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Summary

The thesis provides a stochastic model to quantify and classify neuronal firing patterns of
oscillatory spike trains. A spike train is a finite sequence of time points t1 < t2 < . . . < tn
at which a neuron has an electric discharge (spike) which is recorded over a finite time
interval [0, T ]. In this work, these spike times are analyzed regarding special firing
patterns like the presence or absence of oscillatory activity and clusters (so called bursts).
These bursts do not have a clear and unique definition in the literature. They are often
fired in response to behaviorally relevant stimuli, e.g., an unexpected reward or a novel
stimulus, but may also appear spontaneously. Oscillatory activity has been found to
be related to complex information processing such as feature binding or figure ground
segregation in the visual cortex. Thus, in the context of neurophysiology, it is important
to quantify and classify these firing patterns and their change under certain experimental
conditions like pharmacological treatment or genetical manipulation. In neuroscientific
practice, the classification is often done by visual inspection criteria without giving
reproducible results. Furthermore, descriptive methods are used for the quantification
of spike trains without relating the extracted measures to properties of the underlying
processes.

For that reason, a doubly stochastic point process model is proposed and termed ’Gaus-
sian Locking to a free Oscillator’ - GLO. The model has been developed on the basis
of empirical observations in dopaminergic neurons and in cooperation with neurophys-
iologists. The GLO model uses as a first stage an unobservable oscillatory background
rhythm B which is represented by a stationary random walk (Bi)i∈Z whose increments
are normally distributed with mean µ and variance σ2

1. Two different model types are
used to describe single spike firing (m = 0) or clusters of spikes (m = 1). Thus, m
is a parameter and does not change over time. For both model types, the distribution
of the random number of spikes Pi per beat Bi has mean γ, but different probability
distributions (Bernoulli in the single spike case or Poisson in the cluster case). In the
second stage, the random spike times are placed around their birth beat according to
a normal distribution with variance σ2

2. These spike times represent the observed point
process Φ which has the five easily interpretable parameters µ, σ1, σ2, γ,m to describe
the regularity and the burstiness of the firing patterns.
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Summary

It turns out that the point process Φ is stationary, simple and ergodic. Φ can be
characterized as a cluster process and for the bursty firing mode (m = 1) as a Cox process.
Furthermore, the distribution of the waiting times between spikes can be derived for some
parameter combinations and for σ2 → ∞ the processes Φ = Φ(σ2) converge weakly to
a homogenous Poisson process with intensity γ/µ. The conditional intensity function of
the point process is derived which is also called autocorrelation function (ACF) in the
neuroscience literature. This function arises by conditioning on a spike at time zero and
measures the intensity of spikes l time units later. The autocorrelation histogram (ACH)
is an estimate for the ACF. The parameters of the GLO are estimated by fitting the ACF
to the ACH with a nonlinear least squares algorithm. This is a common procedure in
neuroscientific practice and has the advantage that the GLO ACF can be computed for
all parameter combinations and that its properties are closely related to the burstiness
and regularity of the process. The precision of estimation is investigated for different
scenarios using Monte-Carlo simulations and bootstrap methods.

The GLO provides the neuroscientist with objective and reproducible classification rules
for the firing patterns on the basis of the model ACF. These rules are inspired by
visual inspection criteria often used in neuroscientific practice and thus support and
complement usual analysis of empirical spike trains. When applied to a sample data set,
the model is able to detect significant changes in the regularity and burst behavior of
the cells and provides confidence intervals for the parameter estimates.
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Chapter 1.

Introduction

In neuroscience it is commonly agreed that information processing in the brain is based
on electric discharges (spikes) of special nerve cells — the neurons. Mathematical de-
scription concentrates on the times 0 < t1 < t2 < . . . < tn < T < ∞ (spike times)
at which the spikes occur within the recording time interval [0, T ]. A spike train
S = (t1, t2, . . . , tn) is the sequence of spike times and is identified with the point con-
figuration

ϕ =
∑
i

δti , (1.1)

where δti denotes the Dirac measure, indexing the occurrence times ti. Randomness
comes in by regarding the time points ti as R-valued random variables Ti. Then, the
spike trains are often modeled as a point process

Φ =
∑
i

δTi . (1.2)

Spike train analysis (Johnson, 1996; Awiszus, 1997; Gabbiani and Koch, 1998; Brown
et al., 2004) is the attempt to find patterns in spike trains which reflect some aspect of
neural functioning. Famous spike train models are pseudo-Markov models (Ekholm and
Hyvärinen, 1970), Poisson processes (Abeles, 1982), hidden Markov models (Camproux
et al., 1996), inverse gaussian probability models (Iyengar and Liao, 1997) and Gamma
processes (Barbieri et al., 2001; Shimokawa and Shinomoto, 2009).

In dopaminergic neurons, prominent empirical firing patterns (see Figure 1.1) include
highly regular pacemakers (A), processes with repetitive bursts (B), irregular bursty
spike trains (C) or irregular non-bursty firing patterns (D). The terms regular (or irreg-
ular) and bursty (or non-bursty) are fundamental for this work and have to be explained
in some more detail and in a neuroscientific context. Both of them lack a clear unique
definition and thus constitute a subjective description of special firing patterns: Regu-
larity is reflected by a continuum of different firing patterns, ranging from very regular,

1



Chapter 1. Introduction

almost clock like, neurons (A) to irregular Poisson process like cells (D) (Maimon and
Assad, 2009). Regular spike trains are often associated with a small variability of the
waiting times between spikes. Here, regular (or irregular) is associated with the pres-
ence (or absence) of rhythmic activity and oscillation. So in contrast to mathematical
intuition a homogenous Poisson process is regarded as irregular, because there is no
dominant oscillation.

time [s]

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

A

time [s]

| | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | || || | | ||| | | | | | | | | | || | | || | | | | | |

| || | | | | | | | | | | | | | | | | | | | | | | | | |
B

time [s]

| | | ||| | || | | | | || | | | | | || | || || | | | || | | | | | | | | | | | | | | |
| | | | | || | | | |||| | || | | | || | | | | | | | | | | | | | | | |

| |||||| | | | | | | ||| | | | | || | || | | | ||| | | | | | | | | |
C

| | | | | | | | | | | | || | | | | | | | | | | | | || | | | || | | |
| | | | | | | | | | | | | | | || | | | | | | | | | | || | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | |
D

0 2 4 6 8 10

time [s]

Figure 1.1: Rasterplots of prominent empirical firing patterns (every bar represents
the time position of one spike): (A) highly regular pacemaker, (B) repetitive oscillatory
bursts, (C) irregular bursty and (D) irregular non-bursty spike train. Red circle shows a
’hole’ in the regular spike train.

Furthermore, bursts are periods of enhanced firing frequency (Cocatre-Zilgien and Del-
comyn, 1992) and considered as an important unit of neuronal information (Izhikevich
et al., 2003). Unfortunately, a burst also lacks a clear definition (Gourevitch and Egger-
mont, 2007), so in this work it will be simply regarded as a cluster of spikes. The clusters
may have a different width and may contain a different number of spikes. A bursty spike
train contains many bursts (B & C), in contrast to non-bursty cells (A & D). Of course,
a bursty neuron can be regular (B) as well as irregular (C), whereas regular means that
the burst packages follow some periodic behavior.

In the context of neurophysiology it is important to quantify and classify the firing pat-
terns of Figure 1.1 under certain experimental conditions like pharmacological treatment
(Bingmer et al., 2011; Schiemann et al., 2012; Schiemann, 2012), genetical manipulation,
stimulation (Gray and Singer, 1989; Berger et al., 1990; König et al., 1995) or for dif-
ferent brain regions (Shinomoto et al., 2009). For neuronal populations, synchronous
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Chapter 1. Introduction

oscillatory activity has been found to be related to complex information processing such
as feature binding or figure ground segregation in the visual cortex (Gray and Singer,
1989; Engel et al., 1991). Furthermore, burst signals are fired in response to behav-
iorally relevant stimuli, e.g. an unexpected reward or a novel stimulus (Schultz, 2007;
Bromberg-Martin et al., 2010). For more background information about bursts and
regularity/oscillation see appendix A.1.

Overview of the thesis: The aim of this thesis is to give the experimenter an easily
understandable model for the quantification and classification of firing patterns in neu-
ronal spike trains. In the following section, the motivation is described in more detail
and in Section 1.2 a short introduction is given to the theory of point processes which
is the mathematical basis of spike train analysis. In Chapter 2, the spike train model
is introduced which intends to describe the mentioned firing patterns. Furthermore, the
basic properties of the model will be investigated, as well as a procedure explained for
spike train simulation. The model is called ’Gaussian Locking to a free Oscillator’ - GLO
and has been published by Bingmer et al. (2011). In Chapter 3, the distribution of the
waiting times between spikes get a special focus until finally in Chapter 4 the autocor-
relograms are developed. These are conditional intensities of the point process and are
used for classification of firing patterns, as well as parameter estimation in Chapter 5.
The estimation procedure will be described in detail and the precision of estimation
investigated for different conditions. In Chapter 6, different bootstrap methods are in-
troduced for resampling and confidence interval construction with the aim of visualizing
the variability of the estimated parameters of the GLO model. Finally, the model will be
applied to a real data set (Chapter 7) which is part of the data set described in Bingmer
et al. (2011); Schiemann et al. (2012) and Schiemann (2012). At the end, the proper-
ties of the GLO, its usability for neuroscientists and open problems will be discussed
(Chapter 8). Additional details about the sample data set, burstiness and regularity, as
well as R Code of the proposed procedures can be found in the appendix. This thesis
contains results of the article by Bingmer et al. (2011) but are presented in some more
detail here.

1.1. Motivation

The following short example represents a typically situation for a neuroscientist after
an experiment: In Figure 1.1, spike train B represents the activity of a cell before
the injection of a pharmacological substance and spike train C shows the same neuron
after application. How should one quantify the change in the firing patterns? Is it an
experimentally induced change or does it happen by chance? The following additional
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Chapter 1. Introduction

main questions have arisen in our cooperation with neurophysiologists:

• How to classify a spike train into a regular or irregular and bursty or non-bursty
firing pattern in an objective and consistent way?

• Does the oscillatory behavior change? And in which way?

• Is there a change in the burst behavior? What happens to the average number of
spikes per burst? Does the burst width increase or decrease?

Existing spike train models and statistical approaches usually assume renewal processes
as null models (Moore et al., 1966; Perkel et al., 1967; Johnson, 1996), which is insufficient
when it comes to the description of bursts and oscillation. So far, bursts and oscillation
are considered jointly (Kaneoke and Vitek, 1996) and investigated on the descriptive
level, without relating the extracted measures to properties of the underlying processes.
As a consequence, the connection between bursting and regularity/oscillation remains
unspecified because no explicit spike train model is used as a basis for the detection of
the features.

Thus, motivated by observations in empirical data (which will be described in Sec-
tion 1.1.1), a parametric spike train model (Chapter 2) is introduced and termed ’Gaus-
sian Locking to a free Oscillator’ - GLO. The GLO (Bingmer et al., 2011) is a doubly
stochastic point process model and similar to the ELO (Schneider, 2008) which stands
for ’Exponential Locking to a free Oscillator’. While the ELO has been developed for the
description of phase offsets in multi unit recordings (Schneider and Nikolic, 2006), the
GLO parameterizes bursts and regularity in five easily understandable parameters and
captures the diversity of empirically observed firing patterns. With these parameters, a
spike train can be classified in a consistent and objective way which is very similar to
visual inspection criteria used in empirical practice (Wilson et al., 1977; Paladini et al.,
2003). Furthermore, the model assists the neuroscientist by providing an objective tool
to investigate functional changes in neuronal spiking behavior in response to external
conditions (Bingmer et al., 2011; Schiemann et al., 2012; Schiemann, 2012).

1.1.1. Observations in empirical data

Modeling a spike train S := (t1, t2, . . . , tn) should be based on the knowledge of neuronal
information processing and be motivated by observations in empirical data. By using
exploratory techniques, simple data summaries and graphical displays one can get a
first understanding of the underlying structure and its features. Keeping the scientific
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Chapter 1. Introduction

issue in mind, on this basis a first probability model can be developed. Of course, this
represents a process of assessment of goodness of fit and model refinement, until finally
statistical inference can be made (Kass et al., 2005).

The sample data set (Schiemann et al., 2012; Schiemann, 2012) consists of 146 extra-
cellular single-unit recordings of dopamine (DA) neurons of anesthetized mice in vivo
(for more details see appendix A.2). It is analyzed using rasterplots, interspike interval
distributions and autocorrelation histograms which aim at giving a first overview. The
graphics will be discussed in the following paragraphs with examples and observations
representative for the entire data set.

Rasterplots: These plots are used to represent the raw data. Every spike is drawn
as a bar against the time axis. Figure 1.1 shows parts of rasterplots of four empirical
spike trains of this data set. The following characteristics can be summarized: Rhythmic
activity is found in bursty as well as non-bursty spike trains (A & B). There are moments
of clearly increased firing intensity and spikes seem to arrange themselves in clusters (B).
The cluster sizes vary in the number of spikes and the width of the cluster (B & C). The
cell may stop producing spikes (A, red circle) and there is different variability between
spikes (A - D).

Interspike interval distribution: A further useful graphic for the description of the
underlying process is a visualization of the empirical waiting time distribution, i.e. the
distribution of the length of the interval from one point to the next. In spike train analysis
this is called the interspike interval (ISI) distribution which will be regarded in detail in
Chapter 3. Figure 1.2 shows the ISI distribution of the four cells of Figure 1.1. It seems
as if regular spike trains exhibit a gaussian shaped ISI distribution (A). Oscillatory
bursty cells show two peaks where one peak represents intervals in a cluster and the
other one intervals between clusters (B). In irregular burst processes the second peak
decreases or disappears (C). Furthermore, irregular spike trains tend to have a skewed
ISI distribution (D).

Autocorrelation histogram: Finally, an autocorrelation histogram (ACH) is used to
quantify the oscillatory activity in a spike train. In neuroscience, ACHs are special
histograms which show the distances tj − ti of all pairs of spike times (ti, tj) with i < j.
Thus, the ACH visualizes periodic behavior and dependence and is basically an estimate
for the conditional intensity of the point process. The ACH will be discussed in detail
in Chapter 4. Figure 1.3 shows the four corresponding ACHs of the empirical spike
trains of Figure 1.1: For a regular neuron, one can see oscillatory activity in non-bursty
(A) and bursty (B) spike trains. In the bursty case, there is a longer period and an
initial peak close to zero. Because of this initial peak some spike trains can be detected
as bursty even in the irregular case (C). Very irregular spike trains have a flat ACH
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Figure 1.2: Distribution of waiting times between events in empirical spike trains seen
in Figure 1.1. There are the following characteristics: (A) gaussian shaped, (B) two
peaks, (C) two peaks, but only a flat second one and (D) a skewed distribution.

(D). Furthermore, regular bursty cells (B) tend to have lower frequency oscillations than
regular non-bursty spike trains (A).
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Figure 1.3: Autocorrelation histograms (ACHs) of the four empirical spike trains pre-
sented in Figure 1.1. Grey lines represent raw ACH and red lines a smoothed version
resulting of a gaussian filter. The main characteristics of these ACHs are: strong oscil-
latory activity represented by multiple peaks in regular spike trains (A, B), peaks near
zero lags for busty cells (B, C) and flat ACH for irregular neurons (D). Regular bursty
cells (B) tend to have lower frequency oscillations than regular non-bursty spike trains
(A).

In this work, the proposed model is motivated by the basis of these observations and
tries to account for the relevant features to quantify regularity and bursting behavior of
empirical processes. Before introducing the GLO model in Chapter 2.1 the mathematical
basics of point process theory as well as some important notations and definitions are
summarized in the next section.
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Chapter 1. Introduction

1.2. Point processes

In the following section, some basic definitions and results of the theory of point processes
are summarized which is the mathematical basis of spike train analysis (Perkel et al.,
1967; Johnson, 1996). We will mainly follow the books of Daley and Vere-Jones (1988)
and König and Schmidt (1992), but do not give a full description of the theory. Further
references for the theory of point processes are Srinivasan (1974); Snyder (1975); Cox and
Isham (1980); Diggle (1983) and Thompson (1988). More mathematical requirements
are needed for Matthes et al. (1978); Bremaud (1981); Franken et al. (1981); Kallenberg
(1986); Karr (1986); Stoyan et al. (1987) and Reiss (1993). For an introduction to
measure theory we refer to Kingman and Taylor (1966) and Bauer (1990).

1.2.1. Basic definitions

Definition 1.1 (Sets): We define N := {1, 2, . . . , } to be the set of natural numbers, Z
as the set of integers, R the set of real numbers and ∅ as the empty set. Furthermore,
we define N0 := N ∪ {0}, Z∗ := Z \ {0} , R+ := [0,∞), R∞ := R ∪ {−∞,∞} and
[n] := {1, 2, . . . , n}.

Definition 1.2 (Measures and measure spaces): Let E be a complete separable
metric space (c.s.m.s.), that means a metric space which has a countable dense subset
and where every Cauchy sequence in E converges in E. If A is a σ-algebra on E, then
the tuple (E,A) is called a measurable space. The smallest σ-algebra which contains
the open sets of E is called the Borel σ-algebra B(E) on E and elements of B(E) are
called Borel sets. A Borel measure ϕ is any measure defined on the Borel sets. It is
boundedly finite if ϕ(A) <∞ for every bounded Borel set A. The space ME consists of
all boundedly finite Borel measures ϕ on E. The set of counting measures Mc consists
of all boundedly finite, integer-valued measures ϕ defined on the Borel subsets B(E).
Mc contains the subset of simple counting measures

Ms := {ϕ ∈Mc : ϕ({x}) ≤ 1 ∀x ∈ E}. (1.3)
Thus, Ms ⊂ Mc ⊂ ME . For ϕ ∈ ME , the triple (E,A, ϕ) is called a measure space.
Furthermore, we define an atom of the measure ϕ as a x ∈ E with ϕ({x}) > 0 and the
support of the measure ϕ as the set Sϕ := {x ∈ E : ϕ({x}) > 0}.

Definition 1.3 (Dirac measure): For every x ∈ E the Dirac measure δx is given as

δx(A) =
{

1, x ∈ A
0, x /∈ A

, A ∈ B. (1.4)

7



Chapter 1. Introduction

The Dirac measures are the building blocks for other counting measures, as the following
proposition shows.

Proposition 1.4 (see Daley and Vere-Jones, 1988, p. 198): An element of ME belongs
to Mc if and only if it is expressible as

ϕ =
∑
i

kiδti , (1.5)

where each ki is a positive integer and the distinct points {ti} indexing the atoms of the
measure form a countable set with at most finitely many ti in any bounded Borel set.
Each ϕ in Mc defines via (1.5) its support counting measure ϕ∗ by

ϕ∗ =
∑
i

δti . (1.6)

Thus ϕ belongs to Ms if and only if in (1.5) ki = 1 ∀i.

Remark 1.5 (see Daley and Vere-Jones, 1988, p. 627): Taking a fixed origin x0 ∈ E,
let S(r) = S(r, x0) for 0 < r <∞ (sphere with radius r and center x0), and introduce a
distance function d̂ on ME by setting

d̂(µ, ν) =
∞∫
0

e−rdr(µ(r), ν(r))[1 + dr(µ(r), ν(r))]−1dr, (1.7)

where µ(r), ν(r) are the totally finite restrictions of µ, ν to S(r), and dr is the Prohorov
distance between the restrictions. We call the metric topology generated by d̂ the ŵ-
topology and write µk →ŵ µ for convergence with respect to this topology.

Proposition 1.6 (see Daley and Vere-Jones, 1988, p. 628): Let {µk : k = 1, 2, . . .} and
µ be measures in ME ; then the following conditions are equivalent:

1. µk →ŵ µ;

2.
∫
E f(x)µk(dx) →

∫
E f(x)µ(dx) for all bounded continuous functions f(·) on E

vanishing outside a bounded set.

Proposition 1.7 (see Daley and Vere-Jones, 1988, p. 629): ME with the ŵ-topology is
a c.s.m.s.

Proposition 1.8 (see Daley and Vere-Jones, 1988, p. 199): Mc is a closed subset of
ME , and Ms is a measurable subset of Mc (and hence of ME).

8



Chapter 1. Introduction

Corollary 1.9 (see Daley and Vere-Jones, 1988, p. 199): As a metric space in its own
right, with the ŵ-topology, Mc is a c.s.m.s.

Corollary 1.10 (see Daley and Vere-Jones, 1988, p. 199): B(Mc) is the smallest σ-
algebra with respect to which the mappings ϕ 7→ ϕ(A) are measurable for each Borel
set A ∈ B(Ω).

Definition 1.11 (Point process): A point process Φ is a measurable mapping from a
probability space (Ω,A,P) into the measurable space (Mc,B(Mc)). The point process
is simple when

P(Φ ∈Ms) = 1. (1.8)

Remark 1.12 (Distribution of point process): Given a point process Φ defined on
the probability space (Ω,A,P), the distribution of Φ is the probability measure given
by PΦ = P ◦ Φ−1 on (Mc,B(Mc)). Point processes Φ1 and Φ2 are said to be identically
distributed if PΦ1 = PΦ2 . In this case we write Φ1

d= Φ2 and denote d= as equality in
distribution.

For a non-negative integer-valued random variable, the probability generating function
completely describes its distribution. For a point process Φ the probability generating
function can be generalized to the so-called probability generating functional (Westcott,
1972).

Definition 1.13 (Probability generating functional): V(E) denotes the class of all
R-valued Borel functions f (Borel measurable functions) defined on the c.s.m.s. E with
1 − f vanishing outside some bounded set and satisfying 0 ≤ f(x) ≤ 1 (∀ x ∈ E). The
probability generating functional (p.g.fl.) of a point process Φ on the c.s.m.s. E is defined
by

G[f ] = GΦ[f ] = E

exp

∫
E

log f(x)Φ(dx)

 , f ∈ V(E). (1.9)

Because a spike train is typically defined on E = R, it can be regarded as a sequence of
random time points and be characterized by a sequence of waiting times between events.
This is made more precise in the next section.

9



Chapter 1. Introduction

1.2.2. Characterization on the line

In spike train analysis, a spike train S = (t1, t2, . . . , tn) is a sequence of occurrence times
of undistinguishable events which cannot happen at the same time and are recorded over
some finite time interval [0, T ] with recording time T ∈ (0,∞). Thus, a spike train can
be regarded as a part of a realization of a point process Φ on the real line and we make
the following assumptions on Φ which will be assumed for the rest of the thesis.

Assumption 1.14 (Main assumptions): The r.v. Φ: (Ω,A,P) 7→ (Mc,B(Mc)) is a
point process with

1. E = R with B = B(R),

2. P(Φ(A) <∞) = 1, ∀A ∈ B bounded,

3. P(Φ(R) =∞) = 1,

4. P(Φ ∈Ms) = 1.

Thus, we consider only processes with finitely many points in every bounded set, but
with infinitely many points on the real line and focus on simple point processes. So we
have a sequence of random variables . . . < T−1 < T0 < 0 ≤ T1 < T2 < . . . representing
the random occurrence times of the point process Φ and a sequence of deterministic
points . . . < t−1 < t0 < 0 ≤ t1 < t2 < . . . representing a realization ϕ of Φ.

In the following, we want to make the description of a point process as a random sequence
of points more precise:

Definition 1.15: For every ϕ ∈ Ms we number the elements of the support as tn(ϕ),
n ∈ Z, according to

tn(ϕ) :=


min{t : t ≥ 0, ϕ({t}) > 0} , n = 1
min{t : t > tn−1(ϕ), ϕ({t}) > 0} , n > 1
max{t : t < tn+1(ϕ), ϕ({t}) > 0} , n < 1.

(1.10)

Proposition 1.16 (see König and Schmidt, 1992, p. 34): For every integer n ∈ Z,
tn(ϕ) : ϕ→ tn(ϕ) is a measurable mapping from (Mc,B(Mc)) into (R∞,B(R∞)).

Remark 1.17: We denote the random occurrence times of the point process Φ by

Tn := tn(Φ) (1.11)

and the occurrence times of a realization ϕ of Φ by

tn := tn(ϕ). (1.12)

10



Chapter 1. Introduction

Thus a simple point process Φ can be described by {Ti : i ∈ Z} and a realization ϕ by
the set {ti : i ∈ Z}.

Definition 1.18 (Spike train): In this setting, a spike train S is the restriction of
the realization ϕ of a simple point process Φ to the recording interval [0, T ]. Thus

S := (t1, t2, . . . , tn) = {ti ∈ Sϕ : i ∈ Z} ∩ [0, T ] (1.13)

with n = #{{ti ∈ Sϕ : i ∈ Z} ∩ [0, T ]} and t1 < t2 < . . . < tn.

The equivalence between counting measures and random occurrence times will be dis-
cussed in the next proposition:

Proposition 1.19 (Specification of point processes on the line): The following
descriptions of a simple point process Φ on R are equivalent:

1. Counting measure:

Φ(A) = #{i ∈ Z : Ti ∈ A} =
∑
i∈Z

δTi(A), ∀A ∈ B(R). (1.14)

2. Nondecreasing integer-valued step functions:

N(t) :=


Φ((0, t]) , t > 0
0 , t = 0
−Φ((t, 0]) , t < 0.

(1.15)

3. Sequence of points {Ti : i ∈ Z}, with Ti := inf{t ∈ R : N(t) ≥ i}, i ∈ Z.

4. Sequence of intervals together with the first occurrence time {Wi : i ∈ Z} ∪ {T1},
where Wi := Ti+1 − Ti, ∀i ∈ Z.

Proof. Obviously Φ(A) is a random counting measure and thus defines a point process on
R. N(t) determines Φ(A) for all Borel sets A and vice versa. Because of the fundamental
relation

{Ti ≤ t} = {N(t) ≥ i} (1.16)

specifying the sequence of points {Ti} is equivalent to specifying the function N(t). From
the sequence of points the sequence of intervals can be derived and together with some
given occurrence time (typically T1) the converse is true.

11
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Remark 1.20: In this setup the functions Φ(A), N(t), Ti,Wi are well-defined random
variables and Figure 1.4 illustrates their relationship.

N
(t

)

t−
2

0
2

T−1 T0 T1 T2 T30

W−1 W0 W1 W2

●

●

●

●

●

Figure 1.4: Point process on the real line with illustration of the relationship between
the nondecreasing inter-valued step function N(t), the sequence of time points {Ti} and
the sequence of intervals {Wi}.

1.2.3. Stationarity

In the following, the concept of stationarity is discussed in the context of random point
processes. Stationarity basically means that the structure of the process does not change
under translation of the time axis. Still, there are different types of stationarity to
consider.

Definition 1.21 (Stationary point process): A point process Φ is stationary when
for every r ∈ N and all bounded Borel subsets A1, . . . , Ar of R the joint distribution of
{Φ(A1 + t), . . . ,Φ(Ar + t)} does not depend on t (−∞ < t <∞). This is equivalent to∑

i

kiδTi
d=
∑
i

kiδTi+t, ∀t ∈ R. (1.17)

Because the full restriction of stationarity is seldom required, one also considers weaker
forms of stationarity.

Definition 1.22 (Crudely stationary): A point process Φ is crudely stationary when

pk(x) := P(Φ((t, t+ x]) = k), x > 0, k = 0, 1, . . . (1.18)

depends on the length x but not the location t ∈ R.

12
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Definition 1.23 (Interval stationary): A point process Φ is interval stationary if for
every r ∈ N and all integers i1, . . . , ir the joint distribution of {Wi1+k, . . . ,Wir+k} does
not depend on k ∈ Z.

One should note that interval stationarity does not necessarily imply stationarity. A
necessary and sufficient condition for a point process to be stationary is given by the
following proposition:

Proposition 1.24 (see Daley and Vere-Jones, 1988, p. 318): Let Φ be a point process
on the state space E = Rd. The following condition is necessary and sufficient for Φ to
be stationary: For each u ∈ Rd and f ∈ V(Rd), the p.g.fl. G of Φ satisfies

G[f(·)] = G[f(· − u)]. (1.19)

Definition 1.25 (kth-order stationary): The point process Φ is kth-order stationary,
if Φ is stationary and its kth moment measure exists, which means that

E[Φ(A1)Φ(A2) . . .Φ(Ak)] <∞ (1.20)

for all bounded Borel sets A1, . . . , Ak.

Finally, the density of points in a stationary point process is measured in a natural way:

Definition 1.26 (Mean density): The mean density of a stationary point process Φ
on R is given as

m := E[Φ(0, 1]]. (1.21)

Proposition 1.27 (Khinchin’s Existence Theorem, see Daley and Vere-Jones, 1988,
p. 44): For a stationary (or even crudely stationary) point process, the limit

λ := lim
h↓0

P(Φ(0, h] > 0)
h

(1.22)

exists, though it may be infinite. The parameter λ is called the intensity of the point
process.

These definitions coincide in the following theorem.

Proposition 1.28 (Korolyuk’s Theorem, see Daley and Vere-Jones, 1988, p. 45):
For a crudely stationary simple point process,

λ = m, (finite or infinite). (1.23)
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Remark 1.29: In the context of neuroscience and a crudely stationary simple point
process, λ (or m) is called the mean firing rate.

Proposition 1.30 (see Daley and Vere-Jones, 1988, p. 58): For a stationary point
process with finite mean density m = E[Φ(0, 1]], ξ ≡ limx→∞Φ(0, x]/x exists a.s. and is
a random variable with E[ξ] = m.

Definition 1.31 (Ergodic point process): A stationary point process with finite
mean density m is ergodic if

P(Φ((0, x])/x→ m (x→∞)) = 1. (1.24)

1.2.4. Important examples

Now three special classes of point processes on R are introduced which are related to
each other: Poisson processes, random walks and renewal processes. For a more detailed
introduction of the theory see Spitzer (1976) for random walks, Cox and Isham (1980)
and Kingman (1993) for Poisson processes, Cox (1962) for renewal processes or Feller
(1966) for all of them. For a detailed discussion of the connection between random walks
and point processes see Daley and Oakes (1974) and for random walks regarded as a
general renewal process see Gut (2009).

Definition 1.32 (Poisson process): Let λ(t) be a non-negative real valued measur-
able function and for a < b, Λ(a, b) =

∫ b
a λ(t)dt. Then a point process Φ is called an

inhomogeneous Poisson process, if

P(Φ((ai, bi]) = ni, i = 1, . . . , k) =
k∏
i=1

[Λ(ai, bi)]ni
ni!

e−Λ(ai,bi) (1.25)

for ai < bi ≤ ai+1. If λ(t) is constant, we call Φ a homogeneous Poisson process.

Remark 1.33 (Properties of Poisson process): It follows that the number of points
in each finite interval is Poisson distributed, all disjoint intervals are independent and
the process is in general not stationary. If Φ is a homogeneous Poisson process, it
is stationary. In more general spaces (but also in R), Λ(a, b) can be replaced by a
boundedly finite Borel measure Λ(·) which is called the parameter measure or intensity
measure.
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Proposition 1.34 (Superposition Theorem, Kingman 1993, p. 16): Let Φ1,Φ2, . . .
be a countable collection of independent Poisson processes on E and let Φn have intensity
measure Λn for each n. Then their superposition

Φ =
∞⋃
n=1

Φn (1.26)

is a Poisson process with intensity measure Λ =
∑∞
n=1 Λn.

Definition 1.35 (Random walk and renewal process): Let X1, X2, . . . be indepen-
dent identically distributed (i.i.d.) random variables on R and Sn, n ≥ 0, be the partial
sums with S0 = 0 and Sn = X1 + . . . + Xn. The sequence (Sn)n∈N0 is called a random
walk on R. If X1 is nonnegative, it is called a renewal process. The distribution of X1
is denoted by PX1 , and we suppose that the mean and variance of PX1 exist and are
denoted by ν and σ2.

Definition 1.36 (Renewal measure): The expected number of visits in the interval
or set I ∈ B(R) is defined as

U(I) :=
∞∑
n=0

P(Sn ∈ I) (1.27)

and defines a measure on the Borel sets of R, called the renewal measure.

Definition 1.37 (Arithmetic distribution): A distribution PX1 on the Borel sets of
(−∞,∞) is said to be arithmetic if and only if there is a d > 0 such that the distribution
is concentrated on {0,±d,±2d, . . .}.

Proposition 1.38 (Renewal theorem, see Woodroofe, 1982, p. 16): If PX1 has mean
ν with 0 < ν < ∞, then U(I) < ∞ for every finite interval I. If PX1 is non-arithmetic,
then

limU(a+ I) =
{
ν−1h , a→∞
0 , a→ −∞

(1.28)

for every finite interval I, where h denotes the length of the interval.

Definition 1.39 (Excess of random walk): Let (Sn)n∈N0 be a random walk started
at 0 and for a ≥ 0, let

τa := inf{n ∈ N : Sn > a} (1.29)

15
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be the time at which the random walk first reaches the height a, or ∞. Given the event
{τa <∞},

Ra := Sτa − a (1.30)

is the excess over the boundary a at the time which the random walk first crosses a.

Remark 1.40: Ra is also called the overshoot. Alternatively in the case of a renewal
process, if Sn, n ≥ 1, represents the times at which equipment is renewed, then Ra is
the residual waiting time until the next renewal after time a. If 0 < ν < ∞, it follows
that P(τa <∞) = 1 and Ra is defined.

