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1 INTRODUCTION 

1.1 Mitochondrial Respiratory Chain 

The respiratory chain is a part of the process of oxidative phosphorylation. The components of 

the respiratory chain catalyse the transfer of electrons from reducing agents like NADH or 

FADH2 onto molecular oxygen. The major part of the free energy released by electron 

transfer is used to generate a proton gradient and finally to produce ATP. 

The respiratory chain includes three protein complexes embedded in the internal 

mitochondrial membrane: 

� NADH:ubiquinone oxidoreductase (complex I) 

� Ubiquinol:cytochrome c-oxidoreductase (complex III) 

� Cytochrome c-oxidase (complex IV) 

and two mobile electron carriers: 

� Ubiquinone (UQ) 

� Cytochrome c  

Succinate:ubiquinone oxidoreductase, actually belonging to the citric acid cycle, can also be 

considered as complex II of the respiratory chain. ATP syntase is refered to as complex V 

though it does not participate in electron transfer.  

The complexes of the respiratory chain are made from more than 80 polypeptides and contain 

different redox active cofactors. Among them are iron-sulfur centers (in I, II and III), 

cytochromes (in II, III and IV) and flavins (FMN or FAD in complexes I and II). Except for 

succinate:ubiquinone oxidoreductase all these complexes pump protons from the matrix space 

into the intermembrane space at the same time as they transfer reducing equivalents from one 

carrier to the next. Proton pumping creates substantial pH and electrical gradients across the 

inner mitochondrial membrane. The pumped protons re-enter the matrix space via the F1FO-

ATPase, driving the synthesis of ATP as they return (Mitchell, 1961). 

The knowledge of three-dimensional structures, catalytic and regulatory properties of the 

respiratory chain complexes are of medical significance, because they are involved in the 

development of human pathologies (Smeitink and Van den Heuvel, 1999). The detailed 

crystal structures for complex II (Lancaster et al., 1999; Yankovskaya et al., 2003), complex 

III (Iwata et al., 1998; Hunte et al., 2000) and complex IV (Ostermeier et al., 1997) have 

already been obtained. While information about complex I is growing rapidly (Walker, 1992; 

Vinogradov, 1993; Brandt et al., 2003), no high resolution structure is available yet. 
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1.2 Mitochondrial Complex I 

The key enzyme at the beginning of the mitochondrial electron transport chain, 

NADH:ubiquinone oxidoreductase (complex I), catalyses the transfer of two electrons from 

NADH to ubiquinone, coupled to the translocation of four protons across the membrane 

(Wikström, 1984). Almost all organisms possess complex I, however, in the yeasts 

Saccharomyces and Kluyveromyces complex I is absent (Balcavag and Mattoon, 1968; 

Büschges et al., 1994) and alternative mitochondrial NADH:Q oxidoreductases transfer the 

electrons from NADH to ubiquinone (Kerscher, 2000). It should be noted here that several 

organisms like plants and archaebacteria contain both complex I and alternative 

dehydrogenase (Rasmusson et al., 1999; Gomes et al., 2001).  

As revealed by electron microscopy studies the enzyme has an L-shaped structure with two 

arms: a membrane-embedded part and a part protruding into the matrix called the peripheral 

arm (Grigorieff, 1998; Sazanov and Walker, 2000; Leonard et al., 1987; Djafarzadeh et al., 

2000). The hydrophobic part possesses proton-pumping activity, whereas the hydrophilic part 

exhibit dehydrogenase activity. Presumably, the hydrophilic arm is also responsible for 

ubiqinone reduction (Zickermann et al., 2003). 

 

Mitochondrial complex I has a higher complexity and molecular mass than the bacterial 

enzyme. Bacterial complex I is composed of only 14 subunits. They represent the minimal 

form of the enzyme required to ensure the coupling of electron transfer with proton pumping. 

