A unitying functional approach towards

synaptic long-term plasticity

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Johann Wolfgang Goethe-Universitét

in Frankfurt am Main

von
Daniel Krieg

aus Frankfurt am Main

Frankfurt (2012)
(D 30)



vom Fachbereich Physik der

Johann Wolfgang Goethe-Universitit als Dissertation angenommen.

Dekan: Prof. Dr. Joachim Stroth

Gutachter: Prof. Dr. Jochen Triesch, Prof. Dr. Matthias Kaschube

Datum der Disputation: 27. Mai 2013



“I can live with doubt, and uncertainty, and not knowing.
I think it’s much more interesting to live not knowing

than to have answers which might be wrong.”

Richard P. Feynman



Danksagungen

Ich m&chte mich bei allen Personen bedanken, die zur Entstehung dieser Dis-
sertation beigetragen haben. Der grofite Dank gilt dabei meinem Betreuer und
Doktorvater Herrn Prof. Dr. Jochen Triesch, der mich trotz meiner geringen
Vorkenntnisse in den Neurowissenschaften in seine Arbeitsgruppe aufnahm.
Sein mir entgegengebrachtes Vertrauen war fiir mich stets eine grofe Bestéti-
gung. Ich danke ihm sowohl fiir den Freiraum, den er mir bei der Verfolgung
eigener wissenschaftlicher Ideen gewihrte, als auch fiir die verldssliche Un-
terstiitzung durch seinen Rat, die konstruktive Kritik und die inspirierenden
Diskussionen. Ich werde diese drei Jahre auch aufgrund der angenehmen und
kollegialen Atmosphére in sehr positiver Erinnerung halten.

Fiir die bereitwillige Ubernahme des Zweitgutachtens bedanke ich mich her-
zlich bei Herrn Prof. Dr. Matthias Kaschube.

Desweiteren gilt mein Dank meinen Kollegen des Bereichs Neurowissenschaf-
ten am FIAS fiir den kreativen, wissenschaftlichen Gedankenaustausch iiber
die fachspezifischen Grenzen hinweg und die positive, angenehme Atmosphire.
Insbesondere danke ich Thomas Weisswange fiir die Diskussionen und das
Feedback zum Hauptprojekt meiner Arbeit und Marc Henniges fiir die Ko-
rrekturlesung der Dissertation.

Und nicht zuletzt bin ich meiner Frau Daniela fiir ihre konstante moralische
Unterstiitzung zutiefst dankbar. Thr Verstédndnis und ihre Geduld haben mir

besonders in den schwierigeren Phasen der Arbeit sehr geholfen.



Zusammenfassung

Das Gehirn ist die wohl komplexeste Struktur auf Erden, die der Mensch
erforscht. Es besteht aus einem riesigen Netzwerk von Nervenzellen, welch-
es in der Lage ist eingehende sensorische Informationen zu verarbeiten um
daraus eine sinnvolle Repréasentation der Umgebung zu erstellen. Aufserdem
koordiniert es die Aktionen des Organismus, um mit der Umgebung zu inter-
agieren. Das Gehirn hat die bemerkenswerte Fihigkeit sowohl Informationen
zu speichern als auch sich stindig an dndernde Bedingungen anzupassen, und
zwar iiber die gesamte Lebensdauer. Dies ist essentiell fiir Mensch oder Tier,
um sich zu entwickeln und zu lernen.

Die Entwicklung eines menschlichen Kindes in den ersten Jahren und die
Féhigkeiten, die es wihrenddessen erwirbt, sind bisher von keinem Computer-
Algorithmus erreichbar. Die Grundlage fiir diesen lebenslangen Lernprozess
ist die Plastizitdt des Gehirns, welche das riesige Netzwerk von Neuronen
stindig anpasst und neu verbindet. Dieses Phdnomen der neuronalen Plastiz-
itdt beschéiftigt die Neurowissenschaften und anderen Disziplinen bereits {iber
mehrere Jahrzehnte. Dabei induzieren lokale, selbstorganisierte Mechanismen
Veranderungen an den synaptischen Verbindungen und der intrinsischen Erreg-
barkeit jedes Neurons und optimieren dadurch das Verhalten des Organismus
als Ganzes.

Dabei beschreibt die intrinsische Plastizitit die stdndige Anpassung der Er-
regbarkeit eines Neurons um einen ausbalancierten, homdostatischen Arbeits-
bereich zu gewéhrleisten. Aber besonders die synaptische Plastizitit, welche
die Anderungen in der Stirke bestehender Verbindungen bezeichnet, wurde
unter vielen verschiedenen Bedingungen erforscht und erwies sich mit jeder
neuen Studie als immer vielschichtiger. Sie wird durch ein komplexes Zusam-
menspiel von biophysikalischen Mechanismen induziert und hingt von ver-
schiedenen Faktoren wie der Frequenz der Aktionspotentiale, deren Timing
und dem Membranpotential ab und zeigt aukerdem eine metaplastische Ab-
hangigkeit von vergangenen Ereignissen. Letztlich beeinflusst die synaptische
Plastizitét die Signalverarbeitung und Berechnung einzelner Neuronen und der
neuronalen Netzwerke.

Der Schwerpunkt dieser Arbeit ist es das Verstdandnis der biologischen Mech-

anismen und deren Folgen, die zu den beobachteten Plastizitdtsphidnomenen



fiihren, durch eine starker vereinheitlichte Theorie voranzutreiben. Ein solcher
einheitlicher Ansatz kann Einblicke in die folgenden drei verschiedenen Dimen-

sionen liefern, welche fiir synaptische Plastizitét relevant sind.

Synaptische Plastizitdt betrifft unterschiedliche Ebenen theoretischer Ab-
straktion. Das komplexen Verhalten von Zellen und ihrer Wechselwirkungen
in lebenden Organismen zu verstehen erfordert Untersuchungen auf verschiede-
nen Ebenen der Abstraktion. Marr [2010] schlug vor, drei Ebenen der theo-
retischen Analyse zu unterscheiden: Funktionelles Ziel, Algorithmus und Im-
plementierung. Mechanistische Modelle iiber die zugrunde liegenden Mecha-
nismen folgen einem Bottom-up Ansatz. Sie beschreiben die Implementierung
der Plastizitdt und bilden eine Grundlage fiir Modellierungsstudien. Jedoch
lassen sich deren Auswirkungen auf das Verhalten des Netzwerkes, jenseits
einzelner Synapsen, nur schwer verstehen. Eine einfache Moglichkeit, um diese
Auswirkungen auf das Netzwerk zu untersuchen, bieten phinomenologische
Modelle die nur die resultierenden Phinomene und Abhéngigkeiten beschreiben.
Aber dieser Ansatz ist von Natur aus begrenzt, denn er kann nicht zu einem
tieferen Verstindnis der komplexen Wechselwirkungen zwischen den verschiede-
nen Mechanismen fiithren. Daher ist es wichtig iiber diese phdnomenologis-
chen Beschreibungen hinauszugehen. Hier kann ein Top-Down Ansatz helfen,
mogliche funktionale Ziele des Systems zu betrachten. In dieser Hinsicht kon-
nen die funktionalen Auswirkungen der synaptischen Plastizitit als das Ziel
betrachtet werden, welches auf Synapsen-, Zell- oder Netzwerkebene erreicht
werden soll. Der wichtigste Schritt ist dann die Ableitung einer geeigneten, biol-
ogisch plausiblen Lernregel (Algorithmus) und die Identifizierung der zugrunde
liegenden biologischen Mechanismen als mégliche Implementierung dieser Lern-
regel.

Synaptische Plastizitit betrifft unterschiedliche Skalen der neuronalen Funk-
tion und Organisation. Die neuronalen Netzwerke des Gehirns konnen auf un-
terschiedlichen Skalen untersucht werden: von intra- und subzelluliren Mech-
anismen, liber die Signalverarbeitung und Konnektivitit von einzelnen Neuro-
nen bis hin zu dem Informationsfluss zwischen grofen Netzwerken oder ganzen
Hirnarealen. Das Phidnomen der synaptischen Plastizitdt liegt genau in der

Mitte zwischen dem grofen und kleinen Mafstab. Die Untersuchung der Mech-



anismen betrifft den kleinen Mafstab der subzelluldren Reaktionen und Wech-
selwirkungen von Ionen, Proteinen und anderen Molekiilen. Und wéhrend die
Effekte der synaptischen Plastizitédt direkte Auswirkungen auf die Signalverar-
beitung einer einzelnen Zelle haben, beeinflussen sie dadurch die Berechnung
im Netzwerk und betreffen daher auch Fragen in Bezug auf die funktionalen
Auswirkungen.

Synaptische Plastizitdt betrifft unterschiedliche Faktoren der neuronalen
Verarbeitung. In den letzten sechs Jahrzehnten wurde synaptische Plastiz-
itdt experimentell und theoretisch untersucht. Seitdem wurde entdeckt, dass
die Verbindungsstiirke beziehungsweise deren Anderung viele Abhingigkeit-
en besitzt: die Aktivitdt des pri- und postsynaptischen Neurons, das postsy-
naptische Membranpotential, das relative Timing zwischen pra- und postsy-
naptischen Aktionspotentialen, den Ort der Synapse, etc. Diese verschiede-
nen Phinomene werden meist unabhingig voneinander durch verschiedene
experimentelle Protokolle betrachtet. Allerdings untersuchen diese Protokolle
nur unterschiedliche Aspekte eines gemeinsamen biophysikalischen Mechanis-
mus. Eine allgemeine Theorie von synaptischer Plastizitéit erfordert daher die

Beschreibungen all dieser Abhéngigkeiten aus einem Ansatz heraus.