Proposition 1.41 (see Woodroofe, 1982, p. 18): Suppose that 0 < ν < ∞. If PX1 is
non-arithmetic, then Ra has a limiting distribution H∞ as a→∞, where

H∞(dx) = 1
E [Sτ0 ]P(Sτ0 > x)dx, x > 0. (1.31)

Corollary 1.42 (Asymptotic residual waiting time): Suppose that 0 < ν <∞ and
PX1 is non-arithmetic, then

R∞ := lim
a→∞

Ra (1.32)

exists and R∞ is called the asymptotic residual waiting time.

1.2.4.1. The connection between point processes and random walks

Let (Sn)n∈N0 be a random walk with E[S1] = ν ∈ (0,∞). The random counting measure
Φ can be defined by setting

Φ(A) := #{n ∈ N0 : Sn ∈ A} (1.33)

for all bounded Borel subsets A of R. Because of the renewal theorem (Proposition 1.38)
Φ(A) is finite with probability one. So, every renewal process is a random walk and every
random walk is a point process with random time points S0, S1, S2, . . . which are not
necessarily ordered. Figure 1.5 shows an example of a random walk represented as a point
process, where the points T0 < T1 < . . . < T6 are the ordered values of S0, S1, . . . , S6.

Chapter 1 ends with a remark, how to generalize a random walk to a stationary point
process which is used for the construction of the GLO spike train model in the next
chapter.
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Figure 1.5: A random walk regarded as a point process.

Remark 1.43 (Stationary random walk): Let Xi, i ∈ Z, be i.i.d. with expectation
ν ∈ (0,∞) and PX1 non-arithmetic. For n ∈ N, the steps of the random walk are written
as Sn := S0 +X1 + . . .+Xn and as S−n := S0− (X0 +X−1 + . . .+X−n+1) with S0 := 0.
Thus, the random walk is started at zero and evolves to the left and to the right and
represents a point process Φ on R by setting

Φ(A) := #{n ∈ Z : Sn ∈ A}. (1.34)

Because 0 < ν < ∞ and PX1 is non-arithmetic, assumption 1.14 holds. Thus Φ can be
described by the sequence {Ti : i ∈ Z} which are the ordered elements of (Sn)n∈Z with
T1 = 0. Furthermore, we get the sequence of intervals {Wi : i ∈ Z} which is interval
stationary (Daley and Oakes, 1974), but the intervals are not necessarily independent.
To make Φ a stationary point process, we have to set the origin of the time axis at
random. This is done by taking a large boundary a (which represents the new origin)
and by renaming the indices of the random walk

. . . , S′−1 := Sτa−2, S′0 := Sτa−1, S′1 := Sτa , S′2 := Sτa+1, . . .

In the same way as (1.32) converges, this holds true for all neighbor points. Thus, the
steps of the shifted random walk are given as

S′n := lim
a→∞

Sn+τa−1 − a, n ∈ Z. (1.35)

Then the point process Φ(A) := #{i ∈ Z : S′i ∈ A} is stationary in the sense of point
processes and (S′i)i∈Z is called a stationary random walk. Furthermore, we have S′1 = R∞
in distribution. Figure 1.6 visualizes this construction.

Remark 1.44 (Independence of steps in a stationary random walk): When
started at zero, the increments of the random walk Sn+1 − Sn are independent of each
other (∀n ∈ Z). But when regarding the stationary random walk (using the construction
mentioned in Remark 1.43 for setting an arbitrary time origin) this is not true anymore.
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Figure 1.6: Construction of a stationary random walk. (A) A random walk started at
zero (green point) and going to the left and to the right. Red dotted line represents the
boundary a and the blue point the height Sτa. (B) shows the grey area of plot (A). The
threshold a becomes the new origin and the heights of Sn are renamed to S′n according
to equation (1.35).

In this case, only all increments after the time τa are independent of each other. This
means that Sn+1 − Sn are independent for all n ≥ τa or in terms of the stationary
random walk that S′n+1 − S′n are independent for all n ∈ N. All other increments are
not independent and not normally distributed anymore. The reason is that because of
the construction of the stationary random walk, τa is defined to be the time at which
the height a is reached for the ’first’ time. Thus, when going backwards from Sτa
(i.e. regarding all Sn with n < τa), we have to condition on the event that the random
walk does not reach a. Anyway, the exact distribution and dependence structure for
these increments is not of importance, because we will only focus on increments after
time τa.

In the next chapter, the GLO model (Gaussian Locking to a free Oscillator) is introduced
which uses this kind of stationary random walk to model a random background process.
This background process intends to describe oscillatory activity of the spike train with
the mean and variance of the normal distribution and is assumed unobservable.
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The spike train model

The following model (Bingmer et al., 2011) is able to quantify regularity and burstiness
of single neurons and to reproduce a lot of different firing patterns. It is motivated by
observations in empirical data which have been discussed in Section 1.1.1. The model
contains a characterization of two primary components: single events or clusters of events
and interevent intervals, which is similar to other characterizations (Smith and Smith,
1965; Bair et al., 1994; Kaneoke and Vitek, 1996). Because an oscillatory background
rhythm is used with normally distributed intervals, errors and normally distributed burst
packages, the model is termed ’Gaussian Locking to a free Oscillator’ - GLO. It is very
similar to the ELO which stands for ’Exponential Locking to a free Oscillator’ (Schneider,
2008).

Mathematically, a doubly stochastic model is used to describe a spike train. The starting
point is given by a stationary point process where each point is independently copied or
thinned and randomly shifted. After the formal introduction of the GLO (Section 2.1),
some basic properties are derived (Section 2.2). The chapter ends with an algorithm for
spike train simulation (Section 2.3) which will be important for later chapters.

2.1. The GLO

The model assumptions are motivated by observations in empirical spike trains and
cover important features of them (compare Section 1.1.1). For the rest of this work, we
denote an underlying probability space by (Ω,A,P). The GLO makes extensive use of
the normal distribution. A random variable X is said to be normally distributed with
mean µ ∈ R and variance σ2 ∈ (0,∞), which we write as X ∼ N

(
µ, σ2), if its cumulative
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distribution function (c.d.f.) is given as

F{µ,σ2}(x) := P(X ≤ x) =
x∫

−∞

ϕ{µ,σ2}(y)dy, (2.1)

with ϕ{µ,σ2}(y) denoting the density function of the normal distribution which is given
as

ϕ{µ,σ2}(y) = 1
σ
√

2π
e−

(y−µ)2

2σ2 . (2.2)

The GLO is constructed in the following way:

1. The background rhythm: It is assumed that there is some kind of background rhythm
(BR) consisting of random background beats Bi, i ∈ Z, to which the spikes lock.
For this purpose, let X0, X±1, X±2, . . . be i.i.d. according to a normal distribu-
tion with mean µ ∈ (0,∞) and variance σ2

1 ∈ (0,∞), so the distribution PX1 is
non-arithmetic. The random walk (Sn)n∈Z is constructed and made a stationary
process (S′n)n∈Z as described in Remark 1.43 on page 17. Setting Bi := S′i, ∀i ∈ Z,
the BR is described as a stationary random walk

(Bi)i∈Z . (2.3)

Because of the Renewal theorem (see Proposition 1.38 on page 15), there are finitely
many points in each bounded Borel set and because the stationary random walk can
be regarded as a random counting measure by setting B(A) := #{i ∈ Z : Bi ∈ A},
it can be written as a stationary point process

B =
∑
i∈Z

δBi . (2.4)

The points Bi are called the beats of the BR and are assumed unobservable.

2. The firing mode and number of spikes: It is assumed that a spike train has either
a non-bursty (m = 0, single spiking) or a bursty (m = 1, cluster of spikes) firing
mode, where m is deterministic and does not change over time. According to the
firing mode m, every beat Bi of the background rhythm is assumed to give rise
to a random number Pi of spikes, where all Pi are i.i.d. according to the following
rules.

In the non-bursty mode (m = 0), the random variable Pi is Bernoulli-distributed
with parameter γ ∈ (0, 1], which we write as Pi ∼ Bernoulli(γ), and has
probability weights

P(Pi = 1) = γ and P(Pi = 0) = 1− γ. (2.5)

This allows to model holes in the spike train (compare red circle in Figure 1.1).
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In the bursty mode (m = 1), the number of spikes Pi at beat Bi is assumed to
be Poisson distributed with parameter γ ∈ (0,∞) which is used to model
clusters or bursts of spikes. In this case, Pi has probability weights

P(Pi = k) = γk

k! e
−γ , k ∈ N0. (2.6)

and is written as Pi ∼ Pois(γ).

Thus in summary

P
(m)
i ∼

{
Bernoulli(γ), m = 0

Pois(γ), m = 1 (2.7)

∀i ∈ Z. So γ represents the mean number of spikes per beat. For simplicity, we
will omit the index (m) in the future if m follows from the context.

3. Spike variation: It is assumed that the spikes vary randomly around their birth beats
which is modeled with a family of random variables

(Zi,j) , where Zi,j are i.i.d. N
(
0, σ2

2

)
, (2.8)

with σ2 ∈ (0,∞), j ∈ N and i ∈ Z. For example, if there are Pi = 2 spikes (m = 1)
at beat Bi, they will be placed according to Zi,1 and Zi,2 such that the spike times
are given as Bi + Zi,1 and Bi + Zi,2.

4. Independence of steps 1-3: All random variables Zi1,i2 , Pi3 are independent ∀i2 ∈ N
and ∀i1, i3 ∈ Z and independent of the stationary random walk (Bi)i∈Z.

Figure 2.1 shows a visualization of the GLO assumptions. In the first instance, the
background rhythm is generated. Then, dependent on the firing mode, the random
number of spikes is drawn for each beat and all spikes are placed around their birth
beat. The model can be summarized in a more compact form using its representation
as a random counting measure.

Definition 2.1 (GLO process): Let ψ = (µ, σ1, σ2, γ,m) be a parameter vector with
m ∈ {0, 1}, µ, σ1, σ2 ∈ (0,∞) and γ ∈ (0, 1] if m = 0 or γ ∈ (0,∞) if m = 1. Then
a point process Φ is a GLO process with parameter vector ψ, if the counting measure
representation of Φ is of the form

Φ =
∑
i∈Z

P
(m)
i∑
k=1

δBi+Zi,k , with (2.9)
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1. a stationary random walk (Bi)i∈Z, with Bi+1 −Bi i.i.d. N
(
µ, σ2

1
)
∀i ∈ N,

2. number of points P (m)
i ∼

{
Bernoulli(γ), m = 0

Pois(γ), m = 1 , ∀i ∈ Z,

3. random variations (Zi,k), where Zi,k are i.i.d. N
(
0, σ2

2
)
, ∀i ∈ Z and ∀k ∈ N,

4. all variables Zi1,i2 , Pi3 independent ∀i2 ∈ N, ∀i1, i3 ∈ Z and independent of (Bi)i∈Z.

We write Φ ∼ GLO(µ, σ1, σ2, γ,m) or in short form Φ ∼ GLO(ψ) or Φ ∼ GLO(m) to
focus on a special firing mode.

(BR)

| | | | ||
B0 0 B1 B2 B3 B4

B1 − B0~N(µ, σ1
2)

| | | |
| | | | ||

T0 0 T1 T2 T3

N(B1, σ2
2)(m=0)

| | | | ||
| | | || | || |

T−2 0T0 T1 T2 T3 T4

P0=3 P2=0(m=1)

Figure 2.1: Construction of the GLO spike train model. The background rhythm (BR)
of the GLO has independent normally distributed increments Bi+1−Bi ∼ N (µ, σ2

1). The
number of spikes Pi at each beat Bi (blue) depends on the firing mode m (green). In
the non-bursty case (m = 0) Pi is Bernoulli(γ)-distributed and Pois(γ) in bursty mode
(m = 1). Every spike Tk (red) is placed around its birth beat Bi according to N (Bi, σ2

2).

2.1.1. Interpretation of parameters and assumptions

One of the aims of this construction is to give the experimenter an easily understandable
and interpretable model for the overall quantification of burstiness and regularity in
single spike trains. The background rhythm evokes oscillatory activity with period µ
and intervals with variance σ2

1. So µ is basically a scale parameter and a change of σ1
has a direct impact on the regularity of the process. The firing mode m tells if the
process is bursty (m = 1) oder non-bursty (m = 0). The parameter γ denotes the
expected number of spikes per beat of the background rhythm and is thus connected
with the burstiness. In addition, the parameter σ2 represents the width of the bursts
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for m = 1, and in the non-bursty mode, σ2 may be necessary to describe variations and
correlations in the distribution of waiting times even when the background rhythm is
regular. Since the model intends to describe regular oscillations with distinguishable
bursts, σ1 and σ2 should usually be small relative to µ.

The assumptions are chosen to reproduce important characteristics of the data set (com-
pare Section 1.1.1). As mentioned in the previous paragraph, the model parameters have
a natural interpretation, but some motivations regarding the distributions have to be
clarified. While the choice of a Bernoulli and a Poisson distribution for the number of
spikes seems to be obvious, the choice of a normal distribution for the increments of the
BR is not.

Because the normal distribution is defined on R, there is always a positive probability
to have increments Bi+1 − Bi < 0. However, this probability is small for σ1/µ < 1/3
(< 0.0014), but the model is not restricted to such parameter combinations. A nega-
tive increment only implies that the corresponding beats occur in different order than
they were originally generated in the model. So, the distribution of ordered interbeat
intervals (IBIs) differs from the normal distribution because it takes only positive values.
Figure 2.2 shows that the resulting distribution of IBIs changes from a normal density
towards a density that decreases monotonically similar to an exponentially distribution
(if the IBI distribution is exponential, the process will be a Poisson cluster process or
more specifically a Neyman-Scott process (Neyman and Scott, 1972)).
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Figure 2.2: Interbeat interval (IBI) distribution visualized by histograms, generated
from a normal distribution with mean µ = 1 and variance σ2

1 (red lines). Although the
normal distribution has values in R, the IBI distributions are non-negative and tend to
an exponentially looking shape for increasing σ1.

Therefore, the model is also able to describe activity that is not locked to a regularly
oscillating backbone process. But the two parameters of the normal distribution are
considered a simple and sufficiently general description in order to grasp the period and
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the precision of the background random walk. In addition, the simple assumption of
normal distribution leads to easily interpretable parameters and in contrast to other
distributions allows straightforward calculations.

2.2. Basic properties

This section shows a few basic properties of the GLO process Φ. First of all, some details
of the BR are investigated (Section 2.2.1). It is shown that B is a simple point process,
the distribution of B1 is derived with help of the asymptotic residual waiting time R∞
and possible inversions of beats are discussed. Secondly, because the final process Φ
results of independent thinning or copying and translations of the points in B, it turns
out that Φ is also stationary. Furthermore, it is shown that Φ is a simple point process
and the mean firing rate is derived (Section 2.2.2). Thirdly, a short characterization of
the GLO process is given in terms of a Cluster process and in the special case of m = 1,
there is a characterization as a Cox process (Section 2.2.3). Finally the convergence of Φ
to a homogenous Poisson process is proved for increasing σ2 (Section 2.2.4). The waiting
times between spikes get a special focus in Chapter 3.

2.2.1. Background rhythm

Let B be as defined in equation (2.4). The following three lemmas follow immediately
from the construction of the BR (compare Remark 1.43 on page 17).

Lemma 2.2: B is a simple point process.

Proof. The condition for B being simple is given as P(B ∈Ms) = 1 (compare equation
(1.3)) which is the same as the condition that all beats Bi are different from each other
with probability one. We have

P ({Bi 6= Bj ,∀i, j ∈ Z, i 6= j}) = 1− P(
⋃
i,j∈Z
i 6=j

{Bi = Bj}) (2.10)

≥ 1−
∑
i,j∈Z
i 6=j

P ({Bi = Bj}) = 1 (2.11)

The last step follows, because the beats Bi are R-valued r.v.s without atoms.

Lemma 2.3: B is a stationary point process.
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Proof. Because of the construction of B in Remark 1.43 on page 17, it follows that∑
i∈Z δBi

d=
∑
i∈Z δBi+x, ∀x ∈ R.

Lemma 2.4: The mean density of B is B((0, 1]) = 1/µ.

Proof. This follows directly of the Renewal theorem (Proposition 1.38 on page 15).

Proposition 2.5: B is an ergodic point process.

Proof. According to definition 1.31 on page 14, B is ergodic if

lim
x→∞

B((0, x])
x

→ 1
µ

a.s. (2.12)

We know that B is given by the stationary random walk (Bi)i∈Z. So it should be enough
to show this property for a usual random walk started at 0, because the extension
of the random walk to both directions as well as the random shifting as described in
Remark 1.43 should not change the behavior of the process in the limit. Thus, we regard
S0 := 0 and Sn :=

∑n
i=1Xi with X1, X2, . . . i.i.d. N (µ, σ2

1), µ, σ1 ∈ (0,∞). Define the
counting function N(t) := #{n ∈ N : Sn ∈ (0, t]}, then we have to show that

lim
t→∞

N(t)/t = 1/µ a.s. (2.13)

Because of the following relationship

Sτt−1 ≤ t ≤ Sτt (2.14)

we have

τt − 1
N(t)

Sτt−1
τt − 1 ≤

t

N(t) ≤
Sτt
N(t) ≤

Sτt−1
τt − 1 + Xτt

τt − 1 (2.15)

Because of the strong law of large numbers and limt→∞ τt = ∞ a.s., Sτt−1/(τt − 1)
converges almost surely against µ. Finally, because (τt − 1)/N(t) → 1 a.s. (for t → ∞)
and Xτt/(τt − 1)→ 0 a.s. (for t→∞), we get µ ≤ t/N(t) ≤ µ.

2.2.1.1. Distribution of B1

Given the stationary BR B, the distribution of B1 is determined. Because B is basically
a stationary random walk (S′n)n∈Z and S′1 is given by (1.35), there is the relation

B1
d= S′1

d= R∞. (2.16)
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Thus, the distribution of B1 equals the distribution of the asymptotic residual waiting
time which is given by Proposition 1.41. According to equation (1.31), the ladder height
distribution Sτ0 (Feller, 1966) of the underlying random walk is needed to compute the
distribution H∞.

An alternative way is to compute H∞ via its Laplace transform H∞ which is given by

H∞(α) =
∞∫
0

e−αxH∞(dx), α ≥ 0. (2.17)

Still in the setting of Proposition 1.41 on page 16, Woodroofe (1982) gives the following
expression.

Corollary 2.6 (Woodroofe, 1982, p.24):

H∞(α) = 1
αν

exp[−B(α)], α > 0, (2.18)

where

B(α) =
∞∑
k=1

1
k
E
[
e−αS

+
k

]
, α > 0, (2.19)

with S+
k := max({0, Sk}) ∈ [0,∞).

The connection of Corollary 2.6 to the GLO model is given by assuming N (µ, σ2
1) as

the increment distribution of the random walk, then the expression E
[
e−αS

+
k

]
can be

derived.

Lemma 2.7: Let Sk =
∑k
i=1Xi, with Xi i.i.d. N (µ, σ2

1), µ > 0 and σ2
1 > 0, then

E
[
e−αS

+
k

]
= F{0,1}

(
− µ

σ1

√
k

)
+ exp

([
σ2

1α
2

2 − µα
]
k

)
F{0,1}

(
−
[
ασ2

1 − µ
σ1

]
√
k

)
.

(2.20)

Proof. We have Sk ∼ N (kµ, kσ2
1) with c.d.f. F{kµ,kσ2

1}
(x). For t ≥ 0,

FS+
k

(t) := P(S+
k ≤ t) = P(S+

k = 0) + P(S+
k ∈ (0, t]) (2.21)

= P(Sk ≤ 0) + P(Sk ∈ (0, t]) (2.22)

= F{0,1}

(
t

σ1
√
k
−
√
k
µ

σ1

)
(2.23)
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and P(S+
k ≤ t) = 0, for t < 0. Then we have

E
[
e−αS

+
k

]
=
∫
R

e−αxdFS+
k

(x) (2.24)

= FS+
k

(0) +
∫

(0,∞)

e−αxdFS+
k

(x) (2.25)

= F{0,1}

(
−
√
k
µ

σ1

)
+
∞∫
0

e−αx
1

σ1
√
k
ϕ{0,1}

(
x

σ1
√
k
−
√
k
µ

σ1

)
dx. (2.26)

It is

exp(−αx) exp
(

1
2

(
x

σ1
√
k
−
√
k
µ

σ1

)2
)

= exp
(
− x

σ1
√
k

+
(
µ

σ2
1
− α

)2
kσ2

1 −
kµ2

σ2
1

)
(2.27)

and

c :=
∞∫
0

e−αx
1

σ1
√
k
ϕ{0,1}

(
x

σ1
√
k
−
√
k
µ

σ1

)
dx. (2.28)

So that

c = 1
σ1
√
k

1√
2π

exp
(((

µ

σ2
1
− α

)2
kσ2

1 −
kµ2

σ2
1

)
/2
)

(2.29)

·
∞∫
0

exp
(
−
(

x

σ1
√
k
−
(
µ

σ2
1
− α

)√
kσ1

)2
/2
)
dx (2.30)

= exp
([

σ2
1α

2

2 − µα
]
k

) ∞∫
0

1
σ1
√
k
ϕ{0,1}

(
x

σ1
√
k
−
(
µ

σ2
1
− α

)√
kσ1

)
dx (2.31)

= exp
([

σ2
1α

2

2 − µα
]
k

)
F{0,1}

(
−
(
ασ2

1 − µ
σ1

)
√
k

)
. (2.32)

Finally, putting (2.32) and (2.28) together into (2.26) ends the proof.

The distribution of B1 can be derived by inverting the Laplace transform H∞(α). Ob-
viously this procedure contains some effort, but fortunately the distribution of B1 is not
really needed to describe the firing patterns of a spike train in experimental practice. Fur-
thermore, simulations can be used to approximate the distribution (see Section 2.3.4).
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2.2.1.2. Inversion probability of BR beats

Let (Bi)i∈Z be a stationary random walk as defined in Section 2.1. Due to the fact
that the normal distribution has values on R, steps to the left may occur (or downward
steps – depending on the point of view). This we call an inversion of beats and it is an
event of the kind {Bj < Bi} for integers j > i (compare Figure 2.3). In the following,
we focus on beats Bi with i ∈ N, because in this case, the increments Bi+1 − Bi are
independent. Furthermore, because of the stationarity, the events {Bj+1 < B1} and
{Bj+1+k < B1+k} have the same probability for all j, k ∈ N. Thus, we focus on events
of the kind {Bj < B1} for j > 1. The next lemmas represent some simple results for the
inversion probability.
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Figure 2.3: Visualization of an inversion of beats, in the context of a random walk (A)
and for the induced point process (B). Red lines indicate events of the kind {Bj < Bi}
for integers j > i.

Lemma 2.8 (Inversion probability for one pair of beats): Let k ∈ N, then

P(B1+k < B1) = F{0,1}
(
−µ
√
k/σ1

)
. (2.33)

Proof. Because of B1+k −B1 ∼ N (kµ, kσ2
1), the rest follows immediately.

Remark 2.9: For k ∈ N, we have that

lim
σ1→∞

P(B1+k < B1) = F{0,1}(0) = 0.5. (2.34)

Lemma 2.10: If j, k ∈ N with j < k,

P(B1+j < B1) > P(B1+k < B1). (2.35)
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Proof. P(B1+j < B1) > P(B1+k < B1) ⇔ F{0,1}
(
−µ
√
j/σ1

)
> F{0,1}

(
−µ
√
k/σ1

)
⇔

√
j <
√
k.

Thus, pairs of neighbor beats (concerning the index) have the largest inversion probabil-
ity. Equations (2.35) and (2.33) consider only one pair of beats. For taking all possible
pairs into account there is the following upper boundary.

Lemma 2.11 (Upper bound for the inversion probability of beats):

P({∃j ∈ N : B1+j < B1}) ≤
∞∑
k=0

F{0,1}
(
−µ
√
k/σ1

)
. (2.36)

Proof. P({∃j ∈ N : B1+j < B1}) = P(∪∞j=1{B1+j < B1}) ≤
∑∞
j=1 P(B1+j < B1).

Lemma 2.12 (Relationship between inversion events): For k ∈ N and the event
{B1+k < B1} there is a l ∈ N with l ≤ k, such that

{Bl+1 < Bl} ⊆ {B1+k < B1}. (2.37)

Furthermore, we have

{B1+k < B1} ⊂ {∃j ∈ N : B1+j < B1}. (2.38)

Proof. The second inclusion follows because

{B1+k < B1} ⊂ ∪∞j=1{B1+j < B1} = {∃j ∈ N : B1+j < B1}. (2.39)

The equality in the first inclusion is given if k = 1 and because of

{B1+k < B1} =⇒ ∪ki=1{B1+i < Bi} (2.40)

the left inclusion follows.

The probability of the event {∃j ∈ N : B1+j < B1} can be computed for some parameter
constellations. For this purpose, let us assume a random walk (Sn)n∈N with S0 := 0 and
normally distributed increments with mean −β < 0 and variance 1. Let ζ(z) denote the
Riemann Zeta function, then Janssen and van Leeuwaarden (2007) give the following
proposition (which is a theorem of Chang and Peres (1997)) for the probability that the
maximum M of this gaussian random walk is zero (M := max{Sn : n ∈ N0}).

Proposition 2.13 (see Chang and Peres (1997)): The probability that the maximum
of the Gaussian random walk is zero satisfies

P(M = 0) =
√

2β exp
{

β√
2π

∞∑
r=0

ζ(1/2− r)
r!(2r + 1)

(
−β2

2

)r}
(2.41)

for 0 < β < 2
√
π.
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Corollary 2.14 (Exact inversion probability of beats): The inversion probability
is given by P({∃j ∈ N : B1+j < B1}) = 1 − P(M = 0) with β in equation (2.41) given
by β = µ/σ1 and 0 < µ/σ1 < 2

√
π.

Proof. The event to get an inversion of beats is the same as the event that the underlying
random walk with mean increment µ is started at zero and walks below zero, i.e.

{∃j ∈ N : B1+j < B1} = {Sn < 0 : S0 = 0, n > 0}. (2.42)

But this is the same as regarding the event that the random walk is started at zero, has
a mean increment of −µ and walks above zero. Because this is equal to the following
events

{M > 0} = {M ≤ 0}C = {M = 0}C (2.43)

Proposition 2.13 can be applied by rescaling the random walk to have an increment
variance of 1. In this case, also the mean has to be scaled to µ/σ1.

Example 2.15 (Inversion probabilities:): Table 2.1 shows the inversion probabili-
ties for different values of µ/σ1. They are computed for neighbor beats, for the upper
boundary (2.36) and by using 1−P(M = 0) of equation (2.41). Obviously the inversion
probability will decrease, if the fraction µ/σ1 is increased and vice versa. So under the
assumption that µ � σ1, the possibility of an inversion is ruled out. Furthermore the
use of P(B2 < B1) as a simplified inversion probability seems to be adequate for ratios
µ/σ1 ≥ 2, because in these cases they are close to the upper boundary. But for µ/σ1 < 2
the boundary gets imprecise, as one can see by comparison with the true inversion prob-
ability given by 1 − P(M = 0). However, we want to describe parameter constellations
for which the inversion probability is smaller than a (small) ε and for which it is larger.
So the use of P(B2 < B1) seems to be appropriate.

µ/σ1 0.1 1 2 3 5 7 10
P(B2 < B1) 0.460 0.159 0.023 0.001 2.9 · 10−7 1.3 · 10−12 7.6 · 10−24

1− P(M = 0) 0.867 0.199 0.024 0.001 - - -
bound (2.36) 49.76 0.331 0.025 0.001 2.9 · 10−7 1.3 · 10−12 7.6 · 10−24

Table 2.1: Inversion probabilities of beats for different ratios µ/σ1. For increasing µ/σ1
the inversion probability is decreasing and for µ/σ1 ≥ 2, the probability P(B2 < B1) is
very close to the upper boundary.
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2.2.2. Stationarity, simpleness and mean density

The GLO process Φ builds upon the stationary point process B whose points are in-
dependently copied, thinned and shifted. Thus, Φ will also be stationary and simple.

Proposition 2.16: Φ ∼ GLO(ψ) is a stationary point process.

Proof. For each Bi there is an independent Pi which either deletes the point Bi (if
Pi = 0) or replaces it by Pi copies. The resulting process after the independent copying
and thinning of points is given by

BP =
∑
i∈Z

PiδBi . (2.44)

The stationarity of the background rhythm B means∑
i∈Z

δBi
d=
∑
i∈Z

δBi+x ∀x ∈ R. (2.45)

It follows that BP is also stationary, because

BP =
∑
i∈Z

PiδBi
d=
∑
i∈Z

PiδBi+x ∀x ∈ R. (2.46)

Now, let the point Bi,j(i) represent the j-th copy of the point Bi, such that the indices
are given by i ∈ {k ∈ Z : Pk > 0} and j(i) = 1, . . . Pi. Assume that each point Bi,j(i) is
independently and randomly shifted through a random distance Zi,j , where all random
variables {Zi,j : i ∈ Z, j ∈ N} are i.i.d. N (0, σ2

2) with common distribution function
F{0,σ2

2}
. The resulting process is Φ as defined in (2.9). The respective p.g.fl.s GBP and

GΦ of the shifted process are related by

GΦ[h(·)] = GBP

∫
R

h(y)F{0,σ2
2}

(dy − ·)

 . (2.47)

Because BP is itself stationary, we have GBP [h(·)] = GBP [h(· − u)] for all u ∈ R and
h ∈ V(R). The right-hand side of the expression for G[·] then equals

GBP

∫
R

h(y − u)F{0,σ2
2}

(dy − ·)

 = GΦ[h(· − u)]. (2.48)

So that according to Proposition 1.24, the transformed process Φ (the final GLO process)
is again stationary.
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Proposition 2.17: Φ ∼ GLO(ψ) is a simple point process.

Proof. By definition, the point process Φ is simple if Φ({x}) ≤ 1, ∀x ∈ R with proba-
bility one. Because of (2.9) this is fulfilled if

P (Bi1 + Zi1,k1 6= Bi2 + Zi2,k2 , ∀(i1, i2, k1, k2) ∈ A) = 1 (2.49)

with the set A given as

A := {(i1, i2, k1, k2) : i1, i2 ∈ Z, k1 ∈ {1, . . . , Pi1}, k2 ∈ {1, . . . , Pi2}, i1 6= i2 ∧ k1 6= k2}.

Again because of (2.9), we have countably many random variables in (2.49). These
random variables are the random spike times {T0, T±1, . . .} so (2.49) can be rewritten as

P ({Ti 6= Tj ,∀i, j ∈ Z, i 6= j}) = 1− P

 ⋃
i,j∈Z
i 6=j

{Ti = Tj}

 (2.50)

≥ 1−
∑
i,j∈Z
i 6=j

P ({Ti = Tj}) (2.51)

= 1− 0 = 1 (2.52)

The last step follows, becauseBi1+Zi1,k1 are R-valued without atoms. So Φ is simple.

The mean density of the process is given in the following proposition.

Proposition 2.18: If Φ ∼ GLO(ψ), then λ := E[Φ(0, 1]] = γ/µ.

Proof. The mean density λ equals the intensity of the stationary point process. Because
Φ is simple, it follows from Korolyuk’s theorem (Proposition 1.28) that λ = E[Φ(0, 1]].
We have

λ = E [Φ(0, 1]] = E [BP (0, 1]] = E [Pi]E [B(0, 1]] = γ

µ
. (2.53)

The last step follows of Lemma 2.4.

2.2.3. Process characterization as a Cluster and Cox process

Definition 2.19 (Cluster process): Φ is a cluster process on the c.s.m.s. E1, with
centre process Φc on the c.s.m.s. E2 and component processes which is the measurable
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family of point processes {Φ(· | y) : y ∈ E2}, when for every bounded A ∈ B(E1),

Φ(A) =
∫
E2

Φ(A | y)Φc(dy) =
∑

yi∈Φc(·)
Φ(A | yi) <∞ a.s. (2.54)

If {Φ(· | y) : y ∈ E2} is an independent family of component processes, Φ is called an
independent cluster process.

Lemma 2.20 (see Daley and Vere-Jones, 1988): The stationary cluster process Φ exists
if the centre process Φc is stationary, the distribution of the cluster members depends
only on their positions relative to the cluster centre and the mean cluster size is finite.

Proof. Follows directly of definition 2.19.

Lemma 2.21: Φ ∼ GLO(ψ) is a stationary cluster process.

Proof. In the GLO case, E1 = E2 = R, Φc = B (stationary) and the component
processes are given by

Φ(· | yi) =
P

(m)
i∑
j=1

δyi+Zi,j (2.55)

with yi ∈ B(·). It is

Φ(A) =
∑

yi∈B(·)
Φ(A | yi) <∞ a.s. (2.56)

Thus, according to Lemma 2.20 and definition 2.19 the GLO process Φ is a stationary
cluster process.

Proposition 2.22 (see Daley and Vere-Jones, 1988, p. 347): A stationary cluster pro-
cess is ergodic whenever the cluster centre process has the same property.

Corollary 2.23: Φ ∼ GLO(ψ) is ergodic.

Proof. Because of Lemma 2.21, we know that Φ is a stationary Cluster process, and
because the cluster centre process B is ergodic (Proposition 2.5), Φ has the same property
(Proposition 2.22).

