2.2). The tentacles direct to a set
of points at infinity called the logarithmic limit set, which was defined by Bergman [2] in
the following way. For a given ideal I with amoeba A(I) and an arbitrary positive real
number r one defines a sequence (Ar(I))r∈R given by

Ar(I) = 1/r · A(I) ∩ Sn,
where 1/r · A(I) = {1/r · w : w ∈ A(I)} and Sn denotes the n-dimensional unit sphere
Sn = {w ∈ Rn : ||w||2 = 1}.

The logarithmic limit set A∞(I) is given by A∞(I) = limr→∞Ar(I). It was shown by
Bieri and Groves (see [3]) that the logarithmic limit set is a rational, polyhedral fan on
the unit sphere (see also [38]). In Section 3 we will see that, in case of a hypersurface
V(f) with f ∈ C[z±1], the logarithmic limit set A∞(f) is induced by the elements of the
normal fan of the Newton polytope New(f) with codimension at least one.

2. The Order Map

Many questions about amoebas are, more precisely, questions about the existence and
behavior of their complement components with respect to the support and the coefficients
of their corresponding Laurent polynomial. Since the standard setting is to fix the sup-
port set and allow the coefficients to vary (i.e., fix a configuration space; see Section 4),
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it makes sense to ask for a map from the set of complement components into a structure
determined by the support. This is done by the order map, which maps injectively into
conv(A)∩Zn. In this section we introduce the order map and discuss some of its proper-
ties and consequences yielded by its existence.

Let A ⊂ Zn and f =
∑

α∈A bαz
α ∈ C[z±1] with V(f) ⊂ (C∗)n. We already advised

that we want to investigate the behavior of the complement components of A(f) with
respect to changing the coefficient of f but keeping the support set A fixed. Thus, it
is heuristically convincing that it would be convenient if one was able to establish a
correspondence between the set of complement components of the amoeba A(f) and the
elements of A. It turns out that A is not sufficient but that we have to take all integral
points in the Newton polytope New(f) of f , which is the convex hull of A.

It was shown by Forsberg, Passare and Tsikh (see [20]) that such a desired correspon-
dence indeed exists via the order map, which is given by

ord : Rn \ A(f) → Rn, w 7→ 1

(2πi)n

∫

Log−1(w)

zj∂jf(z)

f(z)

dz1 · · ·dzn
z1 · · · zn

, 1 ≤ j ≤ n .

The following theorem states that the order map has all the requested properties
mentioned above.

Theorem 2.4 (Forsberg, Passare, Tsikh [20]). The image of the order map is contained
in New(f) ∩ Zn. Let w,w′ ∈ (A(f))c. Then w and w′ belong to the same complement
component of A(f) if and only if ord(w) = ord(w′).

The theorem shows that the order map yields an injective map from the the set of
complement components of A(f) to New(f) ∩ Zn, i.e., conv(A) ∩ Zn. Hence, we use the
following notation for complement components

Eα(f) = {w ∈ (A(f))c : ord(w) = α} for every α ∈ New(f) ∩ Zn .

Unfortunately, the set of complement components neither corresponds bijectively to
New(f) ∩ Zn nor to A ⊂ New(f) ∩ Zn as the following example shows.

Example 2.5. Let f = z21z2 + z1z
2
2 +0.5 · z1z2 + 1. This polynomial has support set A =

{(0, 0), (1, 2), (2, 1), (1, 1)} but the complement component E(1,1)(f) is empty as Figure
2.3 shows. A formal proof for that fact follows later from Theorem 4.8.

Assume one knows that a point w ∈ Rn is contained in a complement component of
A(f). In general, it is not clear a priori how to compute its order easily and efficiently.
The following theorem yields that the computation is trivial in some special cases.

Theorem 2.6 (Forsberg, Passare, Tsikh [20]). Let A ⊂ Zn and f =
∑

α∈A bαz
α ∈ C[z±1]

with bα ∈ C∗ and V(f) ⊂ (C∗)n. Assume there exists an α′ ∈ A and a w ∈ (A(f))c

such that for all z ∈ (C∗)n with Log(z) = w holds |bα′zα
′ | > |∑α∈A\{α′} bαz

α|. Then

ord(w) = α′, i.e., w ∈ Eα′(f).

With the Theorems 2.4 and 2.6 one obtains some first upper and lower bounds for the
number of complement components of an amoeba A(f).
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Figure 2.3. The amoeba of the polynomial f = z21z2+ z1z
2
2 +0.5 · z1z2+1

and its corresponding Newton polytopes.

Corollary 2.7 (Forsberg, Passare, Tsikh [20]). Let f ∈ C[z±1] with support set A ⊂ Zn.
If α ∈ A is a vertex of New(f), then Eα(f) 6= ∅. In particular, the number of complement
components of A(f) is bounded from below by the number of vertices of New(f) and
bounded from above by #(New(f) ∩ Zn).

The first part of the statement basically follows from the fact that for a point w ∈
Eα′(f) and a vector v contained in the dual cone of α′ in the normal fan of New(f) holds
limλ→∞ |f(w+ λv)| − |(w+ λv)α

′| = 0. The rest follows from the Theorems 2.4 and 2.6.
A consequence of this corollary is that the order map is bijective for linear polynomi-

als. In fact, the linear case is even completely understood due to the following result of
Forsberg, Passare and Tsikh.

Theorem 2.8 (Forsberg, Passare, Tsikh [20]). For a linear polynomial f = b0+
∑n

i=1 bizi ∈
C[z] and a point z ∈ (C∗)n, Log(z) is contained in a complement component if and only
if |b0| >

∑n
j=1 |bizi| or |bizi| > |b0|+

∑
j 6=i |bjzj| for some i ∈ {1, . . . , n}.

Unfortunately, it is known for no other class of polynomials (except some special
examples) how to choose the coefficients such that a specific complement component
exists. This question can be regarded as the classical resp. the first prominent problem
on amoebas, since it was already marked as an open problem by Gelfand, Kapranov and
Zelevinsky (vaguer formulated in the original since the order map was not known at this
time; see [23, Chapter 6, Remark 1.10])

Problem 2.9. Let f ∈ C[z±1] with support set A ⊂ Zn and α ∈ conv(A). Figure out,
how Eα(f) depends on the the coefficients of f . In particular, give sufficient and necessary
conditions on the coefficients such that Eα(f) 6= ∅.

This very initial and general problem was later splitted resp. followed up by more
specific problems on the configuration space (see Section 4), the membership of points in
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the complement components of amoebas (see Section 5) and the boundary of amoebas
(see Chapter 3, Section 4).

3. Connections to Tropical Geometry

Tropical geometry has been an emerging topic in mathematics within roundabout
the last ten years. It investigates the geometrical properties of the tropical semi-ring
(R ∪ {−∞},⊕,⊙), which is given by the operations a⊕ b = max(a, b) and a⊙ b = a + b
(where some expositions prefer the minimum instead of the maximum). Thus, the neutral
elements for tropical addition is −∞ and the neutral element for tropical multiplication
is 0. For a general introduction to tropical geometry see e.g., [10, 22, 38, 74].

Analogously to classical polynomials one can define a tropical polynomial in the fol-
lowing way. A tropical monomial is a function

Rn → R, (x1, . . . , xn) 7→ bα ⊙ xα = bα ⊙ xα1
1 ⊙ · · · ⊙ xαn

n

with bα ∈ R and α ∈ Nn. Note that a tropical monomial in terms of classical operations is
the linear form bα+ 〈x, α〉. A tropical polynomial is a tropical sum of tropical monomials,
i.e., it is a function

Rn → R, (x1, . . . , xn) 7→
d⊕

α∈A

bα ⊙ xα,

where A ⊂ Nn is a support set as in the classical case and bα ∈ R (note that a tropical
monomial bα ⊙ xα does not vanish if bα = 0).

For a tropical polynomial h, the tropical hypersurface (or tropical variety) T (h) is
defined as the set of points where the maximum is attained at least twice. Tropical
hypersurfaces are polyhedral complexes, which are geometrically dual to a subdivision of
the Newton polytope of h. This subdivision is induced by lifting every lattice point α ∈ A
to (α, bα) and then projecting down the upper hull of the lifted Newton polytope to Rn

(i.e., it is a regular subdivision; see Figure 2.4).
Indeed, amoeba theory forms a cornerstone of tropical geometry. On the one hand, the

Maslov dequantization, which is the canonical way to transform the variety of a classical
polynomial into the variety of a tropical one, leads via the amoeba of the classical poly-
nomial. On the other hand, for every given amoeba there exists a tropical hypersurface –
the spine – which is a deformation retract of the amoeba. We give a brief overview about
both of these connections.

For a given semi-ring R0 a quantization is a family of semi-rings Rh, h ≥ 0 such that
Rs and Rt are isomorphic for every s, t > 0 but no Rs with s > 0 is isomorphic to R0;
one calls Rs with s > 0 a quantized version of R0 (see e.g., [42]). Maslov observed ([40])
that the standard semi-ring R>0 is a quantized version of the tropical (max,+) semi-ring.
This can e.g., be done by defining Rh = (R,⊕h,⊙h) with

x⊕h y = (x
1
h + y

1
h )h, x⊙h y = x+ y for x, y ∈ R.(2.1)
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Figure 2.4. The tropical hypersurfaces of the tropical polynomials f =
1z1⊕1z2⊕1, f = 1z21⊕3z1⊕1z22⊕3z2⊕3z1z2⊕1 and f = 0z31z

3
2⊕log(9)z21z

3
2⊕

0z1z
5
2⊕log(4)z1z

4
2⊕log(4)z1z2⊕0 and their corresponding Newton polytopes.

R1 is isomorphic to the classical semi-ring on R>0 (i.e., with classical operations “+” and
“·”; see [40]) and the isomorphism between R1 and Rh is given by x 7→ xh. R0 is the
tropical semi-ring, which is not isomorphic to R1 since x⊕ x = x (see [42]).

Here, we use an isomorphic approach defining Rt = (R,⊕t,⊙t) with

x⊕t y = logt(t
x + ty), x⊙t y = logt(t

x+y) for x, y ∈ R

for every t ≥ e. For t = e we obtain a ring isomorphic to the classical operations ”+“ and
”·“ on R>0 given by the quantization (2.1) and the isomorphism [0, 1] → R≥e, h 7→ e1/h.
For t→ ∞ we obtain the tropical ”⊕“ and ”⊙“.

Let Logt : (C∗)n → R, z 7→ (logt |z1|, . . . , logt |zn|) = (x1, . . . , xn) and A ⊂ Zn a
support set. Maslov and Viro (see [40, 88]; see also [42]) showed that for every t ≥ e and
every polynomial

gt =
⊕

α∈A

t bα ⊙t 〈α,x〉,

mapping from (Rt)
n to Rt, the function ft = (logt)

−1 ◦ gt ◦Logt is a ”classical polynomial
mapping from (C∗)n to C given by ft =

∑
α∈A t

bαzα with standard ”+“ and ”·“.
Thus, for every t ≥ e the polynomial ft has a variety V(ft) ∈ (C∗)n and a correspond-

ing amoeba A(ft) ⊂ Rn given by Logt(V(ft)). Since A(fe) is a ”classical“ amoeba and
limt→∞(A(ft)) is a tropical hypersurface, Maslov dequantization indeed yields tropical
polynomials with tropical hypersurfaces out of classical polynomials with classical hyper-
surfaces by taking their amoebas and deforming them due to changing of the log-basis.
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A more elegant way to perform this process is via Puiseux-series. First, we define
valuations (see [9, p. 386]).

Definition 2.10. For a ring (R,⊕,⊙) and a totally ordered commutative group (G,+) a
valuation on R with values in G is a map ν : R → G ∪ {∞}, which satisfies the following
axioms:

ν(x⊙ y) = ν(x) + ν(y) for every x, y ∈ R,

ν(x⊕ y) ≥ inf{ν(x), ν(y)} for every x, y ∈ R,

ν(1) = 0 and ν(0) = ∞.

In the case G = R we say that R is real valuated.

On real valuated fields F the valuation map ν : F → R ∪ {∞} induces a norm on F
(see [9, p. 428 et seq.]; see also, e.g., [38, p. 64]), which is given by

| · |ν : F → R, z 7→ e−ν(z).

The norm | · |ν is non-Archimedean, i.e., it satisfies |x + y|ν ≤ max{|x|ν , |y|ν}. For more
details on valuations see, e.g., [9, 69], see also [3].

The field of Puiseux-series K (see, e.g., [15, 38, 42, 44]) is given by all formal power
sums

∑
q bqt

q with bq ∈ C∗, and the support set of all q is a well ordered subset of the
rational numbers, such that all q share a common denominator. On the field of Puiseux-
series K there exists a real valuation map val : K → R ∪ {∞}, which is given by

val

(∑

q

bqt
q

)
= min{q : bq 6= 0}.

Note that the minimum always exists due to the requirement that the support set of every
element in K is well ordered. Hence, K is a real valuated field.

Kapranov (see [15, 31]; see also, e.g., [42, 44]) defined for a given algebraic variety
V(f) ⊂ (K∗)n (i.e., here f ∈ K[z] is a polynomial over the field of Puiseux-series) its

non-Archimedean amoeba AK(f) by AK(f) = LogK(V(f)), where LogK is given by

LogK : (K∗)n → Rn, (z1, . . . , zn) 7→ (log |z1|val, . . . , log |zn|val),
where | · |val denotes the norm on K induced by the valuation val, i.e., log |zj |val = − val(zj)
for every 1 ≤ j ≤ n. Note that LogK is well defined here, since we assumed that V(f) ⊂
(K∗)n. In fact, this non-Archimedean amoeba is nothing else than a tropical hypersurface.

Theorem 2.11 (Kapranov [31]; see also [42, 74]). Let A ⊂ Zn, f =
∑

α∈A bαz
α ∈

K[z] with V(f) ⊂ (K∗)n. Then the non-Archimedean amoeba AK(f) equals the tropical
hypersurface T (h) for h =

⊕
α∈A− val(bα)⊙wα.

Indeed, the non-Archimedian amoeba is not only a tropical hypersurface but it fur-
thermore coincides with the result of the Maslov dequantization in the following way. Let
d be the Euclidean metric in Rn. The Hausdorff metric for two closed sets A,B ⊂ Rn is
given by dHausd(A,B) = max{supa∈A d(a, B), supb∈B d(A, b)}.
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Theorem 2.12 (Mikhalkin [43], Rullg̊ard [77]; see also [42]). Let f ∈ C[z±1] with va-

riety V(f) ⊂ (C∗)n ⊂ (K∗)n and non-Archimedean amoeba AK(f) = LogK(V(f)). Then
the amoebas A(ft) given by Maslov dequantization converge against AK(f) in Hausdorff
metric.

For more details on Maslov dequantization, Puiseux-series and non-Archimedean amoe-
bas see e.g., [10, 15, 22, 38, 42, 44, 74]. Note that the notation differs slightly from
source to source. E.g., Mikhalkin avoids taking closures but uses a generalized version of
Puiseux-series allowing real exponents (see [42, 43, 44]). Furthermore, Mikhalkin denotes
LogK (“val” in his notation) as “non-Archimedean valuation” (see [42, p. 26]).

Notice that not every tropical hypersurface can be realized out of a classical one in the
ways just described. Conditions and obstructions for such a realization were e.g., recently
given in [11].

Maslov dequantization describes in general how to construct tropical hypersurfaces out
of classical polynomials resp. their amoebas. But it is not useful in a practical sense if we
start with a certain given amoeba and want to associate a certain tropical hypersurface,
which preserves structural properties of the amoeba. Hence, we discuss some special
choices for tropical coefficients.

The easiest way to construct a non-trivial tropical hypersurface out of a given amoeba,
is to use the valuation coinciding with the usual complex absolute value | · |. Thus, for a
given polynomial f =

∑
α∈A bαz

α we define its tropicalization as

trop(f) =
⊕

α∈A

log |bα| ⊙wα,

where w = Log(z). Similarly, we define the complement-induced tropicalization C(f) =
T (trop(f|C)). For the amoeba A(f) of f let

C = {α ∈ conv(A) ∩ Zn : Eα(f) 6= ∅}

and

trop(f|C) =
⊕

α∈C

log |bα| ⊙wα.

For both T (trop(f)) and C(f) = T (trop(f|C)) see, e.g., [66, 77].
Unfortunately, for a given f both T (trop(f)) and C(f) do not need to be homotopy

equivalent to A(f) in general (see Figure 2.5 for a counterexample; see also e.g., [66]).
But this property holds for the spine of an amoeba introduced by Passare and Rullg̊ard
(see [63, 77]), which we provide in the following. Although the spine is more complicated
to define, it is naturally related to the order map.

The Ronkin function of a polynomial f is given by

Nf : R
n → R, w 7→ 1

(2πi)n

∫

Log−1(w)

log |f(z1, . . . , zn)|
z1 · · · zn

dz1 · · · dzn.
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Theorem 2.13 (Ronkin [75]). For f ∈ C[z±1], Nf is a convex function, which is affine
linear on the complement components of A(f). Furthermore, for α ∈ conv(A) ∩ Zn and
w ∈ Eα(f) we have grad(Nf)(w) = ord(w).

Observe that the fiber of a point w ∈ Rn under the Log–map is a real n–torus (see
Chapter 3, Section 1 for a detailed description). The value of the Ronkin function at a
point w ∈ Rn can be interpreted as a computation of the average value of the f restricted
to the fiber Fw = Log−1(w) ofw. This can be seen very nicely e.g., by Purbhoo’s approach
using iterated resultants of f to approximate A(f) and its spine (see Section 5).

By the affine linearity of Nf (w) on every Eα(f), we have for all w ∈ Eα(f) that
Nf(w) = βα + 〈α,w〉 with Ronkin coefficient

βα = log |bα|+ Re

[
1

(2πi)n

∫

Log−1(0)

log

(
f(z)

bα · zα
)
dz1 ∧ . . .∧ dzn

z1 · · · zn

]
,(2.2)

see e.g., [66].
Note that if α ∈ A is a vertex of conv(A), then βα = log |bα|. The spine S(f) of A(f)

is defined as the tropical hypersurface of the tropical polynomial
⊕

α∈C

βα ⊙wα

and is therefore dual to an integral, regular subdivision of New(f) (see [63, 66, 77]).
The reason for investigating the spine, which is with respect to the complement induced
tropical hypersurface much more complicated, is the following theorem.

Theorem 2.14 (Passare, Rullg̊ard [63]). For f ∈ C[z±1] the spine S(f) is a deformation
retract of A(f).

For the complement induced tropical hypersurface the same property is only known
for certain special cases. For our purposes we need the following theorem.

Theorem 2.15 (Rullg̊ard [77]). Let f ∈ C[z±1] with at most 2n monomials such that
for all k ∈ {1, . . . , n − 1} no k + 2 of its exponent vectors lie in an affine k-dimensional
subspace. Then C(f) is a deformation retract of A(f).

Although one would not expect this property to be true in general for C(f), it has –
to the best of my knowledge – not been disproven yet. In particular no explicit coun-
terexamples are given in the literature. Hence, we introduce this as an open problem
here.

Problem 2.16. Is there any f ∈ C[z±1] such that A(f) and C(f) are not homotopy
equivalent?

We provide such a counterexample in this thesis in Corollary 4.45.

Note that Theorem 2.14 yields that the logarithmic limit set A∞(f) of an amoeba (of
a hypersurface) is given by the elements in the normal fan of conv(A) = New(f) with
codimension at least one (see Section 1). Note furthermore that by the fundamental the-
orem of tropical geometry (see e.g., [38]) the direction w lies in the logarithmic limit if
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and only if the initial ideal given by the initial term inw(f) with weight w does not equal
〈1〉. For background about initial ideals see e.g., [12].

Despite the Theorems 2.14 and 2.15, the computation of the homotopy of amoebas
(i.e., the question, which (inner) complement components exist) with respect to the choice
of coefficients remains an open key question. The reason is that for both the computation
of the spine S(f) and the computation of the complement induced tropical hypersurface
C(f) knowledge of the set C = {α ∈ conv(A) ∩ Zn : Eα(f) 6= ∅} of the orders of existing
complement components in A(f) is required. Thus, for a given f ∈ C[z±1], if one knows,
which complement components of A(f) exist, then A(f) can be retracted into a tropical
hypersurface, i.e., piecewise linear object, S(f). But it is a widely open problem, how to
compute C (see Figure 2.5; see also e.g., [77]).
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Figure 2.5. Let f = 1 + z21z2 + z1z
2
2 − 2z1z2. The left figure shows the

amoeba A(f), the middle one the tropical hypersurface T (trop(f)) and
the left one the complement induced tropical hypersurface T (trop(f|C)).
Obviously, A(f) and T (trop(f|C)) are homotopy equivalent, but T (trop(f))
and T (trop(f|C)) are not.

4. The Configuration Space of Amoebas

As already mentioned in Section 2 the usual proceeding for the investigation of amoe-
bas is to fix a support set A ⊂ Zn and allow coefficients to vary. This turns into a
configuration space CA of all polynomials with support set A. This space was already
defined and used by Gelfand, Kapranov and Zelevinsky (see [23, Chapter 5, p. 165])
and for the first time systematically investigated (with respect to amoebas) by Rullg̊ard
(see in particular [76, 77]; see also [42, 63]). A lot of open questions about amoebas
are questions about this particular space and a huge part of this thesis concerns about
problems on it.

We introduce the configuration space together with Rullg̊ard’s related main results in
this section and present a bunch of open problems on it.
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For a fixed, support set A ⊂ Zn we define the configuration space CA as the set of all
Laurent polynomials with non-vanishing complex coefficients and support set A, i.e.,

CA =

{
f =

∑

α∈A

bαz
α ∈ C

[
z±1
]

: bα ∈ C∗

}
.

Since for a fixed support set every polynomial f ∈ CA is uniquely determined by its
coefficients, we can identify CA with (C∗)d where d = #A (see e.g., [23, 42, 63, 77]).

In some situations it will be more convenient to investigate the closure CA or the
augmented configuration space CA

♦ given by

CA
♦ =

{
f =

∑

α∈A

bαz
α ∈ C[z±1] : bα ∈ C, New(f) = conv(A)

}
.

I.e., in CA
♦ we allow coefficients to be zero as long as the exponent of the correspond-

ing monomial is no vertex of conv(A) and thus the Newton polytope is identical for all
polynomials in CA

♦ .
The space CA

♦ turns out to be a natural augmentation of CA since, for a given lattice
polytope P , the set

L(P ) =
{
CA : A ⊂ Zn, conv(A) = P

}

forms a boolean lattice with a relation ⊑ induced by the inclusion relation of sets A,B ⊂
Zn as we show in Theorem 3.2. Under this viewpoint CA

♦ is the union of all elements
CB ∈ L(P ) with CB ⊑ CA, i.e., the union of all elements in the order ideal of CA (Corol-
lary 3.3).

With respect to CA we are mainly interested in the question how to choose the coef-
ficients of a polynomial such that a certain complement component of an amoeba exists,
i.e., we are interested in understanding the sets

UA
α =

{
f ∈ CA : Eα(f) 6= ∅

}
for α ∈ conv(A) ∩ Zn.

Note that UA
α 6= ∅ implies α ∈ conv(A) ∩ Zn by Theorem 2.4. The systematic investi-

gation of the sets UA
α was initialized by Rullg̊ard in his PhD-thesis. We recall some of his

main results.

Theorem 2.17 (Rullg̊ard [77]). Let A ⊂ Zn and α ∈ conv(A)∩Zn. The set UA
α ⊆ CA is

open and semi-algebraic.

Theorem 2.18 (Rullg̊ard [76, 77]). Let A ⊂ Zn, f ∈ CA and B,C ⊆ A with B ∩C = ∅.
Then there exists a g ∈ CA such that

f + g ∈
⋂

α∈B

UA
α ∩

⋂

α∈C

(UA
α )

c.

Unfortunately, this theorem gives no hint about sets UA
α for α ∈ conv(A) ∩ Zn but

α /∈ A. To the best of my knowledge the only known result regarding this case is the
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following theorem by Rullg̊ard (see [77, Theorem 11]). Let for a finite set A ⊂ Zn the
lattice generated by A be denoted by LA, i.e.,

LA =

{∑

α∈A

λα · α : λα ∈ Z

}
⊆ Zn.

Theorem 2.19 (Rullg̊ard [77]). Let A ⊂ Zn be a support set and l a line in Rn.

(1) If α ∈ Zn and UA
α 6= ∅, then α ∈ conv(A) ∩ LA.

(2) If α ∈ conv(A ∩ l) ∩ LA∩l, then UA
α 6= ∅.

Unfortunately, the proof of the theorem is a bit scanty and, in particular, Part (2)
is incomplete. Part (1) uses a rather abstract argument (see [77, Theorems 7 and 11]).
The issues of Part (2) arise since it relies on a genericity argument. Specifically, the
statement used here is the following. Assume w.l.o.g. that LA∩l = Z and {0, N} ⊂
A ∩ l ⊆ {0, 1, . . . , N}. Then all roots of the polynomial zN − 1 +

∑
s∈A\{0,N} bsz

s have
different absolute values for generic choices of bs ∈ C∗. But although this argument is
convincing, it is absolutely non-trivial, because in a worst case A\{0, N} = {s}. Hence, a
necessary condition is that for a generic choice of p ∈ C∗ and every N ∈ N>s the trinomial
zN + pzs − 1 has no two roots of the same absolute value.

In Chapter 4, Section 3 we fix this proof (see Theorem 4.43). Furthermore, we give a
construction method and an example for an amoeba of a multivariate polynomial with a
complement component whose order is α ∈ (conv(A) ∩ Zn) \ A (Example 4.44).

Note that, although Theorem 2.19 can be fixed, it yields no complete solution to the
initial problem it was motivated by.

Problem 2.20. Let A ⊂ Zn and α ∈ (conv(A) ∩ Zn) \ A. What is a sufficient and
necessary condition such that UA

α 6= ∅?
This problem is the first one mentioned by Rullg̊ard in his section describing a couple

of open problems on amoebas (see [77, Problem 1, p. 60]). In fact, it is a much stronger
version of the prominent Problem 3.4 about maximally sparse polynomials, which we
introduce and discuss in Chapter 3, Section 2 and partially solve in Chapter 3, Section 3.

In many cases it is convenient to investigate PAC instead of CA since varieties of poly-
nomials remain invariant under scalar multiplication. To keep notation simple we usually
just write CA with slight abuse of notation.

Theorem 2.21 (Rullg̊ard [76, 77]). Let A ⊂ Zn and α ∈ conv(A) ∩ Zn sucht that
UA
α 6= ∅ 6= (UA

α )
c in PAC . Then the intersection of (UA

α )
c ⊂ PAC with any complex projective

line in PAC is non-empty and connected.

Interestingly, the question whether the sets UA
α are connected is widely open and turns

out to be a or maybe even the most difficult key problem in understanding the structure
of the configuration space of amoebas. It was already marked as an open problem by
Rullg̊ard in his thesis.

Problem 2.22 (Rullg̊ard [77]). Let A ⊂ Zn and α ∈ conv(A) ∩ Zn. Is UA
α connected?
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We will discuss this problem broadly in Chapter 4 and solve it for rich classes of
polynomials (Theorem 3.12, Corollary 4.25 and Corollary 4.50).

With respect to Theorem 2.21 it is manifest to ask the same question for the sets UA
α

itself.

Problem 2.23. Let A ⊂ Zn and α ∈ conv(A)∩Zn sucht that UA
α 6= ∅. Is the intersection

of UA
α ⊂ PAC with a generic complex projective line in PAC non-empty and connected?

The term ”generic“ comes in here, since one class of counterexamples was found by
Rullg̊ard. It is the set UA

0 for polynomials g(z + z−1) + c with c ∈ C∗ and g ∈ C[z±1]
(see [77, Example 5, p 58]). But this counterexample is very special since it only works
for very specific complex lines and only for UA

0 in this specific class making use of the
symmetry of the given Laurent polynomial.

We prove that, although the answer on the question in Problem 2.23 is affirmative in
certain special cases (see Lemma 4.22), it can be, roughly spoken, regarded as negative
in general (Theorem 4.40 yields that the answer is negative for arbitrary trinomials for
every up to one special UA

α ).
Since we will show that for certain sets A ⊂ Zn certain sets UA

α are connected, it
is self-evident to try to understand the topology of these sets even better. A natural
question following up is whether connected sets UA

α are always simply connected. Recall
that a topological space is simply connected if it is path-connected and its fundamental
group is trivial (see e.g., [28]). We call a set simply connected if it is homotopy equivalent
to a simply connected topological space.

Problem 2.24. Let A ⊂ Zn and α ∈ conv(A) ∩ Zn such that UA
α is connected. Is UA

α

then also simply connected? If not, what is the corresponding fundamental group?

Besides all open questions about the topological structure of the sets UA
α formulated

in the different problems above, one has to clearly mark out that the geometrical and
algebraic structure of the sets UA

α are, of course, also of interest. Its investigation is
nothing else than an abstracter approach on the initial Problem 2.9 by Gelfand, Kapranov
and Zelevinsky, since every path γ through the space Rn containing an amoeba A(f) can
be embedded in CA by fixing the initial point w ∈ Rn of γ and adjusting the coefficients
of f instead.

Unfortunately, concerning these questions the situation is quite devastating so far.
Besides the linear case, which we already mentioned as completely understood (see The-
orem 2.8), nothing is known about the geometrical and algebraic structure of the sets
UA
α for any class of polynomials except the very special case of a standard-simplex with

edge length n + 1 and an inner lattice point (1, . . . , 1) in the support. I.e., here A =
{(0, . . . , 0), (n+1) · e1, . . . , (n+1) · en, (1, . . . , 1)} where ej denotes the vectors of the stan-
dard basis. For this particular class, Passare and Rullg̊ard showed – again via making use
of the symmetry of the corresponding polynomials – that the set (UA

(1,...,1))
c is contained in

an area bounded by the Steiner curve (see [63] and [77, Example 6, p.59], see also [66]).
In his PhD-thesis Rullg̊ard does not particularly deal with these sort of problems except
mentioning the particular example.
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Problem 2.25. Let A ⊂ Zn and α ∈ conv(A) ∩ Zn. Find an algebraic or geometrical
description of UA

α . Alternatively, find (at least) bounds to approximate UA
α .

Since Passare’s and Rullg̊ard’s example in 2003/04 no progress was made in this di-
rection. But, large parts of this thesis deal with this problem and we provide a bunch on
results on it (Theorems 4.8, 4.10, 4.13, 4.19 and 4.40) for different classes of polynomials,
which we do not want to discuss in detail at this point, except remarking that Theorem
4.19 generalizes and strengthens the example of Passare and Rullg̊ard distinctly.

5. The Membership Problem and the Lopsidedness Condition

The study of computational questions about amoebas has been initiated by Theobald
in [85], where primary certain special classes of amoebas (e.g., two-dimensional amoebas,
amoebas of Grassmannians) were studied. In the particular paper an approximation of
amoebas is achieved by computing its contour as a superset of its boundary (see Chapter 3,
Section 4). In the following years a second approach for approximating amoebas arose by
investigating the following natural and fundamental computational membership problem.

Problem 2.26. Let f ∈ [z±1] and w ∈ Rn. Decide efficiently, whether w ∈ A(f).

Analogously, the membership problem can be extended to amoebas of ideals.

Problem 2.27. Let I ⊆ C[z±1] and w ∈ Rn. Decide efficiently, whether w ∈ A(I).

The term “decide efficiently” means that we are interested in an algorithm, which
does not depend on f resp. I or w to make a decision. A solution of these problems is
interesting since it would in particular allow to approximate amoebas in an efficient way.

State of the art of Problem 2.26 is an approximation process by Purbhoo ([70]) based
on iterated resultants and a condition called lopsidedness. We recall his main results.

Let A = {α(1), . . . , α(d)} ⊂ Zn and f =
∑d

j=1 bjz
α(j) =

∑d
j=1mj(z) ∈ C[z±1] be a

Laurent polynomial with coefficients bj ∈ C and with monomials m1, . . . , md. For a given
w ∈ Rn we define f{w} to be the following sequence of numbers in R≥0.

f{w} =
(
|m1(Log

−1(w))|, . . . , |md(Log
−1(w))|

)
.

A sequence of positive real numbers is called lopsided if one of the numbers is greater
than the sum of all the others (for convenience, we also say “f is lopsided at w”). Defining

LA(f) = {w ∈ Rn : f{w} is not lopsided} ,
it is easy to see that A(f) ⊆ LA(f). If w ∈ A(f), then the evaluated monomials
mj(Log

−1(w)), interpreted as scalars in C, would have to sum up to zero for an appropriate
argument φ ∈ (S1)n. This can obviously not happen if f is lopsided at w (see Figure 2.6).

