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Zusammenfassung

Neurone sind elementare Bausteine des Gehirns, welche über Synapsen kommunizieren

und auf diese Weise ein kompliziertes Netzwerk bilden. Informationen werden über Ak-

tionspotentiale (Spikes) ausgetauscht, welches Alles-Oder-Nichts-Reaktionen sind und

somit ununterscheidbar abgesehen von dem Zeitpunkt ihres Auftretens. Hat man eine

Sequenz von Aktionspotentialen, Spike train genannt, so kann man jeden Spike als

Punkt auf der Zeitachse betrachten und somit den Spike train als Realisierung eines

Punkt Prozesses.

Der Analyse von Spike trains liegen oft Stationaritätsannahmen zugrunde, was be-

deutet, dass die Parameter des Punkt Prozesses als konstant über die Zeit angenom-

men werden. Dabei bezieht sich diese Annahme meistens auf die Feuerrate, also auf die

Frequenz mit der die Spikes auftreten. Die Analysen werden dadurch vereinfacht, was

allerdings zu falschen Ergebnissen bzw. Interpretationen führen kann. Zum Beispiel

kann Nichtstationarität manchmal der einzige Grund für Korrelationen zwischen Spike

trains sein (Brody, 1999).

Für die Prüfung der Stationaritätsannahme existieren heute zwar verschiedene Tech-

niken, jedoch finden diese Tests noch wenig Anwendung in der Praxis, was zum Teil auf

ihre praxisuntauglichkeit und geringe Testmacht zurück zu führen ist (Gourevitch and

Eggermont, 2007). Das Ziel dieser Arbeit ist es, konkrete Zeitpunkte der Ratenwechsel

zu identifizieren. Dies würde es ermöglichen, den Spike train in Teile zu separieren,

wo Stationarität der Feuerrate angenommen werden kann. Für die Analyse werden

folgende Annahmen getroffen:

1. ein Spike train kann als Poisson Prozess mit Parameter λ(t) beschrieben werden

2. die Intensität λ(t) (Feuerrate) kann durch eine Treppenfunktion approximiert

werden

Im Rahmen dieser Arbeit konnte eine Methode entwickelt werden, welche es ermöglicht,

unter den oben getroffenen Annahmen Ratenveränderungen zu lokalisieren. Diese Meth-

ode, Stufen-Filter-Test (SF-Test) genannt, wird im ersten Teil der Arbeit vorgestellt

und soll hier nachfolgend zusammen gefasst werden. Um ein vollständiges Bild der

Forschungsarbeit zu geben, werden im zweiten Teil der Arbeit die Ansätze präsentiert,

die dem SF-Test vorangegangen sind, allerdings das Ziel der Detektierung konkreter

Ratenwechsel verfehlt haben. Diese Verfahren liefern interessante Illustrationen des

Verlaufs der Intensität und ermöglichen subjektive Aussagen im Bezug auf die Zeit-

punkte der Intensitätsänderungen. Jedoch ist eine fundierte statistische Analyse erst

durch den SF-Test gegeben.
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Lokalisation von Intensitätsänderungen – Der Stufen-Filter-Test

Betrachtet man einen Spike train der Länge T [s] unter der Annahme, dass die

Wartezeiten (Interspike-Interval = ISI) exponentialverteilt sind, so ist die erwartete

Anzahl N der Spikes in einem Intervall der Länge h gegeben durch E[N ] = λ(t)h. Ist

nun die Feuerrate konstant über die Zeit, λ(t) ≡ λ, so gilt für die Differenz von

Spike-Anzahlen in benachbarten Intervallen der Länge h, [t − h, t) und [t, t + h] mit

t ∈ [h, T − h], E[N1 − N2] = 0 mit Standardabweichung
√
2hλ. Ändert sich die Rate

zum Zeitpunkt T
2

so verhält sich die Differenz der Spike-Anzahlen wie im

konstanten Fall, falls beide Intervalle in dem ersten oder in dem zweiten Teil

des Spike trains liegen. Ansonsten, für t ∈ [T
2

− h, T
2

+ h], findet man

E[N1 −N2] = (E[N1]− E[N2]) 6= 0.

Führt man dies für ein festes h systematisch durch, so kann man jedem Zeitpunkt

t ∈ [h, t− h] einen Wert für die Differenz, normiert durch die Standardabweichung der

Differenz
√

2hλ̂ mit λ̂ =
N(t− h, t+ h)

2h
, zuordnen. Die Test-Statistik ist somit

definiert durch:

Dh,t =
(N1 −N2)
√

2h · (N1+N2)
2h

=
(N1 −N2)
√

(N1 +N2)

mit N1, N2 unabhängig und poissonverteilt. Um Aussagen über die beobachtete Dif-

−
5

0
5

D
_h

,t

10s
25s

50s
75s

K == 4

K == −−4

time [s]

In
te

ns
itä

t

0
2

4
6

0 100 200 300

−
5

0
5

D
_h

,t

10s
25s

50s
75s

K == 4

K == −−4

time [s]

In
te

ns
itä

t

0
2

4
6

0 100 200 300

ferenz zwischen N1 and N2 im Bezug auf das Vorliegen eines Ratenwechsels treffen zu

können, braucht es eine Entscheidungsregel. Seien N1 ∼ Pois(λ1h) und N2 ∼ Pois(λ2h).

Die Null-Hypothese H0, λ1 = λ2, wird abgelehnt zugunsten der Alternativhypothese

H1, λ1 6= λ2, wenn Dh,t außerhalb eines kritischen Bereichs fällt, sprich |Dh,t| > K.

Für den kritischen Wert K erhält man unter der Bedingung, dass in 1000 simulierten
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Poisson Prozessen der Länge T = 700s mit Parameter λ nur in 10 Fällen |Dh,t| > K

beobachtet wird, approximativ K = 4. Dabei ist K nicht nur abhängig von T sondern

auch von h, denn diese beiden Größen legen die Anzahl der Zeitpunkte t fest, für dieDh,t

ausgewertet werden kann. So ist diese Anzahl zum Beispiel für kleine Fenstergrößen

höher und somit die Wahrscheinlichkeit größer, dass |Dh,t| > K eintritt. Hier wurde

K = 4 mittels der Fensterbreiten bestimmt, welche auch später in der Anwendung der

Methode genutzt werden (s. Abb. oben).

Für die Evaluation der Testmacht zeigt man zunächst mittels δ-Methode, dass Dh,t

asymptotisch normalverteilt ist mit asymptotischen Erwartungswert µ und asymptotis-

cher Varianz σ2

µ =
(λ1 − λ2)√
λ1 + λ2

·
√
h und σ2 = 1− 3

4

(λ1 − λ2)
2

(λ1 + λ2)2
.

Geht man von einem Ratenwechsel zum Zeitpunkt h aus, so dass [0, h] und [h, 2h] jeweils

einen Abschnitt mit konstanter Rate umfassen mit λ1 > λ2, so gilt für die Wahrschein-

lichkeit, dass Dh,t unter H1 außerhalb des Bereichs [−4, 4] fällt, asymptotisch

P (Dh,h > 4) ≈ 1− Φ

(
4− µ√

σ2

)

.

Die Testmacht ist somit abhängig von den drei Größen h, λ1, λ2 mit den folgenden

Beziehungen:

1. Für festes λ1 und λ2: je größer h desto größer die Testmacht

2. Für festes λ1 und h: je größer |λ1 − λ2| desto größer die Testmacht

3. Für festes |λ1 − λ2| und h: je kleiner λi desto größer die Testmacht

Vor der Anwendung der Methode wurden noch drei Größen festgelegt:

1. Die Wahl der Fensterbreite h

Dabei muss man abwägen zwischen kleinen Fensterbreiten, welche es ermöglichen

kurze Zeitabschnitte mit konstanter Rate zu identifizieren und großen Fensterbreiten,

welche bei genügend langer Dauer von Abschnitten mit konstanter Rate die

Testmacht erhöhen. In der vorliegenden Arbeit wurde für die Durchführung der

Methode h = 10s, 25s, 50s, 75s, 100s, 125s, 150s gewählt. Diese Wahl beruht zum

einen darauf, dass in den Daten Raten mit 0.8 < λi < 8 beobachtet wurden und somit

die Testmacht für die meisten Ratenkominationen von λ1 und λ2 mit h ≤ 150s

mindestens 80% beträgt. Zum anderen müssten, damit man mit h > 150s

Ratenwechsel identifizieren kann, die entsprechenden Abschnitte im Spike train länger

als 150s sein, was in den Daten selten beobachtet werden konnte. Als kleinste

Fensterbreite wurde h = 10s gewählt, da für kleinere Fensterbreiten wie h = 5s kaum
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ein Ratenunterschied eine hohe Wahrscheinlichkeit hat entdeckt zu werden.

2. Identifikation des Schätzers für den Zeitpunkt des Ratenwechsels

Liegt ein Ratenwechsel zum Zeitpunkt tc
1 vor, so erreicht E[Dh,t] für ein festes h sein

Maximum am Zeitpunkt des Ratenwechsels d.h. maxt(E[Dh,t]) = E[Dh,tc ]. Der

Schätzer t̂c wurde definiert als der Zeitpunkt t mit maxt(E[Dhmin,t]), wobei hmin die

kleinste Fenstergröße ist, die |Dh,t| > 4 beobachtet hat. Nach der Identifikation der tci ,

kann die Intensität durch eine Treppenfunktion approximiert werden, indem in jedem

Ratenabschnitt die Intensität durch die mittlere Spike-Anzahl geschätzt wird.

3. Evaluation der Qualität des Schätzers

Die Genauigkeit des Schätzers wurde in Simulationen bestimmt. Es konnte beobachtet

werden, dass der Schätzer für festes λ1 umso genauer ist, je größer |λ1 − λ2|. Ander-

erseits ist für festes |λ1 − λ2| der Schätzer genauer für niedrige Raten, also für größere

relative Differenzen zwischen λ1 und λ2.

Anwendung des SF-Tests

Die Methode wurde zunächst auf simulierte Spike trains mit exponentialverteilten ISIs

angewandt, wobei die Intensität als Treppenfunktion modelliert wurde. Die

simulierten Ratenwechsel konnten in vielen Fällen zuverlässig gefunden werden. Die

Voraussetzung für die Detektion war eine genügend große Testmacht, wobei hier das

gegenseitige Bedingen der drei Einflussgrößen der Testmacht eine Rolle spielt. So ist

zum Beispiel für |λ1 − λ2| < 1 bei gleichzeitigem Vorliegen von kurzen Zeitabschnitten

mit konstanter Rate die Wahrscheinlichkeit gering, dass der Test anschlägt. Dies kann

darauf zurück geführt werden, dass solche Unterschiede in der “intrinsischen”

Variabilität des Poisson Prozesses untergehen, wobei die Variabilität bei größeren

Raten λi höher ist.

Die Anwendung auf die realen Daten ergab, dass die Methode plausible Ratenwechsel

findet und somit das Schätzen der Ratenfunktion gemäß einer Stufenfunktion

ermöglicht. Schwierigkeiten bereiten abfallende bzw. ansteigende Intensitäten, da die

Testmacht für geringe Unterschiede zwischen den Raten und kleinen h sehr gering ist.

Hier ist allenfalls eine grobe Approximation der Intensität durch wenig Stufen möglich,

falls die Dauer, in der die Rate kontinuierlich abfällt (ansteigt), nicht zu kurz ist.

1Der Index c steht hier für “change”
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Ausblick

Der Stufen-Filter-Test stellt eine Möglichkeit dar, konkrete Zeitpunkte von

Ratenveränderungen zu detektieren und somit den Spike train in Bereiche einzuteilen,

in denen eine konstante Rate angenommen werden kann unter der Annahme, dass die

ISIs exponentialverteilt sind. Auf dieser Grundlage könnten nachfolgende Analysen

des Spike trains durchgeführt werden.