Furthermore, if Φ ∼ GLO(1) (bursty process, m = 1), it will turn out that Φ is a
Cox process. In the GLO case, this means that conditional on B which determines
the random firing intensity of the process, Φ can be considered a time-inhomogeneous
Poisson process (see definition 1.32) or more specifically, a generalized shot noise Cox
process (Møller and Torrisi, 2005).
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Definition 2.24 (Cox process): Let Λ be a random measure on E. A point process Φ
on E is a Cox process directed by Λ if, conditional on Λ, Φ is a Poisson process Φ(· | Λ)
on E with intensity measure Λ (see definition 1.32 and Remark 1.33).

Proposition 2.25: Φ ∼ GLO(µ, σ1, σ2, γ, 1) is a Cox process with random intensity

ρB(t) = γ
∑
j∈Z

ϕ{Bj ,σ2
2}

(t) (2.57)

and random intensity measure

Λ(A) =
∫
A

ρB(t)dt, A ∈ B. (2.58)

Proof. The GLO process Φ is decomposed in subprocesses

Φj =
P

(1)
j∑
k=1

δBj+Zj,k (2.59)

where Φj is the point process consisting of spikes only generated of beat Bj . Thus,

Φ =
∑
j∈Z

Φj . (2.60)

Consequently, conditioned on the background rhythm B, the conditioned process can be
written as

Φ|B =
∑
j∈Z

Φj |B. (2.61)

Now, we show that Φj |B is an inhomogeneous Poisson process. For this purpose, let
(a1, b1), (a2, b2), . . ., (ak, bk) be disjoint intervals and Λi =

∫ bi
ai
ϕ{Bj ,σ2

2}
(t)dt equal the

probability that one spike of beat Bj falls into the interval (ai, bi) and ni ∈ N0 the
number of spikes in that interval. Then

P (Φj(ai, bi) = ni, i = 1, . . . , k | B)

=
∞∑
n=0

P(Φj(ai, bi) = ni, i = 1, . . . , k | Pj = n,B)P(Pj = n | B).
(2.62)

Let A := R \
⋃k
i=1(ai, bi), then

P (Φj(ai, bi) = ni, i = 1, . . . , k | Pj = n,B)

=P
(

Φj(a1, b1) = n1, . . . ,Φj(ak, bk) = nk,Φj(A) = n−
k∑
i=1

ni

∣∣∣∣∣Pj = n,B
)
.

(2.63)
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Obviously, (2.63) is zero for
∑k
i=1 ni > n, so we concentrate on the case

∑k
i=1 ni ≤ n.

Using the multinomial distribution, equation (2.62) equals

∞∑
n=0

(
n

n1, . . . , nk, n−
∑k
i=1 ni

)
e−γ

γn

n!

(
1−

k∑
i=1

Λi

)(n−∑k

i=1 ni

)
k∏
i=1

Λnii (2.64)

=e−γ
k∏
i=1

(Λnii
ni!

) ∞∑
j=0

γj+
∑k

i=1 ni

j!

(
1−

k∑
i=1

Λi

)j
(2.65)

=
k∏
i=1

e−γΛi (γΛi)ni
ni!

. (2.66)

Thus Φj |B is an inhomogeneous Poisson process with intensity function γϕ{Bj ,σ2
2}

(t).

Kingman (1993) describes in its Superposition Theorem that the superposition of count-
ably many independent Poisson processes is again a Poisson process (see Proposition 1.34).
Furthermore, it is known that the superposition of independent inhomogeneous Poisson
processes is again an inhomogeneous Poisson process. This directly applies to Φ|B, be-
cause all subprocesses Φj |B are independent of each other. Thus Φ is a Cox process with
random intensity (2.57) and random intensity measure (2.58).

However, Proposition 2.25 does not hold for the non-bursty mode (m = 0) in which the
number of spikes is not Poisson distributed. But as we will see in the next subsection,
there is a convergence of Φ to a homogenous Poisson process for both firing modes
(m = 0 and m = 1) and increasing σ2.

2.2.4. Convergence of GLO process

When σ2 increases and is getting large, the spikes of a beat are spread on R. Furthermore,
the random spike intensity, which is given at time point t by

f(t) = γ

σ2
√

2π
∑
i∈Z

exp
{
−(t−Bi)2

2σ2
2

}
, (2.67)

is turning into a constant, because

lim
σ2→∞

df(t)
dt

= lim
σ2→∞

γ

σ2
√

2π
∑
i∈Z
−(t−Bi)

σ2
2

exp
{
−(t−Bi)2

2σ2
2

}
= 0. (2.68)
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Thus, it is natural to expect that Φ turns for increasing σ2, regardless of the firing mode
m, into a homogenous Poisson process. This can be proved by using a theorem of Daley
and Vere-Jones (1988) which is a result of Dobrushin (1956) about the convergence
of point processes after repeated independent translations of the points and has been
further investigated by Stone (1968).

Definition 2.26 (Invariant σ-algebra): Let (Ω,A, ϕ) be a measure space and T
a measure-preserving operator on this space; that is ϕ(T −1A) = ϕ(A) for A ∈ A.
The σ-algebra AI of invariant events under T , contains those sets A ∈ A for which
ϕ(T −1A∆A) = 0, where A∆B := (A \B) ∪ (B \A) .

Proposition 2.27 (see Daley and Vere-Jones, 1988, p. 342): A stationary random
measure or point process is ergodic if and only if it is metrically transitive; that is the
invariant σ-algebra AI is trivial.

Proposition 2.28 (see Daley and Vere-Jones, 1988, p. 305): Let Φ0 be a second-order
stationary point process on E = Rd and ν a distribution on Rd that is nonlattice. Then
the sequence of point processes {Φn}, derived from Φ0 by successive random translations
according to ν, converges weakly to the stationary mixed Poisson process with p.g.fl.

G[h] = E

exp

−Y ∫
E

[1− h(x)]dx

 , (2.69)

where Y is given by

Y = E
[
Φ0(Ud) | AI

]
, (2.70)

with Ud the unit cube in Rd and AI the invariant σ-algebra.

Remark 2.29: In Proposition 2.28, the invariant σ-algebra AI is given under the op-
erator Tu, u ∈ R, where Tu is the shift operator given by

(Tuϕ)(A) := ϕ(TuA) = ϕ({x+ u : x ∈ A}). (2.71)

In the case of a stationary process Φ, Tu is a measure-preserving operator.

Proposition 2.30: Let Φ ∼ GLO(µ, σ1, σ2, γ,m). If σ2 tends to infinity, Φ converges
weakly to a homogenous Poisson process with rate λ = γ/µ.

Proof. This is simply an application of Proposition 2.28 with

Φ0 := Φ =
∑
i∈Z

P
(m)
i∑
k=1

δBi+Zi,k . (2.72)
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First of all, we show that the GLO process Φ0 is second order stationary, which by
definition 1.25 means that Φ0 is stationary and E[Φ0(A1)Φ0(A2)] < ∞ for all bounded
Borel sets A1 and A2. The stationarity of the GLO process has been shown in Proposi-
tion 2.16. Because we are having a countable number of spikes in (2.9) we can rewrite
the GLO process in terms of spike times Φ0 =

∑
i∈Z δTi . It is

E[Φ0(A1)Φ0(A2)] = E

∑
i∈Z

δTi(A1)
∑
j∈Z

δTj (A2)

 (2.73)

=
∑
i,j∈Z

E[δTi(A1)δTj (A2)] (2.74)

=
∑
i,j∈Z

P (Ti ∈ A1, Tj ∈ A2) <∞. (2.75)

The last step follows, because the probability to fall into the sets A1 and A2 gets expo-
nential small for increasing i and j.

Furthermore, let ν = ϕ{0,σ2
2}

which is nonlattice. Then n successive translations of the
points are given by randomly shifting the original points according to the distribution
ν∗n = ϕ{0,nσ2

2}
. Thus the process after n translations can be written as

Φn =
∑
i∈Z

P
(m)
i∑
k=1

δ
Bi+Z[n]

i,k

with Z
[n]
i,k ∼ N (0, (n+ 1)σ2

2). (2.76)

In this setting, Proposition 2.28 can be applied and so for increasing n (which repre-
sents an increasing σ2) Φn converges weakly to the stationary mixed Poisson process
with p.g.fl. (2.69). Because Φn is ergodic, the invariant σ-algebra AI is trivial (Propo-
sition 2.27). Thus, we have

Y = E
[
Φ0(Ud) | AI

]
= E

[
Φ0(Ud)

]
= E [Φ0((0, 1])] = γ/µ (2.77)

and thus Φn converges weakly to the homogeneous Poisson process with rate γ/µ.

2.3. Spike train simulation

With increasing computer power, simulation procedures for complicated models become
more and more popular. The term simulation is very general and in the literature
there are different distinctions for stochastic simulation, simulation, Monte Carlo method
and Monte Carlo simulation (Ripley, 1987; Ross, 1991; Gamerman, 1997). But these
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distinctions are not always clear cut. For that reason, we just use the term ’simulation’
meaning that we are using random numbers to generate one or more realization of the
GLO process which can be used for quantifying parameter estimation (Chapter 5.2) or
for statistical inference (Chapter 6.2).

The GLO model allows the efficient simulation of spike trains with parameter vector ψ
and recording time T . In the progress of this work, we make repeated use of simulated
spike trains according to GLO assumptions. For that reason, the procedure is described
in detail (Section 2.3.1) and two different implementations in the free statistic software
R Chambers (2008) are compared with each other (Section 2.3.2). Finally, a rule of
thumb is given for T to have at least n spikes in the interval [0, T ] (Section 2.3.3) and
the chapter is ended with some exemplary simulations (Section 2.3.4).

2.3.1. Simulation procedure

We are interested in the simulation of a stationary GLO spike train S = (t1, . . . , tn)
with parameters ψ = (µ, σ1, σ2, γ,m) for the interval [0, T ], where T > 0 is determined
by the investigator. For this purpose, we make use of a Markov Chain Monte Carlo
procedure in order to generate a realization ϕ of the stationary point process Φ. In the
following, the procedure is described in detail:

1. In a first step, the BR is modeled with a random random walk (Sn)n∈N0 by setting
S0 := −K0µ with K0 > 0 and Sn+1 − Sn ∼ N (µ, σ2

1) for n ∈ N. The random walk
is ended when it reaches the height K2 ≥ T for the first time, i.e. after τK2 steps.
The points Sn represent the beats of the BR and are renamed to

B−τ0+1 := S0, B−τ0 := S1, . . . , B−1 := Sτ0−2, B0 := Sτ0−1,

B1 := Sτ0 , B2 := Sτ0+1, . . . , BτK2−τ0 := SτK2−1.

For large K0 and K2 the induced point process is approximately stationary on the
interval [0, T ].

2. In the next step, the number of spikes at each beat are generated and placed ac-
cording to a normal distribution with variance σ2

2. One should note, that although
we are only interested in the interval [0, T ], there can be beats outside this interval
which can place spikes into [0, T ]. Thus, it is important to take account of all beats
in some interval [−K1, T +K1] with constant K1 > 0 (or all beats in [−K0µ,K2],
but this is an unnecessary large interval). Furthermore, the end of the process
K2 should be even larger than T + K1 because the random walk (Sn)n∈N0 may
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return below T +K1, but this is only relevant for very irregular GLO spike trains.
Figure 2.4 shows a visualization of this procedure.

− K0µ K2− K1 0 T T + K1

Figure 2.4: Visualization of the GLO simulation procedure. The GLO process is started
at −K0µ and ended at K2. All beats in the interval [−K1, T +K1] (red) have a noticeable
probability to place spikes into the recording interval [0, T ] (blue).

Remark 2.31 (Simulation parameters): Here are some guidelines for the choice of
the simulation parameters K0, K1 and K2.

The choice of K0: Larger values of K0 improve the approximation of the stationary
distribution on [0, T ]. In our case, we propose a value of

K0 := max{1000, 5σ1/µ}. (2.78)

This should ensure that the process becomes virtually stationary beyond zero.

The choice of K1: Let us suppose that there is a beat at T + K1. How has K1 to be
chosen that a spike of this beat is only with small probability ε1 ∈ (0, 1) below T ?
Of course, this means that beats which are even larger than T +K1 have a much
smaller probability for putting a spike below T . So if X ∼ N (T + K1, σ

2
2) is the

distribution of this random spike, we want to have P(X ≤ T ) ≤ ε1. It follows that

K1 ≥ −qε1σ2, (2.79)

where qε1 is the ε1-quantile of the standard normal distribution.

The choice of K2: In the context of ruin probabilities of random walks, there is the
following lemma:

Lemma 2.32 (Ruin probability): Let X1, X2, . . . be i.i.d. and b > 0 with
E[e−bX1 ] ≤ 1. Then for a > 0, we have P(a <

∑n
i=1Xi for some i ∈ N) ≤ e−ba.

This can be translated in our setting. If the random walk is started at K2 > T ,
how large should be the difference a := K2−T , that the random walk jumps only
with small probability ε below T . This is the same situation as having a random
walk started at 0 with mean increment µ < 0 and looking for an a > 0, such that
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the probability to cross a is small. Thus applying Lemma 2.32, we have X1, X2, . . .
i.i.d. N (µ, σ2

1). Let b > 0 with

E[ebX1 ] ≤ 1 (2.80)

⇔ eµb+σ
2
1b

2/2 ≤ 1 (2.81)
⇔ µb+ σ2

1b
2/2 ≤ 0 (2.82)
⇔ b ≤ −2µ/σ2

1. (2.83)

Thus with b = −2µ/σ2
1, we have P(a <

∑n
i=1Xi for some i ∈ N) ≤ e2aµ/σ2

1 . It
follows that

e2aµ/σ2
1 ≤ ε (2.84)

⇔ a ≥ σ2
1

2µ log ε (2.85)

We set K ′2 := T + σ2
1

2µ log ε and

K2 := max{K ′2, T +K1}. (2.86)

Algorithm 1 summarizes the simulation procedure in a pseudo code and a R function
called SIM can be found in appendix A.3.

2.3.2. Efficient implementation in R

The actual implementation of the simulation procedure depends on the programming
language. In the statistical package R (Chambers, 2008), loops should be avoided. Thus,
in this section, a more efficient version of the simulation procedure is constructed for the
R environment.

In algorithm 1, there is a ’while’ and a ’for’ loop which can be avoided in the implemen-
tation. The idea is to use the already existing functions of R and to generate a large
number of beats and spikes by just two function calls and to remove all values which
are not needed. In this procedure, one has to ensure that enough random variables are
simulated or the spike train will be too short. But if too many spikes and beats are
generated, this procedure may waste resources and be worse than using loops. For this
reason, the numbers of beats needed to generate the spike train are estimated.

Number of beats to cross K: We have a random walk (Sk)k∈N0 , with S0 = 0 and
Sk ∼ N (kµ, kσ2

1) with 0 < µ < ∞ and 0 < σ1 < ∞. k ∈ N should be the smallest
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input : parameters µ, σ1, σ2, γ,m
interval length T
error ε and K0

output: spike times t1, . . . , tn

B := −K0µ ;
k := 0 ;
K2 := max{T − qεσ2, T + σ2

1
2µ log ε};

while B < K2 do
if m = 0 then

N ∼ Bernoulli(γ) ;
else

N ∼ Pois(γ);
end
if N > 0 then

Z1 . . . , ZN ∼ N (0, σ2
2) ;

for i← 1 to N do
tk+i := B + Zi

end
k := k +N

end
X ∼ N (µ, σ2

1);
B := B +X ;

end
{t1, . . . , tn} := {ti : ti ≥ 0, ti ≤ T , i = 1, . . . , k} ;
return (t(1), t(2), . . . , t(n))
Algorithm 1: Pseudo-code for generating a spike train according to the GLO assump-
tions with parameters µ, σ1, σ2, γ, m and time length T . Optional arguments are K0
which controls the convergence to a stationary process and the error ε which is used for
determining K1 and K2.
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index value, such that the probability for the random walk to be smaller than a constant
K > 0 is smaller or equal than ε > 0, i.e.

k = inf{j ∈ N : P(Sj < K) ≤ ε}. (2.87)

Let Z ∼ N (0, 1), then

P(Sk < K) ≤ ε (2.88)

⇔ P
(
Z <

K − kµ
σ1
√
k

)
≤ ε (2.89)

⇔ K − kµ
σ1
√
k
≤ qε (2.90)

where qε denotes the ε-quantile of the standard normal distribution. Typically ε should
be small and close to zero, thus qε < 0 and the lefthand side of (2.90) is smaller than
zero. Thus, squaring both sides would change the direction of the sign and then (2.90)
is equivalent to

k2 − k (2Kµ+ q2
εσ

2
1)

µ2 + K2

µ2 ≥ 0. (2.91)

This quadratic function can be solved in the usual way. Resulting in

k ≥ 2Kµ+ q2
εσ

2
1

2µ2 + 1
2µ

√
q2
εσ

2
1(4K + q2

εσ
2
1). (2.92)

Remark 2.33 (Efficient R implementation): The R function SIM in appendix A.3
can be modified to account for vector valued programming of R by using the following
procedure:

1. Let K = K0µ+K2 and determine k according to equation (2.92).

2. Generate the beats of the BR as k steps of the random walk S0, S1, . . . , Sk with
S0 = −K0µ, Si = Si−1 +Xi and X1, . . . , Xk ∼ N (µ, σ2

1) .

3. Delete all beats outside the interval [−K1, T +K1].

4. For each of the remaining beats draw the number of spikes and place them around
their birth beat according to a normal distribution with variance σ2

2.

5. Delete all spikes outside the interval [0, T ] return the ordered spike times.

A R code of this procedure called GLO can also be found in appendix A.3.
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Remark 2.34 (Comparison of two different R implementations): The real ad-
vantage of this vector valued programming is the reduced computational time for simu-
lation. Figure 2.5 shows the speed gain by using vectorized programming with function
GLO in contrast to loops in the function SIM. The simulations are performed on a MAC
Pro (OS X 10.6.8) with a Quad-Core Intel Xeon 2,93 GHz processor with 8 Gb RAM
and R version 2.13.1.
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Figure 2.5: Running time analysis. For different recording times T the time for sim-
ulating 1000 GLO spike trains is measured for a vectorized R Code (GLO, red) and a R
Code using loops (SIM, black). Details of the R functions can be found in appendix A.3.

2.3.3. Predefined number of spikes

The code in algorithm 1 and its implementation in the R code can be slightly modified
to return a predefined number of spikes n. In general, it is still necessary to simulate
over an interval and not stopping after n spikes, because in the case of a very irregular
parameter combination (σ1 � µ or σ2 � µ) future spikes can be placed before actual
spikes. So, as a short workaround to solve this problem, one can simply increase T and
take only the first n spikes of the spike train. But how large has T to be taken? In a
first step we crudely estimate the number of beats needed to generate n spikes. In the
second step, we estimate the time T to generate that many beats.

1. Number of beats: Let X :=
∑k
i=1 P

(m)
i denote the number of spikes in the interval

[0, T ] and k the number of beats needed to generate these spikes. One has

X ∼
{
Bin(k, γ) ,m = 0
Pois(kγ) ,m = 1,

(2.93)

where Bin(k, γ) denotes the Binomial distribution with k trials and success prob-
ability γ. Furthermore, we want to ensure to have n spikes with high probability,
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that is

P(X < n) < ε (2.94)

for some given (small) ε. Because typically n is large, we can use the normal
approximation, such that

n− E[X]√
Var(X)

< qε (2.95)

is equivalent to (2.94) with qε as the ε-quantile of the standard normal distribution.
Solving (2.95) for k, we get

k >
2n+ q2

ε(1− γ)1−m

2γ + 1
2γ

√
4nq2

ε(1− γ)1−m + (q2
ε(1− γ)1−m)2. (2.96)

2. Size of T : Given the number of beats k, we assume B1 = 0 and further require
P(Bk ≥ T ) < ε. Because Bk ∼ N (kµ, kσ2

1), we choose T to be the 1 − ε-quantile
of this distribution.

This choice of T ensures with high probability (depending on ε), that there are at least
n spikes in the interval [0, T ].

2.3.4. Examples of spike train simulation

In this section, two examples are shown to illustrate possible applications of the sim-
ulation procedure. In the first case (Example 2.35), we make use of simulations to
approximate the distribution of the first beat B1 and in the second case (Example 2.36),
different firing patterns are generated for different GLO parameters.

Example 2.35 (Distribution of B1): For approximating the distribution ofB1, 100.000
GLO spike trains are simulated and the value of B1 saved each time (T is not important
in that case). Figure 2.6 shows the distribution of B1 for different parameter values.

Example 2.36 (Firing patterns): Figure 2.7 shows four examples of simulated spike
trains representing a regular oscillating (A), regular bursty (B), irregular bursty (C) and
irregular firing pattern (D). The change in irregularity is achieved by an increase of σ1
and σ2 and the burst behavior by switching the firing mode m and parameter γ.
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Figure 2.6: Simulated distribution of B1 for µ = 1 and different values of σ1. For large
σ1, the distribution has an exponentially looking shape.
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Figure 2.7: Rasterplots of simulated GLO spike trains with different parameter con-
stellations. Different firing patterns are produced: non-bursty (A & D), bursty (B & C),
regular (A & B) and irregular (C & D).
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Chapter 3.

Interspike interval distributions

In many theoretical spike train models such as pseudo-markov models (Ekholm and
Hyvärinen, 1970), Poisson processes (Abeles, 1982), hidden markov models (Camproux
et al., 1996), inverse gaussian probability models (Iyengar and Liao, 1997) or Gamma
processes (Barbieri et al., 2001; Shimokawa and Shinomoto, 2009), the distribution of
the waiting timesWk between spikes, the so called interspike intervals (ISIs), determines
crucially the nature of the processes and is often used for parameter estimation. The
present spike train model is not a renewal process and due to its doubly stochastic nature,
the ISI distributions can only be approximated for some parameter combinations and
thus provides only limited information.

In Section 3.1, we start with the ordinary definition of spike times and interspike inter-
vals. In the context of the GLO, we additionally introduce the concept of beat-ordered
spike and waiting times. Furthermore, we define intuitively the event of a spike inversion
which is used to describe ’regular’ GLO spike trains. Then the ISI distributions for reg-
ular non-bursty (Section 3.2) and regular bursty GLO spike trains (Section 3.3) are ap-
proximated by the temporal ordered waiting times. Finally the waiting time distribution
is regarded for the irregular case and in the context of spike inversions (Section 3.4).

3.1. Introductory remarks

Although, we know the distribution of the difference Bi+1 − Bi for i ∈ N, we have seen
that the distribution of B1 is difficult to derive (Section 2.2.1). So for simplification, we
assume that B1 = 0 for the rest of this chapter. Although both processes (Φ and B) lose
their stationarity property, they will be interval stationary. Because the GLO process
stays a simple process, we can introduce the ordinary spike and waiting times in the
following way.
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Definition 3.1 (Spike times): The random spike times (Tk)k∈Z of the GLO process
Φ are defined as

Tk :=
{

inf{t ≥ 0 : Φ ([0, t]) = k} , k > 0
sup{t < 0 : Φ ([t, 0)) = |k|+ 1} , k ≤ 0.

(3.1)

This coincides with equation (1.11) and definition 1.15 on page 10.

Definition 3.2 (Interspike intervals): We define an interspike interval (ISI) of jth-
order as

W
[j]
k := Tk+j − Tk, k ∈ Z, j ∈ N. (3.2)

So the spikes are temporally ordered and we have a sequence of spike times {Tk : k ∈ Z}
with . . . < T−1 < T0 < 0 ≤ T1 < T2 < . . . and a sequence of waiting times {W [j]

k : k ∈ Z}
with W

[j]
k ≥ 0, ∀k ∈ Z, ∀j ∈ N. Figure 3.1 visualises ISIs of first and second order.

Furthermore, we define fW [j] as the density function and set Wk := W
[1]
k .

T−1 T0 T1 T2 T30

t
| | | | |

W−1
[1] W0

[1] W1
[1] W2

[1]

W−1
[2] W0

[2] W1
[2]

Figure 3.1: ISIs of first and second order between spikes (red).

While definition (3.1) sorts the spikes along the line, there is also the possibility to order
them in the sequence of how the spikes are generated according to the random walk
(Bk)k∈Z. This we call beat-ordered and is used for simplifying some calculations and is
not connected with neurophysiological assumptions.

Definition 3.3 (Beat-ordered spike times): Let Φ ∼ GLO(ψ) be as in equation
(2.9). We define the k-th beat-ordered spike time (k ∈ Z) as

T̃k := Bi0(k) + Zi0(k),j0(k) (3.3)

with the indices i0(k) and j0(k) depending on k and given as follows: Let

l0 :=
{

#{i ∈ [P1] : Z1,i < 0} , P1 > 0
0 , P1 = 0

(3.4)
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be the number of spikes of beat B1 which fall into the negative axis. Then the k-th spike
is generated in beat Bi0(k) with

i0(k) :=
{

inf{i ∈ Z :
∑i
j=1 Pj ≥ k + l0} , k > 0

sup{i ∈ Z : i ≤ 1, l0 +
∑0
j=i Pj ≥ |k|+ 1} , k ≤ 0.

(3.5)

Furthermore, the position of the k-th spike in beat Bi0(k) is

k0(k) :=
{
k + l0 −

∑i0(k)−1
l=1 Pl , k > 0

l0 − |k| − 1 +
∑0
l=i0(k)+1 Pl , k ≤ 0

(3.6)

which gives

j0(k) :=
{
{i ∈ [Pi0(k)] : #{j : Zi0(k),j ≤ Zi0(k),i} = k0(k)} , k > 0
{i ∈ [Pi0(k)] : #{j : Zi0(k),j ≥ Zi0(k),i} = k0(k)} , k ≤ 0.

(3.7)

In words: For T̃1, we look for the first beat Bi0(1) which gives birth to a spike on the
positive half axis. This spike is defined to be T̃1. Supposing there are five spikes at beat
Bi0(1). Spikes of the same beat which are larger than T̃1 (e.g., there would be two), are
written as T̃2 and T̃3 and the rest as T̃0 and T̃−1 . Then going to the next beat Bi0(1)+1,
which maybe has two spikes and the smaller one is defined to be T̃4 and so on.

Example 3.4: Examples of classical and beat-ordered spike times can be seen in Fig-
ure 3.2. In the case of a regular GLO process (σ1 � µ and σ2 � µ), the spike times are
equal, but in the irregular case they are not identical.

Definition 3.5 (Beat-ordered interspike intervals): Analogously to equation (3.2)
we define the beat-ordered interspike interval as

W̃
[j]
k := T̃k+j − T̃k, k ∈ Z, j ∈ N (3.8)

and write fW̃ [j] for the density function and W̃k := W̃
[1]
k .

Remark 3.6: In this setting, it is possible that T̃k < T̃j for k > j and that W̃ [j]
k can

take negative values.

Remark 3.7 (Spike inversions): The definition of the spike times in equation (3.1)
accounts for the possibility of placing spikes of beat Bk after spikes of beat Bk+j (j ∈ N),
e.g. Figure 3.2. This is called a spike inversion and is a similar problem to the inversion
of beats (compare Section 2.2.1). Typically a spike inversion happens when σ1 and/or
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Figure 3.2: Classical spike times and beat-ordered spike times. Given B1 = 0, P1 = 3
and P2 = 2, there are shown two different situations: (A) the classical and beat-ordered
spike times are identical and (B) the spike times are not identical.

σ2 are large relative to µ and is thus a characteristic of irregular firing patterns. Because
the normal distribution is defined on R, there is always a positive probability to have an
inversion - but dependent on the parameters, it can be exponentially small.

Although spike inversions may appear between beats which are far away from each other,
it is more likely to happen between beats which are close together (see Lemma 2.10). So
for simplicity, we focus on spikes of two adjacent beats, i.e. Bk and Bk+1, and exactly
one spike per beat. Furthermore, because of the stationarity of Φ, we can set k = 1.

Definition 3.8 (Spike inversion): Let Φ ∼ GLO(ψ) be given as in equation (2.9),
then the event

η := {B1 + Z1,1 > B2 + Z2,1} (3.9)

is called a spike inversion (a more general definition will be introduced in in Section 3.4).

Remark 3.9: In a regular GLO spike train, a spike inversion will only happen with a
small probability. The restriction on the parameters to satisfy this condition is given as
the following relationship

ε > P(η) = P(B2 −B1 + Z2,1 − Z1,1 < 0) = F{0,1}

(
−µ/

√
σ2

1 + 2σ2
2

)
. (3.10)

For the parameters, it follows that

µ > −qε
√
σ2

1 + 2σ2
2, (3.11)
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where qε denotes the ε-quantile of the standard normal distribution. Because F{0,1}(−z) ≤
exp(−z2/2)/(z

√
2π), the probability of an inversion gets exponentially small with in-

creasing z. Figure 3.3 visualizes the inversion probability for different parameter con-
stellations.
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Figure 3.3: Inversion probability for different parameter constellations. Green combi-
nations have an inversion probability less than 0.001.

Remark 3.10 (The regular case): As mentioned previously, a high inversion prob-
ability is connected with irregular spike trains. So the ’regular case’ of a GLO spike
train is defined as all parameter combinations (µ, σ1, σ2) with σ1 � µ and σ2 � µ,
such that P(η) < ε. Of course the size of ε depends on the investigator. In this regular
case, P(T̃k 6= Tk) < ε, so the ISI distribution W [j]

k can be approximated by W̃ [j]
k for the

non-bursty (m = 0, Section 3.2) and bursty firing mode (m = 1, Section 3.3). So, we
will identify W̃ [j]

k with W [j]
k and call both ISIs.

3.1.1. Coefficient of variation of ISIs

Definition 3.11: The coefficient of variation (CV) of a random variable X is defined
to be

cv(X) :=
√

Var (X)
E [X] . (3.12)

It is a measure of dispersion of the distribution PX . Given a realization x = (x1, . . . , xn)
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and x̄ =
∑n
i=1 xi, an estimator for the CV is

ĉv(x) :=

√
1

n−1
∑n
i=1(xi − x̄)2

x̄
. (3.13)

Remark 3.12 (Classification of firing patterns according to the CV): In com-
putational neuroscience, the CV is typically derived for the theoretical ISI distribution
represented by W or for the empirical observations w = (w1, . . . , wn) of the ISIs. The
CV is used to quantify the regularity of stationary spike trains (Holt et al., 1996; Davies
et al., 2006).

• A regular spike train has small variability between spikes, so that the nominator
in equation (3.12) is small in comparison to the denominator. Thus the CV will
be close to zero.

• In contrast, a Poisson process is regarded as a typical example of an irregular
spike train. In this case, the ISI distribution is exponential, W ∼ Exp(λ), so that
E[W ] = 1/λ and Var(W ) = 1/λ2. Thus the CV will be equal to one.

• Finally for bursty neurons, because there are clusters with short ISIs, separated by
larger intervals, the nominator will be typically larger than the denominator and
the CV will be larger than one.

Because the main disadvantage of the CV is its high sensitivity to rate changes and
outliers in ISIs, this considerations do not hold true for non-stationary spike trains.
Table 3.1 shows the ĉv values of the spike trains shown in Figure 1.1 and Figure 1.2.
Although spike train (B) is regarded as regular bursty by the investigators, its CV is
less than one.

spike train A B C D
ĉv 0,14 0,91 1,12 0,52

Table 3.1: The estimated coefficient of variation ĉv for the empirical spike trains shown
in Figure 1.1 and Figure 1.2. The regular spike train (A) has the lowest CV and the
irregular one (D) an increased CV between 0 and 1. Although (B) and (C) are regarded
as bursty, this cannot be clearly detected by the CV, but because the CV of (C) is bigger
than one, there is an indication for burstiness in this case.
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3.2. Non-bursty spike trains in the regular case

Assumption 3.13 (The regular non-bursty case): We assume B1 = 0, m = 0 and
σ1 � µ, σ2 � µ according to Remark 3.10. Furthermore, we are only interested in W̃ [j]

k

with k ∈ N.

Lemma 3.14: Given assumption 3.13 and γ = 1, W̃ [j]
k ∼ N

(
jµ, jσ2

1 + 2σ2
2
)
for k ∈ N.

Proof. The spike times can be written as

T̃k =
{
Bk + Zk,1 , Z1,1 ≥ 0
Bk+1 + Zk+1,1 , Z1,1 < 0.

(3.14)

Both cases are identical, besides of the shift of the indices, so we focus on the first one.
Because for k ∈ N, the increments Bk+1−Bk are independent, we will only consider this
case.

W̃
[j]
k = T̃k+j − T̃k

= (Bk+j + Zk+j,1)− (Bk + Zk,1)
= (Bk+j −Bk) + Zk+j,1 − Zk,1
= (Bk+1 −Bk) + . . .+ (Bk+j −Bk+j−1) + Zk+j,1 − Zk,1

Thus, W̃ [j]
k has distribution N

(
jµ, jσ2

1 + 2σ2
2
)
.

Bk Bk+1 Bk+2

Tk Tk+1 Tk+2

I I I

I I Ibeats

spikes

Figure 3.4: Schematic computation of a beat-ordered waiting time distribution. For
deriving W̃ [2]

k = T̃k+2 − T̃k in the case of m = 0 and γ = 1, there are the following
independent steps: From spikes to beat according to N (0, σ2

2), from beat to beat according
to N (µ, σ2

1) and from beat to spike according to N (0, σ2
2). Thus, W̃ [2]

k ∼ N (2µ, 2σ2
2).