Einige der groften theoretischen Fortschritte in der Wissenschaft wurden
durch Vereinheitlichungen von scheinbar unterschiedliche Phédnomene erreicht,
wie zum Beispiel Newtons Vereinheitlichung der Gesetze des freien Falls mit
den Gesetzen der Planetenbewegung in einem einzigen Gesetz der Schwerkraft.
Solche Vereinigungen fiihren zu einem besseren und abstrakteren Verstindnis
der beobachteten Phianomene. Bislang fehlt solch ein einheitlicher Ansatz fiir
synaptische Plastizitdt. Es wird experimentell und theoretisch als eine Mis-
chung aus verschiedenen Phinomene untersucht und modelliert und keines der
existierenden Modelle ist in der Lage, die Liicke in der theoretischen Abstrak-
tion zu iiberbriicken. Die Hauptmotivation dieser Arbeit ist es daher, einen
neuen Ansatz zu liefern, der ein einheitlicheres Verstdndnis von synaptisch-
er Plastizitdt ermdglicht. Eine Theorie basierend auf einem funktionalen Ziel
kann scheinbar unterschiedliche Abhéngigkeiten vereinheitlichen und schafft
damit eine Verbindung zwischen den verschiedenen Skalen und Abstraktionen.

In den Kapiteln 3 und 4 stelle ich zwei funktionale Ziele fiir neuronale Plas-



tizitat auf, leite Lernregeln aus diesen ab und analysiere deren Konsequenzen

und Vorhersagen.

Kapitel 3 untersucht die Unterscheidbarkeit der Populationsaktivitdt in Net-
zwerken als funktionales Ziel fiir neuronale Plastizitit. Die Hypothese ist dabei,
dass gerade in rekurrenten aber auch in vorwartsgekoppelten Netzwerken die
Populationsaktivitit als Reprasentation der Eingangssignale optimiert werden
kann, wenn dhnliche Eingangssignale eine moglichst unterschiedliche Représen-
tation haben und dadurch fiir die nachfolgende Verarbeitung besser unter-
scheidbar sind. Das funktionale Ziel ist daher diese Unterscheidbarkeit durch
Verdnderungen an den Verbindungsstirke und der Erregbarkeit der Neuronen
mithilfe von lokalen selbst-organisierten Lernregeln zu maximieren. Ich zeige,
dass ausgehenden von diesem Ziel die am héaufigsten verwendeten Lernregeln
fiir intrinsische sowie synaptische Plastizitit in kiinstlichen neuronalen Netzw-

erken abgeleitet werden konnen [Krieg et al., 2010].

Die synaptische Lernregel entspricht dabei dem Standardmodell fiir timing-
abhéngige Plastizitit (STDP) sowohl fiir ein zeitdiskretes Neuron mit Ratenkodierung
als auch fiir einen zeitkontinuierliches, spikendes Neuron. Der funktionale Ansatz
fiihrt dabei zu einem zusétzlichen, modulierender Faktor, welcher die synap-
tische Plastizitit stabilisiert. Das heifst, die synaptischen Verbindungsstéirke
divergiert nicht und erfordert keine zusétzliche Normalisierung. Die synaptis-
chen Verbindungen regulieren sich selbst, um eine balanciertes, homoostatis-
ches Eingangssignal zu erzeugen. Dies kann daher als Mechanismus zur synap-
tischen Skalierung interpretiert werden. Auch dieser Stabilisierungeffekt tritt

dabei sowohl fiir zeitdiskrete als auch zeitkontinuierliche Neuronen auf.

Das gleiche funktionale Ziel kann auch die Erregbarkeit eines Neurons op-
timieren. Die Lernregel fiir intrinsischen Plastizitit, welche daraus abgeleitet
wird, ist &hnlich zu fritheren informationstheoretischen Ansétzen [Bell and Se-
jnowski, 1995|. Eine Erweiterung, basierend auf metabolischen Beschriankun-
gen und Storanfilligkeit eines neuronalen Codes, fiihrt zusammen mit dem
ersten Ziel zu einer realistischeren Verteilung der Feuerrate und einer zusét-
zlichen Lernregel fiir inhibitorische Neuronen. Insofern erlaubt Kapitel 3 eine
Reihe von Standard-Lernenregeln fiir kiinstliche neuronale Netze [Bell and Se-
jnowski, 1995; Triesch, 2005; Babadi and Abbott, 2010; Vogels et al., 2011] aus



einem gemeinsamen funktionalen Ziel abzuleiten.

Inspiriert von den weitreichenden Konsequenzen, welche aus einer so ein-
fachen Beschreibung wie in Kapitel 3 folgen, erweiterte ich den Ansatz auf
ein komplexeres, biophysikalisches Neuronenmodell in Kapitel 4 [Krieg and
Triesch, 2011a,b, 2012 submitted|. Die dort abgeleitete Lernregel ist in der
Lage, direkte Vergleiche mit den experimentellen Ergebnissen zu synaptis-
cher Plastizitdt zu machen. Das Ziel ist eine spérliche, stark asymmetrische
Verteilung der synaptischen Starke wie sie auch bereits mehrfach experimentell
gefunden wurde. Exzitatorische Verbindungen folgen in etwa einer Log-normal
Verteilung. Das heifst, es gibt viele schwache Verbindungen, jedoch einige wenige,
die sehr stark sind, und diese Asymmetrie kann durch das statistische Mafs der
Schiefe charakterisiert werden. Da nicht nur die Generierung von Aktionspo-
tentialen hohe energetische Kosten fiir das presynaptische Neuron verursacht,
sondern auch deren Effekte auf das empfangende, postsynaptische Neuron,
kann eine solche schiefe Verteilung der synaptische Stidrke zu einer energieef-
fizienten Signaliibertragung beitragen. Denn anstatt die Signale von vielen un-
korrelierten, mittelstarken Synapsen zu integrieren, wird das Neuron von weni-
gen starken Verbindungen zum Erzeugen eines Aktionspotentials angeregt.

Das funktionale Ziel ist daher die Maximierung der Schiefe dieser Verteilung
durch lokale, synaptische Lernregeln. Aus diesem funktionalen Ansatz kénnen
alle wichtigen Phinomene der synaptischen Plastizitat erklart werden. Simu-
lationen der Lernregel in einem realistischen Neuronmodell mit voller Mor-
phologie erklidren die Daten von timing-, raten- und spannungsabhingigen
Plastizitatsprotokollen. Die Lernregel hat auch eine intrinsische Abhéngigkeit
von der Position der Synapse auf dem Dendritenbaum, welche mit den ex-
perimentellen Ergebnissen iibereinstimmt. Dariiber hinaus kann die Lernregel
ohne zusétzliche Annahmen ein Phédnomene der sogenannten Metaplastizitit
erkldaren. Diese beschreibt, dass die Plastizitdtsmechanismen selbst plastisch
sind und zum Beispiel von der vorherigen neuronalen Aktivitit abhédngen kon-
nen. Dabei erklért der Ansatz nicht nur eine bekannte Form der raten-basierten
Metaplastizitét, sondern sagt auch eine neue Form der Metaplastizitit voraus,
welche die timing-abhingige Plastizitit beeinflusst.

Andere Ansitze fiir funktionale Ziele der synaptischen Plastizitdt wurden



bereits zuvor postuliert. Jedoch waren diese zum Einen auf ein einzelnes Phinomen
beschrinkt und lieferten keine einheitliche Sicht auf die experimentellen Phinomene.
Zum Anderen fiithrten sie nicht zu biologisch plausiblen Lernregeln und kon-
nten somit auch keine Verbindung zu den biologischen Mechanismen her-
stellen. Somit besteht der Beitrag der vorliegende Arbeit aus zwei neuarti-
gen Vereinheitlichungen fiir synaptische Plastizitit: Erstens zeigt sie, dass die
verschiedenen Phidnomene der synaptischen Plastizitit als Folge eines einzi-
gen funktionalen Ziels verstanden werden konnen. Und zweitens iiberbriickt
der Ansatz die Liicke zwischen der funktionalen und mechanistische Beschrei-
bungsweise. Das vorgeschlagene funktionale Ziel fiihrt zu einer Lernregel mit
biophysikalischer Formulierung, welche mit etablierten Theorien der biologis-
chen Mechanismen in Verbindung gebracht werden kann. Aufterdem kann das
Ziel einer spérlichen Verteilung der synaptischen Stirke als Beitrag zu einer
energieeffizienten synaptischen Signaliibertragung und optimierten Kodierung

interpretiert werden.

In der vorliegenden Arbeit konnte ich zeigen, dass es moglich ist die ver-
schiedenen Mechanismen der neuronalen Plastizitéat in kiinstlichen Netzwerken
auf ein gemeinsames funktionales Ziel abzubilden. Speziell fiir synaptische
Plastizitéat lassen sich alle wichtigen experimentellen Phinomene aus einem
funktionalen Ziel erklidren und die biophysikalischen Mechanismen als Imple-
mentierung interpretieren. Daher ldsst sich vermuten, dass die Mechanismen
der neuronalen Plastizitit, welche die wohl wichtigste Eigenschaft des Gehirns
darstellen, sich gemeinsam unter evolutionér relevanten Einfliissen entwick-
elt haben, um verschiedene funktionale Aspekte der neuronalen Signalverar-

beitung und Berechnung durch lokale Selbstorganisation zu optimieren.
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Chapter 1
Introduction

This thesis investigates a functional view on the plastic changes at the synap-
tic connections between neurons. The hypothesis is that the biological mech-
anisms of this synaptic plasticity have evolved following some functional goal.
The aim of this thesis is to propose a specific and intuitive functional goal
and to derive a learning rule from it. The hypothesis will be supported by
comparing its theoretical predictions to experimental data and biophysical

mechanisms.

