Deciding subset relationship of co-inductively
defined set constants

Manfred Schmidt-Schau8!, David Sabel', and Marko Schiitz?

! Institut fiir Informatik, Johann Wolfgang Goethe-Universitét,
Postfach 11 19 32, D-60054 Frankfurt, Germany,
schauss@ki.informatik.uni-frankfurt.de
2 Dept. of Mathematics and Computing Science,
University of the South Pacific, Suva, Fiji Islands

Technical Report Frank-23
Research group for Artificial Intelligence and Software Technology,
Institut fiir Informatik,
J.W.Goethe-Universitat Frankfurt,

15. Aug. 2005

Abstract. Static analysis of different non-strict functional program-
ming languages makes use of set constants like Top, Inf, and Bot denoting
all expressions, all lists without a last Nil as tail, and all non-terminating
programs, respectively. We use a set language that permits union, con-
structors and recursive definition of set constants with a greatest fix-
point semantics. This paper proves decidability, in particular EXPTIME-
completeness, of subset relationship of co-inductively defined sets by us-
ing algorithms and results from tree automata. This shows decidability of
the test for set inclusion, which is required by certain strictness analysis
algorithms in lazy functional programming languages.

1 Introduction

Static analysis in lazy functional languages often has to deal with abstract sets of
expressions, such as T for all expressions, | for all non-terminating expressions,
and Inf for all infinite lists (lists without a length). Initially, strictness analysis
on non-flat domains was explored using 4 predefined set constants [Wad87]. Sub-
sequently, this has been generalized to strictness analyses providing a language
for defining abstract set constants [N6¢92,N6¢93,Sch00,SSPS95], where the anal-
ysis requires an inclusion check of set constants in the most powerful version of
its loop detection rules. Such a language is also used in the proof of correctness
of Nocker’s strictness analysis [SSSS05]. In every case the static analysis requires
knowledge of the inclusion of two differently defined sets. In this paper, we show
that in a language that allows constructor expressions, unions and recursion,

2 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

the decision problem for the inclusion of set constants is EXPTIME-complete
by using results from set constraints [Aik94,CP98] and tree automata [CDG97].

The paper is structured as follows. First the language for forming set constants
is given. Set constants can be recursively defined by defining them as a union
of {1} and flat constructor terms. But set constants are not permitted in the
union. In section 3 it is shown that the inclusion problem for set constants can be
solved using results from tree automata by showing that inclusion w.r.t. the least
fixpoint is equivalent to inclusion w.r.t. greatest fixpoint. In section 4 it is shown
that the set constant language can be extended to allow set constants at the
top-level of unions without changing the complexity of the inclusion problem. In
section 5 we show how the results are transferred into extended lambda-calculi,
and hence to lazy functional programming languages. It is essential to note that
infinite trees are provided by these languages, but not all infinite trees, which
means we cannot directly use the least fixpoint of equations, nor arguments using
the set of all infinite trees.

2 Syntax of the Language of Values

We use some finite set A of constants a coming with an arity ar(a) > 0. There
is one special constant | with ar(L) = 0. The other constants are called con-
structors. The syntax for expressions E is:

E = (c Ey ... Ey()) where c is a constant

We define £(.A) as the set of all expressions E that can be generated using this
grammar. We also require the set of all finite and infinite trees 7 (.A) according
to this syntax.

In order to have a rigorous construction, a (possibly) infinite tree t € 7 (A) over
A is a partial function ¢ : FS(Ng) — A, where FS(Np) is the set of all finite
sequences over Ny. The domain of the function ¢ is denoted as D(t). Sequences
are denoted using the dot-notation. The notation f.n means the sequence f ex-
tended with the number n, and | f| is the length of the sequence f. The following
properties hold:

1. fmeD(t)= f € D(t).
2. If ar(t(f)) = n, then fi e D(t) fori=1,...,n.
3. Ifar(¢(f)) =n and f.i € D(t), then 1 < i < n.