Allerdings ist die Annahme von exponentialverteilten ISIs nicht für jeden Spike train

geeignet. Allgemeiner kann man von gammaverteilten ISIs ausgehen, so dass durch

den zusätzliche Parameter κ eine größere Breite von Spike trains angepasst werden

kann, wobei κ > 1 ein regelmäßigeres Auftreten der Aktionspotentiale impliziert. Hier

müsste man allerdings für jedes κ eine neue Schranke K definieren. Dabei kann für

κ > 1 ein kleinerer Annahmebereich der Nullhypothese erwartet werden, da die

Anzahl der Spikes weniger variabel ist. Somit dürften durch die angepassten

Schranken mehr Ratenwechsel gefunden werden als unter der Poisson-Annahme. Ein

Problem ist hierbei, dass K abhängig wäre von dem Parameter κ, welcher bei

Nichtstationarität nicht zwangsläufig als konstant angenommen werden kann über die

Zeit (Shimokawa et al., 2009).
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1 Introduction

Neuronal activity in the brain is often investigated in the presence of stimuli, termed

externally driven activity. This stimulus-response-perspective has long been focussed

on in order to find out how the nervous system responds to different stimuli. The neu-

ronal response consists of baseline activity, so called spontaneous activity1, and activity

which is caused by the stimulus. The baseline activity is often considered as constant

over time which allows the identification of the stimulus-evoked part of the neuronal

response by averaging over a set of trials.

However, during the last years it has been recognized that own dynamics of the nervous

system plays an important role in information processing. As a consequence, sponta-

neous activity is no longer regarded only as background ’noise’ and its role in cortical

processing is reconsidered. Therefore, the study of spontaneous firing pattern gains

more importance as these patterns may shape neuronal responses to a larger extent

as previously thought. For example, recent findings suggest that prestimulus activity

can predict a person’s visual perception performance on a single trial basis (Hanslmayr

et al., 2007). In this context, Ringach (2009) remarks that one can learn much about

even the quiescent state of the brain which “underlies the importance of understanding

cortical responses as the fusion of ongoing activity and sensory input”.

Taking into account that spontaneous activity reflects anything else but noise, new

challenges arise when analysing neuronal data. In this thesis one of these problems

related to the analysis of neuronal activity will be adressed, namely the nonstationarity

of firing rates.

The present work consists of four chapters. First of all the introduction gives neuro-

physiological background information to get an idea of neuronal information processing.

Afterwords the theory of point processes is provided which forms the basis for model-

ing neuronal spiking data. In the last section of the introduction a statement of the

problem is given. Chapter 2 proposes an easily applicable statistical method for the

detection of nonstationarity. It is applied to simulations and to real data in order to

show its capabilities. Thereafter, four other approaches are presented which provide

1Spontaneous activity is defined as the firing of neurons in the absence of sensory input (Ringach,

2009)

1
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useful illustrations concerning the nonstationarity of the firing rate but share the prob-

lem that one cannot make objective statements on the basis of their results. They were

developed in the course of establishing a suitable method. In chapter 4 the results are

discussed and suggestions for further study are given.

1.1 Neurophysiological background

Neurons are nonlinear elements which generate electrical pulses, called spikes or ac-

tion potentials. Neurons are connected to each other by synapses building a neuronal

network. Spikes are used to signal over distances respectively to exchange informa-

tion between the neurons. The signal output of a neuron is sent out along its axon

to other neurons to which it is connected. If the postsynaptic potential – the sum of

all excitatory and inhibitory input signals – exceeds a given threshold then the target

neuron generates an action potential. But if the excitation is below the threshold the

neuron will not fire. Therefore, an action potential is called an all or nothing event:

“[...] this signal does not occur at a subthreshold electric excitation, but fully occurs at

a superthreshold excitation” (Haken (2008), p. 11). As a consequence, the shape of the

action potential, the intensity and duration of the spike, is the same regardless of the

amount of excitation received from the inputs. Thus, spikes of a single neuron can be

treated as unitary pulses which differ from each other only in respect of the timepoints

at which they occur.

Figure 1.1: Recording of action potentials (AP) and the transformation of their detailed volt-

age waveform in a more simple representation so that the AP is reduced to its

main information, speak its occurence on the time axis (modified according to

Gutkin and Ermentrout (2006), p. 999).



Mathematical background 3

A sequence of action potentials, recorded over a finite time period, forms a spike train.

Given that the shape of action potentials does not differ their detailed voltage waveform

can be neglected when depicting a spike train on the time axis (see figure 1.1). Only

the time of arrival of an action potential, which distinguishes it from the others, is of

interest and focussed on when spike trains are analysed. Thereby the timepoint can be

associated with “the time of maximum excursion of electrical potential, which can be

measured with a high degree of precision” (Perkel et al. (1967), p. 393). Technically

the occurrence of a spike is an event. So a spike train can be considered as a sequence

of finitely many events which occur at specific points in time. In the next paragraph

the statistics of such events will be adressed for a better understanding of spike train

analysis.

1.2 Mathematical background

Stochastic point processes are often applied as mathematical models for neuronal spik-

ing. The events are identified as the occurrence times of the spikes (spike times) whose

other characteristics, e.g. duration or amplitude, are ignored. The statistic of the inter-

vals between successive events is important in characterizing the process: “In any point

process, in which all ’events’ (spikes, for example) are indistinguishable except for their

times of occurrence, it is the elapsed times between events, e.g. the interspike intervals,

that exhibit the properties of random variables. These intervals are regarded as being

drawn [...] from an underlying probability distribution” (Perkel et al. (1967), p. 394).

In this section the mathematical framework for the analysis of neuronal spiking data is

provided. First, a definition of stochastic processes is given before the theory of point

processes is addressed which forms the foundation for modeling spike train data.

Definition 1.2.1 (Stochastic process) A stochastic process (Xt)t∈T with state space

S is a family of S-valued random variables Xt indexed by a set T (t can be interpreted

as time) with

a) T = {0, 1, 2, ...} ⇒ discrete time stochastic process

b) T = [0,∞) ⇒ continuous time stochastic process

Thereby (Xt)t∈T is a discrete-state process if its values are countable, otherwise it is a

continuous-state process.

In the following T equals [0,∞) as continuous time is needed for the concept of point

processes which provide useful conceps when analysing spike trains.



4 Mathematical background

Definition 1.2.2 (Point process) A point process is a continuous time stochastic

process whose realizations consist of a series of point events occurring at well defined

but random points in time.

So a point process can be considered as a random collection of points ti, where each

point represents the time of an event on the time axis. Apart from their times, the

points are thought to be indistinguishable. The theory of point processes is used to

describe data, like neuronal signals, that are localized at a finite set of timepoints.

To every point process a discrete-state stochastic process N(t) in continuous time can

be associated by counting the number of events as they come along. Thereby N(t)

denotes the number of points in the time interval [0, t].

Definition 1.2.3 (Counting Process) A counting process {N(t), t ∈ T } is a

stochastic process in continuous time that counts the number of events ti which

occurred up to and including a specific moment of time: N(t) = max {i : ti ≤ t}.

time

N
(t

)

0 t1 t2 t3 t4 t5

0
1

2
3

4
5

Figure 1.2: Illustration of a counting process: N(t) equals the number of points ti up to time

t.

N(t) is well defined at any time t. It is constant between the events and increases in

unit steps at each time point ti (see figure 1.2). So N(t) is non decreasing and piecewise

constant. For s < t, N(s, t) = N(t) −N(s) denotes the number of events in the half-

open interval (s, t].

A simple example for a continuous-time counting process is the Poisson Process which

often forms the basis for many more complex models.

Definition 1.2.4 (Poisson process) A Poisson process is a continuous-time count-

ing process {N(t), t ∈ T } which possesses the following properties

1. N(0) = 0
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2. The probability distribution of N(t) events up to time t is poisson

3. The probability distribution of the waiting times Yi is exponential

4. N(t) has independent increments

5. Multiple occurrences at the same t may not occur

The intensity function r(t) of a Poisson process can be interpreted as the rate at which

points occur in a small interval at time t. So more points occur when r(t) is relatively

high. A stationary (homogeneous) Poisson process is characterized by a constant rate

parameter r(t) ≡ λ which indicates the expected number of events per time unit. This

implies that N(t, t + τ) = N(t + τ) −N(t), the number of events in the time interval

(t, t+ τ ], is Pois(λτ)-distributed. Thus, the probability of k events being in the interval

(t, t+ τ ] is given by the equation

P (N(t, t+ τ) = k) =
1

k!
(λτ)keλτ .

Thus, the expected number of occurrences in that time interval is E[N(t, t + τ)] = λτ

with variance Var[N(t, t+ τ)] = λτ .

In a stationary Poisson process with parameter λ the interarrival times Yi between

successive events ti and ti+1 are Exp(λ)-distributed. This means that Yi has the prob-

ability density function

f(x) =







λe−λx for x ≥ 0

0 for x < 0.

So the expected waiting time and its variance are given by

E[Yi] =
1

λ

Var[Yi] =
1

λ2
.

However, the rate may change over time. In this case the process, called nonstationary

(inhomogeneous) Poisson process, is characterized by a generalized rate function r(t)

which is now a more complex function than a constant one. The expected number of

events between time t and time s is then given by the integral λt,s =
∫ s

t
r(t) dt.

1.3 Statement of the problem

Spike trains are often considered to arise from stationary point processes which means

that the parameters of the process are invariant under time shift. Note that the detec-

tion and measurement of stationarity is focussed almost exclusively upon one parameter,
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namely the firing rate, so that the assumption of stationarity implies that the intensity

of spiking is constant over time (Perkel et al., 1967). But the behaviour of a neuron

can change during the course of observation. For example, accelerations (decelerations)

or jumps in the intensity destroy the notion of an underlying stationary point process

so that the average firing rate has to be interpreted with care as it does not represent

every part of the record equally well.

However, most of the models and statistical measures carry the implicit assumption

that the underlying point process is stationary and therefore oversimplify the statistics

of the target spike train. As a consequence, interpretational ambiguity may arise which

can lead to biased results in several signal analysis methods such as the peristimulus

time histogramm (PSTH) which is the average response over a set of trials (repeatedly

presented identical stimulus). Nonstationarity of the firing rate across trials causes that

the PSTH is not representative of each individual trial and therefore leads to deceptive

conclusions. Similarly, the cross-correlogram, which is used to detect interactions be-

tween spike trains, can provide misrepresentations of the results when the spike trains

are composed of inhomogeneous point processes. Strictly speaking, nonstationarities

can also cause correlations so that peaks in the correlogram are not always indicative

of spike timing synchronization between neurons (Brody, 1999). Hence the need for

preprocessing methods in order to check whether the assumption of stationarity is rea-

sonable.

Note that the problem of nonstationarity has long been known. Already Perkel et al.

(1967) drew attention to the importance of searching for conspicuous changes in the

intensity of spiking. Indeed, the problem is still relevant today whereby scientists have

made progress concerning the handling of rate variations. Gourevitch and Eggermont

(2007) give an overview of the existing techniques from visual inspection of interspike

intervals to different tests some of which they rated as not very powerful. However,

most of the methods only allow to decide whether the assumption of an underlying

stationary point process is reasonable for the data and not to locate the corresponding

change points. If a method provides a change point analysis then it works under strict

conditions like the assumption of only one rate change. Further need for research is

given, so that simple and practical methods can be established which are able to locate

changes in the intensity without making assumptions about the number of changes.

In this diploma thesis we pursue the goal of detecting change points in the firing rate in

order to identify parts of the spike train where the assumption of stationarity is justi-

fied. Therefore, some theoretical approaches have been developed which are presented

in two separated chapters. First, the main method is introduced which enables us to

pinpoint rate changes under the assumption that the ISIs are exponential distributed.

As a result, it provides an approximation of the intensity by a step rate function (SRF).
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Second, a compilation of other techniques is given which were developed while working

on a practical method. They are useful in order to depict the course of the intensity

but lack a statistical foundation.

1.3.1 Simulation of spike trains on the basis of Poisson processes

In order to evaluate the theoretical results spike trains composed of Poisson processes

are simulated. Therefore, the spike train is considered as a realization or sample func-

tion of a continuous time Poisson process which means that it is viewed as a point

pattern on [0,∞) whereby the interarrival times are Exp(λ)-distributed and the points

conveniently represent the spike times.

Note that it is not always possible to approximate a spike train by a Poisson process.

More generally a gamma distribution, which shows a refractory period2 and firing pat-

terns of different regularity, was observed to be “a more realistic description of interval

statistics than the more commonly used Poisson process [...]” (Baker (2000), p. 650).

The shape parameter κ allows for the adjustment of regularity of the corresponding

spike train in the following way (Nawrot et al. (2008), Baker (2000)):

1. For κ = 1 the ISIs are exponentially distributed ⇒ Poisson process

2. For κ > 1 the process is more regular

3. For 0 < κ < 1 the process is more irregular so that “events appear clustered in

time” (Nawrot et al. (2008), p. 375)

In this diploma thesis we use the Poisson model as a first approximation, which enables

us to develop an easily applicable method for the detection of rate changes as it is

κ ≡ 1, so that only one time dependend parameter λ(t) has to be taken into account.

