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�I can live with doubt, and uncertainty, and not knowing.

I think it's much more interesting to live not knowing

than to have answers which might be wrong.�

Richard P. Feynman
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Zusammenfassung

Das Gehirn ist die wohl komplexeste Struktur auf Erden, die der Mensch

erforscht. Es besteht aus einem riesigen Netzwerk von Nervenzellen, welch-

es in der Lage ist eingehende sensorische Informationen zu verarbeiten um

daraus eine sinnvolle Repräsentation der Umgebung zu erstellen. Auÿerdem

koordiniert es die Aktionen des Organismus, um mit der Umgebung zu inter-

agieren. Das Gehirn hat die bemerkenswerte Fähigkeit sowohl Informationen

zu speichern als auch sich ständig an ändernde Bedingungen anzupassen, und

zwar über die gesamte Lebensdauer. Dies ist essentiell für Mensch oder Tier,

um sich zu entwickeln und zu lernen.

Die Entwicklung eines menschlichen Kindes in den ersten Jahren und die

Fähigkeiten, die es währenddessen erwirbt, sind bisher von keinem Computer-

Algorithmus erreichbar. Die Grundlage für diesen lebenslangen Lernprozess

ist die Plastizität des Gehirns, welche das riesige Netzwerk von Neuronen

ständig anpasst und neu verbindet. Dieses Phänomen der neuronalen Plastiz-

ität beschäftigt die Neurowissenschaften und anderen Disziplinen bereits über

mehrere Jahrzehnte. Dabei induzieren lokale, selbstorganisierte Mechanismen

Veränderungen an den synaptischen Verbindungen und der intrinsischen Erreg-

barkeit jedes Neurons und optimieren dadurch das Verhalten des Organismus

als Ganzes.

Dabei beschreibt die intrinsische Plastizität die ständige Anpassung der Er-

regbarkeit eines Neurons um einen ausbalancierten, homöostatischen Arbeits-

bereich zu gewährleisten. Aber besonders die synaptische Plastizität, welche

die Änderungen in der Stärke bestehender Verbindungen bezeichnet, wurde

unter vielen verschiedenen Bedingungen erforscht und erwies sich mit jeder

neuen Studie als immer vielschichtiger. Sie wird durch ein komplexes Zusam-

menspiel von biophysikalischen Mechanismen induziert und hängt von ver-

schiedenen Faktoren wie der Frequenz der Aktionspotentiale, deren Timing

und dem Membranpotential ab und zeigt auÿerdem eine metaplastische Ab-

hängigkeit von vergangenen Ereignissen. Letztlich beein�usst die synaptische

Plastizität die Signalverarbeitung und Berechnung einzelner Neuronen und der

neuronalen Netzwerke.

Der Schwerpunkt dieser Arbeit ist es das Verständnis der biologischen Mech-

anismen und deren Folgen, die zu den beobachteten Plastizitätsphänomenen



führen, durch eine stärker vereinheitlichte Theorie voranzutreiben. Ein solcher

einheitlicher Ansatz kann Einblicke in die folgenden drei verschiedenen Dimen-

sionen liefern, welche für synaptische Plastizität relevant sind.

Synaptische Plastizität betri�t unterschiedliche Ebenen theoretischer Ab-

straktion. Das komplexen Verhalten von Zellen und ihrer Wechselwirkungen

in lebenden Organismen zu verstehen erfordert Untersuchungen auf verschiede-

nen Ebenen der Abstraktion. Marr [2010] schlug vor, drei Ebenen der theo-

retischen Analyse zu unterscheiden: Funktionelles Ziel, Algorithmus und Im-

plementierung. Mechanistische Modelle über die zugrunde liegenden Mecha-

nismen folgen einem Bottom-up Ansatz. Sie beschreiben die Implementierung

der Plastizität und bilden eine Grundlage für Modellierungsstudien. Jedoch

lassen sich deren Auswirkungen auf das Verhalten des Netzwerkes, jenseits

einzelner Synapsen, nur schwer verstehen. Eine einfache Möglichkeit, um diese

Auswirkungen auf das Netzwerk zu untersuchen, bieten phänomenologische

Modelle die nur die resultierenden Phänomene und Abhängigkeiten beschreiben.

Aber dieser Ansatz ist von Natur aus begrenzt, denn er kann nicht zu einem

tieferen Verständnis der komplexenWechselwirkungen zwischen den verschiede-

nen Mechanismen führen. Daher ist es wichtig über diese phänomenologis-

chen Beschreibungen hinauszugehen. Hier kann ein Top-Down Ansatz helfen,

mögliche funktionale Ziele des Systems zu betrachten. In dieser Hinsicht kön-

nen die funktionalen Auswirkungen der synaptischen Plastizität als das Ziel

betrachtet werden, welches auf Synapsen-, Zell- oder Netzwerkebene erreicht

werden soll. Der wichtigste Schritt ist dann die Ableitung einer geeigneten, biol-

ogisch plausiblen Lernregel (Algorithmus) und die Identi�zierung der zugrunde

liegenden biologischen Mechanismen als mögliche Implementierung dieser Lern-

regel.

Synaptische Plastizität betri�t unterschiedliche Skalen der neuronalen Funk-

tion und Organisation. Die neuronalen Netzwerke des Gehirns können auf un-

terschiedlichen Skalen untersucht werden: von intra- und subzellulären Mech-

anismen, über die Signalverarbeitung und Konnektivität von einzelnen Neuro-

nen bis hin zu dem Informations�uss zwischen groÿen Netzwerken oder ganzen

Hirnarealen. Das Phänomen der synaptischen Plastizität liegt genau in der

Mitte zwischen dem groÿen und kleinen Maÿstab. Die Untersuchung der Mech-



anismen betri�t den kleinen Maÿstab der subzellulären Reaktionen und Wech-

selwirkungen von Ionen, Proteinen und anderen Molekülen. Und während die

E�ekte der synaptischen Plastizität direkte Auswirkungen auf die Signalverar-

beitung einer einzelnen Zelle haben, beein�ussen sie dadurch die Berechnung

im Netzwerk und betre�en daher auch Fragen in Bezug auf die funktionalen

Auswirkungen.

Synaptische Plastizität betri�t unterschiedliche Faktoren der neuronalen

Verarbeitung. In den letzten sechs Jahrzehnten wurde synaptische Plastiz-

ität experimentell und theoretisch untersucht. Seitdem wurde entdeckt, dass

die Verbindungsstärke beziehungsweise deren Änderung viele Abhängigkeit-

en besitzt: die Aktivität des prä- und postsynaptischen Neurons, das postsy-

naptische Membranpotential, das relative Timing zwischen prä- und postsy-

naptischen Aktionspotentialen, den Ort der Synapse, etc. Diese verschiede-

nen Phänomene werden meist unabhängig voneinander durch verschiedene

experimentelle Protokolle betrachtet. Allerdings untersuchen diese Protokolle

nur unterschiedliche Aspekte eines gemeinsamen biophysikalischen Mechanis-

mus. Eine allgemeine Theorie von synaptischer Plastizität erfordert daher die

Beschreibungen all dieser Abhängigkeiten aus einem Ansatz heraus.

Einige der gröÿten theoretischen Fortschritte in der Wissenschaft wurden

durch Vereinheitlichungen von scheinbar unterschiedliche Phänomene erreicht,

wie zum Beispiel Newtons Vereinheitlichung der Gesetze des freien Falls mit

den Gesetzen der Planetenbewegung in einem einzigen Gesetz der Schwerkraft.

Solche Vereinigungen führen zu einem besseren und abstrakteren Verständnis

der beobachteten Phänomene. Bislang fehlt solch ein einheitlicher Ansatz für

synaptische Plastizität. Es wird experimentell und theoretisch als eine Mis-

chung aus verschiedenen Phänomene untersucht und modelliert und keines der

existierenden Modelle ist in der Lage, die Lücke in der theoretischen Abstrak-

tion zu überbrücken. Die Hauptmotivation dieser Arbeit ist es daher, einen

neuen Ansatz zu liefern, der ein einheitlicheres Verständnis von synaptisch-

er Plastizität ermöglicht. Eine Theorie basierend auf einem funktionalen Ziel

kann scheinbar unterschiedliche Abhängigkeiten vereinheitlichen und scha�t

damit eine Verbindung zwischen den verschiedenen Skalen und Abstraktionen.

In den Kapiteln 3 und 4 stelle ich zwei funktionale Ziele für neuronale Plas-



tizität auf, leite Lernregeln aus diesen ab und analysiere deren Konsequenzen

und Vorhersagen.

Kapitel 3 untersucht die Unterscheidbarkeit der Populationsaktivität in Net-

zwerken als funktionales Ziel für neuronale Plastizität. Die Hypothese ist dabei,

dass gerade in rekurrenten aber auch in vorwärtsgekoppelten Netzwerken die

Populationsaktivität als Repräsentation der Eingangssignale optimiert werden

kann, wenn ähnliche Eingangssignale eine möglichst unterschiedliche Repräsen-

tation haben und dadurch für die nachfolgende Verarbeitung besser unter-

scheidbar sind. Das funktionale Ziel ist daher diese Unterscheidbarkeit durch

Veränderungen an den Verbindungsstärke und der Erregbarkeit der Neuronen

mithilfe von lokalen selbst-organisierten Lernregeln zu maximieren. Ich zeige,

dass ausgehenden von diesem Ziel die am häu�gsten verwendeten Lernregeln

für intrinsische sowie synaptische Plastizität in künstlichen neuronalen Netzw-

erken abgeleitet werden können [Krieg et al., 2010].

Die synaptische Lernregel entspricht dabei dem Standardmodell für timing-

abhängige Plastizität (STDP) sowohl für ein zeitdiskretes Neuron mit Ratenkodierung

als auch für einen zeitkontinuierliches, spikendes Neuron. Der funktionale Ansatz

führt dabei zu einem zusätzlichen, modulierender Faktor, welcher die synap-

tische Plastizität stabilisiert. Das heiÿt, die synaptischen Verbindungsstärke

divergiert nicht und erfordert keine zusätzliche Normalisierung. Die synaptis-

chen Verbindungen regulieren sich selbst, um eine balanciertes, homöostatis-

ches Eingangssignal zu erzeugen. Dies kann daher als Mechanismus zur synap-

tischen Skalierung interpretiert werden. Auch dieser Stabilisierunge�ekt tritt

dabei sowohl für zeitdiskrete als auch zeitkontinuierliche Neuronen auf.

Das gleiche funktionale Ziel kann auch die Erregbarkeit eines Neurons op-

timieren. Die Lernregel für intrinsischen Plastizität, welche daraus abgeleitet

wird, ist ähnlich zu früheren informationstheoretischen Ansätzen [Bell and Se-

jnowski, 1995]. Eine Erweiterung, basierend auf metabolischen Beschränkun-

gen und Störanfälligkeit eines neuronalen Codes, führt zusammen mit dem

ersten Ziel zu einer realistischeren Verteilung der Feuerrate und einer zusät-

zlichen Lernregel für inhibitorische Neuronen. Insofern erlaubt Kapitel 3 eine

Reihe von Standard-Lernenregeln für künstliche neuronale Netze [Bell and Se-

jnowski, 1995; Triesch, 2005; Babadi and Abbott, 2010; Vogels et al., 2011] aus



einem gemeinsamen funktionalen Ziel abzuleiten.

Inspiriert von den weitreichenden Konsequenzen, welche aus einer so ein-

fachen Beschreibung wie in Kapitel 3 folgen, erweiterte ich den Ansatz auf

ein komplexeres, biophysikalisches Neuronenmodell in Kapitel 4 [Krieg and

Triesch, 2011a,b, 2012 submitted]. Die dort abgeleitete Lernregel ist in der

Lage, direkte Vergleiche mit den experimentellen Ergebnissen zu synaptis-

cher Plastizität zu machen. Das Ziel ist eine spärliche, stark asymmetrische

Verteilung der synaptischen Stärke wie sie auch bereits mehrfach experimentell

gefunden wurde. Exzitatorische Verbindungen folgen in etwa einer Log-normal

Verteilung. Das heiÿt, es gibt viele schwache Verbindungen, jedoch einige wenige,

die sehr stark sind, und diese Asymmetrie kann durch das statistische Maÿ der

Schiefe charakterisiert werden. Da nicht nur die Generierung von Aktionspo-

tentialen hohe energetische Kosten für das presynaptische Neuron verursacht,

sondern auch deren E�ekte auf das empfangende, postsynaptische Neuron,

kann eine solche schiefe Verteilung der synaptische Stärke zu einer energieef-

�zienten Signalübertragung beitragen. Denn anstatt die Signale von vielen un-

korrelierten, mittelstarken Synapsen zu integrieren, wird das Neuron von weni-

gen starken Verbindungen zum Erzeugen eines Aktionspotentials angeregt.

Das funktionale Ziel ist daher die Maximierung der Schiefe dieser Verteilung

durch lokale, synaptische Lernregeln. Aus diesem funktionalen Ansatz können

alle wichtigen Phänomene der synaptischen Plastizität erklärt werden. Simu-

lationen der Lernregel in einem realistischen Neuronmodell mit voller Mor-

phologie erklären die Daten von timing-, raten- und spannungsabhängigen

Plastizitätsprotokollen. Die Lernregel hat auch eine intrinsische Abhängigkeit

von der Position der Synapse auf dem Dendritenbaum, welche mit den ex-

perimentellen Ergebnissen übereinstimmt. Darüber hinaus kann die Lernregel

ohne zusätzliche Annahmen ein Phänomene der sogenannten Metaplastizität

erklären. Diese beschreibt, dass die Plastizitätsmechanismen selbst plastisch

sind und zum Beispiel von der vorherigen neuronalen Aktivität abhängen kön-

nen. Dabei erklärt der Ansatz nicht nur eine bekannte Form der raten-basierten

Metaplastizität, sondern sagt auch eine neue Form der Metaplastizität voraus,

welche die timing-abhängige Plastizität beein�usst.

Andere Ansätze für funktionale Ziele der synaptischen Plastizität wurden



bereits zuvor postuliert. Jedoch waren diese zum Einen auf ein einzelnes Phänomen

beschränkt und lieferten keine einheitliche Sicht auf die experimentellen Phänomene.

Zum Anderen führten sie nicht zu biologisch plausiblen Lernregeln und kon-

nten somit auch keine Verbindung zu den biologischen Mechanismen her-

stellen. Somit besteht der Beitrag der vorliegende Arbeit aus zwei neuarti-

gen Vereinheitlichungen für synaptische Plastizität: Erstens zeigt sie, dass die

verschiedenen Phänomene der synaptischen Plastizität als Folge eines einzi-

gen funktionalen Ziels verstanden werden können. Und zweitens überbrückt

der Ansatz die Lücke zwischen der funktionalen und mechanistische Beschrei-

bungsweise. Das vorgeschlagene funktionale Ziel führt zu einer Lernregel mit

biophysikalischer Formulierung, welche mit etablierten Theorien der biologis-

chen Mechanismen in Verbindung gebracht werden kann. Auÿerdem kann das

Ziel einer spärlichen Verteilung der synaptischen Stärke als Beitrag zu einer

energiee�zienten synaptischen Signalübertragung und optimierten Kodierung

interpretiert werden.

In der vorliegenden Arbeit konnte ich zeigen, dass es möglich ist die ver-

schiedenen Mechanismen der neuronalen Plastizität in künstlichen Netzwerken

auf ein gemeinsames funktionales Ziel abzubilden. Speziell für synaptische

Plastizität lassen sich alle wichtigen experimentellen Phänomene aus einem

funktionalen Ziel erklären und die biophysikalischen Mechanismen als Imple-

mentierung interpretieren. Daher lässt sich vermuten, dass die Mechanismen

der neuronalen Plastizität, welche die wohl wichtigste Eigenschaft des Gehirns

darstellen, sich gemeinsam unter evolutionär relevanten Ein�üssen entwick-

elt haben, um verschiedene funktionale Aspekte der neuronalen Signalverar-

beitung und Berechnung durch lokale Selbstorganisation zu optimieren.
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Chapter 1

Introduction

This thesis investigates a functional view on the plastic changes at the synap-

tic connections between neurons. The hypothesis is that the biological mech-

anisms of this synaptic plasticity have evolved following some functional goal.

The aim of this thesis is to propose a speci�c and intuitive functional goal

and to derive a learning rule from it. The hypothesis will be supported by

comparing its theoretical predictions to experimental data and biophysical

mechanisms.

1.1 Motivation

The brain is the most complex structure known to mankind. It consists of a

vast network of nerve cells that is able to process incoming sensory information

in order to make sense of the world. It coordinates the actions of the organism

in order to interact with the environment. The brain has the remarkable ability

to memorize and store information as well as to adapt to changing conditions

throughout lifetime. This is essential for a human or animal to develop and

learn.

The development of a human child and the abilities it acquires over only a

few years are still unmatched by any computer algorithm. The basis for this

life-long learning process is the plasticity of the brain, which constantly adapts

and rewires the huge network of neurons. This phenomenon of neural plasticity

has attracted the attention of neuroscience and other disciplines for several

decades already. It is driven by local self-organized mechanisms changing the

1



2

synaptic connections and the intrinsic excitability of each neuron. Thereby,

neural plasticity optimizes the overall behavior of the organism.

Intrinsic plasticity continuously adapts the excitability to maintain a homeo-

static set point. But especially synaptic plasticity, which describes the changes

in the strength of existing connections, proved to be more and more intricate

as the studies progressed. It is induced by a complex interaction of biophysical

mechanisms, depends on various factors such as �ring rate, spike-timing, and

membrane potential, exhibits metaplastic dependence on the context, and,

ultimately, in�uences the computation of the neuron and the network it is

embedded in.

The main focus of this thesis is to further the understanding of the biological

mechanisms and their consequences leading to the observed phenomena by

proposing a more uni�ed theory. Such a uni�ed approach can provide insights

into the following three di�erent dimensions which are relevant to synaptic

plasticity:

Synaptic plasticity regards di�erent levels of theoretical abstrac-

tions. Understanding the complex behavior of cells and their interactions

arising in living systems requires studies at di�erent levels of abstraction. Marr

[2010] proposed to distinguish three levels of theoretical analysis: computa-

tional goal, algorithm, and implementation. In order to get a coherent image

of the mechanisms as well as the functional consequences of synaptic plasticity,

it is important to model it at these di�erent levels.

Mechanistic models about the underlying mechanisms can be considered the

most grounded approach. They start from the biological implementation to

identify the biophysical mechanisms. This provides the basis for computational

modeling studies simulating the process in detail. But it is hard to assess the

e�ects of these mechanisms beyond single synapses.

The intermediate algorithmic level is best described by phenomenological

models which only model the observed phenomena. They provide a simple

way to study the e�ects on the network scale. But they are inherently limited,

since they can not provide a deeper understanding of the complex interactions

between the diverse mechanisms. Therefore, it is important to go beyond those

models.
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A top-down approach can help to evaluate possible functional goals the sys-

tem wants to achieve. In that respect, the functional implications of synaptic

plasticity can be regarded as the computational goal to be achieved by the

network. The important step is then to connect the di�erent levels by deriving

a suitable, biologically plausible learning rule (algorithm) and identifying the

underlying biological mechanisms (implementation).

Synaptic plasticity regards di�erent scales of neuronal function and

organization. The neural networks of the brain are studied at di�erent

scales: from intra- and sub-cellular mechanisms over computation and con-

nectivity of single neurons to the information �ow between large networks or

whole brain areas. The phenomenon of synaptic plasticity lies right in the mid-

dle between the larger and the smaller scale. The study of its mechanisms is

connected to processes at smaller scale, namely sub-cellular reactions and cas-

cades of interactions between ions, proteins and other molecules. And while

the e�ects of synaptic plasticity directly a�ect the computation of a single

cell, they also in�uence the computation of the larger network touching upon

questions regarding the functional implications.

Synaptic plasticity regards di�erent quantities of neuronal compu-

tation. It has been studied experimentally and theoretically over the last

six decades. Since then the synaptic connection strength and its change have

been found to have many dependencies: the activity of the pre- and postsynap-

tic neuron, the postsynaptic membrane potential, the relative timing between

pre- and postsynaptic spikes, the location of the synapse, etc. The observa-

tions of these di�erent phenomena are achieved by using di�erent experimen-

tal protocols. But they only probe di�erent aspects of a common biophysical

mechanism.

1.1.1 Objectives

Some of the greatest theoretical advances in science have been uni�cations

of seemingly di�erent phenomena such as Newton's uni�cation of the laws of

free fall and the laws of planetary motion into a single law of gravity. Such

uni�cations lead to a more fundamental and abstract understanding of the
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observed phenomena. So far, synaptic plasticity is missing such a uni�ed

approach. It is experimentally probed and theoretically modeled as a mixture

of distinct phenomena. And none of the existing models are able to bridge

the gap in theoretical abstraction and spatial scale. The main motivation of

this thesis is, therefore, to provide a new approach which allows for a more

uni�ed understanding of synaptic plasticity. An understanding in terms of a

computational goal can unify seemingly di�erent dependencies and create a

connection across the di�erent scales and levels of abstraction.

The hypothesis of this thesis it that synaptic plasticity has evolved to opti-

mize one or more computational goals. To be considered a reasonable compu-

tational goal for synaptic plasticity, it has to ful�ll three requirements: First,

it has to reproduce and unify experimental �ndings. Since it is probable that

the brain has many di�erent computational goals to achieve, the proposed goal

does not need to explain every possible phenomena but at least a major sub-

set. Second, it has to bridge all levels of theoretical analysis. That means, it

should lead to a learning rule that is biologically plausible and show connec-

tions to the underlying biological mechanisms. Third, it should have a natural

interpretation and optimize quantities that are evolutionary relevant.

1.2 Contributions

In the main Chapters 3 and 4, I introduce computational goals for neural

plasticity, propose learning rules derived from them, and analyze their conse-

quences and predictions.

1.2.1 Separability objective for arti�cial neural networks

Chapter 3 introduces an objective function for neural plasticity in terms of the

separability of the population activity. From this single objective, commonly

used learning rules for intrinsic plasticity as well as synaptic plasticity can be

derived [Krieg et al., 2010].

The synaptic learning rule resembles the standard models for spike-timing

dependent plasticity (STDP) for a discrete-time rate coding neurons as well

as for a continuous-time spiking neuron model. The objective function ap-

proach introduces an additional modulating factor, which can be shown to
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stabilize the synaptic learning, i.e. it does not diverge and requires no addi-

tional normalization procedure. The synaptic strengths will adjust themselves

to provide a balanced homeostatic input, thereby, directly accounting for the

phenomenon of synaptic scaling. The same objective is also useful to optimize

the excitability of a neuron. This leads to an intrinsic plasticity rule which

is similar to previous information theoretic approaches [Bell and Sejnowski,

1995].

A second objective function regarding metabolic constraints and noise ro-

bustness of a neural rate code nicely integrates with the separability objective.

It leads to a more realistic distribution of �ring rates and additionally intro-

duces a learning rule for inhibitory interneurons. Thus, Chapter 3 proposes

a simple way to consistently derive a set of standard learning rules for arti�-

cial neuronal networks [Bell and Sejnowski, 1995; Triesch, 2005; Babadi and

Abbott, 2010; Vogels et al., 2011] from a common computational goal.