1.1 Motivation

The brain is the most complex structure known to mankind. It consists of a
vast network of nerve cells that is able to process incoming sensory information
in order to make sense of the world. It coordinates the actions of the organism
in order to interact with the environment. The brain has the remarkable ability
to memorize and store information as well as to adapt to changing conditions
throughout lifetime. This is essential for a human or animal to develop and
learn.

The development of a human child and the abilities it acquires over only a
few years are still unmatched by any computer algorithm. The basis for this
life-long learning process is the plasticity of the brain, which constantly adapts
and rewires the huge network of neurons. This phenomenon of neural plasticity
has attracted the attention of neuroscience and other disciplines for several

decades already. It is driven by local self-organized mechanisms changing the



synaptic connections and the intrinsic excitability of each neuron. Thereby,
neural plasticity optimizes the overall behavior of the organism.

Intrinsic plasticity continuously adapts the excitability to maintain a homeo-
static set point. But especially synaptic plasticity, which describes the changes
in the strength of existing connections, proved to be more and more intricate
as the studies progressed. It is induced by a complex interaction of biophysical
mechanisms, depends on various factors such as firing rate, spike-timing, and
membrane potential, exhibits metaplastic dependence on the context, and,
ultimately, influences the computation of the neuron and the network it is
embedded in.

The main focus of this thesis is to further the understanding of the biological
mechanisms and their consequences leading to the observed phenomena by
proposing a more unified theory. Such a unified approach can provide insights
into the following three different dimensions which are relevant to synaptic

plasticity:

Synaptic plasticity regards different levels of theoretical abstrac-
tions. Understanding the complex behavior of cells and their interactions
arising in living systems requires studies at different levels of abstraction. Marr
[2010] proposed to distinguish three levels of theoretical analysis: computa-
tional goal, algorithm, and implementation. In order to get a coherent image
of the mechanisms as well as the functional consequences of synaptic plasticity,
it is important to model it at these different levels.

Mechanistic models about the underlying mechanisms can be considered the
most grounded approach. They start from the biological implementation to
identify the biophysical mechanisms. This provides the basis for computational
modeling studies simulating the process in detail. But it is hard to assess the
effects of these mechanisms beyond single synapses.

The intermediate algorithmic level is best described by phenomenological
models which only model the observed phenomena. They provide a simple
way to study the effects on the network scale. But they are inherently limited,
since they can not provide a deeper understanding of the complex interactions
between the diverse mechanisms. Therefore, it is important to go beyond those

models.



A top-down approach can help to evaluate possible functional goals the sys-
tem wants to achieve. In that respect, the functional implications of synaptic
plasticity can be regarded as the computational goal to be achieved by the
network. The important step is then to connect the different levels by deriving
a suitable, biologically plausible learning rule (algorithm) and identifying the

underlying biological mechanisms (implementation).

Synaptic plasticity regards different scales of neuronal function and
organization. The neural networks of the brain are studied at different
scales: from intra- and sub-cellular mechanisms over computation and con-
nectivity of single neurons to the information flow between large networks or
whole brain areas. The phenomenon of synaptic plasticity lies right in the mid-
dle between the larger and the smaller scale. The study of its mechanisms is
connected to processes at smaller scale, namely sub-cellular reactions and cas-
cades of interactions between ions, proteins and other molecules. And while
the effects of synaptic plasticity directly affect the computation of a single
cell, they also influence the computation of the larger network touching upon

questions regarding the functional implications.

Synaptic plasticity regards different quantities of neuronal compu-
tation. It has been studied experimentally and theoretically over the last
six decades. Since then the synaptic connection strength and its change have
been found to have many dependencies: the activity of the pre- and postsynap-
tic neuron, the postsynaptic membrane potential, the relative timing between
pre- and postsynaptic spikes, the location of the synapse, etc. The observa-
tions of these different phenomena are achieved by using different experimen-
tal protocols. But they only probe different aspects of a common biophysical

mechanism.

1.1.1 Objectives

Some of the greatest theoretical advances in science have been unifications
of seemingly different phenomena such as Newton’s unification of the laws of
free fall and the laws of planetary motion into a single law of gravity. Such

unifications lead to a more fundamental and abstract understanding of the



observed phenomena. So far, synaptic plasticity is missing such a unified
approach. It is experimentally probed and theoretically modeled as a mixture
of distinct phenomena. And none of the existing models are able to bridge
the gap in theoretical abstraction and spatial scale. The main motivation of
this thesis 1is, therefore, to provide a new approach which allows for a more
unified understanding of synaptic plasticity. An understanding in terms of a
computational goal can unify seemingly different dependencies and create a
connection across the different scales and levels of abstraction.

The hypothesis of this thesis it that synaptic plasticity has evolved to opti-
mize one or more computational goals. To be considered a reasonable compu-
tational goal for synaptic plasticity, it has to fulfill three requirements: First,
it has to reproduce and unify experimental findings. Since it is probable that
the brain has many different computational goals to achieve, the proposed goal
does not need to explain every possible phenomena but at least a major sub-
set. Second, it has to bridge all levels of theoretical analysis. That means, it
should lead to a learning rule that is biologically plausible and show connec-
tions to the underlying biological mechanisms. Third, it should have a natural

interpretation and optimize quantities that are evolutionary relevant.

1.2 Contributions

In the main Chapters 3 and 4, I introduce computational goals for neural
plasticity, propose learning rules derived from them, and analyze their conse-

quences and predictions.

1.2.1 Separability objective for artificial neural networks

Chapter 3 introduces an objective function for neural plasticity in terms of the
separability of the population activity. From this single objective, commonly
used learning rules for intrinsic plasticity as well as synaptic plasticity can be
derived [Krieg et al., 2010].

The synaptic learning rule resembles the standard models for spike-timing
dependent plasticity (STDP) for a discrete-time rate coding neurons as well
as for a continuous-time spiking neuron model. The objective function ap-

proach introduces an additional modulating factor, which can be shown to



stabilize the synaptic learning, i.e. it does not diverge and requires no addi-
tional normalization procedure. The synaptic strengths will adjust themselves
to provide a balanced homeostatic input, thereby, directly accounting for the
phenomenon of synaptic scaling. The same objective is also useful to optimize
the excitability of a neuron. This leads to an intrinsic plasticity rule which
is similar to previous information theoretic approaches [Bell and Sejnowski,
1995].

A second objective function regarding metabolic constraints and noise ro-
bustness of a neural rate code nicely integrates with the separability objective.
It leads to a more realistic distribution of firing rates and additionally intro-
duces a learning rule for inhibitory interneurons. Thus, Chapter 3 proposes
a simple way to consistently derive a set of standard learning rules for artifi-
cial neuronal networks [Bell and Sejnowski, 1995; Triesch, 2005; Babadi and
Abbott, 2010; Vogels et al., 2011] from a common computational goal.

1.2.2 Sparseness objective for synaptic plasticity

Motivated by the findings for the learning rules of artificial neural networks
in Chapter 3, I extended the approach to a more complex conductance-based
neuron model in Chapter 4 [Krieg and Triesch, 2011a,b, 2012 submitted|. The
resulting learning rule is able to make direct comparisons to the experimental
findings on synaptic plasticity.

The objective is a sparse distribution of synaptic strength and from this
single computational idea all major phenomena of synaptic plasticity can be
explained. Simulating the learning rule in a realistic neuron model with full
morphology fitted the data from spike-timing-, rate-, and voltage-dependent
plasticity protocols. It also has an intrinsic dependence on the synaptic loca-
tion which agrees with experimental findings. Furthermore, the learning rule
naturally accounts for a phenomenon called metaplasticity, where the plasticity
mechanisms themselves are plastic and are modulated by, e.g. recent history of
neural activity. In this respect, the approach not only explains the findings on
activity-based metaplasticity, but also predicts a new form of metaplasticity
which will modify the spike-timing dependent plasticity.

While other ideas for computational goals of synaptic plasticity have been

postulated, they either were restricted to a single phenomenon and did not



provide a unified view on the experimental findings. Or they did not lead to
biologically plausible learning rules and, therefore, also lacked a connection to
the biological mechanisms. Thus, this thesis contributes two novel unifications
for synaptic plasticity: First, it shows that the different phenomena of synap-
tic plasticity arise as a consequence of the same computational goal following
different experimental protocols. And second, it bridges the gap between the
computational and mechanistic view. The proposed computational goal leads
to a learning rule in biophysical terms which can be related to established theo-
ries of the biological mechanisms. Finally, the objective of a sparse distribution
of synaptic strength can be interpreted as contributing to an energy-efficient

synaptic signaling and an optimized coding.