All of them are conserved in eucaryotic complex I (Yagi et al., 1998). Seven of these 14 

“central” subunits, ND1-6 and ND4L, are highly hydrophobic and encoded by mitochondrial 

DNA, the other seven (75-, 51-, 49-, 30-, 24-kDa, TYKY, PSST) are nuclear-encoded, 

hydrophilic and contain all know redox prostetic groups. Complex I from eucaryotes contains 

additional “accessory” subunits. The well-characterized enzyme from bovine heart with a 

molecular mass of over 980 kDa consists of 46 subunits (Hirst et al., 2003). In the green alga  

Chlamydomonas reinhardtii, 42 subunits were identified, which form a complex with a total 

molecular mass of about 970 kDa (Cardol et al., 2004). The Neurospora crassa complex I 

(1.1 MDa) contains 39 subunits (Marques et al., 2005). The possible role of several accessory 

subunits will be discussed below. 

Complex I includes a number of redox active cofactors. FMN, non-covalently bound to the 51 

kDa subunit, is the entry point for electron transfer from NADH to iron-sulfur clusters (Fecke 

et al., 1994; Sled et al., 1994). Results from different studies suggest the presence of eight to 

nine iron-sulfur clusters in complex I. Only six iron-sulphur clusters are visible in EPR 
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spectra of bovine heart complex I and are designated N1a, N1b, N2, N3, N4, N5 (Ohnishi, 

1998), while in Escherichia coli nine clusters were identified (additional clusters N6a, N6b 

and N7, Rasmussen et al., 2001; Nakamaru-Ogiso et al., 2005), five clusters in the yeast 

Yarrowia lipolytica (N1-N5, Djafarzadeh et al., 2000; Kerscher et al., 2001) and only four in 

Neurospora crassa  (N1-N4; Wang et al., 1991). 

 

 Figure 1.1  Structural relationships amongst 

the subcomplexes of complex I. 

 
Complex I from bovine heart was fragmented into 
subcomplexes. Subcomplex Iα represents the extrinsic 
part (Iλ) of enzyme plus membrane part (Ιγ) and 
Iβ is another part of the membrane arm. FP is the 
flavoprotein of bovine complex I. From Hirst et al., 
Biochim. Biophys. Acta (2003), 1604, 135-150. 

Iγ 

 

 

Purified complex I from bovine heart can be fragmented into various subcomplexes using 

chaotropic detergents like perchlorate (Fig. 1.1). The soluble flavoprotein subcomplex (FP) 

consists of the 51-, 24- and 10-kDa subunits and contains one molecule of FMN and six atoms 

of iron (Galante and Hatefi, 1979). The iron-protein fragment (IP) is also soluble and made of 

further “central” subunits (75-, 49-, 30-kDa, TYKY, PSST) (Masui et al., 1991; Walker, 

1992). The precipitate is know as HP-fragment (hydrophobic protein, Walker, 1992). By other 

means, i.e. using sucrose gradient centrifugation (Finel et al., 1994) and ion exchange 

chromatography in the presence of non-denaturating detergents (Finel et al., 1992; Sazanov et 

al., 2000) complex I from bovine heart can be split into subcomplexes Iα and Iβ (Figure 1.1). 

Subcomplex Iα  represents the extrinsic part (subcomplex Iλ) plus part of the membrane arm 

(Iγ) of the enzyme. Subcomplex Iβ is another part of the membrane domain. Subcomplex Iα  

contains all EPR-detectable iron-sulfur clusters and can transfer electrons from NADH to 

ferricyanide or ubiquinone. The subunit composition of the subcomplexes is summarized in 

Table 1.1. 
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 subunits 
 E. coli  

subunits 
Coding Subcomplex 

75 kDa 
51 kDa 
49 kDa 
30 kDa 
24 kDa 
PSST 
TYKY 
 
ND1 
ND2 
ND3 
ND4 
ND5 
ND6 
ND4L 
 
 
42 kDa 
39 kDa 
18 kDa (AQDQ)  
15 kDa 
13 kDa                   
10 kDa 
AGGG 
ASHI 
ESSS 
KFYI 
MLRQ 
MNLL 
MWFE 
PDSW 
PGIV 
SDAP 
 