This implies that if ar(¢(f)) = 0, then f is a maximal sequence in D(t), i.e. f
corresponds to a leaf in the tree t. The set D(t) is always prefix-closed, i.e. every
prefix of a sequence from D(t) is also contained in D(t). If the set D(¢) is finite,
then we call t a finite tree, or a term over A, otherwise, if D(t) is an infinite set,
we call t an infinite tree. If appropriate, we will also use the common notation
for trees as terms over a signature.

Deciding subset relationship of co-inductively defined set constants 3

In the following, instead of the full set 7 (A) and in order to support applications,
where not all infinite trees are available, we use a set of trees 7 with £(A) C
T C T(A), which is also selector-closed, i.e., with the property that for every
t=(cty...tp) €T, alsot; €T foralli=1,...,n.

In an application of the results, this set 7 may be the set of all computable trees
in T (A), or the set of all equivalence classes (by some equivalence) of terminating
expressions.

3 Set Constants

Let U = {Uy,...,Uk} be a finite set of names of set constants. For every set
constant U; there is a defining rule

(Eq;): Ui={L}Uri1U...Urin,

where r; j may be an expression (¢ uj ...u},), and uj € U are set constants.

With rhs g, (U;) we denote the right-hand side of Eq,.

A mapping ¢ : A — P(7), where P(-) denotes the powerset, is called an sc-
interpretation. For sc-interpretations 1,12, we write i1 < 1ho, iff for all i =
1, e ,K . wl(Uz) g ¢2(U1)

We define an extension ¢ for sc-interpretations i as follows:

Pe({L}) ={Ll}
Ye(cur ... Uar(e)) ={(car...au)) | a;i € P(u;)}
Ye{LYUr U . Ur,) :={L}uye(r) U...Uv(ry)

The equations Eg; for the set constants define an operator ¥ on sc-interpretations
as follows:

(1Y) :==¢° orhsg,.

The operator ¥ is monotone on the set of sc-interpretations and hence has a
least fixpoint o and a greatest fixpoint 7, where o,y are sc-interpretations.

Definition 1. For every set constant u € U we define the least fizpoint o(u)
and the greatest fixpoint as y(u).

Remark 1. The least fixpoint o of ¥ can be computed as follows:

Let ¢o be the sc-interpretation with ¢o(U;) = 0 for i = 1,..., K. With ¢; :=

Wi (py) for j > 0, the j-fold application of ¥, the equation o(U;) = |J¢;(U;)
J

holds for every ¢« = 1,..., K. This representation of the least fixpoint allows

induction proofs.

For the least fixpoint o of equations we have o(u) C L(A) for all u € U. So in
this case only finite trees are required.

4 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

Remark 2. The greatest fixpoint v of ¥ can be computed as follows. Let 1 be

the sc-interpretation with 4o (U;) = 7 for i = 1,..., K. With t; := W (¢yg) for

j > 0, the j-fold application of ¥, the equation v(U;) = (1 ¢;(U;) holds for every
J

i =1,...,K . This representation of the fixpoint allows co-induction proofs in
the style of induction proofs.

The greatest fixpoint v of equations in general requires infinite trees.

3.1 Properties of Least and Greatest Fixpoints

In this section we show that there is a tight connection between least and greatest
fixpoint: The set o(u) is exactly the subset of all finite cuts of trees in v(u).

Definition 2. A tree t' is a finite cut of a tree t, if t' is finite, D(t') C D(t),
and Vf:t'(f) £t(f) =t (f) = L.

A tree t' is a finite cut of a tree t at depth k, if t' is a finite cut of t, and
Vi) #H(f) = | fl =k

A finite cut can be seen as cutting away subtrees by replacing them with a | -leaf
until the resulting tree is finite.

Lemma 1. For all set constants u € U:

t' is a finite cut of a tree in y(u)}.

Proof. 1. For every u € U, the set o(u) can be described as all finite trees that
can be constructed using the equations Fgq, (see Remark 1). Hence for every sc-
interpretation v that is a fixpoint of ¥, and for all u € U we have o(u) C 1 (u),
and hence o(u) C v(u).