In the following the mathematical characterization of a spike train is given in order to

introduce basic terminology which will be used in the next chapters.

Let ti be the occurrence time of the ith spike in a spike train of M spikes recorded

between 0, onset of the recording, and T seconds. So N(T ), the number of events until

time T , is N(T ) = M . Dividing the recording in n intervals of h = T
n
seconds, the num-

ber of spikes in a single time interval is given by Ni = N(hi−1, hi) = N(hi) − N(hi−1)

with hi = i · h, i = 1, . . . , n. This construction yields a discrete-time representation of

a point process which is needed for the development of data analysis methods.

2After the initiation of an action potential, the refractory period is defined as the interval during

which a second action potential cannot be initiated
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Y1

b

N1 == 3 N2 == 4 N3 == 4

Spike Times

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

time

0 1 2 3 4 5 T

0
2

4
6

8
10 Counting Process N(t)

Figure 1.3: Discretization of neuronal data by dividing the spike train in intervals of h seconds

(here: M = 11, T = 5.4, n = 3, h = 1.8).

Under the assumption that the spike train is a homogeneous Poisson process with rate

parameter λ it is known that the number of spikes in an interval of h seconds is Pois(λh)-

distributed. Therefore λh spikes are expected in every interval, whereby the number

of observed occurrences in a single interval fluctuates with standard deviation
√
λh. In

addition the interspike intervals (ISIs) Yi = ti+1 − ti are Exp(λ)-distributed. Having a

nonstationary Poisson process we would like to identify parts of the spike train where

a constant firing rate can be assumed. In the following these parts will be called rate

sections so that a rate section is defined as a part of the spike train with constant

intensity.

1.3.2 The sample data set

The data to which the theory is applied are single unit recordings from spontaneously

active dopaminergic neurons in the substantia nigra of mice. Each group consists of

wild type mice and mice in which an ionchannel, K-ATP channel, has been tourned off

(knock-out mice). In addition, it will be distinguished between calbindin-positive and

calbindin-negative neurons. Calbindin is a calcium-binding protein which can be used

as a marker protein in subgroups of dopaminergic neurons. Its functions, especially the

contribution to the firing pattern by changes in the calbindin concentration, are not
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fully understood yet. But, it has been shown for example, that neurons which express

calbindin selectively survive the cell death period in Parkinson’s disease.

The data are labeled by using the following abbreviations (see Table 1.1).

Abbreviation Meaning

Location

sn substantia nigra

Calbindin expression

+ Calbindin positive

- Calbindin negative

Gene

ko knock out

wt wild type

Table 1.1: Overview of the abbreviations for the labels of the data.

This dataset was recorded for previous studies and provided by Julia Schiemann and

Prof. Dr. Jochen Roeper from the Institute for Neurophysiology in Frankfurt am Main.

In the majority of cases the spike trains are about 720 seconds long. Moreover, it was

observed that the average firing rates lie between 0.8 and 8. As an example figure

1.4 presents the occurrence times of two spike trains. It can be seen that they show

different irregularities of firing: the firing pattern in “sn- ko5” seems to be more regular

as the ISIs differ not so much like it can be observed in “sn+ ko1”. With regard to

the average intensities in the time interval [0, 75s] it is N(0,75)
75

= 4.84 (“sn- ko5”) and
N(0,75)

75
= 3.24 (“sn+ ko1”).

0 5 10 15 20 25

sn+ ko1

time [s]

0 5 10 15 20 25

sn− ko5

time [s]

Figure 1.4: Example of two spike trains which show different irregularities of firing. One row

presents the occurrence times of spikes in a time window of 25s e.g. first row

=̂ [0, 25s], . . . , third row =̂ (50s, 75s].





2 Detection of rate changes by means

of time-dependent step filters

This chapter presents an easily applicable statistical method for the detection of rate

changes in spike trains. It has been developed on the basis of earlier graphical ap-

proaches which will be described in chapter 3 for reasons of completeness.

2.1 Developing a test

Consider a spike train modeled by a stationary Poisson process with constant rate pa-

rameter λ. Dividing the spike train into intervals of length h the expected number of

spikes in one interval is λh with standard deviation
√
λh. So comparing the number

of spikes in two nonoverlapping intervals gives that the expected difference is zero with

standard deviation
√
2λh.

Now, think of a spike train of length T modeled by a nonstationary Poisson process

where the ISIs in the first half of the spike train are Exp(λ1)- and in the second half

Exp(λ2)-distributed which means that there is a rate change at time (T/2). Comparing

the number of spikes in two intervals from the same part of the spike train, their differ-

ence will behave like those in the stationary case. But when comparing spike counts in

intervals from the first with those from the second part, then the expected difference is

(λ1 − λ2) · h with standard deviation
√

(λ1 + λ2) · h.
Upon these observations a method for the detection of rate changes is developed, which

is termed the Step-Filter-Test (SF-Test).

2.1.1 Test statistic

We divide a Poisson process into intervals with length h[s] in the following way: for

every time point t ∈ {h, h+ 1, . . . , T − h+ 1, T − h} the two time intervals [t − h, t]

(left window) and (t, t+h] (right window) are disposed and the number of spikes, N1 =

11
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N(t − h, h) and N2 = N(h, h + t), are determined (see figure 2.1). The left and right

interval are nonoverlapping so that N1 and N2 are independent.

0 5000 10000 15000 20000

time [ms]

N1 == 11 N2 == 15

t −−h t ++ht

Figure 2.1: Schematical presentation of extracting two adjacent intervals [t−h, t] and (t, t+h]

out of the spike train and counting the spikes in there (here: t = 10s, h = 5s).

In order to compare the number of spikes in the left and right window we substract

N1 from N2 and normalise it with the square root of the estimated variance of spikes

in [t− h, t+ h] under the assumption that the number of spikes in that time interval is

Pois(2hλ̂)-distributed with λ̂ =
N(t− h, t+ h)

2h
, the mean firing rate in

[t − h, t + h]. So for a fixed window size h we compute for every time point t ∈
{h, h+ 1, . . . , T − h+ 1, T − h} the value

Dh,t =
(N1 −N2)
√

2hλ̂
.

This procedure can be done for different window sizes h, whereas we will see later on

that only a few different choices of h are needed for determining if the number of spikes

differ more from each other than it would be expected under the assumption that N1

and N2 are from the same distribution.

To get a more compact presentation of Dh,t it is transformed by replacing λ̂ in the

denominator by
N(t− h, t+ h)

2h
=

(N1 +N2)

2h

so we come out with

Dh,t =
(N1 −N2)
√

2h · (N1+N2)
2h

=
(N1 −N2)
√

(N1 +N2)
(2.1)



Developing a test 13

In the example in figure 2.1 we would get for h = 5s and t = 10s

D5,10 =
(11− 15)√
11 + 15

≈ −0.79

and holding h = 5s fixed D5,t can be computed for varying t[s], here:

t = 5s, 6s, . . . , 34s, 35s (see figure 2.2).
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5 10 15 20 25 30 35

−
4

−
2

0
2

4

time [s]

D
t

●

−0.79

h == 5

Figure 2.2: Test statistic D5,t for t = 5s, 6s, . . . , 34s, 35s. The red point marks D5,10.

In order to be able to evaluate the observed difference between N1 and N2 respectively

to make statements about Dh,t in comparison to what has been expected under the null

hypothesis, a decision rule has to be developed.

First of all it is necessary to substantiate the null hypothesis H0 and the alternative

hypothesis H1. We assume N1 ∼ Pois(λ1h) and N2 ∼ Pois(λ2h), with

H0: λ1 = λ2 and H1: λ1 6= λ2.

The next step will be to establish a decision rule which allows to decide whether or not

to reject the null hypothesis in favor of the alternative. Comparing the test-statistic

(equation 2.1) to the critical value K the decision rule is to reject H0 if |Dh,t| > K. In

order to define K we need to know how Dh,t is distributed under the null hypothesis.

This means that it has to be examined what happens when applying the Step-Filter-

Test to stationary Poisson processes (see figure 2.3).

First of all the distribution of Dh,t under H0 can be determined by drawing two random

numbers p1 and p2 from a Pois(λh)-distribution several times and compute every time

Dh,t =
(p1 − p2)
√

(p1 + p2)
. In doing so about 10000 times we get an approximation of the

distribution of Dh,t under H0 (see figure 2.3).

It is by definition symmetrical around zero with standard deviation 1 independent of λ

respectively h. Furthermore it is |Q0.005| = Q0.995 = 2.6, the 0.5%- respectively 99.5%-

quantile, so that only in one of 100 cases it can be expected to observe |Dh,t| ≥ 2.6.

However, having a recording time T = 720s and a window width h = 10s we get 700
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values for |D10,t| so that it can be expected that seven of them will be above 2.6 given

that they were all independent.

D
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0.
0

0.
1

0.
2

0.
3

0.
4

µ = 0

σ = 1
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−
5
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time [s]

D
_h

,t
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25s
50s
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100s
125s
150s

K = 4

K = −4

Figure 2.3: Left: Distribution of D under H0. Right: Resulting lines when applying the

Step-Filter-Test to a stationary Poisson process with h successively taken as

10s, 25s, 50s, 75s, 100s, 125s, 150s (see legend). The dashed lines mark the range

for which the null model is not rejected (see text passage below).

Indeed, this boundary does not take into account that the results for D10,t are not

independent ∀ t because of taking overlapping intervals. Moreover, applying the Step-

Filter-Test to the spike train, different window sizes are taken so that one gets all in

all more than 700 values for Dh,t which are also interdependent. As a result, the Step-

Filter-Test would often find rate changes in a stationary Poisson process (false positive

results).

We need a boundary so that in 100 simulated stationary Poisson processes of T seconds

with constant rate λ only in k cases it can be observed that |Dh,t| > K whereby h is

chosen successively as 10s, 25s, 50s, 75s, 100s, 125s, 150s. Here we choose k = 1 so we

get a strict boundary in order to exclude many false positive results or in other words

results which are erroneously positive when H0 is true.

In order to find this limit, the proposed test is applied to 1000 stationary Poisson

processes with constant rate parameter λ where the computation of Dh,t is done for

t = h, h + 1, . . . , (T − h) ∀ h ∈ {10s, 25s, 50s, 75s, 100s, 125s, 150s}. The critical value

K is chosen so that only in 10 of 1000 processes Dh,t falls outside of [−4, 4]. In doing

so we get K = 4 as approximate 99%-confidence limit (see figure 2.3).
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2.1.2 Asymptotic expectation and variance

In order to determine the asymptotic expectation and variance of Dh,t the δ-method

is used which is a method for deriving an approximate probability distribution for a

function of random variables based on Taylor series expansions. In its essence, the

δ-method expands the given function up to the second term about its mean and then

takes the variance or the expectation.

For example, in the one-dimensional case if one wants to approximate the expectation

and the variance of f(X) where X is a random variable with E[X] = µ, Var[X] = σ2

and f satisfies the property that f ′(µ) exists and is non-zero valued, one can try the

following steps:

1. Taylor series expansion of f(X) about µ:

f(X) = f(µ) + (X − µ)
df

dX

∣
∣
∣
µ
+ ...

2. Dropping the higher order terms to give the approximation:

f(X) ≈ f(µ) + (X − µ)
df

dX

∣
∣
∣
µ

3. Taking the expectation respectively the variance of both sides yields:

E(f(X)) ≈ f(µ)

Var(f(X)) ≈ Var(X) ·
[
df

dX

∣
∣
∣
µ

]2

Two-dimensional δ-method

The idea from above can be expanded to vector-valued functions of random vectors.

Here we restrict ourselves to the two-dimensional case which we need for the computa-

tion of the variance and the expectation of Dh,t.

Suppose we have random variables X1 and X2 which are independent. A taylor series

expansion of f(X1, X2) about the value µ = (µ1, µ2) is given by:

f(X1, X2) = f(µ1, µ2) +
∂f(X1, X2)

∂X1

∣
∣
∣
(µ1,µ2)

(X1 − µ1)

+
∂f(X1, X2)

∂X2

∣
∣
∣
(µ1,µ2)

(X2 − µ2) + o(||X − µ||)
︸ ︷︷ ︸

higher order terms

(2.2)

Dropping the higher order terms in equation 2.2 one gets an approximation of f(X1, X2).