SGDH 
B22 
B18 
B17.2 
B17 
B16.6 
B15 
B14.7 
B14.5a 
B14.5b 
B14 
B13 
B12 
B9 
B8 

Table 1.1  Centra

Abbreviations: - Me
acetylated; + Myr: N
a to b) are removed. F
  Molecular 

weight [kDa] 
∆
∆
∆
∆
∆
∆
∆
 
- 
- 
- 
- 
- 
- 
- 

77.0 
48.5 
49.2 
26.4 
23.8 
20.1 
20.2 
 
36 
39 
13 
52 
67 
19 
11 
 
 
36.7 
39.1 
15.3 
12.5 
10.5 
8.4 
8.5 
18.7 
14.5 
5.8 
9.3 
7.0 
8.1 
20.8 
20.0 
10.7 
 
16.7 
21.7 
16.5 
17.1 
15.4 
16.6 
15.1 
14.8 
12.6 
14.1 
15.0 
13.2 
11.1 
9.3 
11.0 

∆
N
P
-M
∆
∆
∆
∆
P
∆
- 
-M
P
-M
-M
P
4
∆
-M
-M
+
-M
-M
-M
-M
-M
+
-M
-M
-M
-M
-M

l and accessory 

t: N-terminal meth
-terminal residue is 
rom Hirst et al., Bio
Modifications/   

    Cofactor 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Iγ 
Iγ 
Iλ  
Iγ 
Iλ  
Iλ  
Ιβ 
Ιβ 
Ιβ 
Ιγ 
Ιγ and Ιβ 
Ιβ 
Ιγ 
Ιβ 
Ιγ 
Ιγ and Ιβ 
 
Ιβ 
Ιβ 
Ιβ 
Ιλ  
Ιβ 
Ιλ  
Ιγ 
Ιλ  
Ιλ  
Ιβ 
Ιγ 
Ιλ  
Ιβ 
Ια 
Ιλ  

Iλ  
Iλ  
Iλ  
Iλ  
Iλ  
Iλ  
Iλ  
 
Ιγ 
Ιγ 
Ιγ 
Ιβ 
Ιβ 
Ιγ 
Ιγ 

NuoG 
NuoF 
NuoCD 
NuoCD 
NuoE 
NuoB 
NuoI 
 
NuoH 
NuoN 
NuoA 
NuoM 
NuoL 
NuoJ 
NuoK 

Nuclear 
   -//- 
   -//-  
   -//- 
   -//- 
   -//- 
   -//- 
 
mtDNA 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
 

Nuclear 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
   -//- 
  -//- 

1-23/[2Fe-2S],[4Fe-4S] 
 1-20/[4Fe-4S], FMN 
 1-33/[4Fe-4S] 
 1-38 
 1-32/[2Fe-2S] 
 1-37/[4Fe-4S] 
 1-36/2x[4Fe-4S] 

1-23
ADPH 
hosphorylated? 

et 
1-28 
1-34 
1-36 
1-28 
hosphorylated? 
1-27 

et 
hosphorylated? 

et 
et 

antetheine- 
V-phosphat 
1-46 

et+Ac 
et+Myr 

Ac 
et+Ac 
et+Ac 
et+Ac 
et+Ac 
et+Ac 

Ac (partial) 
et+Ac 
et+Ac 
et+Ac (partial) 
et+Ac 
et+Ac 

subunits of complexI from bovine heart (Bos taurus). 

ionine is removed post-translationally; + Ac: N-terminal residue is 
myristoylated. ∆a – b: known mitochondrial import sequence (residues  
chim. Biophys. Acta (2003), 1604, 135-150. 