Chapter 2
Background and context

The brain contains a large variety of cell types with the main distinction be-
tween neuronal cells and glial cells. The complex network of neurons is the
basis for the computations in the brain and the plastic changes of this network
are key to adaptation and learning. This background chapter gives an intro-
duction to neural processing, neural plasticity, and neural computation and
identifies open questions and problems. This sets the stage for the questions

addressed in this thesis.

Section 2.1 introduces the general anatomy and functionality of neurons.
The main focus lies on a detailed description of the resting potential, the
Hodgkin-Huxley model for action potential generation, and the mechanisms
of neural communication via synaptic transmission as modeled in Chapter 4.
This is complemented with a short description of simplified neuron models

usually employed in network simulations and relevant for Chapter 3.

Section 2.2 details the phenomenon of neural plasticity, which is the central
theme of this thesis. After a short introduction to intrinsic plasticity guided by
information theory, I describe the various experimental findings on synaptic
plasticity, how they have been modeled, and which aspects have not been
considered so far.

Section 2.3 discusses the constraints which the neural system faces and how
they influence its computation. I introduce the principle of energy efficiency as
the major guideline in this thesis. The section ends on the topic of sparseness,
which has emerged as a central theme in neural function, and provides the

necessary tools to address the problem of energy-efficient neural information

7
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Figure 2.1 Neuronal morphology. The soma is the cell body and contains the nucleus.
It has two tree-like extensions: the axon transmits the signal to other neu-

rons. It connects to their dendrites via a synapse.

transmission in Chapter 4.

2.1 Neural processing and communication

Neurons are specialized cells that are excitable and that are able to transmit
that excitation to other neurons. They are enclosed by a membrane and have
a cell body, called soma, containing the nucleus. The cell body has two types
of tree-like extensions: the dendrites and the axon. The cell receives input
from other cells at the dendrites, which is then integrated at the soma. The
axon is often surrounded by a myelin sheath with equidistant interruptions
known as ‘Nodes of Ranvier’. The signals from the soma travel down the axon
which is connected to the dendrites of other neurons via synapses. The general
morphology is shown in Figure 2.1. Details about the synapse structure are
described in Section 2.1.1 and Figure 2.5.

Following the textbook by Aidley [1998], I discuss the conductance-based
neuron model and the Hodgkin-Huxley model of action potential generation.
With these models, the neural dynamics can be described in detail and simu-
lated in a computer. Such simulations are employed in Chapter 4 to compare
the results of my model to experimental findings. After that, I describe the
simplified rate-based neuron model, which is employed in the derivations and

simulations of Chapter 3.



2.1.1 Conductance-based models

Neurons are electrical units and can be described by an electrical circuit con-
sisting of active and passive elements. One can distinguish different types of
neurons, which differ in three-dimensional structure, excitability, and effect on
other neurons. Despite their differences, the dynamics and the signal trans-
mission work in very similar ways. The majority of neuron types does not
communicate with a continuous signal, but with short voltage pulses called ac-
tion potentials or spikes. One benefit of these spikes is that they can travel over
longer distances without suffering from attenutation. They are strong deflec-
tions from the resting potential, all-or-none events and always nearly identical
in shape. Spikes will travel along the axon where they are transmitted via
synapses to other neurons. This transmission leads to synaptic currents which
are integrated at the soma of the receiving neuron. Finally, if that input signal

exceeds a threshold, the receiving neuron itself emits a spike.

Resting potential

In their resting state (in the absence of excitation), neurons exhibit a potential
difference (voltage) between the intracellular and extracellular medium. This
is due to active ion pumps transporting ions into or out of the cell across
the membrane, thereby generating a concentration gradient for different ion
species. The Na™ /KT-ATPase pump requires one ATP molecule to exchange
2 potassium ions from the outside with 3 sodium ions from the inside of the
cell. Under physiological conditions the pump generates a concentration ratio
on the order of 10, i.e. the intracellular potassium concentration [KK*]; is ten
times larger than the extracellular concentration [K*],.

Beside the active pumps, the membrane contains passive ion channels which
let specific ions diffuse into and out of the cell. Due to this permeability, the
ions will follow their concentration gradient until a dynamic equilibrium with
no net ion flux through the membrane is reached. At resting, the membrane
is mainly permeable to potassium. Potassium ions flow out of the cell due to
the gradient and create an increasing electrostatic potential which leads to an
opposite force. When both forces are equal in strength they neutralize each

other and result in a dynamic equilibrium.
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The equilibrium potential of an ion species X depends on its concentration

ratio and can be calculated by the Nernst equation:

RT . [X]
oo BT 1X], 2.1.1
YT LF ! [X]; ( !
1.54 X
_ 6154 mV log, [[X}]O (at body temperature 310.15°K),  (2.1.1b)

where R is the universal gas constant, 7" is the temperature in Kelvin, F' is the
Faraday constant, and z is the number of elementary charges of the ion species.
Since [KT]; is larger than [K*],, the equilibrium potential Ex of potassium
is negative and around —92 mV while Ey, is positive and around +64 mV
[Wright, 2004]. For a membrane being only permeable to potassium, the resting
potential would be equal to Fx. The Goldman equation, an extension of the
Nernst equation, can take into account that the membrane is also slightly

permeable to sodium and chloride:

Py [N + K+ P, 1=,
ET:EID( va [Nat], + Px [K*], + Pa [C L> (2.1.2a)
r Pxa [Nat], 4+ Pg [K*]; 4 Poi [Cl7],
Px Pxa Pey
_Bep P | Pag 2.1.2h
-Ptot K+Ptot N +Ptot “ ( )

with the permeabilities Px for different ions X. The resting potential FE,. is a
weighted average of the equilibrium potentials of the permeable ions. Given
that potassium has the largest permeability, the resting potential is dominated
by Ex and is usually around —70 mV.

A patch of membrane surrounding a short piece of dendrite can be described
by an electrical circuit diagram. The concentration gradients established by
the active pumps act like a battery providing a voltage equal to the equilibrium
potential Ex and the permeabilities Px are represented by a resistor with a
given electrical conductance gx (the inverse of the resistance Rx) which can
be voltage-dependent. The membrane itself corresponds to a capacitor with
capacitance C,,. Figure 2.2 depicts the circuit diagram containing potassium,
sodium, and a leak current representing chloride and other ions. The ionic
currents passing the membrane are given by Ohm’s law as Iy = gx (u — Ex).
The currents are proportional to the difference between the ions equilibrium
potential Ex and the current membrane potential u. Since the ion flow will
reverse its direction if this difference changes its sign, the equilibrium potential

is also called reversal potential.
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Figure 2.2 Electrical circuit diagram for a patch of membrane. The membrane, sep-
arating the intra- and extracellular space, has a specific capacity C,, and
contains voltage-dependent ion channels with resistances Rk and Rya. The
remaining ion channels are represented by a constant resistance Rje,x. The

potential differences Ej,, are generated by active ion pumps.

Following Figure 2.2 a current Ljemprane applied to the patch of the mem-
brane can be split in two parts: a capacity current /o charging the membrane

and the ionic currents passing the membrane through the channels:

Imembrane = IC + Z Iion (2133)

ion

- IC + gK (U - EK) + gNa (U - ENa) + Gleak (U - Eleak) . (213b)

The change in the membrane potential can then be calculated as Cma—? =1Ic=
- Zion Lion + Imembrane- The membrane current is due to the transverse flow of
ions along the membrane, i.e. the propagation of excitation along the dendrite.
In the absence of any membrane currents (Imembrane = 0) the equilibrium point
of the membrane potential is the resting potential Egr, where the ionic currents
cancel each other such that their sum is zero (3, , fion)-

The equilibrium, however, is instable, since the membrane is not only per-
meable to potassium but also to sodium. Thus, there is always an effective ion
flux of sodium inwards and potassium outwards. These fluxes will slowly run

down the concentration gradients, which is prevented by the constant activity
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of the ion pumps.

Action potential generation

Action potentials are very fast voltage spikes where the membrane potential
jumps about 100 mV up and down in a few milliseconds. To generate these
fast events the cell needs the stored potential energy in the concentration gra-
dients. The gradient acts like a tensioned spring which is released by voltage-
dependent ion channels. These channels are primarily located in the soma, at
the nodes of Ranvier in the axon, and in the axon initial segment where the
action potential is initiated. Hodgkin and Huxley [1952| proposed a mathe-
matical description for changes of the sodium and potassium conductances as a
function of the membrane potential. Their analysis revealed how the interplay
between these two ions leads to the sharp rise and decay of the voltage during
an action potential.

The conductance time course in the Hodgkin-Huxley model is described

with three auxiliary variables n, m and h:

gk = gxn' (2.1.4a)
gNa = Gnam’h. (2.1.4Db)

All three variables follow the differential equation

ox

5 = G (1 —2z)— Bz (2.1.5a)

Too — T Q 1
— I ith 2o = —2 7 ——— _ (2.1.5b
T ith e =T T orE (LS

with nonlinear voltage-dependencies for o, , 5 and 5y, ;... The potassium vari-
able n has a sigmoidal shape as function of the membrane potential u and, thus,
the potassium conductance increases with u. The sodium variable m shows a
similar behavior, while h has the opposite dependence and decreases with in-
creasing voltage. Therefore, m is called activation variable and h inactivation
variable.

The time course of the action potential arises due to the different timescales
of sodium and potassium (cf. Fig. 2.3). At resting potential the sodium time
constants 7,, and 7, are much smaller than the potassium time constant 7,.