As in the one-dimensional case the expectation can be approximated by:

E[f(X1, X2)] ≈ f(µ1, µ2)
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and the variance by:

Var[f(X1, X2)] ≈ Var[f(µ1, µ2)] +
∂f(X1, X2)

∂X1

∣
∣
∣
(µ1,µ2)

(X1 − µ1)

+
∂f(X1, X2)

∂X2

∣
∣
∣
(µ1,µ2)

(X2 − µ2)

=

(
∂f(X1, X2)

∂X1

∣
∣
∣
(µ1,µ2)

)2

Var[X1]

+

(
∂f(X1, X2)

∂X2

∣
∣
∣
(µ1,µ2)

)2

Var[X2] (2.3)

Note that X1 and X2 are independent which means that terms which include the

covariance of X1 and X2 are zero and hence omitted in the computation.

Now the δ-method is applied to our given problem: the determination of the

expectation and the variance of Dh,t =
(N1 −N2)
√

(N1 +N2)
.

Let N be the two-dimensional random vector N = (N1, N2) where N1 and N2 are in-

dependent with Var[N1] = λ1h, Var[N2] = λ2h and Cov(N1, N2) = 0.

Let µ = (µ1, µ2) be the two-dimensional vector parameter with µ1 = E[N1] = λ1h and

µ2 = E[N2] = λ2h.

Note that Ni is a poisson distributed random variable with parameter λih. Thus, for

sufficiently large values of h Ni has asymptotic normal distribution with expectation

λih and variance λih.

We define f(x, y) =
(x− y)√
x+ y

with

∂f

∂x
=

1√
x+ y

+ (x− y) ·
(−1

2

)

· (x+ y)
−3

2

∂f

∂y
=

−1√
x+ y

+ (x− y) ·
(−1

2

)

· (x+ y)
−3

2 .

Then the expectation of Dh,t = f(N1, N2) can be approximated by:

E [f(N1, N2)] ≈ f(µ1, µ2)

=
(µ1 − µ2)√
µ1 + µ2

=
(λ1 − λ2)√
λ1 + λ2

·
√
h (2.4)
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and the variance of Dh,t = f(N1, N2) by:

Var [f(N1, N2)] = Var

[
(N1 −N2)√
N1 +N2

]

≈ 1− 3

4

(λ1 − λ2)
2

(λ1 + λ2)2
(2.5)

⇒ f(N1, N2) = Dh,t has asymptotic normal distribution with

asymptotic expectation µ

µ =
(λ1 − λ2)√
λ1 + λ2

·
√
h

and asymptotic variance σ2

σ2 = 1− 3

4

(λ1 − λ2)
2

(λ1 + λ2)2
.

Proof of equation 2.5

Var [f(N1, N2)] ≈
(
∂f(N1, N2)

∂N1

∣
∣
∣
(µ1,µ2)

)2

Var[N1] +

(
∂f(N1, N2)

∂Y

∣
∣
∣
(µ1,µ2)

)2

Var[N2]

=

[

1
√

E[N1] + E[N2]
+

(E[N1]− E[N2])

(E[N1] + E[N2])
3

2

·
(−1

2

)]2

· Var[N1]

+

[

−1
√

E[N1] + E[N2]
+

(E[N1]− E[N2])

(E[N1] + E[N2])
3

2

·
(−1

2

)]2

· Var[N2]

=
Var[N1]

(E[N1] + E[N2])
·
[

1− (E[N1]− E[N2])

2(E[N1] + E[N2])

]2

+
Var[N2]

(E[N1] + E[N2])
·
[

−1− (E[N1]− E[N2])

2(E[N1] + E[N2])

]2

=
λ1h

(λ1 + λ2)h

(

1 +
(λ1 − λ2)h

2(λ1 + λ2)h

)2

+
λ2h

(λ1 + λ2)h

(

−1− (λ1 − λ2)h

2(λ1 + λ2)h

)2

=
λ1

(λ1 + λ2)

(

1− (λ1 − λ2)

(λ1 + λ2)
+

1

4

(λ1 − λ2)
2

(λ1 + λ2)2

)

+
λ2

(λ1 + λ2)

(

1 +
(λ1 − λ2)

(λ1 + λ2)
+

1

4

(λ1 − λ2)
2

(λ1 + λ2)2

)

= 1 +
(λ2 − λ1)(λ1 − λ2)

(λ1 + λ2)2
+

1

4

(λ1 − λ2)
2(λ1 + λ2)

(λ1 + λ2)3

= 1− (λ1 − λ2)
2

(λ1 + λ2)2
+

1

4

(λ1 − λ2)
2

(λ1 + λ2)2

= 1− 3

4

(λ1 − λ2)
2
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Properties of µ and σ2

As we already know, it can be affirmed that for every stationary Poisson process Dh,t

has expectation 0 and variance 1 independent of λ (λ1 = λ2) and the choice of the

window size.
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Apart from that σ2 only depends on λ1 and

λ2. It is independent of the window size h

and takes values between 0 and 1. It is 1 for

λ1 = λ2 and smaller 1 if λ1 6= λ2 whereas

the variance is nearer to 1 the greater λ1 and

λ2 are and/or the smaller the distance be-

tween the two rates. We can restrict our-

selves to λi ≤ 8 in accordance with the inten-

sities which have been observed in the data.

It follows that 0.4 < σ2 ≤ 1.
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µ also depends on h but with

regard to E[D1,t] ≈ (λ1 − λ2)√
λ1 + λ2

(h = 1 fixed) it can be seen what

changes for different choices of λ1 and λ2:

for λi ≤ 8 we have −2.6 ≤ E[D1,t] ≤ 2.6.

Obviously, the expectation is nearer

to 0 the smaller the distance between the

two rates and/or the greater λ1 and λ2 are.

Knowing these properties the test power will

now be evaluated.

2.1.3 Evaluation of the test power

Given λ1 6= λ2 the probability of detecting the rate change, i.e. the probability that

Dh,t falls outside of [−4, 4] under H1, for different pairs of λ1 and λ2 dependent on

the window size h is computed. Therefore it is assumed that for every choice of h the

length of the rate sections equals h so that h is also the time point of the rate change

and the two time intervals, [0, h] and (h, 2h], comprise the whole rate section each. As

a consequence, h is always chosen as the optimal interval length for finding the rate

change.
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W.l.o.g. we investigate the case λ1 > λ2 so that E[f(N1, N2)] > 0.

Think of a spike train modeled by a nonstationary Poisson process with step rate func-

tion r(t) where the ISIs in [0, h] are Exp(λ1)- and in (h, 2h] Exp(λ2)-distributed with

λ1 > λ2. We want to determine the probability of Dh,h (here t = h) lying above K = 4

for different window width h (= length of the rate sections) so that H0 is rejected in

favour of H1. Hence:

P (Dh,h > 4) = P

(
(N1 −N2)√
N1 +N2

> 4

)

≈ 1− Φ

(
4− µ

σ

)

(2.6)

with µ =
(λ1 − λ2)√
λ1 + λ2

·
√
h and σ2 = 1− 3

4

(λ1 − λ2)
2

(λ1 + λ2)2
(see equation 2.4 and 2.5)

where Φ(z) is the cumulative distribution function of the standard normal distribution:

Φ(z) =
1√
2π

∫ z

−∞

e−x2/2dx .

For the computation of the probability it has to be considered that Dh,t has asymptotic

normal distribution. Simulations have shown that for h > 40s the results are very exact

for 0.5 < λi < 8. With respect to h < 40s the error is smaller 0.02 for λi > 2 (see figure

2.4).
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Figure 2.4: Comparison of the asymptotic test power (green line) and the test power deter-

mined in simulations (blue line) for different rate pairs. The maximal error is

marked by dmax=̂ maximal distance between the lines.

The next examples illustrate the test power further. If we hold λ1 = 5 fixed and vary

λ2 so that the difference between λ1 and λ2 gets continuously smaller then it can be
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seen that for a smaller distance the rate sections have to be longer respectively h has

to be greater in order to find the rate change with a high probability (see figure 2.5).
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Figure 2.5: Probability of finding rate changes for different λi and window width h (h equals

the length of one rate section).

This can be traced back to the fact that σ2 is nearer to 1 and µ nearer to 0 (for h = 1)

the smaller the difference between the two rates. In order to reduce this declaration to

one value the expectation in relation to the standard deviation is taken, which will be

called R(λ1, λ2) in the following,

R(λ1, λ2) =
µ

σ
= −R(λ2, λ1)

so that we have for a stationary Poisson process R(λ, λ) = 0. Coming back to the

example from above one gets that the smaller the difference between the two rates the

smaller the value for R(λ1, λ2) (see figure 2.6).

For |λ1 − λ2| < ǫ with 0 < ǫ < 1 it seems unlikely that the rate change will be detected

unless the rate sections are long (see figure 2.5). In addition, comparing the probability

curves of λ1 = 3 and λ1 = 5 for (λ1 − λ2) ∈ {1, 0.8, 0.6, 0.5, 0.4, 0.2} it gets clear that

in the second case (λ1 = 5) h has to be greater for having a high probability of finding

the rate change. Note that this statement can be extended to |λ1 − λ2| > 1. With

respect to the expectation of D1,t in relation to the standard deviation one gets that

R(3, λ2) > R(5, λ2) ∀ λ2 (see figure 2.6).

To sum up, the test power i.e. the probability of finding a rate change under H1 depends

on the one hand on the length of the rate sections i.e. on the window width h. On

the other hand the difference between λ1 and λ2 and the hight of the rates themselves
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Figure 2.6: Expectation of D1,t in relation to its standard deviation: R(λ1, λ2). The coloured

points mark those rate combinations which have been investigated above (see

figure 2.5).

influence the test power: it could be learned that for a given h the smaller |λ1−λ2| = ǫ

and the larger the rates for a given ǫ the smaller the test power. This interrelation

can be combined in one value R(λ1, λ2) the relation between the expectation and the

standard deviation of D1,t. Comparing R(λ1, λ2) for different rate pairs (λ1, λ2) one can

conclude that for a given h the larger |R(λ1, λ2)| the larger the test power.

Identification of h for a test power of 80%

In order to determine how long the rate sections must be at least so that in 80 out of

100 cases the rate change will be found, only the case

λ1 > λ2 ⇒ µ > 0

has to be examined for symmetry reasons: P (Dh,t > 4) = P (Dh,t < −4)

Having the inequality

P (Dh,t > 4) ≈ 1− Φ

(
4− µ

σ

)

= 0.8

we replace µ by
(λ1 − λ2)√
λ1 + λ2

·
√
h and then solve the inequality for h yielding

P (Dh,t > 4) = 0.8

1− Φ

(
4− µ

σ

)

≈ 0.8
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µ ≈ 0.842 · σ + 4

(λ1 − λ2)√
λ1 + λ2

·
√
h ≈ 0.842 · σ + 4

h ≈ (0.842 · σ + 4)2 · (λ1 + λ2)

(λ1 − λ2)2

with Q0.2, the 0.2%-quantile of the standard normal distribution, approximated by

0.842. For example, with λ1 = 5 and λ2 = 4 (or vice verca) it is: h = 210.5.
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The figure on the left shows

for different combinations of λ1 and λ2

with λi ∈ {1, 2, . . . , 8} and λ1 6= λ2, how

large h must approximately be in order

to have P (Dh,t > 4) = 0.8 respectively

P (Dh,t < −4) = 0.8. It can be seen

that the larger λi for a given difference

|λ1 − λ2| or the smaller the difference

|λ1 − λ2| for a given λ1 the bigger h has

to be in order to get P (|Dh,t| > 4) = 0.8

as it has already been indicated before.

2.2 Implementation of the test

Before applying the Step-Filter-Test to simulated spike trains and to real data it is

necessary to define the window sizes which will be used as well as the estimate of the

change point and to determine the quality of the estimation.

2.2.1 Choice of the window size h

It is a matter of waiting up options as we have seen that rate changes only have a

high probability to be found by small window sizes when the relative difference

between the two rates is large enough (see figure above). However, small window sizes

have the advantage that rate changes can be found more precisely because rate

sections with short duration are not covered and have a chance to be recognized at all.

As a consequence we decide to take seven different window sizes, namely

h = 10s, 25s, 50s, 75s, 100s, 125s, 150s. Note that the presentation of the results
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becomes quite complex when taking more values for h so that the restriction to a few

window sizes is necessary.

On the one hand this choice for h allows the identification of short rate sections under

the precondition that the probability to find the rate change is high enough, which

means that the relative rate difference is large enough. On the other hand, if rate

sections are longer and not identified by the small window sizes, for example as a

consequence of |λ1 − λ2| < 1, then the rate change can be found by the higher values

of h. The smallest window size was chosen as h = 10s because it still allows for some

rate combinations with 0.8 < λi < 8 to find the rate difference with a high probability.