1.2.2 Sparseness objective for synaptic plasticity

Motivated by the �ndings for the learning rules of arti�cial neural networks

in Chapter 3, I extended the approach to a more complex conductance-based

neuron model in Chapter 4 [Krieg and Triesch, 2011a,b, 2012 submitted]. The

resulting learning rule is able to make direct comparisons to the experimental

�ndings on synaptic plasticity.

The objective is a sparse distribution of synaptic strength and from this

single computational idea all major phenomena of synaptic plasticity can be

explained. Simulating the learning rule in a realistic neuron model with full

morphology �tted the data from spike-timing-, rate-, and voltage-dependent

plasticity protocols. It also has an intrinsic dependence on the synaptic loca-

tion which agrees with experimental �ndings. Furthermore, the learning rule

naturally accounts for a phenomenon called metaplasticity, where the plasticity

mechanisms themselves are plastic and are modulated by, e.g. recent history of

neural activity. In this respect, the approach not only explains the �ndings on

activity-based metaplasticity, but also predicts a new form of metaplasticity

which will modify the spike-timing dependent plasticity.

While other ideas for computational goals of synaptic plasticity have been

postulated, they either were restricted to a single phenomenon and did not
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provide a uni�ed view on the experimental �ndings. Or they did not lead to

biologically plausible learning rules and, therefore, also lacked a connection to

the biological mechanisms. Thus, this thesis contributes two novel uni�cations

for synaptic plasticity: First, it shows that the di�erent phenomena of synap-

tic plasticity arise as a consequence of the same computational goal following

di�erent experimental protocols. And second, it bridges the gap between the

computational and mechanistic view. The proposed computational goal leads

to a learning rule in biophysical terms which can be related to established theo-

ries of the biological mechanisms. Finally, the objective of a sparse distribution

of synaptic strength can be interpreted as contributing to an energy-e�cient

synaptic signaling and an optimized coding.



Chapter 2

Background and context

The brain contains a large variety of cell types with the main distinction be-

tween neuronal cells and glial cells. The complex network of neurons is the

basis for the computations in the brain and the plastic changes of this network

are key to adaptation and learning. This background chapter gives an intro-

duction to neural processing, neural plasticity, and neural computation and

identi�es open questions and problems. This sets the stage for the questions

addressed in this thesis.

Section 2.1 introduces the general anatomy and functionality of neurons.

The main focus lies on a detailed description of the resting potential, the

Hodgkin-Huxley model for action potential generation, and the mechanisms

of neural communication via synaptic transmission as modeled in Chapter 4.

This is complemented with a short description of simpli�ed neuron models

usually employed in network simulations and relevant for Chapter 3.

Section 2.2 details the phenomenon of neural plasticity, which is the central

theme of this thesis. After a short introduction to intrinsic plasticity guided by

information theory, I describe the various experimental �ndings on synaptic

plasticity, how they have been modeled, and which aspects have not been

considered so far.

Section 2.3 discusses the constraints which the neural system faces and how

they in�uence its computation. I introduce the principle of energy e�ciency as

the major guideline in this thesis. The section ends on the topic of sparseness,

which has emerged as a central theme in neural function, and provides the

necessary tools to address the problem of energy-e�cient neural information

7
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Figure 2.1 Neuronal morphology. The soma is the cell body and contains the nucleus.

It has two tree-like extensions: the axon transmits the signal to other neu-

rons. It connects to their dendrites via a synapse.

transmission in Chapter 4.

2.1 Neural processing and communication

Neurons are specialized cells that are excitable and that are able to transmit

that excitation to other neurons. They are enclosed by a membrane and have

a cell body, called soma, containing the nucleus. The cell body has two types

of tree-like extensions: the dendrites and the axon. The cell receives input

from other cells at the dendrites, which is then integrated at the soma. The

axon is often surrounded by a myelin sheath with equidistant interruptions

known as `Nodes of Ranvier'. The signals from the soma travel down the axon

which is connected to the dendrites of other neurons via synapses. The general

morphology is shown in Figure 2.1. Details about the synapse structure are

described in Section 2.1.1 and Figure 2.5.

Following the textbook by Aidley [1998], I discuss the conductance-based

neuron model and the Hodgkin-Huxley model of action potential generation.

With these models, the neural dynamics can be described in detail and simu-

lated in a computer. Such simulations are employed in Chapter 4 to compare

the results of my model to experimental �ndings. After that, I describe the

simpli�ed rate-based neuron model, which is employed in the derivations and

simulations of Chapter 3.
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2.1.1 Conductance-based models

Neurons are electrical units and can be described by an electrical circuit con-

sisting of active and passive elements. One can distinguish di�erent types of

neurons, which di�er in three-dimensional structure, excitability, and e�ect on

other neurons. Despite their di�erences, the dynamics and the signal trans-

mission work in very similar ways. The majority of neuron types does not

communicate with a continuous signal, but with short voltage pulses called ac-

tion potentials or spikes. One bene�t of these spikes is that they can travel over

longer distances without su�ering from attenutation. They are strong de�ec-

tions from the resting potential, all-or-none events and always nearly identical

in shape. Spikes will travel along the axon where they are transmitted via

synapses to other neurons. This transmission leads to synaptic currents which

are integrated at the soma of the receiving neuron. Finally, if that input signal

exceeds a threshold, the receiving neuron itself emits a spike.

Resting potential

In their resting state (in the absence of excitation), neurons exhibit a potential

di�erence (voltage) between the intracellular and extracellular medium. This

is due to active ion pumps transporting ions into or out of the cell across

the membrane, thereby generating a concentration gradient for di�erent ion

species. The Na+/K+-ATPase pump requires one ATP molecule to exchange

2 potassium ions from the outside with 3 sodium ions from the inside of the

cell. Under physiological conditions the pump generates a concentration ratio

on the order of 10, i.e. the intracellular potassium concentration [K+]i is ten

times larger than the extracellular concentration [K+]o.

Beside the active pumps, the membrane contains passive ion channels which

let speci�c ions di�use into and out of the cell. Due to this permeability, the

ions will follow their concentration gradient until a dynamic equilibrium with

no net ion �ux through the membrane is reached. At resting, the membrane

is mainly permeable to potassium. Potassium ions �ow out of the cell due to

the gradient and create an increasing electrostatic potential which leads to an

opposite force. When both forces are equal in strength they neutralize each

other and result in a dynamic equilibrium.
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The equilibrium potential of an ion species X depends on its concentration

ratio and can be calculated by the Nernst equation:

EX =
RT

zF
ln

[X]o
[X]i

(2.1.1a)

=
61.54 mV

z
log10

[X]o
[X]i

(at body temperature 310.15◦K), (2.1.1b)

where R is the universal gas constant, T is the temperature in Kelvin, F is the

Faraday constant, and z is the number of elementary charges of the ion species.

Since [K+]i is larger than [K+]o, the equilibrium potential EK of potassium

is negative and around −92 mV while ENa is positive and around +64 mV

[Wright, 2004]. For a membrane being only permeable to potassium, the resting

potential would be equal to EK. The Goldman equation, an extension of the

Nernst equation, can take into account that the membrane is also slightly

permeable to sodium and chloride:

Er =
RT

F
ln

(
PNa [Na+]o + PK [K+]o + PCl [Cl−]i
PNa [Na+]i + PK [K+]i + PCl [Cl−]o

)
(2.1.2a)

=
PK
Ptot

EK +
PNa
Ptot

ENa +
PCl
Ptot

ECl (2.1.2b)

with the permeabilities PX for di�erent ions X. The resting potential Er is a

weighted average of the equilibrium potentials of the permeable ions. Given

that potassium has the largest permeability, the resting potential is dominated

by EK and is usually around −70 mV.

A patch of membrane surrounding a short piece of dendrite can be described

by an electrical circuit diagram. The concentration gradients established by

the active pumps act like a battery providing a voltage equal to the equilibrium

potential EX and the permeabilities PX are represented by a resistor with a

given electrical conductance gX (the inverse of the resistance RX) which can

be voltage-dependent. The membrane itself corresponds to a capacitor with

capacitance Cm. Figure 2.2 depicts the circuit diagram containing potassium,

sodium, and a leak current representing chloride and other ions. The ionic

currents passing the membrane are given by Ohm's law as IX = gX (u− EX).

The currents are proportional to the di�erence between the ions equilibrium

potential EX and the current membrane potential u. Since the ion �ow will

reverse its direction if this di�erence changes its sign, the equilibrium potential

is also called reversal potential.
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RK RNa

Cm

Outside

Inside

EK ENa Eleak

Rleak

Figure 2.2 Electrical circuit diagram for a patch of membrane. The membrane, sep-

arating the intra- and extracellular space, has a speci�c capacity Cm and

contains voltage-dependent ion channels with resistances RK and RNa. The

remaining ion channels are represented by a constant resistance Rleak. The

potential di�erences Eion are generated by active ion pumps.

Following Figure 2.2 a current Imembrane applied to the patch of the mem-

brane can be split in two parts: a capacity current IC charging the membrane

and the ionic currents passing the membrane through the channels:

Imembrane = IC +
∑
ion

Iion (2.1.3a)

= IC + gK (u− EK) + gNa (u− ENa) + gleak (u− Eleak) . (2.1.3b)

The change in the membrane potential can then be calculated as Cm
∂u

∂t
= IC =

−
∑

ion Iion + Imembrane. The membrane current is due to the transverse �ow of

ions along the membrane, i.e. the propagation of excitation along the dendrite.

In the absence of any membrane currents (Imembrane = 0) the equilibrium point

of the membrane potential is the resting potential ER, where the ionic currents

cancel each other such that their sum is zero (
∑

ion Iion).

The equilibrium, however, is instable, since the membrane is not only per-

meable to potassium but also to sodium. Thus, there is always an e�ective ion

�ux of sodium inwards and potassium outwards. These �uxes will slowly run

down the concentration gradients, which is prevented by the constant activity
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of the ion pumps.

Action potential generation

Action potentials are very fast voltage spikes where the membrane potential

jumps about 100 mV up and down in a few milliseconds. To generate these

fast events the cell needs the stored potential energy in the concentration gra-

dients. The gradient acts like a tensioned spring which is released by voltage-

dependent ion channels. These channels are primarily located in the soma, at

the nodes of Ranvier in the axon, and in the axon initial segment where the

action potential is initiated. Hodgkin and Huxley [1952] proposed a mathe-

matical description for changes of the sodium and potassium conductances as a

function of the membrane potential. Their analysis revealed how the interplay

between these two ions leads to the sharp rise and decay of the voltage during

an action potential.

The conductance time course in the Hodgkin-Huxley model is described

with three auxiliary variables n,m and h:

gK = ḡKn
4 (2.1.4a)

gNa = ḡNam
3h. (2.1.4b)

All three variables follow the di�erential equation

∂x

∂t
= αx (1− x)− βxx (2.1.5a)

=
x∞ − x
τx

with x∞ =
αx

αx + βx
, τx =

1

αx + βx
(2.1.5b)

with nonlinear voltage-dependencies for αn,m,h and βn,m,h. The potassium vari-

able n has a sigmoidal shape as function of the membrane potential u and, thus,

the potassium conductance increases with u. The sodium variable m shows a

similar behavior, while h has the opposite dependence and decreases with in-

creasing voltage. Therefore, m is called activation variable and h inactivation

variable.

The time course of the action potential arises due to the di�erent timescales

of sodium and potassium (cf. Fig. 2.3). At resting potential the sodium time

constants τm and τh are much smaller than the potassium time constant τn.

On depolarization of the membrane potential the sodium current rises more
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Figure 2.3

Time course of an action potential. If

the depolarization from the resting potential

crosses a threshold, the activation and inacti-

vation of the sodium and potassium channels

lead to a strong nonlinear voltage event.

quickly than the potassium current leading to a further depolarization 1 .

The potassium current can compensate for the delay and counterbalance the

sodium current, if the depolarization remains below a certain threshold.

In the case that the membrane potential crosses this threshold, the positive

feedback by the sodium activation leads to very strong uprise of the voltage

close to the reversal potential of sodium 2 . The sodium channels are now

being inactivated 3 and the delayed strong activation of potassium leads to

a quick repolarization 4 . The shape of this nonlinear voltage spike lasts only

2− 3 ms and has a largely invariant shape. Action potentials are therefore

regarded as unitary events with no information apart from their timing.

Action potentials are initiated at the axon initial segment where the density

of active ion channels is largest. It is then propagated down the axon since

the rise of the voltage spreads along the membrane and leads to an activation

of the sodium channels in the vicinity. This kind of propagation along the

axon would be relatively slow and require a lot of ions to be exchanged. So

most of the axons are found to have a myelin sheath (cf. Fig. 2.1) which does

not allow the �ow of ions through this part of the membrane. This leads to

a saltatory propagation where the action potential is only regenerated in the

gaps between the myelin sheath, i.e. the Nodes of Ranvier. After the action

potential has been generated, the ionic concentration gradients of sodium and

potassium need to be restored by the ion pumps.
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Figure 2.4 Simulated backpropagating action potential at di�erent distances from the

soma. As the action potential propagates through the dendritic tree it

becomes smaller in amplitude and broader in time.

At the same time, the action potential will also propagate in the direction

of the dendritic tree, which is called backpropagating action potential (bAP).

The traveling distance and the strength of the bAP will depend on the density

of active ion channels in the dendrites. This is a property which depends

mainly on the type of neuron, but dendrites do not have such a high density of

active ion channels as the axon. Thus, in general the bAP becomes smaller in

amplitude and also broad in time as it travels through the dendritic tree (cf.

Fig. 2.4). The bAP will, for example, in�uence the synaptic NMDA receptors

(cf. next section).

Synaptic transmission

Every neuron has several thousand connections receiving input from other

neurons. At these connections, the axon of another neuron makes a contact

to the dendrite. This contact is called synapse (Fig. 2.1): the axonal side is

called presynaptic, the dendritic side postsynaptic.

Apart from rare electrical synapses where the cells make a direct contact

and which are mainly found in the retina and the cerebral cortex, the most

abundant ones are chemical synapses. Their terminal endings are separated

by a small synaptic cleft. The presynaptic terminal releases neurotransmitter

into the cleft which di�uses to the postsynaptic side where it binds to neu-

rotransmitter receptors incorporated in the postsynaptic membrane. While
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Figure 2.5

A chemical, glutamatergic synapse. The

neurotransmitter released from the pre-

synaptic terminal binds to the postsynaptic

receptor which opens an ion channel.

there is an ongoing release happening spontaneously, a presynaptic action po-

tential arriving at the synaptic terminal leads to an induced release. However,

synapses do not show perfect reliability since the induced release can fail in a

stochastic fashion.

While each receptor type is speci�c to a given transmitter, the receptors can

be grouped into two broad categories: ionotropic and metabotropic. Ionotropic

receptors form an ion channel pore which allows the �ow of ions in or out of

the cell, thus, having a direct e�ect on the postsynaptic membrane potential.

In contrast, metabotropic receptors are coupled to intracellular proteins and

initiate signal transduction mechanisms upon the binding of their agonist. In

both groups, there are excitatory and inhibitory receptors. While excitatory

receptors depolarize the postsynaptic cell leading to a more positive membrane

potential, receptors with an inhibitory e�ect bring the membrane potential

back to its resting value or even hyperpolarize the cell.

The most common ionotropic receptors are the glutamate-sensitive NMDA

and AMPA receptors and the gamma-aminobutyric acid (GABA)-sensitive

GABAA receptors. The glutamate receptors are named after their speci�c ag-

onists N-Methyl-D-aspartic acid (NMDA) and 2-amino-3-(5-methyl-3-oxo-1,2-

oxazol-4-yl)propanoic acid (AMPA). The e�ect on the postsynaptic membrane

potential depends on which ion species is admitted to �ow through the recep-

tor. NMDA and AMPA receptors are permeable for Na+and K+and NMDA

receptors additionally permeable to Ca2+. These channels have a reversal po-



16

tential of around 0 mV and, therefore, the NMDA and AMPA currents depo-

larize the postsynaptic cell and are excitatory. In contrast, GABAA receptors

are only permeable to Cl−, which has a reversal potential below the resting

potential, and are inhibitory.

The channels are modeled as ionic conductances gsyn(t). The current Isyn

�owing through the channels is proportional to the di�erence between mem-

brane and reversal potential:

Isyn(t) = gsyn(t) (u− Esyn) . (2.1.6a)

The time course of the conductance depends on the receptor type: AMPA

receptors open and close on a very short timescale, usually a few millisec-

onds, while NMDA receptors open a bit slower but can remain open up to

several hundred milliseconds. The time course is usually �tted by a sum of

two (or three) exponentials. NMDA receptors exhibit an additional voltage-

dependence, since they can be blocked by extracellular magnesium ions. This

block is gradually released by a depolarization of the cell, which can be medi-

ated by the bAP.

The maximal conductance determines the impact of this synapse on the

postsynaptic cell. It is referred to as the synaptic strength or synaptic e�cacy.

The conductance depends on released amount of neurotransmitter, the total

number of receptors N located in the postsynaptic membrane, and the indi-

vidual conductances g0 of each receptor. All quantities can change, thereby

changing the synaptic strength. This process is called synaptic plasticity and

it is a fundamental mechanism of learning in the brain. I will discuss it in

more depth in Section 2.2.3.

The excitatory/inhibitory postsynaptic current (EPSC/IPSC) leads to de-

polarization/hyperpolarization which will be reversed by leak currents and ion

pumps. The resulting de�ection of the voltage depends on the membrane ca-

pacitance and conductances and it is called excitatory/inhibitory postsynaptic

potential (EPSP/IPSP).

The overall dynamics of the membrane potential depend on the ionic current

through the voltage-dependent channels and through the synaptic ligand-gated

ion pores:

Cm
∂u

∂t
=
∑
ion

Iion + Isyn. (2.1.7a)
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2.1.2 Simple spiking and rate-based models

The conductance-based model of a neuron, introduced in the previous section,

is very detailed and accurate. It allows to understand and predict many prop-

erties of single neurons. But it is di�cult to analyze and simulate due to the

nonlinear di�erential equations and spatial extent of a real neuron. In the case

of studying a network of neurons and its computational properties, it is often

desirable to employ a simpler neuron model. The most common simpli�cation

is to neglect the complex three-dimensional structure of the cell and assume a

point-like neuron. All inputs, thus, arrive directly at the soma and all spatial

aspects of the neuronal dynamics are not considered.

Simple spiking models like the leaky-integrate-and-�re (LIF) model drop

the complicated nonlinear dynamics of the Hodgkin-Huxley mechanism for

spike generation. Only the subthreshold dynamics remains and the spike time

is just de�ned by the time of threshold crossing combined with a reset of the

membrane potential. For the LIF neuron the subthreshold membrane potential

is the leaky integration of the input current I:

Cm
∂

∂t
u = −gleak (u− uR) + I

with the resting potential uR.

In the rate model of neurons the spike time is entirely disregarded. That

means the output signal of a neuron is described by the number of spikes in a

�xed time interval, i.e. its �ring rate or activity r. This rate is calculated by

two stages: a linear �lter determines how the membrane potential u integrates

the inputs. The output of this linear �lter is then passed through a nonlinear

transformation to yield the rate.

The rate model can be employed either in discrete time or continuous time.

In discrete time the whole dynamics of the membrane potential is ignored.

The output y of a neuron is only de�ned at discrete points in time t ∈ N. yt
corresponds to the rate r, that means it is the average number of spikes in the

time interval [t − 1, t]. Thus, the input xt from one to another neuron is just

yt and the total input is a weighted sum:

It =
∑
j

wjx
(j)
t = wxt.
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Since this input is an average and thus constant in the time interval, the mem-

brane potential is assumed to arrive at the equilibrium value ut = uR +
τ

C
It.

The depolarization û = ut− uR is proportional to the input It. Absorbing the

proportionality constant into the nonlinear transformation f , the output/rate

is calculated as

yt = r = f (wxt) . (2.1.8a)

A popular choice for the transformation, also known as the activation function,

is the logistic sigmoid function

f(u) =
1

1 + exp [−a (u− b)]
. (2.1.9a)

Explicit spiking can be recovered in the linear-nonlinear rate model by going

to continuous time. Here, the rate is not an average over a �nite interval

but interpreted as an instantaneous rate, i.e. the probability of spiking in an

in�nitesimal interval. Given this instantaneous rate, the spike times are drawn

from a stochastic process. The usual choice is a Poisson process which leads

to the LNP (linear-nonlinear-Poisson) model.

2.2 Neural plasticity

The computation in a neural network is determined by the connectivity be-

tween the neurons and their individual excitabilities. The fundamental ability

of the brain is to adapt the computations by modifying both, connectivity

and excitability. These modi�cations are called plasticity and are the basis for

learning and adaptation [Hebb, 1949; Kandel, 1997; Abbott and Nelson, 2000].

The changes in the excitability are called intrinsic plasticity. Structural

plasticity describes the morphological changes and the creation/removal of

synaptic connections, while the changes in synaptic strength of established

connections are called synaptic plasticity. Synaptic plasticity is the main focus

of this thesis, to be discussed in Section 3.2.1 and Chapter 4, but Section 3.2.2

will also address intrinsic plasticity.
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2.2.1 Homeostatic plasticity

An overarching concept is the so-called homeostatic plasticity. The function

of neural homeostasis is to maintain the stability of neural function during

development as well as in adulthood [Turrigiano and Nelson, 2004]. This is

done by tuning the processing of a neuron towards a speci�c set point. If

the environment changes (e.g. stronger/weaker input) the balances have to be

restored by modifying synaptic e�cacies and intrinsic excitability. The home-

ostatic mechanisms in�uence and regulate the relevant plasticity mechanisms

to achieve this balance.

2.2.2 Intrinsic plasticity

Intrinsic plasticity refers to changes in the input-output relationship of a neu-

ron. This sets and adapts the working regime of the neuron, which can include

e.g. spiking threshold and excitability [Sjöström et al., 2008]. The mechanis-

tic description of this process depends on the employed neuron model. For

simple rate model neurons, the input-output relationship is described by the

nonlinear activation function relating input current to output �ring rate. In

spiking models one main parameter for the intrinsic plasticity is the spiking

threshold, e.g. in LIF neuron models. For more detailed Hodgkin-Huxley-type

models, the input-output relationship is described by the f − I curve relating

input current and output �ring frequency. It depends on the dynamics of the

voltage-gated ion channels generating the action potential.

By adjusting these intrinsic parameters, a neuron is able to keep the �ring

rate in a homeostatic range. On average, its activity is not too high or too

low. This idea is connected to approaches from information theory. A �ring

rate distribution which is restricted to only high or low �ring rates does not

use its full range and can not e�ciently transmit information. This is re�ected

in the theoretical approaches towards intrinsic plasticity. Several models have

proposed that a neuron should adapt its input-output relationship in order

to maximize their mutual information [Bell and Sejnowski, 1995; Stemmler

and Koch, 1999; Triesch, 2007]. That means the entropy of the distribution of

output �ring rates should be maximal for the current distribution of the input.

Given that a neuron has some maximum �ring rate fmax the distribution
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with maximal entropy on the interval f ∈ [0, fmax] is the uniform distribution.