2. By induction. Suppose there is a tree t € v(u), and a finite cut ¢’ of ¢, such
that ¢’ € o(u). Assume that the depth of ¢’ is minimal with this property. Since
t' # 1, there is a constructor ¢ with ¢ = (¢ t1...1,), t' = (¢ t}...t)), and ¢}
is a finite cut of ¢; for all # = 1,...,n. The fixpoint equations show that there
is a component (¢ ujp ...uy,) in the right-hand side of the equation for u with
(cty...ty) € v(cur...uy), and so t; € y(u;). Thus, by induction t; € o(u;)
for all ¢ = 1,...,n. The fixpoint equations again show that this implies that
(cty...t) € o(u). This is a contradiction. Hence the claim is proved.

Corollary 1. For all u € U: All finite cuts of trees in o(u) are also in o(u).

Proof. Follows from Lemma 1.

Deciding subset relationship of co-inductively defined set constants 5

Lemma 2. Let u be a set constant. Then v(u) = {t € T | all finite cuts of t
are in o(u)}

Proof. From Lemma 1 we obtain y(u) C {¢t € 7 | all finite cuts of ¢ are in o(u)}.

Let & be the sc-interpretation that is defined by &(u) := {t € 7 | all finite cuts
of t are in o(u)} for all u € U. We show that & is a fixpoint of W:

First, it is obvious that o(u) C &(u) for all u € U.

Let u € Y and let the equation for u be: u = {L}Ur U...Ury,. Then ¥(&)(u) =
{L}U&(r1)U... UE%(rm). The goal is to show that ¥(&)(u) = &(u):

U(€)(u) C &(u): Let t € ¥(€)(u). The case t = L is trivial, so assume t =
(ct1...th), and w.lo.g. t € £¢(r1) with r1 = (c uy ...up). We obtain t; € {(u;)
for all ¢ = 1,..., h. Hence all finite cuts of ¢; are in o(u;) for ¢ = 1,..., h, and
since o(u) = {L}Uo(r1)U...Uo(ry), we have that all finite cuts of ¢ are in
o(u). This means t € £(u).

E(u) C U(&)(u): Let t € &(u). If ¢ = L, then there is nothing to prove. If
t = (cty...t,), then consider a sequence of finite cuts as follows: For all i =
0,1,2,... let s; be the finite cut of (¢ ¢;...t,) at depth i. Since o(v) C &(v)
for all v € U, we have s; € o(u) C &(u) for all 4. Then there is a component
(¢ uy...up) among the r,...,r,, such that for infinitely many indices i, the
tree s; is also in o(c uy ... uy). This, however, means that all the finite cuts of
s; are also o(c uy ...u,) by Corollary 1, and so all the finite cuts of ¢ are in
o(c uy...uy). Hence all the finite cuts of ¢; are in o(u;) for all ¢ = 1,... n.
Since 7 is selector-closed, t; € 7. This implies t; € £(u;).

Summarizing, £ is a fixpoint of ¥, and hence £(u) C ~y(u) for all set constants u.

Note that Lemma 1 and Corollary 1 do not require the selector-closedness of 7,
whereas this is required in the proof of Lemma 2.

Theorem 1. For all uy,us: y(u1) C y(usz) iff o(u1) C o(ug).

Proof. <: From o(u1) C o(ug) the relation y(u1) C y(usg) follows, by Lemma 2,
since the construction {¢ | all finite cuts of ¢ are in o(u)} is monotone in w.

=: Let y(u1) C 7(uz). Since o(u1) C v(u1), we obtain o(u1) C y(uz). Lemma
1 shows that o(ug) is the subset of finite cuts of trees in y(us), hence o(u1) C
U(UQ).

It is possible to define a set constant T that contains all trees under the greatest
fixpoint semantics and all finite trees under the least fixed point semantics. The
definition is: T :={L}U(c; T...T)U...(ex T...T).

The set constant T contains all trees (or finite, respectively), since the set of all
trees (finite, respectively) is a greatest fixpoint (least fixpoint, respectively) for
this equation. Le. o(T) = L(A), and v(T) = 7.

6 M. Schmidt-Schauf$, D. Sabel, M. Schiitz
3.2 Decidability and Complexity

From Theorem 1, we obtain the corollary.