On depolarization of the membrane potential the sodium current rises more
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quickly than the potassium current leading to a further depolarization (D).
The potassium current can compensate for the delay and counterbalance the

sodium current, if the depolarization remains below a certain threshold.

In the case that the membrane potential crosses this threshold, the positive
feedback by the sodium activation leads to very strong uprise of the voltage
close to the reversal potential of sodium (2). The sodium channels are now
being inactivated (3) and the delayed strong activation of potassium leads to
a quick repolarization (4). The shape of this nonlinear voltage spike lasts only
2 — 3 ms and has a largely invariant shape. Action potentials are therefore

regarded as unitary events with no information apart from their timing.

Action potentials are initiated at the axon initial segment where the density
of active ion channels is largest. It is then propagated down the axon since
the rise of the voltage spreads along the membrane and leads to an activation
of the sodium channels in the vicinity. This kind of propagation along the
axon would be relatively slow and require a lot of ions to be exchanged. So
most of the axons are found to have a myelin sheath (cf. Fig. 2.1) which does
not allow the flow of ions through this part of the membrane. This leads to
a saltatory propagation where the action potential is only regenerated in the
gaps between the myelin sheath, i.e. the Nodes of Ranvier. After the action
potential has been generated, the ionic concentration gradients of sodium and

potassium need to be restored by the ion pumps.
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Figure 2.4 Simulated backpropagating action potential at different distances from the
soma. As the action potential propagates through the dendritic tree it

becomes smaller in amplitude and broader in time.

At the same time, the action potential will also propagate in the direction
of the dendritic tree, which is called backpropagating action potential (bAP).
The traveling distance and the strength of the bAP will depend on the density
of active ion channels in the dendrites. This is a property which depends
mainly on the type of neuron, but dendrites do not have such a high density of
active ion channels as the axon. Thus, in general the bAP becomes smaller in
amplitude and also broad in time as it travels through the dendritic tree (cf.
Fig. 2.4). The bAP will, for example, influence the synaptic NMDA receptors

(cf. next section).

Synaptic transmission

Every neuron has several thousand connections receiving input from other
neurons. At these connections, the axon of another neuron makes a contact
to the dendrite. This contact is called synapse (Fig. 2.1): the axonal side is
called presynaptic, the dendritic side postsynaptic.

Apart from rare electrical synapses where the cells make a direct contact
and which are mainly found in the retina and the cerebral cortex, the most
abundant ones are chemical synapses. Their terminal endings are separated
by a small synaptic cleft. The presynaptic terminal releases neurotransmitter
into the cleft which diffuses to the postsynaptic side where it binds to neu-

rotransmitter receptors incorporated in the postsynaptic membrane. While
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there is an ongoing release happening spontaneously, a presynaptic action po-
tential arriving at the synaptic terminal leads to an induced release. However,
synapses do not show perfect reliability since the induced release can fail in a
stochastic fashion.

While each receptor type is specific to a given transmitter, the receptors can
be grouped into two broad categories: ionotropic and metabotropic. lonotropic
receptors form an ion channel pore which allows the flow of ions in or out of
the cell, thus, having a direct effect on the postsynaptic membrane potential.
In contrast, metabotropic receptors are coupled to intracellular proteins and
initiate signal transduction mechanisms upon the binding of their agonist. In
both groups, there are excitatory and inhibitory receptors. While excitatory
receptors depolarize the postsynaptic cell leading to a more positive membrane
potential, receptors with an inhibitory effect bring the membrane potential
back to its resting value or even hyperpolarize the cell.

The most common ionotropic receptors are the glutamate-sensitive NMDA
and AMPA receptors and the gamma-aminobutyric acid (GABA)-sensitive
GABA, receptors. The glutamate receptors are named after their specific ag-
onists N-Methyl-D-aspartic acid (NMDA) and 2-amino-3-(5-methyl-3-ozo-1,2-
ozazol-4-yl)propanoic acid (AMPA). The effect on the postsynaptic membrane
potential depends on which ion species is admitted to flow through the recep-
tor. NMDA and AMPA receptors are permeable for Natand KTand NMDA

receptors additionally permeable to Ca?*. These channels have a reversal po-
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tential of around 0 mV and, therefore, the NMDA and AMPA currents depo-
larize the postsynaptic cell and are excitatory. In contrast, GABA, receptors
are only permeable to Cl7, which has a reversal potential below the resting
potential, and are inhibitory.

The channels are modeled as ionic conductances gsyn(t). The current Isyn
flowing through the channels is proportional to the difference between mem-

brane and reversal potential:

Lsyn(t) = Goyn(t) (u — Egyn) - (2.1.6a)

The time course of the conductance depends on the receptor type: AMPA
receptors open and close on a very short timescale, usually a few millisec-
onds, while NMDA receptors open a bit slower but can remain open up to
several hundred milliseconds. The time course is usually fitted by a sum of
two (or three) exponentials. NMDA receptors exhibit an additional voltage-
dependence, since they can be blocked by extracellular magnesium ions. This
block is gradually released by a depolarization of the cell, which can be medi-
ated by the bAP.

The maximal conductance determines the impact of this synapse on the
postsynaptic cell. Tt is referred to as the synaptic strength or synaptic efficacy.
The conductance depends on released amount of neurotransmitter, the total
number of receptors N located in the postsynaptic membrane, and the indi-
vidual conductances gg of each receptor. All quantities can change, thereby
changing the synaptic strength. This process is called synaptic plasticity and
it is a fundamental mechanism of learning in the brain. I will discuss it in
more depth in Section 2.2.3.

The excitatory/inhibitory postsynaptic current (EPSC/IPSC) leads to de-
polarization /hyperpolarization which will be reversed by leak currents and ion
pumps. The resulting deflection of the voltage depends on the membrane ca-
pacitance and conductances and it is called excitatory/inhibitory postsynaptic
potential (EPSP/IPSP).

The overall dynamics of the membrane potential depend on the ionic current
through the voltage-dependent channels and through the synaptic ligand-gated
ion pores:

ou
Cnr = > Lion + Iyn. (2.1.7a)

ion
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2.1.2 Simple spiking and rate-based models

The conductance-based model of a neuron, introduced in the previous section,
is very detailed and accurate. It allows to understand and predict many prop-
erties of single neurons. But it is difficult to analyze and simulate due to the
nonlinear differential equations and spatial extent of a real neuron. In the case
of studying a network of neurons and its computational properties, it is often
desirable to employ a simpler neuron model. The most common simplification
is to neglect the complex three-dimensional structure of the cell and assume a
point-like neuron. All inputs, thus, arrive directly at the soma and all spatial
aspects of the neuronal dynamics are not considered.

Simple spiking models like the leaky-integrate-and-fire (LIF) model drop
the complicated nonlinear dynamics of the Hodgkin-Huxley mechanism for
spike generation. Only the subthreshold dynamics remains and the spike time
is just defined by the time of threshold crossing combined with a reset of the
membrane potential. For the LIF neuron the subthreshold membrane potential
is the leaky integration of the input current I:

el

8tu = —Qleak (u—ug)+1

with the resting potential ug.

In the rate model of neurons the spike time is entirely disregarded. That
means the output signal of a neuron is described by the number of spikes in a
fixed time interval, i.e. its firing rate or activity r. This rate is calculated by
two stages: a linear filter determines how the membrane potential u integrates
the inputs. The output of this linear filter is then passed through a nonlinear
transformation to yield the rate.

The rate model can be employed either in discrete time or continuous time.
In discrete time the whole dynamics of the membrane potential is ignored.
The output y of a neuron is only defined at discrete points in time ¢ € N. 1y,
corresponds to the rate r, that means it is the average number of spikes in the
time interval [t — 1,¢]. Thus, the input z; from one to another neuron is just

y; and the total input is a weighted sum:

I, = ijxgj) = Wy.
J
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Since this input is an average and thus constant in the time interval, the mem-
brane potential is assumed to arrive at the equilibrium value u; = ugr + %It.
The depolarization 4 = u; — ug is proportional to the input /;. Absorbing the
proportionality constant into the nonlinear transformation f, the output/rate

is calculated as
A popular choice for the transformation, also known as the activation function,

is the logistic sigmoid function

1

) = T e Catu—b)

(2.1.9a)

Explicit spiking can be recovered in the linear-nonlinear rate model by going
to continuous time. Here, the rate is not an average over a finite interval
but interpreted as an instantaneous rate, i.e. the probability of spiking in an
infinitesimal interval. Given this instantaneous rate, the spike times are drawn
from a stochastic process. The usual choice is a Poisson process which leads

to the LNP (linear-nonlinear-Poisson) model.

2.2 Neural plasticity

The computation in a neural network is determined by the connectivity be-
tween the neurons and their individual excitabilities. The fundamental ability
of the brain is to adapt the computations by modifying both, connectivity
and excitability. These modifications are called plasticity and are the basis for
learning and adaptation [Hebb, 1949; Kandel, 1997; Abbott and Nelson, 2000].

The changes in the excitability are called intrinsic plasticity. Structural
plasticity describes the morphological changes and the creation/removal of
synaptic connections, while the changes in synaptic strength of established
connections are called synaptic plasticity. Synaptic plasticity is the main focus
of this thesis, to be discussed in Section 3.2.1 and Chapter 4, but Section 3.2.2

will also address intrinsic plasticity.
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2.2.1 Homeostatic plasticity

An overarching concept is the so-called homeostatic plasticity. The function
of neural homeostasis is to maintain the stability of neural function during
development as well as in adulthood |[Turrigiano and Nelson, 2004]. This is
done by tuning the processing of a neuron towards a specific set point. If
the environment changes (e.g. stronger/weaker input) the balances have to be
restored by modifying synaptic efficacies and intrinsic excitability. The home-
ostatic mechanisms influence and regulate the relevant plasticity mechanisms

to achieve this balance.