The learning rule by Bell and Sejnowski [1995] adapts the parameters of the

activation function such that the output �ring rate is uniformly distributed

for the current input distribution. On the other hand, a neuron has limited

amount of metabolic resources. That means, the number of spikes it can emit

within some �xed time period is limited and the neuron is, therefore, restricted

to a maximal average �ring rate as described in Section 2.3.1. Incorporating

this fact, Triesch [2007] modi�ed the learning rule by demanding a �xed av-

erage �ring rate instead of a maximum rate. The maximum entropy output

distribution under this constraints is the exponential distribution. This is sim-

ilar to the experimentally observed �ring rate distributions [Hromádka et al.,

2008].

In a more detailed model, Stemmler and Koch [1999] applied the idea of

maximizing mutual information to a spiking Hodgkin-Huxley neuron. They

adapted the gating kinetics of the voltage-dependent ion channels. This lead

to an f − I curve which �tted the statistics of the input current.

2.2.3 Synaptic plasticity

Synaptic plasticity refers to ongoing changes in strength of established synap-

tic connections [Sjöström et al., 2008]. The phenomenon is observed on two

di�erent timescales. Short-term synaptic plasticity �uctuates on the order of

seconds to minutes and is restricted to the presynaptic side. It is connected

with the depletion of neurotransmitter storages and changes in the release

probability of vesicles [Fioravante and Regehr, 2011].

Long-term synaptic plasticity describes changes which are stable and persist

over hours or longer. The change in synaptic strength following a given stimu-

lation protocol is measured as the increase or decrease of the EPSP amplitude.

These changes are mainly associated with a change in the number of receptors

in the postsynaptic membrane as well as changes in the maximal conductance

of each single receptor [Song and Huganir, 2002]. But also presynaptic mecha-

nisms have been found to in�uence the long-term changes in synaptic strength

[Rodríguez-Moreno et al., 2011].

During the last �fty years there have been many advances in understanding

the dependence of long-term plasticity on the pre- and postsynaptic conditions.
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Initially pioneered by Hebb [1949] in theoretical terms, the concept of long-

term potentiation (LTP) as a result of correlated activity has been re�ned

and extended. Since then a rich body of experimental �ndings and theoretical

models for synaptic plasticity under di�erent protocols has accumulated.

Hebbian plasticity and STDP

One of the most quoted hypotheses in neuroscience is Hebb's postulate which

basically states that the synaptic connection between two neurons should be

strengthened if the presynaptic cell �repeatedly or persistently takes part in

�ring� the postsynaptic cell [Hebb, 1949]. With this, he established a theoreti-

cal foundation for long-term synaptic plasticity. The inherent timing or causal

relation in Hebb's postulate, however, is not present in the usual formulations

of Hebbian plasticity. The postulate is often simpli�ed such that those neurons

which ��re together, wire together�, thereby neglecting the causal relationship.

The resulting Hebbian learning rule is only sensitive to correlations of pre- and

postsynaptic activity x and y, respectively. The change in the synaptic weight

is de�ned as

∆w := ηxy, (2.2.1a)

where η > 0 is a learning rate.

More than twenty years later, Bliss and Lomo [1973] provided the exper-

imental con�rmation of long-term potentiation (LTP) induced by correlated

pre- and postsynaptic activity. They showed that a synaptic connection got

stronger if both the pre- and postsynaptic neurons concurrently showed a high

�ring rate, and that this increased strength persisted over several hours even in

the absence of ongoing correlated activity. The opposite mechanism of long-

term depression (LTD) was discovered by Lynch et al. [1977] in a di�erent

brain structure. It is now established that both processes, LTP and LTD, can

happen at the same synapse meaning they show bidirectional plasticity.

Di�erent bidirectional extensions to the LTP-only standard Hebbian learn-

ing rule were proposed which contained an explicit regime for depression. The

covariance rule [Sejnowski, 1977]

∆w := η (x− 〈x〉) (y − 〈y〉) (2.2.2a)
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Figure 2.6 Bidirectional synaptic plasticity. A: The covariance rule (red) and the BCM

rule (blue) predict LTD for low postsynaptic activity y and LTP for high

activity. B: For STDP the amount and sign of the weight change depends

on the relative timing between pre- and postsynaptic spike: LTP for pre-

post and LTD for post-pre.

kept the linear dependence, while Bienenstock, Cooper, and Munro [1982]

(BCM) proposed a theory with a quadratic dependence on the postsynaptic

activity (Fig. 2.6A) as

∆w := ηy (y −ΘM)x. (2.2.3a)

Dudek and Bear [1992] showed that a presynaptic high-frequency stimula-

tion, leading to a strong activity at the postsynaptic side, resulted in LTP.

A low-frequency stimulation, insu�cient to excite the postsynaptic cell, leads

to slight LTD or no plasticity as predicted by the BCM theory. They also

found a smooth crossover from the LTD to the LTP regime with some thresh-

old frequency producing no change at all. This rate-dependent plasticity more

closely resembled the causal nature of the full Hebbian postulate.

A similar U-shaped dependence of synaptic plasticity on the postsynaptic

voltage was found in experiments [Artola et al., 1990; Ngezahayo et al., 2000].

They showed that postsynaptic �ring was not necessary for synaptic plasticity.

Rather, pairing presynaptic stimulation with postsynaptic depolarization was

su�cient. Similar to the rate-dependent plasticity, a small depolarization leads

to LTD while a larger one leads to LTP, also with a smooth crossover and a

threshold voltage.
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The discovery of spike timing-dependent plasticity (STDP) [Gerstner et al.,

1996; Markram, 1997] �nally established the importance of the relative timing

between pre- and postsynaptic spikes (Fig. 2.6B). In line with the Hebbian

postulate, causal pairs of spikes, with the pre- coming before the postsynaptic

spike, lead to LTP (∆t > 0). The reversed order of acausal pairs (∆t < 0)

results in LTD. The plasticity is strongest when the relative delay ∆t is small,

while there is rapid crossover between the LTP and the LTD regime. This is

usually modeled with two exponentials [van Rossum et al., 2000]:

∆w := η


+A+exp

[
−∆t

τ+

]
: ∆t > 0

−A−exp
[
+

∆t

τ−

]
: ∆t < 0

(2.2.4)

Due to this causality, STDP was initially assumed to be a fundamental

property of synaptic plasticity. More recently, however, experiments have de-

scribed non-linear interactions between spike triplets and very di�erent forms

of STDP windows with depression only, potentiation only or even reversed

timing requirements (see [Shouval, 2010] for a review).

Metaplasticity

Another important feature of the BCM theory is the assumption that the

threshold ΘM should be modi�able. In line with a homeostatic regulation, the

threshold was set to a long-term average of the postsynaptic activity. A high

activity would increase the threshold and make the induction of LTD more

likely, thereby reducing the overall input and postsynaptic �ring.

This hypothesis was experimentally tested by Kirkwood and Rioult [1996].

They raised kittens in a darkened environment and thereby arti�cially reduced

the excitation to cells in the visual cortex. As a result, the threshold for the

induction of LTP was shifted to lower frequencies compared to kittens under

normal conditions. Complementary, Wang and Wagner [1999] primed the post-

synaptic cell with a high activity stimulation and observed that the threshold

shifted to higher frequencies. Thus, changing input statistics is counterbal-

anced by changing the regimes of LTP and LTD. While input deprivation

makes LTP more likely, a strong activity of the postsynaptic cell is balanced

by making LTD more likely. This homeostatic e�ect, that depends on condi-
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tions in the recent past, is called metaplasticity due to the fact that it is a

plasticity of synaptic plasticity [Abraham, 2008].

A similar homeostatic e�ect has been found by Ngezahayo et al. [2000] in

voltage-clamp experiments. They measured the dependence of synaptic plas-

ticity on the postsynaptic membrane potential similar to Artola et al. [1990].

Additionally, they found the voltage threshold, separating the LTD from the

LTP regime to depend on the strength of the probed synaptic pathway. This

metaplasticity again showed a homeostatic behavior since a strong synapse had

a larger LTD regime and a previously weakened synapse a larger LTP regime.

Underlying mechanisms

The classical plasticity and metaplasticity protocols are used to probe the de-

pendence of synaptic changes on di�erent factors like �ring rate, spike timing

and membrane potential. But those dependencies are no independent phe-

nomena but just di�erent facets of one common underlying mechanism. The

molecular processes which lead to the observed change in synaptic e�cacies

remained unclear for long time and are still not fully understood.

The idea that the intracellular calcium concentration is a key component in

these processes was pioneered by Lisman [1988; 1989]. The important quantity

is a molecular complex called calcium/calmodulin-dependent protein kinase II

(CaMKII). It consists of four subunits which can be phosphorylated. In the ini-

tial state (o�-state) this process is calcium-dependent, but once three subunits

are phosphorylated, a calcium-independent autophosphorylation can keep the

complex in a stable, fully phosphorylated state (on-state). With this, CaMKII

can act as a bistable switch storing information about the synaptic strength

(cf. Fig. 2.7).

The stability depends on the level of calcium as shown in Figure 2.7B. An

intermediate level promotes an activation of Phosphatase I (PPI) which in

turn dephosporylates CaMKII bringing it to the o�-state. A high level of

calcium triggers the switch from the o�- to the on-state and also inactivates

PPI through an interaction with Inhibitor I. If the level of calcium is too low,

it does not trigger any reactions and CaMKII stays in its current stable state.

Ultimately, CaMKII in the on-state in�uences the synaptic strength by

phosphorylating existing AMPA receptors (increasing their conductance) and
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Figure 2.7 Autophosphorylation of CaMKII and its e�ect on synaptic plasticity. Upper:

Phosphorylation of the �rst three CaMKII subunits is calcium-dependent,

while the fourth phosphorylation happens independently of calcium. Lower:

The calcium concentration determines the amount of desphosphorylation.

Subsequently, this a�ects the induction of plasticity.

promoting the insertion of new receptors in the membrane. Calcium is a good

candidate for sensing correlation between pre- and postsynaptic activity, since

the calcium level is a�ected by presynaptic input via the postsynaptic NMDA

receptors and postsynaptic depolarization via voltage-dependent calcium chan-

nels. This leads to the formulation of the so-called calcium control hypothesis

for synaptic plasticity. It describes the process of LTD and LTP by two thresh-

olds for the calcium concentration. If it is below Θ−, no plasticity is induced,

between Θ− and Θ+ LTD occurs, and above Θ+, the synapse gets potentiated

(cf. Fig. 2.7B). This form is seen again in the voltage-dependent [Artola and

Singer, 1993] and the rate-dependent plasticity [Bienenstock et al., 1982]. It

has also been shown to explain STDP [Shouval, 2010].
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Shortcomings of previous models

The large body of theoretical models can be roughly grouped into three cate-

gories: mechanistic, phenomenological, and functional. Every category has its

bene�ts and drawbacks.

Phenomenological studies start directly with the observed plasticity phe-

nomena and their dependencies. These are described by simpli�ed models

useful to study the impact of di�erent plasticity phenomena on network be-

havior, synaptic weight stability, and learning [van Rossum et al., 2000; P�ster

and Gerstner, 2006; Clopath and Gerstner, 2010]. But they make no (or only

abstract) reference to the underlying mechanisms and are limited to the de-

pendencies explicitly put into the model. Further, they are not capable of

assessing functional goals of synaptic plasticity.

The mechanistic models are bottom-up approaches. Based on known bio-

physical mechanisms in the cell, they try to explain the resulting phenomena

of synaptic plasticity [Shouval et al., 2002; Graupner and Brunel, 2012]. The

most promising theories are based on the calcium control hypothesis as de-

scribed above. This type of approach is able to create very realistic models.

On the other hand, they are di�cult to analyze analytically in order to predict

the behavior on the higher level. That means, it is di�cult to extract possible

functional goals starting from these basic mechanisms.

Functional approaches are top-down. Starting from a computational per-

spective, they derive an algorithm that can describe the observed phenomena.

In this view these phenomena are just a consequence of achieving the func-

tional goal and the biological mechanisms correspond to the implementation of

the proposed algorithm. The di�culty lies in choosing a reasonable goal from

the large set of possibilities. It needs to reproduce most of the observed de-

pendencies of synaptic plasticity and ultimately lead to an implementation in

accordance with the biological mechanisms. This is where all previous models

fall short [Toyoizumi et al., 2005; Sprekeler et al., 2007; Pool and Mato, 2011].

To get a uni�ed understanding of synaptic plasticity, a theory has to bridge

all levels of abstractions. While phenomenological ones are useful, they are

not capable of providing this uni�cation. It can either be done by working

upwards from the basic mechanisms or downwards from some functional goal.

Since both approaches are di�cult and error-prone, a full theory providing
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a uni�ed understanding probably only arises in a fruitful interaction between

these two. In Chapter 4, this thesis tries to take a �rst step from the functional

side all the way down to the biological mechanisms.

2.3 Neural computation: constraints and func-

tion

Neurons and their connections are the underlying basis of the computations

in the brain. Apart from some modulatory signals, each cell is largely inde-

pendent in terms of its elementary function. It is only in�uenced by other

cells through its synaptic connections embedding it in a neural network. The

overall computation of such a network of neurons is the result of the interac-

tion between two processes: input-output mapping and connectivity. The goal

of learning is to optimize the computation by adapting both processes. To

analyze the arising computation and its plasticity mechanisms it is important

to understand the constraints of the neural system.

2.3.1 Constraints

The neural system needs to perform its computations under various constraints

and in order to work in an optimal fashion, these constraints should be con-

sidered by the brain.

Probably the most fundamental constraint is the limited amount of energy

for the brain [Laughlin and Sejnowski, 2003]. Like every cell in the body, a

neuron needs nutritions, oxygen, and energy for the vegetative metabolism

of its cell body. But their ability to receive and transmit excitation incurs

additional energy consumption. Neurons need to develop and maintain their

extensive dendritic and axonal trees in order to make synaptic contacts with

other neurons. The larger and longer these extensions are, the more energy

they require. One reason behind the arborescent structure of dendrites may

thus be the need to minimize the wiring length from the soma to the synaptic

contacts [Cuntz et al., 2010].

Also establishing and maintaining the resting potential is a process that

induces high metabolic costs. It requires the ongoing activity of the Na+/K+-
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ATPase pump. The costs for neural processing and communication have been

estimated to make up half of the energy consumption in human cortex [Lennie,

2003].

For the maintenance of the resting potential three regimes can be distin-

guished. Even in the absence of synaptic input the Na+/K+-ATPase pump is

active to maintain the resting potential, since the membrane is not ideal and

shows a permeability to ions other than potassium. Additional activity of the

ion pump is required to counterbalance the ionic currents from synaptic input

in the subthreshold regime. Finally, a suprathreshold input leads to an action

potential which requires further pumping activity. The baseline activity is due

to a static property of the membrane and can not be optimized. The metabolic

costs of the sub- and suprathreshold regimes, however, depend on quantities

which can be adapted. This can be used as a guiding principle to discover

functional principles of the neural system.

The metabolic costs in the suprathreshold regime depend on the

output of a neuron, i.e. the shape of the action potential and the distribution

of �ring rates. Hasenstaub et al. [2010] proposed that the shape of the action

potential is optimized to be energy-e�cient. They have shown that a short,

thin spike requires more energy, but allows for a higher maximal frequency,

leading to a trade-o�. Depending on their type, neurons are optimized in their

action potential shape according to these requirements.

The most widespread idea regards energy e�cient coding, i.e. how can the

neural system represent information in an optimal fashion. From an infor-

mation theoretic viewpoint, the information capacity C corresponds to the

entropy of the �ring probability p in some short time interval. The average

energy expenditure follows roughly as

E = (1− p)Erest + pEAP (2.3.1a)

∝ 1 + p (r − 1) (2.3.1b)

where r = EAP/Erest is the energy ratio of �ring compared to resting.

A neuron should transmit as much information while spending as little en-

ergy as possible. This amounts to maximizing the ratio
C

E
. For an inexpensive

action potential, i.e. r ≈ 1, the energy would be independent of p. The op-

timal value p∗ is then one half, which also maximizes the entropy. However,
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given the high metabolic costs of action potentials, r is generally large and

the required energy increases strongly with p. The observed low average �ring

frequency in real neurons, thus, optimizes the information per energy [Levy

and Baxter, 1996]. These considerations are connected to the idea of a sparse

neural code, where the rare, expensive �ring is compensated by representing

the input with a large population of neurons. I will describe the ideas and

formulations for sparseness in the following section. It is, however, important

to realize that not only the generation of an action potential consumes energy.

The metabolic costs in the subthreshold regime include the synaptic

transmission and the postsynaptic e�ects of a received action potential. Both

require much energy and, actually, the EPSPs make up more than �fty per-

cent of the total energy per action potential [Lennie, 2003]. The distribution of

synaptic inputs and their total strengths determine the required energy. Thus,

these quantities are an important point for optimizing the energy e�ciency of

the neuron. Levy and Baxter [2002] already found that a nonzero probabil-

ity of synaptic failure is optimal with respect to energy-e�cient information

transmission given the limited information capacity of the axon. How these

postsynaptic costs should impact the synaptic strength and its distribution

has, to the best of my knowledge, so far not been considered. In Section 4 I

will show that an optimization in terms of sparseness applied to the synaptic

e�cacies of a neuron introduces a new functional goal for synaptic plasticity

which uni�es di�erent observations as well as di�erent levels of analysis.

2.3.2 Sparseness

For random variables, sparseness means that the variable has very small values

(close to zero) most of the time and only rarely takes on large non-zero values.

This is not an absolute statement and needs a baseline for comparison. Usually

the distribution of the random variable X is compared to a Gaussian with

the same variance. If the probability density function (PDF) of X has more

probability mass around zero and in the tails (i.e. it is more peaked) than the

Gaussian, it is considered to be sparse (cf. Fig. 2.8). These distributions are

also called super-Gaussian.

For the distribution of neural �ring rates, sparseness has two distinct as-

pects. First, the �ring rates of each neuron can have a sparse distribution,
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Figure 2.8 Comparison of Gaussian (solid red) and Laplacian (dotted blue) PDF in (a)

normal and (b) semi-log space. The Laplacian has a large peak at zero and

heavier tails and is called super-Gaussian.

which is called �lifetime sparseness�. The second aspect concerns the distribu-

tion of the response from a population of neurons. Here, the input should have

a sparse representation such that only few neurons are strongly active, which

is called �population sparseness�.

Sparse coding

A lifetime-sparse distribution of �ring rates accounts for the fact that

spikes are metabolically expensive. The distribution should be optimized to

convey as much information while being restricted to an average amount of

energy consumption. Since entropy is a measure for the information capacity,

the distribution should have the maximum entropy given speci�c constraints.

Such a distribution can be written as the Gibbs distribution

p(x) =
1

Z (λ1, .., λk)
exp

[
k∑
i

λifi(x)

]
(2.3.2a)

where the fi encode the constraints in terms of expectation values such that

E [fi(x)] = αi and the λi are the Lagrange multipliers to be determined by the

constraints.

The required energy depends mainly linearly on the �ring rate r plus some

additional baseline energy ρ for the resting potential and subthreshold �uctu-

ations [Laughlin and Sejnowski, 2003]:

Er = a · r + ρ (2.3.3a)
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On average every cell has a �xed amount of energy µE to supply the baseline

and the spiking. The constraint on the average energy translates to an average

�ring rate µr = E [r] =
µE − ρ
a

. For a �xed mean and a domain of r ∈
[0,∞[ the maximum entropy distribution is the exponential distribution. With

the additional constraint of a maximal �ring rate rmax, the distribution is a

truncated exponential. In this case it is still a decaying exponential if µr �
rmax/2 which is granted in neurons where µr < 10 Hz and rmax is on the order

of 100 Hz.

Experimental �ring rate distributions resemble exponential distributions

but are much better �tted with the lognormal distribution [Hromádka et al.,

2008] with the PDF as

lnNµ,σ(x) =
1

x
√

2πσ2
exp

[
−(lnx− µ)2

2σ2

]
. (2.3.4a)

Both distributions are considered to be sparse. Interestingly, the lognormal

distribution is the maximum entropy distribution given a �xed mean and vari-

ance of logX. The deviation from the exponential distribution at very low

�ring rates can be explained by taking noise into account. While low �ring

rates should be preferred in neural coding due to their low energy requirements,

they are more prone to the in�uence of noise [Tsubo et al., 2012].

The population sparseness depends on the energy ratio of spiking to

resting and the required representational capacity of the population. For inex-

pensive spiking comparable to resting, on average half of the neurons should

be active, since this increases the capacity due to the combinatorics and the

population size can be small [Laughlin, 2001]. However, given the high costs

of spiking, it is more e�cient to employ a large number of neurons but let only

few be active.

In their seminal work, Olshausen and Field [1996] applied the idea of sparse-

ness to visual input as arriving in the primary visual cortex. Here, neurons

are described by linear basis functions φi(x, y) coding for a given pattern in

the input I(x, y). In biological terms, this basis function is analogous to the

receptive �eld and describes the connectivity from the input stage to the in-

dividual neuron. The aim is to reconstruct the input I(x, y) from the neural
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responses ai by linear superposition of the basis functions:

I(x, y) ≈ Î(x, y) =
∑
i

aiφi(x, y). (2.3.5a)

Just minimizing the squared reconstruction error

Einput =
∑
x,y

∣∣∣I(x, y)− Î(x, y)
∣∣∣2 (2.3.6a)

is a simple optimization problem. Olshausen and Field [1996] also included a

sparseness energy term penalizing high responses:

Esparse =
∑
i

S(ai), (2.3.7a)

where they employed di�erent functional forms of the penalty function S like

|ai| or −exp [−a2
i ]. Minimizing the total error E = Einput + λ ·Esparse amounts

to �nding a representation approximating the input with as few active neurons

as possible.

The activities which minimize the total energy and the actual minimal value

strongly depend on the basis functions (or receptive �elds) of the neurons. The

important step of Olshausen and Field [1996] was to further optimize the total

energy by adapting the basis functions to better represent the input. After

convergence, the resulting basis functions resembled localized, oriented edge-

�lters similar to the receptive �elds found in primary visual cortex [Hubel and

Wiesel, 1968].

Sparse synaptic e�cacies

The distribution of synaptic e�cacies is well �tted by a lognormal distribution

[Song et al., 2005; Loewenstein et al., 2011]. Their distribution is highly skewed

and sparse meaning that most of the synapses are rather weak but a few ones

are an order of magnitude stronger than the mean. Song et al. [2005] found

that the strongest 17% of the synapses contributed 50% of the total synaptic

strength.

The lognormal distribution also �ts well with neural �ring rates as described

above. This agrees with the sparse coding model and has been connected

to the energy e�ciency of the suprathreshold regime. Similarly, the sparse

distribution of the synaptic e�cacies can be connected to an energy-e�cient
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subthreshold behavior. In Chapter 4, I describe how the synaptic e�cacies

in�uence the metabolic costs and apply this functional idea to optimize their

distribution.

Independent component analysis and sparseness measures

The classical sparse coding approach with its energy formulation punishes high

neural activities with a certain sparseness function. The choice between dif-

ferent functions can be quite arbitrary and it is not clear how to de�ne and

quantify sparseness of a single neuron. Furthermore, given a population of neu-

rons exhibiting a distribution of activities, how sparse is this distribution? As

initially introduced, a distribution is considered sparse if it is stronger peaked

at zero and has heavier tails compared to a Gaussian with the same variance.