In order to establish a converging hierarchy of approximations of A(f), set

f̃r(z) =

r−1∏

k1=0

· · ·
r−1∏

kn=0

f
(
e2πik1/rz1, . . . , e

2πikd/rzn
)

= res
(
res
(
. . . res(f(u1z1, . . . , unzn), u

r
1 − 1), . . . , urn−1 − 1

)
, urn − 1

)
,
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Figure 2.6. The absolute value of the monomials of the polynomial f =
z21z2 + z1z

2
2 − 4 · z1z2 + 1 evaluated at p1 = (0.5 · ei·0.2π, 0.5 · ei·1.05·π) and

p2 = (ei·0.1π, ei·0.6π). Obviously f is lopsided at p2 but not at p1.

where res(f, x) denotes the resultant with respect to x. Note that A(f) = A(f̃r). Indeed,

f̃r is given by a product of polynomials fj where each fj is obtained from f and also
V(fj) from V(f) by a group action 1 7→ (φ1, . . . , φn) on (S1)n ⊂ (C∗)n (where 1 denotes
the trivial element in the real torus, i.e., the origin in its universal covering). Thus,
Log(V(fj)) = Log(V(f)) for all j, since Log is invariant on (S1)n.

As a main result, the following theorem holds.

Theorem 2.28 (Purbhoo [70]). Let f ∈ C[z±1]. For r → ∞ the family LA(f̃r) converges
uniformly to A(f). For every ε > 0 there exists an integer Nε such that for any r ≥ Nε

holds: If w ∈ Rn and a ball with radius ε around w is completely contained in the
complement of A(f), then w ∈ LA(f̃r).

The theorem can be transferred to ideals as follows.

Theorem 2.29 (Purbhoo [70]). Let I ⊂ C[z±1] be an ideal. Then w ∈ Rn is in A(I) if
and only if f{w} is not lopsided for every f ∈ I.

Furthermore, if a point w is lopsided, then it is possible to recover the order of the
complement component w is located in. This is a consequence of Theorem 2.6 (although
Purbhoo gives an own proof).

Theorem 2.30 (Purbhoo [70]). Let r ∈ N, w ∈ Rn with w /∈ LA(f̃r) and w ∈ Eα(f).

Then the dominating term in f̃r has the exponent vector rn · α.
A further, very nice fact about Purbhoo’s approach is that his relaxation process can

also be used to approximate the spine. The reason is that limr→∞ rn · log |f̃r(z)| is a
Riemann sum for the Ronkin function Nf (see [70, pp. 21] for further details; see also
Section 3). Thus, Purbhoo’s relaxation process gives a nice, easy, discrete explanation
about what the Ronkin function does. The relaxation colorfully puts a lattice on a fiber
torus (see also Chapter 3, Section 1), evaluates f at every lattice point and computes
the intermediate value. For r → ∞ the lattice is constantly refined and hence in the
limit every point of the fiber torus is evaluated. Evaluation at the limit coincides with
evaluating Nf .
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6. Coamoebas

In this section we give a brief introduction to coamoebas, which were to the best of our
knowledge first defined by Passare in 2004 (see [54]) and can be regarded as dual objects
for amoebas.

Let f =
∑

α∈A bαz
α ∈ C[z±1] be a Laurent polynomial with support A ⊂ Zn and

variety V(f) ⊂ (C∗)n. Similarly as the amoeba one defines the coamoeba coA(f) of f as
the image of V(f) under the Arg-map given by

Arg : (C∗)n → (S1)n, (z1, . . . , zn) 7→ (arg(z1), . . . , arg(zn)),

where arg(z) denotes the argument of a complex number z. For convenience the coamoeba
is often not investigated in the real n-torus (S1)n but in its universal covering Rn. To
keep notation simple we do not distinguish between these two target spaces with slight
abuse of notation. Exactly in the same way as for amoebas the definition of coamoebas
can be generalized from hypersurfaces to varieties of ideals (see Section 1).

Figure 2.7. The coamoebas of f = z1 + z2 + 1 and f = z21z2 + z1z
2
2 + 0.5 ·

z1z2 + 1.

Coamoebas do not preserve all of the nice properties of amoebas. For example, in
general coamoebas are neither open nor closed sets. But it was shown but Nisse and
Sottile ([54]) that the boundary of the closure is described by an object they denote as
phase limit set, which can be considered as the counterpart of the logarithmic limit set
introduced in Section 1.

Recall that for an f ∈ C[z±1] we figured out in Section 3 that the logarithmic limit
A∞(f) set consists precisely of every w with inw(f) 6= 1, which is by Hilbert’s Nullstel-
lensatz (see Theorem 5.2) equivalent to V(inw(f)) 6= ∅. Now the phase limit set coA∞(f)
is defined by Nisse and Sottile as

coA∞(f) =
⋃

w∈(R∗)n

coA(inw(V(f))).

With the phase limit set they show the following theorem.
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Theorem 2.31 (Nisse, Sottile [54]). For f ∈ C[z±1] the closure of coA(f) equals coA(f)∪
coA∞(f).

This result can as well as the result about the description of logarithmic limit sets
be generalized to ideals (see [54]). Furthermore, they use phase limit sets to describe
non-Archimedean coamoebas, which are ”the image of a subvariety of a torus over a non-
Archimedean field K with complex residue field under an argument map“ (see [53, Ab-
stract]).

Unfortunately, neither an order map nor a useful approximation algorithm (like Purb-
hoo’s lopsidedness certificate joint with his approximation process based on iterated re-
sultants; see Section 5) are known for coamoebas so far. Indeed, these two problems can
be considered as key problems on contemporary coamoeba theory.

Problem 2.32. Is there an order map for coamoebas? I.e., a suitable map from the set
of complement components of a coamoeba coA(f), f ∈ C[z±1], into L∩ P , where L ⊂ Rn

is a lattice and P is a polytope both determined by f .

The second problem culminates in the membership problem for coamoebas.

Problem 2.33. Let I ⊂ C[z±1] and φ ∈ (S1)n. Decide efficiently whether φ ∈ coA(I).

A very fruitful first step to tackle both of these problems was recently done by Forsg̊ard
and Johansson ([21]). They introduce a lopsidedness certificate for coamoebas, which we
call colopsidedness here, in the following way. Let A ⊂ Zn, f =

∑
α∈A bαz

α ⊂ C[z±1] and
φ ∈ [0, 2π)n. Then a sequence of complex numbers on the complex unit circle

f{φ} = (arg(bα) · ei·π〈φ,α〉)α∈A
is colopsided if there exists a hyperplane H ⊂ C with 0 ∈ H and positive halfspace H+

such that f{φ} ⊂ H+ but f{φ} 6⊂ H (for convenience we say ”f is colopsided at φ”).
Similarly as for amoebas and lopsidedness one defines

coLA(f) = {φ ∈ [0, 2π)n : f{φ} is not colopsided}.
It is easy to see that coA(f) ⊂ coLA(f). If φ ∈ coA(f) then the evaluated monomials
of f , interpreted as complex numbers, have to sum up to zero. But this can obviously
never happen, if f is colopsided at φ, meaning that the sum of evaluated monomials is a
complex number located in the strict positive halfspace of a hyperplane H containing the
origin (see Figure 2.8).

Forsg̊ard and Johansson use this property to give an order map for the complement
components of a coamoeba, which contain colopsided points. Let A ⊂ Zn be a support
set andMA be a matrix with columns α ∈ A. Then we denote the matrix MB as the Gale
dual matrix (see [21] for further details; see also e.g., [23]).

Theorem 2.34 (Forsg̊ard, Johansson [21]). Let f ∈ C[z±1] with support set A ⊂ Zn.
Let S be the set of complement components of the closure of coA(f), which contain at
least one point, which is colopsided. Then there exists an explicitly describable, surjective
(order) map from S to LB ∩ ZB where LB is a lattice and ZB a zonotope both depending
on the Gale dual MB of MA.



32 2. PRELIMINARIES

Figure 2.8. The arguments of the monomials of the polynomial f = z21z2+
z1z

2
2 − 4 · z1z2 + 1 evaluated at p1 = (0.5 · ei·0.2π, 0.5 · ei·1.05·π) and p2 =

(ei·0.1π, ei·0.6π). Obviously f is colopsided at p1 but not on p2.

For the special case of coamoebas of A-discriminants in two variables, Nilsson and
Passare proved that the zonotope ZB mentioned in the upper theorem exactly covers
(S1)2 \ coA(f) ([49], see also [48]). This result was later generalized to arbitrary dimen-
sion by Passare and Sottile ([65]). A-discriminants were already discussed by Gelfand,
Kapranov and Zelevinsky in [23] and also have many connections to amoebas. We de-
fine and treat A-discriminants in Chapter 4, Section 1.3. We show in particular that for
amoebas of genus at most one an upper bound on the coefficients to obtain an amoeba
without bounded (i.e., “inner”) complement component becomes sharp if and only if the
corresponding polynomial is located on the A-discriminant (Theorem 4.17).

In this thesis we present a way to solve Problem 2.33 with the use of semidefinite
programming (see Chapter 5, Section 2, Theorem 5.8).



CHAPTER 3

Fibers, Lattices, Sparsity and Boundaries

In this chapter we investigate different aspects of amoebas, namely fibers, the lattice
of configurations spaces, maximally resp. minimally sparse amoebas and the boundary of
amoebas. The investigation of these topics has two aims. On the one hand, it will lead
to a more general, abstract structure, where amoeba theory can be understood in (lattice
of configuration spaces) and to crucial proof techniques for the main topics of this thesis
(via the fiber structure of the Log-map, which we point out here). On the other hand,
we provide a couple of stand alone results. In particular, we partially solve Passare’s and
Rullg̊ard’s problem asking whether maximally sparse polynomials have solid amoebas
(Problem 3.4 and Theorems 3.9 and 3.10) and we give a strengthening of Mikhalkin’s
result about the boundary of amoebas (Theorem 3.15).

In Section 1 we describe the fiber bundle induced by the Log-map. In particular, we
introduce the fiber function of a Laurent polynomial f given by its restriction to a certain
fiber. In the latter part of the thesis we use this fiber function as a crucial instrument to
discover the structure of the configuration space CA (e.g., Theorems 4.13, 4.19 and 4.32).

In Section 2 we show that for a given integer polytope P the set of all configurations
spaces CA with conv(A) = P forms a boolean lattice (Theorem 3.2), which we call lattice
of configuration spaces. This lattice nicely embeds augmented configuration spaces (The-
orem 3.3) and furthermore motivates Passare’s and Rullg̊ard’s question about maximally
sparse polynomials (Problem 3.4) since its defining relation respects emptiness of sets UA

α

(Theorem 3.6).
In Section 3 we have a closer look at the maximal and minimal element of a lattice

of configuration spaces, which happen to be configuration spaces of polynomials whose
Newton polytope is minimally resp. maximally sparse. We provide a proof of Passare’s
and Rullg̊ard’s Problem 3.4 for special classes of Newton polytopes. Furthermore, we
prove that Rullg̊ard’s question about the connectivity of sets UA

α (Problem 2.22) has a
positive answer for univariate, minimally sparse polynomials.

In Section 4 we investigate the boundary of amoebas. We recall Mikhalkin’s result
stating that the contour of an amoeba, a superset of its boundary, is given by the image
of the critical values of the logarithmic Gauss-map under the Log-map (Theorem 3.13).
We show that this statement can be strengthened in the way that a contour point may
only be a boundary point if every point in the intersection of variety and fiber is critical
under the logarithmic Gauss-map (Theorem 3.15).

33
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1. Fibers of the Log-map

One key difficulty, which makes the investigation of configuration spaces CA resp.
their structure complicated, is the fact that, in general, it is absolutely unclear, how CA is
related to varieties (and thus, their amoebas). More precisely, for a general A ⊂ Zn it is
unclear how a changing of coefficients changes the variety of the corresponding polynomial.

In the univariate case, this correspondence is given by Newton identities (see e.g.,
[12, 82]), which are combinatorially already hard to handle for a sufficient large degree.
In the multivariate case, no such correspondence is given at all for a general A ⊂ Zn.

Roughly, our main idea to face this problem is to make use of the natural fiber bundle,
which comes with the Log-map. It induces a fiber function given by a restriction of the
original polynomial f to a certain fiber. The question, whether a certain point is in the
amoeba is equivalent to the question whether the corresponding fiber function has non-
empty variety. This fact yields the desired correspondence in many cases, since the variety
of the fiber function depends linearly on the coefficients of f .

Let A ⊂ Zn be a support set and f =
∑

α∈A bα · zα ∈ C[z±1] be an arbitrary Laurent
polynomial. We denote the fiber of a point w ∈ Rn under the Log-map as

Fw = Log−1(w) = {z ∈ (C∗)n : |z| = |Log−1(w)|}.
Observe that the Log-map comes with a fiber bundle Fw → (C∗)n → Rn given by the

homeomorphism ρ : (C∗)n → Rn × (S1)n, (z1, . . . , zn) 7→ (log(z1), . . . , log(zn)) for some
chosen local branch of the holomorphic log. Then the following diagram commutes

(C∗)n
ρ

//

Log
""

FFFF
FFF

F
Rn × (S1)n

Re
yyssssssssss

Rn

where Re denotes the projection on the real part. Thus, Fw is homeomorphic to a real
n-torus (S1)n.

f and a point Log(z) = w ∈ Rn induce a function

f |z| : [0, 2π)n → C, φ 7→
∑

α∈A

bi · |z|α · ei·〈φ,α〉

on the fiber Fw by f |z|(φ) = f
(
|z| · ei·φ

)
. Note that the fiber Fw is identified with [0, 2π)n

here, which is possible due to the fibration described above. We call f |z| the fiber function
of f at w resp. at |z|. Log yields a map

ϕ : (C∗)n → {πw : (C∗)n → Fw : w ∈ Rn}, z 7→ πLog(z)

mapping every point z to the projection πLog(z) of (C
∗)n to the fiber FLog(z) = Fw. For

every Log(z) = w ∈ Rn the fiber function f |z| is the pushforward ϕ(z)∗(f) of f and hence
the zero set of f |z| is

{φ ∈ [0, 2π)n : ϕ(z)∗(f)(φ) = 0} = πw(V(f)) = V(f) ∩ Fw.
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Since f |z| is a regular function on Fw (resp. on [0, 2π)n), we denote its zero set as V(f |z|).
By the definition of the amoeba it follows for all z ∈ (C∗)n that

Log(z) ∈ A(f) ⇔ V(f |z|) 6= ∅.
For a general background about fibrations and regular functions see e.g., [28, 80]. We

can subsume this section in the following way. The set of points mapped to a specific
point w ∈ Rn by Log is a real n-torus Fw ⊂ (C∗)n. For a given Laurent polynomial
f ∈ C[z±1] the point w belongs to the amoeba A(f) if and only if f vanishes at a point
ew+i·φ ∈ (C∗)n, i.e., φ ∈ Fw (see Figure 3.2). This is in particular the case if the fiber
function f |z| obtained by restriction of the preimage of f to Fw has a non-empty variety.
Although this observation is not very deep at a first glance, a careful investigation of fiber
functions f |z| will be crucial to obtain several main results of this thesis.

Fw w ∈ A(f) ⇔ V(f) ∩ Fw 6= ∅

Log

Figure 3.2. An amoeba A(f) with a fiber (with respect to the Log-map)
of a point w ∈ Rn.

2. The Lattice of Configuration Spaces

Recall that for a given lattice polytope P (i.e., all vertices of P are elements of Zn)
the set L(P ), as defined in Chapter 2, Section 4 denotes the set of all configuration spaces
CA of amoebas with conv(A) = P . We show that L(P ) is a boolean lattice with respect
to an inclusion relation ⊑, which naturally embeds the augmented configuration space,
which we introduced in Chapter 2, Section 4, into its lattice structure. Furthermore, we
have a closer look on the maximal and minimal elements of the lattice (L(P ),⊑), which
turn out to correspond to maximally and minimally sparse amoebas. We present a famous
problem on maximally sparse amoebas given by Passare and Rullg̊ard (Problem 3.4; see
also [62]) and a conjecture on minimally sparse amoebas (Conjecture 3.8), which we both
partially solve later in Section 3.

We begin with a proof for the lattice structure on L(P ). Recall (see e.g., [83, 89])
that a lattice is a partially ordered set (poset) S with respect to some order relation ⊑
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such that for all x, y ∈ S there is an inf{x, y} ∈ S and a sup{x, y} ∈ S. A lattice (S,⊑)
is distributive if for all x, y, z ∈ S holds

sup{inf{x, y}, inf{x, z}} = inf{x, sup{y, z}} and

inf{sup{x, y}, sup{x, z}} = sup{x, inf{y, z}}.
A lattice (S,⊑) has a maximum 1 ∈ S if sup{1, x} = 1 for all x ∈ S; it has a minimum
0 ∈ S if inf{0, x} = 0 for all x ∈ S. A lattice with maximum and minimum is called
bounded. A bounded lattice (S,⊑) is called complemented if for every x ∈ S there is an
xc such that sup{x, xc} = 1 and inf{x, xc} = 0. A distributive, complemented lattice is
called a boolean lattice or a boolean algebra.

Let (S,⊑) be a poset and M ⊂ S. The order ideal O(M) of M (with respect to
(S,⊑)) is given by

O(M) = {x ∈ S : x ⊑ y for some y ∈M};
analogously the dual order ideal or filter F(M) of M (with respect to (S,⊑)) is given by

F(M) = {x ∈ S : y ⊑ x for some y ∈M}.
To prove the lattice structure on L(P ) we use the following well known facts about

lattices (see e.g., [83, 89]).

Lemma 3.1. The power set P(N) of a finite set N is a boolean algebra with respect to the
inclusion ⊆. If (S,⊑) is a boolean algebra, then (O({x}),⊑) and (F({x}),⊑) are boolean
algebras as well for every x ∈ S.

With this lemma we are able to prove the boolean lattice structure on L(P ).

Theorem 3.2. For every lattice polytope P the set

L(P ) =
{
CA : A ⊂ Zn, conv(A) = P

}

is a boolean lattice with respect to the order relation ⊑ given by CA ⊑ CB :⇔ A ⊆ B for
all CA,CB ∈ L(P ).

Proof. By definition of ⊑ it suffices to show that the set M(P ) = {A ⊂ Zn :
conv(A) = P} is a boolean lattice with respect to inclusion. Let V (P ) denote the vertex
set of P . Then M(P ) is the filter F({V (P )}) in the power set P(P ∩Zn) and the theorem
follows with Lemma 3.1. �

We call (L(P ),⊑) the lattice of configuration spaces with respect to a lattice polytope
P . Recall that we defined for a given A ⊂ Zn the augmented configuration space as
CA

♦ = {f =
∑

α∈A bαz
α : bα ∈ C,New(f) = conv(A)} (see Chapter 2, Section 4).

Theorem 3.2 yields that this is indeed a natural extension of CA.

Corollary 3.3. Let P be a lattice polytope, (L(P ),⊑) its lattice of configuration spaces
and CA ∈ (L(P ),⊑). Then CA

♦ =
⋃
B⊑ACB, i.e., CA

♦ is the union of all elements in the

order ideal O({CA}).
Proof. Follows immediately from Theorem 3.2 and the definitions of augmented

configuration spaces and order ideals. �
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Note that inf(L(P )) = CV (P ) (where V (P ) is the vertex set of P ) and sup(L(P )) =
CP∩Zn

. We call inf(L(P )) the maximally sparse element of (L(P ),⊑) and sup(L(P )) the
minimally sparse element of (L(P ),⊑). In case of A = V (P ), we also say A resp. some
f ∈ CA or its amoeba A(f) is maximally / minimally sparse with slight abuse of notation.

Maximally sparse polynomials are well known entities in amoeba theory, basically due
to the following problem (resp. conjecture) by Passare and Rullg̊ard.

Problem 3.4 (Passare, Rullg̊ard [62, 66]). Do maximally sparse polynomials have solid
amoebas? I.e., let CA = inf(L(P )) for some lattice polytope P . Is UA

α = ∅ for every
α ∈ (P ∩ Zn) \ A?

In Section 3 we discuss maximally and minimally sparse polynomials on its own and
present in Theorem 3.9 and Theorem 3.10 proofs of the conjecture for rich classes of
Newton polytopes. Our treatment of polynomials with amoebas of genus at most one
(Chapter 4, Section 1) will yield an independent proof for the case that conv(A) is a
simplex (Corollary 4.9).

Surprisingly, so far minimally sparse polynomials, the counterpart of maximally sparse
polynomials, have not been discussed with respect to their amoebas at all. So, the first
question is whether there is an intrinsic counterpart to Problem 3.4. But the solution for
this problem is an immediate consequence of one of Rullg̊ard’s theorems.

Remark 3.5. Let CA = sup(L(P )) for some lattice polytope P . Then UA
α 6= ∅ for every

α ∈ P ∩ Zn by Theorem 2.18.

Problem 3.4 is motivated and Remark 3.5 is reflected by the following theorem, which
shows that emptiness of a set UA

α is respected by the lattice structure.

Theorem 3.6. Let (L(P ),⊑) be a lattice of configuration spaces, CA ∈ (L(P ),⊑) and
α ∈ P ∩ Zn. If UA

α = ∅, then UB
α = ∅ for every CB ∈ O({CA}) ⊆ (L(P ),⊑).

Proof. Let UA
α = ∅ and CB ∈ (L(P ),⊑) with CB ⊑ CA. Assume, UB

α 6= ∅. Then,
there exists an f ∈ CB with Eα(f) 6= ∅. Let w ∈ Eα(f) ⊂ Rn. Hence minz∈Fw

|f(z)| > 0.
Note that the minimum exists since the fiber Fw is a compact set.

CB ⊑ CA yields B ⊆ A. Let A \B = {α(1), . . . , α(k)}. Let

ε =
minz∈Fw

|f(z)|
2 ·∑k

j=1 e
〈w,α(j)〉

> 0

and g = f + ε ·∑k
j=1 z

α(j). Thus, g ∈ CA and, by construction, g(z) 6= 0 for every z ∈ Fw.

Thus, w ∈ Eα(g) and therefore UA
α 6= ∅, which is a contradiction. �

Corollary 3.7. The sets UA
α are open in CA

♦ for every A ⊂ Zn and α ∈ conv(A) ∩ Zn.

Note that this corollary implies in particular that the number of complement compo-
nents is also lower semicontinuous under changing coefficients in the augmented configu-
ration space CA

♦ (as an extension to Theorem 2.3).

Proof. Follows immediately from Theorem 2.17 and the argument in the proof of
Theorem 3.6. �
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A natural question motivated by Remark 3.5 is if in the minimally sparse case all
UA
α are connected, which is Rullg̊ard’s Problem 2.22 for this special instance. Although

we do not want to give a conjecture if Problem 2.22 has an affirmative answer for all
configuration spaces, we conjecture it to be true in the minimally sparse case.

Conjecture 3.8. Let (L(P ),⊑) be a lattice of configuration spaces and CA = sup(L(P ))
its minimally sparse element. Then every UA

α ⊆ CA with α ∈ A ∩ Zn is connected.

In the following Section 3 we give two possible heuristics how the sets UA
α might behave

in the minimally sparse case. One of them supports this conjecture. We motivate the
particular one and hence this conjecture by proving it for the univariate case (Theorem
3.12).

3. Amoebas of Minimally and Maximally Sparse Polynomials

In the last section we discussed the lattice of configuration spaces and the famous
Problem 3.4 about maximally sparse polynomials. Moreover, we conjectured (Conjecture
3.8) the connectivity of sets UA

α in configuration spaces of minimally sparse polynomials.
In this section we have a closer look at this problem and this conjecture. Here, we make
(only) use of Rullg̊ard’s tropical Theorem 2.15 and a result of Forsberg, Passare and
Tsikh about directional orders of complement components to give an affirmative answer
of Problem 3.4 for a huge set of Newton polytopes (Theorems 3.9 and Theorem 3.10).

Afterwards, we show in Theorem 3.12 that the Conjecture 3.8 can be proved straight-
forwardly in the univariate case.

Passare and Rullg̊ard asked in [62] whether every maximally sparse polynomial has
a solid amoeba. In Chapter 4, Section 1 it will follow from Theorem 4.8 that this is
true if the Newton polytope is a simplex (Corollary 4.9). One key ingredient to prove
this statement is Rullgard’s Theorem 2.15 stating that the complement induced tropical
hypersurface C(f) of a polynomial f is a deformation retract of the amoeba A(f), if the
support A of f contains at most 2n points such that no k+2 of them are contained in a k-
dimensional affine subspace of Rn. But, when focussing on maximally sparse polynomials
themselves, Rullg̊ard’s result even allows to solve Problem 3.4 for this whole particular
class described in the theorem.

Theorem 3.9. Let A = {α(1), . . . , α(d)} ⊂ Zn maximally sparse such that d ≤ 2n and
no k + 2 elements of A are contained in a k-dimensional subspace of Rn. Then A(f) is
solid.

Proof. Let f ∈ CA. The assumptions guarantee that we can apply Rullg̊ard’s The-
orem 2.15. Thus, the complement induced tropical hypersurface C(f) is a deformation
retract of the amoeba A(f). Since every element of A is a vertex of conv(A) and since
C(f) is dual to a regular subdivision of conv(A), which is induced by the elements of A
lifted by their valuations, every component of Rn \ C(f) has to be unbounded. �

Problem 3.4 has obviously a positive answer in the univariate case since every poly-
nomial of the form zd + s with s ∈ C∗ has only roots of the same absolute value (see
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also e.g., [66]). The following theorem shows that this observation can be generalized to
multivariate polynomials f , whose Newton polytope is of a form that lets f behave “like
a maximally sparse univariate polynomial” in a certain direction in space.

Theorem 3.10. Let A = {α(1), . . . , α(d)} ⊂ Zn maximally sparse. If there is a 1-
dimensional Q-vectorspace V such that the orthogonal projection of A on V has cardinality
two, then A(f) has no bounded complement components for every f ∈ CA.

The projection property can also be described by assuming that the vertex set of the
polytope is contained in exactly two parallel hyperplanes. Observe that a rich class of poly-
topes has this property. For example parallelepipeds, pyramids, prisms, crosspolytopes
(see e.g., [91]) or 2-level polytopes (including e.g., stable set polytopes of perfect graphs
and weakly Hannar polytopes; see [25, 27, 78]). Note that e.g., zonotopes, centrally
symmetric polytopes or direct sums of polytopes do not in general have this property.

The theorem can be deduced immediately by Part (1) of Rullg̊ard’s Theorem 2.19. But
since the approach leading to this Theorem 2.19 is rather abstract, we give an alternative,
longer, but more elemental proof here.

To prove the theorem we introduce the directional order defined by Forsberg, Passare
and Tsikh. Let A ⊂ Zn, f ∈ CA whose amoeba A(f) has a complement component
Eα(f) 6= ∅ (with order α). Let η ∈ (Z∗)n. Then the directional order of Eα(f) with
respect to η is defined as 〈η, α〉 ∈ Z (see [20]). In particular, we will use the following
lemma.

Lemma 3.11 (Forsberg, Passare, Tsikh [20]). Let A ⊂ Zn and f =
∑

α∈A bαz
α, w ∈

(A(f))c and η = (η1, . . . , ηn) ∈ (Z∗)n. Then the directional order 〈η, ord(w)〉 is given by
the number of roots minus the number of poles of the univariate Laurent polynomial

y 7→ f(c1y
η1, . . . , cny

ηn)

inside the unit circle |y| = 1, where c ∈ (C∗)n with Log(c) = w.

Proof. (Theorem 3.10) Let the conditions of the theorem be satisfied and let π denote
the projection of Rn on the subspace V defined in the theorem. Let π(A) = {ζ(0), ζ(1)}.
Since all A ⊂ Zn and V ⊂ Qn we have π(A) ⊂ Qn. Since the homotopy of amoebas
is invariant under translation of the Newton polytope, we can assume that ζ(0) is the
origin. An outline of the proof is that the directional order of a complement component
with respect to a vector η ∈ V with ||η||2 = κ ∈ R needs to be zero or ||ζ(1)||2 under π
and that this cannot happen with lattice points in the interior of conv(A).

Assume there exists a Laurent polynomial f =
∑

α∈A bαz
α ∈ CA such that w ∈

Eα′(f) 6= ∅ for some α′ ∈ Zn in the interior of conv(A). Let η ∈ V ∩ Zn. Since π(A) =
{ζ(0), ζ(1)}, the hyperplanes H1 = {x ∈ Rn : 〈x, η〉 = 0} and H2 = {x ∈ Rn : 〈x, η〉 =
〈ζ(1), η〉} are supporting hyperplanes of conv(A) with A ⊂ H1 ∪ H2. Since α′ is in
the interior of conv(A), we have α′ /∈ H1 ∪ H2. Thus, for ζ = π(α′) holds that ζ ∈
conv({0, ζ(1)}), but ζ /∈ {0, ζ(1)}. In particular, since α′ is the order of Eα′(f), the
directional order of Eα′(f) with respect to η is 〈ζ, η〉 /∈ {0, 〈ζ(1), η〉}.
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On the other hand, by Lemma 3.11 the directional order 〈α′, η〉 is given by the number
of roots minus the number of poles of the univariate polynomial

h : y 7→ f(c1y
η1, . . . , cny

ηn) =
∑

α∈A

bαc
α · y〈α,η〉,

where Log(c) = w ∈ Eα′(f). But since A ⊂ H1 ∪ H2 we have 〈α, η〉 ∈ {0, 〈ζ(1), η〉} for
every α ∈ A and hence

h = y〈ζ(1),η〉 + s for some s ∈ C∗.

Note that 〈ζ(1), η〉 ∈ Z since all α as well as η are in Zn. Therefore, in particular all roots
of h have the same modulus and thus the directional order 〈α′, η〉 is zero or 〈ζ(1), η〉,
which is a contradiction. Hence, Eα′(f) = ∅. �

We now head over to the minimally sparse case. Let A ⊂ Zn. The lesser sparse
conv(A) ∩ Zn is, the higher the dimension of CA is and hence the more degrees of free-
dom are given in CA. This leads to two possible but unfortunately contrary heuristics
concerning Rullg̊ard’s Problem 2.22.

(1) The more degrees of freedom in CA are given, the more possibilities exist to
construct a path between two points in a given set UA

α . Thus, in particular in
the minimally sparse case we should expect UA

α to be connected (if there exists a
configuration space where they are connected at all).

(2) With more degrees of freedom in CA, more non-connected components of a set UA
α

may arise, which might vanish in a sparser configuration space (i.e., a subspace
of Cconv(A)∪Zn

).

In Section 2 we followed the first heuristic by formulating Conjecture 3.8. We now
motivate this conjecture by proving it for the univariate case.

Theorem 3.12. Let A = {0, 1, . . . , d} ⊆ Z such that CA is minimally sparse. Then every⋂
j∈B U

A
j with B ⊆ A is path-connected in CA

♦ .

Proof. Let B ⊆ A such that
⋂
j∈B U

A
j 6= ∅. Let f, g ∈ ⋂j∈B U

A
j ⊆ CA. Due to the

fundamental theorem of algebra both f and g are reducible to linear factors, i.e., there are
a1, . . . , ad, b1, . . . , bd ∈ C∗ with f = (z−a1) · · · (z−ad), g = (z−b1) · · · (z−bd). Let w.l.o.g.
|a1| ≤ · · · ≤ |ad| and |b1| ≤ · · · ≤ |bd|. Note that |aj | < |aj+1| if and only if |bj | < |bj+1|.
We construct a path γ1 in CA

♦ from f to h = (z−|b1| ·arg(a1)) · · · (z−|bd| ·arg(ad)), which
is completely contained in

⋂
j∈B U

A
j . I.e., we have to shift every |aj| to |bj | successively.

If two roots share the same modulus in initial configuration, then we may shift them
simultaneously. Hence, w.l.o.g. let |aj| < |aj+1| for all j.

Therefore, and by Newton identities (see e.g., [82]) the construction of a path γ1 is
reduced to finding a homeomorphism, mapping {|a1|, . . . , |ad|} ⊂ R>0 to {|b1|, . . . , |bd|} ⊂
R>0, which, clearly, always exists.

We construct a path γ2 on Cconv(A)∩Z from h to g by successively shifting |bj | · arg(aj)
to bj via successively adjusting the arguments and using Newton identities. Since g, h ∈⋂
j∈B U

A
j and no root changes its modulus during γ2, we have γ2 ⊆

⋂
j∈B U

A
j . Hence, we

constructed a path γ2 ◦ γ1 from f to g in
⋂
j∈B U

A
j . �
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4. The Boundary of Amoebas

Let f ∈ C[z±1] = C[z±1
1 , . . . , z±1

n ] be a complex, non-singular Laurent polynomial with
variety V(f) ∈ (C∗)n. Besides the membership problem and the characterization of its
configuration space, a third, central problem on amoebas is to characterize and to compute
its boundary. Obviously, a boundary point of A(f) is a critical value (i.e., the image of
a critical point) of the Log-map restricted of V(f). We call the set of critical values of
Log|V(f) the contour of A(f) (see e.g., [66]).

It was proven by G. Mikhalkin in [41] and [43] that the critical points of Log|V(f) (and
thus also the contour) are given by the points with a real image under the logarithmic
Gauss-map.