2.2.2 Intrinsic plasticity

Intrinsic plasticity refers to changes in the input-output relationship of a neu-
ron. This sets and adapts the working regime of the neuron, which can include
e.g. spiking threshold and excitability [Sjostrom et al., 2008]. The mechanis-
tic description of this process depends on the employed neuron model. For
simple rate model neurons, the input-output relationship is described by the
nonlinear activation function relating input current to output firing rate. In
spiking models one main parameter for the intrinsic plasticity is the spiking
threshold, e.g. in LIF neuron models. For more detailed Hodgkin-Huxley-type
models, the input-output relationship is described by the f — I curve relating
input current and output firing frequency. It depends on the dynamics of the
voltage-gated ion channels generating the action potential.

By adjusting these intrinsic parameters, a neuron is able to keep the firing
rate in a homeostatic range. On average, its activity is not too high or too
low. This idea is connected to approaches from information theory. A firing
rate distribution which is restricted to only high or low firing rates does not
use its full range and can not efficiently transmit information. This is reflected
in the theoretical approaches towards intrinsic plasticity. Several models have
proposed that a neuron should adapt its input-output relationship in order
to maximize their mutual information [Bell and Sejnowski, 1995; Stemmler
and Koch, 1999; Triesch, 2007]. That means the entropy of the distribution of
output firing rates should be maximal for the current distribution of the input.

Given that a neuron has some maximum firing rate fi,.x the distribution
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with maximal entropy on the interval f € [0, fyax/ is the uniform distribution.
The learning rule by Bell and Sejnowski [1995] adapts the parameters of the
activation function such that the output firing rate is uniformly distributed
for the current input distribution. On the other hand, a neuron has limited
amount of metabolic resources. That means, the number of spikes it can emit
within some fixed time period is limited and the neuron is, therefore, restricted
to a maximal average firing rate as described in Section 2.3.1. Incorporating
this fact, Triesch [2007] modified the learning rule by demanding a fixed av-
erage firing rate instead of a maximum rate. The maximum entropy output
distribution under this constraints is the exponential distribution. This is sim-
ilar to the experimentally observed firing rate distributions [Hroméadka et al.,
2008].

In a more detailed model, Stemmler and Koch [1999] applied the idea of
maximizing mutual information to a spiking Hodgkin-Huxley neuron. They
adapted the gating kinetics of the voltage-dependent ion channels. This lead

to an f — I curve which fitted the statistics of the input current.

2.2.3 Synaptic plasticity

Synaptic plasticity refers to ongoing changes in strength of established synap-
tic connections [Sjostrom et al., 2008|. The phenomenon is observed on two
different timescales. Short-term synaptic plasticity fluctuates on the order of
seconds to minutes and is restricted to the presynaptic side. It is connected
with the depletion of neurotransmitter storages and changes in the release
probability of vesicles [Fioravante and Regehr, 2011].

Long-term synaptic plasticity describes changes which are stable and persist
over hours or longer. The change in synaptic strength following a given stimu-
lation protocol is measured as the increase or decrease of the EPSP amplitude.
These changes are mainly associated with a change in the number of receptors
in the postsynaptic membrane as well as changes in the maximal conductance
of each single receptor [Song and Huganir, 2002]. But also presynaptic mecha-
nisms have been found to influence the long-term changes in synaptic strength
[Rodriguez-Moreno et al., 2011].

During the last fifty years there have been many advances in understanding

the dependence of long-term plasticity on the pre- and postsynaptic conditions.
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Initially pioneered by Hebb [1949] in theoretical terms, the concept of long-
term potentiation (LTP) as a result of correlated activity has been refined
and extended. Since then a rich body of experimental findings and theoretical

models for synaptic plasticity under different protocols has accumulated.

Hebbian plasticity and STDP

One of the most quoted hypotheses in neuroscience is Hebb’s postulate which
basically states that the synaptic connection between two neurons should be
strengthened if the presynaptic cell “repeatedly or persistently takes part in
firing” the postsynaptic cell [Hebb, 1949]. With this, he established a theoreti-
cal foundation for long-term synaptic plasticity. The inherent timing or causal
relation in Hebb’s postulate, however, is not present in the usual formulations
of Hebbian plasticity. The postulate is often simplified such that those neurons
which “fire together, wire together”, thereby neglecting the causal relationship.
The resulting Hebbian learning rule is only sensitive to correlations of pre- and
postsynaptic activity x and y, respectively. The change in the synaptic weight

is defined as
Aw = nzy, (2.2.1a)

where n > 0 is a learning rate.

More than twenty years later, Bliss and Lomo [1973] provided the exper-
imental confirmation of long-term potentiation (LTP) induced by correlated
pre- and postsynaptic activity. They showed that a synaptic connection got
stronger if both the pre- and postsynaptic neurons concurrently showed a high
firing rate, and that this increased strength persisted over several hours even in
the absence of ongoing correlated activity. The opposite mechanism of long-
term depression (LTD) was discovered by Lynch et al. [1977] in a different
brain structure. It is now established that both processes, LTP and LTD, can
happen at the same synapse meaning they show bidirectional plasticity.

Different bidirectional extensions to the LTP-only standard Hebbian learn-
ing rule were proposed which contained an explicit regime for depression. The

covariance rule [Sejnowski, 1977]

Aw =1 (z — (r)) (y — (v)) (2.2.2a)
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Figure 2.6 Bidirectional synaptic plasticity. A: The covariance rule (red) and the BCM
rule (blue) predict LTD for low postsynaptic activity y and LTP for high
activity. B: For STDP the amount and sign of the weight change depends
on the relative timing between pre- and postsynaptic spike: LTP for pre-

post and LTD for post-pre.

kept the linear dependence, while Bienenstock, Cooper, and Munro [1982]
(BCM) proposed a theory with a quadratic dependence on the postsynaptic
activity (Fig. 2.6A) as

Aw :=ny(y — On) . (2.2.3a)

Dudek and Bear [1992| showed that a presynaptic high-frequency stimula-
tion, leading to a strong activity at the postsynaptic side, resulted in LTP.
A low-frequency stimulation, insufficient to excite the postsynaptic cell, leads
to slight LTD or no plasticity as predicted by the BCM theory. They also
found a smooth crossover from the LTD to the LTP regime with some thresh-
old frequency producing no change at all. This rate-dependent plasticity more
closely resembled the causal nature of the full Hebbian postulate.

A similar U-shaped dependence of synaptic plasticity on the postsynaptic
voltage was found in experiments [Artola et al., 1990; Ngezahayo et al., 2000].
They showed that postsynaptic firing was not necessary for synaptic plasticity.
Rather, pairing presynaptic stimulation with postsynaptic depolarization was
sufficient. Similar to the rate-dependent plasticity, a small depolarization leads
to LTD while a larger one leads to LTP, also with a smooth crossover and a

threshold voltage.
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The discovery of spike timing-dependent plasticity (STDP) |Gerstner et al.,
1996; Markram, 1997| finally established the importance of the relative timing
between pre- and postsynaptic spikes (Fig. 2.6B). In line with the Hebbian
postulate, causal pairs of spikes, with the pre- coming before the postsynaptic
spike, lead to LTP (At > 0). The reversed order of acausal pairs (At < 0)
results in LTD. The plasticity is strongest when the relative delay At is small,
while there is rapid crossover between the LTP and the LTD regime. This is

usually modeled with two exponentials [van Rossum et al., 2000]:

+A exp [—g} At >0

T+

Aw:=1n (2.2.4)

A
—A_exp {+—t} At <0

T_—

Due to this causality, STDP was initially assumed to be a fundamental
property of synaptic plasticity. More recently, however, experiments have de-
scribed non-linear interactions between spike triplets and very different forms
of STDP windows with depression only, potentiation only or even reversed

timing requirements (see [Shouval, 2010] for a review).

Metaplasticity

Another important feature of the BCM theory is the assumption that the
threshold ©,; should be modifiable. In line with a homeostatic regulation, the
threshold was set to a long-term average of the postsynaptic activity. A high
activity would increase the threshold and make the induction of LTD more
likely, thereby reducing the overall input and postsynaptic firing.

This hypothesis was experimentally tested by Kirkwood and Rioult [1996].
They raised kittens in a darkened environment and thereby artificially reduced
the excitation to cells in the visual cortex. As a result, the threshold for the
induction of LTP was shifted to lower frequencies compared to kittens under
normal conditions. Complementary, Wang and Wagner [1999| primed the post-
synaptic cell with a high activity stimulation and observed that the threshold
shifted to higher frequencies. Thus, changing input statistics is counterbal-
anced by changing the regimes of LTP and LTD. While input deprivation
makes LTP more likely, a strong activity of the postsynaptic cell is balanced

by making LTD more likely. This homeostatic effect, that depends on condi-
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tions in the recent past, is called metaplasticity due to the fact that it is a
plasticity of synaptic plasticity [Abraham, 2008].