4 
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Attempts have been made to assign the iron-sulfur clusters to subunits of complex I by 

determination of EPR-spectra of the subcomplexes. Binuclear cluster N1a and tetranuclear 

cluster N3 were found in the FP-fragment of bovine complex I (Ragan et al., 1982; Ohnishi et 

al., 1985). It was suggested that cluster N1a is associated with the 24 kDa subunit (Yano et 

al., 1994). However it was not possible to detect by EPR-spectroscopy this iron-sulfur cluster 

in Y. lipolytica and N. crassa (Brandt et al., 2003). Cluster N3 is located in the 51 kDa subunit 

(Fecke et al., 1994; Yano et al., 1996). As mentioned above this subunit also binds one 

molecule of FMN. Binuclear cluster N1b and tetranuclear cluster N7 could be bound in the 75 

kDa subunit (Yano et al., 1995; Uhlmann and Friedrich, 2005), which also has a binding 

motif for tetranuclear clusters N4 (Yano et al., 1995) and probably N5 (Sled et al., 1993; 

Ohnishi, 1998). The binding site for cluster N2 was the subject of a long-lasting controversy. 

Two subunits were considered as possible candidates for cluster N2 binding, namely PSST 

(Rassmussen et al., 2001; Duarte et al., 2002) and TYKY (Albracht and Hedderich, 2000). 

Both subunits contain binding motifs for a tetranuclear cluster with highly conserved cysteins. 

However, site-directed mutagenesis in Y. lipolytica, N. crassa and E. coli provided evidence 

suggesting that cluster N2 is bound to the PSST subunit (Ahlers et al., 2000; Duarte et al., 

2002; Flemming et al., 2003; Garofano et al., 2003) and resides at the interface between the 

PSST and the 49 kDa subunits (Kashani-Poor et al., 2001b; Kerscher et al., 2001c). It is 

supposed that cluster N2 is the immediate electron donor for ubiquinone, because of exhibits 

the most positive redox midpoint potential (Em,7 = -150 mV) and interacts with semiquinone 

radicals detectable by EPR-spectroscopy (Ohnishi, 1998; Yano and Ohnishi, 2001). 

 

It has been proposed that complex I was build from three different structural modules during 

evolution. The NADH dehydrogenase module (N-module) is part of the peripheral arm. The 

proton pump module (P-module) is probably located in the membrane arm (Zickermann et al., 

1998) while the quinone reduction module (Q-module) is possibly located in the interface 

between the PSST and 49 kDa subunits (Dupuis et al., 1998; Kashani-Poor et al., 2001b). 

Sequence alignment shows, that the electron input N-module of complex I, including the 75-, 

51- and 24-kDa subunits is related to the NAD+- reducing hydrogenase from Alcaligenes 

eutrophus (Pilkington et al., 1991). The 49 kDa and PSST subunits in the Q-module are 

homologues to the large and small subunits of water-soluble [NiFe] hydrogenases, 

respectively. Membrane bound type-3 hydrogenases encoded by the hyc operon in E. coli or 

the ech operon in Methanosarcina barkeri contain proteins that also show homology to the 

49-kDa and PSST subunits as well as to the 30-kDa, TYKY, ND1 and ND5 subunits. The 



  INTRODUCTION 

6 

ND2, ND4, and ND5 subunits of complex I show weak homology to each other and also to 

Na+/H+ antiporters of the type encoded by the mrp operon in Bacillus subtilis and the 

corresponding mnh operon in Staphylococcus aureus (Steuber, 2001; Mathiesen and 

Hägerhäll, 2002). In addition to the homologues of complex I subunits found in type-3 

hydrogenases, type-4 hydrogenase from E. coli encoded by hyf operon (Andrews et al., 1997) 

includes two more proteins of the  Na+/H+ or K+/H+ antiporter type, that belong to the 

ND2/ND4/ND5 superfamily, and a hydrophobic protein, that shows homology to the NDL4 

subunit of complex I (Finel, 1998). 