For a non-singular variety V(f) (interpreted as a complex, smooth n-manifold) the
Gauss-map is given by

G : V(f) → Pn−1
C , (z1, . . . , zn) 7→

(
∂f

∂z1
(z) : . . . :

∂f

∂zn
(z)

)
.

Geometrically, the Gauss-map maps every point z on the linear space that is parallel
to the tangent space TV(f)(z) of V(f) at z, where the complex projective image vector G(z)
is exactly the projective normal vector of TV(f)(z). Hence, the image of the Gauss-map is
in bijection with the normal field resp. the tangent bundle of V(f).

The logarithmic Gauss-map, introduced by Kapranov ([30]), is a composition of a
branch of a holomorphic logarithm of each coordinate with the conventional Gauss-map.
It is given by

γ : V(f) → Pn−1
C , (z1, . . . , zn) 7→

(
z1 ·

∂f

∂z1
(z) : · · · : zn ·

∂f

∂zn
(z)

)
.

For a given variety V(f) we define the set S(f) by

S(f) = {z ∈ V(f) : γ(z) ∈ Pn−1
R ⊂ Pn−1

C }.
Theorem 3.13 (Mikhalkin [41, 43]). Let f ∈ C[z±1] with V(f) ∈ (C∗)n. Then the critical
values of the Log map equal S(f) (and thus the contour of A(f) equals Log(S(f))).

With respect to the description of the boundary of an amoeba, the theorem yields the
following corollary (recall the notations regarding fibers from Section 1), stating that a
point w ∈ Rn may only be a boundary point of an amoeba A(f), if there exists a point
in the intersection of its fiber Fw with resp. to the Log-map and the variety V(f), which
belongs to the set S(f).

Corollary 3.14. Let f ∈ C[z±1] with V(f) ∈ (C∗)n and let w ∈ Rn. Then

w ∈ ∂A(f) implies that Fw ∩ V(f) ∩ S(f) 6= ∅.

The aim of this section is to prove the following Theorem 3.15, which is a strengthening
of this statement. It states that a point w ∈ Rn may only be a boundary point of an
amoeba A(f), if every point in the (non-empty) intersection of its fiber Fw and the variety
V(f) belongs to the set S(f). This result is part of ongoing work joint with Franziska
Schröter.
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Theorem 3.15. Let f ∈ C[z±1] with V(f) ⊂ (C∗)n non-singular and let w ∈ Rn. Then

w ∈ ∂A(f) implies that there exists no z ∈ Fw ∩ V(f) with z /∈ S(f).

First, we have to give a clean definition of the boundary ∂A(f) of a given amoebaA(f).
Let A ⊂ Zn and w.l.o.g. 0 ∈ A. We introduce a configuration metric dA : CA×CA → R>0

in the following way. Let f =
∑

α∈A bα · zα and g =
∑

α∈A cα · zα. Then we define

dA(f, g) =

(∑

α∈A

∣∣∣∣
bα
b0

− cα
c0

∣∣∣∣
2
)1/2

.

Note that in a strict sense dA is defined on PAC without its points at infinity instead
of CA. The reason for the upper definition is that varieties and, hence, also amoebas
of polynomials are invariant under scaling of the coefficients. Hence, we want those
polynomials to have distance zero in a metric. By the axioms of a metric this means
that such polynomials need to coincide, such that we have to work on PAC . We omit a
distinction between CA and PAC with slight abuse of notation (see also the related comment
in Chapter 2, Section 4).

With the configuration metric we define for f ∈ CA a point w ∈ A(f) as a boundary
point of A(f) if there exists an α ∈ conv(A)∩Zn such that for every ε > 0 there exists an
g ∈ BAε (f) ⊂ CA such that w ∈ Eα(g). Here, BAε (f) denotes the ball with radius ε with
respect to the configuration metric on CA around the polynomial f .

Unfortunately, the definition has to be that complicated since bounded complement
components can appear somewhere inside an amoeba for an arbitrary small changing of
the coefficients and we want to consider the points where a complement component ap-
pears in such a case also as a boundary point (see e.g., Chapter 4, Section 1, where such
effects appear).

For every polynomial f ∈ C[z] = C[z1, . . . , zn] we denote its real and imaginary part
as f re, f im ∈ R[x,y] = R[x1, . . . , xn, y1, . . . , yn], which are given by

f(z) = f(x+ iy) = f re(x,y) + i · f im(x,y) .

We have to make some comments about this approach. With this notation we have
obviously V(f) = V(f re) ∩ V(f im). Note that after the upper embedding the variety
V(f) ⊂ (C∗)n obviously coincides with the intersection of the real varieties of f re and f im

when these are investigated in R2n. To keep notation as simple as possible, we omit this
here with slight abuse of notation and only mark out that we investigate varieties, which
are real manifolds.

Note furthermore that if we assume that V(f) is non-singular, then we also assume
that V(f re) and V(f im) are non-singular after the embedding of V(f) into R2n with slight
abuse of notation. I mention this here, since I see no reason why these two assumptions
should be equivalent (but I do not know it).
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Let z ∈ (C∗)n with Log(z) = w. Note that in particular (in R2n) also for the real part
holds V(f re) ∩ Fw = V(f |z|,re) (analogously for the imaginary part), where f |z|,re = f re

|Fw

(see Section 1). The following lemma describes the structure of V(f |z|,re).

Lemma 3.16. Let f ∈ C[z] with V(f) ⊂ (C∗)n non-singular and Log(z) = w ∈ Rn with
Fw∩V(f) 6= ∅. Then V(f |z|,re) and V(f |z|,im) generically are real, smooth (n−1)-manifolds.

Note that V(f |z|,re) and V(f |z|,im) in general neither are connected nor non-singular
(and thus the term “generically” appears in the lemma).

Proof. We only show the real case. V(f re) is a real, smooth, non-singular (2n− 1)-
manifold in R2n. The fiber Fw is given by the n real, smooth, non-singular (2n − 1)-
hypersurfaces x2j + y

2
j = w2

j . Since Fw ∩V(f re) 6= ∅ by assumption, it is the intersection of
n + 1 real, smooth, non-singular (2n− 1)-manifolds, which is generically a real, smooth,
(n− 1)-manifold. �

Lemma 3.17. Let f ∈ C[z] with V(f) ⊂ (C∗)n. A point z ∈ V(f) is critical under the
Log-map if and only if it is critical under the Arg-map.

This statement follows already (at least) implicitly from Mikhalkin’s argumentation
on the Log-Gauss map (see e.g., [41]) and was also observed by Nisse and Passare before
(see [51]). For convenience, we give an own proof here.

Proof. We choose a local branch of the holomorphic log, interpret (C∗)n as R2n and
Log- and Arg-map as linear maps from R2n to Rn with Log(R2n)⊥Arg(R2n). Let TV(f)(z)
denote the tangent space of z ∈ V(f). Note that dim(TV(f)(z)) = 2n− 2.

Observe that dim(Log(TV(f)(z)
c)) = dim(Arg(TV(f)(z)

c)) = 1. The reason is that
TV(f)(z)

c is spanned by the (complex) normal vector t of TV(f)(z) and hence we know
dim(Log(TV(f)(z)

c))+dim(Arg(TV(f)(z)
c)) = 2. And since t has an absolute value and an

argument and both Log and Arg are linear here, TV(f)(z)
c may not vanish under one of

these maps.
Let z ∈ V(f) be critical under the Log-map. This is the case if and only if the

Jacobian of Log does not have full rank at z, i.e., dim(Log(TV(f)(z))) ≤ n − 1. Since
furthermore dim(Log(TV(f)(z)

c)) = 1 we have dim((Log(TV(f)(z)))) = n − 1 and hence
dim(Ker(Log(TV(f)(z)))) = n − 1. This means, we can choose an orthogonal basis B =
{b1, . . . , b2n−2} ⊂ R2n of TV(f)(z) with b1, . . . , bn−1 ∈ Ker(Log(TV(f)(z))).

Since Log(R2n)⊥Arg(R2n) we have Ker(Log(TV(f)(z))) ⊆ Arg(TV(f)(z)), i.e., in par-
ticular, Arg({b1, . . . , bn−1}) is an immersion. But since dim(Log(TV(f)(z))) = n− 1, then
Log({bn, . . . , b2n−2}) is also an immersion. Thus, with Log(R2n)⊥Arg(R2n), this yields
{bn, . . . , b2n−2} ⊂ Ker(Arg(TV(f)(z))), i.e., dim(Ker(Arg(TV(f)(z)))) = n− 1 and therefore
dim(Arg(TV(f)(z))) = n − 1. Hence, z is critical under the Arg-map. Vice versa the
argument works analogously. �

Lemma 3.18. Let f ∈ C[z] with V(f) ⊂ (C∗)n non-singular and z ∈ V(f) with Arg(z) =
φ ∈ [0, 2π)n be a non-critical point under the Arg-map. Then neither TV(f |z|,re)(φ) =

TV(f |z|,im)(φ) nor V(f |z|,re) or V(f |z|,im) are singular at φ.
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Note that TV(f |z|,re)(φ) is the tangent space of the variety V(f |z|,re) of the real part of

the fiber function f |z| at φ (analoguesly for the imaginary part). I.e., TV(f |z|,re)(φ) is a

subset of the fiber Fw with real dimension n− 1, if V(f |z|,re) is smooth at φ.

Proof. Assume first TV(f |z|,re)(φ) = TV(f |z|,im)(φ) and V(f |z|,re),V(f |z|,im) non-singular

at φ. Since TV(f |z|)(φ) = TV(f |z|,re)(φ)∩TV(f |z|,im)(φ) and dim(V(f |z|,re)) = dim(V(f |z|,im)) =

n − 1 by Lemma 3.16, we have dim(TV(f |z|)(φ)) = n − 1. Since V(f |z|) = V(f) ∩ Fw for
w = Log(z) and, hence, TV(f |z|)(φ) = TV(f)(φ) ∩ Fw, there is an immersion of an (n− 1)-
dimensional subspace of TV(f)(z) into Arg(TV(f)(z)), which yields that z is critical with
the argumentation from Lemma 3.17.

Assume now V(f |z|,re) is singular at φ. Then TV(f |z|,re)(φ) = [0, 2π)n and hence,

TV(f |z|)(φ) = TV(f |z|,im)(φ). Since V(f) is non-singular, V(f |z|,im) may not be singular
at φ either. Hence, dim(TV(f |z|)(φ)) = n− 1. The rest works the same way as above. �

With these lemmata we can prove our main theorem in this section. An outline
of the proof is that if there exists a point z ∈ V(f) ∩ Fw with z /∈ S(f), then the
manifolds V(f |z|,re) and V(f |z|,im) intersect regularly in Arg(z). But this means that they
also intersect for every small perturbation of the coefficients of f . This is a contradiction
with the assumption that w ∈ ∂A(f), which means that there is a small perturbation of
the coefficients yielding V(f) ∩ Fw = ∅, i.e., V(f |z|,re) ∩ V(f |z|,im) = ∅.

Proof. (Theorem 3.15) Since V(f) ⊂ (C∗)n we can assume w.l.o.g. that f ∈ C[z].
Let w ∈ ∂A(f) and assume that there is a z ∈ V(f)∩Fw with z /∈ S(f). By Theorem 3.13
this means that z is not a critical point under the Log-map and hence, by Lemma 3.17,
z is not a critical point under the Arg-map, too. Thus, by Lemma 3.18 both V(f |z|,re)
and V(f |z|,im) are regular at φ and TV(f |z|,re)(φ) 6= TV(f |z|,im)(φ). Therefore, V(f |z|,re) and

V(f |z|,im) intersect regularly in φ. Hence, there exists a δ > 0 such that the intersection
of every perturbation of V(f |z|,re) and V(f |z|,im) of at most δ is not empty.

Since w ∈ ∂A(f) we find a g ∈ BAε (f) ⊂ CA for every arbitrary small ε > 0 such
that w /∈ A(g), i.e., V(g) ∩ Fw = ∅, and thus in particular V(g|z|,re) ∩ V(g|z|,im) = ∅. But
f re, f im and hence also V(f re),V(f im) are continuous under changing of coefficients of f .
Therefore, by definition of the fiber function, V(g|z|,re) and V(g|z|,im) are arbitrary small
perturbations of V(f |z|,re) and V(f |z|,im). Thus, V(f |z|,re) and V(f |z|,im) may not intersect
regularly in φ. This is a contradiction. �

We close the section with an example. Let f be a Laurent polynomial given by

f = −2z21 − 2z1z
2
2 + 1, 5eiπ·0.5z−1

1 z−1
2 + c.

We investigate the fiber F(0,0) of the point Log((1, 1)) for c = −1.2,−2.7,−4.6 and −4.9

depicted in Figure 3.3. In all pictures the red curve marks V(f |(1,1)|,re) and the green curve
marks V(f |(1,1)|,im). Hence, the points in the intersection of the red and the green curve
are the points where the real and the imaginary part of f |(1,1)| vanishes, i.e., these are the
intersection points of the fiber F(0,0) with the variety V(f) of f .

The blue curve marks the arguments of points on the complex unit sphere, which are
critical points under the Log-Gauss map (i.e., the critical points of γ on the fiber F(0,0)).
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Figure 3.3. The behavior of f = −2z21 − 2z1z
2
2 + 1, 5eiπ·0,5z−1

1 z−1
2 + c on

the fiber F(0,0) for c ∈ {−1.2,−2.7,−4.6,−4.9}.

Thus, (0, 0) is part of the contour if there is a point where the red, green and blue curve
intersect (Corollary 3.14) and (0, 0) may only be a boundary point if all intersection points
of the red and the green curve also intersect the blue one (Theorem 3.15). Note that in
this example a changing of the coefficient c along the real axis only changes the red curve.

Observe that in the upper left picture , i.e., c = −1.2, of Figure 3.3 the red and green
curve intersect regularly in several points and hence in this case (0, 0) ∈ A(f). In the
upper right picture , i.e., c = −2.7, there are two intersection points where all three curves
intersect. But there are other points where (only) the red and the green curve intersect
regularly. Thus, in this case (0, 0) is part of the contour but still (0, 0) ∈ A(f) \ ∂A(f).
In the lower left picture, i.e., c = −4.6, the only two intersection points of the red and
the green curve also intersect the blue one. Hence, in this case (0, 0) might be part of the
boundary. In the lower right picture, i.e., c = −4.9, the red and the green curve do not
intersect in any point anymore. Therefore, we have (0, 0) /∈ A(f).
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Note that the values c = −2.7 and c = −4.6 are not the exact values of c for (0, 0) to
be in the contour resp. in the boundary of A(f). They are guessed approximations of the
exact values to show the described behavior exemplarily in Figure 3.3.



CHAPTER 4

The Geometry and Topology of Amoebas

The focus of this chapter is the geometrical and topological structure of configuration
spaces of amoebas. More precisely, we are interested in the structure of the sets UA

α and
its related problems introduced in Chapter 2, Section 4, in particular the Problems 2.22
and 2.25.

In earlier investigations of configuration spaces the authors usually concentrated on
gaining general results about configuration spaces, which led in particular to the theorems,
which we discussed in Chapter 2, Section 4. As a special instance only linear polynomials
have been discussed carefully so far (see Theorem 2.8; see also [20]). But since the
problems mentioned above resp. in Chapter 2, Section 4 are open since round about ten
years without any strong progress, it is a convincing strategy to restrict to special classes
of polynomials.

This is what we do in this Chapter. In Section 1 we investigate polynomials with a
simplex Newton polytope in dimension n ≥ 2 and a support set A ⊂ Zn with exactly n+2
elements where the non-vertex element of A is contained in the interior of conv(A). We call
amoebas in the set Py

∆ of such polynomials ”of genus at most one” since they have at most
one bounded complement component (Theorem 4.1). We provide upper and lower bounds
of the coefficients for the existence of this complement component (Theorems 4.8, 4.10
and 4.13), where the upper bound gets sharp under extremal conditions. Furthermore, we
show that the upper bound is connected to A-discriminants and Purbhoo’s lopsidedness
condition (Theorems 4.15 and 4.17).

If one restricts to the special case that the lattice point in the interior is the barycenter
of the simplex, then one can even give a complete description of the set UA

y where y ∈ A is
the inner lattice point. We discuss this case in Section 2. We show that the complement
of the set UA

y locally is given by the region bounded by the trajectory of a hypocycloid
curve (Theorem 4.20). With this result we can furthermore conclude that Problem 2.22
has an affirmative answer for this class, i.e., UA

y is connected.
In the last Section 3, we investigate the univariate polynomials of the class Py

∆, i.e.,
trinomials. In the univariate case amoebas of trinomials can have more than one bounded
complement component. It turns out that in the univariate case our investigated problems
are very closely related to reformulations of classical problems on trinomials, which were
investigated in the late 19th resp. the early 20th century, in terms of amoeba theory. We
introduce some of these problems in Section 3. It turns out that they are algebraically well
understood, but neither geometrically nor topologically. We provide such explanations
resp. solutions. Specifically, we show that a trinomial has a root of a certain modulus
if an only if a certain coefficient is located on the trajectory of a hypotrochoid curve

47
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(Theorem 4.32). Furthermore, it has multiple roots of the same modulus if and only if
the coefficient is located on a specific 1-fan (Theorem 4.40). This result allows us not only
to close the gap in Rullg̊ard’s Theorem 2.19 (Theorem 4.43). It allows us furthermore to
describe the topological structure of sets UA

α , since this theorem allows us to show that
the sets UA

α can (for all but one α) be deformation retracted to an (s+ t)-sheeted covering
of an S1 (Theorem 4.51). Therefore, their fundamental group is Z and hence they are in
particular path-connected but not simply connected. This solves the Problems 2.22, 2.24
and 2.25 (for this class).

Finally, we provide a counterexample for the question if complement components of
amoebas are monotonically growing in the absolute value of the coefficient corresponding
to this component via the order map (Theorem 4.53). This result also follows from the
initial Theorems 4.32 and 4.40 about trinomials.

1. Amoebas of Genus at Most One

Despite the various general, structural results on configuration spaces CA with A ⊂ Zn,
which we presented in Chapter 2, Section 4, almost nothing is known concerning the exis-
tence and explicit characterization of the complement components Eα(f) ⊂ Rn with orders
α ∈ conv(A) ∩ Zn in terms of the coefficients of a given Laurent polynomial f ∈ C[z±1]
(Problem 2.25). Hence, understanding the geometrical and topological structure of the
sets UA

α in the configuration space of amoebas is a widely open problem. For amoebas
of linear polynomials an explicit characterization exists, given by Forsberg, Passare and
Tsikh (Theorem 2.8; [20]). In this case we have seen that there exist no complement com-
ponents except the “trivial” ones whose orders correspond to the vertices of the standard
simplex. Thus, those amoebas are particular instances of amoebas of genus zero.

As a step towards better understanding the structure of amoebas of general, nonlinear
varieties, in the next two Sections 1 and 2 we study a class of polynomials whose amoebas
can have at most one bounded complement component. The results presented in these
two sections were recently published in [87].

We assume n ≥ 2 and choose a support set A = {α(0), . . . , α(n), y}, such that conv(A)
is a full-dimensional lattice simplex ∆ ⊂ Rn, such that α(0), . . . , α(n) ∈ Zn are the vertices
of ∆ and y ∈ Zn is contained in the interior of ∆.

Let P∆ denote the class of all Laurent polynomials with Newton polytope ∆ and let
Py

∆ ⊂ P∆ denote the class of Laurent polynomials of the form

(4.1) f = b0 · zα(0) + b1 · zα(1) + · · ·+ bn · zα(n) + c · zy , bi ∈ C∗, c ∈ C.

Since V(f) ⊂ (C∗)n, we can assume that α(0) is the origin and b0 = 1. Polynomials in P∆

have exactly n+2 monomials. Note that we do not require that #(∆∩Zn) = n+2, since
the simplex ∆ may contain further lattice points as long as the corresponding coefficients
are zero. Observe that for this special instance of the support set A we have Py

∆ = CA
♦

and P∆ =
⋃

CA∈L(∆) C
A (see Chapter 3, Section 2). For general background on lattice

point simplices (with one inner lattice point) see e.g., [1, 73]), and we remark that f can
be regarded as supported on a circuit (a set of points that is affinely dependent, but with
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all proper subsets affinely independent; see [23] and also e.g., [4, 68]).

In order to study the amoebas of polynomials in Py
∆, we investigate the parametric

family of polynomials

fκ =

[
|c| · ei·arg(c) · zy +

n∑

i=0

bi · zα(i)
]

|c|=κ

= κ · ei·arg(c) · zy +
n∑

i=0

bi · zα(i).(4.2)

As a first key fact, we show that amoebas A(f) of polynomials f ∈ Py
∆ can have at

most one bounded complement component. Thus, there exist only two possible homotopy
types for A(f) in this case.

Theorem 4.1. Let n ≥ 2 and f ∈ Py
∆ of the form (4.1). Then A(f) has at most one

bounded complement component.

Proof. Since n ≥ 2 we have #A ≤ 2n and by construction no k + 2 points in A
are contained in an affine k-subspace of Rn. Thus, by Theorem 2.15 in this case the
complement induced tropical hypersurface C(f) is a deformation retract of A(f). Since
C(f) is dual to a subdivision of conv(A) induced by a lifting of A, C(f) can have at most
one bounded component. This follows e.g., since A is a circuit and circuits come with
only two possible triangulations (see e.g., [23, Chapter 7, p. 217]). �

When we study polynomials f ∈ Py
∆ of the Form (4.1), we call the monomials biz

α(i)

the outer monomials and c · zy the inner monomial.
Apparently, these polynomials form a “simplest” class of polynomials where the char-

acterization of the corresponding amoebas becomes “difficult”. Since an exact description
of the complement components (and, in particular, the homotopy) is not available, one of
our main goals is to provide bounds on the coefficients to determine the homotopy type
of A(f) (i.e., solve Problem 2.25 for this class).

As a starting point, recall that the complement components of amoebas of linear
polynomials are well understood (Theorem 2.8). The following statement captures a
slight generalization of this result to Newton polytopes that might contain interior lattice
points.

Theorem 4.2. Let f =
∑n

i=0 biz
α(i) such that New(f) is an n-simplex. For z ∈ (C∗)n we

have Log(z) ∈ Eα(i)(f) if and only if
∣∣bizα(i)

∣∣ >∑j 6=i

∣∣bjzα(j)
∣∣ .

Note that this theorem refers to the maximally sparse case. Recall that an arbitrary
polynomial f is called maximally sparse if for all non-vertices α of New(f) we have bi = 0
(see Chapter 3, Section 2).

For the convenience of the reader we provide a proof of Theorem 4.2, which is analogous
to the proof of statement [20, Proposition 4.2].

Proof. The direction “⇐” is obvious. For the converse direction let z ∈ (C∗)n with
|bizα(i)| ≤

∑
j 6=i |bjzα(j)| for all i ∈ {1, . . . , n}. Since the case n = 1 is trivial, assume

n ≥ 2. We normalize such that α(0) = 0 ∈ Zn and arg(b0) = 0 ∈ [0, 2π).
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Order the monomials by norm such that |bjzα(j)| ≤ |bj+1z
α(j+1)| for j ∈ {0, . . . , n} and

let m denote the largest integer such that
∑m−1

j=0 |bjzα(j)| <
∑n

j=m |bjzα(j)|. By choice of z

we have m < n. We denote t1 =
∑m−1

j=0 |bjzα(j)|, t2 = |bmzα(m)| and t3 =
∑n

j=m+1 |bjzα(j)|.
By the choice of m we have t1+ t2 ≥ t3, t1 + t3 ≥ t2 and t2+ t3 ≥ t1. Hence, t1, t2, t3 form
the edge lengths of a triangle and thus there are ψ1, ψ2 ∈ [0, 2π) with

m−1∑

j=0

|bjzα(j)|+ |bmzα(m)| · ei·ψ1 +

n∑

j=m+1

|bjzα(j)| · ei·ψ2 = 0.

Since the integer vectors α(1), . . . , α(n) are linearly independent, we can find φ ∈ [0, 2π)n

such that
∑n

j=0 bj |z|α(j) · ei·〈α(i),φ〉 = 0 and thus Log |z| ∈ A(f).

Finally, one can show that all extreme points of the closure of A(f) satisfy the required
inequalities, which we omit here. �

Thus, the class Py
∆ is a natural generalization of maximally sparse polynomials with

simplex Newton polytope. Note that the above proof technique does not extend to the
case of simplices with interior integer points since then the set of all exponent vectors is
not affinely independent.

1.1. The Equilibrium and First Bounds. In this section we provide a lower and a
rough upper bound on the coefficients for the existence of the inner complement component
of the amoeba of a polynomial f ∈ Py

∆. These bounds – which are stated in Theorem 4.8
– are based on investigating the equilibrium points (as defined in Definition 4.3). We
remark that, as a special case, the lower bound in Theorem 4.8 implies immediately that
maximally sparse polynomials with simplex Newton polytope have solid amoebas (Corol-
lary 4.9).

We introduce the (modular) equilibrium E(f) of a given Laurent polynomial f ∈ C[z±1]

E(f) =
{
w ∈ Rn : |mi(Log

−1(w))| = |mj(Log
−1(w))| for some 1 ≤ i 6= j ≤ d

}
.

I.e., the modular equilibrium is the piecewise linear subset of Rn containing all points
w such that at least two monomials of f attain the same modular value on the fiber torus
Fw = Log−1(w). From this definition of the modular equilibrium it follows immediately
that both the tropical hypersurface T (trop(f)) and the complement induced tropical
hypersurface C(f) = T (trop(f|C) are subsets of the equilibrium E(f) (see Chapter 2,
Section 3).

Definition 4.3. Let A = {α(1), . . . , α(d)} ⊂ Zn and f ∈ CA. We define the (modular)
equilibrium point eq(α(j1), . . . , α(jn+1)) as the point of the modular equilibrium E(f)
where at least the monomials bα(j1)z

α(j1), . . . , bα(jn)z
α(jn) (with α(j1), . . . , α(jn+1) ∈ A)

have the same modular value.
For f ∈ Py

∆ of the form (4.3) we abbreviate the notation in the following way. We
denote eq(y) as the point of the modular equilibrium E(f) where at least all monomials
but byz

y have the same modular value. Similarly, for 0 ≤ j ≤ n we denote eq(j) as the
point in E(f) where at least all monomials but bjz

α(j) have the same modular value.
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It is not completely obvious that equilibrium points are always well defined. The
following Lemma yields that this is the case and how they can be computed.

Lemma 4.4. Let A = {α(1), . . . , α(d)} ⊂ Zn, f =
∑

α∈A bαz
α with bα ∈ C∗ and let

B ∈ Zn×n be the matrix with columns α(1) − α(n + 1), . . . , α(n) − α(n + 1). Then the
equilibrium point eq(α(1), . . . , α(n+1)) ∈ Rn is the unique solution x ∈ Rn of the system
of linear equations Bt · x = (Log(bα(n+1), . . . , bα(n+1)))

t − (Log(bα(1), . . . , bα(n)))
t.

Proof. The equilibrium point eq(α(1), . . . , α(n+1)) is the point where all monomials
bα(1)z

α(1), . . . , bα(n+1)z
α(n+1) share the same modular value. Hence eq(α(1), . . . , α(n + 1))

satisfies the n linear equations

log |bα(i)|+ 〈w, α(i)〉 = log |bα(n+1)|+ 〈w, α(n+ 1)〉 ⇔
〈w, α(i)− α(n+ 1)〉 = log |bα(n+1)| − log |bα(i)|.

Each of these equations coincides with one row of the linear system

Bt · x = (Log(bα(n+1), . . . , bα(n+1)))
t − (Log(bα(1), . . . , bα(n)))

t.
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Figure 4.2. Let f = 1 + z21z2 + z1z
2
2 − 4z1z2. Left picture: the amoeba

A(f) (red) with the spine S(f) (green, light) and the complement-induced
tropical hypersurface C(f) (blue, dark). Note that S(f) and C(f) coincide
on the outer tentacles of A(f). Right picture: the equilibrium E(f) (red)
together with C(f) (blue, dark). Note that C(f) ⊂ E(f). The equilibrium
points introduced in Definition 4.3 are marked by big red points.

From now on we concentrate on f ∈ Py
∆ of the form (4.1). For the rest of this section

we assume α(0) = 0 and b0 = 1. We denote M∆ as the integral n×n matrix with columns
α(1), . . . , α(n).

The following lemma states how the spine S(f) of the amoeba A(f) is related to C(f)
for polynomials f ∈ Py

∆.
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Lemma 4.5. Let f ∈ Py
∆.

(a) If A(f) is solid then the inner vertex of S(f) is the equilibrium point eq(y) and
S(f) coincides with the complement-induced tropicalization C(f).

(b) If A(f) has genus one, then S(f) and C(f) are homotopy equivalent, their inner
simplices ΣS(f) and ΣC(f) are similar and all faces not belonging to the inner
simplices coincide in all points lying outside of both inner simplices.

Proof. (a) If A(f) is solid then the order of any complement component of A(f) is a
vertex of New(f) and hence for every Ronkin coefficient βα(i) we have βα(i) = log |bi| and
therefore S(f) = C(f).

(b) Let A(f) have genus one. S(f) and C(f) coincide in all points lying outside
of both inner simplices since for any vertex α(i) of New(f) we have βα(i) = log |bi|. As
n ≥ 2, homotopy equivalence follows from Theorem 2.15. Since S(f) and C(f) are tropical
hypersurfaces dual to the same triangulation of New(f), ΣS(f) and ΣC(f) are similar. �

This fact was already depicted in Figure 4.2. In the following we often write f ∈ Py
∆

as a sum of monomials

f(z) = m0(z) +m1(z) + · · ·+mn(z) +my(z),(4.3)

with each mi(z) representing the according monomial of f in the notation of (4.1).

Lemma 4.6. Let n ≥ 2, α(0) = 0, b0 = 1 and f ∈ Py
∆ such that A(f) has genus one.

(a) If z ∈ (C∗)n with Log(z) = eq(y) then |my(z)| > 1.
(b) The equilibrium point eq(y) is contained in the interior of the simplex with vertices

eq(0), . . . , eq(n).

Proof. (a) Assume that |my(z)| ≤ 1. Due to definition of eq(y) and Log(z) = eq(y)
we know |mi(z)| = 1 for all i ∈ {0, . . . , n}. Hence, we have eq(y) ∈ C(f). By Lemma 4.4
eq(y) is the unique point where the infinite cells of C(f) intersect. Thus, C(f) has genus
zero. This yields a contradiction since A(f) has genus one and C(f) is a deformation
retract of A(f) for n ≥ 2 by Theorem 2.15.

(b) Let Σ′ be the simplex with vertices eq(0), . . . , eq(n). By definition of C(f) we have
for all z ∈ (C∗)n: If |my(z)| > |mi(z)| for all i ∈ {0, . . . , n}, then Log(z) is contained in
the interior of Σ′. With (a) the assertion follows. �

Let f ∈ Py
∆, and consider f with a varying angle arg(c). An angle arg(c) is called in

extreme opposition if there exists some z ∈ (C∗)n with

(4.4) arg(my(z)) = arg(mi(z)) + π mod 2π, for all i ∈ {0, . . . , n} .
Since condition (4.4) is actually independent of the modulus of z (and also of the modulus
of the coefficients), we call arg(z) an extremal phase.

Lemma 4.7. Let f be in Py
∆, where we consider arg(c) as a parameter. Then there always

exists some choice of arg(c) such that arg(c) is in extreme opposition.
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Proof. By multiplying f with a Laurent monomial, we can assume α(0) = 0 and
b0 = 1.

Setting φ = arg(z), the condition (4.4) is a linear condition in φ. Using the non-
singular integral matrix M∆ introduced above, the image of [0, 2π)n under the mapping
φ 7→ M∆φ is a D-fold covering of [0, 2π)n where D = det(M∆). Hence, there exists
φ ∈ [0, 2π)n with

M t
∆ · φ = −(arg(b1), . . . , arg(bn))

t mod 2π,

and indeed the number of distinct solutions for φ in [0, 2π)n is D. Setting arg(c) =
π − 〈φ, y〉 we obtain the result. �

Recall the parametric family fκ of polynomials in Py
∆, which we introduced in (4.2).

For such a parametric family fκ we are interested in those parameters κ where the genus
of A(fκ) changes. We say that A(fκ) switches from genus zero to one at κ0, if Ey(fκ0) = ∅
and for every (sufficiently small) ε > 0 we have Ey(fκ0+ε) 6= ∅. Note that, if κ is sufficiently
large, then A(fκ) is always of genus one (e.g., by the lopsidedness criterion; see Chapter
2, Section 5).

For a parameter value κ1 ∈ R with Ey(fκ1) 6= ∅ we are furthermore interested in
characterizing the point where the complement component Ey appears first (with respect
to values κ < κ1 in the parametric family). Formally, we say that the inner complement
component Ey(fκ1) appears first at w ∈ Log ((C∗)n) if the following conditions hold:

(a) w ∈ Ey(fκ1), and
(b) there exists a κ0 < κ1 such that Ey(fκ0) = ∅ and for every κ ∈ [κ0, κ1] we have

Ey(fκ) = ∅ or w ∈ Ey(fκ).