A similar homeostatic effect has been found by Ngezahayo et al. [2000] in
voltage-clamp experiments. They measured the dependence of synaptic plas-
ticity on the postsynaptic membrane potential similar to Artola et al. [1990].
Additionally, they found the voltage threshold, separating the LTD from the
LTP regime to depend on the strength of the probed synaptic pathway. This
metaplasticity again showed a homeostatic behavior since a strong synapse had

a larger LTD regime and a previously weakened synapse a larger LTP regime.

Underlying mechanisms

The classical plasticity and metaplasticity protocols are used to probe the de-
pendence of synaptic changes on different factors like firing rate, spike timing
and membrane potential. But those dependencies are no independent phe-
nomena but just different facets of one common underlying mechanism. The
molecular processes which lead to the observed change in synaptic efficacies
remained unclear for long time and are still not fully understood.

The idea that the intracellular calcium concentration is a key component in
these processes was pioneered by Lisman [1988; 1989]. The important quantity
is a molecular complex called calcium/calmodulin-dependent protein kinase 1T
(CaMKII). It consists of four subunits which can be phosphorylated. In the ini-
tial state (off-state) this process is calcium-dependent, but once three subunits
are phosphorylated, a calcium-independent autophosphorylation can keep the
complex in a stable, fully phosphorylated state (on-state). With this, CaMKII
can act as a bistable switch storing information about the synaptic strength
(cf. Fig. 2.7).

The stability depends on the level of calcium as shown in Figure 2.7B. An
intermediate level promotes an activation of Phosphatase I (PPI) which in
turn dephosporylates CaMKII bringing it to the off-state. A high level of
calcium triggers the switch from the off- to the on-state and also inactivates
PPI through an interaction with Inhibitor I. If the level of calcium is too low,
it does not trigger any reactions and CaMKII stays in its current stable state.

Ultimately, CaMKII in the on-state influences the synaptic strength by

phosphorylating existing AMPA receptors (increasing their conductance) and
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Figure 2.7 Autophosphorylation of CaMKII and its effect on synaptic plasticity. Upper:
Phosphorylation of the first three CaMKII subunits is calcium-dependent,
while the fourth phosphorylation happens independently of calcium. Lower:
The calcium concentration determines the amount of desphosphorylation.

Subsequently, this affects the induction of plasticity.

promoting the insertion of new receptors in the membrane. Calcium is a good
candidate for sensing correlation between pre- and postsynaptic activity, since
the calcium level is affected by presynaptic input via the postsynaptic NMDA
receptors and postsynaptic depolarization via voltage-dependent calcium chan-
nels. This leads to the formulation of the so-called calcium control hypothesis
for synaptic plasticity. It describes the process of LTD and LTP by two thresh-
olds for the calcium concentration. If it is below ©_, no plasticity is induced,
between ©_ and ©, LTD occurs, and above O, the synapse gets potentiated
(cf. Fig. 2.7B). This form is seen again in the voltage-dependent [Artola and
Singer, 1993] and the rate-dependent plasticity [Bienenstock et al., 1982]. Tt
has also been shown to explain STDP [Shouval, 2010].
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Shortcomings of previous models

The large body of theoretical models can be roughly grouped into three cate-
gories: mechanistic, phenomenological, and functional. Every category has its
benefits and drawbacks.

Phenomenological studies start directly with the observed plasticity phe-
nomena and their dependencies. These are described by simplified models
useful to study the impact of different plasticity phenomena on network be-
havior, synaptic weight stability, and learning [van Rossum et al., 2000; Pfister
and Gerstner, 2006; Clopath and Gerstner, 2010]. But they make no (or only
abstract) reference to the underlying mechanisms and are limited to the de-
pendencies explicitly put into the model. Further, they are not capable of
assessing functional goals of synaptic plasticity.

The mechanistic models are bottom-up approaches. Based on known bio-
physical mechanisms in the cell, they try to explain the resulting phenomena
of synaptic plasticity [Shouval et al., 2002; Graupner and Brunel, 2012]. The
most promising theories are based on the calcium control hypothesis as de-
scribed above. This type of approach is able to create very realistic models.
On the other hand, they are difficult to analyze analytically in order to predict
the behavior on the higher level. That means, it is difficult to extract possible
functional goals starting from these basic mechanisms.

Functional approaches are top-down. Starting from a computational per-
spective, they derive an algorithm that can describe the observed phenomena.
In this view these phenomena are just a consequence of achieving the func-
tional goal and the biological mechanisms correspond to the implementation of
the proposed algorithm. The difficulty lies in choosing a reasonable goal from
the large set of possibilities. It needs to reproduce most of the observed de-
pendencies of synaptic plasticity and ultimately lead to an implementation in
accordance with the biological mechanisms. This is where all previous models
fall short [Toyoizumi et al., 2005; Sprekeler et al., 2007; Pool and Mato, 2011].

To get a unified understanding of synaptic plasticity, a theory has to bridge
all levels of abstractions. While phenomenological ones are useful, they are
not capable of providing this unification. It can either be done by working
upwards from the basic mechanisms or downwards from some functional goal.

Since both approaches are difficult and error-prone, a full theory providing
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a unified understanding probably only arises in a fruitful interaction between
these two. In Chapter 4, this thesis tries to take a first step from the functional

side all the way down to the biological mechanisms.

2.3 Neural computation: constraints and func-
tion

Neurons and their connections are the underlying basis of the computations
in the brain. Apart from some modulatory signals, each cell is largely inde-
pendent in terms of its elementary function. It is only influenced by other
cells through its synaptic connections embedding it in a neural network. The
overall computation of such a network of neurons is the result of the interac-
tion between two processes: input-output mapping and connectivity. The goal
of learning is to optimize the computation by adapting both processes. To
analyze the arising computation and its plasticity mechanisms it is important

to understand the constraints of the neural system.

2.3.1 Constraints

The neural system needs to perform its computations under various constraints
and in order to work in an optimal fashion, these constraints should be con-
sidered by the brain.

Probably the most fundamental constraint is the limited amount of energy
for the brain [Laughlin and Sejnowski, 2003|. Like every cell in the body, a
neuron needs nutritions, oxygen, and energy for the vegetative metabolism
of its cell body. But their ability to receive and transmit excitation incurs
additional energy consumption. Neurons need to develop and maintain their
extensive dendritic and axonal trees in order to make synaptic contacts with
other neurons. The larger and longer these extensions are, the more energy
they require. One reason behind the arborescent structure of dendrites may
thus be the need to minimize the wiring length from the soma to the synaptic
contacts [Cuntz et al., 2010].

Also establishing and maintaining the resting potential is a process that

induces high metabolic costs. It requires the ongoing activity of the Na® /K-
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ATPase pump. The costs for neural processing and communication have been
estimated to make up half of the energy consumption in human cortex [Lennie,
2003].

For the maintenance of the resting potential three regimes can be distin-
guished. Even in the absence of synaptic input the Na* /K*-ATPase pump is
active to maintain the resting potential, since the membrane is not ideal and
shows a permeability to ions other than potassium. Additional activity of the
ion pump is required to counterbalance the ionic currents from synaptic input
in the subthreshold regime. Finally, a suprathreshold input leads to an action
potential which requires further pumping activity. The baseline activity is due
to a static property of the membrane and can not be optimized. The metabolic
costs of the sub- and suprathreshold regimes, however, depend on quantities
which can be adapted. This can be used as a guiding principle to discover
functional principles of the neural system.

The metabolic costs in the suprathreshold regime depend on the
output of a neuron, i.e. the shape of the action potential and the distribution
of firing rates. Hasenstaub et al. [2010] proposed that the shape of the action
potential is optimized to be energy-efficient. They have shown that a short,
thin spike requires more energy, but allows for a higher maximal frequency,
leading to a trade-off. Depending on their type, neurons are optimized in their
action potential shape according to these requirements.

The most widespread idea regards energy efficient coding, i.e. how can the
neural system represent information in an optimal fashion. From an infor-
mation theoretic viewpoint, the information capacity C' corresponds to the
entropy of the firing probability p in some short time interval. The average

energy expenditure follows roughly as

E = (1 —p) Erest + pEap (2.3.1a)
x1+p(r—1) (2.3.1b)

where 7 = Fap/FEes is the energy ratio of firing compared to resting.

A neuron should transmit as much information while spending as little en-
ergy as possible. This amounts to maximizing the ratio ok For an inexpensive
action potential, i.e. r =~ 1, the energy would be independent of p. The op-

timal value p* is then one half, which also maximizes the entropy. However,
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given the high metabolic costs of action potentials, r is generally large and
the required energy increases strongly with p. The observed low average firing
frequency in real neurons, thus, optimizes the information per energy [Levy
and Baxter, 1996]. These considerations are connected to the idea of a sparse
neural code, where the rare, expensive firing is compensated by representing
the input with a large population of neurons. I will describe the ideas and
formulations for sparseness in the following section. It is, however, important
to realize that not only the generation of an action potential consumes energy.

The metabolic costs in the subthreshold regime include the synaptic
transmission and the postsynaptic effects of a received action potential. Both
require much energy and, actually, the EPSPs make up more than fifty per-
cent of the total energy per action potential [Lennie, 2003]. The distribution of
synaptic inputs and their total strengths determine the required energy. Thus,
these quantities are an important point for optimizing the energy efficiency of
the neuron. Levy and Baxter [2002] already found that a nonzero probabil-
ity of synaptic failure is optimal with respect to energy-efficient information
transmission given the limited information capacity of the axon. How these
postsynaptic costs should impact the synaptic strength and its distribution
has, to the best of my knowledge, so far not been considered. In Section 4 I
will show that an optimization in terms of sparseness applied to the synaptic
efficacies of a neuron introduces a new functional goal for synaptic plasticity

which unifies different observations as well as different levels of analysis.