The experience has shown that smaller window sizes (h < 100s) are more important

for the reasons mentioned above and h > 150s is not absolutely essential because of

the strong preconditions: for rate differences which could only be found by h > 150s

both rate sections have to be longer than 150s as well which does not occur very often

as the length of recording time is about T = 720s. In addition, for the observed firing

rates in the data 0.8 < λi < 8 it can be concluded that h = 150s yields for most rate

combinations an asymptotic test power of 80% (see figure 2.7).
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Figure 2.7: Presentation of the asymptotic test power for h = 150s and λ1 = 1, 3, 6 in com-

bination with λ2 ∈ {1, 2, . . . , 8} \ {λ1}.

2.2.2 Identification of the time of the rate change

Consider a spike train where in the first half of the time the ISIs are Exp(λ1)- and in the

second half Exp(λ2)-distributed. So there is a rate change at time t = T/2 termed tc
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(see figure 2.8). For h ∈ {10s, 25s, 50s, 75s, 100s, 125s, 150s} the distribution of N1 and

N2 is characterized dependent on the point in time t for which Dh,t will be evaluated:

1. for t ≤ tc − h ⇒ both N1 and N2 are Pois(λ1h)-distributed

2. for tc − h < t < tc ⇒ N1 ∼ Pois(λ1h) and N2 ∼ Pois((λ1(h − i) + λ2i)) with

i = 1, . . . , h− 1

3. for t = tc ⇒ N1 ∼ Pois(λ1h) and N2 ∼ Pois(λ2h)

4. for tc < t < tc + h ⇒ N1 ∼ Pois((λ1(h − i) + λ2i)) with i = 1, . . . , h − 1 and

N2 ∼ Pois(λ2h)

5. for t ≥ tc + h ⇒ both N1 and N2 are Pois(λ2h)-distributed
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Figure 2.8: Schematical presentation of the expected values for D25,t in a spike train with

underlying Poisson process with rate change at time t = tc = 150s.

So if h is large enough we expect |Dh,t| > 4 for some t between tc − h and tc + h.

Furthermore the maximum of |Dh,t| is expected to be reached for t = tc (see figure

2.8). Hence, for every window width h an estimate of the change point of the intensity,

termed t̂hc , can be identified as the time point t for which |Dh,t| = maxt(|Dh,t|). The

average over these values could finally be taken as an estimate for tc.

However, under the precondition that the spike train consists of more than one rate

change, taking the average is only suitable if the length of the rate sections is bigger
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Figure 2.9: Application of the Step-Filter-Test to a spike train with underlying nonstation-

ary Poisson process. The maxima of the curves are taken as an estimate of

the time point of rate change. The dashed line marks the average over all t̂hc

(h = 10s, 25s, . . . , 150s).

than h. Otherwise, one gets false information because the rate sections would be cov-

ered by larger window sizes (see figure 2.10). More precisely, the decisive time interval

[tc − h, tc + h] would include apart from tc another rate change (see figure 2.10: tc2) or

in the case of the first (last) rate change the SF-method starts with t = h > tc so the

rate change would not be recognized correctly (see figure 2.10: tc1). As a consequence,

we take the minimum over all h which have detected the rate change (|Dh,t| > 4 was

observed), label it h∗ and define the estimate of the time point of the rate change by

t̂c = t̂h
∗

c .

Having more than one rate change we will get different sections with |Dh,t| > 4. In

every section t̂c will be determined with the technique described above (see figure 2.10)

whereas h∗ can differ from case to case. So for the ith rate change the estimate is

labelled

t̂ci = t̂
h∗

i
ci .

Note that the Step-Filter-Method works under the assumption that the underlying Pois-

son process is characterized by a step rate function. In order to define the respective

sections one could assume that low and high rates alternate so that the method has

to search alternately for a peak in the region above 4 and one in the region below -4.
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Figure 2.10: Left: Application of the Step-Filter-Test to a spike train with underlying Pois-

son process. The estimations of tci identified by t̂
h∗

i
ci are marked by the coloured

points. Here: for the estimation of tc1 and tc2 the large window sizes are impre-

cise. Right: Average intensity in intervals of length 10s. The red line marks the

true step rate function of the process.

This precondition seems to be necessary in the case that a line which has crossed the

boundary falls shortly back into the interval [−4, 4] by chance and then crosses the

boundary again. Without the determined condition the method would identify two

areas in which a change point is identified. However, a decreasing (increasing) step

function would then be excluded as one observes twice in a row sections which are

below (above) K = 4. In an effort to tackle this problem, the sections respectively the

duration of |Dh,t| < 4 between two sections are defined dependent on h. As a result,

it is ruled out that another change point is found by mistake as the time where Dh,t

falls back into [−4, 4] is too short. But it will be possible to find decreasing (increasing)

steps.

2.2.3 Precision of the identified change point

Imagine a spike train with underlying nonstationary Poisson process which can be di-

vided into two parts with constant firing rate each. Having determined t̂c we would like

to know how well the time of the change has been pinpointed. This can be found out

by simulating several times Poisson processes of length T where the intensity changes

at a fixed time point tc. Having determined t̂c in every one of those simulations the

average and the standard deviation of t̂c is computed. This can be done for different

combinations of λ1 and λ2 (see table 2.1).
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λ1 λ2 |λ1 − λ2| R(λ1, λ2) Mean value [s] Standard deviation [s]

5 1 4 2.0 200.21 1.49

5 2 3 1.22 200.43 2.28

5 3 2 0.73 199.48 6.42

3 1 2 1.11 200.44 2.83

6 4 2 0.64 199.86 8.63

6 3 3 1.04 200.52 3.62

7 4 3 0.93 199.78 4.64

Table 2.1: Average and standard deviation of t̂c determined for different combinations

of λ1 and λ2 in 100 simulated poisson spike trains with T = 400s so that

tc = 200s. Only those rate combinations were examined for which the test

power is 99% by h = 150s at the latest.

It can be seen that for fixed |λ1 − λ2| the larger the rates the larger the standard

deviation which means that the estimate of tc varies more. In addition, for λ1 fixed

(here λ1 = 5) the time of the change can be more accurately pinpointed the larger

the distance to λ2. In conclusion, the estimate of the change point of the intensity is

more exactly for larger values of R(λ1, λ2) which means that the expectation of the

test statistic Dh,t in relation to its standard deviation is greater. For R(λ1, λ2) < 1 the

confidence interval for the time of the change is rather wide so that one has to expect

that the estimate of tc is not very exact.

2.2.4 Application to simulations

In order to evaluate the properties of our proposed test, it is applied to nonstationary

Poisson processes with different step rate functions. Here two examples will be given.

The illustrations demonstrate the results of the method on the left and the average

intensity in defined intervals with the true and the estimated step rate function on the

right.

Figure 2.11 presents an example where the first two rate changes (tc1 = 170s, tc2 = 195s)

were not detected i.e. H0 was erroneously not rejected in both cases. This can be at-

tributed to the short rate section lasting from 170s to 195s where the underlying Poisson

process has intensity λ2 = 3 with λ1 − λ2 = |λ2 − λ3| = 1.5 and a test power of only

10% for h = 25s. By contrast, the last two rate changes, tc3 = 300s and tc4 = 350s,

have been identified as the rate sections are longer and the differences between the rates

higher. Here the test power is 99% for h = 50s in both cases. The estimated change
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Figure 2.11: Outcome of the Step-Filter-Test and rate profile of a simulated nonstationary

Poisson process. The red line indicates the true rate function and the blue line

the estimated one out of the realization.

points differ from the true ones by at most 2s.

The second spike train includes seven rate changes. Six of them could have been pin-

pointed with |tci − t̂ci | < 2.7. The fourth rate change tc4 = 190s was not detected with a

test power of only 15.6% for h = 25s, λ4 = 3.8 and λ5 = 2.3. Here we have an example

of the case that it would not be appropriate if the method has to search alternately for

a peak in the region above 4 and one in the region below -4: as the forth rate change

was missed the lines do not cross the upper boundary in the time window [164s, 251s].

By defining the sections dependent on h the area around the third and fifth rate change

are identified as two independent ones because the duration of Dh,t < 4 in between is

long enough. So both changes, t̂c3 = 164s and t̂c5 = 251s, could have been detected.
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Figure 2.12: Outcome of the Step-Filter-Test and rate profile of a simulated Poisson process.

The red line indicates the true rate function and the blue line the estimated one

out of the realization.

2.2.5 Application to real data

In this subsection the Step-Filter-Test is applied to the data, namely spontaneous activ-

ity spike trains recorded from dopaminergic neurons in the substantia nigra of mice. In

order to demonstrate the capabilities of the proposed method, a selection of examples

will be presented. The data are labelled as described in table 1.1 in subsection 1.3.2.

Again, the illustrations show the results of the method on the left and the average

intensity in defined intervals with the estimated step rate function on the right.

1. Spike train “sn+ ko8”

The Step-Filter-Test detects three changes in the intensity, namely t̂c1 = 78s, t̂c2 = 339s

and t̂c3 = 499s, so that four sections can be separated. In each section the firing rate is

estimated and the resulting rate function is illustrated in figure 2.13 on the righthand-

side in form of the blue line with λ̂1 = 2.91, λ̂2 = 4.49, λ̂3 = 3.01, λ̂4 = 4.20.

For the second and third rate change h = 100s is needed in order to detect the changes

because the differences between the rates are at most 1.5. As the rate sections are long

enough this causes no problems. For the first rate change the large window sizes cannot

accurately pinpoint the change because of t̂c1 < 100s. Here, |λ̂1 − λ̂2| = 1.6 so that the

test power for h = 75s is still 85.7%.

2. Spike train “sn+ wt1”

Two rate changes are detected (see figure 2.14) yielding a short rate section of 27s with
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Figure 2.13: Application of the method to “sn+ ko8”. The left picture shows the identified

change points: 78s, 339s, 499s. The bar plot on the right presents the average

intensity in intervals of length 10s. The blue line marks the estimated step rate

function according to the located changes.

estimated firing rate 2.89 which is surrounded by two larger sections with estimated

firing rates about 5.81 so that all window sizes with h > 27s perform worse. As the

difference between the rates is nearly 3 one has a test power of 85.0% for h = 25s. Note

that for h = 10s the test power would only be 17.1% for the same rates.

3. Spike train “sn+ wt4”

The result of the application of the Step-Filter-Method provides five time points of rate

change so that the spike train can be separated into six sections (see figure 2.15). All

changes have been detected by h = 50s respectively h = 25s which can be attributed

to low rates (0.8 < λ̂i < 4.3) with sufficiently large differences between the rates. In

the area of the second rate change (327s) the small window sizes indicate that there

seems to be a decreasing intensity: for example the red lines falls back into [−4, 4] after

the time point 327s, goes down and then goes up again but fails to cross the boundary

K = 4.

4. Spike train “sn- ko2”

The analysis detects one rate change (see figure 2.16): t̂c1 = 364s. So one gets two rate

sections with intensities λ̂1 = 7.64 and λ̂2 = 6.03 with λ̂1− λ̂2 = 1.61. As the intensities

are higher the test power will only be bigger than 80% for h ≥ 125s. In addition, the

combination of high rates and small differences between the rates results in a greater

standard deviation concerning the estimation of the change point (see table 2.1).
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Figure 2.14: Application of the method to “sn+ wt1”. The left picture shows the identified

change points: 221s, 248s. The bar plot on the right presents the average in-

tensity in intervals of length 10s. The blue line marks the estimated step rate

function according to the located changes.
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Figure 2.15: Application of the method to “sn+ wt4”. The left picture shows the identified

change points: 68s, 327s, 490s, 611s, 637s. The bar plot on the right presents the

average intensity in intervals of length 10s. The blue line marks the estimated

step rate function according to the located changes.
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Figure 2.16: Application of the method to “sn- ko2”. The left picture shows the identified

change point: 364s. The bar plot on the right presents the average intensity in

intervals of length 10s. The blue line marks the estimated step rate function

according to the located change.

5. Spike train “sn- ko5”

Although there seems to be a short part around t = 300s with lower intensity the Step-

Filter-Test only detects a change at the end (t̂c1 = 849s) separating the spike train in a

long lasting section with λ̂1 = 4.85 and a short lasting section with λ̂2 = 2.2 (see figure

2.17). This change was detected by h = 50s as h = 25s is obviously too small, but it

can be suggested that h = 30s or h = 35s would have been pinpointed the change more

accurately than h = 50s because it seems that the length of the last section is less than

50s. In this case a finer adjustment of the smaller window sizes would have possibly

performed better.