This comparison to a Gaussian is not arbitrary and resembles the connec-

tion of sparse coding to the concept of independent component analysis (ICA)

[Comon, 1994; Hornillo-Mellado et al., 2005]. ICA aims to �nd the indepen-

dent components by searching for non-Gaussian projections of the signal. Bell

and Sejnowski [1997] applied ICA to natural images and found not only similar

receptive �eld structures (Gabor-like edge �lters) but also that these indepen-

dent components were sparsely distributed.

The deviation of a distribution from a Gaussian can be quanti�ed with

higher-order moments. Popular choices are the third and fourth normalized

moment called skewness S and kurtosis K, respectively [Hyvärinen and Oja,

2000; Blais et al., 1998]. They are de�ned as the n-th central moment divided

by the n-th power of the standard deviation σ:

S =
〈x− x̄〉3

σ3
(2.3.8a)

K =
〈x− x̄〉4

σ4
(2.3.8b)

While this does not imply that skewness and kurtosis are equivalent to sparse-

ness, these measures are generally useful to quantify and optimize the sparse-

ness of a distribution.
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Chapter 3

Separability objective for neural

plasticity

The most remarkable functionality of the brain is its plasticity which provides

the organism with a mechanism to adapt and learn. To understand the ca-

pability of neural networks to learn is a fundamental problem which concerns

computational neuroscience, machine learning as well as engineering appli-

cations. The self-organized learning rules employed in many approaches are

inspired by the experimental �ndings in real neurons. These rules for simpli-

�ed arti�cial neural networks, however, are not more than a phenomenological

ad-hoc description of the observed processes. This chapter will introduce a

principled derivation of plasticity rules for arti�cial neural networks based on

an objective function.

Section 3.1 gives a short, general introduction to the di�erent topologies

of arti�cial neural networks and the special approach of reservoir computing

which is a class of recurrent networks which are e�cient to train. Section 3.1.2

reviews a recent �nding on self-organized learning rules applied to such recur-

rent networks and how those rules can improve the internal representation.

In Section 3.2, I describe the main part of the objective function in terms of

separability of the internal network state [Krieg et al., 2010], which was mo-

tivated by the work introduced in Section 3.1.2. I will derive synaptic and

intrinsic plasticity rules from the objective function, analyze their e�ects and

stability properties, and compare them to previously proposed plasticity rules.

Section 3.3 extends the approach with an objective regarding energy consump-
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Figure 3.1

Two possible topologies of an ar-

ti�cial neural network. The feed-

forward network can be a univer-

sal function approximator, while

the recurrent network resembles

a dynamical system.

tion and noise robustness. Section 3.4 demonstrates the derived learning rules

applied to a recurrent network and shows the performance and convergence

properties.

3.1 Arti�cial neural networks

The �rst arti�cial neural networks have been concerned with feed-forward

structures having one or more layers of neurons. Each layer consisted of a

population of neurons receiving input from a previous layer. The goal was to

transform the initial input at the �rst layer into a suitable output at the last

layer (cf. Fig. 3.1). This was achieved by adapting the connection weights

in the feed-forward network. In a supervised learning paradigm the input as

well as the desired output were given to the learning algorithm. The error at

the output was then backpropagated through the layers providing a measure

for how to change the connections. With such a learning scheme, the network

could be tuned to provide a desired input-output mapping. In fact, purely

feed-forward networks were shown to be universal function approximators.

More biologically realistic are networks with recurrent connections. They

allow the information about previous times to be retained in the network. A

recurrent neural networks (RNN) is basically a dynamical system (cf. Fig. 3.1)

with the possibility of �xed points and complex attractors, but they also have

their disadvantages: they can exhibit chaotic behavior which makes them

complicated to predict. Thus, RNNs are hard to train and optimize with

a supervised learning approach, since the backpropagated errors also enter the
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recurrent loops [Werbos, 1990; Jaeger, 2002a].

3.1.1 Reservoir computing

The problem of the loops for supervised training can be circumvented by the

reservoir computing approach [Jaeger et al., 2007]. While there are di�erent

variants for the structure of the network known as Echo State Network [Jaeger,

2001] and Liquid State Machine [Maass et al., 2002], it contains a recurrently

connected network called the reservoir which receives the input and projects

to an output layer (Fig. 3.1).

The reservoir usually contains a large number of neurons. It transforms the

input in a high-dimensional, nonlinear, time-dependent space. The idea of this

so-called kernel trick is that in such a space the desired information or dynamics

for the output can be extracted from a linear subspace. The reservoir can be

seen as providing a su�ciently large set of nonlinear transformations. The

output layer linearly combines the results of these transformations to achieve

the desired output.

In standard reservoir computing, the input and recurrent reservoir connec-

tions are taken as random but �xed, while the connections from the reservoir

to the output are adapted via supervised learning [Lukosevicius and Jaeger,

2009]. This approach allows to combine the advantages of a recurrent network

with supervised learning: a dynamical system can be used to represent the

data, while still being easy to train. It can be applied, for instance, to sys-

tems classi�cation and time-series prediction [Jaeger, 2002b; Jaeger and Haas,

2004].

3.1.2 Self-organization in the reservoir

While the training of the output connections in a reservoir computing ap-

proach is straightforward, the initialization of the recurrent reservoir needs to

be tuned to the problem at hand. This usually requires some ad-hoc heuristics.

Furthermore, the network is not �exible enough to adapt to changing input

statistics. The reservoir should be able to �nd suitable representations for the

input by itself. This requires local unsupervised learning rules which can lead

to a self-organization of the reservoir.
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Lazar et al. [2009] proposed such a self-organizing recurrent network using a

combination of three plasticity rules in the reservoir: STDP, synaptic scaling,

and intrinsic plasticity. All three are local learning rules inspired by biolog-

ically observed ones. They employed a simple counting task which requires

the reservoir to retain information about previous inputs. The input pattern

consisted of a sequence of three symbols A,B, .., B, C or C,D, .., D,E with n

repetitions of B and D. Each symbol targeted a di�erent subset of the reser-

voir. The task of the output layer was to predict the next input symbol and

the connections from the reservoir to the output were trained by supervised

learning.

For the output to be able to perform its task with a good performance, the

reservoir needs to have a discernible representation between the k-th and the

(k + 1)-th B or D. Thus, the performance depends strongly on the dynamics

of the reservoir. If upon repetition of B or D the reservoir state approaches

a �xed point in its high-dimensional space, the representations will become

more and more similar and the output will not be able to distinguish them

above a given number of repetitions. If, on the other hand, the reservoir enters

a su�ciently large limit cycle upon the repetition of input, the supervised

training of the output layer can �nd a suitable projection to the output layer.

Lazar et al. [2009] showed that their self-organizing recurrent network out-

performs a network with a static reservoir. The improved performance is due

to a clear separation of the reservoir states for di�erent input repetition num-

bers which the authors demonstrate in PCA (principal component analysis)

space. That means, the reservoir state for the fourth B is easily separable

from the reservoir state representing the �fth B, while in a static reservoir the

states do not form discernible clusters. This is due to the combination of the

di�erent learning rules which alter the recurrent reservoir connectivity. Due

to its `causal' structure, STDP allows the dynamics to adapt to the sequence

structure of the input, though STDP alone is not su�cient. The interaction

with the homeostatic mechanism of intrinsic plasticity and the weight stabi-

lization due to synaptic scaling are necessary for a good performance of the

network.
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3.2 Objective function: Separability

In order to create a grounded connection between the plasticity mechanisms

and the increased separability, I will show that an IP as well as an STDP

learning rule can be derived from a functional goal of maximizing separability.

But apart from the arti�cial counting task employed in [Lazar et al., 2009]

as described, what are the bene�ts of an increased distance between network

states? From an information theoretic point of view, a neuron should use its

whole dynamic range of �ring rates in order to increase the entropy [Bell and

Sejnowski, 1995]. The same applies to a population of n neurons spanning

an n-dimensional phase space. If all states are very similar to each other, the

representational capacity is limited. Increasing the separability increases the

used phase space volume which should be as large as possible to maximize the

amount of transmittable information.

The separation of patterns is also important for encoding memories. Input

patterns need to be stored (learning) and retrieved (recalling). A memory

needs to accomplish two opposing tasks: during retrieval, the network should

be able to �nd the stored pattern given an incomplete version of it as input.

This is known as pattern completion. In the learning phase, it should separate

similar input patterns i.e. enlarge their di�erences. This enhances the stability

of the retrieval by reducing the interference between similar patterns and it is

known as pattern separation. Both processes of pattern completion and sepa-

ration are assumed to happen in di�erent structures of hippocampus [Leutgeb

and Leutgeb, 2007; Treves et al., 2008; Yassa and Stark, 2011]. The process

of pattern separation in the hippocampus goes back to the seminal modeling

work of Marr [1971]. It is also referred to as orthogonalization since it reduces

the dot product between representations of two di�erent inputs.

In line with this argument, for the functional goal of separability I consider

the quadratic di�erence between the population activity vector at subsequent

times: (y2 − y1)2 = y2
2 + y2

1 − 2y2 · y1. Maximizing the distance between these

vectors minimizes their dot product given a bounded activity. To apply the

formalism also to continuous time, I will formulate the objective function using

the time-derivative as a generalized distance.

The response (�ring rate) of a neuron i in a population is de�ned as a
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nonlinear transformation fi of the �membrane potential� ui: yi(t) = fi (ui(t)).

For simplicity, I will drop the index i during the derivations and use vector

and matrix notation:

F (t) :=diag [fi (ui(t))] (3.2.1a)

F ′(t) ≡F (u) := diag

[
∂fi
∂ui

]
(3.2.1b)

The weight matrix W separates the neurons into two populations: the pre-

synaptic and the postsynaptic population. Their responses will be labeled x

and y respectively to avoid confusion:

x := ypre (3.2.2a)

y := ypost (3.2.2b)

While in feed-forward architectures the populations are distinct, in the feed-

back loop of a recurrent network they are equivalent.

The membrane potential u of the postsynaptic neurons follows the di�eren-

tial equation

u̇ = −u
τ

+Wx

The objective function reads

Osep := |ẏ|2 (3.2.3a)

=
∣∣F (u)u̇

∣∣2 (3.2.3b)

Discrete-time rate-coding

In the discrete-time case the reservoir state is given by the activities y(t−n∆t)

at discrete time-points t− n∆t with

y(t+ ∆t) = f(u(t)) (3.2.4a)

u(t) = Wx(t) (3.2.4b)

Here, the time-derivative ẏ is not directly available. The resulting learning

rules for the discrete-time case depend on the approximation of ẏ.

A simple linear approximation is the most straightforward approach. This

can be formulated in terms of the activity y as

ẏ(t) ≈y(t+ ∆t)− y(t)

∆t

(3.2.5)
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which is the discrete analog to (3.2.3a). Or in terms of the membrane potential

u as

ẏ(t) ≈F ′(t)u(t+ ∆t)− u(t)

∆t

(3.2.6)

which is the discrete analog to (3.2.3b).

But instead of linearly approximating ẏ, three subsequent points in time

(y(t + ∆t), y(t), and y(t − ∆t)) can be used to construct a second-order ap-

proximation. Since these points are equidistant in time, it is easy to show that

a quadratic function constrainted by these three points has a derivative of

ẏ(t) ≈y(t+ ∆t)− y(t−∆t)

2∆t

(3.2.7)

or when approximating the membrane potential

ẏ(t) ≈F ′(t)u(t+ ∆t)− u(t−∆t)

2∆t

. (3.2.8)

Both expressions are very similar to their equivalents for the linear approxi-

mation. They only di�er in the time index of the negative part, which gives

a slightly di�erent learning rule. It will lead to the same results but it has

a more direct relation to commonly used learning rules. The learning rules

for synaptic and intrinsic plasticity are derived in the following sections via a

stochastic gradient ascent on the objective function with respect to the relevant

parameters.

Activation function

The logistic sigmoid function is a common choice for the activation function

f . It is de�ned as

fsig(z) := (1 + exp [−z])−1 (3.2.9a)

∂fsig
∂z

=fsig (1− fsig) (3.2.9b)

∂2fsig
∂z2

=
∂fsig
∂z

(1− 2fsig) (3.2.9c)

The argument

z := a (u− b) (3.2.10)
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Figure 3.2 Sigmoid activation function f = sig (a(u− b)) with gain a and threshold b.
The activation function (red) and its �rst derivative (dark blue) are always

positive, while the second derivatives (light blue and green) have domains

with negative values.

is a linear transformation of the �membrane potential� u introducing a gain

a and a threshold b which modify the slope and the position of the sigmoid.

The de�nition of z di�ers from authors where the threshold b changes sign and

absorbs the gain (i.e. z = a u + b). The choice in this work for the form in

Eqn. (3.2.10) is more convenient for the interpretation of b as the position of the

middle point at u = b⇔ z = 0 where the activation reaches its half-maximum

fsig(0) = 0.5.

The derivatives with respect to u are just scaled by the gain:

f ′ =
∂fsig
∂u

= a
∂fsig
∂z

(3.2.11a)

f ′′ =
∂2fsig
∂u2

= a2∂
2fsig
∂z2

(3.2.11b)

They are shown in Fig. 3.2. Its Taylor expansion to �rst order around the

middle point z = 0 is given by:

fsig(z) ≈fsig(0) + z f ′sig
∣∣
z=0

.

=
1

2
+
a (u− b)

4
(3.2.12)

These identities are used in the following to assess the stability of the learning

rules.
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3.2.1 Synaptic plasticity

The synaptic learning rule maximizing the separability in the network is found

by taking the derivative of the objective function with respect to the weight

matrix W . The change of the weight matrix is de�ned as

Ẇ :=η
∂Osep

∂W

=2η F ′F ′u̇xT (3.2.13a)

=2η F ′ẏxT (3.2.13b)

or using entry-wise notation

Ẇij :=2η f 2
i (ui) u̇ixj (3.2.14a)

=2η fi (ui) ẏixj (3.2.14b)

The weight change of the connection Wij is proportional to the presynaptic

activity xj and the time-derivative of the postsynaptic activity yi. In con-

trast to standard Hebbian learning, which is proportional to x and y, this is

called di�erential-hebbian learning [Kosko, 1986]. This learning rule leads to

an STDP rule for discrete-time rate-coding neurons as well as for continuous-

time Poisson spiking neurons.

Discrete time

The values of y at t and t−∆t are considered already observed and, therefore,

constant. They do not change when W is varied and, hence, do not contribute

to the derivative. Using the quadratic approximation from (3.2.7), the discrete

time version for the weight change is given by

∆W (t) =η
∂

∂W

(
y(t+ ∆t)− y(t−∆t)

2∆t

)2

(3.2.15a)

=
η

∆t

F ′(t+ ∆t)
y(t+ ∆t)− y(t−∆t)

2∆t

x(t)T (3.2.15b)

∝F ′(t+ ∆t) y(t+ ∆t)x(t)T︸ ︷︷ ︸
∆W+(t)

−F ′(t+ ∆t) y(t−∆t)x(t)T︸ ︷︷ ︸
∆W−(t)

. (3.2.15c)

Using the linear approximation would lead to a very similar rule di�ering only

in the time index of y in the negative part. The general behavior would be

the same, but using the quadratic approximation allows for a connection to
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biologically inspired rules. Rearranging terms reveals the asymmetric structure

of the learning rule

∆W̃ (t+ ∆t) :=∆W+(t−∆t)−∆W−(t)

∝+ F ′(t) y(t)x(t−∆t)
T︸ ︷︷ ︸

pre-post

−F ′(t+ ∆t) y(t−∆t)x(t)T︸ ︷︷ ︸
post-pre

which is commonly used as the discrete-time analog of STDP. In contrast to

the standard discrete-time STDP rule, the one derived here has an additional

factor F ′. It is modulated by the derivative of the activation function. Thus,

the weight change will be almost zero for a saturated or silent postsynaptic

neuron. This adds an inherent stability to the learning rule.

Stability. Although containing hebbian and anti-hebbian terms, the stan-

dard STDP rule su�ers from unbounded growth due to its causal nature

[Babadi and Abbott, 2010]. The modulation term in the modi�ed STDP rule

(3.2.15b) stabilizes the learning. That means, it has a stable �xed point and

does not require explicit weight normalization or scaling.

To derive an analytic expression for the �xed point of the weight dynamics,

I consider the simple case of one input and one output neuron and an indepen-

dent, identically distributed (iid) Gaussian input u = wx with x ∼ N (x0, ε
2).

Assuming a small learning rate η the weight can be considered as �xed for

calculating the mean weight change.

In the Hebbian part ∆W+(t) of Eqn. (3.2.15c) all terms depend on the same

input sample x(t), since f ′(t+∆t) = f ′|u=u(t+∆t)
and y(t+∆t) = f (u(t+ ∆t))

with u(t + ∆t) = W x(t). For the anti-Hebbian part ∆W−(t), y(t − ∆t) it is

independent of the other two terms F ′(t+ ∆t) and x(t) (given an iid input).

If the input variance ε2 is small, the terms y and f ′ can be approximated
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by a �rst-order Taylor expansion around the mean input wx0:

〈∆w〉 ∝ +

∫
[f ′ + w(x− x0)f ′′] [f + w(x− x0)f ′] xN

(
x;x0, ε

2
)
dx

−
(∫

[f ′ + w(x− x0)f ′′] xN
(
x;x0, ε

2
)
dx∫

[f + w(x− x0)f ′] N
(
x;x0, ε

2
)
dx

)
(3.2.16a)

= +
(
ff ′x0 + ε2w(f ′2 + ff ′′) + x0w

2ε2f ′f ′′
)

−
(
ff ′x0 + ε2wff ′′

)
(3.2.16b)

= +ε2wf ′ (f ′ + wx0f
′′) (3.2.16c)

where f ′ and f ′′ are to be evaluated at u = wx0. If the mean weight change is

zero for some �nite value of w, the weight has a �xed point. Such a �nite w can

always be found for a bounded, monotonically increasing activation function

f with a derivative f ′ that decays su�ciently fast (i.e. exponentially).

The sigmoid function ful�lls the conditions of a bounded, monotonic in-

crease and an exponential behavior of f ′. The stable �xed point for this acti-

vation function is the solution to

0 = 1 + awx0 (1− 2fsig) , (3.2.17)

which follows from the derivatives of the sigmoid in (3.2.9). With the Taylor

expansion from (3.2.12) this simpli�es to

0 = 1− 1

2
a2wx0 (wx0 − b) , (3.2.18)

which has the solution

w∗ =
b

2x0

(
1±

√
1 +

8

a2b2

)
. (3.2.19)

Fig. 3.3 shows the output distribution and the evolution of the weight for

a threshold of b = 1 and di�erent values of the gain. In this case the input

distribution is Gaussian with a mean x0 = 0.5 and a standard deviation σ =

0.2. For high values of the gain a (right panel) the weight converges to the

theoretical value of w∗ =
b

x0

= 2 from eqn. (3.2.19) after 50,000 iterations

(learning rate η = 1e− 3). The rate of convergence increases with the value of
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the gain a, since the modulation factor f ′ of the learning rule has a maximum

of a/4.

Excluding the instable negative solution, the stable �xed point w∗ is approx-

imately
b

x0

for su�ciently large a or b. In this case, for a unimodal symmetric

distribution of x as assumed in (3.2.16c), the weight approaches a value such

that the mean input u = wx0 equals the threshold b. The distribution of u will

be centered at the middle point of the sigmoid activation function, where it

behaves linearly, and `avoids' the regions of the output saturation. This leads

to a symmetric output distribution centered at 0.5 having maximal variance

for a �xed gain. If the variance (w∗σ)2 of the input �ts with the large gain, the

output distribution becomes �at. But if the gain is too large, the activation

function becomes too steep and the output pdf exhibits two peaks at 0 and 1

(cf. Fig. 3.3, top-right).

If the gain becomes smaller such that the second term in the square root

can not be neglected, the stable point for w becomes larger as given by

Eqn. (3.2.19). The input variance increases for a larger w, while the input

stays mainly in the linear region due to the small slope (gain) of the activa-

tion function. The output distribution will be tilted towards 1 (cf. Fig. 3.3,

top-left).

Continuous-time

Now, I will apply the di�erential-hebbian learning rule from Eq. 3.2.13a to a

spiking neuron. The activities x(t) and y(t) now correspond to an average �ring

rate. The synapse is assumed to estimate these with an exponential average

over spike times ti with (possibly) di�erent timescale for pre- and postsynaptic

averaging:

xj(t) :=
∑
tj

exp

[
−t− tj

τpre

]
Θ (t− tj)
τpre

(3.2.20a)

yi(t) :=
∑
ti

exp

[
−t− ti
τpost

]
Θ (t− ti)
τpost

(3.2.20b)

⇒ ẏi =
∑
ti

exp

[
−t− ti
τpost

] (
δ (t− ti)
τpost

− Θ (t− ti)
τ 2
post

)
(3.2.20c)

The activation function from the previous section related the membrane

potential to the output activity. When considering explicit spike generation
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Figure 3.3 Discrete-time STDP from the separability objective in the case of one input

and one output. Input with mean x0 = 0.5 and standard deviation σ = 0.2,

sigmoid activation function with threshold b = 1 and varying gain a (left,

middle, and right). Top: distribution of outputs y after the weight has

converged. Bottom: evolution of the weight for di�erent initial values.

as a threshold process in terms of the membrane potential, the activation

function describes the relation between the presynaptic input current I and

the output �ring frequency f . While this f − I curve depends on the type of

neuron [Connors and Gutnick, 1990], the relationship is mainly linear above

some threshold and saturates for stronger input currents [Nowak et al., 2003;

Tateno et al., 2004].

The total synaptic change is obtained as

∆Wij =

∫ ∞
−∞

Ẇij dt = η

∫ ∞
−∞

2f ′i ẏixj dt (3.2.21)

In a �rst step to simplify the derivations, I will assume a linear activation

function without saturation or a maximal �ring rate. Then the constant mod-

ulation of f ′ can be neglected.

The activity is a sum over all spike times and this will lead to a linear

interaction between all pre- and postsynaptic spikes known as all-to-all STDP.

Since the contributions are linear, looking at the case of one pre- and one
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postsynaptic spike is su�cient.

Like in the standard STDP protocol the relevant parameter is the time delay

∆t := tpost − tpre.

• Post- before Pre-Spike: tpost < tpre (∆t < 0)

∆Wij =

∫ tpost

−∞
Ẇij dt︸ ︷︷ ︸

=0

+

∫ tpre

tpost

Ẇij dt︸ ︷︷ ︸
=0

+

∫ ∞
tpre

Ẇij dt

=2η

∫ ∞
tpre

exp

[
−t− tpre

τpre

]
exp

[
−t− tpost

τpost

]δ (t− tpost)
τpost︸ ︷︷ ︸

=0

− 1

τ 2
post

 dt

=
2η

τpost

τpre
τpre + τpost

[
exp

[
−(τpre + τpost) t− τposttpre − τpretpost

τpreτpost

]]∞
tpre

=− 2η

τpost

τpre
τpre + τpost

exp

[
+

∆t

τpost

]
• Pre- before Post-Spike: tpost > tpre (∆t > 0)

∆Wij =2η

∫ ∞
tpost

exp

[
−t− tpre

τpre

]
exp

[
−t− tpost

τpost

]δ (t− tpost)
τpost︸ ︷︷ ︸
t=tpost

− 1

τ 2
post

 dt

=
2η

τpost
exp

[
−∆t

τpre

]
− 2η

τpost

τpre
τpre + τpost

exp

[
−∆t

τpre

]
=

2η

τpost

τpost
τpre + τpost

exp

[
−∆t

τpre

]
Thus, the di�erential-hebbian learning, derived from the separability objec-

tive, leads to the standard model of the STDP pairing protocol in the form of

two exponentials (cf. Fig. 3.4):

∆Wij ∝ +τpost Θ (∆t) exp

[
−∆t

τpre

]
− τpre Θ (−∆t) exp

[
+

∆t

τpost

]

Stability. The total integral under the STDP windows is zero irrespective

of τpre and τpost. But this does not imply that the weights will be stable.