Figure 3.4 visualizes this result which is an application of backward techniques (Liemant
et al., 1988) which also arise in the context of backward and forward trees for cluster
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fields (Kallenberg, 1977). However, for 0 < γ < 1, an ISI has this distribution only with
probability γj , because a beat has a spike only with probability γ. Given a spike at
beat Bk, the probability that the j-th next spike comes from beat Bk+n is given by the
weights of a negative binomial distributed random variable G (we write G ∼ NB(j, γ)).
Here, γ ∈ (0, 1) represents the success probability and j ∈ N the number of successes.
The probability weights are given as

P(G = n) =
(
n− 1
j − 1

)
γj(1− γ)n−j , n ∈ N. (3.15)

Furthermore, the expectation and variance of a negative binomial distribution are well
known and given as

E[G] = j

γ
and Var(G) = j(1− γ)

γ2 . (3.16)

Now, this can be used to compute the beat-ordered waiting time distribution for m = 0
and 0 < γ < 1.

Proposition 3.15: Let B1 = 0, m = 0 and 0 < γ < 1. For k ∈ N, the ISI W̃ [j]
k has

density

fW̃ [j]|m=0(x) =
∞∑
k=1

P(G = k) · ϕ{kµ,kσ2
1+2σ2

2}
(x), (3.17)

Proof. Obviously, the ISI W̃ [j]
k should have the same distribution as T̃k+G − T̃k and we

write

W̃
[j]
G := T̃k+G − T̃k, (3.18)

with

W̃
[j]
G |G ∼ N (G · µ,G · σ2

1 + 2σ2
2). (3.19)

Using the law of total probability, the unconditioned density of W̃ [j]
k for m = 0 can thus

be described by

fW̃ [j]|m=0(x) =
∞∑
k=1

P(G = k) · ϕ{kµ,kσ2
1+2σ2

2}
(x), (3.20)

where ϕ{µ,σ2}(x) denotes the density of the normal distribution with mean µ and variance
σ2 at x.
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Example 3.16: To investigate the approximation of Wk by W̃k, a GLO spike train
S = (t1, . . . , tn) with n = 100.000 spikes is simulated with parameter vector ψ (compare
Section 2.3). Figure 3.5 shows three simulated ISI Wk distributions and the correspond-
ing theoretical density function of W̃k. If σ1 � µ and σ2 � µ, the approximation seems
to be adequate (A and B). But if the variances increase, there will be a larger probability
of spike inversions, which has the consequence that fW̃ [j]|m=0(x) has too much mass on
the negative axis (C).

150 200 250

µ = 200, σ1 = 15, σ2 = 5, γ = 1, m = 0A

tk+1 − tk

200 400 600 800

µ = 200, σ1 = 15, σ2 = 5, γ = 0.9, m = 0B

tk+1 − tk

0 250 750

µ = 200, σ1 = 100, σ2 = 90, γ = 0.9, m = 0C

tk+1 − tk

Figure 3.5: Simulated ISI distributions (n = 100.000, grey histograms) and probability
density function according to (3.17) (red lines) for different parameter settings in the
non-bursty case.

Remark 3.17 (Expectation, variance, CV and covariance of ISIs): The expec-
tation of W̃ [j]

k is given by

E
[
W̃

[j]
k

]
= E

[
W̃

[j]
G

]
= E

[
E
[
W̃

[j]
G

∣∣∣G]] = j
µ

γ
. (3.21)

The variance can be calculated as follows:

Var
(
W̃

[j]
k

)
= E

[
Var

(
W̃

[j]
G

∣∣∣G)]+ Var
(
E
[
W̃

[j]
G

∣∣∣G]) (3.22)

= j
σ2

1
γ

+
(
µ

γ

)2
(1− γ) + 2σ2

2. (3.23)

The coefficient of variation (see equation 3.12) is given as

cv
(
W̃

[j]
k

)
=

√
Var

(
W̃

[j]
k

)
E
[
W̃

[j]
k

] . (3.24)

If G is deterministic (i.e., γ = 1), the formulas (3.21) and (3.23) reduces to the mean and
variance of eq. (3.15). With decreasing firing probability γ, the variance of the interval
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increases due to the increased probability to skip a beat of the background rhythm, the
same holds true for the mean.

Because of the fundamental relation between ISIs of jth-order and ISIs of first order

W̃
[j]
k = W̃

[1]
k + W̃

[1]
k+1 + . . .+ W̃

[1]
k+j−1 (3.25)

we get for the covariance of two succesive ISIs of first order as

Cov
(
W̃

[1]
k , W̃

[1]
k+1

)
= 1/2

[
Var

(
W̃

[1]
k + W̃

[1]
k+1

)
−Var

(
W̃

[1]
k

)
−Var

(
W̃

[1]
k+1

)]
(3.26)

= 1/2 ·Var
(
W̃

[2]
k

)
−Var

(
W̃

[1]
k

)
(3.27)

= −σ2
2. (3.28)

Because W̃ [1]
k is independent of W̃ [1]

k+i for |i| > 1, we have Cov(W̃ [1]
k , W̃

[1]
k+i) = 0 for |i| > 1.

If I1 = {k1, k1 + 1, . . . , k1 + j1− 1} and I2 = {k2, k2 + 1, . . . , k2 + j2− 1} with j1, j2 ∈ N,
we get the covariance of two arbitrary ISIs W̃ [j1]

k1
and W̃ [j2]

k2
as

Cov
(
W̃

[j1]
k1

, W̃
[j2]
k2

)
=
∑
i1∈I1

∑
i2∈I2

Cov
(
W̃

[1]
i1
, W̃

[1]
i2

)
=−#{(i1, i2) ∈ I1 × I2 : |i1 − i2| = 1}σ2

2

+ #{(i1, i2) ∈ I1 × I2 : i1 = i2}Var
(
W̃

[1]
k

)
.

(3.29)

3.3. Bursty spike trains in the regular case

Assumption 3.18 (The regular bursty case): We assume B1 = 0, m = 1 and
σ1 � µ, σ2 � µ according to Remark 3.10 on page 51. Furthermore, we are only
interested in W̃ [j]

k with k ∈ N and throughout this section we focus on ISIs of first order.
So j = 1 and we will omit the index and write W̃k.

Remark 3.19 (Decomposition in between- and in-beat intervals): For bursty
firing patterns we can split W̃k in two kinds of intervals: intervals between spikes of
the same beat which we call ’in-beat (ib) intervals’ W̃ ib

k and intervals representing the
time between two spikes of different beats which we call ’between-beats (bb) intervals’
W̃ bb
k (see Figure 3.6). For both types, order statistics (David, 1970) are used to de-

termine the conditioned interspike interval distribution (Section 3.3.1), until finally the
unconditioned distribution is derived in Section 3.3.2.
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Figure 3.6: In-beat and between-beat intervals in a bursty GLO spike train. The first
three spikes (red) belong to the same beat, as well as the last three spikes (green). In-
beat (ib) ISIs result of spikes of the same beat and between-beat (bb) ISIs represent the
intervals between spikes of different beats.

3.3.1. Conditioned ISIs with order statistics

We start with a basic introduction of definitions and results of order statistics (David,
1970) and translate them in the GLO context.

3.3.1.1. Order statistics

Let Z1, Z2, . . . , Zn be n independent variates, each with cumulative distribution function
(c.d.f.) F (x) and probability density function (p.d.f.) f(x). If the independent identi-
cally distributed random variables are rearranged in ascending order of magnitude and
written as

Z(1:n) ≤ Z(2:n) ≤ . . . ≤ Z(n:n), (3.30)

then Z(k:n) is called the k-th order statistic (k = 1, . . . , n) and it has p.d.f.

f(k:n)(x) = n!
(k − 1)!(n− k)!F

k−1(x) [1− F (x)]n−k f(x). (3.31)

The joint density funtion of Z(r:n) and Z(s:n) (1 ≤ r < s ≤ n) is denoted by f(r,s:n)(x, y).
For x ≤ y, it is given by

f(r,s:n)(x, y) = n!
(r − 1)!(s− r − 1)!(n− s)!F

r−1(x)f(x)

· [F (y)− F (x)]s−r−1 f(y) [1− F (y)]n−s .
(3.32)

and for x > y it equals 0.
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3.3.1.2. In-beat (ib) intervals

W̃ ib
k are ISIs of first order and result from spikes of the same beat (see Figure 3.6).

Given an arbitrary beat Bi of the background rhythm and conditioned on {Pi = n}
(with n > 1, because otherwise there are not any in-beat intervals), every spike of this
beat can be written as Bi + Zi,j , j ∈ {1, . . . , n}. Because only the difference between
beats is important, we can set Bi = 0. Omitting the index i and relative to the beat,
the spike positions Z1, . . . , Zn are i.i.d. N (0, σ2

2). The c.d.f. of this normal distribution is
denoted by F0(x) and the p.d.f. as ϕ0(x). Using the notation of the previous paragraph,
Z(k:n) denotes the k-th ordered spike position (1 ≤ k ≤ n).

The ISIs in such a cluster are defined as the differences

W̃ ib
(k:n) := Z(k+1:n) − Z(k:n) (3.33)

for k = 1, . . . , n− 1. Because of (3.32) the p.d.f. of (Z(k:n), Z(k+1:n)) is known and given
as

f(k,k+1:n)(x, y) = n!
(k − 1)!(n− (k + 1))!F

k−1
0 (x)ϕ0(x)ϕ0(y)[1− F0(y)]n−(k+1). (3.34)

So W̃ ib
(k:n) has density

fW̃ ib
(k:n)

(z) =
∫
R

f(k,k+1:n)(x, z + x)dx. (3.35)

3.3.1.3. Between-beat (bb) intervals

Still given a beat Bi, but now with Pi = n1 (n1 > 0), a between-beat interval W̃ bb
k is the

difference between the last relative spike position Z(n1:n1) of beat Bi and the first spike
of the next firing beat

Z(1:n2)[j] := Bi+j −Bi + Z(1:n2) (3.36)

(so beat Bi+j gives rise to n2 spikes according to N (jµ, jσ2
1 + σ2

2)). Here j denotes the
number of trials till the next beat fires, i.e. j = inf{k ∈ N : Pi+k > 0}. Let Fj and ϕj be
the c.d.f. and p.d.f. of N (jµ, jσ2

1 + σ2
2). Because of (3.31) the p.d.f. of Z(n1:n1) is given

by

f(n1:n1)(x) = n1F0(x)n1−1ϕ0(x) (3.37)
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and the p.d.f. of Z(1:n2)[j] by

f(1:n2)[j](y) = n2(1− Fj(x))n2−1ϕj(x). (3.38)

A between-beat interval is defined as the difference

W̃ bb
(n1,n2)[j] := Z(1:n2)[j] − Z(n1:n1). (3.39)

Because two different beats are independent, the spike positions are also independent
and it follows that (Z(n1:n1), Z(1:n2)[j]) has density

f(n1,n2)[j](x, y) = f(n1:n1)(x) · f(1:n2)[j](y). (3.40)

So W̃ bb
(n1,n2)[j] has density

fW̃ bb
(n1,n2)[j]

(z) =
∫
R

f(n1,n2)[j](x, z + x)dx. (3.41)

3.3.2. Unconditioned ISIs

Proposition 3.20: Let B1 = 0 and m = 1. For k ∈ N, the ISI W̃k has density

fW̃ |m=1(x) := f1(x) :=
∞∑
k=1

pk
γ

k−1∑
u=1

fW̃ ib
(u:k)

(x) +
∞∑
n=1

∞∑
g=1

pg−1
0 pnfW̃ bb

(k,n)[g]
(x)

 , (3.42)

with pj := P(Pi = j), j ∈ N0.

Example 3.21: Figure 3.7 shows the empirical ISI distributions of three simulated
GLO spike trains with n = 100.000 spikes and different parameters. The corresponding
theoretical densities (red) indicate that the ISI distributions are well approximated by
equation (3.42) (at least for σ1 � µ and σ2 � µ).

3.3.2.1. Proof of Proposition 3.20

The p.d.f. f1(x) := fW̃ |m=1(x) is derived by conditioning and using the law of total
probability. The procedure is shown step by step:
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Figure 3.7: Simulated ISI distributions (n = 100.000, grey histograms) and probability
density function according to (3.42) (red lines) for different parameter settings in the
bursty case.

1.) Distribution of the number of spikes: We know that the number of spikes Pi
at beat Bi is poisson distributed with

pk := P(Pi = k), k ∈ N0. (3.43)

But if we draw a random point of the stationary point process and look at the distri-
bution of the number of spikes in the same beat (we call this random variable P̂0 and
the belonging beat B̂0), this number will not be poisson distributed. In fact, we have
an above average chance of drawing a spike of a beat with a large number of spikes.
Furthermore, by drawing a random spike, we implicitly condition on the event that we
have at least one spike in the particular beat. So beats with no spikes are not relevant
anymore and we set I := {i ∈ Z : Pi > 0}. Furthermore, we define a N-valued random
variable P̃i as

p̃n := P
(
P̃i = n

)
:= P(Pi = n | Pi > 0) = pn

1− p0
, i ∈ I, (3.44)

so that we get a sequence (P̃i)i∈I .

Drawing a spike at random and looking for the distribution of P̂0 is the same as regarding
(P̃i)i∈I as the life times of a discrete renewal chain and looking for the distribution of
the interval containing the origin. Because

E
[
P̃i
]

= γ

1− p0
, (3.45)

it follows from renewal theory that

P(P̂0 = k) =
kP
(
P̃i = k

)
E
[
P̃i
] = k

γ
pk. (3.46)
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So if we draw a spike at random, we have a length biased distribution for the number of
spikes in the same beat.

2.) By conditioning on the number of spikes in the initial beat of the interspike
interval, we can decompose the p.d.f. f1(x) of the ISI distribution:

f1(x) =
∞∑
k=1

f1
(
x
∣∣∣P̂0 = k

)
P
(
P̂0 = k

)
. (3.47)

3.) Decomposition of intervals: As mentioned in the previous section, there are two
kinds of ISIs — in-beat and between-beat intervals. An in-beat (ib) interval is one that
contains spikes of the same beat and a between-beat (bb) interval is defined by spikes
which come from different beats. We introduce a random variable L which denotes the
type of the ISI and takes values ib or bb.

If we draw the last spike of a beat, we automatically get a between-beat interval and an
in-beat one in the other case. It is P(L = ib|P̂0 = k) = k−1

k and P(L = bb|P̂0 = k) = 1
k ,

so that we get

f1
(
x
∣∣∣P̂0 = k

)
= f1

(
x
∣∣∣P̂0 = k , L = ib

) k − 1
k

+ f1
(
x
∣∣∣P̂0 = k , L = bb

) 1
k
. (3.48)

4.) In-beat intervals: If P̂0 = k there are k − 1 possible in-beat intervals. Let U be
uniform distributed on the set {1, . . . , k−1} and denote the number of the U -th ordered
spike, then

f1
(
x
∣∣∣P̂0 = k , L = ib

)
=

k−1∑
u=1

f1
(
x
∣∣∣P̂0 = k , L = ib, U = u

) 1
k − 1 (3.49)

where

f1
(
x
∣∣∣P̂0 = k , L = ib, U = u

)
= fW ib

(u:k)
(x) (3.50)

is known by (3.35).

5.) Between-beat intervals (number of beats fallen out): Let G be a negative
binomial distributed random variable with values in N which denotes the number of trials
till the next beat fires, i.e. G = inf{n ∈ N : Pi+n > 0}. So G is geometric distributed
with parameter 1− p0 and it follows that

f1
(
x
∣∣∣P̂0 = k , L = bb

)
=
∞∑
g=1

f1
(
x
∣∣∣P̂0 = k , L = bb,G = g

)
pg−1

0 (1− p0) (3.51)
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6.) Between-beat intervals (number of spikes in the second beat): If P̃i+1
denotes the number of spikes in the next firing beat, then

f1
(
x
∣∣∣P̂0 = k , L = bb,G = g

)
=
∞∑
n=1

f1
(
x
∣∣∣P̂0 = k , L = bb,G = g, P̃i+1 = n

) pn
1− p0

(3.52)

with

f1
(
x
∣∣∣P̂0 = k , L = bb,G = g, P̃i+1 = n

)
= fW bb

(k,n)[g]
(x). (3.53)

7.) Final result: Putting (3.47) – (3.53) together, one finally gets the result (3.42).

3.4. Spike inversions and the irregular case

In the beginning of this chapter, there has been a first intuitive definition of a spike
inversion by regarding two adjacent beats and assuming exactly one spike per beat
(compare equation (3.9)). Now this should be made more general:

Definition 3.22 (Spike inversion - updated): Conditioned on the event that at least
one spike occurs at a specific backbone beat Bk, k ∈ N, a spike inversion is then defined
as the event that at least one spike from the next firing beat Bk+G (G := inf{i > 0 :
Pk+i > 0}) is placed before at least one spike belonging to Bk. This equals the event
that the smallest spike of Bk+G is smaller than the largest spike of Bk. A spike inversion
is given as the event

η0 :=
{
Bk + Z(Pk:Pk) ≥ Bk+G + Z(1:Pk+G)|Pk > 0, Pk+G > 0

}
(3.54)

=
{
Bk + Z(P̃k:P̃k) ≥ Bk+G + Z(1:P̃k+G)

}
(3.55)

Obviously η ⊆ η0 and thus P(η) ≤ P(η0). The probability of an inversion can be
computed, using the information of the previous sections.

Remark 3.23 (Probability of a spike inversion): For m = 0 and an arbitrary
parameter combination (µ, σ1, σ2, γ), f [1]

W |m=0(x) (compare equation (3.17)) is the density
of the difference between the spike of beat Bk and of the spike of the next firing beat
Bk+G. This equation is true even in the irregular case (i.e. when σ1 or σ2 is large
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relative to µ), although its interpretation as the waiting time is not true anymore. So
the probability of an inversion equals the probability of observing a negative difference.

For m = 1, we are interested in the difference D between the largest spike of beat Bk
which is Z(P̃1:P̃1) and the smallest spike of next firing beat Bk+G which is Z(1:P̃k+1)[G]. The
density of this difference (which we denote as fD(x)) can be decomposed by conditioning
in the number of spikes of beat Bk, the number of trails G till the next beat fires at least
one spike and in the number of spikes of beat Bk+G. So it is given as

fD(x) = 1
1− p0

∑
i∈N

pifD(x|P̃k = i) (3.56)

= 1
1− p0

∑
i,g∈N

pip
g−1
0 (1− p0)fD(x|P̃k = i, G = g) (3.57)

= 1
1− p0

∑
i,j,g∈N

pipjp
g−1
0 fD(x|P̃k = i, G = g, P̃k+G = j) (3.58)

= 1
1− p0

∑
i,j,g∈N

pipjp
g−1
0 fW̃ l

(i,j)[g]
(x). (3.59)

Because of this explanations the probability of having a general spike inversion is given
as

P(η0) =
0∫

−∞

fW |m=0(x)dx, for m = 0 (3.60)

and

P(η0) =
0∫

−∞

fD(x)dx, for m = 1. (3.61)

Remark 3.24 (The inversion probability as a measure of irregularity): One
could assume that P(η0) would be possible measure for irregularity in spike trains, be-
cause regular firing patterns should have a small inversion probability and irregular spike
trains a large one. Unfortunately, if the parameter γ is decreasing, the inversion proba-
bility is decreasing too, but at least in the non-bursty case we would expect an increase
of irregularity. For that reason P(η0) is not used as a measure of irregularity.

Remark 3.25 (ISI distribution in the irregular case): When P(η) > ε the occur-
rence of spike inversions cannot be ignored and the distribution of W̃k will not be a good
approximation of the distribution ofWk. Of course one could try to derive the ISI distri-
bution in the same way as for the regular bursty spike train by successive conditioning,
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but this would be very complex, because the number of cases dramatically increases. So
due to spike inversions, we propose to use simulations of large spike trains to investigate
the shape of the ISI distributions in the irregular case. Figure 3.8 shows realizations
with n = 100.000 spikes. With increasing σ2, the ISI distribution tends towards an
exponential distribution which is the result already mentioned in Section 2.2.4.

0 100 300 500 700

µ = 200, σ1 = 80, σ2 = 50, γ = 1, m = 0A

tk+1 − tk

0 500 1000 1500

µ = 200, σ1 = 150, σ2 = 100, γ = 0.9, m = 0B

tk+1 − tk

0 200 400 600 800

µ = 200, σ1 = 80, σ2 = 70, γ = 3.7, m = 1C

tk+1 − tk

Figure 3.8: Simulated ISI distributions (n = 100.000, grey histograms) for different
parameter settings in the irregular case.

Because the ISI distribution cannot be handled analytically in the general GLO case
(i.e. for all possible parameter vectors ψ), it cannot be used for parameter estimation.
For that reason, we introduce the autocorrelation function of a spike train in the next
chapter.
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Autocorrelograms

In the classification of dopaminergic neurons into bursty, irregular and pacemaker cells,
a number of studies rely on the shape of the autocorrelation histogram (ACH; Moore
et al. (1966); Perkel et al. (1967)), which contains information about burstiness and
regularity. For example a peak or the absence of a peak around zero, represents a bursty
or a non-bursty spike train and the number of side peaks indicates the regularity (Wilson
et al., 1977; Gray et al., 1992; König, 1994; Paladini et al., 2003). The empirical ACH is
an estimate for the autocorrelation function (ACF; (Gerstein and Kiang, 1960)) of the
process which conditioned on a spike to happen at time x measures the intensities of
spikes l time units later.

However, experimental classifications mostly rely on visual inspection or on fitting plau-
sible functions to the observed ACH (Engel et al., 1992; König, 1994; Celada et al., 1999;
Hyland et al., 2002; Paladini et al., 2003; Schneider and Nikolic, 2006). While the ISI
distributions can only be approximated for some parameter combinations, the ACF of
the GLO model provides an explicit analytical solution and can be quickly computed, re-
gardless of the firing mode m and other parameter values. For that reason the ACF and
ACH have a central role in this work (see the classification of spike trains and parameter
estimation in Chapter 5).

We start with a definition of the ACF, regard its relation to the Palm distribution of
the process and derive the ACF of the GLO model (Section 4.1). In the next step the
estimate of the ACF, the ACH, is defined (Section 4.2). Finally, we introduce typical
visual inspection criteria of the ACF to classify the firing pattern of a spike train and
discuss the possibility of using the GLO ACF to classify the firing patterns in an objective
way (Section 4.3).
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4.1. The autocorrelation function

The autocorrelation function (ACF) represents a second-order property of the counts
of the stochastic point process, i.e. refers to the second moments. It is basically an
intensity which measures the occurrence of spikes per time unit, conditioned on a spike
at a particular time point. In the stationary case which we focus on, this amounts to
condition on a spike at 0.

Definition 4.1 (Autocorrelation function): Let Φ be a stationary point process
with the properties given in Assumption 1.14 on page 10. The autocorrelation function
(ACF) of Φ is defined for lags l > 0 as

f(l) := lim
δ1,δ2→0+

E[Φ(l, l + δ1) | Φ(−δ2, 0] > 0]
δ1

. (4.1)

Lemma 4.2: The limiting value of f(l) (as defined in Definition 4.1) exists.

Proof. This follows directly from Assumption 1.14 and Proposition 1.27.

In the described GLO, the ACF for lag l > 0 can be derived by regarding the conditional
probability of a spike in the small interval Il := [l, l+δ1) given a spike in the small interval
(−δ2, 0]. Thus, the ACF can be written down because most intervals result from sums
of normal distributions.

Proposition 4.3 (GLO ACF): Let Φ ∼ GLO(ψ), the ACF of Φ is

fm(l) = γ
∑

i∈K(m)
ϕ{iµ,|i|σ2

1+2σ2
2}

(l), with K(m) :=
{
Z∗ ,m = 0
Z ,m = 1.

(4.2)

Example 4.4 (ACF construction): Figure 4.1 shows a visualization of the construc-
tion of the ACF for both firing modesm. As mentioned they differ only by the summation
sets Z and Z∗. For computational implementations, one would sum over some finite set.
R Code for the construction of the ACF can be found in the appendix under listing A.3
(function ACF). Furthermore in Figure 4.1, it is illustrated that fm(l) converges to the
mean rate λ = γ/µ for increasing l.
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A

time delay
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Figure 4.1: Construction of theGLO autocorrelation function (ACF) as the sum of
densities from normal distributions for the non-bursty (A, m = 0) and bursty firing
mode (B, m = 1). The two firing modes differ only by the summation sets Z and Z∗.
Furthermore fm(l) converges to the mean rate λ = γ/µ for increasing l (C).

4.1.1. Proof of Proposition 4.3

According to Definition 4.1 and the random counting measure representation (2.9) on
page 21, the ACF of the GLO is defined for l > 0 as

f(l) = lim
δ1,δ2→0+

E[Φ(l, l + δ1) | Φ(−δ2, 0] > 0]
δ1

(4.3)

= lim
δ1,δ2→0+

E[
∑
i∈Z

∑Pi
j=1 δBi+Zi,j (l, l + δ1) | Φ(−δ2, 0] > 0]

δ1
. (4.4)

Conditioning on the event {Φ(−δ2, 0] > 0} with δ2 → 0+ basically means to condition
on the event, that there is a spike at time zero. We further assume that this spike comes
from beat B0 (otherwise we can simply rename the beats) which implies P0 > 0. So
P0 has another distribution than the other Pi (we write P̂0 instead of P0), but is still
independent of them. For that reason, we split (4.4) into

f(l) = lim
δ1,δ2→0+

E[
∑P̂0
j=1 δB0+Z0,j (l, l + δ1) | Φ(−δ2, 0] > 0]

δ1

+ lim
δ1,δ2→0+

E[
∑
i∈Z∗

∑Pi
j=1 δBi+Zi,j (l, l + δ1) | Φ(−δ2, 0] > 0]

δ1
.

(4.5)

We focus on the second summand of (4.5). Because all Pi are independent and indepen-
dent of all Bj and all Zk1,k2 (∀i, j, k1 ∈ Z and ∀k2 ∈ N) and because of the linearity of
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the conditional expectation, we can write the summand as

lim
δ1,δ2→0+

E[Pi]E[
∑
i∈Z∗ δBi+Zi,j (l, l + δ1) | Φ(−δ2, 0] > 0]

δ1
(4.6)

= lim
δ1,δ2→0+

γ
∑
i∈Z∗ E[δBi+Zi,j (l, l + δ1) | Φ(−δ2, 0] > 0]

δ1
(4.7)

= lim
δ1,δ2→0+

γ
∑
i∈Z∗

P(Bi + Zi,j ∈ (l, l + δ1) | Φ(−δ2, 0] > 0)
δ1

. (4.8)

The conditional probability in (4.8) can be derived. Basically it is the probability that
given a spike at time zero which comes from beat B0, one spike of beat Bi falls into the
interval (l, l + δ1). Thus, we are interested in

lim
δ2→0+

P(Bi + Zi,j ∈ (l, l + δ1) | B0 + Z0,1 ∈ (−δ2, 0]). (4.9)

This probability is known and has been computed in the context of the ISI distributions
in section 3.2. Furthermore, it is an application of formula 1.9.1 of Liemant et al. (1988)
which derives the Palm distribution (see subsection 4.1.2) of a point process resulting
of an ancestor process. In our GLO case, the step between spikes and beats is normally
distributed with mean 0 and variance σ2

2. From beat B0 to Bi we have a sum of i
normal distributions with mean µ and variance σ2

1 which gives N (iµ, |i|σ2
1). And then

again a step between beat and spike (compare Figure 3.4 on page 53). Thus we get
N (iµ, |i|σ2

1 + 2σ2
2). Then, the probability (4.9) can be written with the c.d.f. of the

normal distribution as

F{iµ,|i|σ2
1+2σ2

2}
(l + δ1)− F{iµ,|i|σ2

1+2σ2
2}

(l). (4.10)

Putting (4.10) into (4.8), we get

lim
δ1→0+

γ
∑
i∈Z∗

(F{iµ,|i|σ2
1+2σ2

2}
(l + δ1)− F{iµ,|i|σ2

1+2σ2
2}

(l))
δ1

(4.11)

=γ
∑
i∈Z∗

F ′{iµ,|i|σ2
1+2σ2

2}
(l) (4.12)

=γ
∑
i∈Z∗

ϕ{iµ,|i|σ2
1+2σ2

2}
(l). (4.13)

Finally, there is still the first summand in (4.5). In the non-bursty case (m = 0), the
expectation is zero, because given a spike at beat B0 which is placed at time zero, there
cannot be a second spike from this beat. In the bursty case (m = 1), the length biased
distribution P̂0 of P0 has to be considered. As mentioned in the proof of Proposition 3.20
in subsection 3.3.2.1, the length biased distribution is given by

P(P̂0 = k) = k

γ
P(P0 = k), for k ∈ N. (4.14)
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Thus the expectation is E[P̂0] = 1 + γ. With one spike conditioned at time zero, there
are in the mean γ spikes which are independent of that spike. The further procedure is
the same as before, thus we can rewrite the first summand in (4.5) as

lim
δ1,δ2→0+

γ
P(B0 + Z0,j ∈ (l, l + δ1) | Φ(−δ2, 0] > 0)

δ1
= γϕ{0,2σ2

2}
(l). (4.15)

The last step follows, because given a spike at time zero we have a normally distributed
step with mean 0 and variance σ2

2 back to beat B0 and again a step to a spike with the
same distribution. Taking both summands in (4.5) together, the ACF of the GLO can
be written in the form as given in (4.2).

4.1.2. Connection to the Palm distribution

Because Φ is a simple point process and as the interval (l, l+ δ1) gets sufficiently small,
the probability to have more than one spike in this interval becomes also small. Thus,
there should only be 0 or 1 spike in the interval (l, l + δ1), so that we have

E[Φ(l, l + δ1]] ≈ P(Φ(l, l + δ1) = 1) ≈ P(Φ(l, l + δ1) ≥ 1). (4.16)

Thus we can write

f(l) ≈ lim
δ1,δ2→0+

P(Φ(l, l + δ1) ≥ 1 | Φ(−δ2, 0] > 0)
δ1

(4.17)

or equivalently

f(l) ≈ lim
δ1,δ2→0+

P(Φ(l, l + δ1) = 1 | Φ(−δ2, 0] > 0)
δ1

. (4.18)

The numerator of the fraction in (4.17) is called a Palm probability of the stationary
point process (König and Schmidt, 1992).

Definition 4.5 (Palm distribution): The Palm distribution of a stationary point
process is defined as

P 0(A) = 1
λ

∫
Mc

∫
[0,1]

1A(Txϕ)ϕ(dx)P(dϕ), A ∈ BMc), (4.19)

where 1A(x) is an indicator function and Tx is the shift operator which for every x ∈ R
is a measurable mapping with Tx : Mc →Mc, such that every counting measure ϕ with
ϕ =

∑
t∈Sϕ ϕ({t})δt is related to the counting measure Txϕ =

∑
t∈Sϕ ϕ({t})δt−x.
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There is the following local characterization of the palm distribution:

Proposition 4.6 (König and Schmidt (1992), p.135): For every k ∈ N and every se-
quence {(ai, bi] | i = 1, . . . , k} of pairwise disjoint intervals with the property

P 0(ϕ : ϕ({ai}) > 0 or ϕ({bi}) > 0) = 0 for i = 1, . . . , k

and every sequence of intervals {In} with 0 ∈ In and limn→∞ ν(In) = 0 and every k-tuple
(j1, . . . , jk) of positive integers, there is a convergence of

P 0(A) = lim
n→∞

P(A | {ϕ : ϕ(In) > 0}) (4.20)

for the set

A =
k⋂
i=1
{ϕ : ϕ((ai, bi]) = ji}. (4.21)

Thus, Proposition 4.6 shows the connection of (4.18) to the Palm distribution. It is

P 0(Φ(l, l + δ1) = 1) = lim
δ2→0+

P(Φ(l, l + δ1) = 1 | Φ(−δ2, 0] > 0). (4.22)

4.2. The autocorrelation histogram

The autocorrelation histogram (ACH) is an empirical estimate of the ACF and thus of
the intensity function, conditioned on a point at zero. The ACH uses a discrete binning
for the time axis and basically counts the number of spike pairs having a particular
difference according to this binning. The calculation of the ACH is straightforward, but
obviously depends on the chosen discretization. So usually, the first step is to define an
analysis window which should be large enough to capture the main dependencies.

Definition of the analysis window: Let t1, t2, . . . , tn denote the empirical spike times,
lb the beginning and le the end of the analysis window of the ACH, with le > lb ≥ 0.
Let K be a positive integer representing the number of intervals to partition the interval
(lb, le], then the bin size is given as δ := (le− lb)/K. But in computational practice, δ is
sometimes predefined and le chosen according to δ and K. A partition of (lb, le] is given
by the set of intervals

Lδlb,le := {L1, L2, . . . , LK} , (4.23)

70



Chapter 4. Autocorrelograms

where Lk is an interval of length δ, i.e.