For every such κ1 this point is unique due to convexity of complement components and
will be denoted by app(fκ1).

Let K ⊂ R≥0 for some given parametric family fκ denote a set of parameters where
A(fκ) switches from genus zero to one. Then we say fκ switches the last time from
genus zero to one at κ∗ = maxK. In the following we are in particular interested in the
corresponding point app(fκ∗) where the inner complement component finally appears and
which we denote as a(fκ). Note that this maximum always exists since K is bounded
from above (e.g., due to lopsidedness condition).

Let M j
∆ be the matrix obtained by replacing the j-th column of M∆ by y. For conve-

nience of notation we define

Θ =
n∏

i=1

b
det(M i

∆)/det(M∆)

i .(4.5)

With the results of the lemmata we are able to establish the main theorem of this
section.

Theorem 4.8. Let n ≥ 2, let fκ be a parametric family of the form (4.2) in Py
∆ with

α(0) = 0, b0 = 1, and let Θ be defined by (4.5).

(a) For κ = |Θ| we have eq(y) = eq(0) = · · · = eq(n). Hence, in particular, A(fκ) is
solid for all choices of arg(c) whenever κ ≤ |Θ|.
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(b) For κ > (n + 1) · |Θ| we have eq(y) 6∈ A(fκ) and hence A(fκ) has genus one. If
additionally arg(c) is in extreme opposition and the inner complement component
Ey(fκ) appears finally at the point eq(y) then this bound is sharp, i.e., eq(y) ∈
A(f(n+1)·|Θ|).

Note that the question if the inner complement component appears finally at eq(y)
will be discussed in the next section.

Proof. As initial preparation, we note that for f ∈ Py
∆ and any z ∈ (C∗)n with

Log(z) = eq(y) we have |my(z)| = |c|/|Θ|. Namely, by Lemma 4.4 we have

|my (z)| = |c| · e〈eq(y),y〉 = |c| · exp
(
−
〈(
M t

∆

)−1 · Log(b), y
〉)

and the claim follows with Cramer’s rule.
(a) Let z ∈ (C∗)n with Log(z) = eq(y). By Lemma 4.4 we have |mi (z)| = 1 for all

i ∈ {0, . . . , n}. If κ = |Θ| we have |my (z)| = 1 as well due to initial calculation. Hence,
by definition of eq(y) and of the eq(k), all equilibrium points coincide. The solidness of
A(fκ) for such κ follows from Lemma 4.6.

(b) Assume eq(y) ∈ A(fκ) for some κ > (n + 1) · |Θ|. Then there exists a point
z ∈ (C∗)n with Log(z) = eq(y) and fκ(z) = 0. By the definition of eq(y) and our initial
calculation, we have |my(z)| = κ/|Θ| and |mi(z)| = 1, and thus

κ

|Θ| · e
i·(arg(c)+〈φ,y〉) + 1 +

n∑

j=1

ei·(arg(bj)+〈φ,α(j)〉) = 0.(4.6)

But since each exponential term has modulus 1, this implies κ ≤ |Θ|·(n+1), contradicting
the precondition.

Since eq(y) ∈ conv{eq(0), . . . , eq(n)} (Lemma 4.6 (b)), the fact eq(y) /∈ A(f) already
implies eq(y) ∈ Ey(f), and thus Ey(f) 6= ∅.

Recall the definition of the fiber function f |z| from Chapter 3, Section 1. Assume
now that the inner complement component Ey(fκ) appears finally at eq(y). It suffices
to show that eq(y) ∈ A(f(n+1)|Θ|). If arg(c) is in extreme opposition then (by definition
of an extremal phase) there exists a φ ∈ [0, 2π)n satisfying (4.6) with arg(c) + 〈φ, y〉 =
π + arg(bj) + 〈φ, α(j)〉. Hence, on the fiber Feq(y) of eq(y) at φ the (κ depending) fiber

function attains f |Log−1(eq(y))|(φ) = −κ + (n + 1)|Θ| and we have eq(y) ∈ A(f(n+1)|Θ|) for
our choice of κ. �

Theorem 4.8 yields the following corollary, which solves the Problem 3.4 for the special
class Py

∆. Note that this is a special case of the (already proven) Theorem 3.9.

Corollary 4.9. Maximally sparse polynomials with simplex Newton polytope have solid
amoebas.

Proof. For n = 1, the amoeba A(f) of a maximally sparse polynomial f is a single
point. For n ≥ 2 and fκ of the form (4.2), Theorem 4.8 (a) yields that A(fκ) is solid for
all κ ≤ |Θ|. Since |Θ| > 0, A(fκ) is in particular solid for κ = 0, i.e., if f is maximally
sparse. �
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1.2. Points of Appearance of the Inner Complement Component and Sharp
Bounds. In the previous section we gave a lower and an upper bound for A(f) having

genus zero respectively one via investigating the fiber function f |Log−1(eq(y))|. We have seen
that if the inner complement component appears finally at eq(y) (and arg(c) is in extreme
opposition), then the upper bound gets sharp. In this section we investigate in general
where the complement component appears finally and how this point is related to eq(y).
Based on this investigation, we provide lower and upper bounds partially improving The-
orem 4.8 (see a comparison at the end of the section). We show that, under some extremal
condition, the upper bound is tight and the inner complement component appears finally
at a unique, explicitly computable minimum a(fκ), which happens to coincide with eq(y)
if and only if the inner lattice point is the barycenter of the Newton polytope (Theorems
4.10, 4.13 and Corollary 4.12).

As before, let ∆ be a lattice n-simplex and y be in the interior of ∆. Again, we consider
the parametric family fκ as introduced in (4.2). In the first statement we assume that
y = 0.

Theorem 4.10. Let n ≥ 2 and fκ be a parametric family of polynomials in P0
∆ with

fκ = κ · ei·arg(c) +∑n
i=0mi(z) = κ · ei·arg(c) +∑n

i=0 bi · zα(i). Let Log(z) = w ∈ Rn and
assume that |m0

(
Log−1(w)

)
| ≤ · · · ≤ |mn

(
Log−1(w)

)
|. Then there exists a κ ∈ R>0

such that

κ ≥
n∑

j=2

|mj

(
Log−1(w)

)
| and w 6∈ Ey(fκ).

Proof. Since α(0), . . . , α(n) form a simplex, there is a dual basis α(1)∗, . . . , α(n)∗ ∈
Qn with 〈α(j)∗, α(k)〉 = 0 for all k 6∈ {j, 0}. An outline of the proof is that we choose
λ1, . . . , λn ∈ [0, 2π) such that for φ =

∑n
j=1 λjα(j)

∗ and Log(z) = w the κ depending

fiber functions satisfy f
|z|
κ (φ) = 0 for some κ ∈ R>0 sufficiently large.

We can choose λ2, . . . , λn ∈ [0, 2π) with

ei·(arg(bj )+〈λjα(j)∗,α(j)〉) = arg(c) + π for all j ∈ {2, . . . , n}.
We may finally choose λ1 ∈ [0, 2π) such that the sum of the two shortest monomials

|m0 (z) | · ei·(arg(b0)+
∑n

j=1〈λjα(j)
∗,α(0)〉) + |m1 (z) | · ei·(arg(b1)+〈λ1α(1)∗,α(1)〉)

is either zero or a complex number with argument arg(c)+π, due to the following Rouché-
type principle from complex analysis. Recall that the winding number of a closed curve
γ in the complex plane around a point z is given by 1

2πi

∫
γ

dζ
ζ−z

(see e.g., [32]).

Claim. For A,B ∈ C with A > B and r, s ≥ 1 the function g(φ) = A · ei·rφ+B · ei·sφ with
φ ∈ [0, 2π) has a non-zero winding number with respect to the origin.

Clearly, the function A · ei·rφ has a non-zero winding number. Now, assuming that
g has a winding number of zero, there would exist some t ∈ (0, 1) such that h(φ) =
A · ei·rφ + t · B · ei·sφ has a zero φ outside the origin. This is a contradiction.
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Altogether, for φ =
∑n

j=1 λi · α(j)∗, we get f
|z|
κ (φ) = (κ−∑n

j=2 |mj (z) | + ξ) · ei·arg(c)
with ξ ∈ R<0 for |m1 (z) | > |m0 (z) | and hence ξ ∈ R≤0 for |m1 (|z|) | = |m0 (z) |. Thus,

we have f
|z|
κ (φ) = 0 for κ = |ξ| +∑n

j=2 |mj (z) |. This yields Log(z) 6∈ Ey(fκ) for such
choice of κ. �

Our goal is to characterize the κ, for which the amoeba A(fκ) switches the last time
from genus zero to genus one. First, we consider the case of arg(c) in extreme opposition
and then we use this case to provide a bound for the general case.

Let arg(c) be in extreme opposition for fκ (note that this property is independent of
the choice of κ). For a point z ∈ (C∗)n with Log(z) = w, the κ depending fiber function

f
|z|
κ on the fiber Fw of w evaluates for an extremal phase φ to

f |z|
κ (φ) =

(
κ · e〈w,y〉 − 1−

n∑

j=1

|bj | · e〈w,α(j)〉
)

· ei·ψ

for some angle ψ ∈ [0, 2π). Since we are only interested in the zeros of f
|z|
κ , we can always

assume ψ = 0. Clearly, w ∈ Ey(fκ) whenever κ · e〈w,y〉 > 1 +
∑n

j=1 |bj | · e〈w,α(j)〉.
Since an extremal phase φ yields the minimal real value of f on a fiber Fw and since

A(fκ) has genus one if Ey(fκ) 6= ∅, the κ∗ where A(fκ) switches its genus the last time is
given by

min
w∈Rn

(
e−〈w,y〉 +

n∑

j=1

|bj| · e〈w,α(j)−y〉
)

∈ R>0.(4.7)

The minimizer w∗ then has to be the point a(fκ) where the inner complement component
finally appears for arg(c) in extreme opposition, since w∗ /∈ Ey(fκ∗), w

∗ ∈ Ey(fκ) for
all κ > κ∗ and for all w 6= w∗ there is a κ > κ∗ such that w /∈ Ey(fκ). Notice that the
location of the point a(fκ) does not depend on κ (the notation might be sort of misleading
here).

In the following we set M̂∆ = (α(j)i − yi)1≤i,j≤n and M̂ j
∆ as the matrix obtained by

replacing the j-th column of M̂∆ by y.

Lemma 4.11. Let α(0) = 0, b0 = 1, and arg(c) be in extreme opposition for fκ. The
point a(fκ) where the inner complement finally appears is given by eq(y)+ s∗, where s∗ is
the solution of the system of linear equations

M t
∆ · s = (γ1, . . . , γn)

t(4.8)

with γj = log
(
det(M̂ j

∆)/ det(M̂∆)
)
for j ∈ {1, . . . , n}.

Proof. It suffices to show that eq(y) + s∗ solves the Problem (4.7). Substituting
w = eq(y)+s into (4.7) and applying Lemma 4.4 and Theorem 4.8 simplifies the problem
to

|Θ| · min
s∈Rn

(
e−〈s,y〉 +

n∑

j=1

e〈s,α(j)−y〉

)
.
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To compute the global minimum of e−〈s,y〉+
∑n

j=1 e
〈s,α(j)−y〉 we observe that the partial

derivatives

∂fκ
∂ si

= −yi · e−〈s,y〉 +

n∑

j=1

(α(j)i − yi) · e〈s,α(j)−y〉

vanish if and only if
∑n

j=1 (α(j)i − yi) · e〈s,α(j)〉 = yi for all i ∈ {1, . . . , n}. We obtain M̂∆ ·(
e〈s,α(1)〉, . . . , e〈s,α(n)〉

)t
= y, and hence e〈s,α(j)〉 = det(M̂ j

∆)/ det(M̂∆) for j ∈ {1, . . . , n}.
Setting γj = log det(M̂ j

∆) − log det(M̂∆) > 0 yields 〈s, α(j)〉 = γj . Thus, we obtain a
system of linear equations (4.8). Since its solution is unique and lim|s|→∞ f(s) = ∞ this
critical point has to be a minimum. �

Note that, by Lemma 4.4 and 4.11, the point a(fκ) is the solution of the system of
linear equations given by

M t
∆ · x = (γ1 − log |b1|, . . . , γn − log |bn|)t.(4.9)

Hence, a(fκ) can be computed explicitly in terms of the coefficients and exponents of f .

Corollary 4.12. Let arg(c) be in extreme opposition for fκ. The point a(fκ), where the
inner complement component appears finally, coincides with the equilibrium point eq(0) if
and only if y is the barycenter of ∆, i.e., if and only if

n∑

j=1

α(j) = (n+ 1) · y.

Proof. Since b0 ∈ C∗ and V(f) ⊂ (C∗)n we may assume α(0) = 0, b0 = 1 (otherwise
divide f by b0 · zα(0)). Then the result follows from

∑n
j=1 (α(j)i − yi) · e〈s,α(j)〉 = yi for all

i ∈ {1, . . . , n}. �

With these statements we can prove the main theorem of this section.

Theorem 4.13. Let fκ be a parametric family of polynomials in Py
∆ of the Form (4.2)

with α(0) = 0, b0 = 1, let arg(c) be in extreme opposition and set

Θ̂ =

n∏

j=1


det(M̂∆) · bj

det
(
M̂ j

∆

)




det(Mj
∆)/det(M∆)

.(4.10)

A(fκ) switches the last time from genus zero to one at

κ = |Θ̂| ·


1 +

n∑

j=1

det
(
M̂ j

∆

)

det(M̂∆)


 .(4.11)

For all other choices of arg(c) we have: If A(fκ) is solid, then κ is strictly bounded from
above by the right hand side of (4.11).
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Proof. Let arg(c) be in extreme opposition. By Lemma 4.11 it is easy to verify that

for an extremal phase φ′ ∈ [0, 2π)n we have e−〈a(fκ),y〉 · ei·〈φ′,y〉 = Θ̂. We know that A(fκ)
switches the last time from genus zero to one at

κ∗ = min
s∈Log((C∗)n)

(
e−〈eq(y)+s,y〉 +

n∑

j=1

|bj| · e〈eq(y)+s,α(j)−y〉
)
.

Due to above calculation of Θ̂ and (4.9) this is equivalent to (4.11).
Let arg(c) be not in extreme opposition. By the upper argumentation we have

Ey(fκ) = ∅ if and only if V(f |Log−1(a(fκ))|
κ ) 6= ∅. Let φ ∈ [0, 2π)n be a zero of f

|Log−1(a(fκ))|
κ .

Since arg(c) is not in extreme opposition, not all outer monomial have the same argument

at f
|Log−1(a(fκ))|
κ (φ) and therefore |f |Log−1(a(fκ))|

κ (φ)| < |Θ̂| ·
(
1 +

∑n
j=1

det(M̂j
∆)

det(M̂∆)

)
. �

It follows from the argumentation above that the upper bound, which we computed in
Theorem 4.13, which guarantees amoebas of polynomials in Py

∆ to be solid, improves the
upper bound from Theorem 4.8 (b) in all cases but the one in Corollary 4.12. The reason
is basically that we minimize over all Rn instead of just choosing the equilibrium point.

For the lower bound computed in Theorem 4.10 notice that it holds for all κ, and
hence improves the lower bound from Theorem 4.8 (a), if there exists only one κ such
that fκ ∈ ∂UA

y (i.e., if the genus switches only once from zero to one for κ running from
0 to ∞). The question if this is the case is closely related to the question whether the
set UA

y is connected, which was (for general polynomials) introduced as Problem 2.22 in
Chapter 2, Section 4.

1.3. Connection to Lopsidedness and A-discriminants. In the following section
we investigate the configuration space Py

∆ for polynomials in our class of interest from
two other points of view, namely, lopsidedness and A-discriminants.

Recall the definition of lopsidedness and the main results about it, which we introduced
in Chapter 2, Section 5. As before, let A ⊂ Zn be an arbitrary support set, let CA

♦ be the
corresponding augmented configuration space (see Chapter 2 Section 4 and Chapter 3,
Section 2), and let UA

α be the set of polynomials f ∈ CA
♦ whose amoeba has a complement

component of order α.
For f ∈ CA

♦ let furthermore T(f) denote the real d-torus of polynomials in CA
♦ , whose

coefficients have the same absolute values as the coefficients of f , i.e., for f =
∑

α∈A bαz
α

we have

T(f) =

{∑

α∈A

ei·ψα · bαzα : ψα ∈ [0, 2π) for all α ∈ A

}
.

It is an easy consequence of the definition of lopsidedness that the following proposition
holds (which is, to the best of our knowledge, surprisingly nowhere mentioned in the
literature).
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Proposition 4.14. Let A ⊂ Zn and f =
∑

α∈A bαz
α. Assume that Eα′(f) is non-empty

for some α′ ∈ conv(A) ∩ Zn and that there exists some w ∈ Eα′(f) such that f{w} is
lopsided. Then g{w} is lopsided for every g ∈ T(f). In particular T(f) ⊂ UA

α′.

Proof. Since g{w} = f{w} for every g ∈ T(f), for every w ∈ Eα′(f) with f{w}
lopsided we have g{w} lopsided as well. Thus Eα′(g) 6= ∅ and hence g ∈ UA

α′ . �

The proposition basically says that, if one has a polynomial f whose amoeba has a
complement component Eα(f) and f is lopsided at some point w ∈ Eα(f), then for every
polynomial g in the torus T(f) g is lopsided at w and hence in particular, Eα(g) 6= ∅.
Since the lopsidedness property is preserved for an increasement of |bα′ |, the proposition
yields that every UA

α , although it might be not connected, contains a special, say, “main”
connectivity component.

The following Theorem 4.15 shows that for polynomials in Py
∆ the converse of Propo-

sition 4.14 is also true. In this statement it is convenient to have the origin as the interior
lattice point. Hence, we set A = {α(0), . . . , α(n), 0}. We may always assume this since
we can divide f by zy due to V(f) ⊂ (C∗)n.

Theorem 4.15. Let fc = c +
∑n

j=0 bjz
α(j) = c +

∑n
j=0mj(z) be a parametric family

in P0
∆ with complex parameter c ∈ C, and let a = a(f|c|) be the point where the inner

complement component appears finally for positive real parameter values |c| and arg(c) in
extreme opposition. If there exists some d ∈ C∗ such that T(fd) ⊂ UA

0 , then fd{a} is
lopsided with |d| as the maximal term.

Proof. Let d ∈ C∗ with T(fd) ⊂ UA
0 . First we show that for every c ∈ C with

|c| ≥ |d| the amoeba A(fc) is of genus one.
The parametric family fc forms a complex line in P0

∆, which can be interpreted as a
real plane H . By Theorem 2.21 the intersection of (UA

α )
c with an arbitrary projective line

in CA
♦ (viewed as a projective space) is non-empty and connected (even for arbitrary A).

For the parameter value c = 0 we are in the maximally sparse case, and thus Corollary 4.9
implies f0 ∈ (UA

0 )
c. By the precondition T(fd) ⊂ UA

0 , the set C = {fc : c = |d| · ei·φ, φ ∈
[0, 2π)} ⊂ T(fd) is contained in UA

0 . Considered in the plane H , the set C is a circle
around the origin. Now the connectedness result implies that for |c| ≥ |d| the amoeba
A(fc) is of genus one (see Figure 4.3 for an illustration).

For arg(c) in extreme opposition, let κ∗ ∈ R be the value where A(f|c|) switches the last
time from genus zero to one. By Theorem 4.13, the upper bound is attained at some point
z ∈ (C∗)n with Log(z) = a and extremal phase φ. Hence, by evaluating the fiber function
f |z| on the fiber Fa at φ we obtain κ∗ =

∑n
j=0 |bj | · e〈a,α(j)〉. The auxiliary statement yields

that κ∗ < |d|, and thus |d| >∑n
j=0 |bj| · e〈a,α(j)〉 =

∑n
j=0

∣∣mj

(
Log−1(a)

)∣∣. �

The same argumentation yields some nice local, structural consequences on CA for
general support sets.

Corollary 4.16. Let A ⊂ Zn with 0 ∈ A and let fc = c+
∑

α∈A\{0} bαz
α be a parametric

family. Let c1, c2 ∈ C be parameters with |c1| < |c2| such that fc1 /∈ UA
0 . If there exists an

κ ∈ (|c1|, |c2|) ⊂ R such that for C = {fc ∈ CA : |c| = κ} holds C ⊂ UA
0 , then fc2 ∈ UA

0 .
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fc, |c| > |d|

C ⊂ UA
0

f0 ∈ (UA
0 )c

Figure 4.3. The real plane H in the proof of Theorem 4.15.

The Corollary can be regarded as a local refinement of Proposition 4.14 on CA, avoiding
the explict use of the lopsidedness condition.

Proof. Follows immediately from the argument in the first part of the proof of The-
orem 4.15 (see Figure 4.3). �

We recall some of the terminology for A-discriminants. For a support set A ⊂ Zn let
∇0 ⊂ CA denote the set of all polynomials f such that there exists a point z∗ ∈ (C∗)n

with

f(z∗) =
∂f

∂z1
(z∗) = · · · =

∂f

∂zn
(z∗) = 0

and let ∇A denote the Zariski closure of ∇0. If the variety ∇A is of codimension one, then
the A-discriminant ∆A is defined as the irreducible, integral polynomial in the coefficients
b1, . . . , bd of f ∈ CA as variables, which vanishes on ∇A. The A-discriminant is unique up
to sign (see [23, Chapter 9, p. 271]).

The following theorem shows that, for polynomials in Py
∆, there is a strong connection

between their A-discriminants and the topology of their amoebas. Here, UA
y denotes the

topological closure of the set UA
y . Set A = {α(0), . . . , α(n), y}.

Theorem 4.17. Let α(0) = 0, b0 = 1. A polynomial f = c · zy + 1 +
∑n

i=1 bi · zα(i) ∈ Py
∆

is contained in ∇A if and only if the expression

c+ Θ̂ ·


1 +

n∑

j=1

det
(
M̂ j

∆

)

det(M̂∆)


(4.12)

in the variables b1, . . . , bn, c vanishes. Here, Θ̂ is defined as in (4.10).

Note that a power of the summands of (4.12) is an irreducible binomial with rational
coefficients. Up to normalizing the coefficients, this is the A-discriminant.

Corollary 4.18. Let α(0) = 0 and b0 = 1. The A-discriminant ∆A is a binomial whose
variety coincides with the set of projective points (1 : b1 : . . . : bn : c) where arg(c) is in
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extreme opposition and A(f|c|) switches the last time from genus zero to genus one exactly

at the value |c| = |Θ̂| · (1 +∑n
j=1 det(M̂

j
∆)/ det(M̂∆)).

Proof. (Theorem 4.17) For the given polynomial f ∈ Py
∆ we have

∂f

∂zj
= yj · c · zy−ej +

n∑

i=1

bi · α(i)j · zα(i)−ej , 1 ≤ j ≤ n,(4.13)

where ej denotes the j-th unit vector. Assume that arbitrary b1, . . . , bn ∈ C∗ are fixed.
Substituting f into zej times the expression (4.13) yields a regular system of linear equa-
tions in (zα(1), . . . , zα(n)). The regularity comes from the fact that α(1), . . . , α(n) are the
vertices of a simplex. Hence, there are only finitely many solutions z∗ ∈ (C∗)n such that
all partial derivatives vanish, and all of these solutions have the same modulus. For any
such solution z∗, solving f = 0 for c, yields a unique and non-zero c such that the polyno-
mial f corresponding to the coefficients b1, . . . , bn, c is in ∇A. This argumentation shows
furthermore that ∇A is a subvariety of codimension one and hence ∆A exists. Observe
that z∗ does not depend on c.

Let now φ′ ∈ [0, 2π)n be an extremal phase. Then (a(fκ), φ
′) = z∗ since we know

∂f
∂zj

(a(fκ), φ
′) = 0 for all j ∈ {1, . . . , n} from the last section (see the proof of Lemma

4.11). But since further f
|Log−1(a(fκ))|
κ (φ′) = 0 if and only if c is in extreme opposition and

its modulus equals the bound from Theorem 4.13, we have f ∈ ∇A if and only if (4.12)
vanishes. �

Proof. (Corollary 4.18) Expression (4.12) is a Laurent binomial in the variables
b1, . . . , bn, c with rational coefficients and monomials in distinct variables. Now the state-
ment follows from Theorem 4.17 via Theorem 4.13. �

We remark that a different connection between A-discriminants and amoebas was
investigated by Passare, Sadykov and Tsikh in [64] who studied the amoebas of A-
discriminantal hypersurfaces. For further connections between A-discriminants and poly-
nomials in the class Py

∆, see also [4, 5].

1.4. An Example. Since all bounds and formulas are quite overwhelming we apply
the results of Section 1 to an example defined in the following, which we discuss in this
Section 1.4. Let A = {α(0), α(1), α(2), y} = {(0, 0), (7, 1), (1, 2), (1, 1)} and ∆ = conv(A)
as usual. We investigate f ∈ Py

∆ given by

f = 1 + c · z1z2 + z71z2 + 2 · i · z1z22 .
We start with the calculation of the equilibrium point eq(y) (Definition 4.3) and the

rough bounds shown in Theorem 4.8. With M∆ = (α(j)i)1≤i,j≤n and M j
∆ given by replac-

ing the j-th column in M∆ by y we have

M∆ =

(
7 1
1 2

)
, M1

∆ =

(
1 1
1 2

)
, M2

∆ =

(
7 1
1 1

)

eq(y) is the point in Rn where all outer monomials are in equilibrium, i.e., attain norm 1
due to the constant term here. Hence, the following system of linear equations needs to
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be satisfied:

e〈(7,1),eq(y)〉 = 1

e〈(1,2),eq(y)〉 = 1/2

⇔ 7 eq(y)1 + eq(y)2 = 0

eq(y)1 + eq(y)2 = − log 2

⇒ eq(y) = 1/13 · (log 2,−7 log 2).

Thus, to ensure that the inner monomial is the dominant term on the fiber f |Log−1(eq(y))|

of eq(y), we need to have

|c| · eq(y)1 · eq(y)2 > 1

⇔ |c| · e1/13 log 2 · e−7/13 log 2 > 1

⇔ |c| > 26/13 ≈ 1.377.

This lower bound coincides, as claimed in Theorem 4.8, with the lower bound given
by |Θ| (see (4.5)) since

Θ =
det(M∆)

√
b
det(M1

∆)
1 · bdet(M

2
∆)

2 =
13
√
11 · 26.

The same theorem states that we have an upper bound for A(f) to be solid, which is
given by

|c| ≤ (n + 1) · |Θ| ≈ 4.131.

Now, we compute the improved upper bound via Θ̂. With M̂∆ = (α(j)i − yi)1≤i,j≤n
and M̂ j

∆ given by replacing the j-th column in M̂∆ by y we have we have

M̂∆ =

(
6 0
0 1

)
, M̂1

∆ =

(
1 1
0 1

)
, M̂2

∆ =

(
6 0
1 1

)

By Lemma 4.11 the point a(fκ), where the inner complement component finally ap-
pears, is given by

min
w∈Log((C∗)2)

(
e〈−y,w〉 + e〈α(1)−y,w〉 + 2 · e〈α(2)−y,w〉

)
.

Since we define s = w − eq(y) and since e〈−y,eq(y)〉 = Θ, we obtain

|Θ| · f̂ = |Θ| ·
(
e〈(−1,−1),s〉 + e〈(6,0),s〉 + 2 · e〈(0,1),s〉

)
.

We compute

∂f̂

∂s1
= −1 · e〈(−1,−1),s〉 + 6 · e〈(6,0),s〉,

∂f̂

∂s2
= −1 · e〈(−1,−1),s〉 + 1 · e〈(0,1),s〉.

Thus, for s∗ to be a global minimum, i.e., both partial derivatives to vanish, we need

6 · e〈(7,1),s∗〉 = 1, 1 · e〈(1,2),s∗〉 = 1.
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This yields

7s∗1 + s∗2 = − log 6

s∗1 + 2s∗2 = 0

⇒ s∗ = 1/13 · (−2 log 6, log 6).

Hence, the global minimum is attained at

a(fκ) = s∗ + eq(y) = 1/13 · (−2 log 6 + log 2, log 6− 7 log 2).

We compute |Θ̂|:

|Θ̂| = e−〈a(fκ),y〉 = e1/13·(1·(2 log 6−log 2)+1·(− log 6+7 log 2)) =
13
√
6 · 26 ≈ 1.5805.

The upper bound is given by the assumption that there exists an argument in the
fiber f |Log−1(a(fκ))| of the global minimum (i.e., the point, where the inner complement
component finally appears) a(fκ) under the Log-map such that the inner monomial is in
extreme opposition (see Section 1.2). If this is the case, then we have

|c| = |Θ̂| ·
(
1 + e〈α(1),s

∗〉 + e〈α(2),s
∗〉
)

=
13
√
6 · 26 ·

(
1 + e〈(7,1),1/13·(−2 log 6,log 6)〉 + e〈(1,2),1/13·(−2 log 6,log 6)〉

)

=
13
√
6 · 26 · (1 + 1/6 + 1) ≈ 3.4244.

Furthermore, the final change of the genus (i.e., the appearance of an inner complement
that does not vanish for increasing |c|) may due to Theorem 4.10 not happen before

|c| =
13
√
6 · 26 · (1− 1/6 + 1) ≈ 2.8976.

Notice that also in this case we obtain the correct upper bound by using the formula
given in Theorem 4.13

Θ̂ =

2∏

j=1


det(M̂∆) · bj

det
(
M̂ j

∆

)




det(Mj
∆)/det(M∆)

=

(
1 · 6
1

)1

·
(
2 · i · 6

6

)6/13

= 13
√

6 · (2 · i)6

and (the bound):

|c| > |Θ̂| ·


1 +

2∑

j=1

det
(
M̂ j

∆

)

det(M̂∆)


 =

13
√
6 · 26 · (1 + 1/6 + 1).

Finally, we compute the corresponding A-discriminant for the case 1+c·z1z2+b1z71z2+
b2 · z1z22 . Due to Theorem 4.17 it is given by the variety of the polynomial c + Θ̂ ·(
1 +

∑2
j=1

det(M̂j
∆)

det(M̂∆)

)
and therefore the A-discriminant is given by

∆A(f) = c13 + (13/6)13 · 6 b1b62.
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2. Amoebas of Genus at Most One with Barycentric Simplex Newton
Polytope

In this section we treat polynomials in Py
∆ where the exponent of the inner monomial

is the barycenter of the simplex spanned by the exponents of the outer monomials. We
call such a pair (∆, y) barycentric. For this class we provide a complete classification of the
configuration space of amoebas, i.e., the set UA

y and its complement (UA
y )

c. In particular,
we are able to answer Rullg̊ard’s question for this barycentric case by showing that set
UA
y is path-connected (Corollary 4.25).
In [63, Proposition 2] Passare and Rullg̊ard showed that the amoeba of f(z) = 1+ c ·

z1 · · · zn+
∑n

i=1 z
n+1
i ∈ C[z] has a complement component of order (1, . . . , 1) if and only if

0 6∈ A(f). Moreover, this component exists if and only if c 6∈ {−t1−· · ·− tn : ti ∈ C, |ti| =
1, t1 · · · tn = 1}. We generalize this result as well as our Corollary 4.12 to the following
theorem. From now on let n ≥ 2, A = {α(0), . . . , α(n), y} and conv(A) = ∆.

Theorem 4.19. Let (∆, y) be barycentric, and let fc be a family of parametric polynomials
in Py

∆ with parameter c ∈ C (i.e., |c| and arg(c)). Then for every parameter value c ∈ C

the following statements are equivalent:

(a) fc ∈ UA
y (i.e., A(fc) has genus one),

(b) eq(y) ∈ Ey(fc),

(c) c 6∈
{
−|Θ| ·

n∑
j=0

ei·(arg(bj)+〈α(j)−y,φ〉) : φ ∈ [0, 2π)n

}
.

Proof. Since the inner lattice point y is the barycenter, we have fc = c ·zy+∑n
j=0 bj ·

zα(j) and
∑n

j=0 α(j) = (n+ 1) · y. As usual, we may assume b0 = 1 and α(0) = 0.

(b) ⇔ (c): Since α(0), . . . , α(n) form a simplex, the equilibrium point eq(y) is unique.
At eq(y) we have for the outer monomials |bi| · e〈α(i),eq(y)〉 = 1 (Definition 4.3) and further-
more e〈y,eq(y)〉 = 1/|Θ| (proof of Theorem 4.8). Hence, at eq(y) the fiber function is given
by

f |Log−1(eq(y))|
c (φ) = c · ei·〈y,φ〉 + |Θ| ·

n∑

j=0

ei·(arg(bj)+〈α(j),φ〉).