Like in the discrete-time case, the causal part of this plasticity rule leads to
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Figure 3.4 Continuous-time STDP windows from the separability objective for one

pre/post spike pair. τpre/post are the time constants for the exponential

averaging of pre-/postsynaptic activity from their spike trains. ∆t > 0

corresponds to pre-post, ∆t < 0 to post-pre condition. Red line: Standard

STDP window. Blue line: STDP window shifted by ∆ρ due to saturation

in the activation function.

a potentiation loop and results in unbounded growth or saturated weights

Babadi and Abbott [2010].

I will show that, like in the discrete-time case, the learning is stabilized by

the modulation through f ′, i.e. the derivative of the activation function. A

stable weight distribution can be attained by considering a bounded activa-

tion function. The actual learning rule will depend on the functional form of

the activation function y = f(x) relating input and output. For analytical

tractability I assume a linear activation function but introduce a maximal out-

put �ring rate such that f(x) is constant above some threshold x̂ =
ρ

τpre
. In

this case the derivative of f , which modulates the learning, is a Θ function as

f ′(x) = Θ (x̂− x) . (3.2.22)

Again, I consider the STDP pairing case of one pre- and one postsynaptic

spike with exponential averaging like in (3.2.20). Due to the threshold, the

product f ′(x)x(t), which enters the learning rule in (3.2.21), is zero for x > x̂.

Rewriting the presynaptic activity x as

x(t) :=
1

τpre
exp

[
−t− tpre

τpre

]
Θ (t− tpre)

=x̂ exp

[
−t− tpre −∆ρ

τpre

]
Θ (t− tpre) . (3.2.23)
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one can see that this threshold corresponds to a time tρ := tpre + ∆ρ with

∆ρ := −τpre ln ρ.

The Θ function from f ′ over x̂ can be rewritten into a Θ function over tρ:

f ′x(t) =Θ (x̂− x) x̂ exp

[
−t− tpre + τpre ln ρ

τpre

]
Θ (t− tpre)

=Θ (t− tρ) x̂ exp

[
−t− tρ

τpre

]
(3.2.24)

where the last Θ function can be neglected since tρ > tpre for ρ < 1.

The e�ect on the learning rule is a time-shifted STDP window. For a purely

linear activation function, the crossover from LTD to LTP happens at ∆t = 0.

Incorporating a simple threshold saturation results in a shift to the right, such

that a pairing with ∆t < ∆ρ results in LTD (cf. Fig. 3.4). That means, a

pre-post pairing with a short time delay leads to strong depression instead of

strong potentiation.

Such a time-shifted form of STDP has been proposed and examined by

Babadi and Abbott [2010]. They show that such an STDP rule can compensate

the causal bump in the LTP regime. Instead of having weights saturated

at zero and a maximal value, the time-shifted STDP gives rise to a stable

distribution of weights. While Babadi and Abbott based their approach on a

purely phenomenological argument, the current work can actually provide a

justi�cation for such a time-shift. When the STDP rule is derived from the

separability objective, it intrinsically accounts for the time-shift through the

nonlinear, saturating activation function.

3.2.2 Intrinsic plasticity

Intrinsic plasticity (IP) modi�es the input-output mapping of each neuron

individually. For a rate based neuron i this is the activation function fi.

Again, the learning rule is found by taking the derivative of the objective

function with respect to the parameters of fi. Given an activation function

with some parameter p

ṗ :=ηIP
∂Osep

∂p
. (3.2.25)
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Thus

ṗ ∝u̇TF (u,p)F (u)u̇ (3.2.26a)

=ẏT
[
F (u)

]−1
F (u,p)ẏ (3.2.26b)

where F (u,p) is the diagonal matrix of the second derivatives with respect to u

and the parameter p.

For the common choice of the logistic sigmoid function, two parameters can

be optimized: the gain a and the threshold b. Since ẏ2 and F (u) are both always

positive, the sign of the change are determined by the second derivatives of fi

(cf. Fig. 3.2).

ḃi ∝ẏ2
i

[
∂fi
∂ui

]−1
∂2fi
∂ui ∂bi

=− ẏ2
i ai (1− 2yi) (3.2.27)

ȧi ∝ẏ2
i

[
∂fi
∂ui

]−1
∂2fi
∂ui ∂ai

=ẏ2
i

[
1

ai
+ (ui − bi) (1− 2yi)

]
(3.2.28)

These learning rules derived from the objective function of separability are

similar to the ones proposed by Bell and Sejnowski [1995] for maximizing

mutual information. This makes intuitive sense, since the separability objective

also aims at increasing the employed phase space volume. In turn, a larger

phase space increases the entropy/mutual information.

So while there is a connection between these to approaches, they are, how-

ever, not the same. The di�erence is that, here, the learning rate of a and b

depends on the actual output dynamics since it scales with ẏ2. It is easy to

show that the separability objective in the discrete-time case is equivalent to

maximizing the variance of the output PDF assuming iid samples at subse-
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quent times:

〈
(yt − yt−1)2

〉
=

∫
y2
t p(yt) dyt +

∫
y2
t−1 p(yt−1) dyt−1

− 2

∫
ytyt−1 p(yt−1) p(yt−1) dyt dyt−1

=2
〈
y2
〉
− 2 〈y〉2

=2σ2
y. (3.2.29)

The uniform distribution, which is the maximum entropy PDF for a bounded

output with no constraints, has indeed the maximal variance of 1/12 for the in-

terval [0, 1] among the unimodal, symmetric distributions. There are, however,

multimodal distributions with a larger variance which is re�ected in the output

PDF of Figure 3.6. In any case, a �at uniform distribution is not reachable by

either learning rule given the limited range of transformations provided by the

sigmoid activation function and its two parameters.

Stability

Like for the weights, the stability of the sigmoid parameters can be assessed

by calculating the root of the average change in a and b. To transfer the learn-

ing rule into discrete time, I take the quadratic approximation from (3.2.7) as

before. Assuming an iid input, the factor ẏ =
y(t+ ∆t)− y(t−∆t)

2∆t

is inde-

pendent of the main expression which depends on y(t). Thus, ẏ2 contributes

just a constant factor to the average change and can be neglected. Again, a

Taylor expansion of the sigmoid around z = 0 leads to an analytical expression

for the �xed points in the case of a Gaussian distributed input u ∼ N (u0, σ
2
u):

〈∆b〉 ∝ −
∫
p(u) a (1− 2f(u)) du (3.2.30a)

≈a
2

2

∫
p(u) (u− b) du (3.2.30b)

=
a2

2
(u0 − b) (3.2.30c)

The threshold b has a stable �xed point at the mean membrane potential u0,

thereby making the average output 〈y〉 = 0.5.
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Figure 3.5

Gaussian input applied to a

sigmoid activation function.

The output pdf is �at if the

parameters of the sigmoid �t

to the mean and variance of

the Gaussian (green line).

Likewise, the mean change in the gain is

〈∆a〉 ∝
∫
p(u)

[
1

a
+ (u− b) (1− 2f(u))

]
du (3.2.31a)

≈1

a
− a

2

∫
p(u) (u− b)2 du (3.2.31b)

=
1

a
− a

2
σ2
u (3.2.31c)

by setting the threshold to its stable point b = u0. The gain a has a stable

�xed point at

√
2

σu
. Thus, a adapts to the variance of the input pdf.

Both adaptations together can change the activation function such that it

matches the input pdf. This makes the output pdf more �at and maximizes

the separability/phase space as well as the entropy. Figure 3.5 shows the

PDF of the output for a Gaussian-distributed input transformed by a sigmoid

activation function. The output PDF is mainly �at if the mean of the Gaussian

input matches the steepest point at b and the variance �ts with the slope a. If

either the mean or the variance is changed, the output pdf becomes less �at.

The stability of threshold and weight depends on each other. Unfortunately,

they do not have a common stable point. By inserting the stable point equa-

tions of a and b into the equation for the stable point of w from (3.2.19), the
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�stable� point is found to continuously shift as

w∗ =w∗
1

2

(
1 +

√
1 +

4σ2
x

x2
0

)
(3.2.32a)

≈w∗
(

1 +
σ2
x

x2
0

)
. (3.2.32b)

Thereby, the weight increases towards its new stable point which in turn in-

creases the stable point of the threshold and so forth. That means, w and b

would grow without bounds when trained together. Only in the limit when

the coe�cient of variation
σx
x0

goes to zero, the threshold and the weight have

matching stable �xed points. In this case the gain goes to in�nity resulting

in a Heaviside activation function. Thus, for the network simulations in Sec-

tion 3.4, with concurrent intrinsic and synaptic plasticity, the threshold is not

adapted.

The e�ect of the learning rule can be seen in Fig. 3.6. The solid histograms

in the upper row represent the distribution of the output after the gain and

threshold have converged. The distribution is mainly �at irrespective of the

standard deviations of the input (left, middle, and right panel). Theses dif-

ferences in the input are balanced by the stable �xed point of the gain which

is inversely proportional to the standard deviation σu = wσx as shown in the

lower row. Since the rate of convergence scales with ẏ2, it initially depends

on the standard deviation of the input which in�uences ẏ while the gain is far

from the �xed point. Therefore, the gain converges faster for σx = 0.28 (right)

than for σx = 0.14 (left). In all three cases the threshold b converges to 1,

which is a stable �xed point counterbalancing the mean input wx0.

3.3 Objective function: Energy and noise

The objective function from Eqn. (3.2.3a) introduced in the previous section

leads the neuron to employ its whole phase-space for e�ciently transmitting

information. As shown, this objective results in an intrinsic plasticity learning

rule which is similar to maximizing mutual information [Bell and Sejnowski,

1995], i.e. the entropy of the output given the input distribution. The learned

�at output distribution corresponds to the maximum-entropy distribution of

a bounded output which is uniform.
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Figure 3.6 Intrinsic plasticity from the separability objective in the case of one input

and one output. A �xed weight w = 2 and an input with mean x0 = 0.5 and

varying standard deviations σx (left, middle, and right). Top: distribution

of inputs x and outputs y after the gain has converged. Bottom: evolution

of the gain for di�erent initial values. The threshold converged quickly

towards wx0 = 1 (not shown).

Triesch [2005] extended the mutual information approach by requiring a

low mean �ring rate given that spikes are metabolically expensive as discussed

in Sections 2.2.2 and 2.3.1. This leads to an exponential distribution of the

outputs. These extended intrinsic plasticity rules can easily be derived in the

objective function framework by adding another objective linearly penalizing

the output:

Oenergy := −y
µ
, (3.3.1a)

where the parameter µ regulates the mean �ring rate. This objective introduces

additional terms for the intrinsic plasticity rules equivalent1 to the ones found

1note the di�erence in the de�nition of the threshold for the sigmoid activation function:

sig (a(u− b)) vs. sig (au+ b) as used in [Triesch, 2005; Bell and Sejnowski, 1995]
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by Triesch [2005]:

∂Oenergy

∂bi
=ai

f ′

µ
=
ai
µ
y (1− y) (3.3.2a)

∂Oenergy

∂ai
=− (u− bi)

f ′

µ
=− u− bi

µ
y (1− y) (3.3.2b)

The combined objective Osep+λOenergy yields an intrinsic plasticity rule which

leads to an exponential distribution.

The problem with this combined objective function is that it is not stable for

constant input. If the variance of the input goes to zero, ẏ and the separability

objective also go to zero. The remaining learning rules in (3.3.2b) and (3.3.2a)

for the energy objective are, however, only stable at y = 0, and thus a, b→∞.

To avoid very high rates due to their energy consumption, I quadratically pe-

nalize them. This �ts with the initially introduced connection between the sep-

arability objective and the orthogonalization of neural representations [Marr,

1971]:

−2y2 · y1 = (y2 − y1)2 −
(
y2

2 + y2
1

)
(3.3.3a)

Decreasing the dot product increases the orthogonality, which can be achieved

by increasing the squared di�erence between di�erent outputs (separability)

while decreasing the sum of the squared outputs (energy). Thus, the combi-

nation of the energy objective and the separability objective is equivalent to

increasing the orthogonality.

Furthermore, �ring rate distributions have been found to have a lognormal

distribution [Hromádka et al., 2008]. That means, very low �ring rates are less

probable than an exponential distribution would suggest. A possible reason

for a neuron to avoid low �ring rates is their sensitivity to noise [Tsubo et al.,

2012]. I will account for this e�ect by linearly rewarding higher �ring rates.

The resulting objective creates a trade-o� between energy requirements and

noise stability:

Oenergy-noise := +
y

µ
− 1

2

(
y

µ

)2

(3.3.4a)
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3.3.1 Intrinsic plasticity

The additional terms from the new objective for the intrinsic plasticity of a

sigmoid activation function are given by

∂Oenergy-noise

∂bi
=ai

f ′

µ

(
y

µ
− 1

)
=
ai
µ
y (1− y)

(
y

µ
− 1

)
(3.3.5a)

∂Oenergy-noise

∂ai
=− (u− bi)

f ′

µ

(
y

µ
− 1

)
=− u− bi

µ
y (1− y)

(
y

µ
− 1

)
.

(3.3.5b)

This objective has a continuum of stable �xed points. That means, given a

constant input u every con�guration of a and b such that y = µ is stable.

The combined objective

Oall := Osep + λOenergy (3.3.6a)

balances the two objectives and �nds an intermediate solution where the out-

put is broadly distributed but low values around µ are more likely. The balance

between those two depends on the value of λ (cf. Fig. 3.7).

3.3.2 Synaptic plasticity

Plasticity of excitatory synapses

The new objective can also be optimized by adapting the weight:

∂Oenergy-noise

∂W
=

1

µ
F (u)

(
1− y

µ

)
∂u

∂W

T

(3.3.7a)

For the discrete-time case, where the membrane potential depends linear on

the weight, it directly follows that
∂u

∂W
is equal to the presynaptic activity x.

In a continuous-time formulation however, the membrane potential does not

directly depend on the weight. Only its change u̇ is linear in W . In order to

still derive a learning rule, I consider the membrane potential at some future

time t0 + δt, which can be found by integration:

u(t0 + δt) = u(t0) +

∫ δt

0

u̇(t0 + t′) dt′. (3.3.8a)

Thus,

∂u

∂W

∣∣∣∣
t+δt

=

∫ δt

0

x(t+ t′) dt′
δt→0→ δtx (3.3.9a)
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Figure 3.7 Intrinsic plasticity for the combined objective Osep + λOenergy for varying

values of λ (left, middle, right). Top: distribution of outputs y after the

gain and threshold have converged. Bottom: evolution of the gain and

threshold.

The derivative is proportional to the time step δt. For the discrete-time case,

this factor can be set to 1 and one recovers the result from above, while for the

continuous-time formulation δt goes to zero. Thus, the energy-noise objective

can be neglected in continuous-time when it is considered together with the

separability objective.

Plasticity of inhibitory synapses

While timing-dependence of synaptic plasticity at excitatory synapses is well

established, synaptic plasticity at inhibitory synapses displays a larger variety,

and many di�erent forms of STDP have been observed [Lamsa et al., 2010;

Ma�ei, 2011].

I include the in�uence of input at inhibitory synapses as

u̇ = −u
τ

+Wexcxexc −Winhxinh.

Due to the minus sign, the separability objective in continuous-time leads to

the standard STDP windows, but inverted in time. That means, pre-post leads
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to LTD while post-pre to LTP as it has been observed by Bell et al. [1997].

On the other hand, an inhibitory interneuron might be considered as only

being responsible to balance excitation and introduce competition. Therefore,

I leave out the separability objective and only optimize the energy objective

for inhibitory synapses:

∆W inh =

∫ ∞
−∞

Ẇij dt (3.3.10a)

=− ηλδt
∫ ∞
−∞

(
1− yi

µ

)
xj
µ
dt (3.3.10b)

∝− 1

µ
+

1

µ2

∫ ∞
−∞

yixi dt. (3.3.10c)

For the pairing case, one presynaptic inhibitory spike at tpre and one post-

synaptic excitatory spike at tpost are paired:∫ ∞
−∞

yixi dt =

∫ tmin

−∞
yixj dt︸ ︷︷ ︸

=0

+

∫ tmax

tmin

yixj dt︸ ︷︷ ︸
=0

+

∫ ∞
tmax

yixj dt (3.3.11a)

=
1

τpreτpost

∫ ∞
tmax

exp

[
−t− tpre

τpre

]
exp

[
−t− tpost

τpost

]
dt (3.3.11b)

=− 1

τpre + τpost

[
exp

[
−(τpre + τpost) t− τposttpre − τpretpost

τpreτpost

]]∞
tmax

(3.3.11c)

with tmax = max (tpre, tpost) and tmin = min (tpre, tpost).

• Pre- before Post-Spike: tmax ≡ tpost:∫ ∞
−∞

yixi dt =
1

τpre + τpost
exp

[
−∆t

τpre

]
(3.3.12a)

• Post- before Pre-Spike: tmax ≡ tpre:∫ ∞
−∞

yixi dt =
1

τpre + τpost
exp

[
+

∆t

τpost

]
(3.3.13a)

The overall weight change of the inhibitory synapse is

∆W inh ∝ − 1

µ
+

1

µ2τ

(
Θ (∆t) exp

[
−|∆t|
τpre

]
+ Θ (−∆t) exp

[
−|∆t|
τpost

])
(3.3.14a)
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Figure 3.8 STDP for an inhibitory synapse from the energy objective. It contains a

constant depression term (− 1

µ
) for every presynaptic spike and an STDP

term with potentiation only.

with τ = τpre + τpost. Every presynaptic spike leads to a depression of the

inhibitory synapse with an additional potentiation if the presynaptic spike is

close in time to the postsynaptic spike, i.e. |∆t| is small. This is shown in

Figure 3.8.

Such an inhibitory STDP rule was proposed and successfully applied in a

feedforward inhibition network by Vogels et al. [2011]. They show that such a

learning rule can achieve a balance between excitation and inhibition. Their

work was motivated by experimental �ndings regarding the role of inhibitory

plasticity in restoring such balance. While their learning rule is based on

a purely phenomenological approach, this STDP rule for inhibitory plasticity

directly follows from the energy/noise objective as proposed above. Given that

both excitatory and inhibition plasticity rules can be derived from the same

objective, this thesis provides a new way to analyze the interaction between

those two.

3.4 Network simulations

The focus of this Chapter is on deriving common learning rules for arti�cial

neural networks from an objective function. Here, I demonstrate the stability

of the derived learning rules within a recurrent network and their impact on

the network structure. The simulated network consisted of a reservoir with 40
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excitatory neurons xr and an input I of size 10:

xr(t+ 1) = fa,b (W� I(t) +Wrec xr(t)) . (3.4.1a)

The feedforward weightsW�, projecting from the input into the reservoir, were

fully connected. The recurrent weightsWrec had a connectivity of 25%, i.e. ev-

ery neuron had on average 10 incoming/outgoing connections. All weights were

drawn uniformly at random from the interval [0, 1]. The activation function

fa,b was a logistic sigmoid and all gains a were initially set to 1. The thresholds

b were �xed at 6 and not adapted during learning as discussed in Section 3.2.2.

The learning rules were used according to the combined objective Osep +

λOenergy with λ = 0.5µ2 and µ = 0.1. The learning rates were larger than in the

stability analysis to speed up the convergence: ηIP = 10−2 and ηSTDP = 10−1.

3.4.1 Sequence prediction

The reservoir received an input sequence and its performance was evaluated

on its ability to predict the next input. One sequence consisted of 10 steps

where the n-th input was active during the n-th step. The inactive inputs had

a baseline activity with a mean of A0 = 0.2. The mean of the active input was

a random variable. It had a reliability of Prel meaning that with probability

1− Prel it was equal to A0 and, thus, indistinguishable from the background:

I∗j =


k ·A0 : j is active

A0 : j should be active, but failed with probability 1− Prel

A0 : j is inactive

(3.4.2a)

with the signal-to-noise parameter k. The inputs were iid Gaussian distributed

as I = N (I∗, σ2) with standard deviation σ = 0.14. The two parameters k

and Prel were varied to change the task di�culty.

Performance

The prediction performance was evaluated by training a supervised readout

Wout on the reservoir state xr over 20,000 iterations of the input sequence. It
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was optimized with a quadratic loss function against the noiseless mean input

I∗:

W ∗
out = min

Wout

|I∗ −Woutxr|2 (3.4.3a)

The index with the maximum output of the readout was taken as the predicted

next active input. The number of steps for which the input was not correctly

predicted was averaged over 20,000 iterations. This error rate E of the network

after self-organized learning was compared to a reference value E0 from a

supervised readout trained only on the input. The normalized performance

measure was 1− E

E0

.

Figure 3.9 shows the normalized performance for di�erent values of the re-

liability Prel as a function of the signal-to-noise parameter k. For an untrained

network (blue diamonds) the performance was at the level of the reference

which was only based on the input. Thus, the supervised readout could not

make use of the recurrent information in the reservoir state. I assume that

this is due to the initial gain of the activation function which does not �t with

the input distribution. As shown in Figures 3.10 and 3.11, the gain quickly

drops by a factor of 2 when it is adapted. Surprisingly, the performance of

the untrained network was even below zero (worse than the reference) for an

input with 100% reliability (upper panel) and a large signal-to-noise ratio.

This might be due to the performance of the reference, which can achieve a

quite high prediction rate for this case since hardly any recurrent informa-

tion is needed. Thus, the untrained recurrent network might actually loose

information due to saturation of the poorly adapted activation function.

When the network was trained with IP only (IP: black circles), the perfor-

mance increased strongly. It seems that for such a simple task retaining some

recurrent information by avoiding a saturation with IP in the reservoir was

already very bene�cial. The additional adaptation of the feedforward weights

(IP+FF: green triangles) lead to an improvement compared to IP alone. Train-

ing also the recurrent weights (IP+FF+REC: red squares) concurrently with

IP and feedforward weights, the network was able to increase its performance

further for high and intermediate reliabilities. When the input sequence was

hard to detect (i.e. for low reliability and/or low signal-to-noise ratio) the ad-

ditional training of the recurrent weights actually decreased the performance
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compared to IP+FF. But the performance for IP+FF+REC was always better

or equal than IP alone.