 

The possible mechanisms of electron transport and proton translocation across the membrane 

were discussed in many reviews (Friedrich, 2001; Vinogradov, 2001; Brandt et al., 2003). 

FMN oxidises NADH by uptake of two electrons that are then transferred one by one via iron-

sulfur clusters to ubiquinone. Recent information about the structural organization of complex 

I and inhibitor binding support the hypothesis that the reduction of ubiquinone induces 

specific conformational changes that are then transmitted to the hydrophobic subunits in the 

membrane, acting as proton pumps (Brandt et al., 2003).  

 

 

1.2.1 Accessory subunits of complex I 

 

In addition to the 14 “central” subunits, complex I from eucaryotic organisms contains a large 

number of “accessory” subunits: 32 subunits in bovine heart mitochondrial complex I (Hirst et 

al., 2003), 21-23 subunits in the fungal enzyme (Videira et al., 2002;  Abdrakhmanova et al., 

2004) and about 16-28 subunits in photosynthetic organisms like Vicia faba L (Leterme and 

Boutry, 1993), Arabidopsis thaliana and Chlamydomonas reinhardtii (Cardol et al., 2004) 

were identified. Only some accessory subunits have been analysed in recent years, the 

function of most accessory subunits remains unknown.  

The 39 kDa subunit has attracted special attention and will be described in more details 

below.  

The subunit with the N-terminal sequence AQDQ, has been proposed to be the so-called “18 

kDa subunit” that can become phosphorylated (Papa et al., 1996; Papa, 2002). Phosphory-

lation was described to be cAMP-dependent and to lead to activation of complex I and 

mitochondrial respiration (Papa et al., 2001). Several mutations in the nuclear gene encoding 

the AQDQ subunit were found in human patients. A 5bp-duplication at position 466-470 of 
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the coding sequence destroys a phosphorylation motif in this subunit. The mutation was lethal 

and the patient died of cardiorespiratory failure at the age of 16 month (Van den Heuvel et al., 

1998). Another two mutations, a single nucleotide deletion in the middle part of the coding 

sequence leading to a truncated polypeptide and a nonsense mutation causing premature 

termination after only 14 amino acids of the putative mitochondrial targeting sequence were 

also lethal. All three mutations were associated with defective assembly of functional 

complex I (Petruzzella et al., 2001; Scacco et al., 2003).  

However, Walker’s group has shown that the phosphorylation site is in subunit ESSS with 

similar molecular weight and not in subunit AQDQ (Chen et al., 2004). This result seems to 

be convincing: by using Edman sequencing and mass spectrometric analysis of the 

radiolabeled band isolated by SDS-polyacrylamide gel electrophoresis, the same result was 

reproduced. In mammalian mitochondrial complex I the ESSS protein is essential for 

assembly of an active enzyme (Potluri et al., 2004). Thus, the question which one of both 

subunits becomes phosphorylated remains controversial.  

 

Subunit B14.7 (Carroll et al., 2002) from bovine complex I exhibits homology to subunit 

21.3b from N. crassa. It is related to the proteins, Tim22 of TIM22 complex, Tim17 and 

Tim23 of TIM23 complex, which mediate the transport of proteins from the cytosol across 

and into the inner mitochondral membrane (Rehling et al., 2004).  

 

The B16.6 subunit is identical to the mammalian GRIM-19 protein (Fearnley et al., 2001) 

which is involved in the interferon- and retinoic acid-induced pathway of cell death (Angell et 

al., 2000). GRIM-19 may play also a crucial role in mitochondrial complex I assembly. By 

creating a GRIM-19 gene knockout in mice it was shown that lack of GRIM-19 destroys the 

assembly and electron transfer activity of complex I and also influences the other complexes 

in the mitochondrial respiratory chain (Huang et al., 2004). The dual role of GRIM-19/B16.6 

may provide yet another paradigm that supports the notion, that mitochondria are directly 

involved in apoptotic cell death (Newmeyer and Ferguson-Miller, 2003). 