Thus, if and only if the condition (c) is satisfied, the variety V(f |Log−1(eq(y))|
c ) of the fiber

function f
|Log−1(eq(y))|
c is empty and therefore eq(y) /∈ A(fc). Since by Theorem 4.8 (a)

eq(y) may be contained in the complement of A(fc) only if c is the dominating term, we
have with Theorem 2.15 that eq(y) /∈ A(fc) if and only if eq(y) ∈ Ey(fc).

(b) ⇒ (a) is trivial. (a) ⇒ (b): Since we are only interested in V(fc) we may nor-
malize such that y = 0 and hence

∑n
i=1 α(i) = −α(0). We show that A(f) is symmet-

ric around eq(y): Assume that eq(y) + w ∈ Ey(fc) for an arbitrary w ∈ Rn. Setting
λj = 〈α(j), eq(y) +w〉 for j ∈ {1, . . . , n} we obtain

〈α(0), eq(y) +w〉 = −
n∑

j=1

〈α(j), eq(y) +w〉 = −
n∑

j=1

λj.(4.14)
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Then, for any permutation of the λj, there exists a w′ with 〈α(j), eq(y) + w′〉 = λj for
j ∈ {0, . . . , n}\{k, l} and 〈α(k), eq(y)+w′〉 = λl, 〈α(l), eq(y)+w′〉 = λk. This is obvious
for k, l ∈ {1, . . . , n}. Thus, let k = 0, l = 1 and 〈α(0), eq(y) +w′〉 = λ1. Then, by (4.14),
we have

〈α(1), eq(y) +w′〉 = −〈α(0), eq(y) +w′〉 −
n∑

j=2

〈α(j), eq(y) +w′〉 = −
n∑

j=1

λj,

i.e., every permutation of the lengths of the monomials at eq(y) +w is realized at some
point eq(y) +w′. Similarly, let φ ∈ [0, 2π)n with exp(i · 〈α(j), φ〉) = ψj ∈ [0, 2π). With
the same argumentation, there exists a φ′ realizing every given permutation of the ψj .
Altogether, such a permutation is realized by some C∗-basis transformation on (C∗)n.
Thus, if w′ realizes some permutation of the λj, then there exists a isomorphism π :
Feq(y)+w → Feq(y)+w

′ between the fibers Feq(y)+w and Feq(y)+w
′ . Thus, we have for all

ψ ∈ [0, 2π)n

f |Log−1(eq(y)+w)|(ψ) = f |Log−1(eq(y)+w
′)|(π(ψ)),

and hence for all such w′

eq(y) +w ∈ Ey(fc) ⇒ eq(y) +w′ ∈ Ey(fc).(4.15)

Now investigate the complement-induced tropical hypersurface C(fc− c) (see Chapter
2, Section 3) with eq(y) as unique vertex. Let A0, . . . , An denote the cells given by the
decomposition Rn \ C(fc − c). Since Ey(fc) is an open set and C(fc − c) has codimension
one in Rn, we can assume that w is contained in the interior of some Ai. The fact that
every permutation of the λi is realized at some point eq(y) + w′ together with (4.15)
yields: If eq(y) +w ∈ Ai, then there exists some eq(y) +w′ ∈ Ey(fc) for every Aj 6= Ai.
Since eq(y) is the unique vertex of C(fc − c) and due to convexity of Ey(fc), this implies
for every w 6= 0

eq(y) +w ∈ Ey(fc) ⇒ eq(y) ∈ Ey(fc).

�

Theorem 4.19 yields that understanding UA
y and its complement can be reduced to

understanding the c depeding fiber function f
|Log−1(eq(y))|
c and its variety. With this ap-

proach we will be able to provide a geometrical description of UA
y and (UA

y )
c.

For R > r, a hypocycloid with parameters R, r is the parametric curve in R2 ∼= C

given by

[0, 2π) → C, φ 7→ (R− r) · ei·φ + r · ei·( r−R
r )·φ.(4.16)

Geometrically, it is the trajectory of some fixed point on a circle with radius r rolling (from
the interior) on a circle with radius R. Hypocycloids are special instances of hypotrochoids,
which we introduce in Section 3. See Figure 4.6 where the central figure shows the
trajectory of a hypocycloid.
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The main part of this section is attended to proving the following nice and explicit
characterization of ∂(UA

y )
c.

Theorem 4.20. Let (∆, y) be barycentric. For given b0, . . . , bn ∈ C∗ the intersection of
the set ∂(UA

y )
c with the complex line {(b0, . . . , bn, c) : c ∈ C} is given by the (eventually

rotated) hypocycloid with parameters R = (n+ 1) · |Θ|, r = |Θ| and with cusps at

arg(c) = π ·
(
1 +

2k −∑n
i=1 arg(bi)

n + 1

)
, k ∈ {0, . . . , n}.

We have already seen that it suffices to treat the case y = 0. Let fc ∈ P0
∆ be a

parametric family with
∑n

i=0 α(i) = 0 and fixed b0, . . . , bn ∈ C∗, b0 = 1. For fc consider
the set

S =
{
c ∈ C : V(f |Log−1(eq(y))|

c ) 6= ∅
}

(4.17)

as a subset of R2 ∼= C. Theorem 4.19 shows that S is exactly the set of all c ∈ C such
that the inner complement component of A(f) exists. Hence, S ⊆ R2 is located in the
space P0

∆ intersected with the complex line {(b0, . . . , bn, c) : c ∈ C} induced by the family
fc. It contains all coefficient vectors of polynomials not belonging to UA

y . As a first step
towards the proof of Theorem 4.20 we show a technical result on the set S.

Lemma 4.21. Let k = −n + 1 + (−1)n+1 and

F : [k, n]× [0, 2π) → C, (µ, ψ) 7→ |Θ| · µ · ei·ψ + |Θ| · ei·(−n·ψ+
∑n

j=1 arg(bj)).(4.18)

Then

(1) The image of F is contained in the set S defined in (4.17).
(2) Up to a rotation, the curve parameterized by φ 7→ F (n, φ) for φ ∈ [0, 2π) is a

hypocycloid (4.16) with R = (n+ 1) · |Θ|, r = |Θ|.

Proof. By (4.17) and the definition of the fiber function (see Chapter 3, Section
1) the set S is given by the image of the function g : [0, 2π)n → C, φ 7→ −|Θ| ·∑n

j=0 e
i·(arg(bj)+〈α(j),φ〉) (Theorem 4.19). The idea of the proof is that the image of g

restricted to some particular subset of [0, 2π)n is exactly the image of F .
Again, let α(1)∗, . . . , α(n)∗ ∈ Qn denote the dual basis of α(1), . . . , α(n), and set

h(φ) = g(φ) + |Θ| · ei·〈α(0),φ〉 = −|Θ| ·
n∑

j=1

ei·(arg(bj)+〈α(j),φ〉).

Further let ψ ∈ [0, 2π) and σψ denote the segment [−k · |Θ| · ei·ψ, n · |Θ| · ei·ψ] ⊂ C.
First, we discuss the case of even n. For fixed ψ, let M = {φξ : ξ ∈ [0, π]} with

φξ =

n/2∑

j=1

(ψ − arg(bj) + ξ) · α(j)∗ +
n∑

j=n/2+1

(ψ − arg(bj)− ξ) · α(j)∗.
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Since arg(bj) + 〈α(j), φξ〉 = ψ + ξ for j ≤ n/2 (resp. ψ − ξ for j > n/2) and since all
summands have norm |Θ|, we see ei·(arg(bj)+〈α(j),φξ〉) + ei·(arg(bj)−〈α(j+n/2),φξ〉) ∈ σψ. Thus,
h(φξ) ∈ σψ for all φξ ∈ M .

Since furthermore the real part of h(φξ) ·e−i·ψ is given by n · cos(ξ), the image of h(M)
is σψ, i.e., {|Θ| · µ · ei·ψ : µ ∈ [k, n]}. Finally, we have for every φξ ∈ M

〈α(0), φξ〉 =
〈
−

n∑

j=1

α(j), φξ
〉

=

n/2∑

j=1

arg(bj)− ψ + ξ +

n∑

j=n/2+1

arg(bj)− ψ − ξ

=
n∑

j=1

arg(bj)− ψ.

Hence, the set g(M) = {h(φξ) + |Θ| · ei·〈α(0),φξ〉 : φξ ∈M} coincides with the set {|Θ| · (µ ·
ei·ψ + ei·(

∑n
j=1(arg(bj)−ψ))) : µ ∈ [k, n])}, i.e., g(M) = F ([k, n], ψ).

If n is odd, the argumentation is analogous up to the fact that we redefine M = {φξ :
ξ ∈ [0, π]} by

φξ = (ψ − arg(b1)) · α(1)∗ +
⌈n/2⌉∑

j=2

(ψ − arg(bj) + ξ) · α(j)∗ +

n∑

j=⌈n/2⌉+1

(ψ − arg(bj)− ξ) · α(j)∗.

This proves the first statement.
For the choice of R and r we obtain the hypocycloid curve {|Θ| ·n ·ei·φ+ |Θ| ·e−i·n|Θ|φ :

φ ∈ [0, 2π)}, which coincides with the image of F (n, ψ), ψ ∈ [0, 2π) up to a coordinate

change given by ψ 7→
(∑n

i=1 arg(bi)

n+1

)
+ φ. This is the second statement. �

Indeed, the next lemma states that the set S defined in (4.17) exactly coincides with
the region defined by the hypocycloid curve. See Section 2.1 for a detailed calculation.

Lemma 4.22. The set S equals the region T whose boundary is (up to rotation) the
hypocycloid with parameter R = (n+1) · |Θ|, r = |Θ| given by φ 7→ F (n, φ) for φ ∈ [0, 2π).
In particular, S is simply connected.

Note that this lemma shows that Problem 2.23 has an affirmative answer for the sets
UA
y in the case of polynomials with barycentric simplex Newton polytope, which we treat

in this section for all complex lines in CA, which are given by fixing the “outer” coefficients
and taking the “inner” one as variable. Here and in the following we sometimes identify
fb =

∑d
i=1 bi · zα(i) ∈ CA

♦ with its coefficient vector b = (b1, . . . , bd) and use an abreviate
notation b ∈ CA

♦ . With the results obtained up to this point we are now able to prove
Theorem 4.20:

Proof. (Theorem 4.20) Again, we may assume that y is the origin. For b0, . . . , bn ∈ C∗

we investigate the parametric family fc = c+
∑n

j=0 bi ·zα(i) ∈ P0
∆ with a parameter c ∈ C.

On this complex line in the space of amoebas we want to describe ∂(UA
y )

c.
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By Theorem 4.19 (c), A(fc) has genus one if and only if c 6∈ {|Θ|·∑n
j=0 e

i·(arg(bj)+〈α(j)−y,φ〉) :

φ ∈ [0, 2π)n} (recall that Θ depends on the choice of the bi), which is the complement of
S by definition. Therefore

∂
(
(UA

y )
c
)
∩ {(b0, . . . , bn, c) : c ∈ C} = ∂S.

By Lemma 4.22, ∂S is up to a rotation a hypocycloid with parameters R = (n+ 1) · |Θ|,
r = |Θ| around the origin. The location of the cusps follows from the definition of the
∂S-describing function F in (4.18) solving i · λ = −i · (n · λ+∑n

j=1 arg(bj)) mod 2π. �

Example 4.23. For the parametric family of polynomials fc = 1 + 2.4 · z21z2 + c ·
z1z

3
2 + (1 + 1.3i) · z1z82 , the set Py

∆ ∩ {(1 : 2.4 : 1 + 1.3 · i : c) : c ∈ C} (with ∆ =
conv{(0, 0), (1, 2), (2, 1), (1, 1)}) is illustrated in Figure 4.4. The non-real choice of one of
the “outer” coefficients causes a rotation of the set as described in Theorem 4.20.

Figure 4.4. A meshplot of S. The green (light) circle has radius 3 · |Θ|
and the blue (dark) circle has radius |Θ| with |Θ| ≈ 1.5789.

Finally, we show path-connectivity of the set UA
y and therefore answer Rullg̊ard’s ques-

tion for all spaces of amoebas of polynomials with barycentric simplex Newton polytopes
with one inner lattice point (see Corollary 4.25). As a cornerstone, we show the following
general result about configuration spaces of amoebas.

Theorem 4.24. Let A = {α(1), . . . , α(d)} ⊂ Zn and j ∈ {1, . . . , d}. If for every b ∈ CA
♦

the set {(b1, . . . , bd) : bj ∈ C}∩
(
UA
α(j)

)c
is simply connected, then UA

α(j) is path-connected.

Note that {(b1, . . . , bd) : bj ∈ C∗} is a complex line in CA
♦ , where all parameters

b1, . . . , bj−1, bj+1, . . . , bd are arbitrary, fixed complex numbers with bi 6= 0 if α(i) is a
vertex of conv(A).

Proof. We identify b ∈ CA
♦ with fb =

∑d
i=1 bi · zα(i) ∈ CA

♦ . Since no assumptions
are made about the α(j) here we may choose j = 1 to abbreviate notation. Let a, b ∈
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UA
α(1) ⊆ CA

♦ . We construct an explicit path γ between a and b such that γ ∈ UA
α(1). Let

[a, b] denote the line segment a + µ · (b− a) ⊂ CA
♦ , µ ∈ [0, 1]. For the construction of the

path we need a value κ ∈ R>0 for the norm of the first coordinate of points in CA
♦ such

that every point on [a, b] is lopsided. This is guaranteed by

κ = 1 + max
c∈ [a,b]

min
w∈Rn

{ d∑

i=2

|ci| · e〈w,α(i)−α(1)〉
}
∈ R>0.(4.19)

Define the points a′, b′ ∈ CA
♦ by

a′ = (κ · arg(a1), a2, . . . , ad), b′ = (κ · arg(b1), b2, . . . , bd).

The choice of κ guarantees that the polynomials fa′ and fb′ are lopsided at some point
with the monomial with exponent α(1) as the dominant term and therefore a′, b′ ∈ UA

α(1).

Since for every b ∈ CA
♦ the set {(b1, . . . , bd) : b1 ∈ C} ∩ (UA

α(1))
c is simply connected and

since a, a′, b, b′ ∈ UA
α(1), there exists a path γ1 from a to a′ and a path γ2 from b′ to b with

γ1 ⊂ {(a1, a2, . . . , ad) : a1 ∈ C} ∩ UA
α(1) and γ2 ⊂ {(b1, b2, . . . , bd) : b1 ∈ C} ∩ UA

α(1). Let

d = (κ · arg(b1), arg(b2) · |a2|, . . . , arg(bd) · |ad|).

Since there is a w ∈ Rn with w ∈ Eα(1)(fa′) and fa′{w} lopsided we have

T(fa′) =
{
f ′ = κ · ei·ψ1 · zα(1) +

d∑

j=2

ei·ψj · aj · zα(j) : ψj ∈ [0, 2π) for all j
}

⊂ UA
α(1)

by Proposition 4.14. Since furthermore d ∈ T(fa′), there exists a path γ3 ⊂ T(fa′) ⊂ UA
α(1)

from a′ to d.
Let γ4 denote the line segment

γ4 =
{
d+ λ · (0, arg(b2) · (|b2| − |a2|), . . . , arg(bd) · (|bd| − |ad|)), λ ∈ [0, 1]

}
.

By construction γ4(λ) ∈ T(fa+λ(b−a)) for all λ ∈ [0, 1]. Since for every λ ∈ [0, 1] the first
coordinate of γ4(λ) has norm κ, it follows from (4.19) and Proposition 4.14 that there is a
w ∈ Rn such that fγ4(λ){w} is lopsided and in Eα(1)(fγ4(λ)). Hence, γ4 ⊂ UA

α(1). Therefore,

γ = γ2 ◦ γ4 ◦ γ3 ◦ γ1 is a path from a to b with γ ∈ UA
α(1). �

Now, we have everything we need to prove that the answer on Rullg̊ard’s Problem 2.22
is affirmative for amoebas of polynomials with barycentric simplex Newton polytope.

Corollary 4.25. If (∆, y) is barycentric then UA
y is path-connected.

Proof. All S (see (4.17)) are simply connected (Lemma 4.22) and contain the origin
(Theorem 4.8). Thus, UA

y is path-connected by Theorem 4.24. �
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2.1. Proof of Technical Lemmata. We provide the calculations for the proof of
Lemma 4.22.

Lemma 4.26. Let T denote the region whose boundary is the (rotated) hypocycloid given
by φ 7→ F (n, φ) for φ ∈ [0, 2π). Then S ⊆ T and ∂T ⊆ ∂S.

Proof. By Theorem 4.19, S is given by the image of the function g : [0, 2π)n →
C, φ 7→ −|Θ| ·∑n

j=0 e
i·(arg(bj )+〈α(j),φ〉) with α(0) = −∑n

j=1 α(j). In order to show S ⊆ T ,
it suffices to show that every critical point of g is mapped in T , because every boundary
point of S is image of a critical point of g.

Once more, we use the dual basis α(1)∗, . . . , α(n)∗ of α(1), . . . , α(n)), i.e., φ =
∑n

j=1 φj ·
α(j)∗. Furthermore, we can assume arg(b1) = · · · = arg(bn) = 0 since we can replace φj
by − arg(bj) + φj. We have

∂g

∂φj
(φ) = −|Θ| · i ·

(
ei·φj − e−i·(

∑n
l=1 φl−arg(b0))

)
,

and thus,

Re

(
∂g

∂φj
(φ)

)
= |Θ| ·

(
sin(φj)− sin

(
−

n∑

l=1

φl + arg(b0)

))

and Im

(
∂g

∂φj
(φ)

)
= |Θ| ·

(
− cos(φj) + cos

(
−

n∑

l=1

φl + arg(b0)

))
.

φ is a critical point of g if and only if Re(∇g(φ)) = λφ · Im(∇g(φ)) with λφ ∈ R, i.e.,
if and only if for all j ∈ {1, . . . , n} :

λφ · cos(φj) + sin(φj) = λφ · cos
(
−

n∑

l=1

φl + arg(b0)

)
+ sin

(
−

n∑

l=1

φl + arg(b0)

)
.

Since the right hand term is independent of j, this implies

λφ · cos(φj) + sin(φj) = λφ · cos(φk) + sin(φk)

for all j, k ∈ {1, . . . , n}. This is in particular true if cos(φj) = cos(φk) and sin(φj) =
sin(φk), i.e., if all e

i·φj have the same argument, that is, g(φ) is located on the (rotated)
hypocycloid given by F (n, ψ), ψ ∈ [0, 2π) (see (4.18), Lemma 4.21).

The function h(φj) = λφ · cos(φj)+sin(φj) is a periodic function in the interval [0, 2π),
which has a vanishing derivative exactly at the points φj with tan(φj) = 1/λφ. tan is π-
periodic and strictly increasing on the interval (−π/2, π/2). Therefore, for a fixed solution
φn of h(φn), for every j ∈ {1, . . . , n−1} there are exactly two possibilities: either φj = φn
or φj is the unique solution distinct from φn with h(φj) = h(φn), and that one coincides
with −∑n

l=1 φl + arg(b0).
Thus, if φ is a critical point with g(φ) /∈ F (n, [0, 2π)), then there are φj (we choose here

j = 1, . . . , s for some 1 ≤ s < n− 1 since every outer monomial has the same properties)
satisfying λφ · cos(φj) = cos (−∑n

l=1 φl + arg(b0)) and sin(φj) = sin (−∑n
l=1 φl + arg(b0)),
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which means that arg(ei·φ1) = · · · = arg(ei·φs) = arg(e−i·
∑n

l=1 φl+arg(b0)) and arg(ei·φs+1) =
· · · = arg(ei·φn). Hence, φ1 = · · · = φs, φs+1 = · · · = φn and

φ1 = −
n∑

l=1

φl + arg(b0) = −s · φ1 − (n− s) · φn + arg(b0)

= −n− s

s+ 1
· φn + arg(b0).

Thus, g(φ) is located on the curve given by the hypocycloid with parameters R = (n+1)|Θ|
and r′ = (s+ 1)|Θ| rotated by arg(b0) (see (4.16)).

Since S is a subset of the closed ball B(n+1)·|Θ|(0) with radius (n+ 1) · |Θ| around the
origin (Theorem 4.8), it is bounded and since (UA

y )
c is a closed set, we have ∂S ⊂ S. Since

the trajectory of every hypocycloid with parameters R = n + 1 and r ∈ {2, . . . , n− 1} is
a subset of T (coinciding with F (n, ψ), ψ ∈ [0, 2π) at the cusps), we have S ⊆ T .

Since the sets S and T are closed, the statement ∂T ⊆ ∂S follows from S ⊆ T
and ∂T ⊆ S. The first of these conditions has just been shown and the second one is
Lemma 4.21 in connection with the definition of T . �

Proof. (Lemma 4.22) By Lemma 4.26 we know that S ⊆ T with ∂T ⊆ ∂S. Further-
more, by (4.18) the image of F is contained in S. Hence, the lemma is proven if we can
show that the image of F equals T (which is simply connected by definition).

Let k = n− 1 + (−1)n. We may assume arg(b1), . . . , arg(bn) = 0 again (otherwise we
transform the basis of φ1, . . . , φn as in other proofs before). F satisfies an (n + 1)-quasi-
periodicity condition F (µ, j · ψ) = ei·(2πj)/(n+1) · F (µ, ψ) with µ ∈ [k, n], ψ ∈ [0, 2π/(n +
1)], j ∈ {0, . . . , n}. In particular,

{F (µ, j · 2π/(n+ 1)) : µ ∈ [k, n]} =
{
ei·2π·j/(n+1) · µ : µ ∈ [−k, n]

}
(4.20)

for j ∈ {0, . . . , n}.
We know that the path γn(ψ) = F (n, ψ) with ψ ∈ [0, 2π) is a hypocycloid (Lemma

4.21). Let T = T1 ∪ · · · ∪ Tn+1 where

Tj = T ∩ {x ∈ C : arg(x) ∈ [(j − 1) · 2π/(n+ 1), j · 2π/(n+ 1)]}.
We show that the image of F equals T and thus is in particular simply connected. This
follows from the quasi-periodicity, if the image of F (µ, ψ) with ψ ∈ [0, 2π/(n+ 1)] covers
T1.

The path-segment γn(ψ) with ψ ∈ [0, 2π/(n+1)] is a loop-free path, which is injective
in the argument. The path-segment γ0(ψ) with ψ ∈ [0, 2π/(n+1)] is a segment of a circle
in (T \T1)∪∂T1, which is also injective in the argument. Thus, for every ψ ∈ (0, 2π/(n+1))
the segment σψ = [F (0, ψ), F (n, ψ)] intersects {x ∈ [0, n)} ∪ {x ∈ ei·2π/(n+1) · [0, n)} at
some point tψ. This implies with (4.20) that F covers the homotopy H : [0, 2π/(n+1)] →
{[x1, x2] ⊂ C}, ψ 7→ [tψ, γn(ψ)] of line segments with H(0) = [n, n], H(2π/(n + 1)) =
ei·2π/(n+1)·[n, n]. The image ofH is T1. Hence, the image of F (µ, ψ) with ψ ∈ [0, 2π/(n+1)]
covers T1 and therefore the image of F is T . Since im(F ) ⊆ S and S ⊆ T we have S = T
and thus, S is simply connected. �
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Figure 4.5. Illustration of the covering of the set S by the function F .

Example 4.27. Figure 4.5 illustrates the proof of Lemma 4.22 for the case of f = c +∑5
j=1 z

α(j) ∈ C[z1, . . . , z4] with
∑5

j=1 α(j) = 0. Here, Θ = 1 hence R = 5 and r = 1.
Due to the quasi-periodicity it suffices to cover the grey region T1. Of course, γ5 is the
hypocycloid with the upper values of R and r, and γ0 is the circle of radius one around
the origin. In the figure one can see the path-segments σ(0) and σ(2

5
π) yielding the start-

and endpoint of the homotopy H (the two cusps intersecting T1) and the path-segments
σ(2

7
π) and σ(11

21
π), which yield H(2

7
π) and H(11

21
π) given by the subsegments from the

point on γ5 to t2π/7 resp. t11π/21. One can see how the complete region T1 is covered by
these subsegments given by H , since, figuratively, the segments sweep over the whole grey
region T1.

3. Amoebas of Trinomials

The investigation of univariate trinomials i.e., (Laurent) polynomials of the form

zs + p+ qz−t ∈ C[z±1]

with p, q ∈ C is a truly classical nineteenth and early twentieth century problem (see e.g.,
[8, 33, 45]). At this time mathematicians started to ask how the variety (which is a finite
set of complex points here) depends on the choice of the coefficients p, q. For example,
how the roots can be arranged geometrically, how many of them do not exceed a certain,
given absolute value or how coefficients can be chosen, such that two roots share the same
absolute value.

Algebraically, these questions are well understood due to a result of P. Bohl from
1908 (see Theorems 4.28, 4.29; see also [8]). But, although the investigation of trinomials
went on in modern times (e.g., [14, 18]), the space of coefficients and in particular its
geometrical and topological properties are still not understood.
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In this section we recall some classical problems and results. Afterwards we reinterpret
the problems in terms of amoeba theory and show that with its tools – in particular the
fiber structure of the Log-map (see Chapter 3, Section 1) – we gain the capability to solve
these problems and uncover a beautiful geometrical and topological structure hidden in
the configuration space of trinomials.

Our main results are that a trinomial has a root of a given modulus |z∗| ∈ R>0 if
and only if one of the coefficients p is located on the (eventually rotated) trajectory of a
hypotrochoid curve depending on the choice of the second coefficient q, the support set and,
of course, |z∗| itself (Theorem 4.32). Hypotrochoids are generalizations of hypocycloids
discussed in Section 2 and have a lot of nice geometrical properties.

Furthermore, a second root shares the same modulus |z∗| if and only if p is located on
a node of the particular hypotrochoid, which means in general that there are two roots
with the same modulus if and only if p is located in a particular 1-fan determined by the
support set and q (Theorem 4.40).

This result has a couple of consequences. It allows us in Theorem 4.43 to close the gap
we found in the proof of Rullg̊ard’s Theorem 2.19 (see Chapter 2, Section 4) and yields a
way to construct an amoeba with a complement component, whose order is not contained
in its support set (Example 4.44). Theorem 4.43 resp. Example 4.44 show furthermore
that there exist amoebas, which are not homotopy equivalent to its complement induced
tropical hypersurface (Corollary 4.45). This solves Problem 2.16.

But Theorem 4.40 discovers additionally the topology of the configuration space of all
trinomials. It turns out that each set UA

j ⊂ CA with j ∈ {−t + 1, . . . , s − 1} \ {0} can
be deformation retracted to a closed path, which is an (s + t)-sheeted covering of an S1

(Theorem 4.51). This result yields strong consequences for questions concerning amoebas.
It implies that the sets UA

j are always connected for trinomials and thus solves Rullg̊ard’s
problem 2.22 for this class. Furthermore, it allows to compute the fundamental group
of the set UA

j and in particular disproves that these sets are simply connected (Problem
2.24).

Besides that, although not precisely discussed in the literature yet, it is a quite obvious
question whether complement components grow monotonically in the absolute value of
their “corresponding” coefficient (via the order map). We both, motivate and formally
introduce, this problem in Section 3.4 and in particular give a trinomial counterexample
for the suggested monotonic behavior of complement components (Theorem 4.53).

3.1. Classical problems and classical results. In this section we investigate tri-
nomials of the form

f = zs + p+ qz−t ∈ C[z±1],

with (p, q) ∈ C2 \ {(0, 0)} and s, t ∈ N∗. We can always assume that s, t are coprime,
since otherwise we might remap zgcd(s,t) 7→ z without changing the amoeba of f . Let
f = (z − a1) · · · (z − as+t) with |a1| ≤ · · · ≤ |as+t|. Note that for A = {−t, 0, s} and
B = {0, s} the set of trinomials with (p, q) ∈ C2 \ {(0, 0)} is the set of all trinomials in
CA

♦ ∪ CB, where CA
♦ is the augmented configuration space of CA (see Section 2). To keep
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notation consistent, from Section 3.2 on we restrict ourselves w.l.o.g. to the case CA
♦ .

In the late 19th century mathematicians started to investigate the connection between
the roots of trinomials (often, in particular their modulis) and the choice of their coeffi-
cients. E.g., in a very early work Nekrassoff describes in 1887 how roots of trinomials are
located in certain regions (“Contouren”) of the complex plane ([45]). In 1907, Landau
gave an upper bound for the smallest absolute value of the roots of a trinomial ([33]),
which was generalized to polynomials by Fejér one year later ([17]). The inverse of this
question, i.e., the number of roots k ∈ N with modulus lower than a given |z∗| ∈ R>0

can be computed by a result of Bohl, also from 1908 (see [8]). Specifically, he showed the
following two theorems

Theorem 4.28. (Bohl 1908)

If |q| > |z∗|s+t + |p| · |z∗|t, then k = 0.
If |z∗|s+t > |q|+ |p| · |z∗|t, then k = s+ t.

If |p| · |z∗|t > |q|+ |z∗|s+t, then k = t.

Note that, from the viewpoint of amoeba theory, this theorem is obvious since it means
that f is lopsided at |z∗| (see Chapter 2, Section 5).

If none of the upper inequalities holds, we define a triangle ∆ with edges of length
|z∗|s+t, |p| · |z∗|t and |q|. Let α be the argument opposing |z∗|s+t and β be the argument
opposing |p| · |z∗|t.
Theorem 4.29. (Bohl 1908) If ∆ is well defined, then the number of roots k with modulus
lower than |z∗| ∈ R>0 is given by the number of integers located in the open interval given
by

(s+ t)(π + arg(p)− arg(q))− t(π − arg(q))

2π
− (s+ t)α + tβ

2π
(4.21)

and
(s+ t)(π + arg(p)− arg(q))− t(π − arg(q))

2π
+

(s+ t)α + tβ

2π
.(4.22)

Since the theorems are quite abstract, we give an example.

Example 4.30. Let f = z3 + z +
√
2 and |z∗| = 1. Then α = β = π/8. Thus, k is the

number of integers between

3(π + 0− 0− π)

2π
− 3/8π + 1/8π

2π
= −1

4
and

3(π + 0− 0− π)

2π
+

3/8π + 1/8π

2π
= +

1

4
.

Since this is only the origin, we have k = 1. A double check with Maple yields that the
roots of f have approximately modulus

0.83403883, 1.30216004 and 1.30216004.
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Unfortunately, these theorems give – again spoken in the language of amoebas – no
explanation for the geometrical or topological structure of the configuration space CA

resp. the sets UA
α in it. Amazingly, despite the fact that these theorems were proven

over one hundred years ago and people kept on investigating trinomials until nowadays
(see e.g., [14, 18]), no evident progress was made w.r.t. the geometrical and topological
structure.

To make things more explicitly, here we concentrate on the following problem, whose
algebraic counterpart can be regarded as solved by Bohl’s theorems.

Problem 4.31. Let f = zs+t + pzs + q ∈ C[z], with (p, q) ∈ C2 \ {(0, 0)} and |z∗| ∈ R>0.

(1) How can one choose p, q such that f has a root with modulus |z∗| ∈ R>0? What
is, for given q the geometrical structure of the set of all p such that f has a root
with modulus |z∗| ∈ R>0?

(2) How can one choose p, q such that f has roots of the same modulus? What is, for
given q the geometrical structure of the set of all p such that this is the case?

(3) Which geometrical and topological properties does the space {(p, q) ∈ C2\{(0, 0)}}
with respect to the absolute values of roots of the corresponding polynomials have?.

3.2. Modulis of Trinomials. Let A = {−t, 0, s} and let f = zs + p + qz−t be a
trinomial. Our general goal is to describe the topology of the sets UA

j in CA, i.e., the
topology of the sets of all polynomials with roots a1, . . . , as+t (with |a1| ≤ · · · ≤ |as+t|)
such that |aj | 6= |aj+1|. In this section we investigate the special case of a fixed q and
describe the structure of UA

j restricted to the corresponding complex linear subspaces of

CA. Note that, with respect to UA
j , we can switch between CA and CA

♦ for trinomials. If
there is a trinomial f with p = 0 or q = 0, then all roots have the same modulus. Thus,
the amoeba is always solid in such a case.

The description of these subsets of UA
j is mainly based on two key observations. Firstly,

we show that f has a root with modulus |z∗| for some z∗ ∈ C∗ (i.e., the fiber Flog |z∗| of a
point z∗ ∈ C∗ with respect to the Log-map intersects the variety V(f) of f) if and only
if the coefficient p of f is located on the trajectory of a certain hypotrochoid curve de-
pending on s, t, q and |z∗| in a C-subspace of the configuration space CA

♦ (Theorem 4.32).
Secondly, we show that the existence of two roots with identical modulus corresponds to
a node on the trajectory of one of these hypotrochoids. Moreover, we re-prove a classical
result by Sommerville (Proposition 4.36) showing that all these nodes are located on a
1-fan in C ∼= R2, which yields the desired local description of the sets UA

j for all j 6= 0
(Theorem 4.40).