The performance shown in Figure 3.9 is the median (50% have a better

performance) with the error bars corresponding to lower (25%) and upper

quartile (75%) for n = 48 random initializations. In general, the distribution

of the performance over di�erent initial conditions was much broader when

the weights were trained as compared to IP alone. Among the fully trained

networks (IP+FF+REC), there were some very good and some very poor

ones. Especially in the case of 100% reliability and k = 3, the best fully

trained network had no prediction errors over 20,000 iterations. In contrast,

the best network trained with IP alone had 2.6% wrong predictions. On the

other hand, the worst fully trained network made 10.5% wrong predictions

compared to only 3.5% for the worst network trained with IP alone. The

average performance of the fully trained network, therefore, turned out to

be worse at least for some parameters, due to those few initial conditions

converging to very suboptimal states.

Convergence

All simulations were run until the feedforward as well as the recurrent weights

converged to stable values (cf. Fig. 3.10 and 3.11). The convergence duration

depended on the parameters. For a clear, distinguishable sequence (high Prel

and/or high k) the weights converged fast, while for a sequence that was hard

to detect (low Prel and/or low k) the convergence was slower. This was also

re�ected in the relative strength of feedforward vs. recurrent weights.

Strong recurrent weights evolved for a clear input sequence leading to a good

performance. This is shown exemplary for one initial condition in Fig. 3.10. In

this case (Prel = 0.85, k = 4) the recurrent weights were dominating and only

four feedforward input weights remained. Although the feedforward weights

were suboptimal since not every input was connected to the network, the

performance is still close to optimal and better than IP-only or IP+FF. Thus,

the reservoir has adapted to the sequence such that it was able to predict

several steps ahead and compensated the missing feedforward connections.

On the other hand, when the sequence was hard to detect, the network was

dominated by the feedforward weights. Fig. 3.11 shows an example for such a
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case (Prel = 0.85, k = 2). In contrast to the other case of high signal-to-noise

ratio, the feedforward weights represented all possible inputs: every neuron

in the reservoir was connected to exactly one input. But since the learning

rule was not able to detect the temporal pattern of the sequence, all recurrent

weights eventually became zero. Thus, there was no recurrent information

about previous states which decreased the performance. The performance was

worse than for the IP+FF case, but still comparable to the IP-only case.

E�ect of network size

The introduced network has a very small ratio of reservoir to input neurons

(40 : 10) compared to previous works on sequence prediction and memory

capacity, e.g. [Lazar et al., 2009] considered up to several hundred excita-

tory neurons in the reservoir for six inputs. Increasing the reservoir results

in a higher-dimensional phase space with more possibilities for separating the

representations. Thus, it can expected that the performance of the network im-

proves with the number of reservoir neurons. The learning rules can establish

more non-interfering pathways in the recurrent reservoir and the information

of previous inputs can be retained more easily. This helps predicting the next

input in the case of low reliability or high noise.

Enlarging the reservoir from 40 to 100 neurons (while keeping the in-/out-

degree of each one at 10) strongly improved the average performance for various

conditions. For example, the performance for Prel = 0.70 and k = 4 increased

from about 60% to over 90% for the fully trained network. Also in the reliable

but noisy case of Prel = 1.0 and k = 2, the network was able to improve its

performance.

3.4.2 Separability and orthogonalization

The learning rules employed in the network simulations, as derived in the

Section 3.2, are based on the functional goal of maximizing the separability

between the reservoir states. And, as described in Section 3.3, with the addi-

tional energy objective, the learning rule is trying to minimize the dot product

making the reservoir states more orthogonal. Figure 3.12 shows that these

goals are achieved by the learning rule.
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The upper panel shows the squared distance between yt and yt−2∆t averaged

over the dimensions of y and many input presentations as a function of training

time. The maximum possible value is 1 but this would correspond to an

unfavorable optimum where the reservoir activation keeps switching between a

few states. The untrained network was badly tuned to the input and responded

with only slight variability. The squared distance between di�erent states

in time was basically zero. Adapting only the activation function with IP

also only slightly increased the average distance to about 5 · 10−4 (see inset).

Training the feedforward weights lead an increase to about 0.08 after 200, 000

iterations. Additionally training the the recurrent weights provided a further

increase to an average squared distance larger than 0.2 after 400, 000 iterations.

The results for the one-step distance (yt − yt−∆t) were very similar and only

slightly smaller (not shown).

The lower panel shows the average angle between the resevoir activation

vectors at yt and yt−2∆t as a function of training time. The untrained network

showed an average angle of 15
◦
. Suprisingly, the intrinsic plasticity decreased

the angle to 7.5
◦
after 20, 000 iterations. This also lead to an initial decrease

when training the weights. However, after 200, 000 iterations the adaption of

the feedforward weights had increased the average angle to about 50
◦
. Also

training the recurrent weights raised this value to about 58
◦
. Again, results

for the one-step angle ∠ (yt, yt−∆t) were very similar. Thus, the synaptic plas-

ticity mechanisms were able to strongly increase the average angle between

sucessive reservoir states and, thereby, made the representation of the input

more orthogonal.

3.5 Discussion

Neurons show a wide range of di�erent plasticity mechanisms shaping their

computational properties. Many learning rules for arti�cial neurons have been

inspired by experimental �ndings like intrinsic plasticity, STDP, and synaptic

scaling. They are employed in the simulation of neural networks in di�erent

forms and combinations as a means of self-organized learning. Each learning

rule is usually thought of as optimizing a speci�c computation of the net-

work. And while it can be already complicated to analyze the e�ect of a single
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learning rule, their combinations are even harder to study.

In this Chapter, I introduced an objective function for neural plasticity in

terms of the separability of the population activity. I have shown that, from

this single objective, learning rules for intrinsic plasticity as well as synaptic

plasticity of STDP type can be derived. Both rules have stable �xed points for

the standard sigmoid activation function. Thus, explicitly adding a mechanism

for synaptic scaling with an ad-hoc normalization constant is not necessary,

since the synaptic plasticity is modulated by the derivative of the activation

function. Thereby, the weights will adjust to lead to a balanced level of input.

The homeostatic e�ect of this scaling contributes to the improved separability

by keeping the neurons from being either inactive or fully active.

This separability objective can be integrated with considerations regarding

the energy consumption of spiking and the noise robustness of a low �ring rate.

By simply adding a second objective function punishing very high and very

low �ring rates, I extended the approach to account for the exponential-like

distribution of �ring rates. This second objective additionally lead to a learning

rule for inhibitory interneurons. Importantly, the combination of separability

and energy objective re�ects the goal of orthogonalization as described by Marr

[1971].

Thus, this Chapter proposed a simple way to consistently derive a set of

standard learning rules for arti�cial neural networks [Bell and Sejnowski, 1995;

Triesch, 2005; Babadi and Abbott, 2010; Vogels et al., 2011] from a common

objective function. Even more, the objective is applicable to discrete-time rate

coding neurons as well as continuous-time spiking neurons. The e�ect of the

learning rules was shown in a sequence prediction task for a recurrent network.

The weight matrices of feedforward input as well as recurrent feedback evolved

to a stable and sparse con�guration demonstrating the intrinsic stability of

the synaptic learning rule. The performance compared to an untrained net-

work improved strongly after applying intrinsic plasticity and even more with

an additional training of the feedforward synaptic connections. Concurrently

training the recurrent weights, the network was able to raise the performance

to 100% for some cases.
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Figure 3.9 Prediction performance of a self-organized recurrent network for a cyclic

input sequence. Three combinations of plasticity mechanisms (IP only,

IP+feedforward weights, IP+feedforward+reservoir weights) are compared

to the untrained network (blue diamonds). A performance of one means

perfect prediction (no errors); for a performance of zero the number of

prediction errors given by the reservoir state is equal to the number of

errors based purely on the input. The task di�culty increases along two

dimensions: from top to bottom panel (decreasing reliability Prel) and from

right to left (decreasing signal-to-noise parameter k). Shown is the median

and the error bars correspond to lower and upper quartile for n = 48 trials.
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Figure 3.10 Evolution of weights for a high signal-to-noise ratio of 4. Left: The values

of feedforward (red) and recurrent (blue) weights and gains (green) during

learning. After 1.2 · 106 iterations, all weights and gains converged to

stable values. Right: Final weight matrices of feedforward and recurrent

weights after convergence.
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Figure 3.11 Evolution of weights and gain for a low signal-to-noise ratio of 2. Left:

The values of feedforward (red) and recurrent (blue) weights and gains

(green) during learning. After 1.2 · 106 iterations, all weights and gains

converged to stable values. Right: Final weight matrices of feedforward

and recurrent weights after convergence.
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Figure 3.12 Evolution of separability and orthogonality of reservoir states for yt and

yt−∆t as a function of training time. Upper: The average squared dis-

tance is basically zero in the untrained network (blue) and only increase

slightly when using IP (black) (see inset). Training feedforward (green)

and recurrent weights (red) leads to a strong increase in the distance.

Lower: Average angle between the reservoir state vectors. Surprisingly,

IP decreased the angle below the value of the untrained network. Training

of the weights strongly increased the angle and, therefore, the orthogo-

nality.



Chapter 4

Sparseness objective for synaptic

plasticity

In the previous chapter I have shown that a gradient ascent on a very simple

objective function leads to various algorithms, which are similar or equivalent

to known and widely used plasticity rules for arti�cial neurons and neural net-

works. Inspired by these �ndings, I will apply a modi�ed objective function to

more a realistic conductance-based neuron in this chapter [Krieg and Triesch,

2011a,b, 2012 submitted].

Section 4.1 will detail the derivations of the proposed plasticity rule. It in-

troduces the objective function which is based on the sparseness of the distri-

bution of synaptic e�cacies. This is based on the idea of minimizing metabolic

costs as discussed in Sections 2.3.1 and 2.3.2.

In Section 4.2 the learning rule is simulated in a cell with full morphology

using the simulator NEURON. The resulting synaptic changes are studied

following the usual experimental protocols and compared to experimental data.

The model reproduces results from spike-timing-, rate- and voltage-dependent

plasticity and even metaplasticity, thus providing a unifying account of these

diverse induction protocols. It also leads to a new prediction regarding the

metaplasticity of STDP.

Section 4.3 establishes a connection between the proposed plasticity rule and

the biophysical mechanisms causing the plasticity in the real cell. The energy

e�ciency and further consequence and bene�ts of the objective function will

be discussed.

71
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4.1 Objective function

As introduced in Section 2.2.3, synaptic long-term plasticity describes the bidi-

rectional modi�cations of synaptic strength. It has a complex dependence on

various factors. Among them are direct factors such as correlated pre- and

postsynaptic �ring rates [Bliss and Lomo, 1973], postsynaptic membrane po-

tential [Artola et al., 1990; Artola and Singer, 1993; Ngezahayo et al., 2000],

precise timing of pre- and postsynaptic spikes [Gerstner et al., 1996; Markram,

1997], repetition frequency of such timing [Sjöström et al., 2001], synaptic lo-

cation [Froemke et al., 2005; Sjöström and Häusser, 2006], as well as indirect

(or meta-) factors such as previous postsynaptic activity [Bienenstock et al.,

1982; Wang and Wagner, 1999] and initial synaptic strength [Ngezahayo et al.,

2000].

Theories and models for many of these factors (especially the timing depen-

dence) have been studied on di�erent levels of abstractions including biophys-

ical [Lisman, 1989; Artola and Singer, 1993; Shouval et al., 2002], phenomeno-

logical [P�ster and Gerstner, 2006; Clopath and Gerstner, 2010; El Boustani

et al., 2012], and functional [Toyoizumi et al., 2005; Sprekeler et al., 2007; Pool

and Mato, 2011]. Nevertheless, synaptic long-term plasticity is induced by a

single, complex molecular machinery. Depending on the experimental protocol

only di�erent realizations of this process are probed. But so far, most theories

only address a speci�c induction protocol and none of the existing theories

bridges the gap between the biophysical and the functional level.

Here, I present a unifying theory that describes long-term synaptic plas-

ticity from a single objective function based on sparseness. I propose that

the primary goal of synaptic long-term plasticity is a sparse distribution of

synaptic strength and that STDP and other induction protocols can be under-

stood as a consequence of this objective. The synaptic learning rule resulting

from this functional goal is formulated in biophysical quantities and relies

only on local information. It reproduces results from spike-timing-, rate- and

voltage-dependent induction protocols and even metaplasticity, thus providing

a unifying account of synaptic long-term plasticity.

While it has been known for years that the distribution of excitatory synap-

tic strengths is highly skewed [Song et al., 2005; Loewenstein et al., 2011] and
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that models of STDP can produce such distributions [van Rossum et al., 2000;

Leen and Friel, 2012], here I postulate sparseness as the objective of long-term

plasticity. I argue that this is bene�cial because it reduces metabolic costs

and increases coding e�ciency. This approach suggests that sparseness may

play an even more important role for neural coding than previously thought

[Olshausen and Field, 1996; Hromádka et al., 2008].

4.1.1 Approximations

This work rests on the hypothesis that synaptic long-term plasticity is actively

maximizing the sparseness of the distribution of synaptic e�cacies. While this

goal appears rather simple, achieving it is not trivial because a single synapse

is severely constrained by its computational abilities and the locality of signals.

The aim is a local, computationally simple, and biologically plausible learning

rule which explains the experimental data and �ts with the mechanistic ideas

about synaptic plasticity. To derive such a plasticity rule, constraints and

approximations have to be considered which the synapse might be using.

Proxy and sparseness measure

The goal is a plasticity rule which, when applied locally at every synapse, in-

creases the sparseness of the overall distribution of synaptic e�cacies. This

requires every single synapse to have a way of estimating this sparseness with-

out having knowledge about the full distribution itself. It needs a proxy to

gather information about the strengths of other synapses. The derivations in

this work will build on a simple, but reasonable candidate: the membrane

potential u.

A major assumption is that the limited computational capacity provided

by the biophysical mechanisms in the neuron is not su�cient to compute the

complex dependencies of the membrane potential and its distribution on the

synaptic inputs. A simple approximation in terms of a �rst order expansion of

the voltage dynamics makes the dependence explicit. The time course of the

membrane potential is assumed to be linear with additive Gaussian channel

noise [Steinmetz et al., 2000] over a short time period δ. Thus, I assume a
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Wiener process Xδ with a drift term u̇(t0):

u(t0 + δ) ≈ u(t0) + u̇(t0)δ + σXδ. (4.1.1)

The conditional probability density over this time interval is found to be Gaus-

sian as

pδ(u|t0 + t) = N
(
u;µ(t), σ2t

)
, (4.1.2)

with µ(t) = u(t0) + tu̇(t0). The velocity of the membrane potential u̇ depends

linearly on the total synaptic current Itot =
∑

k wkI
(0)
k .

Next, the measure for the sparseness needs to be speci�ed. A straightfor-

ward choice are the statistical measures of skewness S or kurtosis K which are

frequently used in learning algorithms such as independent component anal-

ysis [Hyvärinen and Oja, 2000] and have been used to derive a BCM-type of

learning rule [Blais et al., 1998]. In my approach, both measures lead to a very

similar learning rule. I will focus on skewness in the following. To calculate

these measures the probability density function, or at least its moments, need

to be estimated.

Skewness relation between membrane potential and synaptic e�ca-

cies

Given the proxy variable u, I will argue that, in a rough approximation, the

skewness of the membrane potential is proportional to the skewness of the

synaptic e�cacies. The objective, thus, reduces to maximizing the skewness

of the membrane potential.

The duration of EPSCs is short (decay times are usually < 10 ms [Burgard

and Hablitz, 1993; Takahashi et al., 1995]) compared to the low average �ring

rate of cortical neurons (reported values of < 0.1 Hz [Margrie et al., 2002] up to

5− 10 Hz [Zhu and Connors, 1999; Hromádka et al., 2008]). I may, therefore,

neglect the �nite values of the EPSCs and just describe the synapses as active

or inactive. At every instant in time a small number n of all synapses is

�active� meaning a presynaptic spike has arrived. The total synaptic current

simpli�es to a sum over active synaptic e�cacies times some `average' current Ī

as Itot ≈
∑

k∈activewkĪ. By neglecting correlations between di�erent inputs,
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the total synaptic current becomes equivalent to the sum of iid samples wk

drawn from the distribution of synaptic e�cacies W .

For given state in phase space (u, u̇), the distribution of the membrane

potential depends only on the weights wk of the �active� inputs due to the �rst-

order expansion in (4.1.1). It follows from basic statistics that the skewness

of the membrane potential is linear in the skewness of W , since the strengths

wk can be regarded as iid samples from W . In the long-term average, the

skewness values are related as Su ∝ SW√
n
. Here, n is the average number of

simultaneously active inputs.

However, this would only be true for a point-like neuron with no spatial

extent. For a neuron with an extended dendritic tree, the membrane potential

at a given synapse does not depend on all synaptic currents arriving at that

neuron. EPCSs are attenuated as they travel along the tree and the skewness

of the local membrane potential only re�ects the skewness of the e�cacies in

some neighborhood of the synapse. While this sounds like a severe limitation,

it allows the neuron to separate parts of the dendritic tree. Each branch could

have an individual distribution of synaptic strengths and, thereby, provide a

preprocessing speci�c to its inputs. This is reminiscent of the idea of dendritic

computation [Branco and Häusser, 2010] and the experimental �ndings on

`branch strength potentiation' [Losonczy et al., 2008].

Thus, in order to maximize the sparseness of synaptic strength, the aim of

the learning rule at each synapse is to maximize the skewness of the membrane

potential which is taken as a proxy. It is de�ned as the third normalized central

moment. Since the overall time course of the membrane potential is divided

into a sequence of short time bins δ, the moments need to be averaged over δ

and an ensemble of bins Σδ:

Su =
〈〈û3〉δ〉Σδ
〈〈û2〉δ〉

3/2
Σδ

. (4.1.3)

Stochastic gradient ascent and moments

The objective function in form of the skewness is maximized with a gradient

ascent. That means, the derivative of the objective with respect to the synaptic
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e�cacy is used as the learning rule:

ẇ ∝ ∂Su
∂w

(4.1.4)

Using the full expression of the skewness has two implausible requirements:

�rst, the synapse needs to store information about the membrane potential

distribution across time and second, it must perform the derivative on this

complex expression. A stochastic gradient ascent avoids both problems. Here,

the synapse does not estimate the distribution and expectation values of u over

an extended period of time. Rather, the average over the bin ensemble Σδ is

replaced by an instantaneous �sample�:

S∗u =
〈û3〉δ
〈û2〉3/2δ

, (4.1.5)

which is the average over the short time period δ. This leads to a random

walk on the objective function, which on average converges towards a (local)

optimum.

The skewness is measured relative to the mean membrane potential ū which

de�nes the reference point for the distribution and its moments. The require-

ment for the stochastic gradient ascent to converge is that ū is not averaged

within each �sample� bin. It needs to be estimated over a longer period of

time:

ū = 〈u〉τū�δ (4.1.6)

This long-term averaging of ū is important. I will take it to be a low-pass

�ltered version of the voltage dynamics and compute it via an exponentially

weighted average

∂ū

∂t
=
u− ū
τū

. (4.1.7)

To summarize the introduced approximations: the sparseness of the distri-

bution of synaptic e�cacies within a certain neighborhood (e.g. the dendritic

branch), measured with the normalized higher-order moment of skewness, is

estimated using the local membrane potential as a proxy. Independent pre-

synaptic �ring has been assumed to linearly relate the skewness of both distri-

butions. For biological plausibility, the sparseness of the membrane potential
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is maximized in a computationally simple way by applying a stochastic gra-

dient ascent. The stochastic �samples� are averaged over a very small time

interval during which the dynamics of the voltage can be approximated by

a �rst-order expansion. The mean membrane potential, however, is averaged

over an extended time period.

Calculating the �sample� skewness from (4.1.5) amounts to evaluating the

moments of the proxy variable over δ. The moments of the mean-free mem-

brane potential û = u− ū can be done analytically due to the Wiener approx-

imation from (4.1.2). The n-th moment is found as

〈ûn〉δ =

∫
du

1

δ

∫ δ

0

dt p(u|t+ t0) (u− ū)n

=
1

δ

∫ δ

0

dt
∫

du p(u|t+ t0) (u− ū)n

=
1

δ

∫ δ

0

dt
∫

du N
(
u;µ(t)− ū, σ2t

)
un︸ ︷︷ ︸

=Mn

, (4.1.8)

where Mn is just the n-th raw moment of a Gaussian, since the order of in-

tegration can be interchanged according to Fubini's theorem. The moments

〈ûn〉δ follow as

〈
û2
〉
δ

= û2 +
1

2

(
σ2 + 2ûu̇

)
δ +

1

3
u̇2δ2 (4.1.9a)〈

û3
〉
δ

= û3 +
3

2

(
ûσ2 + û2u̇

)
δ +

(
u̇σ2 + ûu̇2

)
δ2 +O

(
δ3
)

(4.1.9b)〈
û4
〉
δ

= û4 +
(
3û2σ2 + 2û3u̇

)
δ +

(
σ4 + 4ûu̇σ2 + 2û2u̇2

)
δ2 +O

(
δ3
)
. (4.1.9c)

4.1.2 Stochastic gradient ascent

The synaptic e�cacy (or weight) w is a single number characterizing the

strength of the synapse. It is the result of a combination of di�erent fac-

tors, e.g. released neurotransmitter, number of receptors, and single channel

conductance of the receptors. Thus, the weight is a function of di�erent factors

xi: w = w(x1, .., xm). These are the �nal variables inducing plasticity which,
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in order to maximize the skewness, follow the di�erential equation

ẋi :=ηi
∂S∗u
∂xi

(4.1.10)

=ηi
∂w

∂xi

∂u̇

∂w

∂S∗u
∂u̇

, (4.1.11)

with learning rates ηi. The gradient decomposes into three terms since the

skewness only depends on u̇ which depends on w which in turn depends on xi.

The �rst term ∂w
∂xi

depends on how the weight and its regulating mecha-

nisms/variables are modeled. I will restrict myself to the common postsynaptic

factors of number and single channel conductance of the receptors. For a glu-

tamatergic synapse, there are two main types R of receptors (NMDA and

AMPA) each having an average maximal single channel conductance gR and a

total number NR. The synaptic current of a given receptor type R is given by

IR(t) = NR gR︸ ︷︷ ︸
wR

gR0 (t) (ER − u)︸ ︷︷ ︸
I

(0)
R (t)

, (4.1.12)

with the resulting weight wR and the normalized current of a single receptor

I
(0)
R (t).

Each quantity will be optimized simultaneously with individual learning

rates:

ṄR := ηN
∂wR
∂NR

∂u̇

∂wR

∂S∗u
∂u̇

,= ηNg Ω (4.1.13)

ġR := ηg
∂wR
∂gR

∂u̇

∂wR

∂S∗u
∂u̇

. = ηgN Ω (4.1.14)

The common expression Ω = ∂u̇
∂w

∂S∗
u

∂u̇
does not depend onN and g. The coupling

of the di�erential equations depends on the learning rates ηg and ηN . They

determine the behavior of the weight change

ẇR = gRṄR +NRġR. (4.1.15)

Here, the learning rates in all simulations were set such that the weight

change was multiplicative:

ẇR = 2
√
ηgηNwRΩ. (4.1.16)

An additive learning rule can be obtained with a di�erent setting of the learn-

ing rates but leads to qualitatively similar results. The derivations for the

dependence of wR on the learning rates is described in Appendix A.2.
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The second term ∂u̇
∂w

is simply linear in the input current for a standard

conductance-based neuron model. The derivative of the membrane potential

depends linearly on the synaptic current Isyn(t) =
∑

R wRI
(0)
R (t) and thus

∂u̇

∂wR
=
I

(0)
R (t)

C
, (4.1.17)

where I(0)
R (t) is the single channel current through a receptor of type R and C is

the membrane capacitance. While the current through a single channel I(0)
R is

a quantity that can not be determined by a synapse, the overall plasticity rule

depends on the total synaptic current for the multiplicative case from (4.1.16).