Proposition 1. The subset relationship of set constants w.r.t. the greatest fix-
point semantics is decidable.

Proof. Theorem 1 shows that this is equivalent to the subset relationship w.r.t.
the least fixpoint semantics. The subset problem reduces to the set constraint
problem via a direct encoding of each equation as two set constraints. Induction
on the number of iterations of ¥ can be used to prove both directions for the
claim: the solutions to the encoded subset problem decode exactly to those sc-
interpretations satisfying the subset relationship

The subset relationship w.r.t. least fixpoint semantics can be decided using the
results on solvability of set constraints, see the overview [Aik94].

Remark 3. The methods in the paper [CP98] on co-definite set constraints also
use infinite trees. However, the results in [CP98] are not applicable, since the
encoding above results in constraints that are not covered by the syntactic re-
strictions in [CP98], since our set constraints permit left hand sides e; in ¢; C e,
of the form (¢ uy ... u,) where ar(c) > 2.

Remark 4. The special form of our defining equation allows to apply the
tool of tree automata. The equations Fgq; define a non-deterministic tree au-
tomaton with states Uj,...,Uk. The rules are U;(L) for all i = 1,... K,
and if (¢ uy...wy) is a component in the right-hand side of Fg;, then
(cur(tr) ... up(tn)) = Ui(cty...t,). The sets o(U;) are exactly the finite trees
accepted by the tree automaton with the rules corresponding to the equations
Eq;,5=1,..., K, and with accepting state U;.

Theorem 2. The complezity of the problem whether two set constants are in
the subset relation is EXPTIME-complete.

Proof. By Theorem 1, it is sufficient to use least fixpoint semantics. The complex-
ity of satisfiability of set constraints, and hence by Proposition 1 set constant-
subset problem is in NEXPTIME, see [BGW93] and [AKVW93], which gives an
upper bound on the complexity. However, the form of our definitions is syntac-
tically restricted, which allows to derive a sharper bound. The subset-problem
for set-constants is reducible to the inclusion problem of the languages accepted
by tree automata via the translation in Remark 4, where the states of the tree
automata correspond to the set constants, and the accepted language is the set
of finite trees defined by the set constants using least fixed points (see Theorem
1). The latter is EXPTIME-complete (see [Sei90,CDG'97]). This allows us to

Deciding subset relationship of co-inductively defined set constants 7

conclude that the subset-problem for set constants is in EXPTIME. For hard-
ness, we have to argue that every tree automaton can be encoded as a set of
equations for set constants using least fixed-point semantics. This, however, fol-
lows directly from Remark 4, where we have to add the treatment of the constant
1, which does not make a difference in complexity.

Hence, the subset-problem for set-constants is EXPTIME-complete.

This also implies that the algorithms from tree automata to solve the inclusion
problem, can be transferred to our problem.

4 An Extended Form of Equations for Set Constants

In this section we show that extending the syntax for set constants by allowing
top-level set constants on the right-hand side does not increase the expressive
power of set constants.

Assume the defining equations for set constants are allowed to be of the extended
form
(Bgr;): Ui={Ll}Uri1U...Ury,,

where r; ; may be a set constant, or an expression (c uj ...uj,), where uj are
set constants. With rhsz g, (U;) we denote the right-hand side of Fgz;. We can
assume that every set constant occurs at most once as a top-level component in

each of the right-hand sides.

Definition 3. We define the relation —.q as follows:

If there is an equation u; = {L} Ur;1 U...Ur;,, and some r; is the set
constant uj, then u; —eq u;j. The transitive closure of —¢4 is denoted as —>2‘q.
The following transformation steps transforms the set of equations Eqz, into an
equivalent set of equations for set constants w.r.t. the greatest fixpoint semantics.
The first transformation identifies unrestricted set constants, and replaces them
by an equation yielding all trees, whereas the second transformation removes the
occurrences of set constants in the right-hand side by instantiating them.

R1 Let u be a set constant, such that there is a cycle. i.e., u —>2‘q u. Replace
the equation for u by the T-equation, i.e. by w = {L} U (¢ u...u)U...U
(cx w...u).