 

The SDAP subunit of complex I belongs to the acyl carrier proteins (ACP) that contain a 

phosphopantethein group as cofactor that is covalently attached to a conserved serine residue 

(Sackmann et al., 1991; Runswick et al., 1991). It has been suggested that this subunit is part 

of a mitochondrial fatty acid synthase involved in the production of lipoic acid (Jordan and 

Cronan, 1997). The role of the SDAP protein as a subunit of complex I is unclear. In contrast 
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to other hydrophilic subunits, the absence of this matrix arm subunit in the N. crassa mutant 

does not only prevent the formation of the peripheral arm but also affects the assembly of the 

membrane arm (Schneider et al., 1995). Therefore, the SDAP subunit could participate in a 

spezialized synthetic pathway delivering a product which is needed for assembly of the 

membrane arm (Schneider et al., 1997). 

 

Several mutants of the MWFE subunit in hamster cell lines were generated. It is a small (10 

kDa) nuclear-encoded subunit, which can be a target for a cAMP-dependent kinase (Chen et 

al., 2004). Yadava and coworkers (Yadava et al., 2004) have shown that the absence of this 

protein interferes with complex I assembly. However a number of subunits of the peripheral 

arm were attached to the inner membrane. The expression of a doxycycline-inducible HA-

epitope-tagged MWFE protein could restore enzyme assembly, stability and activity after 48 

hours, whereas the protein reached steady state levels after 24 hours. From these observations 

it was concluded that the MWFE subunit is required at an intermediate step for the complete 

assembly of complex I. 

 

In the PGIV bovine protein that is homologous to the 20.8 kDa subunit from N. crassa, nine 

cysteine residues were suggested to be involved in disulfide bridges or to provide ligands for 

binding iron-sulfur cluster (Videira, 1998). In the Chlamydomonas reinhardtii homologues of 

bovine PDSW, PFFD and B18 subunits, two to four conserved cysteines were identified 

(Cardol et al., 2004). The cysteine residues in the PFFD and B18 subunits can be aligned with 

four cysteines in complex IV chaperones COX17 and COX19 that are involved in copper 

import into mitochondria (Punter and Glerum, 2003). It was hypothesized that subunits PGIV, 

PDSW, PFFD and B18 play a role in iron-sulfur cluster binding or in metal transport into the 

mitochondria (Cardol et al., 2004). 

 

As was mentioned above, the function of most “accessory” subunits is still unknown. The 

major portion of these proteins are very likely not required for electron transport in complex I, 

but perform other essential functions needed for enzyme assembly and stability.  

 

1.3  Biogenesis of complex I 

Knowledge of the biogenesis of complex I could provide useful information about possible 

functions of accessory subunits. Complex I assembly has been the subject of several studies 
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carried out on eucaryotic organisms like mammals, the filamentous fungus N. crassa and the 

green alga C. reinhardtii (Duarte and Videira, 2000; Cardol et al., 2002; Ugalde et al., 2004).  

In N. crassa it has been shown that the peripheral arm and the membrane arm are formed 

independently (Tuschen et al., 1990). Mutants lacking one of the nuclear encoded subunits of 

the peripheral arm were unable to assemble this arm but accumulated the membrane part of 

the enzyme. As mentioned above, the absence of only the acyl carrier protein of complex I 

affected assembly of the membrane arm (Schneider et al., 1995). Similarly, the absence of 

mitochondrially encoded subunits of the membrane part did not prevent assembly of the 

hydrophilic arm. Both parts of the enzyme were shown to be assembly intermediates. The 

hydrophobic arm is formed by association of two assembly intermediates which contains also 

two extra proteins, called CIA30 and CIA84. They are no components of mature complex I, 

but are essential for assembly of the membrane arm in N. crassa (Küffner et al., 1998). In 

human cells only a homolog for CIA30 could be found (Janssen et al., 2002), but also another 

possible complex I chaperone, namely prohibitin, was identified (Bourges et al., 2004). 