A hypotrochoid with parameters R, r, d ∈ R>0, R ≥ r is the parametric curve γ in
R2 ∼= C given by

γ : [0, 2π) → C, φ 7→ (R − r) · ei·φ + d · ei·( r−R
r )·φ.(4.23)

We say that a curve γ is a hypotrochoid up to a rotation if there exists some reparametriza-
tion ρk : [0, 2π) → [0, 2π), φ 7→ k + φ mod 2π with k ∈ [0, 2π), such that γ ◦ ρ−1

k is a
hypotrochoid.
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See Figure 4.6 for some examples of hypotrochoids. Note that hypocycloids (intro-
duced in Section 2) are a special instance of hypotrochoids given by choosing d = r.
One can show that further, special instances are ellipses (R = 2r) and rhodonea curves
(R− r = d). Additional information on hypotrochoids can, e.g., be found in [19].
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Figure 4.6. Hypotrochoids for (R, r, d) = (8/3, 5/3, 1/2), (7/2, 5/2, 5/2)
and (5, 4, 1). The second curve is a hypocycloid and the third one is a
rhodonea curve, which are both special instances of hypotrochoids.

Geometrically, a hypotrochoid is the trajectory of some fixed point with distance d
from the center of a circle with radius r rolling in the interior of a circle with radius R > r
(see Figure 4.7).

Figure 4.7. A geometrical explanation of a hypotrochoid. The green circle
with radius r rolls inside the red circle of radius R. The hypotrochoid
describes the trajectory of the blue point with distance d to the center of
the green circle. The trajectory has finite length if R/r ∈ Q.

With hypotrochoids defined and the fiber functions f |z| of a polynomial f (see Chapter
3, Section 1) we have already all tools to solve Part (1) of Problem 4.31.

Theorem 4.32. Let f = zs + p+ qz−t, (p, q) ∈ C2 \ {(0, 0)} be a trinomial and z∗ ∈ C∗.
f has a root of modulus |z∗| if and only if p is located on the trajectory of a hypotrochoid
up to a rotation with parameters R = |z∗|s/t · (t+ s), r = |z∗|s/t · s and d = |q| · |z∗|−(s+t).
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Note that, with respect to the proof of the theorem, it is a well known fact that the
varieties of general trigonometric trinomials (which the fiber functions f |z∗| of trinomials
happen to be) are the trajectory of a hypotrochoid (see e.g., [46]). For convenience, we
prove this fact as part of the regular proof of the above theorem.

Proof. Let f = zs + p + qz−t be a (Laurent-) trinomial. By definition of the fiber
function f |z| (see Chapter 3, Section 1), f has a root with modulus |z∗| ∈ R>0 if and only
if V(f) ∩ Flog |z∗| 6= ∅, i.e., if and only if V(f |z∗|) 6= ∅, i.e., if and only if

p + |z∗|s · ei·s·φ + |q| · |z∗|−t · ei·(arg(q)−t·φ) = 0 for some φ ∈ [0, 2π).(4.24)

With the given parameters we obtain (R − r) = |z∗|s/t · (t + s) − |z∗|s/t · s = |z∗|s and
(r − R)/r = −|z∗|s/(|z∗|s/t · s) = −t/s. We insert the parameters in the fiber function
f |z∗| and set φ′ = φ · s. With (4.24) we obtain

V(f |z∗|) 6= ∅ ⇔ −p ∈ S|z∗| =
{
(R− r) · ei·φ′ + d · ei·(arg(q)+

(r−R)
r

·φ′) : φ′ ∈ [0, 2π)
}
.

By (4.23) S|z∗| is the trajectory of a hypotrochoid up to a rotation. �

Example 4.33. Let f = z5 + p + 1
2
z−3, g = z5 + p + 5

2
z−2, h = z4 + p + z−1. Then f, g

resp. h has a root of modulus one if and only if p ∈ C is located on the trajectory of
the hypotrochoids with parameters (R, r, d) = (8/3, 5/3, 1/2), (7/2, 5/2, 5/2) resp. (5, 4, 1)
(see Figure 4.6).

The set S|z| defined in the proof of Theorem 4.32 is the image of the map f |z| − p. In
order to achieve a local description of the configuration space of trinomials, we need to
show certain properties of f |z| − p and its trajectory first.

Lemma 4.34. Let γ : [0, 2π) → C, φ 7→ ei·sφ + ei·(arg(q)−tφ). Then for every φ ∈ [0, 2π)
and every k ∈ {1, . . . , s+ t} we have

γ(φ+ 2πk/(s+ t)) = ei·2πks/(s+t) · γ(φ).

Due to this lemma and since s generates the complete group Zs+t (recall that gcd(s, t) =
1), we say f |z| − p is (2π/(s+ t))-quasi-periodic. Geometrically, this means that the tra-
jectory of f |z| − p is invariant under rotation of 2πk/(s+ t) around the origin.

Proof. Let φ ∈ [0, 2π) and let k ∈ {1, . . . , s+ t}. Then we have

γ(φ+ 2πk/(s+ t)) = ei·s(φ+2πk/(s+t)) + ei·(arg(q)−t(φ+2πk/(s+t))

= ei·2πks/(s+t) ·
(
eisφ + ei·(arg(q)−tφ) · e−i·(2πk(s+t)/(s+t))

)

= ei·2πks/(s+t) · γ(φ).
�

For parameters s, t ∈ N∗ and q ∈ C∗, e.g., given by a trinomial f = zs + p+ qz−t, we
define a 1-fan

F (s, t, q) = {λ · ei·(s arg(q)+π·k)/(s+t) : λ ∈ R≥0, k ∈ {0, 1, . . . , 2(s+ t)− 1}}.(4.25)
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Note that F (s, t, q) ⊂ C, where C can be regarded as a subset of the augmented configu-
ration space CA

♦ . We write F (s, t, q) = F odd(s, t, q)∪F even(s, t, q), where F odd(s, t, q) resp.
F even(s, t, q) consists of the halfrays with odd k resp. even k (see Figure 4.9).

Lemma 4.35. Let f = zs + p + qz−t, with p ∈ C, q ∈ C∗ and |z∗| ∈ R>0. Then the
trajectory of f |z∗| − p is axially symmetric along every ray of F (s, t, q). In particular,
arg(ei·φs) = arg(ei·(arg(q)−φt)) mod π if and only if f |z∗|(φ)− p ∈ F (s, t, q).

Proof. Let arg(q) = 0. Then f |z∗| − p is a real curve and thus f |z∗|(φ) = f |z∗|(−φ),
i.e., f |z∗| − p is axially symmetric along the real line. The symmetry along the other rays
of F (s, t, q) follows from quasi-periodicity (see Lemma 4.34) of f |z∗| − p and from the
fact that f |z∗|(φ) = f |z∗|(φ + π) for all φ ∈ [0, π) if both s and t are odd. The general
assumption follows since the trajectory of f |z∗| − p for arg(q) = ψ ∈ [0, 2π) is the image
of the one for arg(q) = 0 under the bijection z 7→ ei·sψ/(s+t)z. �

Proposition 4.36. Let γ : [0, 2π) → C, φ 7→ |z∗|sei·sφ + |q||z∗|−tei·(arg(q)−tφ) be a hy-
potrochoid. Then all singularities of the trajectory of γ are located on F (s, t, q).

This fact was already observed by Sommerville in 1920 ([81]). Since this classical
article is written very compactly, we present our own proof here.

Proof. W.l.o.g. we may assume |z∗| = 1 since F (s, t, q) is invariant under scaling.
We need to show the proposition for nodes and cusps. Since the trajectory for arg(q) =
ψ ∈ [0, 2π) is the image of the one for arg(q) = 0 under the bijection z 7→ ei·sψ/(s+t)z, for
nodes we need to show that for all φ, ψ ∈ [0, 2π) with φ 6= ψ one has

γ(φ) = γ(ψ) ⇒ γ

(
φ− arg(q)

s+ t

)
= λ · ei·(ksπ/(s+t)) mod 2π,

with λ ∈ R>0 and k ∈ {0, . . . , 2(s+ t)− 1}. Note that for arbitrary x, y ∈ [0, 2π)

ei·x − ei·y = cos(x) + i · sin(x)− cos(y)− i · sin(y)
= cos(x)− cos(y) + i · (sin(x)− sin(y))

= −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
+ i

(
2 cos

(
x+ y

2

)
sin

(
x− y

2

))

= 2 sin

(
x− y

2

)
· iei·x+y

2 .
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Hence

γ(φ) = γ(ψ)

⇔ ei·sφ + |q| · ei·(arg(q)−tφ) = ei·sψ + |q| · ei·(arg(q)−tψ)

⇔ ei·sφ − ei·sψ = |q| ·
(
ei·(arg(q)−tψ) − ei·(arg(q)−tφ)

)

⇔ (φ+ ψ)s = 2 arg(q)− (φ+ ψ)t+ 2kπ and

sin

(
(φ− ψ)s

2

)
= ±|q| · sin

(
(φ− ψ)t

2

)

⇔ sin

(
(φ− (2 arg(q)+2kπ

s+t
− φ))s

2

)
= ±|q| · sin

(
(φ− (2 arg(q)+2kπ

s+t
− φ))t

2

)

⇔ sin

((
φ− arg(q)

s+ t

)
· s
)
cos

(
kπs

s+ t

)
− cos

((
φ− arg(q)

s+ t

)
· s
)
sin

(
kπs

s+ t

)
=

±|q| · sin
((

φ− arg(q)

s+ t

)
· t
)
cos

(
kπt

s+ t

)
− cos

((
φ− arg(q)

s+ t

)
· t
)
sin

(
kπt

s+ t

)
.

Observe cos(kπt/(s + t)) = cos((−2kπ(s + t) + kπt)/(s + t)) = cos(kπ − kπs/(s + t)) =
(−1)k cos(kπs/(s+ t)) and analogously sin(kπt/(s+ t)) = (−1)k+1 sin(kπs/(s+ t)). Thus,

γ(φ) = γ(ψ)

⇔
(
sin

((
φ− arg(q)

s+ t

)
· s
)
± |q| · (−1)k sin

((
φ− arg(q)

s+ t

)
· t
))

· cos
(
kπs

s+ t

)
=

(
cos

((
φ− arg(q)

s+ t

)
· s
)
± |q| · (−1)k+1 cos

((
φ− arg(q)

s+ t

)
· t
))

· sin
(
kπs

s+ t

)

⇔

(
sin
((
φ− arg(q)

s+t

)
· s
)
± |q| · (−1)k sin

((
φ− arg(q)

s+t

)
· t
))

(
cos
((
φ− arg(q)

s+t

)
· s
)
± |q| · (−1)k+1 cos

((
φ− arg(q)

s+t

)
· t
)) = tan

(
kπs

s+ t

)

⇔ γ

(
tan

(
φ− arg(q)

s+ t

))
= tan

(
kπs

s+ t

)
.

For cusps the proof is way easier since cusps may only occur at φ ∈ [0, 2π) with

ei·φs = ei·(arg(q)−φt) ⇔ φ = arg(q)/(s+ t).

Since γ(arg(q)/s+ t) = λ ·ei·arg(q)s/(s+t) the statement follow by quasi-periodicity provided
by Lemma 4.34. �

We can now use the location of the nodes on the trajectory of hypotrochoids to show
that for every fixed q ∈ C∗ and every j the complement of UA

j is always contained in the
1-fan F (s, t, q).

Theorem 4.37. Let f = zs + p + qz−t with p ∈ C, q ∈ C∗. If f /∈ UA
j for some

j ∈ {−t+ 1, . . . , s− 1}, then p ∈ F (s, t, q).
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Proof. Let f = (z − a1) · · · (z − as+t) with |a1| ≤ · · · ≤ |as+t|. Assume f /∈ UA
j , for

some j ∈ {−t,−t+1, . . . , s− 1}. Hence, there is a z∗ with |aj| = |aj+1| = |z∗|. Therefore,
there exist φ, ψ ∈ [0, 2π) with φ 6= ψ and f |z∗|(φ) = f |z∗|(ψ) = 0 resp. f |z∗|(φ) − p =
f |z∗|(ψ) − p = −p. f |z∗| − p is a hypotrochoid (by Theorem 4.32), i.e., a closed curve.
Thus, f |z∗| − p has a node at p ∈ C. Lemma 4.36 implies p ∈ F (s, t, q). Hence, for a fixed
q ∈ C∗, i.e., f ∈ {(1, p, q) : p ∈ C} we have f ∈ F (s, t, q), if f /∈ UA

j . If f has a multiple
root aj , then the derivative ∂f/∂z of f vanishes at aj and thus in particular its derivative
of ∂f |aj |/∂φ vanishes at arg(aj). This means due to ∂f |aj |/∂φ = ∂(f |aj | − p)/∂φ that the
hypotrochoid f |aj |−p is singular at arg(aj) and thus Lemma 4.36 yields p ∈ F (s, t, q). �

Now, we want to describe, which subsets of F (s, t, q) belong to a set UA
j . This requires

the following lemma.

Lemma 4.38. Let f = zs+ p+ qz−t with p, q ∈ C∗ and w ∈ R>0. Then there are at most
two roots aj , ak ∈ V(f) with |aj| = |ak| = w.

Proof. The lemma follows from Bohl’s Theorem 4.29. Indeed, assume there were
three roots a1, a2, a3 such that |a1| = |a2| = |a3| = w. Let k be the number of roots in
the open circle Bw(0) ⊂ C with radius w around the origin. Hence, for ε > 0 we have
#(Bw+ε(0) ∩ V(f)) = k + 3. Since there are roots with modulus w, the triangle ∆ with
edges of length ws, |p| and |q|w−t is either well defined or degenerated to a line and k is
the number of integers in the open interval I bounded by (4.21) and (4.22). Changing
the radius of the circle from w to w + ε changes I only by a δε > 0. Thus, k increases at
most by two, which is a contradiction as long as ∆ is well defined for w + ε. If the latter
is not the case, i.e., ∆ is a line, then the interval I contains 0 resp. at least t − 2 resp.
(s+ t)− 2 integers. This also yields a contradiction with Theorem 4.28. �

To describe, which subsets of F (s, t, q) belong to a set UA
j , we make use of the following

surprising observation about real trinomials, which is also a nice stand-alone statement.

Theorem 4.39. Let f = zs+ p+ qz−t with p, q ∈ R∗ and V(f) = {a1 . . . , as+t}, such that
|a1| ≤ · · · ≤ |as+t|. Assume aj is real. Then j ∈ {1, t, t+ 1, s+ t}.

Proof. Let aj be a real root of f . Then all three monomials (aj)
s, p and qa−t are real.

Thus, one of the monomials equals the sum of the two others. Hence, if we continuously
increase the modulus of the dominating monomial by ε > 0, then the resulting polynomial
g is lopsided at Log(aj) (see Chapter 2, Section 5) and the ordering of the zeros is preserved
(under the right labeling for the case that f has a multiple real root). By Theorem 2.30
the complement component Eα(g) of A(g), which contains log |aj | has order s, 0 or −t.
Therefore, log |aj | is in the closure of the complement components E−t(f), E0(f) or Es(f)
(where E0(f) is degenerated to the empty set in the case that aj is a multiple real root). �

With this theorem we obtained the final tool needed to solve Part (2) of Problem 4.31.
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Theorem 4.40. Let fp = zs+t+pzt+q with q ∈ C∗ be a parametric family with parameter
p ∈ C. For j ∈ {1, . . . , s+ t− 1} \ {t} it holds that

UA
j ∩ {(1, p, q) : p ∈ C} =

{
{(1, p, q) : p ∈ C} \ F odd(s, t, q) if s · j is odd,

{(1, p, q) : p ∈ C} \ F even(s, t, q) if s · j is even.

For UA
t holds the same result with the exception that fp ∈ UA

t , also if there exists a z ∈ C∗

such that fp is lopsided with dominating term pzt.

Note that as a consequence of this theorem UA
j ∩ {(1, p, q) : p ∈ C} is not connected.

Thus, it is a partial solution of Problem 2.23.

Proof. Let a1, . . . , as+t ∈ C∗ denote the roots of fp (depending on p) with |a1| ≤
· · · ≤ |as+t|. Theorem 4.37 yields that we only need to investigate the case p ∈ F (s, t, q).
An outline of the proof is that we can reduce the whole problem to the case of real
trinomials. For real trinomials the membership of a polynomial in a set UA

α is determined
by the location of its real roots. This location can be done via the lopsidedness condition
and Theorem 4.39.

Since F (s, t, q) is invariant under changing |q|, we may assume |q| = 1. And since
we might remap z 7→ ei·π·arg(q)/(s+t)z yielding fp 7→ ei·π arg(q) · (zs+t + p′zt + |q|) with
p′ = ei·π·arg(q)(t−1)/(s+t), we can even assume q = 1.

For p = 0 every root has modulus 1 and thus f0 /∈ UA
α for every α ∈ {1, 2, . . . , s+t−1}.

For the special case p ∈ R the real roots of fp then are given by xs+ p = −x−t, where
x ∈ R. Due to monotonicity of xs and x−t this leads, depending on signs and the parity
of s and t, to the four situations depicted in Figure 4.8.

Figure 4.8. Real root situation for xs + p = −x−t with p = 0 here.

In particular, for every p ∈ R all roots of fp are either real or appear in complex
conjugated pairs, i.e., in pairs of two roots with the same modulus. By Lemma 4.38 it
suffices in the real case to determine, which aj are real in order to determine, which UA

j

intersect F odd(s, t, 1) resp. F even(s, t, 1). Recall that by Theorem 4.39 the only possible
real roots are a1, at, at+1 and as+t.

Let s be odd and t be even. Since by Theorem 4.37 for every j holds that fp /∈ UA
j

only if fp ∈ F (s, t, q), it suffices due to quasi-periodicity (Lemma 4.34) to investigate the
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case p ∈ R. Due to monotonicity of xs + p and x−t the polynomial fp has either one or
three real roots and thus s+ t− 1 resp. s+ t− 3 complex conjugated roots.

There is a unique choice of p such that fp switches from one to three real roots. This
can be seen e.g., by the fact that for such a p the discriminant of fp has to vanish and for
fixed q the discriminant of a trinomial has a unique root in p (see e.g., [26]).

Let p∗ ∈ R<0 be the point where fp switches from one to three real roots, i.e., lopsid-
edness is attained at some point w (see the proof of Theorem 4.39). Hence, we know that
for every p < p∗, we have w ∈ UA

0 (Theorem 2.28; recall that p∗ < 0). Thus, if three real
roots exist, then at and at+1 need to be two of them (Theorem 2.30). Since s is odd and
t even Theorem 4.39 yields that the third real root is a1 for every p < 0. Therefore, we
have |ar| = |ar+1| for every r ∈ {2, 4, . . . , t + s− 1} if p < 0. Since s is odd and t is even
p ∈ R<0 is equivalent to p ∈ F (s, t, q)even.

Let now p > 0, i.e., fp has in particular only one real root x. We have x < 0 since
(−a1) · · · (−as+t) = q = 1 and z · z ∈ R>0 for every z ∈ C∗. Thus xs < 0 and x−t > 0 and
hence xs = x−t + p and therefore the norm of the real root tends to infinity for p → ∞.
Since in this case xs is the dominating term, Theorem 4.39 yields that x ∈ ∂Es+t(f) and
thus x = as+t. Hence, we have |ar| = |ar+1| for every r ∈ {1, 3, . . . , t + s − 2} if p > 0,
which is equivalent to p ∈ F (s, t, q)odd.

The case s even and t odd follows directly from the same argumentation.
Let as final case s and t both be odd. Since fp ∈ F (s, t, q) we can, due to quasi-

periodicity (Lemma 4.34), assume that p ∈ R or p = λ · ei·π/(2(s+t)).
Assume first p ∈ R, i.e., p ∈ F (s, t, q)even. Then, since s, t odd, fp is symmetric in ±p

and the real roots of fp are given by xs + p = −x−t, which obviously only exist if |p| is
large enough. Furthermore, there exists a unique choice of |p| such that fp switches from
zero to two real roots (see also [26]). With Theorem 4.39 it follows that the real roots are
at and at+1 and thus we have |ar| = |ar+1| for every r ∈ {1, 3, . . . , t+ s− 2} \ {t}.

Assume now p = λ · ei·π/(2(s+t)), i.e., p ∈ F (s, t, q)even. We map z 7→ −z and obtain

(−z)s + ei·π/(2(s+t)) · (−z)−t + 1

= −zs + ei·π/(2(s+t)) · (ei·π(2(s+t))/(2(s+t)) · z)−t + 1

= −zs + ei·π(t+1) · z−t + 1

= −zs + z−t + 1.

Then, since s and t are odd, fp is symmetric in ±p and the real roots of fp are given
by xs + p = x−t. Obviously, fp has two real roots for all choices of p ∈ R (see also
[26]) and for these roots the dominating term is either xs or x−t. Thus, the real roots
are a1 and as+t (see the proof of Theorem 4.39) and we have |ar| = |ar+1| for every
r ∈ {2, 4, . . . , t+ s− 3}. �

Example 4.41. We compute the absolute values of the roots of some real trinomials to
depict exemplarily the different situations in the upper theorem.

(1) Let f = x5 + 6x2 + 1, i.e., s is odd, t is even and p ∈ F (s, t, q)even. The absolute
values of V(f) are approximately

0.4082, 0.4082, 1.8030, 1.8030, 1.8462,
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i.e., a5 = as+t is the unique real root and thus f ∈ UA
0 ∩ UA

2 ∩ UA
4 ∩ UA

5 .
(2) Let f = x5 − 6x2 + 1, i.e., s is odd, t is even and p ∈ F (s, t, q)odd. The absolute

values of V(f) are approximately

0.4060, 0.4106, 1.7849, 1.8332, 1.8332,

i.e., a1, a2 = at and a3 = at+1 are the real roots and thus f ∈ UA
0 ∩ UA

1 ∩ UA
2 ∩

UA
3 ∩ UA

5 .
(3) f = x5 + 6x3 + 1, i.e., s is even, t is odd and p ∈ F (s, t, q)even. The absolute

values of V(f) are approximately

0.5416, 0.5546, 0.5546, 2.4498, 2.4498,

i.e., a1 is the unique real root and thus f ∈ UA
0 ∩ UA

1 ∩ UA
3 ∩ UA

5 .
(4) Let f = x4 +0.5x1 +1, i.e., s is odd, t is odd and p ∈ F (s, t, q)even. The absolute

values of V(f) are approximately

0.916, 0.916, 1.091, 1.091,

i.e., there exist no real roots und thus f ∈ UA
0 ∩ UA

2 ∩ UA
4 .

Example 4.42. As in Example 4.33, let f = z5 + p + 0.5z−3, g = z5 + p + 2.5z−2 and
h = z4 + p + z−1. Then f, g, h have two roots with the same modulus if and only if p is
located on the rays of the blue 1-fan in Figure 4.9.
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Figure 4.9. Three hypotrochoids: The trajectory of f |1| − p for f = z5 +
p+0.5z−3, f = z5+p+2.5z−2 and f = z4+p+z−1 with their corresponding
1-fan F (s, t, q) (the blue rays).

Using Theorem 4.40 we are able to close the gap in the proof of Part (2) of Rullg̊ard’s
Theorem 2.19, where he gave, for A ⊂ Zn, a sufficient condition for an UA

α 6= ∅ if α /∈ A.
His statement is implied by the following theorem. Recall that for a set A ⊂ Zn the lattice
generated by A is denoted by LA (see Chapter 2, Section 4).

Theorem 4.43. Let A ⊂ Zn and l ∈ Rn a line with LA∩l = Zn ∩ l. Then UA
α 6= ∅ for all

α ∈ conv(A) ∩ Zn ∩ l. In particular, this is also true for α /∈ A.

Proof. We can assume that l intersects Zn in at least 3 points since otherwise the
theorem is trivial. Since it is a well known fact that for a translation or rotation of
A by a unimodular matrix M (i.e., a map

∑
α∈A bαz

α 7→ ∑
M(α)∈M(A) bαz

M(α)) holds
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U
M(A)
M(α) = UA

α (see e.g., [20, Remark 2.3] and [77, Theorem 7]), we may assume w.l.o.g.

l = {(z1, 0, . . . , 0) : z1 ∈ Z} and A ∩ l = {(0, . . . , 0), (s, 0, . . . , 0), (s+ t, 0, . . . , 0)} with s, t
coprime.

Let α = (α1, 0, . . . , 0) ∈ (conv(A) ∩ l) \A. Note that it suffices to investigate the case
α /∈ A since otherwise we can construct a polynomial in UA

α due to Theorem 2.6 easily.

Let f = zs+t1 + ei·
π

2(s+t) zs1+1 be a trinomial in z, which is invariant on z2, . . . , zn. Since, by
construction, f /∈ F (s, t, 1), Theorem 4.40 yields Eα(f) 6= ∅ for all α ∈ (conv(A)∩Z)\{s}.

Let Log(z) = w ∈ Eα(f). We define δ = minφ∈[0,2π)n
∣∣f |z|(φ)

∣∣ > 0 as the minimal value
attained by f at the fiber over w (note that the minimum is greater than 0 since w /∈ A(f)
and the minimum exists since the fiber Fw is compact). We define κ = maxα∈A\(A∩l) |zα|
as the maximal modular value a monomial with exponent in A but not belonging to f
attains at Log−1(w). Let furthermore d = #A− 3.

Now we construct a polynomial g = f +
∑

α∈A\l ε z
α ∈ CA with ε = δ/(2dκ). If we

evaluate g at an arbitrary point v ∈ Fw, we obtain

|g(v)| ≥ |f(v)| −

∣∣∣∣∣∣
∑

α∈A\l

εvα

∣∣∣∣∣∣
≥ |f(v)| −

∑

α∈A\l

ε |vα| ≥ δ − d · δ

2dκ
· κ =

δ

2
> 0.

Thus, w /∈ A(g).
We compute the order of w with respect to g. Let, for each j ∈ {1, . . . , n}, fj and

gj be the univariate polynomials in zj obtained from f and g by setting zi = vi for all
i 6= j. Since |f1(z1)| = |f(z1, v2, . . . , vn)| ≥ δ for all z1 with |z1| = |v1| and |g1(z1)| differs
from |f1(z1)| by at most δ/2, we have w1 ∈ Eα1(f1) ⇒ w1 ∈ Eα1(g1). For every other j
we know that fj(zj) equals the constant given by f1(v1). Thus, |f(v)| = δ belongs to the
constant term of gj and

∑
α∈A\l ε|vα| ≤ δ/2 for all vj ∈ Fwj

. Thus, gj is lopsided in vj
with the constant term being the dominating term. Hence, wj ∈ E0(gj) for all 1 < j ≤ n
by Theorem 2.6. Therefore, we have in total ord(w) = α with respect to g and thus
g ∈ UA

α , i.e., U
A
α 6= ∅. �

We use the construction of the upper theorem to provide an example for an amoeba
of a multivariate polynomial with a complement component of order α, although α is
not contained in the support set A ⊂ Zn of the corresponding polynomial. For practical
construction we obviously do not need to compute minima of fiber functions or maxima
attained by monomials but may just choose ε > 0 sufficiently small.

Example 4.44. Let f = z2+e
i·0.2π ·z1z2+z1z3+ε · (z1+z21+z1z22+z21z22) with ε ∈ R>0. If

ε is sufficiently small, then E(1,2)(f) 6= ∅ by Theorem 4.43 although (1, 2) is not contained
in the support set A (see Figure 4.10).

A nice as well as sad consequence of this example resp. Theorem 4.43 is that the
complement induced tropical hypersurface C(f) of a polynomial f ∈ C[z±1] in general is
not homotopy equivalent to its amoeba A(f), which solves Problem 2.16.

Corollary 4.45. For general f ∈ C[z±1] A(f) and C(f) are not homotopy equivalent.
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Figure 4.10. Left picture: The amoeba of f = z2 + ei·0.2π · z1z2 + z1z
3
2 +

ε · (z1 + z21 + z1z
2
2 + z21z

2
2) for ε = 0.1; right picture: The Newton polytope

of f .

Proof. Let f ∈ C[z±1] with support set A ⊂ Zn such that A(f) has a complement
component with order α /∈ A. Such polynomials exist due to Theorem 4.43 (and an explicit
one is given in Example 4.44). Since f does not have a term bαz

α, we can formally add such
a monomial with bα = 0. We investigate the corresponding tropical polynomial trop(f|C).
Since log |bα| = −∞ in the tropical semi-ring, there exists no w ∈ Rn such that log |bα|wα

attains the maximum in trop(f|C). Hence, the homotopy of the corresponding tropical
hypersurface T (trop(f|C)), which is exactly the complement induced tropical hypersurface
C(f), needs to have another homotopy than A(f). �

3.3. The Topological Structure of the Configuration Space of Trinomials.
The aim of this section is to determine the topological structure of the complete config-
uration space of trinomials with respect to their amoebas. We do this in the following
sense. We say two polynomials f, g ∈ CA are equivalent if their amoebas are homotopy
equivalent, i.e.,

f ∼ g :⇔ f ∈ UA
j if and only if g ∈ UA

j for all j ∈ {−t, . . . , s}.
As a main result we show that for every j ∈ {−t + 1, . . . , s − 1} \ {0} both the set

UA
j ⊆ CA and its complement (UA

j )
c ⊂ CA can be deformation retracted to an (s + t)-

sheeted covering of an S1. This answers not only Part (3) of Problem 4.31 but allows us
furthermore to answer our initial question concerning the topology of the sets UA

α in the
configuration space CA (Problems 2.22 and 2.24) since such coverings are connected but
their fundamental group is non-trivial and thus they are not simply connected (see e.g.,
[28]).

As a motivation we provide an example showing that a set UA
j ⊆ CA can be connected

although none of the sets UA
j ∩ {(1, p, q) ∈ CA : p ∈ C} for q ∈ C∗ fixed is.
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Example 4.46. Let f = z2 + 1.5 · ei·arg(p) + ei·arg(q)z−1 with f = (z − a1)(z − a2)(z − a3)
and |a1| ≤ |a2| ≤ |a3|. We want to construct a path γ in CA from (p1, q1) = (1.5 · ei·π/2, 1)
to (p2, q2) = (1.5 · e−i·π/6, 1) such that γ ∈ UA

1 , i.e., |a2| 6= |a3| for every point on γ.
Theorem 4.40 implies that this is impossible if arg(q) remains constant for every point on
γ. Analogously, there are e.g., points on the paths η1 : [0, 1] → CA, k 7→ (1.5 · ei·π/2, ei·2kπ)
and η2 : [0, 1] → CA, k 7→ (1.5 · ei(1/4+k)·π/2, ei·2kπ) with |a2| = |a3|. But there is a path
given by η3 : [0, 1] → CA, k 7→ (1.5 · ei(1/4+2k/3)·π/2, ei·2kπ) from (p1, q1) to (p2, q2) that is
completely contained in UA

1 (see Figure 4.11).
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Figure 4.11. The modulis of the roots of f along the paths η1, η2 and η3
(from left to right).

As a first step to prove connectivity of the sets UA
j ⊆ CA compute its fundamental

group, we show that it suffices to investigate the situation of fixed |p| and |q|.
Lemma 4.47. Every set UA

j ⊆ CA with j ∈ {−t+1, . . . , s− 1} \ {0} and its complement

can be deformation retracted to a subset ÛA
j of the real torus T = {

(
ei·arg(p), ei·arg(q)

)
:

p, q ∈ C∗}.
Proof. We can identify CA with (C∗)2. (C∗)2 comes with a natural fibration R>0 →

(C∗)2 → (S1)2 given by the Arg map, which can be regarded as the canonical counterpart
of the fibration of the Log-map described in Chapter 3, Section 1. I.e., the following
diagram commutes

CA h
//

Arg
  

AA
AA

AA
AA

T × R>0

π
zzvv

vv
vv

vv
vv

T

where h is a homeomorphism and π is the natural projection on the first component. Now,
we investigate the homotopy

F : (C∗)2 × [0, 1] → (C∗)2, ((p, q), l) 7→
(

p

(1− l) + l · |p| ,
q

(1− l) + l · |q|

)
.

Obviously, we have the identity for l = 0 and the projection on T for l = 1. Recall that
by Theorem 4.40 UA

j is invariant under changing |q| and, for q ∈ C∗ fixed holds that

(p, q) ∈ UA
j implies (λp, q) ∈ UA

j for every λ ∈ R>0. Hence, F|UA
j
is indeed a deformation
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retraction of UA
j to a subset of T . For the complement the argumentation works the same

way. �

Lemma 4.48. Let f = zs + p+ qz−t with p, q ∈ C∗. Then f ∼ g for every g on the path
γ(p,q) : [0, 1] → CA, φ 7→ (p · e−i·2πtφ/(s+t), q · ei·2πφ). In particular, for p, q ∈ C∗ on the
real torus

T(p,q) = {(|p|eiπ arg(p), |q|eiπ arg(q)) : arg(p), arg(q) ∈ [0, 2π)} ⊂ CA(4.26)

for polynomials f and g with coefficients (arg(p), arg(q)) and (−2πt/(s+ t) arg(p), arg(q))
holds f ∼ g.