Lk := (lb + (k − 1)δ, lb + kδ] (4.24)

with k = 1, . . . ,K. Furthermore, each interval has a centre

lk := lb + kδ − δ/2 (4.25)

which can be collected in the set

Lδlb,le := {l1, l2, . . . , lK} . (4.26)

Obviously both sets have the same number of elements - we have K intervals and K
interval centers. Lδlb,le is called the analysis window of the ACH. In the following, we
will drop the indices and write L and L for short.

Definition of the ACH: Given an analysis window L, the counts h̃ of the ACH are
defined as a function of the interval centers given by L, according to

h̃(lk) = h̃L(lk) := # {(ti, tj) | tj − ti ∈ Lk, i, j ∈ [n]} , ∀lk ∈ L. (4.27)

Thus for every interval, there is an interval center and a value for h̃. In order to make
the ACH and the ACF comparable, we need to standardize the ACH by the recording
time T of the spike train, the number of spikes n and the bin size δ used in the ACH:

h(l) := T · h̃(l)
n · δ

(
T − lδ − 1

2δ
) , ∀l ∈ L. (4.28)

h(l) can then be used as an estimate of the intensity function fm(l) at lag l (Cox, 1965).
R Code for the construction of the ACH can be found in appendix A.3. The ACH is
typically visualized by plotting the pairs (lk, h(lk)), k = 1, . . . ,K, as a histogram or the
points connected by lines. Figure 1.3 shows four ACHs from the empirical spike trains
shown in Figure 1.1. The analysis window uses the following options: lb = 0, le = 1500
ms and δ = 10 ms. Oscillatory activity in the spike train, is represented by the presence
of one or more side peaks. An initial peak near 0, reflects many small intervals which
may indicate bursty spike trains.

Remark 4.7 (Observations regarding the ACH): Definition (4.28) uses the empir-
ical observed spike times to generate the ACH. If we switch to random variables Ti and
Tj , the ACH will become a random variable and we write H(l) instead of h(l). In the
context of the GLO, we want to mention the following observations for these random
ACHs: The variance of the ACH at lag l is proportional to the value of fm(l), i.e.

Var(H(l)) ≈ fm(l)/n, ∀l ∈ L. (4.29)
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Furthermore, with increasing number of spikes n, the bin size δ can be reduced and the
difference between H(l) and fm(l) is approximately zero, i.e.

lim
n→∞

lim
δ→0
|H(l)− fm(l)| ≈ 0. (4.30)

Although these observations are not proven, they are illustrated in Figure 4.2 by simu-
lation.
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Figure 4.2: Properties of the autocorrelation histogram (ACH). (A) The ACH (grey)
and ACF (red) of a simulated GLO spike train with parameters µ = 230, σ1 = 40,
σ2 = 20, γ = 0.95, m = 0 and n = 3.000 spikes. (B) The variance of h(l) − fm(l)
is plotted against fm(l)/n. (C) The sum of absolute error over the analysis window
decreases for increasing n.

4.3. Describing burstiness and regularity

As well as the shape of the ISI distribution, the shape of the ACF and ACH contain
information about burstiness and regularity. For example a peak or the absence of
a peak around zero, represents a bursty or a non-bursty spike train and the number
of side peaks indicates the regularity (Wilson et al., 1977; Gray et al., 1992; König,
1994; Paladini et al., 2003). However, experimental classifications mostly rely on visual
inspection or on fitting plausible functions to the observed ACH (Engel et al., 1992;
König, 1994; Celada et al., 1999; Hyland et al., 2002; Paladini et al., 2003; Schneider
and Nikolic, 2006).

In this section, we start with a short description of the usual visual inspection criteria of
the ACH for classification of a spike train (Section 4.3.1). In Section 4.3.2 we describe
a number of possibilities that the ACF of a GLO process offers to grasp burstiness and
regularity. These measures that are directly related to the shape of the ACF are thus
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closely related to classification measures based on visual inspection of the ACF (Wilson
et al., 1977; Paladini et al., 2003).

4.3.1. Visual inspection

The visual classification of firing patterns into bursty or single spike processes and into
regular/oscillatory or irregular patterns focuses on two criteria (Wilson et al., 1977;
Paladini et al., 2003):

1. A spike train is called bursty, if there is a clear narrow peak near zero in the ACH.
It is called non-bursty, if there is not a narrow peak. Inspection of burst discharges
in the raw spike train can complement this ACH-based classification. A peak that
occurs directly after the refractory period in the ACH is termed ’first’ or ’central
peak’.

2. A non-bursty process with single spikes is called oscillatory or regular if there are
at least 3 ’visible’ peaks in the ACH and irregular if there are less than 3 peaks. A
bursty process is termed oscillatory or regular bursty, if the first peak is followed
by a clear trough and repetitive peaks, otherwise it is called irregular bursty.

Table 4.1 summarizes these classification criteria.

Example 4.8: Figure 1.3 shows four ACHs of empirical spike trains. The first one (A)
would be clearly classified as regular non-bursty because it contains many side peaks.
The second ACH (B) has a clear central peak and trough with side peak, which classifies
it as a regular bursty neuron. For the third one (C) it is less clear cut to decide for
regular or irregular, but for sure it is more irregular than (B). In the last graphic the
ACH is almost a line, so the spike train is very irregular, but it is not sure if there is an
initial peak or not.

Obviously, these method for classification is a very subjective criteria, because sometimes
it is not clear cut if there is a peak or not and different observers may have a different
classification for the same ACH. For that reason, we want to introduce objective and
reproducible criteria to classify spike trains into bursty or non-bursty and regular or
irregular. These criteria will turn out to be highly connected with the criteria of visual
inspection.
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4.3.2. GLO criteria

The GLO classification criteria aims at describing the visual inspection criteria in an
objective way and is based on the model ACF which depends on the parameters µ, σ1,
σ2, γ and m.

4.3.2.1. Burstiness

The question, if there is a central peak in the ACH, is answered by the parameter m. If
m = 0, there is no central peak, for m = 1 there is a central peak (compare equation
(4.2)). So per definition of the GLO, the spike train is termed bursty if m = 1 and
non-bursty if m = 0. If the spike train is bursty, the burstiness is given by γ.

4.3.2.2. Regularity and Irregularity

In order to measure the regularity of a neuron, one should note that in a regular spike
train the background rhythm with period µ should be easily detectable. Thus, a regular
spike train should have clear side peaks. The regularity is identified by the height of the
first side peak in the ACH in relation to the baseline level γ/µ of the ACH. If the peak
gets higher relative to the baseline level, the spike train will be more regular. Because
in the GLO the first side peak is located at µ, the height of the first side peak is given
by fm(µ). Because ϕ{µ,σ2

1+2σ2
2}

(µ) ≥ ϕ{kµ,|k|σ2
1+2σ2

2}
(µ) ∀k ∈ Z∗, the first side peak is

typically dominated by the summand ϕ{µ,σ2
1+2σ2

2}
(µ). So reducing the height to this main

contribution and removing constants, the height is given by γ/
√
σ2

1 + 2σ2
2. So relative

to the baseline we get
µ√

σ2
1 + 2σ2

2

(4.31)

as a simplified measure for the regularity of a spike train (compare fig. 4.3 A). This has
the intuitive interpretation that the regularity decreases if the variances increases. The
irregularity (reciprocal of the regularity) is given by

β1 :=

√
σ2

1 + 2σ2
2

µ
. (4.32)

Figure 4.3 B shows a 3d plot of σ1/µ, σ2/µ and β1 for different parameter combinations.
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Figure 4.3: (A)Visualization of regularity and burstiness in the ACF (green). Burst
identifiability is given by the height of the central peak, which is approximated by
ϕ{0,2σ2

2}
(0) (red), relative to baseline γ/µ (green). Regularity is represented by the height

of the first side peak, which is approximated by ϕ{µ,σ2
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2}
(µ) (orange), relative to base-

line. (B) The value of β1 for different ratios of σ1/µ and σ2/µ.

4.3.2.3. Burst identifiability

Similar to the description of irregularity by the shape of the first side peak, the bursty
firing mode (m = 1) can be identified easily if the central peak is high relative to
baseline in the ACF (compare Figure 4.3). The height of the central peak is given by
liml→0+ fm(l) and dominated by the term ϕ{0,2σ2

2}
(0). Although the ACF is defined for

l > 0, we use l = 0 as an approximation for the central peak. Disregarding constants,
the burst identification thus basically depends on

β2 = µ

σ2
, (4.33)

which is the reciprocal of the relative burst width (with increasing relative burst width,
bursts are less detectable, because the spikes are placed over a wider range). So the
parameter β2 is useful to separate extremely irregular bursters from the group of highly
and moderately regular bursters.

4.3.2.4. Classification

The parameters m, β1 and β2 are used to classify firing patterns as bursty or non-bursty
and regular or irregular. While m is discrete with values 0 or 1, β1 and β2 have values
in (0,∞). Although we know that there is a continuous change for regularity and burst
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identifiability, there is also a practical need for a clear classification. So for β1 and β2
thresholds have to be used to classify spike trains. There are the following rules

• If β2 is too small, this means that the variance σ2
2 is too high in comparison with

µ. It follows that regardless of m, spikes of different beats cannot be distinguished
from each other which contradicts the idea of a burst as clusters of spikes. So
we will regard all spike trains with β2 ≤ c2 as non-bursty and irregular. Where
c2 is a predefined threshold and depends on the data set, brain region and the
understanding of irregularity of the investigator.

• If β2 > c2, it depends onm, if the spike train is called bursty (m = 1) or non-bursty
(m = 0).

• if β2 > c2, it depends on β1, if the spike train is classified as regular or irregular.
Here again thresholds are used which we call c1 for m = 0 and c̃1 for m = 1.
Firing patters with a β1 larger than these thresholds are called irregular. If β1
is smaller than the threshold, they are called regular. The reason why there are
two thresholds for β1 is that bursty spike trains will typically have larger β2 values
than non-bursty spike trains. The final choice of the thresholds also depends on
the dataset and the investigator.

These classification rules are an improvement of the usual visual inspection criteria,
because they can be implemented in an automatic way and give the same result for the
same spike train. The GLO classification rules are published by Bingmer et al. (2011).
A summary can be found in table 4.1.

Classification Visual inspection of ACH GLO parameters
regular no peak at zero time lag

m = 0, β1 ≤ c1, (β2 > c2)non-bursty ≥ 3 side peaks
irregular no peak at zero time lag

m = 0, β1 > c1 (OR β2 ≤ c2)non-bursty < 3 side peaks
regular peak at zero time lag

m = 1, β1 ≤ c̃1, (β2 > c2)bursty followed by trough and side peaks
irregular peak at zero time lag

m = 1, β1 > c̃1, (β2 > c2)bursty without trough and side peaks

Table 4.1: Summary of classification rules for burstiness and regularity based on visual
inspection and on the GLO parameters. Thresholds for c1 and c̃1 should be chosen
differently for bursty and single spike processes.

Example 4.9: In Figure 4.4, the ACHs and corresponding ACFs are illustrated for
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Figure 4.4: Illustration of β1 and β2 in combination with ACFs and rasterplots. GLO
spike trains simulated with n = 3.000 spikes and parameters µ = 200, γ = 0.95, m = 0
(A,B) and µ = 600, γ = 3, m = 1 (C,D). Different values of σ1 and σ2 are used to
illustrate β1 and β2 and the corresponding firing patterns. (A, C) Raw ACHs (gray) and
theoretical ACFs (black). (B, D) Rasterplots of the spike trains.
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different parameter combinations of the GLO. As described, the only difference between
the bursty and non-bursty mode is the peak around zero. For l→∞, the ACFs converge
to the mean firing rate γ/µ. Increasing σ1 results in a decrease in oscillation strength of
the background rhythm. If σ2 increases, successive bursts are less separated and thus,
all ACH peaks decrease towards the background level γ/µ. Furthermore β1 and β2 are
given to illustrate the effect of a change of parameters. If the variances increase, β1
increases as well. In contrast, β2 only increases if σ2 increases.
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Parameter estimation

In this chapter, a technique is presented that uses the empirical autocorrelation his-
togram (ACH; Section 4.2) to estimate the parameters µ, σ1, σ2, γ and m of the GLO
model. Basically, the GLO autocorrelation function (ACF; Section 4.1) is fitted to the
ACH by a nonlinear least squares algorithm.

There are several advantages by choosing such a procedure: In contrast to the ISI
distributions, the ACF can be handled mathematically and be quickly computed – even
in the irregular case. So inversions of beats (Section 2.2.1) or spikes (Section 3.1) are not
a problem. Furthermore, the ACF contains information about burstiness and regularity
(Section 4.3) and the concept of fitting functions to the ACH is very well known in
neuroscientific practice (Engel et al., 1992; König, 1994; Celada et al., 1999; Hyland
et al., 2002; Paladini et al., 2003; Schneider and Nikolic, 2006; Schneider, 2008). But
these articles usually use arbitrary functions (e.g. cosine) which are not based on an
underlying point process model (except Schneider (2008)).

In the beginning of the chapter (Section 5.1), there will be a short overview of the fitting
procedure and every step of it will be described in detail (analysis window, nonlinear
regression, weights and starting values). Then (Section 5.2), the precision of estimation
is regarded in context of different bin sizes, recording times and parameter combinations.
At the end of the chapter (Section 5.3), for four exemplary parameter combinations, the
residuals of the nonlinear regression model are investigated regarding the usual assump-
tions (homogeneous variances, normal distributed and independence of residuals).
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5.1. Overview of fitting procedure

Given a spike train S = (t1, . . . , tn), the goal is to get estimators for the parameters
µ, σ1, σ2, γ and m. This is done by fitting the model ACF to the empirical ACH
with the following procedure: In a first step, one has to determine the analysis window,
i.e. the values lb, le and δ for L, to compute the empirical normalized ACH h (see
equation (4.28)). Then conditioned on the firing mode m, the theoretical ACF fm of the
GLO model is fitted to h by minimizing the weighted residual sum of squares (WRSS)∑

l∈L
vl (h(l)− fm(l))2 . (5.1)

The weights vl are introduced according to the observation that the error variance in
the ACH at lag l seems to equal fm(l) up to a constant, see Remark 4.7. Therefore,
we propose to use an estimate f̂m(l) of fm(l) obtained by smoothing the ACH with a
Gaussian filter. Different starting values ψ̃ = (µ̃, σ̃1, σ̃2, γ̃, m̃) are used to compute (5.1).
The parameter combination which minimizes WRSS is used to fit the theoretical ACF
to the empirical ACH by an iterative nonlinear least squares procedure based on a Gauss
Newton algorithm implemented in the statistical package R (Chambers, 2008), i.e. using
the R function nls(). Finally this procedure yields the estimates µ̂, σ̂1, σ̂2, γ̂ and m̂.

Remark 5.1: Summary of parameter estimation procedure:

1. Determine analysis window L (Section 5.1.1).

2. Compute the weights vl by smoothing the ACH with a Gaussian filter (Sec-
tion 5.1.3).

3. Derive a set of starting values from the spike train (Section 5.1.4).

4. The starting value combination which minimizes equation (5.1) is used for the
nonlinear weighted least squares algorithm to compute the estimates µ̂, σ̂1, σ̂2, γ̂
and m̂ (Section 5.1.2).

Code of the estimation procedure (function estimation) can be found in appendix A.3.
Different fitted ACHs can be found in Figure 5.1 B and C, Figure 5.9 and Figure 5.5,
where the empirical ACH is given in gray and the fitted ACF of the GLO in blue.
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5.1.1. Analysis window

The choice of the analysis window for the ACH, i.e. the set L, is crucial for the fitting
procedure. A poorly chosen L eventually would not let the algorithm converge and there
are a few difficulties to consider for choosing lb, le and δ:

lb: Neurons have a short period after firing at which they are not able to fire a spike
again, called the refractory time or period. In the GLO, due to its construction,
there is not any refractory time and spikes can be arbitrarily close together. This
issue is important for bursty GLO spike trains and can be seen by comparing the
lags in the ACH close to zero for bursty GLO spike trains (Figure 4.4 C) and for
empirical observed ones (Figure 1.3 B and C). While the empirical ACHs tend to
zero for small lags, the model ACHs tend to a strictly positive constant. So setting
lb = 0 would result in large quadratic deviations for lags close to zero.

le: It should be large enough to account for the main dependencies (in particular
the dominant oscillations in the ACH), but not too large, because the asymptotic
behavior of the ACH would dominate these dependencies.

δ: If δ is chosen too small, the ACH will be noisy and the estimation procedure will
be slowed down. On the other hand, a bin size chosen too large may smooth out
important dependencies. Typically the choice of δ depends on the number of spikes
in a spike train and how the data is recorded.

So, because the number of visible peaks depends on the size of µ, as well as the refractory
period is different for each cell, the analysis window L for the ACH is chosen as a function
of the individual spike train. The following guidelines work well with the present data
set, but it may be necessary to modify them for neurons of other brain regions.

The choice of the analysis window: The bin size is set to δ = 10 milliseconds (ms).
Given the spike train S = (t1, . . . , tn), the ISI intervals w = (w1, . . . , wn−1) are derived.
Because the coefficient of variation of the ISIs is roughly able to discriminate between
bursty and non-bursty neurons (see Section 3.1.1), the minimal time lag lb is chosen
depending on the CV:

• For ĉv(w) ≤ 0.4, the ISIs are very regular and we use

lb1 := min{100, q0.05(w)}, (5.2)

with q0.05(w) denoting 5 per cent quantile of the empirical ISI distribution.
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• For ĉv(w) > 1.2, the position of the maximum of a kernel density estimation
is used. For the empirical waiting time distribution, a gaussian kernel density
estimate (Silverman, 1986; Wand and Jones, 1995; Simonoff, 1996) is computed
according to

f̂W (x) := 1
(n− 1)b

n−1∑
i=1

K

(
x− wi
b

)
with K(·) = ϕ{0,1}(·). (5.3)

b is called the bandwidth and is estimated by silverman’s rule of thumb with

b̂ := 0.9 min(σ̂, R/1.34)(n− 1)−1/5 (5.4)

where σ̂ is the estimated standard deviation and R the estimated interquartile
range of w1, . . . , wn−1. The kernel density estimate f̂K(x) is derived for pre speci-
fied values x ∈ I, with

I := {w(1) − 3b, w(1) − 3b+ q, w(1) − 3b+ 2q, . . . , w(n−1) + 3b} (5.5)

and q = (w(n−1) − w(1) + 6b)/(511). Thus lb2 is given as

lb2 := arg max
x∈I

f̂W (x). (5.6)

• For ĉv(w) ∈ (0.4, 1.2), a linear interpolation between lb1 and lb2 is used, i.e.,

lb3 := lb1 + ĉv(w)− 0.4
0.8 (lb2 − lb1). (5.7)

Thus the beginning of the analysis window is defined as

lb :=


lb1 , ĉv(w) ≤ 0.4
lb2 , ĉv(w) > 1.2
lb3 , otherwise.

(5.8)

The maximum time lag le is set to be

le := lb +
⌊
lẽ − lb
δ

⌋
δ, (5.9)

where lẽ is set to be the minimum of 5 times the 90%-quantile of the ISIs and 6000 ms.

In appendix A.3, there is a R function called Awindow which derives the analysis window
for the function estimation.
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Example 5.2: Figure 5.1 shows the impact of the analysis window on the fitting pro-
cedure. In panel A is the ACH of an empirical spike train and analysis window given
by lb = 5, le = 3005 and δ = 10. Plot B shows a not appropriate fit. Because there is
no refractory period in the GLO, it is important to ignore the first lags in the ACH. In
plot C, lb = 105 (green line) which results in a better fit of the ACH.
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Figure 5.1: The choice of the analysis window and its consequences. (A) Raw ACH of
an empirical spike train and analysis window given by lb = 5, le = 3005 and δ = 10. (B)
Fit of the ACH. (C) Again a fit of the same spike train, but with lb = 105 (position of
the green line).

5.1.2. Nonlinear weighted regression

We give a short summary of nonlinear weighted regression. More details on nonlinear
regression theory can be found in the books by Bates and Watts (1988) and Seber and
Wild (1989). Application of these techniques in combination with the statistical software
package R is described by Ritz and Streibig (2008).

Summary of the nonlinear regression model: The nonlinear regression model is
given by

Yi = f(θ,xi) + εi (5.10)

where Yi is a random variable, representing the univariate response of a nonlinear func-
tion f of a vector of parameters θ = (θ1, . . . , θp) and a vector of deterministic predictor
variables xi = (xi1, . . . , xiq) for the i-th observation of n. εi is a random error, as-
sumed to be normally distributed, independently of the errors for other observations,
with expectation 0 and constant variance σ2.

If Y1, . . . , Yn vary around the mean function f(θ,xi) with unequal variance, this can be
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considered with the weights vi > 0 and the new model

Yi = f(θ,xi) + εi/
√
vi. (5.11)

The parameter vector θ is typically estimated by minimizing the weighted residual sum
of squares (WRSS) which is

WRSS(θ) =
n∑
i=1

vi (yi − f(θ,xi))2 (5.12)

and equivalent to maximizing the likelihood function

L(θ, σ2) = 1
(2πσ2)n/2

exp
{
−
∑n
i=1 vi[yi − f(θ,xi)]2

2σ2

}
. (5.13)

The resulting estimates θ̂ are called the least-squares parameter estimates.

Example 5.3: (Application to the GLO) The analysis window for the fitting pro-
cedure is given as L = {l1, . . . , ln}, θ represents the parameters ψ = (µ, σ1, σ2, γ), xi is
given by the lag li and thus f(θ,xi) represents the ACF fm(li | µ, σ1, σ2, γ). Note that
m has to be predefined. Because yi represents h(li), (5.12) is equivalent to (5.1).

Remark 5.4: We summarize some important comments of Ritz and Streibig (2008):
Due to the nonlinearity of f , the minimization of WRSS will in general be a nonlinear
problem, so numerical optimization methods are used. These iterative procedures ide-
ally approach the optimal parameter values in a stepwise manner. The most famous
algorithm is the Gauss-Newton method, which relies on linear approximations to the
nonlinear mean function at each step. Two common complications arise when using
numerical optimization:

• How to choose the starting parameter values?

• How to ensure to reach the global minimum rather than a local minimum?

The procedure will usually get closer to the optimal parameter value within a few steps,
i.e. the algorithm is said to converge, if the initial parameter values are sufficiently
close to the optimal parameter values. So, it is very important to provide sensible
starting parameter values. In contrast, poorly chosen starting values will often lead the
procedures astray, so no useful model fit is obtained (see Figure 5.2).

The solutions of nonlinear regression problems differ as a consequence of different algo-
rithms, different implementations of the same algorithm (for example, different criteria
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Figure 5.2: Fits resulting of different starting values. Poorly chosen starting values
can prevent the nonlinear least squares algorithm to converge or let it converge to a local
minimum (plot A and B). On the other hand, starting values chosen near to the optimal
values, typically will converge to them (C).

for declaring convergence or whether or not first derivatives are computed numerically
or explicit expressions are provided), different parameterizations, or different starting
values. However, the resulting parameter estimates often will not differ much.

5.1.3. Weights

The values of h(l) do not vary with constant variance around the mean function fm(l)
(compare Section 4.2) and for that reason the weighted nonlinear regression model (5.11)
with weights vl is used to stabilize the variance. Because it seemed that the variance of
h(l) − fm(l) equals fm(l) up to a constant, it would be naturally to set vl := 1/fm(l).
Unfortunately fm(l) is not known in the first instance, so that we have to use an estimate
of it. One possibility is to use a smoothed or filtered version of h(l), l ∈ L. The following
procedure can be understood as a suggestion.

Smoothed ACH and weigths: So let L = {l1, . . . , lK} be the analysis window as
derived in Subsection 5.1.1 with l1 < l2 < . . . < lK and K ∈ {7, 8, . . .}. To derive f̂m(l),
a weighted moving average with weights according to a normal distribution is applied
which is defined as

f̂m(li) =
3∑

j=−3
ajh(li+j), i ∈ {4, . . . ,K − 3} (5.14)

with

aj = 1√
2π
e
j2
2 . (5.15)
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Because f̂m(li) cannot be derived for values close to the boundary of L, we simply set

f̂m(li) = h(li), i ∈ {1, 2, 3,K − 2,K − 1,K}. (5.16)

Finally, before setting the weights vl = 1/f̂m(l), we remove all values of f̂m(l) which
are zero and replace them with the minimum of {f̂m(l), . . . , f̂m(l)} \ {0} (otherwise we
would have weights equal to infinity).

A R function called Weights can be found in appendix A.3.

5.1.4. Starting values

Carefully chosen starting values are crucial for the nonlinear least squares algorithm.
In the worst case, the procedure will not converge or will stop in a local minimum (see
Figure 5.2). For that reason different parameter combinations are tried as starting values.
The more combinations are tried, the higher is the chance that the algorithm converges
to the right minimum. Unfortunately more combinations mean longer computational
time which is relevant for practical purposes. To save time, we compute the WRSS for
all parameter combinations without applying the nonlinear least squares algorithm. It
is just started once with the starting value combination which has minimal WRSS. Of
course, if time would not play a role, one should use all parameter combinations with
the algorithm.

Set of starting values: In the following, some guidelines and rules are presented for
the automatic construction of a set of starting values which worked well for the current
data set which is described in appendix A.2. Let again S = (t1, . . . , tn) be the empirical
observed spike train, w = (w1, . . . , wn−1) the set of waiting times between spikes, T the
recording time and ĉv(w) the empirical coefficient of variation of w. The starting values
are given as follows:

• The initial starting value for µ: It is derived by two procedures:

1. In the non-bursty regular case (m = 0) µ should be located at the peak of the
ISI distribution (compare Figure 5.3). So for the empirical waiting time dis-
tribution, a gaussian kernel density estimate is used (compare Section 5.1.1)
and thus the starting value for µ is given as

µ̃0 := arg max
x∈I

f̂W (x). (5.17)
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Figure 5.3: Starting value for µ in the non-bursty case. µ (green) is located at the peak
of the ISI distribution. These holds true for moderate irregular cases (B and C).

2. For m = 1, µ is estimated as the dominant period in a spectral density
estimate denoted by µ̃1 (compare Figure 5.4). For this purpose, we set

T0 := 2blog2(bT c)c, (5.18)

S0 := S ∩ [0, T0] and define

xi := |{S0 ∩ (i− 1, i]}|, i = 1, 2, . . . , T0. (5.19)

For the sequence (x1, x2, . . . , xT0) the dominant frequency is estimated ac-
cording to the Discrete Fourier Transform (DFT, see Chu (2008)), i.e. we
regard

d(j/n) := 1√
n

n∑
t=1

xt exp(−2πitj/n), j = 1, 2, . . . , n/2. (5.20)

Because very small values of µ are very unlikely in empirical data (as well
as very large values), we expect µ to be in the interval [a, b] with a, b ∈ R
and a < b. This means the connected frequency should be in the interval
[1/b, 1/a]. Thus, when

I := {j/n : j = 1, 2, . . . , n/2, j/n ∈ [1/b, 1/a]} (5.21)

the starting value for µ is given as

µ̃1 := 1/ arg max
j/n∈I

|d(j/n)|2. (5.22)

For the current data set, we use a = 200 and b = 3000. A R function called
spektral can be found in appendix A.3 which uses the R function spectrum
to estimate the dominant frequency.
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Figure 5.4: Starting value for µ in the bursty case. µ (green) should be the dominant
period in the spike train (A and B).

• The starting value for γ: We make use of the fact that the mean firing rate
of a GLO spike train is given as λ = γ/µ, see equation (2.53). Given the starting
value µ̃m for µ, the initial value for γ is calculated from an estimate of the mean
firing rate

γ̃(µ̃m) = λ̂ · µ̃m. (5.23)

Because the data may be non-stationary, the obvious estimator λ̂ := n/T may give
wrong results. Instead we use the property that the ACH should converge to the
mean firing rate and use the following estimator

λ̂ = 1
1001

∑
l∈L

h(l) with L = {5000, 5001, . . . , 6000}. (5.24)

• Starting values for the variances σ1 and σ2: For σ1 and σ2, a grid of starting
values is used. For this purpose we define

C1(x) := {cx : c ∈ {0.01, 0.03, 0.05, 0.1, 0.15, . . . , 0.3}} (5.25)
C2(x) := {cx : c ∈ {0.01, 0.05, 0.1, 0.15, . . . , 0.75}} (5.26)
C3(x) := {cx : c ∈ {0.01, 0.04, . . . , 0.25, 0.3, 0.35, . . . , 0.75}} . (5.27)

The values for σ̃1 and σ̃2 are relative to the estimate µ̃m. So we take all values
σ̃1, σ̃2 ∈ Ck(µ̃m), where k depends on the CV.

The set of starting values is given as

SV :=


C̃1 , ĉv(w) < 0.4
C̃2 , ĉv(w) > 1.2
C̃3 , otherwise.

(5.28)
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The sets C̃1, C̃2, C̃3 represents different sets of starting values and are defined as

C̃1 :={(µ̃0, σ̃1, σ̃2, γ̃(µ̃0), 0) : σ̃1, σ̃2 ∈ C1(µ̃0)} (5.29)
C̃2 :={(µ̃1, σ̃1, σ̃2, γ̃(µ̃1), 1) : σ̃1, σ̃2 ∈ C2(µ̃1)} (5.30)
C̃3 :={(µ̃0, σ̃1, σ̃2, γ̃(µ̃0), 0) : σ̃1, σ̃2 ∈ C3(µ̃0)}

∪ {(µ̃1, σ̃1, σ̃2, γ̃(µ̃1), 1) : σ̃1, σ̃2 ∈ C3(µ̃1)} (5.31)
∪ {(µ̃1, σ̃1, σ̃2, γ̃(µ̃1), 0) : σ̃1, σ̃2 ∈ C3(µ̃1)}.

As final starting value combination for the nonlinear least squares algorithm, we take
the combination which minimizes WRSS, i.e.

ψ̃ := arg min
ψ∈SV

∑
l∈L

vl (h(l)− fm(l|ψ))2 . (5.32)

In appendix A.3, there is a R function called Svalues which can be used to generate
starting values.

In the following section, we discuss the behavior of this fitting procedure for different
parameter constellations.

5.2. Estimation precision

We start with introducing four representative parameter combinations (Section 5.2.1)
which will be used for different kind of simulations. After defining some basic notations,
error measures and robust statistics (Section 5.2.2), different simulations are performed
to investigate the impact of the recording time T and the bin size δ of the ACH on the
fitting procedure (Section 5.2.3). Furthermore, it is investigated, if the standard errors,
which are given as the output of the nonlinear regression procedure, can be used for
quantifying the precision of the estimated model parameters (Section 5.2.4). Finally,
the fitting procedure is quantified for different representative parameter constellations
(Section 5.2.5).

5.2.1. Representative parameter combinations

We take four typical parameter constellations which are found in table 5.1 and represent
the four typical firing patterns described by the GLO. These four parameter combinations
will be used as representative of their category (non-bursty, bursty, regular, irregular)
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and used for further simulations in the current and the next chapter. Their visualizations
in rasterplots, ACFs and ACHs can be seen in Figure 5.5.

combination µ σ1 σ2 γ m β1 β2 type
A 195.97 21.7 9.6 0.99 0 0.13 20.4 regular non-bursty
B 1160 110 170 3 1 0.23 6.8 regular bursty
C 1255 500 252 5.1 1 0.49 5 irregular bursty
D 190 58 40 0.76 0 0.43 4.75 irregular non-bursty

Table 5.1: Exemplary parameter constellations used for simulation studies. They repre-
sent the typical firing patterns described by the GLO model. Figure 5.5 shows rasterplots,
ACHs and ACFs.
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Figure 5.5: Rasterplots, ACH and ACFs of examplary parameter combinations given
in table 5.1. They show the four typical firing patterns: (A) regular non-bursty, (B)
regular bursty, (C) irregular bursty and (D) irregular non-bursty.

5.2.2. Basic notations, error measures and robust statistics

The goal of this section is to investigate the estimation precision with simulations under
different conditions or settings. A setting/condition is a special parameter combination
ψ = (µ, σ1, σ2, γ,m), with a special recording time T and bin size δ or some other
condition. Typically, we have J ∈ N different settings and for each setting n ∈ N spike
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trains are simulated (with the R function GLO, see appendix A.3). For each of these spike
trains the parameters are estimated again (with R function estimation), resulting in

ψ̂ij := (µ̂ij , σ̂ij,1, σ̂ij,2, γ̂ij , m̂ij), i = 1, . . . , n, j = 1, . . . , J. (5.33)

Because ψj = (µj , σj,1, σj,2, γj ,mj) represent the true values of setting j, the values ψ̂ij
(i = 1, . . . , n) can be used to quantify the precision of the estimation procedure. For the
quantification different kinds of error measures are used.