All proteins that in N. crassa are essential for association of the hydrophilic part have a 

counterpart in bacterial complex I and show homology to subunits of [NiFe] hydrogenases. 

They are the 49-, 30.4-, 21.3c- (TYKY) and 19.3-kDa (PSST) subunits (Videira and Duarte, 

2001). For assembly of the membrane arm, subunits ND1-ND4, ND4L and ND6 are required 

and, interestingly, ND5 is not (Videira et al., 2001). Mutations in the 51-, 40 -, 24-, 21.3a- and 

21- kDa (AQDQ homologue) subunits lead to fully assembled, but inactive enzyme in N. 

crassa (Nehls et al., 1992; Ferreirinha et al., 1999; Schulte et al., 1999; Videira et al., 2001).  

Two different complex I assembly models were described in human cells which are in conflict 

to each other. According to the modular model proposed by Nijtmans’ group (Ugalde et al., 

2004) the assembly of human complex I resembles the enzyme assembly in N.crassa. In 

contrast, the model proposed by the Shoubridge group suggests, that the peripheral and 

membrane arms are not assembled separately (Antonicka et al., 2003). These authors have 

observed in complex I-deficient patient cells several subcomplexes that are supposed to be 

intermediates of complex I assembly. One of the subcomplexes contained subunit ND1 and 

peripheral arm subunits, namely the 30-, 39- and 49-kDa subunits. Based on this finding they 

concluded that the peripheral and the membrane arms of human complex I are not assembled 

separately. Thus, these two models pose more questions than they give answers about 

complex I assembly in mammals.  

Several findings however suggest distinct assembly pathways of complex I in different 

organisms. For example in N. crassa, the AQDQ homologue is not essential for complex I 
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assembly (Nehls et al., 1992) and rotenone-sensitive activity (Ferreirinha et al., 1999), 

whereas in human cells, mutations in the gene encoding this protein (NDUFS4) did affect 

complex I assembly (Scacco et al., 2003). Site-directed mutagenesis of a highly conserved 

cysteine at position 85 in the 19.3-kDa (PSST) protein in N. crassa, proposed as a possible 

fourth ligand for N2 cluster, has resulted in a dramatic decrease of complex I activity (Duarte 

et al., 2002). However, with similar mutations generated in Y. lipolytica no assembled 

complex I could be identified (Garofano, 2004, PhD thesis). It may be speculated that the 

biogenesis of complex I in different species occurs in different ways and may depend on its 

specific subunit composition. 

 

1.4 The 39 kDa subunit of complex I 

The nuclear-encoded 39 kDa subunit contains a nucleotide-binding motif near its N-terminus 

and can bind NADPH specifically (Yamaguchi et al., 2000). Localization of this subunit in 

subcomplex Iγ of complex I (Carroll et al., 2003) revealed that the 39 kDa subunit is likely to 

be located in the membrane part of the enzyme (Table 1.1). 

Homology searches with the 39 kDa subunit sequence revealed that this protein is related to 

the SDR (short-chain dehydrogenases/reductases)-enzyme family. The members of this 

heterogeneous family participate in different redox and isomerization reactions using 

substrates ranging from alcohols, sugars, steroids and aromatic compounds to xenobiotics 

(Persson et al., 2003). Known members include hydroxysteroid dehydrogenases, cholesterol 

dehydrogenases, alcohol dehydrogenases, nucleotide sugar epimerases and isoflavone 

reductases (Kallberg et al., 2002a; Kallberg et al., 2002b). 