Proof. We have f ∼ g if and only if f and g are contained in the same sets UA
j . For

every fixed q ∈ C∗ we have by Theorem 4.40 that f ∈ UA
j if and only if f /∈ F (s, t, q)odd

and s · j is odd resp. f /∈ F (s, t, q)even and s · j is even. We also have f ∈ UA
0 if f is

lopsided at some point z ∈ C with dominating term p. Since lopsidedness is either given
for every point on a torus T(p,q) or for none (Proposition 4.14), we can omit this special
case.

By Definition (4.25) of F (s, t, q) each of its rays is given by λ ·e(i·s arg(q)+kπ)/(s+t). Thus,
the path every point p on such a ray takes for continuously moving arg(q) to 2π + arg(q)
is given by γ(p,q). Since F (s, t, q) is invariant under changing |q|, the lemma follows. �

Figure 4.12 depicts how the structure of CA locally changes under changing arg(q).
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Figure 4.12. The trajectory of f |1| − p for f = z5 + p+ 1.4ei arg(q)z−2 and
arg(q) ∈ {0, π/20, π/10, 3/20π, π/5}.

Note that since gcd(s, t) = 1 we have 2π · ks/(s + t) ≡ 0 mod 2π if and only if
k ∈ (s + t)Z. And since (p, q) ∼ (p · ei·2πs/(s+t), q), every UA

j and (UA
j )

c with j ∈ {−t +
1, . . . , s− 1} \ {0} is invariant under the group Zs+t acting on T(p,q) by

Zs+t × T(p,q) → T(p,q), (k, (p, q)) 7→ (p · ei·2πks/(s+t), q).(4.27)

For the real standard torus T = {
(
ei·arg(p), ei·arg(q)

)
: p, q ∈ C∗} let ρ(arg(p),arg(q))

denote the path given by γ(s+t−1)(p,q) ◦ γ(s+t−2)(p,q) ◦ · · · ◦ γ1(p,q) ◦ γ0(p,q) for some p, q ∈ T ,
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where k(p, q) denotes the image under the upper group action of Zs+t on T . Observe that
ρ(arg(p),arg(q)) is closed and not contractable on T by construction.

With this construction we can describe the sets ÛA
j and its complements on the real

standard torus T .

Lemma 4.49. Let j ∈ {+1, . . . , s+ t− 1} \ {t}. Then
ρ(0,0) = (ÛA

j )
c and ρ(π/(s+t),0) is a deformation retract of ÛA

j for s · j even,

ρ(π/(s+t),0) = (ÛA
j )

c and ρ(0,0) is a deformation retract of ÛA
j for s · j odd.

Proof. Recall that by Lemma 4.47 ÛA
j is the deformation retract of UA

j to a subset
of the standard torus T . Let s · j be even and j 6= t. By Theorem 4.40 f = zs+t + pzt + q
does not belong to UA

j if and only if p ∈ F (s, t, q)even. By (4.25) for |p| = |q| = 1 this is
the case if and only if arg(p) 6= (arg(q)s+2πk)/(s+ t) for k ∈ {1, . . . , s+ t}. By definition
of ρ(p, q) these are exactly the points on ρ(0, 0).

Now, we investigate ÛA
j = T\(ÛA

j )
c = T\ρ(0, 0). Since ρ(π/(s+t),0) is obtained from ρ(0,0)

by the translation (arg(p), arg(q)) 7→ (arg(p)+π/(s+t), arg(q)), we have ρ(π/(s+t),0) ⊂ UA
j .

We investigate the homotopy

F̂ : ÛA
j × [0, 1] → ÛA

j ,

((arg(p), arg(q)), l) 7→
(
arg(p) + l ·

(
arg(q)s+ π

s+ t
−
(
arg(p) mod

2π

s+ t

))
, arg(q)

)
.

Obviously, we have F̂ (UA
j , 0) = ÛA

j and since (arg(p), arg(q)) ∈ ρ(π/(s+t),0) ⇔ arg(p) =

(arg(q)s + (1 + 2k)π)/(s + t) for k ∈ {1, . . . , s + t} we have F̂ (UA
j , 1) = ρ(π/(s+t),0) (see

Figure 4.13).

Since F̂ is continuous in arg(q) and the second coordinate of the image is independent
of l, it suffices to prove the homotopy for the first image coordinate for an arbitrary, fixed

arg(q). For a fixed arg(q) the set ÛA
j is given by all arg(p) 6= (arg(q)s+ 2πk)/(s + t) for

k ∈ {1, . . . , s+ t}. Thus, it consists of s+ t separated, open segments with middlepoints
(arg(q)s+ (1+ 2k)π)/(s+ t), where k ∈ {0, . . . , s+ t− 1}. Each segment is contracted to

its middlepoint by F̂ and hence F̂ indeed is a deformation retraction of ÛA
j to ρ(π/(s+t),0).

For s · j odd with j 6= t the proof works analogously. �

Corollary 4.50. For each j ∈ {−t + 1, . . . , s − 1} \ {0} the sets UA
j and (UA

j )
c are

path-connected in CA.

Proof. By Lemma 4.47 and 4.49 the sets UA
j and (UA

j )
c can be deformation retracted

to one closed path. �

Now we have all tools to prove the main theorem of this section, which describes the
topology of the sets UA

j , their complements and, which yields answers to Problem 2.22 for
trinomials and to Problem 2.24.
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Figure 4.13. Situation for s + t = 5 and arg(q) = 0. For a fixed arg(q),

the set ÛA
j is the union of s + t open segments between the red points

(one is exemplarily depicted in green colour here). Each of the segments is

retracted to their green middlepoint under F̂ . For a point arg(p) (the blue
point here), the corresponding value arg(p) mod 2π

s+t
is the length of the

blue segment. Thus, indeed, F̂ (UA
j , 1) = ρ(π/(s+t),0).

Theorem 4.51. For A = {s, 0,−t} each j ∈ {−t+1, . . . , s− 1} \ {0} both UA
j ⊆ CA and

(UA
j )

c ⊂ CA are homotopic to an (s+ t)-sheeted covering of an S1. In particular, we have

π1(U
A
j ) = π1((U

A
j )

c) = Z and thus the sets UA
j are not simply connected.

Proof. By Lemma 4.47 and 4.49 UA
j and (UA

j )
c can be deformation retracted to the

closed paths ρ(0,0) and ρ(π/(s+t),0). Since both pathes are homeomorphic the second part
of the theorem follows and it suffices to investigate ρ(0,0).

As described in (4.27) Zs+t acts on the standard torus T , mapping both paths to
themselves, i.e., Zs+t also acts on ρ(0,0). Since for each arg(q) there are exactly s+t possible
arg(p) such that (arg(p), arg(q)) ∈ ρ(0,0), ρ(0,0) is mapped to an S1 under the quotient map
of T to the orbit space T/Zs+t. Furthermore, ρ(0,0) is path-connected (Corollary 4.50).
Obviously, ρ(0,0) is locally path-connected and for every open neighbourhood U of a point
(arg(p), arg(q)) ∈ ρ(0,0) and two arbitrary g1, g2 ∈ Zs+t holds g1(U) ∩ g2(U) = ∅. Thus,
ρ(0,0) with h : ρ(0,0) → S1 is a normal covering space with deck transformation group Zs+t,
which is isomorphic to π1(S

1)/h∗(π1(ρ(0,0))), where h∗ denotes the map of fundamental
groups induced by h (see e.g., [28, p. 72]). Therefore, h∗(π1(ρ(0,0))) = (s+ t)Z and, since
h maps z 7→ zs+t, we have π1(ρ(0,0)) = Z. �

3.4. Monotonicity of Complement Components of Amoebas. Let A ⊂ Zn and
f =

∑
α∈A bαz

α. Assume that the corresponding amoeba A(f) has a complement com-
ponent Eα(f) 6= ∅ of order α ∈ A. Then it is a typical observation that the complement
component grows if one increases the modulus of the “corresponding” coefficient bα. See
Figure 4.15 for an example.

Precisely, we say that a complement component Eα(f) is monotonically growing in
|bα| if for every w ∈ Rn holds that

w ∈ Eα(f) ⇒ w ∈ Eα(f + λ · bα · zα)
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glued

Figure 4.14. The set {f = z2 + p + ei·arg(q)z−3 : p ∈ C, |p| ≤ 1, arg(q) ∈
[0, 2π)} in the corresponding subset (a real full torus) of its configuration
space CA

♦ . Note that we need restrict to |p| > 0 if we want to investigate
sets in CA.

Figure 4.15. The amoebas of f = z21z2 + z1z
2
2 + cz1z2 + 1 for c = −4,−6 and −8.

for every λ ∈ R>0.
This yields the following problem.

Problem 4.52. Does for every A ⊂ Zn and f ∈ CA every complement component Eα(f),
α ∈ conv(A) ∩ Zn, grow monotonically in |bα|?

Indeed, it is not clear a priori whether one would expect this question to have a positive
or a negative answer. On the one hand, it is clear that complement components behave
in a way, which could be described as “growing monotonically around the center”, since
for every fixed w ∈ Rn f will be lopsided with bαz

α for large |bα| and will maintain this
property for increasing |bα|. Hence, one may only expect complement components to
“flutter” on its boundary while growing in total in |bα|. On the other hand, it would be
surprising if every complement component had this property since this would imply that
the structure of the sets UA

α ⊆ CA is rather simple. For example one could always apply
Theorem 4.24 and thus prove connectivity of all UA

α , i.e., a solution to Rullg̊ard’s Problem
2.22, would follow immediately.

Now we show that Problem in general 4.52 has a negative answer by giving a coun-
terexample. More precisely, we show the following theorem.
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Theorem 4.53. For trinomials f = zs + p + q · z−t with p ∈ C, q ∈ C∗ the complement
component E0(f) is not monotonically growing in general.

Figure 4.16. The trajectory of V(f |z|
p − p) for fp = z2 + p · ei·επ + z−1,

z = 0.925 and ε > 0 sufficiently small. The green line marks the values
attained by p for increasing |p|.

Proof. To prove the theorem, we provide a counterexample to Problem 4.52. Let
fp = z2 − p · ei·επ + z−1 with p ∈ R>0 be a parametric family with ε > 0 sufficiently small.
We investigate the variety of the fiber function f |z| for the point z = 0.925 (see Figure
4.16).

For growing p three roots pass the circle around the origin with radius |0.925| for
certain, different values v1, v2, v3 of p. See Figure 4.16; the green line depicts the (growing)
values of p, the three intersection points with the trajectory of the hypotrochoid curve
are v1, v2 and v3. Since by Proposition 4.36 no roots are conjugated, every complement
component UA

−1, U
A
0 , U

A
1 , U

A
2 exists. Thus, for every p ∈ R>0 \ {v1, v2, v3}, w = log |z| is

contained in exactly one Ei(fp) and Ei(fp) ∩ Ej(fp) = vr ⇒ |i− j| = 1 (i.e., a vr passing
|0.925| changes the order of the complement component w is contained in by ±1).

For p = 0 all roots of f are located on the circle |z| = 1. Hence for all p in the
grey region 1 in Figure 4.16, w ∈ E−1(fp). The white region 3 in Figure 4.16 contains p
with |p| > |0.925|2 + |0.925|, i.e., fp is lopsided at w with the monomial p as dominating
term. By lopsidedness condition (Theorem 2.30) this implies w ∈ E0(fp). The closure of
each turquoise region 2 in Figure 4.16 is connected with region 1 by a node. Hence, by
passing from 1 to 2 along the node changes the order by 2. Therefore, for all p in region
2, w ∈ E1(fp). But that means in total for p growing from 0 to ∞, that w is located in
E−1(fp), E0(fp), E1(fp), E0(fp).

Thus, E0(fp) is not monotonically growing in p, i.e., Problem 4.52 does not have a
positive answer in general. �





CHAPTER 5

Approximation of Amoebas and Coamoebas by Sums of Squares

In the Sections 5 and 6 of Chapter 2 we introduced the membership problems for amoe-
bas and coamoebas (Problems 2.26 and 2.33) as a natural question on providing a proper
solution for the problem of computing resp. approximating amoebas and coamoebas.

While for coamoebas no algorithm to solve the membership problem is known at all
so far, Purbhoo provided in [70] a characterization for the points in the complement of
a hypersurface amoeba, which can be used to numerically approximate the amoeba (see
Chapter 2, Section 5). His lopsidedness criterion provides an inequality-based certificate
for non-containedness of a point in an amoeba. But it does not provide an algebraic
certificate in the sense of a polynomial identity certifying the non-containedness. The
certificates are given by iterated resultants. With this technique the amoeba can be
approximated by a limit process. The computational efforts of computing the resultants
are growing quite fast, and the convergence is slow.

A different approach to tackle computational problems on amoebas is to apply suitable
Nullstellen- or Positivstellensätze from real algebraic geometry or complex geometry. For
some natural problems a direct approach via the Nullstellensatz (applied on a realification
of the problem) is possible. Using a degree truncation approach, this allows to find sum-
of-squares-based polynomial identities, which certify that a certain point is located outside
of an amoeba or coamoeba. In particular, it is well known from recent lines of research in
computational semialgebraic geometry (see, e.g., [34, 35, 56]) that these certificates can
be computed via semidefinite programming (SDP).

In this chapter, we discuss theoretical foundations as well as some practical issues of
such an approach, thus establishing new connections between amoebas, semialgebraic and
convex algebraic geometry and semidefinite programming. Firstly, in Section 1 we recover
central facts about semidefinite optimization problems (SDPs) (as a natural extension of
linear optimization problems (LPs)) and sums of squares (SOS) – in particular the Real
Nullstellensatz (Theorem 5.3).

In Section 2 we present various Nullstellensatz-type formulations (Statements 5.4 and
5.9) based on the Real Nullstellensatz and compare their properties to a recent toric Null-
stellensatz of Niculescu and Putinar ([47]). Using a degree truncation approach this yields
effective approximation hierarchies for both the amoeba and the coamoeba membership
problems (Theorem 5.13).

The main theoretical contribution is contained in Section 3. For one of our approaches,
we can provide degree bounds for the certificates (Corollary 5.17). It is remarkable and
even somewhat surprising that these degree bounds are derived from Purbhoo’s lopsid-
edness criterion (which is not at all sum-of-squares-based). We also show that in certain

93
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cases (such as for the Grassmannian of lines) the degree bounds can be reduced to simpler
amoebas (Theorem 5.19).

In Section 4 we provide some actual computations on this symbolic-numerical ap-
proach. Besides providing results on the membership problem itself, we will also consider
more sophisticated versions (such as bounding the diameter of a complement component
for certain classes).

We remark that all results of this chapter can be found in the Paper [86].

1. Semidefinite Optimization and the Real Nullstellensatz

We give a brief overview about the theory of semidefinite programming, sums of squares
and its relation to the feasibility of real systems of polynomial equations. For a detailed
introduction into the topic see e.g., [6, 35, 39].

Recall that for a given matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn a linear opti-
mization problem (LP) is given by

min〈c, x〉 such that

Ax ≤ b.

Geometrically, the region of feasibility of an LP is a polyhedron P , located in the
positive orthant of Rn. It is given as an intersection of half-spaces, where each half-space
is yielded by one row of the matrix A interpreted as linear form. The vector c gives the
direction in which to minimize. If the LP has a unique solution, then this solution will be
a vertex of the polyhedron P . Note that LPs can be solved in polynomial time. For more
details about linear programming see e.g., [79].

A semidefinite optimization problem (SDP) is a generalization of a linear programming
problem. Let C,A1, . . . , Am be real, symmetric n × n matrices and b1, . . . , bm ∈ Rm. A
semidefinite optimization problem is given by

inf〈X,C〉 such that

〈Ai, X〉 = bi for 1 ≤ i ≤ m and

X � 0,

where X � 0 means that X is positive semidefinite and 〈·, ·〉 denotes the inner product
on real, symmetric n × n matrices, which is for matrices A = (aij), B = (bij) given by
〈A,B〉 =∑n

i=1

∑n
j=1 aij · bij .

SDPs are generalizations of LPs since every LP can be written as an SDP via use of
diagonal matrices. SDPs are both a convenient and convincing generalization of LPs since
the cone of positive semidefinite matrices is, as well as the positive orthant, self-dual. This
allows to express a dual problem to every (primal) SDP and many of the properties of
LPs also hold for SDPs (e.g., weak duality, strong duality if the SDP is strictly feasible;
see e.g., [6, 35]). Furthermore, SDPs are solvable up to an ε-error in polynomial time.

Geometrically, the region of feasibility of an SDP is a spectrahedron – a convex subset
of the cone of positive semidefinite matrices, which is given by linear matrix inequalities.



1. SEMIDEFINITE OPTIMIZATION AND THE REAL NULLSTELLENSATZ 95

Since SDPs are generalizations of LPs, obviously spectrahedra are generalizations of poly-
hedra. See e.g., [24, 67] for some basic properties of spectrahedra.

Positive semidefinite matrices and semidefinite optimization problems are closely re-
lated to real algebraic geometry since they can be used to relax solutions of real systems
of polynomial optimization problems in the following way.

A real polynomial f ∈ R[x1, . . . , xn] of total degree 2d is called a sum of squares
(SOS) if there are real polynomials g1, . . . , gr ∈ R[x1, . . . , xn] of degree at most d such
that f =

∑r
j=1 g

2
j . Obviously, every SOS polynomial is in particular non-negative. The

fact that a real polynomial is SOS can be expressed in terms of positive semidefinite
matrices.

Proposition 5.1. Let g ∈ R[x1, . . . , xn], tdeg(g) = 2d and Y the vector of all monomials
in x1, . . . , xn with degree ≤ d. g is a sum of squares if and only if there exists a matrix Q
with Q � 0 and

g = Y TQY.

Now one can rewrite a real system of polynomial optimization given by

min
x∈Rn

f(x) such that

gi(x) ≥ 0 for 1 ≤ i ≤ m

to

max p ∈ R such that

f(x)− p ≥ 0 for all x ∈ Rn with

gi(x) ≥ 0 for 1 ≤ i ≤ m.

Since testing non-negativity of real polynomials is NP -hard, one is interested in re-
laxing this problem. This can be done by testing whether a polynomial f − p is a sum of
squares instead. We omit, how this transformation can be written exactly under preser-
vation of the constraints (Schmüdgen’s and Putinar’s theorem, see e.g., [35]).

Here, we will be only interested if a certain real polynomial system of equations has
a real solution. For this problem it suffices to investigate the Real Nullstellensatz, which
can be seen as a real counterpart of Hilbert’s Nullstellensatz, which we want to recall first
(see e.g., [7, 13]).

Theorem 5.2 (Hilbert’s Nullstellensatz). For polynomials g1, . . . , gr, f ∈ C[z1, . . . , zn]
and I = 〈g1, . . . , gr〉 ⊂ C[z1, . . . , zn] the following statements are equivalent:

• V(I) ⊆ V(f)
• f s ∈ I for some s ∈ N∗.

Note that this in particular implies that V(I) = ∅ if and only if 1 ∈ I. The real
Nullstellensatz states that basically, up to some sums of squares, the same holds for the
real variety VR(I) = V(I) ∩ Rn of an ideal I.
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Theorem 5.3 (Real Nullstellensatz). For polynomials g1, . . . , gr ∈ R[x1, . . . , xn] and I =
〈g1, . . . , gr〉 ⊂ R[x1, . . . , xn] the following statements are equivalent:

• The real variety VR(I) is empty.
• There exist a polynomial G ∈ I and a sum of squares polynomial H with

G+H + 1 = 0 .

2. The Solution of Membership Problems Via the Real Nullstellensatz

For technical reasons (as explained below) it will often be convenient to consider in
the definition of a coamoeba also those points z ∈ V(I), which have a zero-component.
Namely, if a zero z of I has a zero-component zj = 0, then we associate this component to
any phase. Call this modified version of a coamoeba coA′(I). Note that for principal ideals
I = 〈f〉 the difference between coA(I) and coA′(I) solely may occur at points, which are
contained in the closure of coA(I). The set-theoretic difference of coA(I) and coA′(I) is a
lower-dimensional subset of Rn (since in each environment of a point in coA′(I) \ coA(I)
we have a coamoeba point).

Given λ ∈ (0,∞)n, the question if λ is contained in the unlog-amoeba U(I) can be
phrased as the real solvability of a real system of polynomial equations. For a polynomial
f ∈ C[z] = C[z1, . . . , zn] let, again, f

re, f im ∈ R[x,y] = R[x1, . . . , xn, y1, . . . , yn] be its real
and imaginary parts (see Chapter 3, Section 4), i.e.,

f(z) = f(x+ iy) = f re(x,y) + i · f im(x,y) .

We consider the ideal I ′ ⊂ R[x,y] generated by the polynomials

(5.1) {f re
j , f

im
j : 1 ≤ j ≤ r} ∪

{
x2k + y2k − λ2k : 1 ≤ k ≤ n

}
.

Corollary 5.4. Let I = 〈f1, . . . , fr〉, and λ ∈ (0,∞)n. Either the point λ is contained
in U(I), or there exist a polynomial G ∈ I ′ ⊂ R[x,y] and a sum of squares polynomial
H ∈ R[x,y] with

(5.2) G+H + 1 = 0 .

Proof. For any polynomial f ∈ C[z] it suffices to observe that a point z = x+ iy is
contained in V(f) if and only if (x, y) ∈ VR(f

re) ∩ VR(f
im), and that |zk| = λk if and only

(x, y) ∈ VR(x
2
k + y2k − λ2k). Then the statement follows from Theorem 5.3. �

Corollary 5.4 states that for any point λ 6∈ U(I) there exists a certificate

r∑

j=1

pjf
re
j +

r∑

j=1

p′jf
im
j +

n∑

k=1

qk(x
2
k + y2k − λ2k) +H + 1 = 0

with polynomials pj , p
′
j, qk and a sum of squares H .
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Remark 5.5. By the following lemma (which is easy to check), the sum of squares con-
dition 5.2 can also be stated shortly as

−1 is a sum of squares in the quotient ring R[x,y]/I ′ .

Lemma 5.6 (Parrilo [57]). Let I = 〈g1, . . . , gr〉 ⊂ R[x] and f ∈ R[x]. There exist
p1, . . . , pk ∈ R[x] such that

f +
∑

i

pigi is a sum of squares in R[x]

if and only if f is a sum of squares in R[x]/I.

Any two of these equivalent conditions in Lemma 5.6 is a certificate for the non-
negativity of f on the variety I.

Before stating a coamoeba version, we note the following normalization properties.
Whenever it is needed for amoebas, we can assume that λ is the all-1-vector 1. Similarly,
for coamoebas we can assume that all components of the point under investigation have
argument 0.

Lemma 5.7. Let I = 〈f1, . . . , fr〉.
(1) A point (λ1, . . . , λn) ∈ (0,∞)n is contained in U(I) if and only if 1 is contained

in U(〈g1, . . . , gr〉), where
gj(z1, . . . , zn) = fj(λ1z1, . . . , λnzn) , 1 ≤ j ≤ r .

(2) A point (z1, . . . , zn) is contained in V(I) with arg zj = µj if and only if the
(nonnegative) real vector y with yj = zje

−iµj is contained in V(g1, . . . , gr) where
gj(z1, . . . , zn) = fj(z1e

iµ1 , . . . , zne
iµn) , 1 ≤ j ≤ r .

Proof. A point (z1, . . . , zn) is contained in V(I) with |zj| = λj if and only if the
vector y defined by yj = zj/λj is contained in V(g1, . . . , gr) with |yj| = 1. The second
statement follows analogously. �

Theorem 5.8. Let I = 〈f1, . . . , fr〉. The point (0, . . . , 0) is contained in the complement
of the coamoeba coA′(I) if and only if there exists a polynomial identity

(5.3)
r∑

i=1

ci · fi(x2,y)re +
r∑

i=1

c′i · fi(x2,y)im +
n∑

j=1

dj · yj +H + 1 = 0

with polynomials ci, c
′
i, dj ∈ R[x,y] and a sum of squares H. Here, fi(x

2,y) abbreviates
fi(x

2
1, . . . , x

2
n, y1, . . . , yn).

Proof. Note that the statement 0 ∈ coA′(I) is equivalent to {z = x+ iy ∈ Cn : z ∈
V(I) and xi ≥ 0, yi = 0, 1 ≤ i ≤ n} 6= ∅. Moreover, observe that the condition xi ≥ 0
can be replaced by considering x2i in the arguments of f1, . . . , fr. Hence, by Theorem 5.3
the statement 0 /∈ coA′(I) is equivalent to the existence of a polynomial identity of the
form (5.3). �
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Observe that in the proof the use of coA′(I) (rather than coA(I)) allowed to use
the basic Nullstellensatz (rather than a Positivstellensatz, which would have introduced
several sum of squares polynomials).

The following variant of the Nullstellensatz approach will allow to obtain degree bounds
(see Section 3). For vectors α(1), . . . , α(d) ∈ Nn

0 and coefficients b1, . . . , bd ∈ C∗ let

f =
∑d

j=1 bj · zα(j) ∈ C[z]. For any given values of λ1, . . . , λn set

µα(j) = λα(j) = λ
α(j)1
1 · · ·λα(j)nn , 1 ≤ j ≤ d .

If the rank of the matrix with columns α(1), . . . , α(d) is n (i.e., the vectors α(1), . . . , α(d)
span Rn) then the λ-values can be reconstructed uniquely from the µ-values. We come
up with the following variant of a Nullstellensatz.

Let mα(j) be the monomial mα(j) = zα(j) = z
α(j)1
1 · · · zα(j)nn . For every fj ∈ C[z] we

denote the corresponding support set as Aj ⊂ Zn. We consider the ideal I∗ ⊂ R[x,y]
generated by the polynomials

(5.4) {f re
j , f

im
j : 1 ≤ j ≤ r} ∪

{
(mre

α(k))
2 + (mim

α(k))
2 − µ2

α(k) : α(k) ∈
r⋃

j=1

Aj

}
.

Corollary 5.9. Let f1, . . . , fr ∈ C[z] with support sets A1, . . . , Ar ∈ Zn. Let I =
〈f1, . . . , fr〉 and assume that

⋃r
j=1Aj spans Rn. Further, let λ ∈ (0,∞)n. Either a point

(λ1, . . . , λn) is contained in U(I), or there exist polynomials G ∈ I∗ ⊂ R[x,y] and a sum
of squares polynomial H ∈ R[x,y] with

(5.5) G+H + 1 = 0 .

For hypersurface amoebas of real polynomials, the membership problem relates to
the following statement of Niculescu and Putinar [47]. Let p = p(x,y) ∈ R[x1, . . . , xn,
y1, . . . , yn] be a real polynomial. Then p can be written as a complex polynomial p(x,y) =

P (z, z) with P ∈ C[z1 . . . , zn, z1, . . . , zn] and P (z, z) = P (z, z). Note that there exists a
polynomial Q ∈ C[z1, . . . , zn] with

p(x,y)2 = |P (z, z̄)|2 = |Q(z)|2 for z ∈ T n ,

where T = {z ∈ C : |z| = 1}.

The following statement can be obtained by applying the Nullstellensatz on the set
{z = (x,y) ∈ (C∗)n : |q(z)|2 = 1, |z1|2 = 1, . . . , |zn|2 = 1}, then applying Putinar’s
Theorem [71] on the multiplier polynomial of |q(z)|2 (see [47]).

Proposition 5.10. Let q ∈ C[z1, . . . , zn]. Then q(z) 6= 0 for all z ∈ T n if and only if
there are complex polynomials p1, . . . , pk, r1, . . . , rl ∈ C[z1, . . . , zn] with

(5.6) 1 + |p1(z)|2 + · · ·+ |pk(z)|2 = |q(z)|2(|r1(z)|2 + · · ·+ |rl(z)|2) , for z ∈ T n .
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Note that the statement is not an identity of polynomials, but an identity for all z in
the real n-torus T n.

While Proposition 5.10 provides a nice structural result, due to the following reasons
we prefer Corollary 5.4 for actual computations. In representation (5.6), two sums of
squares polynomials (rather than just one as in (5.2)) are needed in the representation,
and the degree is increased (by the squaring process). Moreover, the theorem is not really
a representation theorem (in terms of an identity of polynomials), but an identity over
T n; therefore in order to express this computationally, the polynomials hidden in this
equivalence (i.e., the polynomials 1− |z1|2, . . . , 1− |zn|2) have to be additionally used.

2.1. SOS-based Approximations. By putting degree truncations on the certifi-
cates, we can transform the theoretic statements into effective algorithmic procedures for
constructing certificates. The idea of degree truncations in polynomial identities follows
the same principles of the degree truncations with various types of Nullstellen- and Pos-
itivstellensätze in [37, 34, 56]. It is instructive to have a look at two simple examples
first.

Example 5.11. Let f be the polynomial f = z+z0 with a complex constant z0 = x0+iy0.
The ideal I of interest is defined by

h1 = f re = x+ x0 ,

h2 = f im = y + y0 ,

h3 = x2 + y2 − λ2 .

For values of λ ≥ 0, which correspond to points outside the amoeba (i.e., λ2 6= x20+y
2
0), we

have VC(I) = ∅ and thus the Gröbner basis G of 〈h1, h2, h3〉 isG = {1}. The corresponding
multiplier polynomials pi to represent 1 as a linear combination

∑
i pihi are

p1 =
−x+ x0

x20 + y20 − λ2
, p2 =

−y + y0
x20 + y20 − λ2

, p3 =
1

x20 + y20 − λ2
.

Hence, in particular, −1 can be written as a sum of squares in the quotient ring R[x]/I.
The necessary degree with regard to equation (5.2) is just 2.

For λ2 = a2 + b2, the Gröbner basis (w.r.t. a lexicographic variable ordering with
x ≻ y) is

x+ a, y + b .

The point (−a,−b) is contained in VR(I); thus in this case there does not exist a Null-
stellensatz-type certificate.

Example 5.12. Consider the polynomial f = z1 + z2 + 5 with zj = xj + iyj . The ideal I
of interest is defined by

h1 = x1 + x2 + 5 ,

h2 = y1 + y2 ,

h3 = x21 + y21 − λ21 ,

h4 = x22 + y22 − λ22 .
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Consider λ1 = 2, λ2 = 3. Using a lexicographic ordering with x1 ≻ x2 ≻ y1 ≻ y2, a
Gröbner basis is

y22 , y1 + y2 , x2 + 3 , x1 + 2 .

The standard monomials are 1 and y2. It is easy to see that −1 is not a sum of squares
in the quotient ring, which reflects the fact that (2, 3) ∈ UI .

Using the degree truncation approach for sums of squares we can define the set Ck as
the set of points in Rn such that there exists a certificate, say, in the standard approach,
of degree at most 2k. And similarly for coamoebas, where we denote the sequence by Dk.
These sequences are the basis of the effective implementation (see Section 4).

Theorem 5.13. Let I = 〈f1, . . . , fr〉 and k0 = maxi⌈deg fi/2⌉. The sequence (Ck)k≥k0
converges pointwise to the complement of the unlog amoeba U(I), and it is monotone
increasing in the set-theoretic sense, i.e., Ck ⊂ Ck+1 for k ≥ k0.

Similarly, the sequence (Dk)k≥k0 converges pointwise to the complement of the coamoeba
coA(I), and it is monotone increasing in the set-theoretic sense, i.e., Dk ⊂ Dk+1 for
k ≥ k0.

Proof. For any given point w ∈ Rn in the complement of the amoeba there exists
a certificate of minimal degree, say d. For k < ⌈d/2⌉ the point z is not contained in Ck
and for k ≥ ⌈d/2⌉ the point w is contained in Ck. In particular, the relaxation process is
monotone increasing. And analogously for coamoebas. �

Recall from Section 1 that it is well-known (and at the heart of current developments
in optimization of polynomial functions, see [34, 56] or e.g., the survey [35]; see e.g., [90]
for a further comprehensive treatment) that SOS conditions of bounded degree can be
phrased as semidefinite programs. Semidefinite programs can be solved efficiently both in
theory and in practice.

Recall in particular that any sum-of-squares polynomial H can be expressed as Y QY T ,
where Q is a symmetric positive semidefinite matrix (abbreviated Q � 0) and Y is a vector
of monomials (Proposition 5.1).

Similarly, by the degree restriction the linear combination in (5.2) or (5.5) can be
integrated into the semidefinite formulation by a comparison of coefficients.

3. Special Certificates and a Proof of Effectivity

For a certain class of amoebas, we can provide some explicit classes of Nullstellensatz-
type certificates. As a first warmup-example, we illustrate some ideas for constructing
special certificates systematically for linear amoebas in the standard approach. Then
we show how to construct special certificates for the monomial-based approach. In this
section we concentrate on the case of hypersurface amoebas.

3.1. Linear Amoebas in the Standard Approach. Let f = az1 + bz2 + c be a
general linear polynomial in two variables with real coefficients a, b, c ∈ R. We consider
certificates of the form (5.2) based on the third binomial formula, where we use the sums
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of squares (x1 − x2)
2 and (y1 − y2)

2. For simplicity assume a, b > 0. The representation

(ax1 + bx2 − c)(ax1 + bx2 + c) + (ay1 + by2)(ay1 + by2)

−(a2 + ab)(x21 + y21 − λ21)− (b2 + ab)(x22 + y22 − λ22) + ab(x1 − x2)
2 + ab(y1 − y2)

2

simplifies to

(5.7) (a2 + ab)λ21 + (b2 + ab)λ22 − c2 .