5.2.2.1. Error measures

Let x̂ ∈ R be an estimator for a parameter x ∈ R (we assume E[|x̂2|] < ∞) and x̂i
(i = 1, . . . , n) be several realizations of x̂. The mean squared error (MSE) is defined
as

MSE(x̂) := E[(x̂− x)2] = Var(x̂) + E[x̂− x]2. (5.34)

It can be estimated by 1/n
∑n
i=1(x̂i − x)2. Unfortunately, it is difficult to compare the

MSE of different parameters, e.g. MSE(µ̂) and MSE(γ̂). For that reason, the following
additional error measures are introduced: The absolute error (AE) is introduced as

AE(x̂i) := AEx(x̂i) := |x̂i − x| (5.35)

and the absolute relative error (RE) as

RE(x̂i) := REx(x̂i) := AE(x̂i)
x

. (5.36)

For each setting and each parameter, the mean absolute relative error (MRE) is derived,
i.e. for parameter µj of the j-th setting,

RE(µj) := 1
n

n∑
i=1

REµj (µ̂ij). (5.37)

The mean absolute error (MAE) is defined analogously and denoted by AE(µj). Fur-
thermore, because the MRE is dimensionless and the RE of different parameters is
comparable, we can define the overall relative error (ORE) of setting j as

OREj := RE(µj) + RE(σj,1) + RE(σj,2) + RE(γj). (5.38)

These error measures are not used for the binary parameter m. Instead the relative
frequency of having a wrong m is computed as

m̃f :=
n∑
i=1

|m̂ij −mj |
n

. (5.39)
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5.2.2.2. Robust statistics

When doing 10.000 or more simulations, it can happen that the fitting procedure gives
extreme or even wrong results. For example, the algorithm does not converge or stops in
a local minimum instead of the global one. For that reason we make use of some robust
statistics (Hoaglin et al., 1983; Staudte and Sheather, 1990), instead of using the usual
sample mean and sample standard deviation.

Definition 5.5: For data values x1, . . . , xn ∈ R with order statistics x(1) ≤ . . . ≤ x(n),
the α-trimmed mean (α ∈ [0, 1)) is defined as

x̄t := 1
n− 2bαnc

n−bαnc∑
i=1+bαnc

x(i), (5.40)

where byc denotes the whole-number part of y.

Definition 5.6: The median absolute deviation (MAD) is defined as

MAD(x1, . . . , xn) = median({|xi − x̃| : i = 1, . . . , n}), (5.41)

where x̃ is the median of x1, . . . , xn.

Remark 5.7: In order to use the MAD as a consistent estimator for the estimation of
the standard deviation σ, one takes

σ̂ = K ·MAD(x1, . . . , xn). (5.42)

For normally distributed data K=1.4826 (Staudte and Sheather, 1990) which we will use
in the following sections.

5.2.3. Precision for different recording times and bin sizes

The impact of the bin size δ and the recording time T is investigated regarding the
precision of the fitting procedure. For this purpose, we take the four typical parameter
constellations given in table 5.1 (A, B, C and D) and select δ = 1, 5, 10, 20, 40 (millisec-
onds) and T = 300, 600, 900 (seconds). Thus we have 4 · 5 · 3 = 60 possible settings –
four parameter combinations, five different δ and three T (see table 5.2).

For each setting j of table 5.2, we simulate n = 1000 new spike trains with recording
time Tj and estimate the parameters again. For each setting, the corresponding δj is
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j δj Tj parameters µj . . . mj

1 1 300 A 195.97 . . . 0
2 1 600 A 195.97 . . . 0
3 1 900 A 195.97 . . . 0
4 5 300 A 195.97 . . . 0
...

...
...

...
...

...
...

60 40 900 D 190 . . . 0

Table 5.2: Settings to investigate the impact of δ and T on the fitting procedure.

used as the bin size for the function estimation. So, 60 sets of estimated parameters
are generated, ψ̂ij , i = 1, . . . , n, j = 1, . . . , 60 and for each setting the ORE is derived,
as well as the MRE for each parameter.

Figure 5.6 shows the result of the simulations. In only 2 of 60000 simulations the fitting
procedure did not converge. For the rest it turns out, that the MRE and ORE decreases
for increasing recording time T as would be expected, because an increase of T represents
an increase of the number of spikes n. Furthermore, it turns out that δ should not be
chosen too small, because in this case too much noise is represented in the ACH. Of
course, if T gets extremely large or the spike train has a large firing rate, small values
of δ are preferred, because otherwise important dependencies will be averaged out (see
Havenith et al. (2009) which recommend a bin size of 1 ms in the context of phase offsets
and large firing rates). This can be seen in particular for parameter combination A which
has µ ≈ 196. Finally, it turns out that a bin size of δ = 10 gives good results for almost
all combinations. For that reason, we will take δ = 10 for further simulation analysis.

The relative frequency of wrong m fittings m̃f has been zero, for all settings except
the ones with parameter constellation D. These m̃f values can be found in table 5.3.
While there are only slight changes between different δ values, the change induced by
different T values is more apparent. However, these results do not surprise, because in
the irregular non-bursty case it is difficult to decide if some clusters appear at random
or not. But with an increasing recording time, the true m can be better detected.

5.2.4. Standard errors of nonlinear regression

The nonlinear regression procedures typically return the estimated variance-covariance
matrix of the estimators and thus their estimated standard errors. Unfortunately, they
cannot be used to construct confidence intervals, because the estimated standard errors
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Figure 5.6: Comparison of estimated standard errors for different T and δ. n = 1000
simulations have been performed for each parameter combination given in table 5.1.
Each column in the graphic represents one parameter constellation. Each plot shows
the logarithm of the mean absolute relative error (RE) versus δ for different T values
(lines). The first row represents the overall relative error (ORE). The other rows show
the logarithm of the mean RE for the single parameters.
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δ
T [s] 1 5 10 20 40
300 0.089 0.094 0.086 0.097 0.119
600 0.047 0.047 0.050 0.060 0.079
900 0.033 0.038 0.033 0.046 0.047

Table 5.3: Relative frequency m̃f of wrong estimations of m for parameter constellation
D of Figure 5.6. All other parameter constellations had m̃f = 0.

are underestimating the true variability most of the time. This may be because of
violations of the nonlinear regression assumptions (independence and normal distribution
of errors).

To illustrate this problem, we simulate n = 10.000 spike trains with the parameter
combinations given in table 5.1 for different recording times T = 5, 10, 15, 20, 25, 30
(minutes). Thus we have 4 · 6 = 24 settings. For every simulated spike train the
parameters are estimated with the function estimation and a bin size of δ = 10 ms.
As a result of the nonlinear regression, we get estimators ψ̂ij , as well as their estimated
standard errors

ŝeR(ψ̂ij) := (ŝeR(µ̂ij), ŝeR(σ̂ij,1), ŝeR(σ̂ij,2), ŝeR(γ̂ij)), (5.43)

where ŝeR(µ̂ij) denotes the estimated standard deviation of µ̂ij . For every recording
time T and every parameter (i.e. µ), we derive the 0.01-trimmed mean of the parameter
estimates, i.e.

¯̂µj := 1
n− 200

n−100∑
i=1+100

µ̂(i)j , (5.44)

as well as the 0.01-trimmed mean of all standard errors given by the nonlinear regression
procedure

ŝeNLS(µ̂j) := 1
n− 200

n−100∑
i=1+100

ŝeR(µ̂(i)j), (5.45)

(which we call the mean of the NLS SD estimators) and the median absolute deviation
of all estimated parameters, i.e.

ŝe(µ̂j) = 1.4826 ·MAD(µ̂1j , . . . , µ̂nj). (5.46)

Although ŝe(µ̂j) should converge to the true standard deviation of µ̂j for increasing n,
it cannot be used to estimate the standard deviation, because the true parameter value
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(which is needed to simulate the spike trains) is not known in general. Furthermore, it
is not clear what happens to ŝeNLS for increasing n. For that reason, the simulations
are used to investigate this question.

Figure 5.7 shows the results. In the mean (red line) the estimators ψ̂ij vary around their
true value (black line). For increasing T the variability of the estimator decreases. But
most of the time, the mean of the NLS SD estimators (green) is smaller than the real
variability (blue) represented by the MAD. For that reason, it is not recommended to
use the estimated standard errors of the NLS procedure. Alternative methods and ideas
will be presented in Chapter 6.

5.2.5. Quantification of different parameter constellations

For the further quantification of the precision of the described fitting procedure some
more predefined parameter combinations are needed. To focus on combinations which are
relevant for experimental practice, we use the estimated parameter constellations of the
146 spike trains given in the sample data set (see appendix A.2). T and δ are constant,
so we have 146 settings. For each parameter combination ψj = (µj , σj,1, σj,2, γj ,mj),
j = 1, . . . , 146, 10.000 new spike trains were simulated with T = 720 seconds which
represents a typical recording time. The parameter estimates ψ̂ij were obtained with
δ = 10 ms.

Figure 5.8 shows the 80%-quantiles of the AE and RE of each parameter set. The AE is
chosen for the non-bursty case, because the parameter values are relatively small (e.g.
σ2 < 1), such that even very small AEs appear as large REs. Conversely bursty spike
trains have larger values in the parameters, therefore the RE is shown. Some parameter
combinations, such as γ/µ, can be estimated rather precisely. For 104 out of the 146
parameter constellations (green lines), the errors were small in the following sense: If
m = 1, the 80%-quantile of RE was less than 0.2 for all parameters, and if m = 0, the
80%-quantile of AE was less than 20 milliseconds for all parameters. In the remaining
42 constellations, errors were large as would be expected from large values of σ2/µ or
very low firing rates (Figure 5.8C).

Only 3 of 146 constellations had more than 1% aborts in the simulations, 99 had no
aborts and for 44 constellations the abort rate has been between 0 and 1 percent. For
79 of 146 constellations there has been no wrong estimation of m, 56 had 0 < m̃f < 0.1
and for 11 constellations m̃f ≥ 0.1. The parameter constellations with high abort rate
and high m̃f are found in Figure 5.8 E and F.
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Figure 5.7: Comparison of estimated NLS standard errors. For every recording time
T , n = 10.000 new spike trains are generated with the parameter combinations given in
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(black line). For increasing T the variability of the estimators decreases. But in general
the mean of the NLS SD estimators is smaller than the real variability.
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Figure 5.8: Precision of parameter estimates obtained from 10.000 simulations for each
of 146 parameter constellations. (A) log(80%)-quantile of the absolute error (AE) for
each parameter and (B) 80%-quantile of the relative error (RE). (C) shows a scatterplot
of log( γµ) and log(σ2

µ ) for the parameter estimates with a horizontal line at σ2/µ = 1/3.
Green lines and points indicate constellations with either small AE or RE. (D) Boxplots
of the relative frequency of simulations with an abort of the fitting procedure due to error
(#NA) and the relative number m̃f of wrong m estimates. (E) Parameter constellations
with high #NA and (F) high m̃f indicated by the size of the points.
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5.3. Remark: Model diagnostics

After using the fitting procedure which results in the estimates µ̂, σ̂1, σ̂2, γ̂ and m̂, one
should investigate the goodness of the fit. For further analysis (classification of firing
patterns and comparison of parameter estimates), one has to decide to trust the model
or not. We recommend to look on the empirical ACH together with the fitted ACF of
the GLO (compare Figure 5.1 on page 83 and Figure 5.2 on page 85). If it looks like
the algorithm has converged to a local minimum, one should not trust the estimated
parameters. If the fit seems to be appropriate, one can use the estimated parameters
for further analysis. Of course a formal or more systematic goodness-of-fit test for the
GLO would be preferable, but there is none in preparation yet. In contrast to visual
inspection of the fit, a formal test could lead to conservative decisions if the GLO should
be applied. However, if the GLO is not the correct model, it still can be a suitable
approximation to the data.

Another possibility for model diagnostic is (as it is common for regression analysis) to
investigate the assumptions on the residuals: normal distributed, heteroscedasticity and
independent of each other. Although these are important mainly for statistical inference,
it shows if the model is appropriate or if there are structural deviations.

Example 5.8: Figure 5.9 shows four types of diagnostic plots for the four spike trains
given in Figure 5.5 on page 90 which result of the GLO parameters given in Table 5.1.
Each column represents one spike train (A-D) and each row one diagnostic plot. The fits
in the first row seem to be adequate, as well as the quantile-quantile-plots for investigat-
ing the normal distribution of residuals. Furthermore, the other two graphics indicate
that there are no abnormalities in the variance and correlation of residuals. Although,
there are some correlations outside of the red confidence intervals in the fourth row for
spike train A, this can have happened by chance.

Remark 5.9: (Possible problems and solutions) If the fit does not look appropriate,
there is no convergence or the assumptions on the residuals are not fulfilled, there are
the following possible reasons and solutions:

1. The model is not appropriate. This can be because of non-stationarities in the spike
train or another structure underlying the firing pattern. In this case it depends on
the underlying structure if maybe another model should be used.

2. The analysis window or the starting values are poorly chosen. Then, the set of
possible starting values should be increased or values should be chosen by hand.
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Figure 5.9: Four diagnostic plots are shown for the four exemplary spike trains given
in Figure 5.5 which result of the GLO parameters given in table 5.1. In the first row are
the raw ACHs (grey) and the fitted ACF curve (blue). The second row shows a quantile-
quantile plot of the residuals and a normal distribution. In the third row the residuals
are plotted against the logarithm of the fitted ACF values (red lines indicate zero) and in
the last row the correlations between different lags of residuals are visualized (red lines
indicate typical variations of white noise).

100



Chapter 5. Parameter estimation

The same holds true for the analysis window.

3. There are not enough spikes in the spike train. The recording time T should be
increased (which is not always possible because the neuron can get instable). A
possible solution can be to increase the bin size δ of the analysis window.
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Chapter 6.

Variability estimation of estimated
parameters

In Section 5.2, it has been shown that the applied estimation method yields relatively
small errors for most parameter combinations, when a spike train fully complies with
the GLO model assumptions. In practice, these strict assumptions are seldomly fulfilled,
in particular regarding the stationarity of the process. But even if they are fulfilled,
the preceding chapter (Section 5.2.4) showed that the estimated standard errors of the
nonlinear regression procedure underestimated the true variability. Furthermore, in
general it is not clear if the least squares algorithm converges correctly and resulted in
the right parameter estimates.

For that reason, three bootstrap methods are described to estimate the variability of
the estimated parameters (Section 6.1) and different types of confidence intervals are
introduced to quantify this variability for the user (Section 6.2).

6.1. Methods for estimating the standard error

After giving a short introduction to the bootstrap (Subsection 6.1.1), three methods are
described for estimating the standard errors of the estimated parameters: A parametric
bootstrap procedure (Subsection 6.1.2), a nonparametric random block bootstrap (Sub-
section 6.1.3) and a marked point process bootstrap in combination with random blocks
(Subsection 6.1.4). Finally, all three methods are investigated and compared with each
other using simulations (Section 6.1.5).
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Chapter 6. Variability estimation of estimated parameters

6.1.1. Introduction to bootstrap methods

Bootstrap procedures are computer based methods to assess the accuracy of estimators.
The basic idea is to construct new realizations of the observed data and to compute
the quantity of interest several times. Thus an approximating distribution is generated
from which bias, standard errors or confidence intervals can be derived. Originally these
procedures were developed for simple univariate data, but the idea has been generalized
to more complicated models, like linear regression, time series or point processes. The
big advantage of bootstrap procedures is their simpleness and intuitive approach, but
their consistence is not always ensured – in particular in more complicated models. For
a detailed description of bootstrap methods the books of Efron and Tibshirani (1994)
and Davison and Hinkley (2009) are recommended.

Basic idea: The bootstrap is explained by Efron (2003) in the following way: We have
an unknown probability model P , e.g. a linear regression model, which depends on some
unknown parameters and gives an observed data vector x. From x a statistic θ̂ = s(x)
is calculated to estimate some parameter or quantity θ = t(P ) of interest, e.g. the slope
of the linear regression line. Typically we are interested in the accuracy of estimating
θ by θ̂ in terms of bias, variance and confidence intervals. A point estimate P̂ of P is
used to generate b bootstrap samples x∗i , i = 1, . . . , b. In the nonparametric case when
P is totally unknown, P̂ is typically estimated by the empirical c.d.f.. In both cases,
one gets bootstrap estimates θ̂∗i = s(x∗i ), i = 1, . . . , b. The number of bootstrap samples
b is only limited by time and computational power, but usually, a larger b means more
accurate results. In the next step, the empirical distribution of the θ̂∗1, . . . , θ̂∗b is used to
assess the accuracy of θ̂. Figure 6.1 visualizes the idea of the bootstrap.

    Real world      Bootstrap world 

P → x     =>     P̂ → x̂

θ̂ θ̂*

Figure 6.1: Bootstrap diagram (taken from Efron (2003) FIG. 1). The model P gen-
erates the data vector x from which an estimate θ̂ of some quantity θ is computed. x is
also used to get an estimate P̂ of the model P , which can be used to construct a bootstrap
sample x̂ from which the bootstrap estimate θ̂∗ can be derived.
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Chapter 6. Variability estimation of estimated parameters

Definition 6.1: The bootstrap estimate of standard error of θ̂ is defined analogously to
the empirical standard deviation as

ˆseb(θ̂) =
(

b∑
i=1

(θ̂∗i − θ̄∗)2/(b− 1)
)1/2

(6.1)

with θ̄∗ = 1/b
∑b
i=1 θ̂

∗
i being the mean of the bootstrap estimates.

Example 6.2: In the simplest situation, we have realizations x = (x1, . . . , xn) of a
random variable X with unknown c.d.f. F . In this univariate nonparametric case, the
probability model P is represented by F and an estimator of interest may be the ex-
pectation θ = t(F ) which is typically estimated by s(x) = 1/n

∑n
i=1 xi. Because F is

unknown, x∗i represents a random sample of size n of x (with replacement) and the
bootstrap estimates are given as s(x∗i ), i = 1, . . . , b. If we do not know the standard
error of θ̂, we can estimate it by the bootstrap estimate of standard error (6.1).

Example 6.3: In our case, the probability model P is given by Φ ∼ GLO(ψ), from
which we have a realization S = (t1, . . . , tn) which corresponds to x. The quantity
of interest are the parameters ψ = (µ, σ1, σ2, γ,m) and combinations of them. The
statistic s(·) is given by the fitting procedure. After generating new bootstrap samples
(spike trains) S ∗

1 , . . . ,S
∗
b , they are used to get the bootstrap estimates ψ∗i = s(S ∗

i ),
i = 1 . . . , b.

Of course, one can use the bootstrap estimate of standard error to quantify the precision
of the estimates in example 2. But it can happen that for some of the b bootstrap
spike trains, the fitting procedure gives wrong fits which may result in extreme values
(outliers) which affect (6.1). For this reason, it can be necessary to take a robust estimate
of variability. So, we define the bootstrap MAD estimate (compare equation (5.41)) as

M̂AD(θ̂) := 1.4826 ·MAD(θ̂∗1, . . . , θ̂∗1). (6.2)

Finally, the procedure of generating new spike train replications has not been discussed
yet, although it is crucial and very important for the bootstrap. This will be regarded
in detail in the following subsections where three different methods are introduced: The
first (Section 6.1.2) and second (Section 6.1.3.1) method generate bootstrap replications
of the empirical spike train and the third method (Section 6.1.4) constructs a bootstrap
replication of the ACH.
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Chapter 6. Variability estimation of estimated parameters

6.1.2. Parametric Simulations

The idea is rather simple: Let us suppose that the GLO is an appropriate model for the
underlying spike train with recording time T and the parameter vector ψ is estimated
using the described fitting procedure (R function estimation). Given these estimated
parameters ψ̂, n new spike trains are simulated with recording time T (R function GLO)
and the parameters are estimated again, resulting in estimates ψ̂i, i = 1, . . . , n. This is
the same procedure which has been used for the quantification of the fitting procedure in
the previous chapter. Finally, the standard error of ψ̂ can be estimated using equation
(6.1) or (6.2). The R function boot1 (see appendix A.3) uses ψ̂ to simulate n new spike
trains and gives the resulting bootstrap estimates ψ̂i, i = 1, . . . , n, as output.

In practice, one should be cautious to directly apply such parametric simulations for the
derivation of the precision of the obtained estimates. The reason is that the simulation
generates data with the GLO mechanism and does not consider slight deviations from
the assumptions, e.g. non-stationarities in the data, which would increase the variability
of the estimators (see Figure 6.2). Furthermore, the obtained parameter estimates may
be wrong, e.g. the algorithm converged only in a local minimum, so that one should not
use them for further simulations.

A

0 250 500 750
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75

lag [ms]
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Figure 6.2: Comparison of a fit between empirical and simulated spike train. (A) ACH
of an empirical spike train of the sample data set. The fitted GLO ACF with parameters
ψ̂ is shown as a blue line. (B) ACH of a simulated GLO spike train with parameters ψ̂.
Obviously, the fit for the simulated spike train looks better.

6.1.3. Nonparametric random blocks bootstrap

Because of the problems of the parametric simulation, we can use a nonparametric
approach which does not contain the GLO assumptions. The idea is that all relevant
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Chapter 6. Variability estimation of estimated parameters

information about the true process is already given in the empirical spike train. To
generate a bootstrap replication, r random pieces or blocks are sampled at random
with replacement from the spike train and pasted together again. If the spike train is
a stationary GLO process, this method should give similar results as the parametric
simulations (at least if r is small). But if the spike train is non-stationary or has another
structure, the bootstrap replications of this method should have variability closer to the
true variability than the parametric simulation whose variability would be too small.

Method: A new realization of the spike train is constructed in the following way: From
the given spike train S = (t1, . . . , tn) which has been recorded over the time interval
[0, T ], we draw r random blocks of length T /r, allowing for overlap of different blocks.
So we have

X1, . . . , Xr ∼ Unif(0, T − T /r) (6.3)

and set the blocks as the intervals

Ai := [Xi, Xi + T /r), i = 1, . . . , r. (6.4)

The spikes in these blocks are given by the sets

A∗i := S ∩Ai, i = 1, . . . , r, (6.5)

which are pasted together to the new realization

S ∗ :=
r⋃
i=1

(A∗i −Xi + (j − 1)T /r). (6.6)

Thus the spike times t̃1, . . . , t̃n0 (n0 = |S ∗|) are the ordered elements of S ∗ which
can be used to estimate the parameters in the usual way. The R function boot2 (see
appendix A.3 gives the resulting bootstrap estimates ψ̂i, i = 1, . . . , n, as output.

6.1.3.1. Number of blocks

How to choose the number of blocks r? On the one hand, r has to be large enough to
construct adequately many new bootstrap spike trains. On the other hand, T /r has to
be large enough to capture all important dependencies. To investigate which r should
be taken to estimate the unknown standard deviation of the parameter estimates, we
again make use of simulations.

We take the four exemplary parameter combinations given in table 5.1, three different
recording times T = 300, 600, 900 (seconds) and seven different numbers of blocks with
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r = 15, 30, 45, 60, 75, 90, 105. Thus there are 84 different settings. In practice, we only
have one spike train from which the bootstrap samples are generated, but because there
is a possibility for extreme observations, it is better to use several spike train realizations
for the simulation study. For that reason, for every setting i, we simulate n = 20 new
spike trains Sik, i = 1, . . . , 84 and k = 1 . . . , n (thus simulating 1680 spike trains). For
each of these spike trains b = 500 bootstrap samples are constructed according to the
nonparametric random blocks bootstrap method and the GLO parameters are estimated
with the function estimation and a bin size of δ = 10 milliseconds. The function boot2
performs the task and gives the estimated parameters ψ̂ijk, j = 1, . . . , b as output. Then,
for each of the 1680 spike trains the bootstrap estimate of standard error is computed
over all b bootstrap replications of each parameter estimate, e.g. for the parameter µ

ˆseb(µ̂ik) =

 b∑
j=1

(µ̂∗ijk − µ̄∗ik)2/(b− 1)

1/2

(6.7)

with µ̄∗ik = 1/b
∑b
j=1 µ̂

∗
ijk. Figure 6.3 visualizes the idea of this procedure.

ψ

ψ̂1 ψ̂2 ψ̂3

ψ̂21

*
ψ̂22

*
ψ̂23

*
ψ̂24

*
sê4(ψ̂1)

● ● ●

● ● ● ● ● ● ● ● ●●●●

Figure 6.3: Layout for the bootstrap simulation: According to the true parameter com-
bination ψ (black), n = 3 new spike trains are simulated and the parameters estimated,
resulting in ψ̂i (blue), i = 1, 2, 3. From each of these spike trains b = 4 bootstrap repli-
cations are generated and their parameters are estimated by ψ̂∗ij (red). These are used
to estimate the standard error of ψ̂i with ŝe4(ψ̂i) (green). In practice, when the true
parameters are unknown only the yellow part is observed.

Finally for each setting i, the 0.1-trimmed mean of the n bootstrap estimates of standard
error

¯seb(µ̂i) = 1
n− 2b0.1nc

n−b0.1nc∑
k=1+b0.1nc

ˆseb(µ̂ik) (6.8)

can be compared with the true variability. The true variability is approximated by the
standard deviation of the parameter estimates of the simulated spike trains for a given
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setting i and is denoted by s̄e(µ̂i). The results of the simulation in Section 5.2.4 can
be used for this purpose. Then the error is quantified with REs̄e(µ̂i)( ¯seb(µ̂i)) (compare
equation (5.36)).

Figure 6.4 shows the results of the simulation regarding the number of blocks for the
bootstrap method. The difference of estimated standard error and true variability given
by s̄e(µ̂i) is quantified with the relative absolute error. In the regular case (A & B)
the error increases if the number of drawn blocks r increases. This has been expected,
because if the spike train is really a regular GLO process, then additional variability
is introduced by increasing r. Furthermore, the irregular case (C & D) seems to be
independent of r. For that reason, r = 15 is suggested for further analysis.

6.1.4. Marked point process bootstrap with random blocks

We propose a marked point process bootstrap procedure (Braun and Kulperger, 1998)
in order to retain the dependence structure of the underlying process. The method has
been used to estimate second order properties of spatial point processes (Loh, 2010) and
is inspired by the block resampling algorithm used in time series bootstrapping suggested
by Künsch (1989).

The method is as follows: Given a spike train of length T , with spikes t1, . . . , tn and
analysis window L = {l1, . . . , lK}. The ACH h̃(l) at lag l can be decomposed in

h̃(l) =
n∑
i=1

h̃i(l), (6.9)

where

h̃i(l) :=#{j ∈ [n] : l − δ/2 < tj − ti ≤ l + δ/2}. (6.10)

This means that we fix spike time ti and count the number of spikes tj which have a time
difference tj−ti ∈ (l−δ/2, l+δ/2]. Thus the unnormalized ACH h̃(l) is split into n parts
h̃i(l) and the sum of all parts is the original ACH. Here, we call h̃i(l) the ’contribution’
of spike i to the counts at lag l. The same holds true, if the ACH is regarded for all lags
as a vector

h̃ = (h̃(l1), . . . , h̃(lK))′ (6.11)

and

h̃i = (h̃i(l1), . . . , h̃i(lK))′. (6.12)
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Figure 6.4: Number of blocks for block resampling. For the four parameter combinations
given in table 5.1, three different recording times T = 300, 600, 900 (seconds) and seven
different numbers of blocks r = 15, 30, 45, 60, 75, 90, 105 (84 settings), n = 20 spike
trains have been simulated. For every spike train b = 500 bootstrap replications have
been generated to compute the bootstrap estimate of standard error. This is averaged
over all n values and compared with the approximate true variability of the setting with
the relative error.
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So, we also call h̃i the ’contribution’ of spike i to the ACH. Thus again, we can write
h̃ :=

∑n
i=1 h̃i. Furthermore we regard h̃i as the mark of spike ti and write t̃i = (ti, h̃i)

as an element of the marked point process (t̃i)i=1,...,n.

To this marked point process we apply a block resampling method which is almost the
same as for the random blocks bootstrap: From the given spike train we draw r random
blocks of length T /r, allowing for overlap of different blocks. So we have

X1, . . . , Xr ∼ Unif(0, T − T /r) (6.13)

and set the blocks as

Ai := [Xi, Xi + T /r), i = 1, . . . , r. (6.14)

The marks of the spikes in these blocks are then used to built up a bootstrap version of
the ACH

h̃∗ :=
n∑
i=1

r∑
j=1

1{ti∈Aj}h̃i. (6.15)

The normalized ACH is then computed analog to (4.28) by using

n∗ :=
n∑
i=1

r∑
j=1

1{ti∈Aj} (6.16)

instead of n. The estimation procedure described in Chapter 5 is used with the starting
values of the original spike train and results in the estimated parameters (µ̂, σ̂1, σ̂2, γ̂, m̂)
which we call bootstrap estimates. This procedure is repeated b times, yielding the
estimates (µ̂i, σ̂1,i, σ̂2,i, γ̂i, m̂i), i = 1, . . . , b. The procedure is implemented in the R
function boot3 in appendix A.3.

6.1.5. Comparison of Methods

All three bootstrap methods have advantages and disadvantages. If the spike train fulfills
the GLO assumptions, the parametric method is preferable, otherwise one of the other
methods can be taken. The marked point process bootstrap tries to avoid the cut points
of the block resampling method (the region where two blocks are pasted together) by
directly going to the ACH. Of course, there are also other possibilities for resampling.
For example, one can permute the ISI intervals, but this would destroy the underlying
dependency structure. For that reason, we focus on the three described methods and
investigate their behavior regarding the relative absolute error.
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For this purpose, we take again the four exemplary parameter combinations given in
table 5.1, three different recording times T = 300, 600, 900 (seconds) and choose r = 15
as the number of drawn blocks for both nonparametric methods. Furthermore we have
three different resampling methods (boot1, boot2, boot3) and thus there are 36 different
settings.

The same simulation approach is used as in Section 6.1.3.1: For every setting i, we
simulate n = 20 new spike trains Sik, with i = 1, . . . , 36 and k = 1 . . . , n. For each of
these spike trains b = 500 bootstrap samples are constructed and parameters estimated
accordingly. The estimated parameters ψ̂ijk, j = 1, . . . , b are given as output. Then, for
each of the 720 spike trains Sik the bootstrap estimate of standard error is computed over
all b bootstrap replications of each parameter estimate (see equation (6.7) for parameter
µ). Figure 6.3 again visualizes the idea of this procedure.

Finally for each setting i, the mean of the n bootstrap estimates of standard error (see
equation 6.8) is compared with the true variability s̄e(µ̂i) which is estimated with the
mean absolute deviation. The results of the simulation in Section 5.2.4 can be used
again and the error is quantified with REs̄e(µ̂i)( ¯seb(µ̂i)).

The results can be found in Figure 6.5. It turns out that the parametric method has
the most accurate estimates, because the simulated spike trains fully complies with the
GLO model assumptions. Furthermore, one can see that the error is higher for irregular
spike trains, especially for the irregular non-bursty case (combination D) and that the
error is decreasing for increasing T . Between the two nonparametric methods, there
seems to be no large difference. Because the computational complexity of the random
blocks bootstrap given by the R function boot2 is less than the complexity of the marked
point process bootstrap represented by boot3 and because arbitrary empirical spike train
does not need to fulfill the GLO assumptions, it is recommended to use boot2 for further
analysis.

6.2. Bootstrap confidence intervals

In the previous section, different methods have been introduced and investigated to gen-
erate bootstrap estimates of the GLO parameters. Typically, the bootstrap estimate
of standard deviation is used to quantify the precision of the parameter estimates, but
confidence intervals are usually preferred in experimental practice. Thus in the current
section, different types of confidence intervals will be introduced (Section 6.2.1) and com-
pared with each other (Section 6.2.2). Finally, a method is shown how confidence inter-
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Figure 6.5: Comparison of bootstrap methods. For the four parameter combinations
given in table 5.1, three different recording times T = 300, 600, 900 (seconds) and the
three resampling methods (boot1, boot2, boot3) (36 settings), n = 20 spike trains have
been simulated. For every spike train b = 500 bootstrap replications have been generated
to compute the bootstrap estimate of standard error. This is averaged over all n values
and compared with the approximate true variability of the setting with the relative error.
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vals can be used for hypothesis testing regarding the GLO parameters (Section 6.2.3).

6.2.1. Different types of confidence intervals

Definition 6.4: Given a random sample X = (X1, . . . , Xn)′ of some probability distri-
bution with parameter θ, a confidence interval (CI) for θ with confidence level α ∈ (0, 1)
is a random interval Cα(X) := [uα(X), vα(X)] on R with

P(θ ∈ Cα(X)) ≥ 1− α. (6.17)

uα(X) and vα(X) are the real valued random end points of the interval.

The probability P(θ ∈ Cα(X)) is called the coverage probability of the confidence interval.
In some definitions the inequality in (6.17) is replaced by equality. Cα(X) is random,
because it only depends on the random sample X. In practice, a confidence interval
is constructed of a realizations x of X and we write Cα(x). Furthermore, let θ̂ be an
estimator of θ. Then, θ̂ is called a point estimate and Cα(x) is called an interval estimate
which is more informative and represents the precision of θ̂.

Sometimes, the CI has the desired coverage probability only asymptotically, this means
that

lim
n→∞

P(θ ∈ Cα((x1, . . . , xn)′)) = 1− α. (6.18)

But in complex models (e.g. in the GLO), it can be even difficult to derive asymptotic
confidence intervals. In this case, bootstrap methods can be used to construct asymptotic
CIs. Of course this depends on the data generating process, the resampling method and
the construction of the confidence interval and it is not assured to get the desired coverage
probability (at least in complex models).