R2 This rule is applicable only if there are no —>j(1—cycles.

Select a set constant u that occurs at top-level in some right-hand side of an
equation. Replace all these occurrences of v as component in the right-hand
sides in all equations by rhs(u). After the replacement, there is a simplifi-
cation as follows: Eliminate double occurrences of components in right-hand

sides.

8 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

Pragmatically, a good strategy for replacement is to instantiate in a bottom-up
fashion w.r.t. —% .

Lemma 3. The transformation steps terminate.

Proof. This is obvious, since every step removes an occurrence of a set constant
in the right-hand side of equations.

Proposition 2. The greatest fixpoint semantics v(u;) is unchanged by the trans-
formation steps

Proof. If for some set constant u;, we have u; —>jq u;, then by the greatest
fixpoint semantics, we have v(u;) = 7, hence v(u;) remains the same, if we
transform the equation for u; according to (R1). For other set constants w;
occurring in the right hand side, the value under the greatest fixed point is not

changed by the (R1)-transformation, since v(u;) remains the same.

The replacement in the second transformation step does not change the greatest
fixpoint ~.

Theorem 3. The complexity of the decision problem for the inclusion problem
for set constants defined in the extended language is EXPTIME-complete.

Proof. An exhaustive application of the first transformation rule can be done in
polynomial time: The replacements lead to a linear space increase. Every rule
application requires linear time for the cycle-detection, hence the overall time is

O(n?).

The exhaustive application of the second transformation rule is polynomial, since
the right-hand sides are bounded by the total size of all right-hand sides, which
is a quadratic upper bound for the size increase. The worst case time complexity
is O(n3). After the transformation, we apply Theorem 2.

5 Application to Extended Lambda-Calculi with Case
and Constructors

We apply the results to two different extended lambda calculi. Their syntax is
different, however, at the level of interfacing with the question of inclusion of set
constants, the properties are the same.

The first calculus is a call-by-name lambda-calculus with case and constructors.
A slight variation of the syntax and equality as used in [Sch00] is as follows.
There is a finite set of constructors. Every constructor ¢ comes with an arity
ar(c) € Ny. There is also a set of types, which provides a partitioning of the

Deciding subset relationship of co-inductively defined set constants 9

constructors into types, Aj, ..., Ax. The syntax of expressions E and patterns
P is as follows:

E:=V |AVE|(EE)|(cEi... Eye)]| (casey E (Pi->E1)...(P,=>Ey))
P = (cVi...Vare)

The constructors in the patterns in a case-expression starting with case 4 must
be in the type A. The symbol V' denotes variables. The reduction rules are beta-
and case-reduction.

The second calculus is a call-by-need lambda calculus (see [SSSS05]). The syntax
is as follows. There is a set of constructors, denoted as ¢, coming with an arity
ar(c) € Ny. There is a partitioning of the constructors into types, Aq,..., Ag.
The syntax of expressions E and patterns P is as follows:

E:=V |XNVE|(EE)|(cEi... Ey) | (casey E (P1->E1)...(P,~>Ey))
| (seq E E) | (letrec {Vi =E1;...;V, =E,} in E
Pi=(cVi...Vae)

The constructors in the patterns in a case-expression starting with case must
belong to the type A, V denotes variables. The reductions rules are variants of
beta- and case-reductions, a seqg-reduction, and several reduction rules for the
letrec.

From now on we do not distinguish the two calculi, and formulate the following
properties in an independent way, the proofs are either straightforward or in
the respective papers [SSSS05]. In both calculi there is a notion of evaluation,
which is a normal order reduction to a weak head normal form. If this evaluation
terminates with a WHNF, then this is denoted as t{}. Equality of expressions is
defined using the contextual preorder:

s <.t iff for all contexts C' : C[s]| = C[t[J, and s ~. t iff s <, t At <, s.

Here a context means an expression with a single hole, where a term can be
plugged in.