2.3.2 Sparseness

For random variables, sparseness means that the variable has very small values
(close to zero) most of the time and only rarely takes on large non-zero values.
This is not an absolute statement and needs a baseline for comparison. Usually
the distribution of the random variable X is compared to a (Gaussian with
the same variance. If the probability density function (PDF) of X has more
probability mass around zero and in the tails (i.e. it is more peaked) than the
Gaussian, it is considered to be sparse (cf. Fig. 2.8). These distributions are
also called super-Gaussian.

For the distribution of neural firing rates, sparseness has two distinct as-

pects. First, the firing rates of each neuron can have a sparse distribution,
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Figure 2.8 Comparison of Gaussian (solid red) and Laplacian (dotted blue) PDF in (a)
normal and (b) semi-log space. The Laplacian has a large peak at zero and

heavier tails and is called super-Gaussian.

which is called “lifetime sparseness”. The second aspect concerns the distribu-
tion of the response from a population of neurons. Here, the input should have
a sparse representation such that only few neurons are strongly active, which

is called “population sparseness”.

Sparse coding

A lifetime-sparse distribution of firing rates accounts for the fact that
spikes are metabolically expensive. The distribution should be optimized to
convey as much information while being restricted to an average amount of
energy consumption. Since entropy is a measure for the information capacity,
the distribution should have the maximum entropy given specific constraints.

Such a distribution can be written as the Gibbs distribution

p(z) = Z()q - exp [Z)\ filx ] (2.3.2a)

where the f; encode the constraints in terms of expectation values such that
E [fi(z)] = a; and the \; are the Lagrange multipliers to be determined by the
constraints.

The required energy depends mainly linearly on the firing rate r plus some
additional baseline energy p for the resting potential and subthreshold fluctu-
ations [Laughlin and Sejnowski, 2003]:

E.=a-r+p (2.3.3a)
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On average every cell has a fixed amount of energy pp to supply the baseline

and the spiking. The constraint on the average energy translates to an average

firing rate u, = Elr] = PEZ P For a fixed mean and a domain of r €
[0, oo[ the maximum entropy d%stribution is the exponential distribution. With
the additional constraint of a maximal firing rate 7.y, the distribution is a
truncated exponential. In this case it is still a decaying exponential if p, <
Tmax/2 which is granted in neurons where p, < 10 Hz and rp,.x is on the order
of 100 Hz.

Experimental firing rate distributions resemble exponential distributions
but are much better fitted with the lognormal distribution [Hroméadka et al.,
2008] with the PDF as

1
InN,,(z) = mexp [—

X

52 (2.3.4a)

<mx—m1

Both distributions are considered to be sparse. Interestingly, the lognormal
distribution is the maximum entropy distribution given a fixed mean and vari-
ance of log X. The deviation from the exponential distribution at very low
firing rates can be explained by taking noise into account. While low firing
rates should be preferred in neural coding due to their low energy requirements,

they are more prone to the influence of noise [Tsubo et al., 2012].

The population sparseness depends on the energy ratio of spiking to
resting and the required representational capacity of the population. For inex-
pensive spiking comparable to resting, on average half of the neurons should
be active, since this increases the capacity due to the combinatorics and the
population size can be small [Laughlin, 2001|. However, given the high costs
of spiking, it is more efficient to employ a large number of neurons but let only

few be active.

In their seminal work, Olshausen and Field [1996] applied the idea of sparse-
ness to visual input as arriving in the primary visual cortex. Here, neurons
are described by linear basis functions ¢;(z,y) coding for a given pattern in
the input /(z,y). In biological terms, this basis function is analogous to the
receptive field and describes the connectivity from the input stage to the in-

dividual neuron. The aim is to reconstruct the input /(x,y) from the neural
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responses a; by linear superposition of the basis functions:

Just minimizing the squared reconstruction error
. 2
Eupur = Y ‘I(:r, y) — I(z, y)( (2.3.6a)
.y
is a simple optimization problem. Olshausen and Field [1996] also included a

sparseness energy term penalizing high responses:
Esparse - Z S<ai>> (237&)

where they employed different functional forms of the penalty function S like
la;| or —exp [—a?]. Minimizing the total error £ = Eiypyt + A - Egparse ammounts
to finding a representation approximating the input with as few active neurons
as possible.

The activities which minimize the total energy and the actual minimal value
strongly depend on the basis functions (or receptive fields) of the neurons. The
important step of Olshausen and Field [1996] was to further optimize the total
energy by adapting the basis functions to better represent the input. After
convergence, the resulting basis functions resembled localized, oriented edge-
filters similar to the receptive fields found in primary visual cortex [Hubel and
Wiesel, 1968|.

Sparse synaptic efficacies

The distribution of synaptic efficacies is well fitted by a lognormal distribution
[Song et al., 2005; Loewenstein et al., 2011|. Their distribution is highly skewed
and sparse meaning that most of the synapses are rather weak but a few ones
are an order of magnitude stronger than the mean. Song et al. [2005] found
that the strongest 17% of the synapses contributed 50% of the total synaptic
strength.

The lognormal distribution also fits well with neural firing rates as described
above. This agrees with the sparse coding model and has been connected
to the energy efficiency of the suprathreshold regime. Similarly, the sparse

distribution of the synaptic efficacies can be connected to an energy-efficient
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subthreshold behavior. In Chapter 4, I describe how the synaptic efficacies
influence the metabolic costs and apply this functional idea to optimize their

distribution.

Independent component analysis and sparseness measures

The classical sparse coding approach with its energy formulation punishes high
neural activities with a certain sparseness function. The choice between dif-
ferent functions can be quite arbitrary and it is not clear how to define and
quantify sparseness of a single neuron. Furthermore, given a population of neu-
rons exhibiting a distribution of activities, how sparse is this distribution? As
initially introduced, a distribution is considered sparse if it is stronger peaked
at zero and has heavier tails compared to a Gaussian with the same variance.

This comparison to a Gaussian is not arbitrary and resembles the connec-
tion of sparse coding to the concept of independent component analysis (ICA)
[Comon, 1994; Hornillo-Mellado et al., 2005]. ICA aims to find the indepen-
dent components by searching for non-Gaussian projections of the signal. Bell
and Sejnowski [1997] applied ICA to natural images and found not only similar
receptive field structures (Gabor-like edge filters) but also that these indepen-
dent components were sparsely distributed.

The deviation of a distribution from a Gaussian can be quantified with
higher-order moments. Popular choices are the third and fourth normalized
moment called skewness S and kurtosis K, respectively [Hyvérinen and Oja,
2000; Blais et al., 1998|. They are defined as the n-th central moment divided
by the n-th power of the standard deviation o:

5= (2.3.8)
(2.3.8b)

While this does not imply that skewness and kurtosis are equivalent to sparse-
ness, these measures are generally useful to quantify and optimize the sparse-

ness of a distribution.
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Chapter 3

Separability objective for neural

plasticity

The most remarkable functionality of the brain is its plasticity which provides
the organism with a mechanism to adapt and learn. To understand the ca-
pability of neural networks to learn is a fundamental problem which concerns
computational neuroscience, machine learning as well as engineering appli-
cations. The self-organized learning rules employed in many approaches are
inspired by the experimental findings in real neurons. These rules for simpli-
fied artificial neural networks, however, are not more than a phenomenological
ad-hoc description of the observed processes. This chapter will introduce a
principled derivation of plasticity rules for artificial neural networks based on

an objective function.

Section 3.1 gives a short, general introduction to the different topologies
of artificial neural networks and the special approach of reservoir computing
which is a class of recurrent networks which are efficient to train. Section 3.1.2
reviews a recent finding on self-organized learning rules applied to such recur-
rent networks and how those rules can improve the internal representation.
In Section 3.2, I describe the main part of the objective function in terms of
separability of the internal network state [Krieg et al., 2010], which was mo-
tivated by the work introduced in Section 3.1.2. 1 will derive synaptic and
intrinsic plasticity rules from the objective function, analyze their effects and
stability properties, and compare them to previously proposed plasticity rules.

Section 3.3 extends the approach with an objective regarding energy consump-

35
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applied to a recurrent network and shows the performance and convergence

properties.

3.1 Artificial neural networks

The first artificial neural networks have been concerned with feed-forward
structures having one or more layers of neurons. Each layer consisted of a
population of neurons receiving input from a previous layer. The goal was to
transform the initial input at the first layer into a suitable output at the last
layer (cf. Fig. 3.1). This was achieved by adapting the connection weights
in the feed-forward network. In a supervised learning paradigm the input as
well as the desired output were given to the learning algorithm. The error at
the output was then backpropagated through the layers providing a measure
for how to change the connections. With such a learning scheme, the network
could be tuned to provide a desired input-output mapping. In fact, purely
feed-forward networks were shown to be universal function approximators.
More biologically realistic are networks with recurrent connections. They
allow the information about previous times to be retained in the network. A
recurrent neural networks (RNN) is basically a dynamical system (cf. Fig. 3.1)
with the possibility of fixed points and complex attractors, but they also have
their disadvantages: they can exhibit chaotic behavior which makes them
complicated to predict. Thus, RNNs are hard