The third term establishes the connection to the sparseness measure and

is therefore the one which is fundamental to the approach. Using the identities

from (4.1.9a)�(4.1.9c), I take the derivative of S∗u with respect to u̇ and expand

to �rst order in the small time interval δ:

∂S∗u
∂u̇
∝
(

1
4
u̇û− 1

2
σ2
)
|û3|+O (δ)

û6 +O (δ)
. (4.1.18)

For û → 0 the higher-order terms in δ can not be neglected. Instead of using

the full gradient expression, I introduced a simple regularization parameter γ.

It is a constant phenomenological parameter which represents the higher-order

terms and thereby prevents the expression from diverging:

∂S∗u
∂u̇
≈1

4

(u̇û− 2σ2) |û3|
û6 + γ6

(4.1.19)

û�γ−→ 1

4

u̇û− 2σ2

|û3|
. (4.1.20)

Di�erential Hebbian learning

The �nal plasticity rule with all three terms combined, for skewness as the

objective function, is

ẇR := η
1

4

IR(t)

C

(u̇û− 2σ2) |û3|
û6 + γ6

. (4.1.21)

Using kurtosis as the sparseness measure results in the similar expression

ẇR := η
2

3

IR(t)

C

(u̇û− 1.5σ2) û5

û8 + γ8
. (4.1.22)
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Here, all remaining constant factors and parameters were combined into one

parameter: the learning rate η = 2
√
ηgηN δ

2 has now the dimension of seconds.

The di�erential equations exhibit a strongly nonlinear dependence on the

mean-free membrane potential û. In both cases the functional form of this

dependence is similar. For low depolarizations the noise parameter σ dom-

inates the numerator and the expression is negative. For a positive u̇, the

numerator will be zero for some intermediate value of û and become positive

for larger values. The whole expression, dominated by the denominator, ap-

proaches zero again for su�ciently large depolarizations. This dependence of

the plasticity on the membrane potential resembles the experimental �ndings

on voltage-dependent plasticity as I will show in the next section.

The other important functional dependence is on the correlation between

the time derivative of the membrane potential u̇ and the synaptic input current

IR. Neglecting the small noise parameter σ, the plasticity rule is proportional

to their product as

ẇR ∝ u̇IR. (4.1.23)

Thus, it belongs to the class of so-called di�erential Hebbian rules where the

weight change depends on the correlation between presynaptic activity and the

derivative of postsynaptic activity [Kosko, 1986]. In contrast to previous work

on di�erential Hebbian learning [Saudargiene et al., 2004; Kolodziejski et al.,

2009], this thesis provides a grounded derivation of such a learning rule from

an objective function.

4.2 Simulations

In this section the validity of the proposed synaptic plasticity rule has been

evaluated by comparing its results and predictions to experimental data. Dif-

ferent dependencies of synaptic plasticity have been probed by applying the

standard stimulation protocols as described in the following.

4.2.1 Methods

I used full morphological simulations in NEURON [Carnevale and Hines, 2006].

All simulations were done with a layer 5 pyramidal neuron [Mainen et al., 1995]
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Description Symbol Value

Learning rate η 1.5 s

Regularization for ū γ 10 mV

Noise level σ2 0.036 mV2/ms

Time constant for ū τū 30 s

Table 4.1 The phenomenological model parameters.

provided on ModelDB [Hines et al., 2004] (accession number 8210).

The plasticity rule depends on several parameters falling into two categories:

The phenomenological model parameters, like the learning rate, were �xed for

all experiments. The values are listed in Table 4.1.

The physiological parameters comprise the morphology of the dendritic tree,

the synaptic location on this tree, the spine geometry, the initial strength of

the synapse, and the contributions of the di�erent receptors types (AMPA and

NMDA) as well as their gating kinetics. Those parameters are also relevant in

the experimental preparations and can vary between di�erent cell types, brain

area, etc.

The dependence of the resulting plasticity on the exact morphology of the

tree is beyond the scope of this work. Although the spine geometry is found to

depend on the dendritic location [Berard et al., 1981; Jones and Powell, 1969]

and in�uence plasticity [Yuste and Bonhoe�er, 2001], it was also taken to be

�xed. The spine consisted of a neck (1 µm long, 0.1 µm thick) and the head

(0.6 µm long, 0.3 µm thick) as used by Koch and Poggio [1983].

The time course of the synaptic conductances of a single AMPA/NMDA

receptor were modeled by the sum of three exponentials ĝ(t) normalized to

have a maximum of 1: one exponential for the rising phase (time constant τr),

two for the decaying phase (time constants τd1 , τd2), and their relative strength

λ. The parameter values are listed in Table 4.2.

gAMPA
0 (t) = ĝAMPA(t) (4.2.1a)

gNMDA
0 (t, u) = ĝNMDA(t)

(
1 +

[Mg2+]o
β

exp [−αu]

)−1

(4.2.1b)

The additional term accounts for the voltage-dependent Mg2+ block of the
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Parameter AMPA NMDA

[Spruston et al., 1995] [Kinney et al., 1994]

τr 0.55 ms 4.05 ms

τd1 2.0 ms 27.6 ms

τd1 8.0 ms 147.4 ms

λ 0.8 0.5

N 2.00 1.36

ĝ(t) = N
(
λ exp [−t/τd1 ] + (1− λ) exp [−t/τd2 ]− exp [−t/τr]

)
Table 4.2 The parameters for the conductance time course ĝ(t) of AMPA and NMDA.

NMDA receptor with α = 0.062 mV−1, β = 3.57 mM, and the external mag-

nesium concentration [Mg2+]o = 1.2 mM [Gabbiani et al., 1994]. The post-

synaptic action potentials were elicited by current injection of 2 mA for 3 ms

at the soma.

Weight and weight change

The total synaptic conductance of a synapse was a weighted sum of both

receptor types:

gtotal(t) = wAMPAg
AMPA
0 (t) + wNMDAg

NMDA
0 (t) (4.2.2a)

Both weights wR independently followed the di�erential Equation (4.1.21) and

were changed continuously. The strength of a synapse was measured as the

EPSP peak amplitude at the soma. The increase/decrease of synaptic strength

was calculated as the relative change of this peak amplitude.

The initial value of the NMDA weight was taken to be independent of the

distance to soma with wNMDA = 500 pS. The initial AMPA weight wAMPA was

increased with distance from the soma as motivated by experimental �ndings

[Andrasfalvy and Magee, 2001]. The resulting total synaptic strength was on

the order of 0.1− 0.2 mV [Magee and Cook, 2000].

If not explicitly measured by the experiment, the distance of the synaptic

location to the soma as well as the weight wAMPA were adjusted to �t the

experimental setup and data (see simulations for details).
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4.2.2 Weight distribution and skewness

The learning rule was derived from the goal of maximizing skewness. Therefore,

I assessed the e�ect of the learning rule on the distribution of synaptic weights

and its skewness. 100 synapses located at 200 µm from the soma received

independent presynaptic Poisson spike trains at 3 Hz. The distribution was

estimated over the population of 100 synapses for several trials. In each trial

every synaptic e�cacy was initially set to w0 = 0.16 mV and new random spike

trains were sampled over a given duration. I did not employ any saturation

e�ects or hard bounds, therefore, some synapses grew strong enough such that

they triggered a postsynaptic spike. Since their strength was measured at

the soma (see Methods), this spike strongly biased the measured strength of

these synapse. While in principle the computer simulation would also allow

to neglect this spike contribution by measuring the strength at the synaptic

spine, I applied the same way of measurement throughout this chapter to be

in line with usual experimental procedures. To prevent the disortion of the

skewness analysis by these nonlinear e�ects, I excluded all synapses with a

strength larger than 10 mV.

In contrast to all other simulations with a multiplicative weight change,

this was done also for the additive weight change. The reason for this was

that any multiplicative weight change following some distribution ultimately

leads to a lognormal distribution according to the central limit theorem and

Gibrat's law. And such a lognormal distribution will always exhibit a positive

skewness. Thus, the e�ect of the learning rule might not be distinguishable

from random weight changes. On the other hand, for an additive random

weight change following some distribution the synaptic e�cacies would become

Gaussian due to the central limit theorem. A lognormal distribution even for

additive changes shows that the objective of an increased skewness is actually

achieved by the learning rule.

Figure 4.1 shows the cumulative density function of synaptic weights for

two di�erent simulation durations (T = 30 s, 300 s) in log-scale. The cu-

mulative density function, rather than the probability density function, was

chosen to eliminate statistical problems with the choice of the histogram bin

sizes. The weights from the multiplicative learning rule are well �tted by

a lognormal distribution for both durations as expected. But also the ad-
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Figure 4.1 Synaptic weight CDF for the additive (blue triangle) and multiplicative (red

square) learning rule at two di�erent durations (upper and lower panel).

The weights for the 100 synapses are initialized at w0 = 0.16 mV. Both

cumulative densities are �tted with a lognormal (straight and dashed line).

Additionally, a Gaussian CDF (dotted line) is �tted to the weights from the

additive learning rule.

ditive learning rule leads to a cumulative density function which follows a

lognormal distribution. For the short simulation of 30 s (upper panel) the

Gaussian �t is only slightly worse in terms of the root mean square of the

residuals (RMSR) (RMSRlognormal = 0.0209, RMSRGaussian = 0.0238), but it

becomes worse as the weight change progresses. The weights at 300 s show a

slight deviation from the lognormal cumulative density function at low values

while the Gaussian does not �t the data very well (RMSRlognormal = 0.0227,

RMSRGaussian = 0.0814).

Figure 4.2 shows the skewness and the mean of the weight distribution as a

function of simulation duration. Both types of learning rules show an increase

of skewness from the initial delta peak, which is not skewed, to values of around
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Figure 4.2 Skewness (upper) and mean (lower panel) of synaptic weight distribution.

The horizontal dashed lines correspond to the values from Song et al. [2005]

calculated from their lognormal �ts. Results shown are calculated for one

population of 100 synapses with the mean and variance of skewness aver-

aged over several trials.

4 after 5 minutes of simulation. These values are comparable to the value of

5.2 extracted from a lognormal �t to experimental data [Song et al., 2005]. For

additive learning the mean synaptic weight increases from 0.16 mV to values

around 1 mV. On the other, it drops by a factor of about 10 in the case of

multiplicative learning. This is, however, due to the exclusion of very strong

synapses with weights larger then 10 mV as discussed above.

4.2.3 STDP: spike pairings

First, I tested if the approach can explain the basic phenomenon of STDP.

The main protocol for studying STDP is by pairing pre- and postsynaptic

action potentials at di�erent time delays ∆ at low repetition frequency. For
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a negative delay the postsynaptic spike precedes the presynaptic spike (post-

pre) and for a positive delay the order is reversed (pre-post). I simulated 7

spike pairings at 1 Hz for two di�erent synapses at 200 µm (wAMPA = 200 pS)

and 400 µm (wAMPA = 250 pS) distance from the soma. The results were in

good agreement with the experimental data [Bi and Poo, 1998; Zhang et al.,

1998] apart from the LTP at very short delays, which is predicted too strong

(Fig. 4.3). This could be accounted for by saturation mechanisms which I have

not included so far.

Interestingly, the STDP window depended on the synaptic location. This is

related to the broadening of the backpropagating action potential (bAP) along

the dendritic tree. The change in the timescale of the bAP decay a�ects the

interaction of post-pre pairs. The width of the LTD window in the present

model is therefore increasing with distance from the soma, while the LTP

window is relatively independent of the synaptic location. I show this by way

of example for two synapses at 200 µm and 400 µm (Fig. 4.3). This feature of

the model was also found experimentally [Froemke et al., 2005].

4.2.4 STDP: frequency dependence

The standard STDP protocol consists of spike pairings repeated at low fre-

quencies. Increasing this repetition frequency leads to interactions between

spikes of di�erent pairs. The LTP and LTD of these pairings did not add

linearly as shown by experimental �ndings [Sjöström et al., 2001]. Figure 4.4

shows the simulation results for 100 pairings at positive (+10ms) and nega-

tive (-10ms) delays as a function of the repetition frequency compared to the

experimental data. The modeled synapse was located proximally at 150 µm

and only contained NMDA receptors (wAMPA = 0 pS). This is comparable

to the experimental conditions where the measured excitatory postsynaptic

potential only showed one slow component with decay times of about 50 ms

[Sjöström et al., 2001]. At low frequencies below 5 Hz, the model predicted

LTD for negative pairings but hardly any LTP for positive pairings. I re-

trieved the missing LTP, which is in contrast to the results of Figure 4.3, for

more distal synapses containing AMPA receptors. LTP for positive pairings

increased with frequency and the LTD for negative pairings was converted to

LTP for frequencies above 30 Hz. At 50 Hz, where both protocols became
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Figure 4.3 Change of synaptic strength in an STDP pairing protocol. The experimental

data [Bi and Poo, 1998; Zhang et al., 1998] (triangles) show LTD for post-

pre pairs and LTP for pre-post pairs with delays up to 30-40 ms. The results

of the model are shown for two di�erent synaptic locations on the apical

dendrite: 200 µm (solid line) and 400 µm (dashed line) from the soma.

The timescale of the LTD window increases with distance while the LTP

window shows no dependence on the location.

equivalent, robust LTP was predicted by the model matching the experimen-

tal data [Sjöström et al., 2001] (Fig. 4.4). Thus, the model can account for

the nonlinear integration of LTP and LTD when looking beyond isolated spike

pairs.

Like for the standard STDP protocol, I observed a dependence on the synap-

tic location for this frequency-dependent STDP protocol. The robust potenti-

ation at 50 Hz for ± 10 ms pairings was only measured at proximal synapses.

It converted to a slight depression for very distal locations more than 700 µm

from the soma. This LTP-LTD switch was observed for NMDA-only synapses

as well as for synapses with a distance-dependent increase in AMPA receptors

(Fig. 4.5). These results of the model are qualitatively similar to experimental

�ndings [Sjöström and Häusser, 2006].
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Figure 4.4 STDP pairing depends non-linearly on the repetition frequency. Delays

were �xed at +10ms (squares and solid line) or -10ms (triangles and dashed

line). The experimental data [Sjöström et al., 2001] show LTP for pre-post

at low frequencies up to 20 Hz which increases with frequency, while post-

pre pairing leads to LTD with roughly constant amplitude. At frequencies

above 30 Hz LTP for pre-post starts to saturate, but post-pre pairings

exhibit a crossover from LTD to LTP. At 50 Hz both result in strong LTP,

since pre-post and post-pre protocols become equivalent for ∆ = ±10ms.

The model predicts the same behavior for a synapse at 150 µm containing

only NMDA receptors (wAMPA = 0 pS).

4.2.5 Rate-dependent plasticity and metaplasticity

Depression and potentiation can also be induced without a controlled timing

of pre- and postsynaptic spikes. I simulated this rate-dependent plasticity

by independent pre- and postsynaptic Poisson spike trains lasting 30 seconds.

The simulated synapse was the same as in the STDP pairing protocol (200 µm

distance from the soma with wAMPA = 200 pS). The presynaptic frequency

was �xed at 10 Hz and I probed the induced plasticity as a function of the

postsynaptic conditioning frequency. The model predicted LTD at low con-

ditioning frequencies and LTP above a given frequency threshold (Fig. 4.6).

Furthermore, increasing the presynaptic frequency increased the amplitude of

the observed change in synaptic strength (not shown). These results agree

with the predictions of the BCM theory [Bienenstock et al., 1982] and also �t
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Figure 4.5 STDP pairings with a delay of +10 ms at 50 Hz for di�erent synaptic

locations. Proximal synapses (< 200 µm) show strong LTP. In the case of

no AMPA receptors (dashed line), the potentiation decreases with distance

starting at 200 µm and eventually converts to LTD above 700 µm from the

soma. Increasing the number of AMPA receptors with distance (solid line)

abolishes the potentiation and converts it to LTD. Proximal synapses with

a distance to the soma smaller than 200 µm were assumed to be dominated

by NMDA receptors. The modeled synapse at 55 µm did not contain any

AMPA receptors (see Methods). The experimental data (triangles) show

a similar switch from LTP to LTD as a function of distance [Sjöström and

Häusser, 2006].

the data of its experimental test [Wang and Wagner, 1999].

Another prediction of the BCM theory is the so-called metaplasticity, where

the history of postsynaptic activity in�uences the observed plasticity. Because

of the learning rule's dependence on the average memrane potential, I hypoth-

esized that the model would also show a form of metaplasticity. To test this

hypothesis, the cell is primed with a 100 Hz stimulus [Wang and Wagner, 1999]

which I applied for 3 seconds prior to the conditioning. The high postsynap-

tic activity increased the average membrane potential ū at the synapse due

to the bAP. This led to a larger amount of LTD (Fig. 4.6) which replicated

experimental �ndings [Wang and Wagner, 1999]. This homeostatic e�ect is of

heterosynaptic nature, since the bAP in�uences ū at all synapses.

So far, metaplasticity has only been studied for the above mentioned rate-
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Figure 4.6 BCM-like metaplasticity depends on recent postsynaptic activity. The ex-

perimental data [Wang and Wagner, 1999] in the control conditions (�lled

squares) reveal slight LTD at low conditioning frequency (< 5 Hz) and

strong LTP above. After priming the postsynaptic cell with a 100 Hz stim-

ulus (empty squares) the LTD window becomes larger (up to 30 Hz) and

stronger (amplitude doubles). In the model the control case (�lled circles)

corresponds to an average postsynaptic activity history of 10 Hz, while in

the priming case (empty circles) the neuron was stimulated with 100 Hz

for 3 seconds before the conditioning. Upon priming the model displays the

same leftward shift of LTD/LTP crossover point and an increase in LTD

amplitude.

dependent protocol. The level of abstraction used in the model does not allow

to make novel predictions in a quantitative way. But combining STDP with

a priming protocol for metaplasticity results in a clear qualitative prediction.

The model predicts that the width of the LTD window in an STDP protocol

will be smaller if it is preceded by strong priming (Fig. 4.7). This prediction

is a fundamental consequence of the learning rule given the in�uence of the

priming, namely raising the mean membrane potential ū. It is also not de-

pending on the choice of skewness as the sparseness measure, but will be valid

also for kurtosis or any other higher moment.



91

Figure 4.7 STDP pairing window depends on recent postsynaptic activity. Priming the

postsynaptic cell with a 100 Hz stimulus (dashed line) alters the amplitude

of LTD and LTP slightly. Most notably, the priming decreases the width

of the LTD window compared to control conditions (solid line). The decay

time to 5% of the maximum LTD decreases from 17 ms to 7 ms.

4.2.6 Voltage-dependent plasticity

Finally, I tested if the model can also explain results from an induction proto-

col based on clamping postsynaptic membrane voltage. To this end, I paired a

presynaptic stimulation with postsynaptic depolarization. I clamped the soma

of the postsynaptic cell at di�erent voltages. A distal synapse (700 µm) with

only NMDA receptors was stimulated 100 times at a frequency of 2 Hz fol-

lowing the protocol from [Ngezahayo et al., 2000]. No change is induced when

clamping the membrane voltage around the resting potential, while low depo-

larization lead to LTD and higher depolarization resulted in LTP (Fig. 4.8).

The general trend of the results is in line with experimental �ndings [Artola

et al., 1990; Ngezahayo et al., 2000; Feldman, 2000]. But the amount of plas-

ticity was very sensitive to the synaptic location. In the current formulation of

the model, plasticity can only be generated for synapses which are either far

from the clamping position and/or have a spine with a small isolating neck.

There, the in�uence of the voltage clamp is weaker and u̇ is not absolutely zero

but can slightly �uctuate. Also the e�ect of AMPA receptors in the synapse
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was quite pronounced. Increasing the number of AMPA receptors led to more

LTP (not shown).

In these voltage clamp simulations I also looked at the in�uence of the

phenomenological parameter σ which I had taken as �xed so far. σ was in-

troduced to account for the in�uence of noise of the voltage dynamics on its

sparseness. This noise is partially originating from the stochasticity of ion

channels and synaptic receptors. For simplicity, I scaled σ linearly with the

synaptic strength. One could also take a linear dependence on the square root

of the synaptic strength, e.g. by assuming the variance arise through inde-

pendent channel noise. However, the qualitative behavior would be the same.

Interestingly, this homosynaptic scaling of σ had a homeostatic e�ect. The

LTD window of the depressed synapse was decreased, while it increased for

the potentiated synapse (Fig. 4.8). A similar shift in the voltage-dependent

plasticity was observed experimentally and also shown to be of homosynaptic

nature [Ngezahayo et al., 2000].

4.3 Discussion

The phenomenon of synaptic long-term plasticity is driven by a single complex

mechanism and the diverse experimental induction protocols are only probing

di�erent aspects of this process. I showed that induction of spike-timing-, rate-

, and voltage-dependent plasticity as well as metaplasticity all follow from the

single computational idea of a sparse distribution of synaptic strengths. The

approach has an intrinsic dependence on the synaptic location which agrees

with the experimental �ndings. I therefore propose the maximization of sparse-

ness as a central goal of synaptic plasticity. The model also leads to a novel

prediction of metaplasticity for STDP.

This approach provides a two-fold uni�cation compared to existing mod-

els of synaptic plasticity. Detailed models [Lisman, 1989; Artola and Singer,

1993; Shouval et al., 2002; Graupner and Brunel, 2012] addressing the bio-

physical mechanisms can not make conclusions regarding functional goals or

consequences. Previous functional models [Toyoizumi et al., 2005; Sprekeler

et al., 2007; Pool and Mato, 2011], however, can not be connected to the bio-

physical mechanisms, since their learning rule is formulated in abstract ways.
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Figure 4.8 Synaptic plasticity depends on postsynaptic depolarization. Simulation of

a distal synapse (700 µm from soma) with only NMDA receptors. Pairing

presynaptic spikes with postsynaptic voltage clamping at the soma leads

to no change for slight depolarization, LTD for intermediate and LTP for

strong depolarization (solid line). I scaled the parameter σ linearly with the

initial synaptic strength for the depressed and potentiated synapses (see

Text). Depressed synapses (dashed line) have a smaller LTD window and

potentiated synapses (dotted line) a larger one.

Also they have only addressed one speci�c induction protocol, namely STDP

for spike pairs. In contrast, the functional model I proposed explains the �nd-

ings from di�erent induction protocols as emerging from one learning rule and

it provides a connection to the underlying biophysics by proposing a concrete,

biologically plausible learning rule.

Plasticity protocols

A direct consequence of the di�erential-Hebbian learning rule is the asymmet-

ric shape of the STDP window. Under conditions of an STDP protocol the

time derivative of the membrane potential u̇ will mainly depend on the bAP

from the soma. Thus, plasticity is driven by an interaction of bAP and exci-

tatory postsynaptic current [Markram, 1997]. The location dependence of the

STDP window in the model is due to the broadening of the bAP along the

dendritic tree. For a pre-post pairing the synaptic current mainly coincides
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with the rise of the bAP where u̇ is positive, while in the post-pre case it only

correlates with the decay where u̇ is negative. Such di�erential-Hebbian learn-

ing rules for STDP have already been proposed by Saudargiene et al. [2004].