With regard to the break in the intensity in the first identified rate section, H0 could

not be rejected as the lines do not cross the boundary. This example illustrates that

the assumption of an underlying Poisson process can limit the analysis as the spiking

is sometimes more regular than in the poisson case. Hence, it is often more realistic

to assume gamma distributed waiting times where the shape paramter κ allows for the

adjustment of regularity of the corresponding spike train (see chapter 1).

In the case of “sn- ko5”, if one describes the interval statistic by a gamma distribution,

it is κ > 1 indicating a more regular occurence of the events. As a consequence, the

range for which H0 is not rejected would be smaller, which means K < 4, so that rate

changes could have been detected more easily.
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Figure 2.17: Application of the method to “sn- ko5”. The left picture shows the identified

change point: 849s. The bar plot on the right presents the average intensity in

intervals of length 10s. The blue line marks the estimated step rate function

according to the located change.

6. Spike train “sn- wt4”

In this example, figure 2.18, the test identifies four changes in the intensity yielding a

separation of the spike train in five sections with estimated rates λ̂1 = 6.12, λ̂2 = 4.22,

λ̂3 = 6.18, λ̂4 = 4.1 and λ̂5 = 6.61. The first rate change, t̂c1 = 41s, could just be

detected by h = 25s. The other window sizes are too large for finding the change as

the first section has an estimated duration of 41s.

The fourth section consists of a short time where the intensity is lower, but this differ-

ence does not get significant i.e. H0 is not rejected. Here, one can observe an increasing

intensity from 476s to the end of the recording with approximately three steps where

the first one is not identified as the difference between the first two steps is too small

and the length of the sections short. This might be an example for an increase in the

intensity which the method cannot identify.
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Figure 2.18: Application of the method to “sn- wt4”. The left picture shows the identified

change points: 41s, 139s, 476s, 623s. The bar plot on the right presents the

average intensity in intervals of length 10s. The blue line marks the estimated

step rate function according to the located changes.

2.3 Conclusion of chapter 2

The goal was to detect rate changes in firing intensity of spike trains under the as-

sumption that the underlying probability distribution governing the number of spikes

in intervals of length h is poisson. The presented method is based on the difference

between normed spike counts in the adjacent time intervals [t − h, t] and (t, t + h] for

different window sizes h and t ∈ [h, T − h].

The main quantities influencing the performance of the test are the length of the rate

sections, the hight of the rates in the two respective intervals and the difference between

them. Generally, the test power is smaller if the rate sections are short as only small

window sizes can locate the change. In addition, for a fixed window size h a small

relative difference (the difference in relation to the hight of the rates) causes a lower

test power. The reason is that very small differences in the intensity like |λ1 − λ2| < 1

are expected by chance in a Poisson process so they have a low probability to be de-

tected. As the variance of spike counts is the greater the higher the rate parameter of

the Poisson process, it is obviously that for the same |λ1 − λ2| the difference between

higher rates has a lower probability to be detected. But the probability grows when

the rate sections are longer as larger window sizes can locate them. With respect to the

quality of the estimate of the change point it can be concluded that the test performs
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slightly better when the relative difference is large as the confidence interval for the

point in time of the change is smaller.

The practicability of the method has been tested in simulations and by applying the

method to real data. It can be concluded that the test is suitable for the detection of

rate changes in spike trains provided that the intensity can be well approximated by a

step rate function. The result suggests that for steps like |λ1 − λ2| < 1 the test power

is in most cases too small. This means that an increase (decrease) in the intensity can

hardly be identified as the approximated steps will be small.





3 Graphical approaches for the

detection of rate changes

This chapter presents different ways to detect changes in the intensity of spike trains

with underlying nonstationary Poisson process. They have been developed while work-

ing on a practical method which allows to locate changes in the intensity. First of all the

approaches will be described and applied to simulations in order to demonstrate their

capabilities through a number of examples. Afterwords they are one by one applied to

the data so that their practicability can be compared.

3.1 Variability of spike counts

Consider a spike train generated by a stationary Poisson process with constant rate

parameter λ. Dividing the spike train of T seconds in n disjount intervals of h seconds

the expected number of spikes in each interval is λh. Because of the properties of a

Poisson process the variance of the number of spikes is also λh and, divided by h, it is

λ ∀ h. Therefore, it is expected that for an arbitrary division of the spike train when

counting the number of spikes in all intervals the variance of spike counts divided by h

is λ. In the following the interest lies on the variability of spike counts in spike trains

representing realizations of nonstationary Poisson processes. It will be expected that

for those interval lengths h which divide the spike train into its different rate sections

the variance of spike counts is maximal.

3.1.1 Estimation of the variance of spike counts

Imagine a spike train modeled by a nonstationary Poisson process with step rate func-

tion r(t). The observed interspike intervals (ISIs) Yi are exponential distributed with

37
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Yi ∼ Exp(λ1) in the first half and Yi ∼ Exp(λ2) in the second half of the spike train.

So r(t) can be written as:

r(t) =







λ− a for t ∈
[
0, 1

2
T
]
;λ, a ∈ R

λ+ a for t ∈
(
1
2
T, T

]
;λ, a ∈ R

For the computation of the variability of spike counts the spike train is divided into

2n disjoint intervals (n ∈ N) each of which has length h with T = 2n · h (see figure

3.1). The spikes in the ith observation window are poisson distributed according to a

random variable Ni, i = 1, . . . , 2n whereby

N1, . . . ,Nn are independent and Pois((λ− a) · h)-distributed
Nn+1 . . .N2n are independent and Pois((λ+ a) · h)-distributed
In this process, it is ruled out that in an interval spikes occur with a rate composed of

λ1 and λ2.

0 5000 10000 15000 20000 25000 30000

time [ms]

λλ1 == 3.5

λλ2 == 6.5

λλ −− a

λλ

λλ ++ a

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Figure 3.1: Simulated spike train with T=30s which is divided into 10 intervals of 3 seconds

(n=5). The ISIs in first half of the spike train are Exp(λ1)- and in the second

half Exp(λ2)-distributed.

Now the expected empirical variance of spike counts, which depends on n and h and

will be denoted by Vh,n, is computed.

Vh,n = E

[

1

(2n− 1)

2n∑

i=1

(
Ni − N̄

)2

]

=
1

(2n− 1)

2n∑

i=1

E
[(
Ni − N̄

)2
]

(3.1)

In order to simplify this calculation the summands are looked at separately whereby

two cases can be distinguished:

1. i=1 ⇒ N1 is representative for N2, . . . ,Nn because they are i.i.d

2. i=2n ⇒ N2n is representative for Nn+1 · · ·N2n−1 because they are i.i.d
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First case: i=1

E
[(
N1 − N̄

)2
]

= E





((

1− 1

2n

)

N1 −
1

2n

2n∑

i=2

Ni

)2




= Var

[(

1− 1

2n

)

N1 −
1

2n

2n∑

i=2

Ni

]

︸ ︷︷ ︸

part (a)

+

(

E

[(

1− 1

2n

)

N1 −
1

2n

2n∑

i=2

Ni

])2

︸ ︷︷ ︸

part (b)

For a better overwiev the two parts (a) and (b) are looked at separately.

(a)

(
2n− 1

2n

)2

Var [N1] +
1

4n2
[(n− 1)Var [N1] + nVar [N2n]]

=
(2n− 1)2

4n2
(λ− a)h+

(n− 1)

4n2
(λ− a)h+

n

4n2
(λ+ a)h

=
1

4n2

[
(2n− 1)2 (λ− a)h+ (n− 1) (λ− a)h+ n (λ+ a)h

]

=
1

4n2

[(
4n2 − 2n

)
λh−

(
4n2 − 4n

)
ah
]

=
(2n− 1)

2n
λh− (n− 1)

n
ah

(b)

[(
2n− 1

n

)

E [N1]−
1

2n
((n− 1)E [N1] + nE [N2n])

]2

=

[
2n− 1

n
(λ− a)h− 1

2n
[(n− 1) (λ− a) + n (λ+ a)h]

]2

=
1

4n2
[(2n− 1) (λ− a)h− (n− 1) (λ− a)h− n (λ+ a)h]2

=
1

4n2
(−2nah)2 = a2h2

Putting the results of (a) and (b) together equation 3.1 for i=1 is

E
[(
N1 − N̄

)2
]

=
(2n− 1)

2n
λh− (n− 1)

n
ah+ a2h2 (3.2)

Second case: i=2n

The computation of the variability for i=2n is analogous to the first case and equation

(3.2) transforms to

E
[(
N2n − N̄

)2
]

=
(2n− 1)

2n
λh+

(n− 1)

n
ah+ a2h2 (3.3)
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So the two cases differ from each other only with regard to the sign of the middle term

and inserting the extensions into equation 3.1 yields

Vh,n =
1

(2n− 1)

2n∑

i=1

E
[(
Ni − N̄

)2
]

=
1

(2n− 1)

(

nE
[(
N1 − N̄

)2
]

+ nE
[(
N2n − N̄

)2
])

=
n

(2n− 1)

(
2(2n− 1)

2n
λh+ 2a2h2

)

= λh+
2n

(2n− 1)
a2h2 (3.4)

In order to get comparable results for the different divisions of the spike train equation

3.4 has to be divided by h:

Vh,n

h
= λ+

2n

(2n− 1)
a2h (3.5)

Note that at the beginning the spike train was divided into 2n intervals with n =

1, 2, . . . , T
2
. For a given n the length of the intervals h can be derived from h = T

2n
. This

means that equation 3.5 is only exact for those window sizes h which arise from a given

n. In addition 2n can be replaced by 2n = T
h
so that only one variable is left.

Vh

h
= λ+

T

(T − h)
a2h (3.6)

Equation 3.6 shows that the empirical variance increases with growing h. It will take

its maximum in h = T
2
which is the last possible window size for which the spike train

can still be divided in two intervals.

3.1.2 Application to simulations

On the left in figure 3.2 the black triangles mark the theoretical values of the empir-

ical variance of spike counts (see equation 3.5) for designated h as a function of the

number of intervals. The parameter T , a and λ are taken from the underlying Poisson

process of the simulated spike train where the results for the variance divided by h for

h ∈ {1, 2, . . . , 350} are presented by the blue points in figure 3.2. Note that the division

does not work out precisely when n = T
2h

/∈ N. In this case the end of the spike train is

truncated so that an exact division in n ∈ N intervals of h seconds is possible. Often the

reduction of the whole length of the spike train causes that the variance falls strikingly

because a long part of one rate section is cut away if the window size is large (see figure
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Figure 3.2: Variability of spike counts (filled blue circles) for different values of h of a simu-

lated Poisson process with T = 700s, a = 1.5, λ = 5. The black triangles mark

the estimated empirical variability
Vh,n

h
. On the right the estimated intensity in

intervals of length 50s and the true rate function r(t) are presented.

3.2: n = 3 → n = 2 at time point t = 234). This phenomenon is also exemplified in

figure 3.3: reducing the number of intervals by one, like n = 4 (h = 163) to n = 3

(h = 164), causes a decrease in the variance.

In summarising it can be stated that the variability increases until h comprises the

whole rate section, namely h = T
2
, which is the moment of the rate change. Note that

for growing h, the number of intervals decreases so that finally the variance is computed

over two intervals which means that the computation is not very stable.

When applying the method to simulated spike trains with underlying Poisson processes,

it can be seen that the theoretical findings can only be extended to other step rate func-

tions when all steps respectively all rate sections have the same length l or when the

intensity changes only once. In those cases the variability increases for growing h until

h = l in accordance to the theoretical results which means that the window size for

which the empirical variance is maximal, termed hmax, equals the time scale on which

the rate changes (see figure 3.3). However, if the length of the rate sections differ from

each other then hmax is not very meaningful. It gives only the information that for this

window size the division in sections with equal length yields the maximal variability of

spike counts but it is not possible to directly point to the course of the intensity.

To get further information one can apply the method again to those parts of the spike

train which have been obtained after the separation according to hmax. However, it is

still difficult to draw conclusions from the identified hmax in each part as the interpre-

tation of the empirical variance-profile is ambiguous.
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Figure 3.3: Variability of spike counts for two simulated spike trains modeled by Poisson

processes with different intensities. Left: the four rate sections have all length l =

100s which equals the window size for which the empirical variance is maximal;

Right: the four rate sections differ in their length. Here, the window size which

causes the maximal variance (h = 159s) is the one for which the spike train can

just be divided in four parts (see dashed lines in the rate profile).