Let y = (θ̂∗1, . . . , θ̂∗b )′ be the bootstrap estimates of θ, derived with one of the resampling
methods. Then there are these different famous types of bootstrap confidence intervals
DiCiccio and Efron (1996):

The standard interval: Often it is appropriate to assume that θ̂ is approximately normal
distributed. In this case and if ˆseb(θ̂) denotes the bootstrap estimate of standard
error, the confidence interval is given by

C(1)
α (y) := [θ̂ − z(1−α/2) ˆseb(θ̂), θ̂ − z(α/2) ˆseb(θ̂)], (6.19)

where z(α) denotes the α-quantile of the standard normal distribution.
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The bootstrap-t interval improves the standard interval which is only an approxima-
tion to finite samples. If there are b bootstrap samples x∗1, . . . ,x∗b , we compute

Z∗i = θ̂∗i − θ̂
ˆseb(θ̂∗i )

, i = 1, . . . , b, (6.20)

where θ̂∗i = s(x∗i ) and ˆseb(θ̂∗i ) is the estimated standard error of θ̂∗i for the i-
th bootstrap sample. Thus one has to use the bootstrap twice. First of all the
empirical spike train is bootstrapped and in a second step, each bootstrap sample
is bootstrapped to estimate ˆseb(θ̂∗i ).

Let t̂(α) be defined as the α-quantile of Z∗1 , . . . , Z∗b , then the bootstrap-t interval is

C(2)
α (y) := [θ̂ − t̂(1−α/2) ˆseb(θ̂), θ̂ − t̂(α/2) ˆseb(θ̂)]. (6.21)

Basic bootstrap interval: Let θ̂∗(α) denote the α-quantile of θ̂∗1, . . . , θ̂∗b . The basic boot-
strap interval is

C(3)
α (y) := [2θ̂ − θ̂∗(1−α/2), 2θ̂ − θ̂∗(α/2)]. (6.22)

The percentile interval also uses the quantiles of θ̂∗1, . . . , θ̂∗b . It is given as

C(4)
α (y) := [θ̂∗(α/2), θ̂∗(1−α/2)]. (6.23)

6.2.2. Coverage probabilities

In this section, we investigate the coverage probabilities for the different types of con-
fidence intervals described in Section 6.2.1. As mentioned, they depend on the data
generating process, the resampling method and the confidence interval. Of course we
would like to use a CI Cα(x) which fulfills (6.17) and is as small as possible. But in
practice, the bootstrap intervals have this coverage probability only asymptotically, i.e.

lim
b→∞

P(θ ∈ Cα((θ̂∗1, . . . , θ̂∗b )′)) = 1− α. (6.24)

In general, computational simulation time and the number of bootstrap samples b is
limited. But if b is large enough, we can assume

P(θ ∈ Cα((θ̂∗1, . . . , θ̂∗b )′)) ≈ 1− α. (6.25)

In the GLO context, it is not clear how the different CI types will behave. Furthermore,
we introduce two modifications of the CIs:
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1. In C(1)
α (y) and C(2)

α (y), we replace ˆseb(θ̂) by the MAD estimator

K ·MAD(θ̂∗1, . . . , θ̂∗b ) (6.26)

and K as defined in (5.42). This ensures that possible outliers produced by the
fitting procedure will be of no consequence.

2. For C(2)
α (y), ˆseb(θ̂∗i ) in (6.20) is replaced by ˆseb(θ̂∗) which saves a lot of computa-

tional time.

The modified CIs will be denoted as C(1′)
α (y) and C(2′)

α (y).

To investigate the coverage probabilities of C(1′)
α (y), C(2′)

α (y), C(3)
α (y) and C(4)

α (y), we
take again the four exemplary parameter combinations given in table 5.1 and set T = 900
(seconds) which will represent a typical empirical recording time. For every ψ of the four
parameter combinations, n1 = 400 new spike trains Si are simulated and the parameters
estimated with the R function estimation and δ = 10 milliseconds, resulting in ψ̂i
(i = 1, . . . , n1). Each of these spike trains is resampled b = 1000 times with the random
block bootstrap described in Section 6.1.3 and with r = 15 as the number of drawn
blocks. This results in the bootstrap samples S ∗

ij , i = 1, . . . , n1 and j = 1, . . . , b. The
parameters are estimated in the same way as before, resulting in the bootstrap estimates
ψ̂∗ij (using R function boot2). The confidence intervals are constructed as described for
every parameter of interest and for every interval type with α = 0.8. For example, for
parameter µ, the i-th spike train Si and the percentile interval, the confidence interval
is given by C(4)

i,α ((µ̂∗i1, . . . , µ̂∗ib)′). Then its coverage probability for the true parameter µ
is estimated by

1
n1

n1∑
i=1

1{µ∈C(4)
i,α((µ̂∗i1,...,µ̂

∗
ib

)′)}. (6.27)

Of course, it would be preferred to simulate new spike trains for each CI type, but this
would increase the already large number of simulations (4 ·n1 ·b = 1.600.000) by a factor
of four.

Figure 6.6 shows these coverage probabilities. Each column represents one of the four
exemplary parameter combinations given in table 5.1 and each row one parameter or
a combination of parameters. In every plot, there are the coverage probabilities of the
four confidence interval types, discussed in the previous section. The estimated coverage
probability is represented by a point estimate, surrounded by an 95%-confidence interval
which represents the unsureness by doing ’only’ n1 = 400 confidence intervals. The
attempted coverage of 80% is visualized by a dotted line. Most of the time, all four
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CI types are close to the coverage of 80%. Only in some cases the coverage probability
is even smaller than 0.7. Of course combinations of parameters are influenced by the
raw parameters, i.e. if the coverage probability for σ1 is bad, the same holds true for
σ1/µ. Surprisingly, the modified standard interval has an adequate coverage probability
in almost all plots. The two CIs C(3)

α (y) and C
(4)
α (y) have a disadvantage, because

b = 1000 is not large enough (typically in the literature 10.000 bootstrap samples are
recommend, in particular when using α = 0.05).

The decision which interval type to take, depends on the time needed for bootstrapping
and on the underlying assumptions. If one has doubts that the distribution of the boot-
strap estimates is bell shaped, the quantile methods should be preferred, although they
need b to be large enough. If the distribution is assumed bell shaped and high accuracy is
needed, the bootstrap-t interval should be taken. Nevertheless, high accuracy is seldom
required in experimental practice and all four intervals fulfill the task to visualize the
variability of the estimators.

6.2.3. Hypothesis Testing

Although confidence intervals are preferable to quantify the variability of parameter
estimates, there can be a need or wish for getting p-values of a hypothesis test. This may
be important for the comparison of differences between two parameter estimates, e.g. γ1
and γ2, derived from two different empirical spike trains S1 and S2 (for example for
pre/post comparisons in the context of pharmacological treatment). Of course any other
parameter or parameter combination can be taken instead. For the testing problem

H0 : γ1 = γ2 (null hypothesis)
H1 : γ1 6= γ2 (alternative hypothesis),

one could regard the test statistic

γ̂1 − γ̂2√
ˆseb(γ̂1)2 + ˆseb(γ̂2)2

which is approximately standard normal distributed – assuming that

γ̂1 ∼ N (γ1, ˆseb(γ̂1))
γ̂2 ∼ N (γ2, ˆseb(γ̂2))

and both spike trains to be independent. Of course this is seldom fulfilled in practice and
furthermore it is not clear if the variability estimates ˆseb(γ̂1) and ˆseb(γ̂2) are precise.
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Figure 6.6: Comparison of different bootstrap confidence intervals. For each of the
four parameter combinations given in table 5.1 and T = 900 (seconds), n1 = 400 new
spike trains are simulated and resampled b = 1000 times with the random block bootstrap
and with r = 15 as the number of drawn blocks. Each column represents one parameter
combination and each row a parameter. In every plot, there are coverage probabilities of
the four confidence interval types together with a 95% interval for the coverage probability.
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Thus, a general procedure is introduced to test H0 : γ1 = γ2 and generate approximate p-
values. It is motivated by the idea that a confidence interval is equivalent to a hypothesis
test as it is mentioned by Wonnacott and Wonnacott (1969) and Efron and Tibshirani
(1994). But this procedure should be regarded as a workaround and not as a formal
hypothesis test and will not be investigated in further detail.

Testing procedure: Let us suppose that we have an estimated parameter or parameter
combination θ̂1 of a spike train S1 and θ̂2 of a spike train S2. Typically we observe
d̂ := θ̂1 − θ̂2 6= 0, thus there seems to be a difference. For testing the null hypothesis
H0 : d := θ1 − θ2 = 0 against the alternative H1 : d 6= 0, the duality between confidence
intervals and statistical tests is used. That is, the null hypothesis H0 : d = 0 can be
rejected at a significance level α if the corresponding 1 − α confidence interval around
d̂ does not contain 0, and vice versa. To this end, we use the b bootstrap differences
d̂i := θ̂1,i − θ̂2,i, i = 1, . . . , b derived with some predefined resampling scheme and can
construct confidence intervals for d. Let Cα(d) denote a 1− α confidence interval for d
depending on the bootstrap estimates d = (d̂1, . . . , d̂b)′. The largest confidence interval
Cα(d) which does not contain 0 then yields the minimal significance level α at which
the corresponding test would be statistically significant and thus, the p-value of the
respective test. So the p-value is given as

p := max{α ∈ [0, 1] : 0 /∈ Cα(d)}. (6.28)

This procedure works with all resampling methods described in Chapter 6.1 and with
all types of confidence intervals.
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Chapter 7.

Data analysis

In this chapter, the GLO model is applied to the sample data set. It consists of 146
extracellular single-unit recordings of dopamine (DA) neurons of mice in vivo (details are
given in appendix A.2). First of all, the parameter estimates are derived by fitting the
theoretical ACF to the empirical ACH using the R function estimation (as described
in Section 5.1). Then, the goodness of fit will be judged by visual inspection of the
fitted ACHs and with diagnostic plots (Section 7.1). In the next step, all spike trains are
classified into bursty and non-bursty/pacemaker and irregular or regular firing patterns
(Section 7.2). The variability of these classifications is visualized and the distribution
of the classified firing patterns can be used to compare different groups of neurons (e.g.,
pre / post or KO/WT). Finally, the differences in the underlying parameters are investi-
gated in order to study neurophysiologically and pharmacologically relevant differences
or changes in the firing patterns (Section 7.3).

7.1. Goodness of fit

One of the first important steps is to judge the goodness of fit of the GLO model for
data analysis. There is no formal test at the moment, so one has to rely on visual
inspection of the fitted ACH. Of course, there is the possibility of checking the assump-
tion of stationarity with a graphic (e.g., see Figure A.1) or a formal test, but it is not
recommended, because in practice, only a fraction of spike trains can be regarded as
stationary. Furthermore, although there may be non-stationarities in a spike train, the
GLO model may still be a good approximation to get an overall summary of the firing
patterns.

Figure 7.1 shows diagnostic plots of the GLO ACH fits for 16 different spike trains of
the sample data set. Most of the fits look appropriate. Only for spike train L, there
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Figure 7.1: Overview of the GLO ACH fits in the sample data set.
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could have happened a convergence to a local minimum. In fact, 141 of 146 spike trains
have a proper fit. Only one spike train of the sample data set, could not be fitted by the
function estimation. A possible solution would be to modify the fitting procedure or
to add some more starting values. For the remaining four spike trains, one has to decide
if they should be excluded of the further analysis or not. Of course, this depends on the
individual spike train. Here, it has been decided to remove them.

7.2. Classification of spike trains

Given the estimated parameters ψ̂, every spike train is classified into one of the following
firing patterns:

• regular non-bursty

• irregular non-bursty

• regular bursty

• irregular bursty

Thresholds: The classification is done according to the GLO classification criteria
as described in Section 4.3.2 and summarized in table 4.1. We set the threshold of
parameter β2 as c2 = 3 and term all spike trains with β2 < 3 ’irregular single spike’
regardless of the remaining parameters. For all other spike trains the parameter m can
be used to distinguish between bursty and non-bursty neurons. The threshold c1 of β1
was set to 0.4 for bursty and c̃1 to 0.35 for non-bursty processes (compare table 4.1)
because the latter showed a lower level of β1 in general (see Figure 7.2 A). Figure 7.2
B shows all estimated values of β1 and β2 and table 7.1 summarizes the classification of
the GLO: 45 cells were classified as oscillatory single spike, 45 as irregular single spike,
22 as oscillatory bursty and 29 as irregular bursty.

Comparison with visual inspection: In table 7.1, there is also the classification of
the 141 spike trains with visual inspection criteria (compare table 4.1). It turns out, that
in 104 cases both classification methods give the same results. 24 of the 37 differences
come from a different regular/irregular classification. In 10 cases there was a difference
between bursty and non-bursty and in only 3 classifications there were complete opposite
results.

Variability of classification: While some spike trains can be classified clearly into
bursty or non-bursty and regular or irregular, the classification is not always clear cut.
The transition between regular and irregular firing patterns is continuous which should
be also true for bursty and non-bursty, although this is not directly taken into account
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Figure 7.2: Thresholds for GLO classification criteria. (A) In general, the parameter β1
is larger for bursty neurons (m = 1) than for non-bursty cells (m = 0). (B) Scatterplot
of parameter combinations β1 and β2 which are used for classification of the 141 spike
trains (see table 4.1). The threshold for β2 is set to c2 = 3 (vertical blue line). The
threshold for c1 of β1 is 0.4 for bursty and c̃1 = 0.35 for non-bursty processes (horizontal
blue lines).

GLO
classification regular irregular regular irregular Σ

non-bursty non-bursty bursty bursty
regular non-bursty 40 10 0 1 51

VI irregular non-bursty 5 27 0 4 36
regular bursty 0 2 16 3 21
irregular bursty 0 6 6 21 33

Σ 45 45 22 29 141

Table 7.1: Classification of the sample data set by GLO and visual inspection (VI)
criteria as described in Section 4.3.
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in the GLO model, because m takes only values 0 and 1. Of course, γ or β2 can be used
to measure the degree of burstiness.

However, as a consequence of this classification into categories, some spike trains tend
in the simulations to be classified sometimes as bursty and sometimes as non-bursty
and the same holds true for regular and irregular firing patterns. This uncertainty in
the classification reflects the fact that the threshold is set arbitrarily, and that due to
random variation, some processes tend to be classified sometimes left and sometimes
right of the boundary. In a similar way, visual inspection will lead to results that are
not always reproducible in ambiguous cases.

For quantifying the variability of the classification, we generate b = 1000 bootstrap
samples S ∗

ij of the empirical spike trains Si, i = 1, . . . , 141 and j = 1, . . . , b. For
this purpose, the random block bootstrap method is used with r = 15 blocks (see
Section 6.1.3). The R function boot2 gives the bootstrap estimates ψ̂∗ij which are used
again according to the GLO classification criteria. Thus, for every spike train Si, one gets
a discrete distribution of the classified firing patterns which represents the uncertainty in
the classification. If there is only small variability, one category will have large frequency
(in the ideal case close to one).

Figure 7.3 shows the distributions of the classified firing patterns of the bootstrap samples
for every spike train Si (represented by a vertical bar). Most of the spike trains are
clearly dominated by one category. Furthermore, one sees that some cells are sometimes
classified as regular and sometimes as irregular. The same holds true for bursty and
non-bursty in the irregular case. Finally, one has to mention that although a spike
train is classified with a special firing pattern, the bootstrap sample can be classified as
something different (e.g. see the last bar in the regular non-bursty category).

Distribution of firing patterns: Finally, the classifications can be used to compare
the distribution for different populations of neurons and under different experimental
conditions. Typically, each condition or population is represented by a distribution.
Thus, if one wants to know if the distribution is independent of the condition, one can
perform a chi-square-test for independence. If the assumptions on the cell counts are
not fullfilled, a permutation test can be performed instead.

Table 7.2 shows an example for WT and KO neurons in the substania nigra (SN) with
spontaneous activity. In this case, the permutation test gives a p-value of p = 0.2993
and thus the null hypothesis of independence cannot be rejected. In contrast, table 7.3
shows a significant (p = 0.002) difference between WT and DN cells which are viral
treated SN neurons. Of course also other populations and conditions can be compared
(e.g. pre/post or VTA/SN).
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Figure 7.3: Variability of the GLO classification criteria. Every spike train is repre-
sented by one vertical bar which represents the distribution of the firing patterns gen-
erated by the bootstrap estimates. Red lines separate the four categories of the initial
classification of the empirical spike trains.

SN regular irregular regular irregular
spon. non-bursty non-bursty bursty bursty Σ
KO 19 3 9 7 38
WT 10 7 8 6 31
Σ 29 10 17 13 69

Table 7.2: Distribution of classified KO and WT spike trains (SN spon.). The permu-
tation test with 5000 simulations results in p = 0.2993.

SN oscillatory irregular oscillatory irregular
VIRUS single spike single spike bursty bursty Σ
DN 11 1 1 2 15
WT 1 3 4 6 14
Σ 12 4 5 8 29

Table 7.3: Distribution of classified DN and WT spike trains (SN viral). The permu-
tation test with 5000 simulations results in p = 0.002.
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7.3. Comparison of different experimantal conditions

In this section, the GLO is used to compare spike trains in different experimental con-
ditions such as pharmacological treatment or genetic manipulation. According to the
direct interpretation of the model parameters, one can identify changes in the burst
width, the regularity of the background rhythm or other features of the processes. As a
small example, the described sample data set contains a subset of six dopaminergic neu-
rons in the substantia nigra whose firing patterns were measured pre and post injection
of a dopamine antagonist (see appendix A.2 or Bingmer et al. (2011)). The parameters
of the GLO are estimated as described by fitting the theoretical ACFs to the empirical
ACHs of the spike train with R function estimation (see Section 5.1). b = 10.000
bootstrap samples are generated with the random blocks bootstrap method with r = 15
blocks (Section 6.1.3). These are used to construct confidence intervals and for statistical
hypothesis testing (as described in Section 6.2), whereas the modified standard interval
C

(1′)
α is taken.

The main results are summarized in Figure 7.4 and have been discussed in Bingmer et al.
(2011). For every neuron, the change in the parameter estimates is illustrated by a red
arrow, beginning at the pre injection estimate and pointing towards the post injection
estimate. In the pre injection case, one spike train (a) is classified as regular non-bursty,
two spike trains (b & c) are classified as irregular, and three spike trains (d, e & f)
are classified as regular bursty (panel A). Only cells d and e change their classification
from pre to post treatment, being classified as irregular post treatment. In addition, the
cells a, b and c show an increase in their irregularity. All bursty cells show a significant
increase in the number of spikes per burst, γ, from pre to post treatment, while the
regular non-bursty cell shows a significant decrease in γ. Panel B shows that all cells
have an increased mean firing rate after treatment. For the bursters, this is due to the
increase in γ, and for the pacemaker it results from a significant decrease in µ (panel C).
Finally, the higher number of spikes per burst also results in an increased burst width,
σ2 (panel D). The corresponding p-values of the tests for differences between parameter
estimates pre and post injection are shown in table 7.4.

Thus, the proposed GLO and the presented methods for confidence interval construction
and statistical testing can be used to identify meaningful changes in the firing behavior
of oscillatory spike trains. In the present case, this preliminary analysis suggests that
the applied dopamine antagonists might change the mean firing rate of the cells as well
as increase the number of spikes per burst, the burst width and the irregularity of the
oscillation.
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Figure 7.4: Changes in the parameter estimates of six substania nigra neurons (denoted
by a - f, respectively) before and after treatment (begin and end of red arrows). The black
lines represent 95% confidence intervals. A) The bursty neurons fire more spikes per
burst after treatment. In most cells, irregularity tends to increase. B) The firing rate
increases for all cells. C) This increase can be explained by the increase of γ for the
bursters. D) For all bursters, the burst width increases.

µ σ1 σ2 γ γ/µ σ1/µ σ2/µ β1
a 0.001 0.003 0.890 0.001 0.001 0.824 0.678 0.621
b 0.001 0.893 0.039 0.002 0.001 0.570 0.004 0.027
c 0.001 0.042 0.445 0.006 0.001 0.001 0.235 0.001
d 0.064 0.004 0.148 0.049 0.046 0.511 0.824 0.639
e 0.010 0.249 0.001 0.001 0.001 0.996 0.001 0.031
f 0.001 0.526 0.001 0.001 0.005 0.050 0.114 0.144

Table 7.4: p-values of the test between pre and post measurements as described in
Section 6.2.3. Bold numbers indicate significant tests on the 5% level.
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Conclusion

This work proposed a doubly stochastic spike train model to describe regularity and
burstiness of neuronal firing patterns within a stationary point process framework. The
point process Φ builds up on the stationary background point process B =

∑
i∈Z δBi

which is modeled by a stationary random walk (Bi)i∈Z with independent normal dis-
tributed increments Bi+1 − Bi. The distribution of the number of spikes per beat Bi
depends on the firing mode. They are Bernoulli distributed in the non-bursty mode and
Poisson distributed in the bursty case. Finally, the spikes are placed around their birth
beats according to a normal distribution. Thus, the beats Bi of the BR are indepen-
dently copied, thinned and then shifted, resulting in the final spike process Φ. It turned
out that the GLO process Φ can be regarded as a general cluster process which in case of
the bursty firing mode can be further specified as a Cox process. The GLO model uses
only five parameters ψ = (µ, σ1, σ2, γ,m) which can be related directly to the underlying
properties of the point process Φ: The two parameters µ and σ1 describe the period and
variability of the background rhythm. The parameter m, classifies the process into a
bursty or non-bursty firing pattern. In both cases, the parameter γ denotes the expected
number of spikes per background beat. Finally, σ2 represents the variability of spikes
around their background beat (m = 0) or the width of the bursts in the bursty firing
mode (m = 1).

The assumptions are chosen to reproduce important observed characteristics of the em-
pirical data set and to have easily interpretable parameters. But because the normal
distribution is defined on R, there is always a positive probability to have negative in-
crements Bi+1 − Bi < 0 in the background rhythm. A negative increment only implies
that the corresponding beats occur in different order than they were originally generated
in the model. So, the distribution of ordered interbeat intervals differs from the normal
distribution because it takes only positive values. Therefore, the model is also able to
describe activity that is not locked to a regularly oscillating backbone process. Anyway,
the two parameters of the normal distribution are considered a simple and sufficiently
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general description in order to grasp the period and the precision of the background
random walk.

Although these assumptions make it difficult to derive the ISI distribution in the general
case, the intensity of spikes at time t can be computed conditioned on a spike at 0. In
a neuroscientific context, this is called the autocorrelation function (ACF; Gerstein and
Kiang (1960)) and is basically an intensity function for the points of the process given a
point at 0. It is similar to the autocorrelation function of time series analysis (Brockwell
and Davis, 2010), but should not be confounded with it. The autocorrelation histogram
(ACH; Moore et al. (1966); Perkel et al. (1967)) is an estimate of the ACF and often
used to classify a spike train with visual inspection criteria into regular or irregular and
bursty or non-bursty (Wilson et al., 1977; Gray et al., 1992; König, 1994; Paladini et al.,
2003). According to the ACF of a GLO process, classification rules has been stated in
terms of the model parameters which are similar to these criteria. For getting estimates
of the parameters, the ACF fm of a GLO process can be fitted to the ACH h of an
observed process. This is done with a nonlinear least squares algorithm by minimizing
the weighted residual sum of squares∑

l∈L
vl (h(l)− fm(l))2 .

For this purpose, the ACH h is smoothed with a gaussian filter to get a smoother estimate
f̂m for fm, because the variance of h is approximately given by fm. Thus, the weights vl
are given by the reciprocal of f̂m. Furthermore, a large set of starting values is used for
the fitting procedure. The precision of this procedure has been investigated for several
experimental conditions. In addition, different methods for resampling and confidence
interval construction have been tried, to represent the variability of these parameter
estimates.

Fitting procedures of ACFs are often used in neuroscientific practice (Engel et al., 1992;
König, 1994; Celada et al., 1999; Hyland et al., 2002; Paladini et al., 2003; Schneider
and Nikolic, 2006). For the GLO model, the current implementation tries to estimate
the parameters in an almost automatic way and should work well with other empirical
spike trains, although it can be improved. For example, the bin size δ should be chosen
in an automatic way and be spike train dependent or the algorithm be implemented
more efficiently. Furthermore, the choice of the analysis window L can be analyzed in
a more systematic way and optimized. While at the moment, the time needed for the
parameter estimation and simulation is important for empirical practice, this will be
negligible as computers get faster in the future. In this case, it will be preferred to start
the fitting procedure with all starting values, instead of just taking one. However, the
analyses have shown, that the current fitting procedure gives accurate and reproducible
results in most of the cases. The parameter estimates that result from such a fit indi-
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cate spike properties on a continuous scale. This allows an objective quantification of
regularity and burstiness that are usually, in an experimental context, described and
classified on the basis of visual inspection of the ACHs (Wilson et al., 1977; Paladini
et al., 2003). Thus, the present model provides a classification tool that can support
usual classification tools in an objective way (Bingmer et al., 2011; Schiemann et al.,
2012; Schiemann, 2012). In addition to the classification of a spike train into bursty or
single spike and into regular/oscillatory or irregular, this classification and parameter
estimation is associated with confidence intervals and thus, with a measure of uncer-
tainty of classification. Furthermore, the parameter σ2 can be used for firing rate kernel
estimation. Typically the bandwidth of the kernel is unknown, but by choosing a normal
distribution as the kernel, σ2 is an appropriate candidate for the bandwidth, because it
represents the random variation of a spike.

By applying the GLO to a sample data set, it has been shown that its minimal set
of assumptions can be very useful in reproducing empirically obtained spike trains and
thus, describe and quantify these processes to a large extent, in particular for dopamin-
ergic neurons (Bingmer et al., 2011; Schiemann et al., 2012; Schiemann, 2012). The
reproducible firing patterns include approximate normal ISI distributions in the single
spike case, the classical bi- or trimodal ISI distributions for the bursty mode and even
Poisson process-like patterns under high irregularity. The objective classification mir-
rors the visual inspection used in experimental contexts. Moreover, the model allows to
analyze the effect on burstiness and regularity for different experimental conditions like
pharmacological treatment or genetical manipulation.

The measure of burstiness that we propose here is, in contrast to other methods (Leg-
endy and Salcman, 1985; Gourevitch and Eggermont, 2007), not based on an algorithm
that detects the bursts. In the present approach, burst detection is not necessary be-
cause burstiness is grasped by the model parameters, which can be estimated directly
from the ACH. For example, the parameter γ directly estimates the average number
of spikes per burst and σ2 is connected with the burst width. As a consequence, the
present approach avoids several difficulties that may arise in classical burst detection al-
gorithms, including subjective variability from visual inspection, rate dependence from
fixed criteria or manual parameter adjustment. While algorithmic approaches usually
suffer from the lack of a burst definition, the proposed spike train model conceptually
provides a definition of what constitutes a burst, namely all spikes that originate in the
same background beat. But because empirically it is not observable, which spikes belong
to which unobservable background beat, direct burst detection is difficult. However, the
model offers the possibility to use surrogate data in order to develop and to validate an
algorithm that can identify the bursts.

Some properties of experimental spike trains cannot be represented with the present
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model. For example, the refractory period between successive spikes is not taken into
account, which needs to be considered in the fitting procedure by ignoring small lags
in the ACH. In addition, the present model clearly focusses on oscillatory processes by
assuming a normal distribution in the backbone random walk and small values of σ1/µ.
The model thus intends to describe either regular pacemakers or oscillatory bursters, and
the less regular a process becomes, the less precisely the parameters can be estimated.
However, the model is also able to represent higher irregularity in the backbone rhythm
by increasing σ1/µ. One should note that the present model assumes stationarity of
the firing rate and of all other parameters. Although it describes additional patterns
of rhythmic and bursting properties, these properties are assumed constant in time.
However, these assumptions can be loosened to some extent: A change of the number
of spikes per burst γ throughout the process does not affect the fitting procedure or the
estimates as long as all other parameters remain constant. In this case, the estimate of γ
still describes the mean number of spikes per backbone beat and thus, is robust against
non-stationarity.

In conclusion, the present model provides a tool for the description and quantification
of regular oscillatory activity in bursty and non-bursty processes. Because of its high
similarity to subjective procedures in experimental practice, it can provide an objective
measure for burstiness and regularity that corresponds closely to visual inspection cri-
teria. Finally, it can be helpful in the identification of changes in the parameters of the
underlying processes and thus, provide a measure to investigate functional changes in
neuronal spiking behavior in response to external conditions.
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Additional information

A.1. Bursts and regularity

Bursting was first described for slow-wave sleep and drowsiness (Livingstone and Hubel,
1981; Steriade et al., 1993), but recent data on cats and monkeys (Guido and Weyand,
1995; Edeline et al., 2000; Ramcharan et al., 2000) indicate it as a relay mode in the
awake state (Sherman, 1996). Bursts have also been observed for thalamic neurons in
awake humans under different pathological conditions (Lenz et al., 1998; Radhakrishnan
et al., 1999; Magnin et al., 2000). Although the physiological correlates of bursting
remain unclear (Izhikevich et al., 2003), it is considered as an important unit of neuronal
information (Lisman, 1997).

While a burst lacks a clear definition (Gourevitch and Eggermont, 2007), it is commonly
refered to periods during which spike frequency is relatively high, separated by periods
during which frequency is relatively low (Cocatre-Zilgien and Delcomyn, 1992). Because
of the flexible definition, there is a variety of methods to detect and measure bursts:
power spectrum analysis (Bair et al., 1994), comparison of the variance of the sum of
two interspike intervals (ISIs) and the sum of variance of ISIs (van Elburg and van Ooyen,
2004), detection of a critical interval value in the ISI distribution (Cocatre-Zilgien and
Delcomyn, 1992), a minimum number of ISIs all shorter than a given value (Harris et al.,
2001; Kepecs and Lisman, 2004; Chiappalone et al., 2005), empirical criteria (Grace and
Bunney, 1984), the Poisson surprise method (Legendy and Salcman, 1985) and the rank
surprise method (Gourevitch and Eggermont, 2007).

Spiking neurons also vary in the regularity of interspike intervals (Grigoryan et al., 2007)
which is represented by a continuum of firing patterns (Maimon and Assad, 2009). On
one side are Poisson like cells which arise most often in visual cortex, have a variance-
to-mean ratio of spike counts equal to unity (Buracas et al., 1998) and are posited as
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the fundamental unit of cortical communication (Geisler et al., 2005). At the other end
are clock like neurons that are common in the peripheral nervous system (Werner and
Mountcastle, 1965).

The regularity of a spike train is analyzed by different approaches: The coefficient of
variation (CV) of ISIs is used to characterize the temporal structure of neurons. Other
methods are the squared CV (Nawrot et al., 2008), comparison of adjacent ISIs (Holt
et al., 1996), shape parameter of ISIs modelled by a gamma distribution (Shimokawa and
Shinomoto, 2009; Maimon and Assad, 2009), the Fano factor, i.e. the variance divided by
the mean of the spike count (Buracas et al., 1998), different irregularity metrics (Davies
et al., 2006) and measures of local variations (Shinomoto et al., 2005).

A.2. The sample data set

The data set consists of 146 extracellular single-unit recordings of dopamine (DA) neu-
rons of mice in vivo and has been collected by Schiemann (2012). The measurements
were performed on anesthetized adult (10 - 16 weeks) male C57bl6 mice, a common
inbred strain of laboratory mice, we denote as wildtype (WT). Furthermore, gene ma-
nipulated ATP sensitive potassium (K-ATP) channel knockout (KO) mice were used
for in vivo recordings. These general KO-mice lack the pore-forming Kir6.2 subunit
of K-ATP channels. The regions of interest in the brain are the substantia nigra pars
compacta (SN) and the ventral tegmental area (VTA) which are both located in the
midbrain, have a high density of DA neurons and which, together with their projections
to multiple brain areas, compose the dopaminergic system.

For most neurons, the spontaneous activity (spon.) has been recorded. For some cells a
dopamine D2-receptor antagonist (eticlopride) was injected during recording to obtain
measurements of basal activity (pre) and after pharmacological D2-receptor inhibition
(post). Furthermore, for silencing of K-ATP channel function selectively in SN DA
neurons, a viral approach was chosen (virus). rAAV2-mediated (recombinant adeno-
associated virus, serotype 2) gene transfer was established for dopamine cell-selective
expression of dominant-negative (DN) pore-mutant Kir6.2 subunits. Electrophysiological
single-unit activity of these virally transduced DA neurons were also recorded in vivo,
whereas cells expressing native Kir6.2 subunits (WT) were used as control.

Table A.1 shows a summary of experimental conditions, the number of cells, the range
of the recording time and the mean and standard deviation of the number of spikes.
Figure A.1 shows the variation of the firing rates for different regions and conditions.

134



Appendix A. Additional information

Region Type Condition #Cells recording time #Spikes (mean ± SD)
SN WT spon. 32 540s - 900s 3016 ± 1294
SN KO spon. 40 480s - 900s 3158 ± 1178
VTA WT spon. 14 600s - 900s 3671 ± 1844
VTA KO spon. 18 660s - 720s 2318 ± 1545
SN WT virus 14 600s - 780s 2941 ± 905
SN DN virus 16 720s - 780s 3423 ± 1465
SN WT pre 6 720s - 840s 2475 ± 596
SN WT post 6 1036s - 1260s 5279 ± 1634

Table A.1: Summary of the empirical data set of Schiemann (2012). The spike trains
are recorded in the substantia nigra (SN) or ventral tegmental area (VTA) for wildtype
(WT), K-ATP channel knockout (KO) mice or dominant-negative (DN) pore-mutant
Kir6.2 subunits. For most cells only the spontaneous activity (spon.) has been recorded.
For some cells measurements of basal activity (pre) and after injection of a D2-receptor
antagonist (post) are available and some cells got a viral transduction (virus).
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Figure A.1: Empirical firing rates for different brain regions and experimental condi-
tions (see table A.1). Most of the spike trains have a firing rate approximately constant.
Every spike train is divided in ten parts and for every part the mean firing rate is es-
timated. Then, for all spike trains the variability of the firing rate is computed and all
spike trains having a variability larger than the 20%-quantile are shown in red.
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A.3. R Code

The current section contains a collection of R Code which has been developed for the un-
derlying study. This allows a reproduction of the results in this thesis. The background
details of these R functions are discussed in the connected chapters. The computations
have been performed on R version 2.13.1. For a general introduction to R, there are the
books of Chambers (2008) and Kabacoff (2010). Ritz and Streibig (2008) gives details
about nonlinear regression with R and Robert and Casella (2010) about Monte Carlo
methods.