Assume that the point (λ1, λ2) is not contained in the unlog amoeba Uf . In order to
obtain the desired polynomial identity (5.2) certifying containedness in the complement
of U(f), we need this term to be smaller than zero. Then, by scaling, we can bring this
to −1, so that by adding of +1 (i.e., replacing ‘0’ in the formula by ‘1’), we obtain the
polynomial identity (5.2).

Example 5.14. Let a = 1, b = 2, c = 5. The curve (in λ1, λ2) given by (a2 + ab)λ21 +
(b2 + ab)λ22 − c2 has a logarithmic image that is shown in Figure 5.2. By projective
symmetry, analogous special certificates can be obtained within the two other complement
components.

–2

–1

1

2

–3 –2 –1 1 2 3 4

Figure 5.2. The boundary of an amoeba of a linear polynomial (blue)
and the boundary of the outer region, for which the special certificates of
degree 2 exist (red).

Since (by homogenizing the polynomial) there is a symmetry, we obtain similarly an
approximation of the other two complement components. Hence we have:

Lemma 5.15. For the points in the regions defined by the outer regions of the curves (5.7)
there exist certificates of degree at most 2.

3.2. The Monomial-based Approach. For the monomial-based approach based
on Corollary 5.9 we can provide special certificates for a much more general class. Our
point of departure is Purbhoo’s lopsidedness criterion introduced in Chapter 2, Section 5
(see also [70]), which guarantees that a point belongs to the complement of an amoeba
A(f). In particular, we can provide degree bounds for these certificates.

In the following let α(1), . . . , α(d) ∈ Nn
0 span Rn and f =

∑d
j=1 bjz

α(j) ∈ C[z] with

monomials mα(j) = zα(j) = z
α(j)1
1 · · · zα(j)nn .
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Based on Theorem 2.28 one can devise a converging sequence of approximations for
the amoeba. Note, however, that the lopsidedness criterion is not a Nullstellensatz in a
strict sense since it does not provide a polynomial identity certifying membership in the
complement of the amoeba.

The aim of this section is to determine how our SOS approximation is related to
lopsidedness (recall the notations and results presented in Chapter 2, Section 5) and
transform the lopsidedness certificate into a certificate for the Nullstellensätze presented
in Section 2.

By Lemma 5.7 we can assume that the point λ under investigation is the all-1-vector
1. In this situation lopsidedness means that there is an index j ∈ {1, . . . , d} with |bj | >∑

i 6=j |bi|. If the lopsidedness condition is satisfied in λ, then the following statement
provides a certificate of the form G+H + 1 with bounded degree.

Corresponding to the definition of I∗ in (5.4), let the polynomials s1, . . . , sd+2 be
defined by

si =

(
brei
|bi|

·
(
zα(i)

)re)2

+

(
bimi
|bi|

·
(
zα(i)

)im)2

− 1 , 1 ≤ i ≤ d ,

and sd+1 = f re, sd+2 = f im.

Theorem 5.16. If the point λ = 1 is contained in the complement of U(f) with f{0}
being lopsided and dominating element |mα(1)(1)|, then there exists a certificate of total
degree 2 · tdeg(f), which is given by

(5.8)

d+2∑

i=1

sigi +H + 1 = 0 ,

where

g1 = |b1|2 , gi = −|bi| ·
d∑

k=2

|bk| , 2 ≤ i ≤ d ,

gd+1 =

(
−b1 · zα(1) +

d∑

i=2

bi · zα(i)
)re

, gd+2 =

(
−b1 · zα(1) +

d∑

i=2

bi · zα(i)
)im

,

H =
∑

2≤i<j≤d

|bi| · |bj | ·
(
brei
|bi|

·
(
zα(i)

)re −
brej
|bj|

·
(
zα(j)

)re)2

+|bi| · |bj | ·
(
bimi
|bi|

·
(
zα(i)

)im − bimj
|bj|

·
(
zα(j)

)im)2

.

Proof. By the binomial theorem (a + b) · (a − b) = a2 − b2, we substitute the poly-
nomials si and gj into sd+1gd+1 + sd+2gd+2 yields

−
(
bre1 ·

(
zα(1)

)re)2
+

(
d∑

i=2

(bi · zα(i))re
)2

−
(
bim1 ·

(
zα(1)

)im)2
+

(
d∑

i=2

(bi · zα(i))im
)2

.
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Adding g1s1 and the SOS term H yields

−|b1|2 +
(

d∑

j=2

(
brej
|bj|

·
(
zα(j)

)re)2

+

(
bimj
|bj |

·
(
zα(j)

)im)2
)

·
(
|bj | ·

d∑

k=2

|bk|
)
.

Hence, the expression
∑d+2

i=1 sigi +H in (5.8) in total results in

−|b1|2 +
(

d∑

i=2

|bi|
)2

,

which, since all |bi| ≥ 0, is the certificate we wanted to obtain since we assumed lop-
sidedness with dominating term |mα(1)(1)|. By rescaling, we can bring the constant to
−1. �

We say that there exists a certificate for a point w in the complement of the amoeba
A(f) if there exists a certificate for the point 1 in the complement of the unlog amoeba
U(g) in the sense of Theorem 5.16, where g is defined as in Lemma 5.7 and λi = | log−1(wi)|.
Corollary 5.17. Let r ∈ N.

(1) For any w ∈ Rn \ LA(f̃r) ⊂ Rn \A(f) there exists a certificate of degree at most
2 · rn · deg(f), which can be computed explicitly.

(2) The certificate determines the order of the complement component w belongs to.

Proof. By definition of g, we have w ∈ A(f) if and only if 1 ∈ U(g). Further 1
belongs to LA(g̃r) if and only if g̃r{0} is not lopsided. Applying Theorem 5.16 on the
function g̃r yields a certificate for w in the log amoeba A(f). Since we have tdeg(g̃r) =
tdeg(g) · rn = tdeg(f) · rn due to the definition of g̃r and of g the result follows.

For the second statement, note that passing over from f to g does not change the
order of any point in the complement of the amoebas. Now it suffices to show that
the dominating term (which occurs in a distinguished way in the certificate) determines
the order of the complement component. The latter statement follows from Purbhoo’s
Theorem 2.30 that if w /∈ LA(f̂r) and the order of the complement component w belongs

to is α(i) then the dominant term in f̃r has the exponent r
n ·α(i) (see also [70, Proposition

4.1]). �

Theorem 5.18. For linear hyperplane amoebas in Rn, any point in the complement of
the amoeba has a certificate whose sum of squares is a sum of squares of affine functions.

Proof. By the explicit characterization of linear hyperplane amoebas in Theorem
2.8 (see also [20, Corollary 4.3]), any point in the complement is lopsided. Hence, the
statement follows from Theorem 5.16. �

3.3. Simplified Expressions. From a slightly more general point of view, monomial-
based certificates can be seen as a special case of the following construction. Whenever
the defining polynomials of a variety origin from simpler polynomials with algebraically
independent monomials, then the approximation of the amoeba can be simplified.
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For an ideal I let V = V(I) ⊂ (C∗)n be its subvariety in (C∗)n. Let γ1, . . . , γk
be k monomials in n variables, say, γi = yα(i) = y

α(i)1
1 y

α(i)2
2 · · · yα(i)nn , where α(i) =

(α(i)1, . . . , α(i)n) ∈ Zn. They define a homomorphism γ of algebraic groups from (C∗)n

to (C∗)k. For any subvariety W of (C∗)k, the inverse image γ−1(W ) is a subvariety of
(C∗)n. Note that the map γ is onto if and only if the vectors α(1), . . . , α(k) are linearly
independent (see [85, Lemma 4.1]).

Let J be an ideal with V(J) = γ−1(V ). If the map γ is onto, then computing the
amoeba of J can be reduced to the computation of the amoeba of I. Let γ′ denote the
restriction of γ to the multiplicative subgroup (0,∞)n. Then the following diagram is a
commutative diagram of multiplicative abelian groups:

(C∗)n
γ−→ (C∗)k

↓ ↓
(0,∞)n

γ′−→ (0,∞)k

where the vertical maps are taking coordinate-wise absolute value. For vectors p =
(p1, . . . , pn) in (C∗)n we write |p| = (|p1|, . . . , |pn|) ∈ (0,∞)n, and similarly for vectors of
length k. Further, for V ⊂ (C∗)n let |V | = {|p| : p ∈ V }. If the map γ is onto then
|γ−1(V )| = γ′−1(|V |) (see [85]).

Theorem 5.19. If a point outside of an unlog amoeba U(I) has a certificate of total degree
d then a point outside of the unlog U(J) has a certificate of degree d ·D, where D is the
maximal total degree of the monomials γ1, . . . , γk.

In particular, this statement applies to the certificates from Statements 5.4 and 5.9.

Proof. Let p be a point outside of the unlog amoeba of V ⊂ (C∗)n, which has a
certificate of total degree d. By Corollary (5.4), the certificate consists of a polynomial
G(x,y) in the real ideal I ′ ⊂ R[x,y] from (5.1) and by real sums of squares of polynomials
in R[x,y]. For the polynomials in the ideals, we observe that the realification process
carries over to the substitution process. W.l.o.g. we can assume that γi is a product of
just two factors. Then, with z = z1 + iz2, z = pq we have z1 + iz2 = (p1 + ip2)(q1 + iq2)
and use the real substitutions z1 ≡ p1q1 − p2q2, z2 ≡ p1q2 + p2q1. And in the same way
the real sum of squares remain real sums of squares (of the polynomials in pi, qj) after
substituting. �

Example 5.20. Let G1,3 denote the Grassmannian of lines in 3-space. It is the variety
in P5

C defined by

p01p23 − p02p13 + p03p12 = 0 ,

which we consider as a subvariety of (C∗)6. The three terms in this quadratic equation
involve distinct variables and hence correspond to linearly independent exponent vectors.
Note that G1,3 equals γ−1(V ) where

γ : (C∗)6 → (C∗)3 , (p01, p02, p03, p12, p13, p23) 7→ (p01p23, p02p13, p03p12)

and V denotes the plane in 3-space defined by the linear equation x − y + z = 0. Since
by Theorem 5.18 any point in the complement has a certificate of degree 2, Theorem 5.19
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Figure 5.3. SOS certificates of linear amoebas restricted to degree 2. The
red (dark) points represent infeasible SDPs, and in the green (light) points
numerical instabilities were reported in the computations.

implies that every point in the complement of the Grassmannian amoeba has a certificate
of degree 4.

4. Examples and Applications

We close this chapter by providing some computational results in order to confirm
the validity of our approach. The subsequent computations have been performed on top
of SOSTools [55], which is a Matlab package for computing sums of squares based
computations. The SDP package underlying SOSTools is SeDuMi [84].

Example 5.21. For the test case of a linear polynomial f = z1 + 2z2 + 3, the boundary
contour of the amoeba A(f) can be explicitly described, and it is given by the curves

exp(z1) = 2 · exp(z2) + 3 ,

2 · exp(z2) = exp(z1) + 3 ,

3 = exp(z1) + 2 · exp(z2) ,
see [20]. We compute the amoeba of f with our SDP via SOSTools on a grid of size
250 × 250 lattice points in the area [−3, 4]2. In the SDP we restrict to polynomials of
degree 2. By Theorem 5.16, the approximation is exact in that case (up to numerical
issues). Figure 5.3 visualizes the SDP-based computation of the SOS certificates. In the
figure, at the white outer regions, certificates are found. At the red points the SDP is
infeasible; at the green points feasibility cannot be proven by the solver, but numerical
instabilities are reported by the SDP solver. The issue of numerical stability of our SOS-
based amoeba computations and of general SOS computations is an important issue in
convex algebraic geometry, which deserves further study.

Example 5.22. As in Figure 4.2 we consider the class of polynomials f = z21z2 + z1z
2
2 +

c · z1z2 + 1 with some constant c ∈ R. We use the monomial-based approach from
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Figure 5.4. The amoeba of f = 1 + z21z2 + z1z
2
2 + c · z1z2 approximated

with SOStools for c = 2 and c = −4.

Corollary 5.9. In order to compute whether a given point (µ1, µ2) ∈ R>0 is contained in
the unlog amoeba U(f), we have to consider the polynomials

h1 = (x21x2 − 2x1y1y2 − y21 · x2) + (x1x
2
2 − x1y

2
2 − 2y1x2y2)

+c · (x1x2 − y1y2) + 1 ,

h2 = (x21y2 + 2x1y1x2 − y21y2) + (2x1x2y2 + y1x
2
2 − y1y

2
2) + c · (x1y2 + x2y1) ,

h3 = (x21x2 − 2x1y1y2 − y21x2)
2 + (x21y2 + 2x1y1x2 − y21y2)

2 − (µ2
1 · µ2)

2 ,

h4 = (x1x
2
2 − x1y

2
2 − 2y1x2y2)

2 + (2x1x2y2 + y1x
2
2 − y1y

2
2)

2 − (µ1 · µ2
2)

2 ,

h5 = (x1x2 − y1y2)
2 + (x1y2 + x2y1)

2 − (µ1 · µ2)
2 .

For the case c = 2 and c = −4 we investigate 160×160 points in the area [−4, 4]×[−5, 3]
and restrict the polynomials multiplied with the constraints to degree 3. The resulting
log-amoeba A(f) is depicted in Figure 5.4. At the white points the SDP is feasible and
thus these points belong to the complement component. At the orange points the SDP
is recognized as feasible with numerical issues (within a pre-defined range). At the black
points the SDP was infeasible without and at the turquoise points with numerical issues
reported. At the red points the program stopped due to exceeding numerical problems.
The union of the black, the turquoise and part of the orange points provides the (degree
bounded) approximation of the amoeba.

4.1. The Diameter of Inner Complement Components. We briefly discuss that
the SOS-based certificates can also be used for more sophisticated questions rather than
the pure membership problem. For this, we investigate the the class Py

∆ of polynomials f ∈
C[z1, . . . , zn] introduced in Chapter 4, Section 1 again. Recall that the Newton polytope
of polynomials in Py

∆ is a simplex and that these polynomials have n+2 monomials such
that exactly one of their exponents is located in the interior of the simplex ∆ (see (4.1)).
Recall furthermore that amoebas of polynomials in Py

∆ have at most one inner complement
component (Theorem 4.1).
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Figure 5.5. Lower bound for the diameter of the inner complement com-
ponent of f = 1 + z21z2 + z1z

2
2 + c · z1z2 and c ∈ [−9,−3] resp. c ∈ [1, 7].

Let f =
∑n

i=0 bi · zα(i) + c · zy, and let c denote the coefficient of the inner monomial.
By Lemma 4.11 and Theorem 4.13 for |c| → ∞ the inner complement component appears
at the image under the Log–map of the uniquely determined minimum δ of the function
f̂ = f

arg(b0)·zα(0) . δ is explicitly computable. This yields the opportunity to certify that a

complement component of the unlog amoeba has a certain diameter d under the scaling
|z| 7→ |z|2 of the (unlog) amoebas basis space by solving the SDP corresponding to

3∑

j=1

sigi +H + 1 = 0(5.9)

with polynomials s1 =
∑n

i=1(|δi|2 − |zi|2)2 − d2/4, s2 =
∑n

i=0

(
bi · zα(i)

)re
+ (c · zy)re and

s3 =
∑n

i=0

(
bi · zα(i)

)im
+ (c · zy)im, where gi ∈ C[z] (restricted to some total degree) and

H is an SOS polynomial.
Feasibility of the SDP certifies that there exists no point v ∈ V(f) ∩ ∂Bd/2(δ) (where

Bd/2(δ) denotes the ball with radius d/2 centered in δ) in the rescaled amoebas basis space.
Hence, the corresponding inner complement component of the unlog amoeba has at least
a diameter d in that space. We have to investigate the rescaled basis space of the unlog
amoeba here in order to transform the generic condition (|δi| − |zi|)2 − d2/4 on the basis
space of U(f) into a polynomial condition, which is given by s1 here.

Note that this works not only for polynomials in the class under investigation, but for
every polynomial as long as one knows, where a complement component appears.

Example 5.23. Let f = 1+z21z2+z1z
2
2+c·z1z2 with a real parameter c. For this class, the

inner lattice point is the barycenter of the simplex (see Chapter 4, Section 2) and the inner
complement component appears at the point (1, 1), i.e., under the Log-map at the origin
of Log(R2). The inner complement component exists for c > 1 and c < −3 (see Theorem
4.20). We compute a bound for the diameter of the inner complement component using
the upper SDP (5.9) for the intervals [−9,−3] and [1, 7] with step length 0.1. For any
of these points we compute 14 SDPs in order to estimate the radius (based on binary
search). We obtain the bounds shown in Figure 5.5.
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Observe that these bounds are lower bounds since feasibility of the SDP certifies
membership in the complement of the amoeba but infeasibility only certifies that no
certificate with polynomials of degree at most k (i.e., 3 in our case) exists.

This approach also yields lower bound for the diameter of the inner complement com-
ponent of the (log) amoeba, since, e.g., the image of the circle

∑n
i=1(|δi|2 − |zi|2)2 − r2

under the Log-map, i.e.,
∑n

i=1(log |δi| − log |zi|)2 − r2, contains the triangle

conv
({(

|δ1| · er/2, . . . , |δn|
)
, . . . ,

(
|δ1|, . . . , |δn| · er/2

)
,
(
|δ1| · e

r
2
√

n , . . . , |δn| · e
r

2
√

n

)})
.

Hence the double radius of the incircle of that triangle is a lower bound for the diameter
of the inner complement component of the amoeba.



CHAPTER 6

Resume and Open Problems

In this final chapter we recapitulate the problems we have investigated, the advances
we made on them and provide questions that remain open.

The Configuration Space of Amoebas

A major part of this thesis concentrates on understanding the geometrical and topo-
logical structure of the configuration space of amoebas. Specifically, we dealt with the
following problems and questions. Let A ⊂ Zn.

(1) What are necessary and sufficient conditions such that UA
α 6= ∅ for α ∈ conv(A)∩

Zn \ A (Problem 2.20)?
(2) Is every UA

α connected for α ∈ conv(A) ∩ Zn (Problem 2.22)?
(3) Is the intersection of UA

α with a generic complex projective line non-empty and
connected for α ∈ conv(A) ∩ Zn (Problem 2.23)?

(4) Is for α ∈ conv(A)∩Zn the set UA
α simply connected, if UA

α is (path-)connected?
If not, what is its fundamental group (Problem 2.24)?

(5) Let α ∈ conv(A) ∩ Zn. Give an exact algebraic or geometrical description of UA
α

or (at least) bounds to approximate UA
α (Problem 2.25; see also Problem 2.9).

With respect to (1) state of the art were Rullg̊ard’s Theorems 2.15 and 2.19 providing
some necessary and some sufficient conditions on A and α. Although (1) remains open,
since we do not provide strengthenings on these conditions, we figured out that the proof
of Theorem 2.19 had a gap, which we were able to close (Theorem 4.43). Furthermore,
we give (for appropriate A ⊂ Zn) an explicit construction method yielding (to the best
of my knowledge) the first non-univariate example for a polynomial f ∈ UA

α with α ∈
conv(A) ∩ Zn \ A (Example 4.44).

We put very much effort on Question (2) leading finally to an affirmative answer for
polynomials with barycentric simplex Newton polytope (Corollary 4.25), for trinomials
(Corollary 4.50) and for minimally sparse univariate polynomials (3.12). These are the
first classes of polynomials where this question is solved for at all (up to linear polynomials,
where the question is trivial).

On the one hand, I would consider this question, which, of course, remains open in
general, as one of the most interesting problems in contemporary amoeba theory. On
the other hand, I had to learn that it is seemingly extremely complicated in general and
thus I recommend to “approach with caution”. I cannot even give a good guess, whether
the answer is “yes” or “no” in general; I conjecture it to be affirmative in the case that
A = conv(A) ∩ Zn (Conjecture 3.8), which is the multivariate version of Theorem 3.12
(see Chapter 3, Section 3).
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We solve Question (3) – the general answer is negative since in general UA
α of trinomials

do not have this property (see Chapter 4, Section 3). Anyhow, there might be special
choices of A such that the property holds, which remains unclear. For example, the
property holds for all intersections of UA

y of polynomials with barycentric simplex Newton
polytopes with the complex line given by fixing all but the inner coefficient (Lemma
4.22; see Chapter 4, Section 2 for further details). A similar statement holds for the UA

α

corresponding to the exponent of the “middle” term of a trinomial (see Chapter 4, Section
3)

We also solve the first question of (4), where the general answer is negative again.
If A = {0, s, s + t} with s, t coprime and α ∈ (conv(A) ∩ Z)) \ {0, s, s + t}, then UA

α

can be deformation retracted to an (s + t)-sheeted covering of an S1 (Theorem 4.51),
which is not simply connected. The same statement answers the second question of (4)
for trinomials, since in this case the fundamental group of the particular UA

α is Z. The
problem remains open for other classes of polynomials. But, since already the rather
easy class we investigate here yield (next to a lot of complications) a rather complicated
structure of the configuration space, one has to face the fact that there is at least no
genuine approach for other classes in sight.

Problem (5), again, is way too general for a complete solution. We deliver the desired
exact description for polynomials with barycentric simplex Newton polytope (Theorem
4.19 and for trinomials Theorems 4.40 and the results of Section 3.3).

Furthermore, we provide explicitly computable, exact upper and lower bounds for poly-
nomials with simplex Newton polytope and one additional inner lattice point (“amoebas
of genus at most one” resp. “amoebas supported on a circuit”), where the upper bound
becomes sharp under some extremal conditions (Theorems 4.8, 4.10 and 4.13). Next to
the linear case investigated by Forsberg, Passare and Tsikh (Theorem 2.8) and an exam-
ple by Passare and Rullg̊ard (see Chapter 2, Section 4), these are the first classes this
question is solved for at all.

Maybe the most interesting consequence of these results is that the structure of the
configuration space, which is discovered here, is very rich and beautiful – geometrically
related to such classical, well known objects as hypotrochoid curves and the possibility to
deformation retract whole sets UA

α to one specific, nice, closed path, which topologically
can be tackled properly.

In my opinion the questions (1), (5) and (2) with the restriction mentioned above are
worthiest to be investigated in future. In particular, I would suggest Question (5) to be
solvable for some appropriate classes of polynomials.

The Lattice of Configuration Spaces and Sparsity

In the past the usual approach for the investigation of amoebas was to fix the support
set A ⊂ Zn and thus the corresponding configuration space. To the best of my knowledge
there are almost no results explaining how configuration spaces are related to each other
with respect to existing combinatorial relations between the defining support sets of this
configuration spaces (of course, only with respect to amoeba theory – I am not aware of
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known structures for similar objects in other fields of mathematics, which I would strongly
conjecture to be investigated and understood better). The only result I am aware of is a
theorem by Rullg̊ard (roughly) stating that homeomorphism between two configuration
spaces given by a regular linear map between their support sets induces a homotopy
between the corresponding amoebas (and also respects orders and Ronkin coefficients; see
[77, Theorem 7]).

It is a surprising fact that this relation between spaces is so rarely investigated because
one can switch from one configuration space CA to another one CB with B ⊂ A easily
by investigating sequences of polynomials in CA where certain coefficients vanish in the
limit. Since varieties of polynomials and thus also amoebas are continuous along such
sequences, a fruitful structure can be expected behind this relationship.

We show that this is indeed the case. If P is an integral n-polytope, then the set L(P )
of all configuration spaces CA with conv(A) = P forms a boolean lattice with respect
to a relation induced by set theoretical inclusion (Theorem 3.2). In this lattice every
augmented configuration space CA

♦ (see Chapter 2, Section 4) is the union of all elements
in the the order ideal O({CA}) of the configuration space CA (Corollary 3.3). Indeed, the
structure of a lattice of configuration spaces has an impact on the amoebas in the config-
uration spaces, which are its elements. We show this exemplarily by proving that if a set
UA
α = ∅, then UB

α = ∅ for every CB contained in the order ideal O({CA}) (Theorem 3.6).
As a consequence the sets UA

α are also open on augmented configuration spaces (Corollary
3.7) and we obtain an independent motivation that “maximally sparse polynomials have
solid amoebas” (Problem 3.4) as conjectured by Passare and Rullg̊ard (see [62, 66]), since
the configuration space of maximally sparse polynomials with Newton polytope P is the
minimal element in L(P ) (see Chapter 3, Section 2 for further details). Furthermore, we
give easy proofs (independent of Nisse’s approach in [52]) of this conjecture for certain,
rich classes of Newton polytopes (Theorems 3.9 and 3.10).

For the future it would surely be nice to find an elemental proof for the maximally
sparse conjecture (Problem 3.4) for all Newton polytopes. Independent of that I suggest
it as very worthy to go on to investigate the connection between (boolean) lattices and
(configuration spaces of) amoebas. The theory of lattices is very rich and well developed
(see e.g., [83, 89]) and I truly expect more pearls to be hidden here, which are waiting
to be discovered.

The Approximation of Amoebas

Since an exact description of amoebas and coamoebas is not known basically except
for the linear case, one genuine task is to find algorithms to approximate amoebas and
coamoebas. In the last years the usual approach, which was used to tackle this problem,
was to try to solve the membership problem (see Problems 2.26 and 2.33). While for
coamoebas no algorithm solving this problem is known so far, for amoebas state of the
art is Purbhoo’s lopsidedness criterion and his corresponding relaxation process based on
iterated resultants (see Chapter 2, Section 5), which yields a certificate-based solution of
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the Problem 2.26 for amoebas. But, besides the fact that there is no canonical imple-
mentation, the strongest issue arising with Purbhoo’s solution is that it does not provide
a certificate in a strict sense, i.e., it does not provide an algebraic certificate based on
polynomial inequalities.

We provide a new approach to the membership problem via using semidefinite pro-
gramming and sums of squares. Specifically, we show that the membership problem both
for amoebas and for coamoebas can be expressed in terms of real polynomial inequalities
and therefore an (algebraic) certificate is given in terms of sums of squares via the Real
Nullstellensatz (Corollaries 5.4, 5.9 and Theorem 5.8).

This new approach is very attractive – not only, because it can be implemented
straightforwardly by using the well established software for semidefinite programming
(we use SeDuMi and SOStools here), but in particular since we can additionally prove
that (on the amoeba side) our approach is as good as Purbhoo’s in terms of complexity
(Corollary 5.17).

Furthermore, we have shown that the approach works from a practical point of view.
The implementation was done and a couple of approximations were made (see e.g., Figures
5.3 and 5.4) and also related problems can be tackled in practice (see Chapter 5, Section
4 for further details).

Anyhow, although the problem can be regarded as solved from a theoretical point of
view (except, of course, that one might look for further applications of this method), from
the practical point of view the method is far away from being optimally implemented. In
particular, we had to learn that – even if the related SDPs have small degrees – numerical
issues appear in an terrifying amount (see Example 5.22 and Figure 5.4).

In discussions e.g., with Pablo Parrilo and Frank Valentin we found out that similar
phenomena were observed for other SDP-based algorithms and that they are conjectured
to be caused by a “bad” choice of polynomial bases (at least as one reason). Anyhow, there
exists almost no literature about these effects (see e.g., [36] as one of the rare exceptions).
Thus, it seems as a very worthy future project to collect data about numerical issues for
solving SDP problems with different monomial bases with the aim to be able to make
suggestions of good choices for such bases.

The Boundary of Amoebas

Similarly as the membership problem for complement components of amoebas it is
an open problem how to determine the points in Rn, which belong to the boundary of
amoebas (recall that amoebas are closed sets; see Theorem 2.1). Obviously, for a Laurent
polynomial f ∈ C[z±1] a boundary point w ∈ ∂A(f) has to be the image of a critical
point of the Log-map, i.e., it has to be part of the contour of the amoeba. The contour
is a nice structure to work with, since it can be computed properly due to a result of
Mikhalkin (Theorem 3.13) stating that the critical points of the Log-map are exactly the
points S(f), which are mapped to a real projective vector under the logarithmic Gauss
map (see Chapter 3, Section 4 and in particular [43, 41, 85] for further details).

On the other hand, in general the contour is a strict superset of the boundary (see
e.g., [66]). So, the only fact known about a boundary point is that in the intersection of
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its fiber and the variety of the defining polynomial there exist a point in S(f) (Corollary
3.14). But it is unknown how to distinguish between boundary and non-boundary points
in the contour.

We provide a necessary condition for such a distinction by a strengthening of the
existing statement. We show that if a point w of the contour belongs to the boundary
∂A(f), then every point in the intersection of its fiber Fw and the variety V(f) has to
belong to S(f) (Theorem 3.15). We show this by investigating the submanifolds of Fw

where the real- and imaginary part of f vanish. In particular, we study how they may
intersect. These submanifolds can be nicely visualized – at least for n = 2 where they are
curves (e.g., with Maple; see Figure 3.3).

Unfortunately, it is not clear if this necessary condition is also sufficient or at least
generically sufficient (I believe the latter to be the case). Furthermore, there is no algo-
rithm so far to check the criteria of our theorem efficiently. I consider both questions as
very interesting and solvable. They are, as well as the presented result, part of an ongoing
project joint with Franziska Schröter.

Miscellaneous Results

The thesis contains some further, more special results, which do not fit properly in
one of the upper sections. The most important are:

• Let f ∈ Py
∆ be a multivariate polynomial with amoeba of genus at most one (see

Chapter 4, Section 1). A(f) is solid and the upper bound computed in Theorem
4.13 is attained with equality if and only if f belongs to the A-discriminant ∇A of
CA (Theorem 4.17). Furthermore, if the upper bound is is exceeded, then there
exists an explicitly computable point in the bounded complement component,
where f is lopsided (Theorem 4.15).

• Let A ⊂ Zn and α ∈ A. If for every complex line lα ⊂ CA given by fixing all
coefficients but bα corresponding to zα holds that lα∩ (UA

α )
c is simply connected,

then UA
α is connected (Theorem 4.24).

• For univariate trinomials f = zs+t+pzt+q ∈ C[z] since the late 19th century the
correspondence between location of the roots and the choice of the coefficients
is investigated (see [8, 33, 45]). Although algebraically well understood due to
theorems by Bohl from 1908 (Theorems 4.28 and 4.29), it is since over years not
understood, what is, for fixed q, the geometrical structure of all p such that f
has a root of a certain absolute value or two roots of the same absolute value
(see Problem 4.31; see also Chapter 4, Section 3 for further details). We prove
via usage of amoeba theory that f has a root of a certain, given absolute value
|z∗| ∈ R>0 if and only if p is located on the trajectory of a specific hypotrochoid
curve depending on s, t, q and |z∗| (Theorem 4.32). For p, q 6= 0 we show that
pairs of at most two roots have the same absolute value (Lemma 4.38) and such
pairs exist if and only if (for q fixed) p is located on a specific 1-fan F (s, t, q)
(Theorem 4.40; see Figure 4.9 for trajectories of hypotrochoids and the 1-fan
F (s, t, q)). Furthermore, we prove that if p, q ∈ R∗ and V(f) = {a1, . . . , as+t}
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with |a1| ≤ · · · ≤ |as+t|, then the only roots, which may be real are a1, at, at+1

and as+t (Theorem 4.39).
• Let A ⊂ Zn and α ∈ conv(A)∩Zn but α /∈ A. Rullg̊ard gave a sufficient condition
on α depending on the lattice LA generated by A for UA

α 6= ∅ (Theorem 2.19, Part
(2); see also [77, Theorem 11]). Unfortunately, his proof has a gap. We close this
gap (Theorem 4.43) and provide the (to the best of my knowledge) first known
example of an amoeba with a complement component of order α with α /∈ A (see
Example 4.44 and Figure 4.10).

• It was unclear whether the complement induced tropical hypersurface C(f) given
by a Laurent polynomial f ∈ C[z±1] is always homotopy equivalent with its
amoeba A(f) (Problem 2.16). We prove that this is not the case in general
(Corollary 4.45).

• It was for A ⊂ Zn an open question whether an existing complement component
of order α ∈ A increases monotonically with increasing absolute value of the
coefficient bα (see Problem 4.52). We prove that this is not the case in general
(Theorem 4.53).
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– Université Pierre et Marie Curie (Paris 6), Paris, June 6th, 2012,
– Philipps-Universität, Marburg, May 23rd, 2012.

http://arxiv.org/abs/1303.4241
http://arxiv.org/abs/1201.4061
http://arxiv.org/abs/1009.6158v1
http://arxiv.org/abs/1101.4114
http://arxiv.org/abs/1108.2456


A. CURRICULUM VITAE OF TIMO DE WOLFF 121

• “The Configuration Space of Amoebas” (poster presentation)
– Workshop “Tropical Geometry”, ICMS, Edinburgh, April 2nd, 2012.

• “Contemporary Key Problems in Amoeba Theory”
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