To sum up, the hope to identify different time scales on which the intensity of the un-

derlying Poisson process changes based on the calculation of the empirical variance of

spike counts has not been fullfilled. The greatest deficit of the method is the division of

the spike train in nonoverlapping intervals, so that the interpretation of the results con-

sidering the rate changes has no theoretical foundation if the lengths of the individual

sections differ. In addition, the number of intervals decreases very quickly for growing

h so that the computation of the empirical variance is not stable from a certain window

size. Moreover, the division of the spike train in disjoint intervals is often incomplete

so that the empirical variance falls only as a consequence of not including the whole

spike train into the calculation.

As a result, the next approach compares spike counts in overlapping intervals which

makes it possible to visualize changes in the intensity of spiking although they happen

on different time scales.
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3.2 Comparison of normed spike counts in overlapping

intervals

Consider now, that a spike train is divided into overlapping intervals of length h[s]. We

count the number N of spikes in the intervals [1, h+1]; [2, h+2]; . . . ; [T − h, T ] so that

one gets Ni = N(i− 1, h+ i− 1) for i = 1, 2, . . . , nh with nh = (T − h) + 1. Afterwards

the spike counts are standardised by the estimated intensity of the underlying Poisson

process λ̂ =
N(T )

T
yielding

Zh
i =

Ni − λ̂h
√

λ̂h

This can be done for different window sizes h with h = 1, 2, . . . , T
2
so one gets all in

all n1 · n2 · . . . · nT/2 values for Zh
i . Next, out of all these values 3000 are taken ran-

domly and afterwords the corresponding h is plotted against Zh
i (see figure 3.4). For

the presentation of the points (h, Zh
i ) a colour-code is used which shall help to identify

the position of the interval to which the selected Zh
i belongs:

• red point ⇒ the belonging interval [a, b] is from the first part so 0 ≤ a < T
2
− h

and h ≤ b < T
2

• green point ⇒ the belonging interval [a, b] is from the middle part so T
2
−h ≤ a ≤

T
2
and T

2
≤ b < T

2
+ h

• blue point ⇒ the belonging interval [a, b] is from the posterior part so T
2
< a <

T − h and T
2
+ h < b ≤ T

Figure 3.4 exemplifies the realization of the procedure described above by means of two

simulated Poisson processes with different intensities.

In the first case, a Poisson process with constant firing rate, the points fluctuate around

zero with E[Zh
i ] = 0 and Var[Zh

i ] = 1 according to the standardisation. But it can be

seen, that for smaller window sizes the variation of the points is greater which can be

attributed to averaging over smaller time intervals and having more nonoverlapping

windows i.e more independent Zh
i .

In the second case the intensity of the Poisson process changes at time T
2
whereby in the

first half of the time the intensity is smaller than in the second half, i.e. λ1 < λ̂ < λ2 .

This can be seen in the figure as only the red points lie under and only the blue points

above the zero baseline. The green points belong to intervals which contain the time

point of the rate change so both rates are included each time with different shares. In

addition the blue respectively red points fluctuate around an imaginary line which can
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be described as a root function given by fi(h) = ci ·
√
h according to the expectation of

Zh
i

E[Zh
i ] =

E[Ni]− λ̂h
√

λ̂h
=

λi − λ̂
√

λ̂
·
√
h

so the parameter ci can be identified as

c1 =
λ1 − λ̂
√

λ̂
and c2 =

λ2 − λ̂
√

λ̂
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Figure 3.4: Left: Normed spike counts of a Poisson process with intensity λ(t) ≡ 5 and

f(h) = E[Zh
i ] ≡ 0. Right: Normed spike counts of a Poisson process where the

rate changes at time T
2 with characteristic root function fi(h) = ci ·

√
h (see text).

Having more then one rate change the red, blue and green points will intermingle and

one can see characteristic structures which allow to make an educated guess concerning

the intensity of the underlying Poisson process in comparison to λ̂ in the first, middle

and posterior part of the spike train. For example in figure 3.5 one can conclude that

the intensity is smaller than λ̂ for a long time in the first part as red points are going

down approximately from 0 for h = 1s to -10.5 for h = 180s. But there seems to

be an interval with intensity bigger than λ̂ as well because some of the red points are

also above the zero baseline. In the middle of the spike train the intensity seems to be

bigger than λ̂ and the posterior part includes intensities smaller as well as bigger than

λ̂ as blue points are above and below the zero line whereas this is only true for smaller

window sizes. For higher values of h the blue points are only above the zero line so one

can conclude that the rate section of the lower intensity is not so long.

It has been learned that one has to search for characteristic lines in the cluster of points

as it has already been indicated before when identifying the square root functions in
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Figure 3.5: Presentation of the normed number of spikes as points of a simulated spike train

with three changes in the intensity (SRF3). The firing rate is illustrated on the

right.

figure 3.4. For example, in figure 3.5 the red points going down approximately from 0

for h = 1s to -10.5 for h = 180s can be connected by a line indicating that there is a

rate section with intensity smaller than λ̂ lasting about 180s.

This idea will be persued in the following where the presentation of the normed spike

counts as points is replaced by characteristic lines which provide further information

and finally improve the visualization of the course of the intensity.

3.3 Visualization of the course of the intensity

Let k be chosen randomly out of [2, T −2] and taken as the centre of a series of intervals

with growing length in the following way

1. k ∈ [0, T
2
] ⇒ [k − 1, k + 1]; [k − 2, k + 2]; . . . ; [0, 2k]

2. k ∈ [T
2
, T ] ⇒ [k − 1, k + 1]; [k − 2, k + 2]; . . . ; [T − 2k, T ]

For every interval the number of spikes is determined and normed in the way described

before. After that, the length of the corresponding intervals is plotted against the

normed spike counts and one will get a line describing the progress of the intensity

originating from k. This means that as long as [k − i, k + i], i ∈ {1, 2 . . . , nk} with nk

depending on the position of k in the spike train (see cases above), contains no rate

change the line is approximately a square root function f(h) = c ·
√
h with c =

λj − λ̂
√

λ̂
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where λj is the intensity of the relevant rate section. But if [k − (i + 1), k + (i + 1)]

for some i between 1 and nk covers a rate change then there will be a break in the

characteristic root function at time h = 2 · i. So if one identifies the break-point hb = 2i

one can compute an estimation of the moment of the rate change:

t̂c =







k + 0.5 · hb for tc > k

k − 0.5 · hb for tc < k

As an example, figure 3.6 shows the characteristic lines for 4 · 5 randomly selected k

out of the four parts of the spike train (see colour-code below).
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Figure 3.6: Presentation of the normed number of spikes as lines (see text). The x-axis indi-

cates the length of the interval.

The length of a line corresponds to the position of k: for k in the front or posterior part

the lines are shorter because of getting sooner to 0 or T when expanding the interval.

In addition a colour-code is used again in order to be able to assign k to a specified

time window:

• red lines ⇒ k ∈ [0, T
4
]

• yellow lines ⇒ k ∈ (T
4
, T
2
]

• blue lines ⇒ k ∈ (T
2
, 3T

4
]

• green lines ⇒ k ∈ (3T
4
, T ]

In order to describe the intensity of the underlying Poisson process of the spike train

presented in figure 3.6 by means of the lines, one has to start at the beginning i.e. with
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the red lines. It can be seen that at the beginning the intensity is smaller than λ̂ as the

red lines are below zero. For determining the first moment where the intensity changes

one has to look for the break-points. For example, taking the red line which belongs to

k = 100 it is hb = 132 and therefore one can assume that t̂c1 = 100 + 0.5 · 132 = 166.

As long as k < tc1 the yellow lines are also below zero but for k > tc1 they are above

zero as the intensity in the second rate section is bigger than λ̂. Again the break-points

can be identified. As the second rate section is sourrounded by two others one has

to consider that depending on the position of k the intensity in [k − i, k + i] can be

influenced from both sides (see figure 3.7):

1. t̂c1 = k − 0.5 · hb for |k − tc1 | < |k − tc2 |

2. t̂c2 = k + 0.5 · hb for |k − tc1 | > |k − tc2 |
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Figure 3.7: For k1 = 120s the identification of hb = 40s would lead to t̂c1 and for k2 = 180s

to t̂c2 .

To conclude, it is much effort to approximate the course of the firing rate with the

described graphical technique. In order to resolve this problem, the interval [k, k + 1]

(h = 1s) with origin k is only expanded in the right direction so that the break-points

can immediately be assigned to changes in the intensity of spiking.
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3.4 Identification of the break-points as potential

change points

After having chosen a random k out of [0, T − 1] the following series of intervals are

considered:

[k, k + 1]; [k, k + 2]; . . . ; [k + k + h]; . . . ; [k, T ]

with window sizes h = 1, . . . , T . In every one of those intervals the spikes are counted

and afterwards the numbers are normed as described above. When presenting the re-

sulting Zk
h the allocated value on the x-axis will be the end point k+h of the particular

interval (see figure 3.8). As long as [k, k + h], i = 1, 2, . . . , T , contains no rate change

the values for Zk
h will approximately describe a square root function f(h) = c ·

√
h with

c =
λj−λ̂√

λ̂
where λi is the intensity of the relevant rate section. Once [k, k + h] contains

two different intensities there will be a break in the line as the Zk
h will no longer vary

around the expected root function. The break-point can immediately be taken as an

estimator for the moment of the rate change.

Figure 3.8 shows the application of the method to the simulated Poisson process from

above (figure 3.6) whereby 30 values for k have been selected randomly out of [0, T −1].
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Figure 3.8: Presentation of the normed number of spikes (blue lines) of a spike train modeled

by a Poisson process with three changes in the intensity (SRF3). The dashed

lines mark the true change points of the intensity (tc1 = 166.84, tc2 = 345.11,

tc3 = 441.76) which correspond to the particular break-points. The red lines are

those which one can expect for the first rate change.

The true point in times of the rate changes are marked by the dashed lines and one
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can see that the break-points of the lines match. In addition, the red lines show for the

first rate change tc1 = 166.84 the course of the Zk
h in expectation. Hence

E[Zk
h ] =







λ1 − λ̂
√

λ̂

√
h for h ≤ (tc1 − k)

(λ1 − λ2)(tc1 − k)
√

λ̂h
+

λ2 − λ̂
√

λ̂

√
h for h > (tc1 − k)

with h = window width, λi = intensity of the ith rate section and λ̂ = average intensity

of the whole process.

For every k ∈ {0, 1, 2, . . . (T − 1)} (for every line) the break-point can be identified.

Therefore, the minimum respectively maximum depending on whether the line starts

below or above zero is determined (see figure 3.9). Here Zk
5 =

N(k, k + 5)− λ̂

λ̂
is taken

as the indicator for the decision whether to take the minumum or maximum in order to

avoid false decisions caused by random variations like Zk
1 > 0 although the intensity of

the rate section is smaller λ̂. Having identified all break-points it seems to be reasonable

to take only the accumulation points as estimators for tci (see figure 3.9).
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Figure 3.9: Left: Normed number of spikes of a spike train modeled by a Poisson process with

three changes in the intensity (SRF3). Right: Identified break-point of every line

(starting point k) with red point =̂ Z5 > 0 and blue point =̂ Z5 < 0.

However, problems occur if the minima or maxima cannot clearly be identified like

having a rate section where the intensity is nearly λ̂ or having peaks which dominate

so that others are not considered. In addition, having a homogeneous Poisson process

one can also identify break-points which sometimes cumulate in one point in time so

that a rate change could erroneously be assumed.
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In order to decide for every identified break-point wheather or not to reject stationarity

of the firing rate (null model) a decision rule has to be developed. In an attempt to

establish a statistical test the Step-Filter-Method (see chapter 2) was developed.

3.5 Application to real data

The spike train “sn- wt8” is chosen in order to exemplify the practical use of the de-

scribed methods.

3.5.1 Empirical variance of spike counts

Figure 3.10 shows the determination of the length of the interval h for which the em-

pirical variance of the number of spikes is maximal (hmax). Taking this window size,

namely hmax = 87s, as time scale on which the firing rate changes one can divide the

spike train into sections of length 87s and compute the intensity in there. The resulting

rate function can be seen in figure 3.10 in form of the blue line.
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Figure 3.10: Left: Empirical variance of spike counts for different window sizes h. Right:

Rate profile of “sn- wt8”. The blue line marks the average intensity in inter-

vals of length hmax = 87s =̂ window size for which the empirical variance is

maximal.

Obviously, this rate profile does not fit very well to the true course of the intensity (see

for example the intensity of “sn- wt8” around the time point t = 400s) so it can be

concluded that the division in sections of equal length is not appropriate.
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3.5.2 Visualization of the course of the intensity

The presentation of the normed spike counts determined out of overlapping intervals

makes it possible to describe the progress of the intensity in comparison to the esti-

mated intensity of the whole spike train λ̂ =
N(T )

T
.