SIM <- function (psi ,T,K=1000 , eps =1*10^( -6)){

mu <- psi [1]
s1 <- psi [2]
s2 <- psi [3]

gam <- psi [4]
m <- psi [5]

q <- qnorm (eps)
k <- 0
B <- -K*mu

K2 <- max(c(T-q*s2 , T+s1^2/(2*mu)*log(eps )))

t0 <- rep(NA ,10^7)

while (B < K2) {
if (m==0) {N <- rbinom (1,1, gam )}

else {N <- rpois (1, gam )}
if (N >0) {

Z <- rnorm(N,0,s2)
for (i in 1:N) {t0[k+i] <- B+Z[i]}; k <- k+N}

B <- B+rnorm (1,mu ,s1)
}

t0 <- na.omit(t0)

return (sort(t0[t0 >=0 & t0 <=T]))
}

Listing A.1: INPUT: GLO parameters ψ = (µ, σ1, σ2, γ,m) and recording time T .
OUTPUT: Spike train S = (t1, . . . , tn). REMARKS: For details see Algorithm 1 on
page 41 in Section 2.3.1.
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GLO <- function (psi ,T,K1 =1000 , eps =1*10^( -6)){
mu <- psi [1]; s1 <- psi [2]; s2 <- psi [3]

gam <- psi [4]; m <- psi [5]; q <- qnorm (eps)

K2 <- max(c(T-q*s2 , T+s1^2/(2*mu)*log(eps )))
K <- K2 + K1*mu; k <- (2*K*mu+(q*s1 )^2)/(2*mu ^2)
k <- ceiling (k+sqrt ((q*s1 )^2*(4*K+(q*s1 )^2))/(2*mu))

B <- cumsum (rnorm (k,mu ,s1))-K1*mu
B <- B[B >= q*s2 & B <= T -q*s2]
N <- length (B)

if (m==0){ P <- rbinom (N,1, gam)
B <- B[P > 0]}

else { P <- rpois(N,gam ); P0 <- P > 0
B <- rep(B[P0],P[P0 ])}

B <- sort(B + rnorm ( length (B),0,s2))
return (B[B >= 0 & B <= T ])}

Listing A.2: INPUT: GLO parameters ψ = (µ, σ1, σ2, γ,m) and recording time T .
OUTPUT: Spike train S = (t1, . . . , tn). REMARKS: More efficient than listing A.1 by
using vector-valued programming (see Section 2.3.2).

ACF <- function (psi ,L,eps =10^( -300) ,B =100){
R <- c(0, max(L))
K <- rep(NA ,2)

for (i in 1:2) {
u <- ceiling (R[i]/psi [1]); k <- u:(u+B*( -1)^i)
b <-dnorm(R,k*psi [1], sqrt(abs(k)*psi [2]^2+2 *psi [3]^2))
if (all(b>= eps )) { K[i] <- k[ length (k)]}

else {K[i] <- k[which (b<eps )[1]]}
}

K <- K[1]:K[2]; if (psi [5]==0) {K <- K[K!=0]}
sdK <- sqrt(abs(K)*psi [2]^2 + 2*psi [3]^2)
fkt <- function (x){ sum(dnorm (x,mean=K*psi [1], sd=sdK ))}
tmp <- apply(as. matrix (L),1,fkt)*psi [4]
return (tmp )}

Listing A.3: INPUT: Parameters ψ = (µ, σ1, σ2, γ,m) and set of lags L. OUTPUT:
Values fm(l) for all l ∈ L. REMARKS: For theoretical details see Section 4.1.
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ACH <- function (x,L=1:1500 , norm=TRUE ,plot=TRUE ){
minD <- 0; k <- 1; n <- length (x); T0 <- max(x)
delta <- L[2]-L[1]; K <- length (L)
L0 <- c(L-delta /2,L[ length (L)]+ delta /2)
l_b <- min(L0); l_e <- max(L0)
anz <- rep (0, length (L))

while (minD <= l_e & k < n){
D <- diff(x,lag=k)
minD <- min(D)
D <- D[D >= l_b & D <= l_e]
anz <- anz + hist(D, breaks =L0 ,plot=FALSE)$ counts
k <- k+1}

if (norm) {
Kl <- round ((l_b-delta/2)/ delta)
y <- (n*delta *(T0 -(Kl:(Kl+K -1))*delta -delta/2))
anz <- anz*T0/y}

if (plot) {plot(L,anz ,type="l")}
return (anz)

}

Listing A.4: INPUT: Spike train S = (t1, t2, . . . , tn) and set of lags L. OUTPUT:
ACH values h(l) for all l ∈ L. REMARKS: See Section 4.2 for details.

Awindow <- function (x,delta =10) {
isi <- diff(x); cv <- sd(isi)/mean(isi)
d <- density (isi)
lb1 <- min(c( quantile (isi ,0.05) ,100))
lb2 <- d$x[which .max(d$y)]
lb3 <- lb1 +(cv -0.4)/0.8 *(lb2 -lb1)
if (cv <=0.4) { lb <-lb1 }
if (cv >1.2) { lb <-lb2 }
if (cv >0.4 & cv <=1.2) { lb <-lb3 }
l_e0 <- min(c(6000 , quantile (isi ,0.9)) *5)
le <- lb + floor ((l_e0 -lb)/delta)* delta
L <- seq(lb+delta /2,le -delta /2,delta)
return (L)

}

Listing A.5: INUT: Spike train S = (t1, t2, . . . , tn) and bin size δ. OUTPUT: Analysis
window L. REMARKS: Compare Section 5.1.1.
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Weights <- function (achy) {
V <- filter (achy , filter =dnorm ( -3:3))

V[c(1:3 ,( length (achy ) -2): length (achy ))] <-
c(achy [1:3] , achy [( length (achy ) -2): length (achy )])

V[V==0] <- min(V[V!=0])
V <- as. vector (1/V)

return (V)
}

Listing A.6: INPUT: ACH values h(l). OUTPUT: The weights vl for weighted non-
linear regression. REMARKS: See Section 5.1.3 for details.

spektral <- function (x) {
maxT <- 2^ floor (log2( ceiling (max(x))))
x0 <- x[x<= maxT]
h <- hist(x0 , breaks =0: maxT ,plot=FALSE)

ss <- spectrum (h$counts ,plot=FALSE)
frec <- ss$freq
auswahl <- 1/frec >200 & 1/frec <3000

mu <- 1/ss$freq[ auswahl ][ which .max(ss$spec[ auswahl ])]

return (mu)
}

Listing A.7: INPUT: Spike train S = (t1, t2, . . . , tn). OUTPUT: The starting value
µ̃1 for the bursty case. REMARKS: See Section 5.1.4 for details.

GA <- function (gam) {
gam <- abs(gam)
y <- trunc(gam)

if (y%% 2==0) { return (gam -y)}
else { return (1-(gam -y))}

}

Listing A.8: INPUT: Parameter γ. OUTPUT: Transformed γ. REMARKS: Ensures
that γ is between 0 and 1 in the non-bursty case.

139



Appendix A. Additional information

Svalues <- function (x) {
isi <- diff(x)
cv <- sd(isi)/mean(isi)
d <- density (isi)
lam0 <- mean(ACH(x,L =5000:6000 , plot=FALSE ))

if (cv <=0.4) {
mu00 <- max(c(d$x[which .max(d$y)] ,90))
ga00 <- mu00 * lam0
s22 <- s11 <- c(c(1 ,3)/100, seq (5 ,30 ,5)/100 ,1)
mat <- as. matrix ( expand .grid(s11 ,s22 ))*mu00
n <- dim(mat )[1]
sv <- cbind(rep(mu00 ,n),mat ,rep(ga00 ,n),rep (0,n))}

if (cv >1.2) {
mu00 <- spektral (x)
ga00 <- mu00 * lam0
s22 <- s11 <-c(1/100, seq (5 ,35 ,5)/100, seq (40 ,75 ,5)/100 ,1)
mat <- as. matrix ( expand .grid(s11 ,s22 ))*mu00
n <- dim(mat )[1]
sv <- cbind(rep(mu00 ,n),mat ,rep(ga00 ,n),rep (1,n))}

if (cv >0.4 & cv <=1.2) {
mu00 <- max(c(d$x[which .max(d$y)] ,90))
ga00 <- mu00 * lam0
s22 <- s11 <-c(1/100, seq (4 ,22 ,3)/100, seq (25 ,75 ,5)/100 ,1)
mat <- as. matrix ( expand .grid(s11 ,s22 ))
n <- dim(mat )[1]
sv1 <- cbind(rep(mu00 ,n),mat*mu00 ,rep(ga00 ,n),rep (0,n))

mu00 <- spektral (x)
ga00 <- mu00 * lam0
sv2 <- cbind(rep(mu00 ,n),mat*mu00 ,rep(ga00 ,n),rep (1,n))
sv3 <- cbind(rep(mu00 ,n),mat*mu00 ,rep(ga00 ,n),rep (0,n))
sv <- rbind(sv1 ,sv2 ,sv3 )}
return (sv)

}

Listing A.9: INPUT: Spike train S = (t1, t2, . . . , tn). OUTPUT: Starting values for
weighted nonlinear regression. REMARKS: See description in Section 5.1.4.
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estimation <- function (x,delta =10) {
L <- Awindow (x,delta=delta)
achy <- ACH(x,L=L)
V <- Weights (achy)
sv <- Svalues (x)

aus <- function (x) { return (sum (( ACF(x,L=L)-achy )^2))}
i0 <- which.min( apply (sv ,1, aus )); sv <-as. numeric (sv[i0 ,])

nl0 <- try(nls(achy~ACF(c(mu ,s1 ,s2 ,gam ,sv [5]) ,L=L),
start =list(mu=sv[1],s1=sv[2],s2=sv[3], gam=sv [4]) ,
weights =V, control =list( minFactor =1/2048/2,
warnOnly =TRUE )), TRUE)

if ( class (nl0 )=="try -error")
{list( parameter =rep(NA ,5), nls=NA)} else
{para <- c(abs( coefficients (nl0 )),m=sv [5])

if (sv [5]==0) {para [4] <-GA(para [4])}
list( parameter =para ,nls=nl0 )}

}

Listing A.10: INPUT: Spike train S = (t1, t2, . . . , tn) and bin size δ. OUTPUT:
The estimated GLO parameters ψ̂ and details of the nonlinear regression procedure.
REMARKS: Compare Section 5.1.

boot1 <- function (para ,b=1000 , T0 =600000) {
mat <- matrix (NA ,b,5, dimnames =list(

c(),c("mu","s1","s2","gam","m")))

if (all(!is.na(para ))) {
for (j in 1:b){

spike <- GLO(para ,T=T0)
mat[j,] <- estimation (spike ,delta =10)$ parameter }

}
return (mat)

}

Listing A.11: INPUT: Parameter vector ψ = (µ, σ1, σ2, γ,m), number of simulations
b and recording time T . OUTPUT: Estimated parameters ψ̂i, i = 1, . . . , b. REMARKS:
Parametric bootstrap and GLO parameter estimation as described in Section 6.1.4.
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boot2 <- function (x,b=1000 ,r=15,T0 =600000 , delta =10) {
t0 <- T0/r

mat <- matrix (NA ,b,5, dimnames =list(
c(),c("mu","s1","s2","gam","m")))

for (j in 1:b) {
U <- runif(r,0,T0 -t0)
spike <- rep(NA , length (x)*10)
k <- 0
for (i in 1:r) {

auswahl <- x>=U[i] & x <= U[i]+ t0
if (any( auswahl )) {

y <- x[ auswahl ] - U[i]
ni <- length (y)
spike [(k+1):(k+ni)] <- y+t0*(i -1)
k <- k+ni}
}

spike <- as. vector (na.omit(spike ))
mat[j,] <- estimation (spike ,delta=delta)$ parameter }
return (mat )}

Listing A.12: INPUT: Spike train S = (t1, t2, . . . , tn), number of simulations b, num-
ber of blocks r, recording time T and bin size δ. OUTPUT: Estimated parameters ψ̂i,
i = 1, . . . , b. REMARKS: Moving blocks bootstrap of spike trains and GLO parameter
estimation as described in Section 6.1.3.

mark <- function (x,delta =10) {
br1 <- Awindow (x,delta=delta)
br1 <- c(br1 -delta /2,max(br1 )+ delta /2)

count <- function (i) {
y <- x-x[i]
y <- y[y>= min(br1) & y<= max(br1 )]
tmp <- hist(y, breaks =br1 ,plot=F)$ counts
return (tmp )}

return ( sapply (1: length (x), count ))
}

Listing A.13: INPUT: Spike train S and bin size δ. OUTPUT: Marks hi(l). RE-
MARKS: Construction of the marked point process as described in Section 6.1.4.
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boot3 <-function (x,b=2000 , delta =10,r=20,T0=max(x)){

mat <- matrix (NA ,b,5, dimnames =list(
c(),c("mu","s1","s2","gam","m")))

MARK <- mark(x,delta=delta)
L <- Awindow (x,delta=delta)
sv <- Svalues (x)

for (j in 1:b){
U <- runif(r,0,T0 -T0/r)
index <- unlist ( apply (t(U),2,

function (y){ which (y<x&y+T0/r>x)}))
COUNT <- MARK[,index ]
achy <- apply(COUNT ,1, sum)/dim(COUNT )[2]/delta
aus <- function (x){ return (sum (( ACF(x,L=L)-achy )^2))}
i0 <- which.min( apply (sv ,1, aus ))
V <- Weights (achy)

nl0 <- try(nls(achy~ACF(c(mu ,s1 ,s2 ,gam ,sv[i0 ,5]) ,L=L),
start =list(mu=sv[i0 ,1],s1=sv[i0 ,2],
s2=sv[i0 ,3], gam=sv[i0 ,4]) , weights =V,
control =list( minFactor =1/2048/2, warnOnly =TRUE ,
maxiter =100)) , TRUE)

if (class (nl0 )=="try -error") {mat[j,] <- rep(NA ,5)}
else {

para <- c(abs( coefficients (nl0 )),m=sv[i0 ,5])
if (sv[i0 ,5]==0) {para [4] <- GA(para [4])}
mat[j,] <- para}

}

return (mat)
}

Listing A.14: INPUT: Spike train S = (t1, t2, . . . , tn), number of simulations b, bin
size δ, number of blocks r and recording time T . OUTPUT: Estimated parameters ψ̂i,
i = 1, . . . , b. REMARKS: Bootstrap of spike train and GLO parameter estimation as
described in Section 6.1.4.
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German Summary

Diese Arbeit schlägt ein stochastisches Modell zur Quantifizierung und Klassifikation von
Feuermustern in Spike Trains einzelner dopaminerger Neuronen vor. Kapitel 1 gibt eine
kurze Einführung in die Motivation der Arbeit und der Spike Train Analyse. Ein ’Spike’
ist die elektrische Entladung eines Neurons und die Basis der Informationsverarbeitung
im Gehirn. Die mathematische Beschreibung der Spikes konzentriert sich in der Regel
auf die Zeitpunkte 0 ≤ t1 < t2 < . . . < tn ≤ T zu denen die Spikes im betrachteten
Zeitinterval [0, T ], T ∈ (0,∞), auftauchen. Ein ’Spike Train’ S = (t1, t2, . . . , tn) ist die
endliche Folge der Spike Zeitpunkte und wird mit der Punktkonfiguration

ϕ =
∑
i

δti (0.1)

identifiziert, wobei δti das Dirac Maß ist. Der Zufall wird dadurch eingeführt, dass man
die Zeitpunkte ti als R-wertige Zufallsvariablen Ti auffasst. In diesem Fall wird ein Spike
Train als zufälliger Punktprozess

Φ =
∑
i

δTi (0.2)

modelliert. Übliche Spike Train Modelle sind pseudo-Markov Modelle (Ekholm und
Hyvärinen, 1970), Poisson Prozesse (Abeles, 1982), hidden Markov Modelle (Camproux
et al., 1996) und Gamma Prozesse (Barbieri et al., 2001; Shimokawa und Shinomoto,
2009).

Diese Modelle werden in der Spike Train Analyse (Johnson, 1996; Awiszus, 1997; Gab-
biani und Koch, 1998; Brown et al., 2004) für die Suche nach Mustern in Spike Trains
genutzt, die die neuronale Funktionsweise im Gehirn reflektieren. Diese Feuermuster (vgl.
Abbildung 0.2) sind unter anderem sehr regelmäßig (A), können aber auch Cluster von
Spikes (sogenannte Bursts) beinhalten (B & C) oder sehr unregelmäßig sein (D). Dabei
wird die Regelmäßigkeit als oszillatorische Aktivität verstanden und kann auch in Kom-
bination mit Bursts auftreten (B). Beide Konzepte (Bursts und Regelmäßigkeit) haben
jedoch keine eindeutige Definition in der Literatur (Gourevitch und Eggermont, 2007)
und repräsentieren ein Kontinuum von Feuermustern (Maimon und Assad, 2009).
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Abbildung 0.2: Typische Spike Train Feuermuster. Jeder Strich repräsentiert einen
Spike Zeitpunkt.

Bursts werden oft als Antwort zu verhaltensrelevanten Stimuli abgegeben, wie z.B. ei-
ne unerwartete Belohnung oder ein neuer Reiz (Schultz, 2007; Bromberg-Martin et al.,
2010), können aber auch spontan auftreten. Die oszillatorische Aktivität wurde als re-
levant für die komplexe Informationsverarbeitung im visuellen Kortex entdeckt, wozu
z.B. Bindungsprozesse oder Objektunterscheidung (Gray und Singer, 1989; Engel et al.,
1991) gehören. Deswegen ist es im Bereich der Neurophysiologie von Interesse die Feuer-
muster unter verschiedenen experimentellen Bedingungen zu untersuchen und zu klassi-
fizieren. Dazu gehören pharmazeutische Behandlungen (Bingmer et al., 2011; Schiemann
et al., 2012), genetische Veränderungen (Schiemann, 2012), Stimulation (Gray und Sin-
ger, 1989; Berger et al., 1990; König et al., 1995) sowie die Betrachtung verschiedener
Hirnregionen (Shinomoto et al., 2009). Dabei gibt es die folgenden wichtigen Fragen: Wie
unterscheiden sich die Feuermuster in diesen Fällen? Werden Sie regelmäßiger oder unre-
gelmäßiger? Gibt es längere Bursts und sind mehr Spikes in einem Burst enthalten? Sind
potenzielle Unterschiede statistisch signifikant? Wie kann man die Feuermuster objektiv
und reproduzierbar klassifizieren? Oftmals werden visuelle Kriterien zur Klassifikation
benutzt, die keine reproduzierbaren Ergebnisse liefern. Außerdem werden deskriptive
Statistiken zum Quantifizieren der Spike Trains verwendet, ohne sie auf die Eigenschaf-
ten des darunterliegenden Prozesses zu beziehen.

Deswegen wird nach einer kurzen Einführung der wichtigsten Punktprozess Begriffe in
Kapitel 1.2, welches hauptsächlich an dem Buch von Daley und Vere-Jones (1988) an-
gelehnt ist, das Spike Train Modell in Kapitel 2.1 vorgestellt. Das Modell wurde auf
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Basis empirischer Beobachtungen in dopaminergen Neuronen und in Zusammenarbeit
mit Neurophysiologen entwickelt und wird ’Gaussian Locking to a free Oscillator’ (GLO)
genannt. Es ist verwandt mit dem ELO (Schneider, 2008), welches für ’Exponential
Locking to a free Oscillator’ steht und zur Modellierung von Phasenverschiebungen bei
parallel aufgenommen Neuronen verwendet wird.

Das GLO ist doppelt stochastisch und benutzt als ersten Schritt einen oszillatorischen
Hintergrundrhythmus B der als stationäre Irrfahrt (Bi)i∈Z mit einer Zuwachsverteilung
N (µ, σ2

1) repräsentiert wird. Es werden zwei Teilmodelle eingeführt die nicht burstiges
(m = 0) und burstiges (m = 1) Feuerverhalten beschreiben. Dabei ist m ein Modellpara-
meter der konstant über die Zeit ist. In Abhängigkeit des Feuermodus m wird für jeden
Punkt Bi eine zufällige Anzahl Pi von Spikes ausgewürfelt. Für beide Teilmodelle ist die
mittlere Anzahl der Spikes pro Erzeugerpunkt Bi durch den Parameter γ gegeben, jedoch
wird fürm = 0 die Bernoulli-Verteilung und fürm = 1 die Poisson-Verteilung verwendet.
Im zweiten Schritt werden die zufälligen Spike Zeitpunkte um ihren Erzeugerpunkt Bi
mit einer zentrierten Normalverteilung mit Varianz σ2

2 verteilt. Diese so erzeugten Spike
Zeitpunkte repräsentieren den beobachteten Punktprozess Φ (vgl. dazu Abbildung 0.3),
welcher von den fünf leicht zu interpretierenden Parametern µ, σ1, σ2, γ,m abhängt. Wir
schreiben Φ ∼ GLO(µ, σ1, σ2, γ,m).

Diese Parameter beschreiben die Regelmäßigkeit und das Burstverhalten der Feuermus-
ter. Der Hintergrundrhythmus (Bi)i∈Z hat eine oszillatorische Aktivität mit Periode µ
und Varianz σ2

1. Der Parameter µ ist somit ein Skalenparameter und eine Änderung von
σ1 hat einen direkten Einfluss auf die Regelmäßigkeit des Prozesses. Der Feuermodus m
besagt, ob der Prozess Bursts enthält (m = 1) oder nicht (m = 0). Der Parameter γ
bezeichnet die erwartete Anzahl an Spikes an jedem Punkt Bi des Hintergrundrhythmus
und ist somit mit dem Burstverhalten verbunden. Im Falle vonm = 1 repräsentiert σ2 die
Burstbreite und für m = 0 wird es benutzt um die Korrelationen zwischen benachbarten
Spike Wartezeiten zu beschreiben.

Um das GLO Modell besser zu verstehen, befasst sich Kapitel 2.2 mit einigen mathe-
matischen Eigenschaften. Der den Hintergrundrhythmus beschreibende Punktprozess
B =

∑
i∈Z δBi ist einfach (Lemma 2.2), stationär (Lemma 2.3) und ergodisch (Satz 2.5).

Diese Eigenschaften übertragen sich auf den GLO Prozess Φ (Satz 2.16, Satz 2.17 und
Korollar 2.23). Des Weiteren hat Φ eine mittlere Intensität von γ/µ (Satz 2.18) und
repräsentiert einen Cluster Prozess (Lemma 2.21). Im Falle von m = 1 kann Φ als ein
Cox Prozess mit zufälliger Intensität

ρB(t) = γ
∑
j∈Z

ϕ{Bj ,σ2
2}

(t) (0.3)
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(BR)
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Abbildung 0.3: Konstruktion des GLO Punktprozesses Φ (rot).

und zufälligem Intensitätsmaß

Λ(A) =
∫
A

ρB(t)dt, A ∈ B (0.4)

aufgefasst werden (Satz 2.25), wobei ϕ{Bj ,σ2
2}

die Dichte der Normalverteilung mit Mit-
telwert Bj und Varianz σ2

2 darstellt und B die Borel σ-algebra auf R ist. Ausgehend
von Satz 9.4.II. aus Daley und Vere-Jones (1988), welches auf einem Ergebnis von Stone
(1968) und Dobrushin (1956) über die Konvergenz eines Punktprozesses nach wiederhol-
ter unabhängiger Translation der Punkte beruht, ergibt sich der folgende Satz.

Satz 0.1: Sei Φ ∼ GLO(µ, σ1, σ2, γ,m). Für σ2 →∞ konvergiert Φ schwach gegen einen
Poisson Prozess mit Rate γ/µ.

Die Interspike Intervalle (ISI) genannten Wartezeiten zwischen den einzelnen Spike Zeit-
punkten werden in Kapitel 3 ausführlich untersucht. Die ISIs j-ter Ordnung (j ∈ N)
sind definiert als W [j]

k := Tk+j − Tk, k ∈ Z, wobei die reellwertigen Zufallsvariablen
. . . < T−1 < T0 < 0 ≤ T1 < T2 < . . . die zufälligen Spike Zeitpunkte des Punktprozesses
Φ repräsentieren. Um die ISI Verteilung zu approximieren, werden ’beat-sortierte’ Spike
Zeitpunkte {T̃k : k ∈ Z} eingeführt (siehe Definition 3.3). Diese sind nicht mehr anhand
ihrer Reihenfolge auf der reellen Achse nummeriert, sondern anhand der Reihenfolge
ihres Auftauchens im Hintergrundrhythmus (Bi)i∈Z. Die zugehörigen Intervalle sind ge-
geben als W̃ [j]

k := T̃k+j − T̃k und können im Gegensatz zu den ISIs auch negative Werte
annehmen. Im Falle von σ1 � µ und σ2 � µ, lässt sich die Verteilung von Wi durch die
von W̃i approximieren und die dazugehörigen Dichten bestimmen (Satz 3.15 für den Fall
m = 0 und Satz 3.20 für m = 1). Dabei wird im burstigen Fall auf Ordnungsstatistiken
(David, 1970) zurückgegriffen.
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Ursprünglich erhoffte man sich über die ISI Verteilung die Parameter des GLO Modells
zu schätzen. Da dies aber im Allgemeinen nicht ohne Weiteres möglich ist, wird auf die
in Kapitel 4 vorgestellten Autokorrelogramme zurückgegriffen. Dazu gehört die autocor-
relation function (ACF; Gerstein und Kiang, 1960) und das autocorrelation histogram
(ACH; Moore et al., 1966; Perkel et al., 1967). Für die Klassifikation der Feuermuster
wird üblicherweise die Form des ACH benutzt. Um dieses zu definieren, hat man eine
Partition L := {L1, . . . , LK} eines Analysebereichs (lb, le], 0 < lb < le < ∞, bestehend
aus K ∈ N disjunkten benachbarten Intervallen Lk := (ak, ak + δ] mit Länge δ und die
Menge der Intervallmittelwerte L := {l1, . . . , lK}. Dann ist das ACH zum Wert lk ∈ L
definiert als

h̃(lk) = h̃L(lk) := # {(ti, tj) | tj − ti ∈ Lk, i, j ∈ {1, 2, . . . , n}} , ∀lk ∈ L (0.5)

und zählt somit die Anzahl der Spike Paare die eine Differenz haben, die im Intervall Lk
liegt. Das empirische ACH wird normiert (Cox, 1965) um als Schätzer für die ACF zu
dienen. Diese bedingt auf einen Spike zur Zeit 0 und bestimmt die Intensität der Spikes
l Zeiteinheiten später:

f(l) := lim
δ1,δ2→0+

E[Φ(l, l + δ1) | Φ(−δ2, 0] > 0]
δ1

. (0.6)

Da im GLO Fall die Differenzen zwischen den Spike Zeitpunkten Tj und ihren Erzeuger-
punkten Bi normalverteilt sind, genauso wie die Intervalle zwischen den Erzeugerpunk-
ten, lässt sich das ACF leicht bestimmen.

Satz 0.2: Sei Ψ ∼ GLO(ψ), dann ist die ACF für l > 0 gegeben als

fm(l) = γ
∑

j∈K(m)
ϕ{jµ,|j|σ2

1+2σ2
2}

(l), wobei K(m) :=
{
Z∗ ,m = 0
Z ,m = 1.

(0.7)

Der Aufbau der ACF für m = 0 ist in Abbildung 0.4 A angedeutet.

Experimentelle Klassifikation benutzt visuelle Inspektion des ACH oder versucht plau-
sible Funktionen daran anzupassen (Engel et al., 1992; König, 1994; Celada et al., 1999;
Hyland et al., 2002; Paladini et al., 2003; Schneider und Nikolic, 2006). Anhand der
GLO ACF können aber objektive Kriterien für die Klassifikation angegeben werden, die
inspiriert von der visuellen Klassifikation (Wilson et al., 1977; Paladini et al., 2003) und
reproduzierbar sind (vgl. dazu Kapitel 4.3). Zu diesen Kriterien gehören die Parameter-
kombinationen µ/σ2 und µ/

√
σ2

1 + 2σ2
2, welche die ersten zwei lokalen Maxima der ACF

in Relation zur durchschnittlichen Intensität γ/µ darstellen (vgl. Abbildung 0.4 B).
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Abbildung 0.4: Zusammensetzung der ACF (A) sowie Parameterkombinationen für die
Klassifikation der Feuermuster (B).

Kapitel 5 beschreibt die Parameterschätzung des GLO Modells. Die Parameter werden
mittels Anpassung der ACF fm an das empirische normierte ACH h geschätzt. Dabei
werden die gewichteten quadratischen Abweichungen∑

l∈L
vl (h(l)− fm(l))2 (0.8)

mit einem nichtlinearen Kleinste Quadrate Algorithmus (Gauss-Newton) minimiert. Die
Wahl des Analysefensters L, der Gewichte vl sowie der Startwerte der Prozedur ist von
Bedeutung und wird im Kapitel 5.1 ausführlich beschrieben. Diese Vorgehensweise liefert
Schätzer µ̂, σ̂1, σ̂2, γ̂, m̂.

Die Genauigkeit der Prozedur wird in Kapitel 5.2 für unterschiedliche Szenarien unter-
sucht und es stellt sich heraus, dass die Güte der Parameterschätzung von verschiedenen
Faktoren abhängt. Dazu gehört die Anzahl der Spikes n im Beobachtungsintervall [0, T ],
die Parameter des GLO Modells sowie die Bin Größe δ, welche die Auflösung des Analyse
Fensters L vorgibt. Je mehr Spikes (oder je länger das Intervall [0, T ]) desto besser die
Schätzung. Dabei hängt die Wahl der Bin Größe δ auch von n ab. Je größer n desto klei-
ner kann δ gewählt werden. Des Weiteren lassen sich die Parameter von GLO Prozessen
mit oszillatorischem Verhalten (σ1 � µ und σ2 � µ) besser schätzen als solche die diese
Eigenschaft nicht aufweisen.

Kapitel 6 beschäftigt sich mit der Schätzung der Variabilität der Parameterschätzer. Da-
zu werden verschiedene Bootstrap Verfahren (Efron and Tibshirani, 1994) zum Resam-
plen der Spike Trains vorgestellt und mittels Monte-Carlo Simulation untersucht. Das
Kapitel endet mit einer Betrachtung verschiedener Bootstrap Konfidenzintervalle.

In Kapitel 7 wird das GLO Modell auf den Datensatz angewendet anhand dessen es ent-
wickelt wurde. Der Datensatz besteht aus 146 Spike Trains von dopaminergen Neuronen
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aus der Substantia Nigra von Mäusen. Es stellt sich heraus, dass die Klassifikation der
Feuermuster durch das GLO in ca. 75% der Fälle mit der Klassifikation durch visuelle
Kriterien übereinstimmt und nur in ca. 2% der Fälle gegensätzlich war. Das GLO Modell
scheint also gut verträglich mit den visuellen Verfahren. Darüber hinaus bietet es die
Möglichkeit die Variabilität der Klassifikation zu visualisieren. Das Quantifizieren und
Vergleichen der Feuermuster auf der Basis des GLO Modells wird anhand eines kleinen
Teildatensatzes exemplarisch durchgeführt. Die Daten wurden aus 6 Mäusen erhoben,
deren Gehirnaktivität vor und nach der Injektion eines Dopamin Rezeptor Blockers ge-
messen wurde. Nach der Injektion gab es signifikante Unterschiede in den Feuermustern
der Zelle. Dies spiegelte sich insbesondere in der Erhöhung der Feuerrate, sowie in einer
größeren Anzahl von Spikes pro Burst und einer größeren Burstbreite wider.

Im Kapitel 8 endet die Arbeit mit einer kurzen Zusammenfassung und einem Fazit. Das
GLO gibt dem Anwender objektive und reproduzierbare Klassifikationskriterien und
unterstützt ihn beim Quantifizieren von experimentell gewonnen Spike Trains.

Im Anhang werden zusätzliche Informationen und Literatur zum neurophysiologischen
Hintergrund, eine kurze Beschreibung des Datensatzes sowie der verwendete R Code zur
Verfügung gestellt.

Veröffentlichte Inhalte: Einige Abschnitte und Ergebnisse dieser Arbeit sind im Ar-
tikel von Bingmer et al. (2011) veröffentlicht. Die Daten sind bei Schiemann (2012)
ausführlich beschrieben und zusätzlich unter Verwendung des GLO in Schiemann et al.
(2012) veröffentlicht.
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