The relations <. and ~. are compatible with contexts; the latter relation can
be seen as maximal sensible equality relation on the expressions. There are two
kinds of values, constructor values of the form (c ¢; .. .tar(c)), and abstractions
(letrec E in Az.t) with a surrounding environment.

The following classification of expressions holds:
Proposition 3. For every closed expression t one of the following holds:

1. t ~. 2, where 2 = Az.(z z)) Ay.(y y))-

2. There exists a closed expression (cti...ta()), such thatt ~c (ct1.. . ta(c))-

3. There exists a closed expression (letrec E in Az.t') such that t ~.
(letrec E in Az.t').

Furthermore, (¢ t1...tn) % 2 7. (letrec E in Az.t) #. (¢ t1...t,) and
(c1 81...8n) ~c(caty . ity) & 1=co,n=mandVi=1,...,n:8; ~t;.

10 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

We construct 7 as follows: First let 7y = A/ ~., where A is the set of expressions.
Using this quotient, the set constants w.r.t. A are defined.

To explain the definition of the constants, we follow [SSSS05]. The corresponding
notion of demands in [Sch00] is more general and permits as a fragment the
language of set constants.

The A-set constants Uy ,; are defined over 7y using a greatest fixpoint of the
corresponding sc-interpretations. For every set constant U, ; there is a defining
rule

(Eq/m.) D Upi={LIUr1U...Urp,

where r; ; may be Fun, or an expression (¢ uj ... ufdr(c)), where u; are A-set con-
stants. The set constant Fun represents all expressions that can be reduced to an
expression of the form (letrec F in Az.t), or equivalently, that are contextually

equivalent to a term of the form (letrec E in Az.t).

For a translation into the set constant mechanism, we put all abstractions into
one further equivalence class.

Let = be the greatest relation on 7y with

(letrec F in Axit) = (letrec E’ in Az'.¢') for all expressions
(letrec E in Az.t),(letrec E’ in A\2'.t').
(cty...tp) = (cs1...8,) = Vi:t; = s;.
— (61 tl tn) F)é (02 S1 Sm) for all Si,ti if C1 7é C2
(
(
(

€1 ty...t,) % (letrec E in Ax.t) for all ¢;,¢, E.
€1ty ... ty) % £2 for all ¢;.
letrec F in Az.t) % (2 for all ¢, E.

The relation =~ can be constructed as greatest fixpoint and is an equivalence
relation. We define 7 := (7p)/ ~. We denote A\ = [(letrec E in Az.t)]~ and
L :=[f2]~. The set T contains all finite trees over the constructors, A, and L,
and is selector-closed, which follows easily from the properties of expressions
in A. Note that the set 7 does not contain all possible infinite trees, since 7 is
countable, however, there are also infinite trees, e.g. (letrec © = cons 1 z in z),
for a binary construct cons, which results in an infinite list of 1s as entries.

The translation 7 from 7y into 7 can now be used for elements and the set
constants.

Note that the treatment of L in the contextual preorders is compatible with the
definition and use of L for trees and set constants in the value language, since
it implies that | <.t for all expressions ¢t and that a set constant 1 defined as
{L} is contained in all other set constants.

Let v be the greatest fixpoint of sc-interpretations w.r.t. the equations in 7j.

Proposition 4. For all A-set constants ui,us : y(7(u1)) C ~(r(u2)) iff
Yo(u1) € v0(u2)

Deciding subset relationship of co-inductively defined set constants 11

Proof. Let yo(u1) C 7o(uz2), and let t € y(7(u1)). By the construction of the
set 7, there is an expression e; with 7(e;) = ¢. Using the translation and co-
induction, it is clear that e; € yo(u1), and hence also e; € vo(u2). Again, using
the translation, we obtain that ¢ € y(7(u1)).

Let «y(7(u1)) C v(7(u2)) and let e € vo(u1). The same reasoning as above shows
that the tree 7(e) is contained in v(7(u1)), and hence 7(e) € v(7(uz2)). Via the
translation and using co-induction, we obtain e € g (us).

Since all the preconditions are satisfied, the following holds:

Theorem 4. The inclusion problem for set constants in both lambda-calculi is
EXPTIME-complete.