Their model was motivated by reinforcement learning algorithms [Kolodziejski

et al., 2009]. But they did not reproduce other plasticity phenomena than

STDP pairing. My approach provides a functional justi�cation for the use of

di�erential Hebbian rules in STDP and reinforcement learning, since this type

of learning arises naturally from the computational goal of sparse synaptic

strength.

Previous models have proposed a speci�c triplet interaction for STDP [P�s-

ter and Gerstner, 2006] to explain the results for the di�erent repetition fre-

quencies (Fig. 4.4). The present model does not need any additional mecha-

nism to account for these �ndings. The robust LTP at high frequencies is due

to di�erent timescales of LTP and LTD in the model. Induction of LTP is

short but strong due to the rising phase of the bAP, while induction of LTD

is weaker but develops over a longer time. Thus, LTD needs more time to

build up but its induction is cut o� at high frequencies by the bAP of the next

pairing repetition. So the contributions for potentiation will dominate the de-

pression and e�ectively result in LTP. The vanishing of LTP at low frequencies

arises due to the kinetics of the NMDA receptors. For a pre-post pairing the

synapse is typically near the resting potential on the arrival of the presynaptic

spike. Then the NMDA channels are not fully relieved from their Mg2+-block

at the bAP arrival and the synaptic current is low. At increasing frequencies

the bAP from the previous pairing will provide increasing depolarization. This

will gradually relieve the Mg2+-block and lead to stronger synaptic currents.

For a post-pre pairing on the other hand, the cell is still depolarized from the

bAP. Then the NMDA channel is already unblocked at low frequencies.

The concept of metaplasticity from the BCM theory [Bienenstock et al.,

1982] has a direct analog in my model and does not have to be put in explic-

itly. For BCM, the �ring rate threshold regulating the LTD-LTP crossover is

a function of the recent postsynaptic activation in order to maintain a home-

ostatic balance. In the derived learning rule, the average membrane potential

ū naturally accounts for this regulation.

The induction of potentiation and depression �ts qualitatively with the
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results from voltage clamp experiments. But the plasticity in the learning rule

is linear in u̇ which is zero at the location of the clamp. Only synapses which

are su�ciently far, where the clamp e�ect is weaker, can experience a visible

amount of plasticity. I hope that this shortcoming of the model in the current

formulation can be resolved by extending it with the calcium concentration as

a proxy for the distribution of synaptic strength (see Future work).

Sparseness objective

I have postulated that the goal of synaptic plasticity is the maximization of

sparseness of the synaptic weights. There exist many di�erent ideas regard-

ing the advantages of sparseness and sparse coding (see [Földiak and Young,

1995; Olshausen and Field, 2004] for a review). The use of sparse representa-

tions in the brain in terms of the �ring rate of neurons has been successfully

applied to models of receptive �eld learning [Olshausen and Field, 1996] and

con�rmed by experimental �ndings [Hromádka et al., 2008]. Maybe the most

appealing interpretation is in terms of energy e�ciency. The brain needs to

ful�ll its computations with a limited energy budget. On the level of a single

neuron it tries to maximize the information transmission for some average �r-

ing rate [Attwell and Laughlin, 2001]. Thus, sparse coding can be interpreted

as a mechanism for energy-e�cient coding given that the generation of action

potentials is metabolically costly.

But besides the output of a neuron, also the input in terms of the synaptic

e�cacies is log-normal distributed [Song et al., 2005; Loewenstein et al., 2011].

Such a sparse distribution of synaptic e�cacies is energy-e�cient since also the

postsynaptic e�ects of a presynaptic action potential induce metabolic costs

[Attwell and Laughlin, 2001]. An excitatory postsynaptic current raises the

postsynaptic membrane potential which subsequently has to be brought back

to the resting state by restoring ionic concentrations. Given a sparse distri-

bution of synaptic strength, most synapses induce an excitatory postsynaptic

potential (EPSP) with low amplitude and low energy consumption, while few

synapses induce an EPSP with a high amplitude and high energy consump-

tion. The energy for synaptic transmission will be mainly spent in the few

strong synapses, but these have a high probability of inducing a postsynaptic

action potential. Thus, the objective of a sparse synaptic strength leads to an
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energy-e�cient synaptic signaling which may be a relevant factor in nervous

system evolution.

A second relevant view on the bene�ts of a sparse synaptic strength is

the need for tuning and input speci�city. For a neuron to transmit relevant

information, it should be tuned to speci�c inputs and avoid an unspeci�c

Gaussian distributed input. But, according to the central limit theorem, a sum

of n independent random variables always approaches a Gaussian regardless

of their distribution as n becomes large. Interestingly, a lognormal weight

distribution slows down the convergence towards the Gaussian due to its large

skewness (see Text S2).

There are many di�erent possible mechanisms that could achieve the pro-

posed computational goal of sparseness. The present model is a result of

the optimization via a stochastic gradient ascent, the speci�c choice of the

sparseness measure, and the use of the membrane potential as a proxy for the

synaptic weight distribution. The stochastic gradient ascent is necessary to

keep the problem computationally simple. For the sparseness measure I have

chosen skewness as a higher-order statistical moment. Similarly, one could ap-

ply kurtosis or any higher standardized cumulant which would result in largely

similar learning rule. An interesting di�erence between the cumulants is the

dependence on the mean-free potential û. A learning rule based on skewness

(or any odd cumulant) will be negative if û is negative, while for kurtosis (or

any even cumulant) it does not depend on the sign of û. Thus, in the context

of metaplasticity, a learning rule based on kurtosis does not lead to stronger

depression after a 100 Hz priming. These higher-order moments are usually

considered instable since they can be very sensitive to outliers. I believe, how-

ever, that this is not a problem in my approach since the neuron is a bounded

dynamical system. The voltage `samples' driving the synaptic changes are

continuously distributed and have no outliers.

Biological realization and future work

I have discussed the computational and algorithmic level of the approach. But

the learning rule can also be related to mechanistic theories of synaptic plastic-

ity. Its nonlinear dependence on the membrane potential �ts with the Artola-

Bröcher-Singer (ABS) theory [Artola and Singer, 1993] and is quite comparable
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to the common U-shaped Ω function characterizing the dependence of synap-

tic changes on the intracellular calcium concentration [Ca2+]i [Shouval et al.,

2002; Graupner and Brunel, 2012]. There, the voltage dependence of synap-

tic plasticity has consistently been connected to the surge of [Ca2+]i. In this

so-called calcium control hypothesis [Lisman, 1989] it is suggested that di�er-

ent [Ca2+]i levels have opposing in�uence on the Ca2+/calmodulin-dependent

protein kinase II (CaMKII). This a�ects synaptic strength, since CaMKII reg-

ulates the phosphorylation level of AMPA receptors which determines channel

conductance.

Relating the membrane potential in the learning rule with the calcium con-

centration also �ts with the question how the synapse should estimate u̇. It was

hypothesized that the calcium-binding protein calmodulin, due to its kinetics,

could serve as di�erentiator of [Ca2+]i [Rao and Sejnowski, 2001]. However, an

implementation of the learning rule might not necessarily employ a continuous

time derivative at every moment in time. A simple estimate of the correla-

tions between the synaptic current and the time derivative of the voltage (or

calcium concentration) could be su�cient. In this respect, it was shown that

the amplitude of synaptic change in an STDP protocol is strongly correlated

with the initial rate of increase of [Ca2+] over the stimulation period [Aihara

et al., 2007].

The strong dependence of the learning rule on the membrane potential is

due to the choice of u as a proxy to estimate the synaptic weight distribution.

It was chosen since its dependence on the presynaptic input and the synaptic

e�cacies are easy to formulate. Given the important role of calcium in mech-

anistic models, an important extension to the approach would be to take the

intracellular calcium concentration as a proxy. Formulating the objective in

this quantity would allow for a very direct connection to the established mech-

anistic theory of the calcium control hypothesis. The derivation of a learning

rule in this case would involve the dependencies of the calcium concentration on

presynaptic input, membrane potential, and release from intracellular stores.

With this extension, also the dependence on NMDA and AMPA recep-

tor strength could be formulated more realistically. So far I assumed that

the weight change of each receptor type only depends on its own synaptic

current. But synaptic plasticity is calcium-dependent and thus mainly me-
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diated by NMDA receptors. Normal AMPA receptors only indirectly a�ect

the calcium concentration due to voltage-dependent calcium channels and the

voltage-dependent magnesium block of NMDA receptors. But also the role of

calcium-permeable AMPA receptors is just emerging [Man, 2011]. All of these

dependencies can be incorporated into the current approach by extending it

with a calcium concentration proxy.

A second important step towards a biologically realistic model is to take

into account the actual mechanisms which contribute to the weight change.

Up to now I have used the simplifying assumption that the number and single-

channel conductances of the NMDA- and AMPA-type glutamate receptors

are independently adapted as continuous variables. Incorporating expression,

saturation, and maintenance of plasticity into the approach could be done with

an explicit model of the discrete conductance/phosphorylation states and their

transitions.

Also spine neck geometry can in�uence the results of the learning rule. A

strengthened synapse would not only have a large EPSP amplitude at the

soma, but also locally in the spine head. This leads to a stronger potentiation

since the synaptic current correlates more strongly with the local EPSP. Such

a positive feedback could be avoided by regulating the spine neck resistance to

achieve a �standardized� EPSP in the spine head [Gulledge et al., 2012].

Finally, it has been shown recently that the metaplasticity threshold is ac-

tually independent of postsynaptic action potentials but rather depends on

calcium [Hulme et al., 2012]. Since the present model in the current formu-

lation intrinsically accounts for BCM-like metaplasticity as a function of the

mean membrane potential, I expect that this in�uence of calcium be accounted

for when using the calcium proxy extension.

Conclusions

In the light of these �ndings, I propose that synaptic plasticity is arising

from the single computational goal of sparse signaling. David Marr proposed

to distinguish three levels of theoretical analysis: computational goal, algo-

rithm, and implementation [Marr, 2010]. The proposal of a sparse synaptic

strength (computational goal) leads to a di�erential-Hebbian learning rule (al-

gorithm) which can be mapped onto the biological mechanisms (implementa-
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tion), thereby, covering all three levels of analysis. The principle of sparseness

would then be even more fundamental to neuronal computation than previ-

ously assumed. Given the interpretation in terms of energy e�ciency it can be

considered a fundamental factor that has shaped the mechanisms of neuronal

plasticity during nervous system evolution.
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Chapter 5

Conclusions

Neural plasticity is the basis for learning and memory and it allows humans

and animals to acquire their cognitive and motor skills. These abilities are

still unmatched by any computer algorithm. Therefore, the mechanisms and

e�ects of neural plasticity have been of great interest to neuroscience and other

disciplines over the last decades.

The large body of experimental �ndings and theoretical models especially

for synaptic plasticity has contributed a lot to our understanding. The current

picture of synaptic plasticity stretches across di�erent dimensions. A multitude

of induction protocols are used to study it. Furthermore, synaptic plasticity

also interacts with other plasticity mechanisms such as intrinsic plasticity.

Thus, in order to further the understanding of the in�uence of these di�erent

dimensions and interactions I argue that it is important to develop a uni�ed

view on synaptic plasticity. This requires a theory that is able to describe

the seemingly di�erent phenomena within a single model. Furthermore, this

theory must not be limited to one level of abstraction but needs to create

a connection between the mechanistic and computational level. This thesis

approached the problem from the computational side. I proposed objective

functions in Chapters 3 and 4 and derived learning rules for neural plasticity

from them. In both cases, one single objective was able to account for all major

plasticity phenomena. And while the formulations of the objective function

di�ered, both lead to a di�erential-Hebbian learning rule for synaptic plasticity.

In Chapter 3 the formulations and derivations were done in the context of
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simpli�ed arti�cial neural networks. The proposed separability objective uni-

�es all major forms of neural plasticity and is a step forward in understanding

their interactions. It allowed to derive intrinsic plasticity rules as well as synap-

tic plasticity rules from the same objective function. The objective function

and resulting synaptic plasticity rules were applicable to discrete-rate as well

as continuous-time spiking neuron models. Furthermore, learning rules for

inhibitory as well as excitatory synapses were derived which were also intrin-

sically stable displaying a form of synaptic scaling.

Usually di�erent learning rules, which are inspired by biological phenomena

but only approximately model them, are combined to achieve di�erent opti-

mizations in a neural network. But it is hard to tell if and how they in�uence

each other. The proposed objective function shows that the commonly em-

ployed learning rules are actually optimizing a common goal and might not be

as distinct and independent from each other as usually thought. This is quite

plausible given that plasticity mechanisms have probably evolved over a long

time period. They have been shaped in order to work together providing a

stable, self-organizing network capable of learning and adaptation.

The focus of Chapter 4 was on a more detailed functional description of

synaptic plasticity. The context, compared to Chapter 3, was on the �ner

level of single neurons and single synapses. The derived learning rule was

based on a single objective function and formulated in biophysical quantities.

Its simulation results were directly comparable to the experimental data. It

explained the �ndings from all major induction protocols for synaptic plasticity

and also captured their location dependence as well as the phenomenon of

metaplasticity. Furthermore, it predicted a new form of metaplasticity for

STDP.

The objective of a sparse distribution of synaptic strength proposed in Chap-

ter 4 uni�es all major induction protocols for synaptic plasticity and bridges

the gap between mechanistic and functional levels by providing a biologically

plausible learning rule. These di�erent phenomena are arising from a single set

of biophysical mechanisms and I have shown that these mechanisms might be

optimizing a higher computational goal in terms of energy-e�cient signaling
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as well as optimized coding.

In sum, I was able to show that it is possible to map di�erent learning

rules of neural plasticity in arti�cial networks onto a common functional goal.

Speci�cally, the sparseness objective for synaptic plasticity can explain all

major experimental phenomena and the biophysical mechanisms can be viewed

as its implementation. Therefore, it can be conjectured that the mechanisms of

neuronal plasticity, which is the most important feature of the brain, have been

shaped by common, evolutionary relevant goals in order to optimize various

functional aspects of neural computation by local self-organization.

Having a comprehensive theory of neural plasticity, which is not restricted

to single phenomena but allows a more unifying description, can provide new

insights for brain-inspired algorithms in related disciplines such as computer

vision or machine learning. This work shows that studying or employing only

a few learning rules, resembling a subset of the observed biological processes,

misses important interactions and, therefore, might not provide su�cient in-

sight into the computations of the brain. However, a deeper understanding of

the relations between the di�erent forms of plasticity is even more important

for developing and improving clinical applications. In contrast to computer al-

gorithms, the arising interactions can not be neglected during pharmacological

or other forms of treatment. For example, new forms of brain stimulation such

as TMS (transcranial magnetic stimulation) as used in therapy e�ect a wide

spectrum of neuronal properties and it is hard predict all of their consequences.

Improved therapeutic protocols and treatments tailored to individual patients

rely on a comprehensive understanding of the e�ects and side-e�ects.

Theoretical models and simulations are one important part to achieve that

goal. While this thesis provided a new view on how neural plasticity can be

uni�ed from a functional aspect, the link to mechanistic models is obvious but

still too weak. Removing some of the simplifying assumptions in this work

would allow for more quantitative predictions. Especially, in contrast to the

arti�cial, standardized protocols used for STDP and other stimulations, the

model needs to be able to predict synaptic plasticity also for in-vivo stimulation

patterns. Such an improved learning rule derived from functional properties

could provide enough realism and predictive power while still being e�cient
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to simulate compared to models based on complex biological processes. This

trade-o� between the degree of detail and the complexity of simulations does

not only concern research on computational neuroscience but can also a�ect

the clinical application when it comes to individualized treatment.



Appendix A

Mathematical derivations and

de�nitions

A.1 Information theory in a nutshell

Since the brain is a complex device for receiving, processing, and transmitting

information, many proposals for its functional principles rely on the frame-

work of information theory [see MacKay, 2003; Hyvärinen et al., 2009, for an

introduction]. Even though this theory has been developed in the context of

serial and discrete information processing, its concepts have successfully been

applied to the massively parallel and event-based neural computation. Central

to information theory is the concept of Shannon entropy de�ned as

H(X) = EX [I(x)] = −
∑
x∈X

p(x) log p(x) (A.1.1a)

where X is the set of all messages. X is a random variable over that set with

a probability p(x) for an instance (message) x. The entropy is the expectation

of the self-information I(x) of each message, i.e. the information gain upon

receiving message x. In the context of signal transmission a similar measure

called mutual information

I(X;Y ) = H(X)−H(X|Y ) (A.1.2a)

= H(Y )−H(Y |X) (A.1.2b)

= H(X) +H(Y )−H(X, Y ) (A.1.2c)
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is de�ned which measure the information gain for a random variable X given

a second random variable Y (or vice versa since the de�nition is symmetric).

If a value of x is completely known after observing y, the conditional entropy

H(X|Y ) is zero and the mutual information attains its maximum H(X). Over

an unreliable (noisy) channel, however, the information loss decreases the mu-

tual information.

Neural communication can be cast in that framework by interpreting it

as sending a signal (action potential, �ring rate) over an unreliable channel

(synapse) and passing it through a nonlinearity (excitability, activation func-

tion). The computation in a neural network can be optimized by maximizing

the mutual information between each connected pair of neurons. Based on

this objective several neural learning mechanism have been proposed for the

intrinsic excitability [Bell and Sejnowski, 1995; Stemmler and Koch, 1999; Tri-

esch, 2007] as well as the synaptic connections [Toyoizumi et al., 2005; Pool

and Mato, 2011]. Interestingly, the concept of mutual information is closely

related to the in�uential approaches of sparse coding and independent compo-

nent analysis (ICA).

A.2 Multiplicative vs. additive learning rule

The synaptic weight wR is modeled as a product of receptor number NR and

single channel conductance gR. I will omit the receptor type R in the follow-

ing derivations. Both quantities are optimized simultaneously with individual

learning rates following the gradient Equation (4.1.11):

Ṅ := ηN
∂w

∂N

∂u̇

∂w

∂S∗u
∂u̇

= ηNgΩ (A.2.1)

ġ := ηg
∂w

∂g

∂u̇

∂w

∂S∗u
∂u̇

= ηgNΩ (A.2.2)

The common expression Ω = ∂u̇
∂w

∂S∗
u

∂u̇
does not depend on N and g. These two

coupled di�erential equations can be decoupled as

Ẋ± = λ±X±Ω (A.2.3)

by introducing X± = g√
ηg
± N√

ηN
and λ± = ±√ηgηN . Observing that

∂ (X+X−)

∂t
= (λ+ + λ−)X+X−Ω ≡ 0 (A.2.4a)
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it follows that N and g are constrained on a hyperbola with �radius�

r2 :=
g2

ηg
− N2

ηN
≡ const. (A.2.5a)

With this constraint the original di�erential equations can be decoupled as

Ṅ = λΩ
√
N2 + ηNr2 (A.2.6)

ġ = λΩ
√
g2 − ηgr2 (A.2.7)

with λ := λ+. The overall synaptic weight w evolves as

ẇ = gṄ +Nġ = λ
(√

w2 + ηNg2r2 +
√
w2 − ηgN2r2

)
Ω. (A.2.8)

For the case of r2 = 0 the hyperbola degenerates to a linear relationship

between N and g and the learning rule will be purely multiplicative. Reintro-

ducing the dependence on the receptor type R, it reads

ẇR = 2λwRΩ (A.2.9a)

In the case r2 → ±∞ only one variable is changed and the other is kept �xed.

This leads to a purely additive learning rule. For example keeping g �xed

(ηg = 0) and only updating N will lead to

ẇR = ηNg
2
RΩ. (A.2.10a)

For �nite values of r2 the learning rule will tend to be multiplicative for large

wR and gradually become additive for smaller wR.

A.3 E�ect of skewness on the central limit the-

orem

The central limit theorem states that the distribution of the sample mean of n

i.i.d. random variables converges to a normal distribution as n goes to in�nity:

√
n

((
1

n

n∑
i=1

Xi

)
− µ

)
d−→ N (0, σ2)

with E (X) = µ and E [(X − µ)2] = Var (X) = σ2.
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The Barry-Esseen theorem [Esseen, 1956] attempts to quantify the rate of

convergence in the central limit theorem. It provides an upper bound on the

absolute di�erence between Φ (the cdf of the standard normal distribution)

and Fn (the cdf of the normalized sample mean of the i.i.d random variables).

It states that for all x and n there exists a positive constant C such that

|Fn(x)− Φ(x)| ≤ C√
n

ρ

σ3

with the third absolute moment E
[
|X − µ|3

]
= ρ <∞.

Figure A.1 The dependence of α on the lognormal parameter Σ. The dashed line

indicates the value from the �t to experimental data (Σ = 0.9355).

While the upper bound of this di�erence decreases with the number of

samples n, it depends linear on the normalized moment β = ρ
σ3 . By increasing

β the di�erence to the Gaussian distribution can be increased. Since ρ is

the third absolute central moment, a trivial lower bound for β is always the

skewness S which is the third central moment divided by σ3, i.e. S ≤ β.

Synaptic strength is observed to approximately follow a lognormal distribu-

tion lnN (M,Σ2) [Song et al., 2005; Loewenstein et al., 2011]. Interestingly,

for lognormal distribution one also �nds that there is always a value α such

that S(1 + α) is an upper bound on β. More concrete, β < S(1 + α) where

α ∝ exp [−3Σ2] for Σ→∞. That means,

S < β < S(1 + α)

and the lower bound will become tight for su�ciently large Σ. The skewness

is than a reasonable approximation to β.
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Speci�cally, for a log-normal �t to experimental data with Σ = 0.9355 [Song

et al., 2005] the bound is already very close with α < 0.04 (cf. Fig A.1). Thus,

maximizing the skewness of synaptic strength will maximize β and the upper

bound in the Barry-Esseen theorem. For example, doubling the skewness in a

lognormal distribution (by increasing its variance) doubles the upper bound.

This would require four times as many inputs to compensate for. Thus, for a

highly skewed weight distribution, the total synaptic current will only slowly

converge to a Gaussian distribution and retain its speci�city even for a large

number of synaptic inputs.
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Appendix B

Glossary

Abbreviation Expression

ABS theory Artola-Bröcher-Singer theory

AMPA 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid

bAP backpropagating action potential

BCM theory Bienenstock-Cooper-Munroe theory

CaMKII Ca2+/calmodulin-dependent protein kinase II

EPSC/IPSC excitatory/inhibitory postsynaptic current

EPSP/IPSP excitatory/inhibitory postsynaptic potential

GABA gamma-aminobutyric acid

ICA independent component analysis

iid independent and identically distributed

IP intrinsic plasticity

LIF neuron leaky-integrate-and-�re neuron

LTD long-term depression

LTP long-term potentiation

NMDA N-Methyl-D-aspartic acid

PCA principal component analysis

PDF probability density function

PPI phosphatase I

RNN recurrent neural networks

STDP spike timing-dependent plasticity

Table B.1 Abbreviations
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