In the cluster of points one can see that in the first part (red points) seems to be rate

sections of intensity bigger as well as smaller λ̂. Near (T/2) (green points, small h)

the intensity is bigger than the λ̂ and in the posterior part (blue points) one can again

assume intensities smaller and bigger than λ̂.
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Figure 3.11: Presentation of a random sample of normed spike counts as points where the

x-axis indicates the length of the interval.

However, the points alone do not visualize the whole course of the intensity. The extra

information in terms of the characteristic lines originating from different time points k is

necessary. They show in which way the normed spike numbers change when expanding

the interval around k.

For the dataset “sn- ko8” one finds that the intensity right at the beginning is bigger

than λ̂ for about 180s as all red lines start above zero. It follows a section with lower

spiking (the red lines go down and the yellow lines start below zero). This one seems to

be shorter because there are yellow lines (those where k is near T/2) which start above

zero as well indicating a section with intensity bigger than λ̂. After that there is again

a short section with lower intensity (the long blue lines start below zero) whereon one
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with higher intensity follows which lasts longer (blue lines and green lines start above

zero). As there is also a green line below zero it seems that in the end the intensity

goes down again.
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Figure 3.12: Characteristic lines originating from different time points k. The x-axis indicates

the length of the interval.

Having a description of a possible course of the intensity the goal is now to determine

concrete change points of the intensity.

3.5.3 Identification of break-points as potential change points

Figure 3.13 shows the identified break-points for 400 randomly selected k ∈ [1, T − 5].

It seems that the one between 261s and 436s could not have been detected because the

three break-points afterwards (the red ones) dominate so that all lines with k > 216s

starting above zero have their maximum at 544s, 583s or 611s. Here it is not clear which

break-point is the true point in time where the intensity changes. For the estimation

of the intensity (see image down right) the last one (611s) was taken as it is the one

where the most points accumulate.

However, one cannot make significant statements about the estimated change points

as it is not clear whether the break-points have to be taken seriously or not. In an

attempt to adress this problem the Step-Filter-Method is applied to the spike train
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Figure 3.13: Left: Normed spike counts in intervals originating from k. Top right: Identified

break-points which can be taken as potential change points. Down right: rate

profile with estimated rate function out of the identified break-points (blue line).

“sn- wt8”.

Step-Filter-Test

The test detects five rate changes: t̂c1 = 207, t̂c2 = 263, t̂c3 = 406, t̂c4 = 431, t̂c4 = 626.

So the spike train can be divided into six sections where stationarity of the firing rate

can be assumed: λ̂1 = 3.35, λ̂2 = 1.18, λ̂3 = 3.43, λ̂4 = 0.88, λ̂5 = 3.65, λ̂6 = 2.05. The

fact that the intensity in all sections is comparatively low and the differences between

the rates are more likely to be larger (relativ difference is large) indicates that the

confidence intervals for the times of the change are tighter i.e. the change points have

been accurately pinpointed. In addition, the asymptotic test power is for nearly all

window sizes and all t̂ci bigger than 80%.
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Figure 3.14: Application of the Step-Filter-Test to “sn- wt8”. The left picture shows the

identified change points. The bar plot on the right presents the average intensity

in intervals of length 10s. The blue line marks the estimated step rate function

according to the located changes.

3.6 Conclusion of chapter 3

In the present chapter four methods were outlined which share the problem that they

provide meaningful illustrations concerning the course of the intensity, but lack the

identification of concrete change points and their statistical evaluation.

The method of calculating the empirical variance for different window sizes is not flex-

ible as it is only practicable for some types of spike trains, namely those which include

only one rate change or one time scale on which the rate changes several times like every

100 seconds. Otherwise interpretational ambiguity may arise which can lead to a false

division of the spike train. As one does not know to which case the spike trains belongs

it is impossible to conclude whether the identified hmax has to be taken seriously or not.

By comparing normed spike counts in overlapping intervals with different lengths, it is

possible to draw conclusions about the course of the intensity independent of the type

of the rate function. First of all, two graphical methods were developed:

1. Presentation of the normed spike counts in a scatter plot where the abscissa repre-

sents the length of the corresponding interval. The colour-code makes it possible

to conclude which intensities the first, middle and posterior part contains. But

one cannot define exactly the course of the intensity.

2. An improvement was given by connecting those points for which the corresponding

intervals have the same centre k. This means that the resulting lines show the
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development of the intensity expanding the interval symmetrical around k. So one

is able to describe approximately how the intensity changes during the recording.

But, it is very complex to define an estimate of the time of the change on the basis

of this illustration, as a change in the average intensity of the current interval can

be caused from the left and from the right side.

Expanding the interval originating from k only to the right, it is possible to identify

the break-points of the corresponding lines which can be taken as candidates for change

points in the intensity. For every identified break-point one has to decide whether or

not to reject stationarity of the firing rate (null model). This procedure could be con-

strained to the accumulation points as they are more convincing, but then one has to

accept to miss a rate change. The benefit of the method is, that it provides concrete

estimates for change points which can be evaluated on the basis of subjective criteria

in order to determine which one has to be taken seriously. Problems occur, as not all

break-points are unambiguous and in a spike train with stationary firing rate one can

also identify break-points which seem to be plausible. Objective criteria are needed to

decide if stationarity can be rejected with a high probability. Another problem is that

global peaks sometimes cover local peaks so that break-points are not identified and

change points missed.

To conclude, all these methods contribute to the detection of rate changes, but it is

only possible to evaluate changes in the intensity on the basis of subjective criteria. In

comparison to traditional inspections of interspike intervals or average intensities the

methods can be rated as more powerful concerning the illustration of changes in the in-

tensity as normed spike counts allow to define characteristic structures like break-points,

which make it possible to observe changes in the intensity.





4 Discussion

Spike trains are often considered to arise from stationary point processes whereby the

assumption of stationarity is focussed almost exclusively upon the firing rate. As the

behaviour of a neuron can change during the course of the observation, most of the

models oversimplify the statistics of the investigated spike train. As a consequence,

interpretational ambiguity may arise which can lead to biased results in several signal

analysis methods. This diploma thesis is concerned with the problem of nonstation-

arity of the firing rate. The goal was to detect rate changes in spike trains under the

assumption that the probability distribution governing the ISIs is exponential and that

the spike train can be divided into parts with constant firing intensity.

On the basis of graphical techniques which allow to represent the course of the fir-

ing intensity but missed to statistically determine concrete change points, a statistical

method is proposed here and developed jointly with a suitable graphical representation

of nonstationarity.

4.1 Different approaches for the detection of rate

changes

In chapter 3 several techniques for the detection of rate changes were presented. The

variance-method is not useful in practice as it only works in special cases like an

intensity with one rate change. The other three introduced methods (points, lines,

break-points) work with normed spike counts and are built on each other in the way

that they represent improvements. They provide impressing illustrations of the

intensity and one can learn to interpret the graphics so that the course of the intensity

can be reconstructed. However, the determination of the intensity function is partly

subjective and time consuming so that in view of the growing amount of spike data

the methods are not appropriate.

In chapter 2 a fast and automatic way for the detection of rate changes was established

and its performance illustrated. The developed test is based on normed differences

57
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between spike counts in adjacent intervals [t − h, t] and (t, t + h] for different window

sizes h and t ∈ [h, T − h]. The test statistic was defined as

Dh,t =
(N1 −N2)
√

(N1 +N2)

so that in the case of a stationary Poisson process (null model) the expectation is 0

with variance 1.

The critical value for the decision whether or not to reject the null model was de-

termined in simulations. The criterion was that in 1000 simulated stationary Poisson

processes with parameter λ the method observes only in 10 simulations that Dh,t crosses

the boundary (1%-significant level). The determined critical value was K = 4. It has

to be taken into account, that the Poisson-assumption is not appropriate for every

spike train. In several cases it will be more convincing to approximate the interspike

intervals by a gamma distribution with shape parameter κ (κ = 1 corresponds to the

Poisson-model). In comparison to κ = 1 for κ > 1 (more regular process) it can be

expected that one observes K < 4 (1%-significant level) as the occurence of spikes is

more regular respectively less variable. As a consequence, K = 4 is quite strict when

it comes to decide whether or not to reject the null hypothesis so that changes in the

intensity are more likely to be missed.

Moreover, the simulated spike trains had all length T = 700s, which is approximately

the length of the spike trains of the real data, and the window sizes were chosen as

h = 10s, 25s, . . . , 150s. This means that the determined boundary is linked to this

condition as T and h determine the number of time points t, for which the test statistic

can be evaluated e.g. if T is large then there are more time points for which Dh,t can

be evaluated and this would result in a higher probability of |Dh,t| > K.

With respect to the application of the method, first of all the size of the windows were

defined. The leading point for the choice was the balance between small window sizes

(0-100s) to detect short rate sections at all and large window sizes to detect those differ-

ences which have otherwise a small probability to be found under the assumption that

the rate sections are long enough. In order to have a clear presentation of the results

the number of window sizes was restricted.

Finally the choice of the seven window sizes was based on the results of the evaluation

of the test power: the chosen window sizes provide an asymptotic test power of 80%

for a wide range of rate combinations with 0.8 < λi < 8 which are the firing intensities

observed in the data. In addition, h > 150s is not absolutely essential because of the

strong preconditions: for rate differences which could only be found by h > 150s both

rate sections have to be longer than 150s as well which does not occur very often as

the length of the recording time is T ≈ 720s.

It has been taken into account, that sometimes a finer adjustment of small window
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sizes provides more precise results (see spike train “sn- ko5”). As small window sizes

can also detect long rate sections they will always be more important. Large window

sizes are only necessary when the rate sections are long and the relative differences

between the rates small. A solution would be to separate the illustration of the results

and the automatical detection of the rate change like taking several window sizes for a

good estimation and afterwords only those curves are illustrated which have detected

the change. However, this makes the method more complicated and the illustration

contains not the full information any more.

The estimate of the ith change point was defined as t̂
h∗

i
ci with h∗

i the smallest window

size for which the ith rate change could have been located. Here are other definitions

possible like the average over all t̂
hj

ci with h1 = 10s, . . . , h7 = 150s which is too impre-

cise in several cases as large window sizes are only appropriate for accordingly long rate

sections. Another possibility would be to take the estimate of the window size with

maxh(|Dh,t|). This might be a problem because not all window sizes are considered so

that the optimal window size is not always included in the estimation and therefore it

can happen that this definition provides imprecise results.

The quality of the estimate of the change point depends on the hight of rates and the

difference between them. The test performs slightly better if the relative difference

between the rates is large as the variability of the estimate is small. Note that this has

been shown in simulations for a few rate-combinations so that one can only assume a

trend.

Having located changes in the intensity, the spike train can be separated into sections

where stationarity of the firing rate is justified under the assumption that the intensity is

approximately a step rate function. However, for a decreasing (increasing) intensity the

estimated step rate function consists of steps with small rate differences (|λi−λi+1| < 1)

which are not likely to be pinpointed because of the low test power. Only a rough esti-

mate of the intensity like an approximation by two or three steps might be found (see

spike train “sn- wt4”). This depends on the duration of the decrease and on the slope

of the rate function. For example, for short sections and slowly decreasing intensities

only one rate change might be detected at all.

4.2 Outlook

This diploma thesis provides a first attempt to detect concrete change points in the

intensity which enables us to divide the present spike train into parts where stationar-

ity of the firing rate can be assumed. Here, the spike time arrivals were described by

a Poisson process which is not always appropriate. The method has to be transferred
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to the more general case: the approximation of the interspike intervals by a gamma

distribution. Therefore, one has to determine a new boundary K for the decision rule.

As it was mentioned before for κ > 1 one can expect K < 4. However, for every shape

parameter κ a boundary has to be determined which makes it more complicated as one

does not know the true κ and the parameter can change during the course of observa-

tion. Further study is necessary in order to investigate if it is possible to expand the

method with little effort.

In addition, the problem that a continuous decrease (increase) in the intensity can only

poorly be approximated by a step rate function has to be tackled. Maybe the com-

parison of two adjacent intervals has to be extended, so that the difference during the

decrease gets more conspicuous.

In summary, the Step-Filter-Test is an easily applicable method to statistically deter-

mine concrete change points in the firing intensity jointly with a suitable graphical

presentation. It could be used as preprocessing method, in order to handle the problem

of nonstationarity of the firing rate when analysing spike trains.
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