For example, the set constants T, Bot, List, and BotElem can be defined as

T s={Ll}UFunU(er T...T)U...U(ex T...T)
Bot a={l}
List = {Ll}UNilUcons T List

BotElem := {Ll} U (cons Bot T) U (cons T BotElem)

A nontrivial inclusion being BotElem C List, which can be proved using the
methods from tree automata as well as directly using co-induction.

Theorem 2 justifies the use of algorithms from tree automata to solve the inclu-
sion problem, which can be transferred to the inclusion problem of set constants
in the respective languages.

6 Conclusion and Further Research

We have proved how methods from tree automata can be used to solve the
inclusion-problem for co-inductively defined set constants in static analysis of
lazy functional programming languages. The algorithm for the set constants we
considered is EXPTIME-complete and we are sure that for most cases arising in
practice this will not result in the worst case running time.

Future work may investigate the set-inclusion problem for more expressive value-
languages, e.g. including intersections, or even for the full demand language in
[Sch00].

References

[Aik94] A. Aiken. Set constraints: Results, applications, and future directions. In
Second Workshop on the Principles and Practice of Constraint Program-
ming, volume 874 of Lecture Notes in Computer Science, pages 171-179,
Orecas Island, Washington, May 1994. Springer-Verlag.

12 M. Schmidt-Schauf$, D. Sabel, M. Schiitz

[AKVWO93] Alexander Aiken, Dexter Kozen, Moshe Y. Vardi, and Edward L. Wim-

[BGW93]

[CDG*97]

[CPYS]

[N6c92]

[N6c93]

[SchO0]

[Seio0]

[SSPS95)]

[SSSS04]

[SSSS05]

[Wad87]

mers. The complexity of set constraints. In Proc. CSL 1993, pages 1-17,
Swansea, Wales, 1993.

Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Set constraints are
the monadic class. In Proc. 8th Proc Symp. Logic in Computer Science,
pages 75-83, Swansea, Wales, 1993.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available
on: http://www.grappa.univ-1ille3.fr/tata, 1997. release October, 1rst
2002.

Witold Charatonik and Andreas Podelski. Co-definite set constraints. In
Tobias Nipkow, editor, Proceedings of the 9th International Conference on
Rewriting Techniques and Applications, volume 1379 of LNCS, pages 211—
225. Springer-Verlag, 1998.

Eric Nocker. Strictness analysis by abstract reduction in orthogonal term
rewriting systems. Technical Report 92-31, University of Nijmegen, De-
partment of Computer Science, 1992.

Eric Nocker. Strictness analysis using abstract reduction. In Functional
Programming Languages and Computer Architecture, pages 255-265. ACM
Press, 1993.

Marko Schiitz. Analysing demand in nonstrict functional programming lan-
guages. Dissertation, J.W.Goethe-Universitat Frankfurt, 2000. available at
http://www.ki.informatik.uni-frankfurt.de/papers/marko.

Helmut Seidl. Deciding equivalence of finite tree automata. SIAM Journal
of Computing, 19:424-437, 1990.

Manfred Schmidt-Schauf3, Sven Eric Panitz, and Marko Schiitz. Strictness
analysis by abstract reduction using a tableau calculus. In Proc. of the
Static Analysis Symposium, number 983 in Lecture Notes in Computer
Science, pages 348-365. Springer-Verlag, 1995.

Manfred Schmidt-Schaufl, Marko Schiitz, and David Sabel. On the safety
of Nocker’s strictness analysis. Technical Report Frank-19, Institut fiir
Informatik. J.W.Goethe-University, 2004.

Manfred Schmidt-Schaufl, Marko Schiitz, and David Sabel. A complete
proof of the safety of Nocker’s strictness analysis. Technical Report Frank-
20, Institut fiir Informatik. J.W.Goethe-University, 2005.

Phil Wadler. Strictness analysis on non-flat domains (by abstract inter-
pretation over finite domains). In Samson Abramsky and Chris Hankin,
editors, Abstract Interpretation of Declarative Languages, chapter 12. Ellis
Horwood Limited, Chichester, 1987.