Common to all enzymes is the use of NAD(H) or NADP(H) as cofactor. The NAD(P)H 

binding domain typically consists of a βαβ Rossman fold and contains three highly conserved 

glycines as part of the nucleotid-binding motif GX(X)GXXG or GXX(X)GXG. The 

pyrophosphate moiety of the cofactor makes close contact with the middle glycine, which is 

located at the turn following first the β-strand (Lesk, 1995). Determinant for selective 

interaction of the protein with NADH or NADPH is an amino acid at the end of the second β-

strand. NADH-preferring enzymes have an acidic residue at this position that forms hydrogen 

bonds to the 2’- and 3’-hydroxyl groups of the adenine ribose moiety (Kallberg et al., 2002a). 

NADPH-binding enzymes have either one or two basic residues: the first basic amino acid is 

located at the end of the second β-strand and the second basic residue is in the Gly-motif. It 
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was proposed that these basic residues bind the 2’-phosphate group of NADPH and assist in 

the neutralization of its negative charge (Kallberg et al., 2002a).  

As evident from alignments, the amino acid composition of the 39 kDa subunit is highly 

conserved between different species (see appendix). The three glycines forming the 

nucleotide-binding motif GXXGXXG and the conserved arginine at the end of the second β-

strand suggest that this protein is able to bind a molecule of NADPH (Figure 1.3 ). 

The function of the 39 kDa protein is poorly understood, but most probably, it is not involved 

in  respiratory electron transfer. The absence of this subunit in N. crassa leads to inactivation 

of the electron transfer of assembled complex I. The isolated enzyme showed wild type 

NADH:ferricyanide activity, but was unable to transfer electrons from NADH to quinones. 

 

 α1β1 β2

39kDa N.crassa GHTATVFGATGQLGRYIVNRLARQGCTVVIPFR- 32
39kDa Y.lipolytica RYTATVFGANGFLGSYLTAKLAKHGTTVVVPYR- 65
39kDa C.reinhardtii GITATVFGANGFLGSYIVNELAKRGSQVVCPFRS 47         
40kDa B.taurus GIVATVFGATGFLGRYVVNHLGRMGSQVIVPHRC 50
3betaHSD2 H.sapiens GWSCLVTGAGGFLGQRIIRLLVKEKELKEIRVLD 34

 

 

 

 

 

Figure 1.2 Partial alignment of sequences of a member of the SDRs enzyme family and 
several 39-kDa subunits of complex I. 
39-kDa N.c = 39-kDa subunit, Neurospora crassa complex I; 39-kDa Y.l. = 39-kDa subunit, Yarrowia lipolytica 
complex I; 39-kDa C.r = 38 kDa subunit, Chlamydomonas reihardtii complex I; 40-kDa B.T. = 39 kDa, Bos 
taurus; 3betaHSD1 H.S =  3 beta-hydroxysteroid-dehydrogenase 2, Homo sapiens . 
 

In addition, all iron-sulfur clusters that can be reduced by NADH were detected. Only the 

signal from N2 cluster showed some broadening in the deletion mutant. However, the signal 

assigne to a postulated new redox group named “X” (Schulte et al., 1999; Friedrich et al., 

2000) was not found in the mutant. This new redox group was proposed on the basis of UV-

visible spectroscopy. Its redox difference absorbance spectrum shows a negative peak at 430 

nm, an isosbestic region at 360 nm and a positive peak at 300 nm with a difference absorption 

coefficient of ca 4 mM-1 at 430 nm. The midpoint redox potential is supposed to be more 

positive than -150 mV (Friedrich et al., 1998; Schulte, 2001) and would fill the gap between 

cluster N2 and ubiquinone.  

It was speculated that the 39 kDa subunit may be involved in the biosynthesis of this 

postulated redox group. The absence of this subunit would result in an inactive or instable 
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form of the redox group, thus causing a block in electron transfer activity (Schulte et al., 

1999). 

However, at present, there is little experimental evidence to support this proposal. The 

existence of this redox group is hypothetical and no new convincing data were presented in 

recent years.   

 

1.5 Yarrowia lipolytica as a Model Organism 

To investigate complex I a model organism is needed. It should have a stable enzyme which is  

easy to purify and should be amenable to straightforward genetic manipulation. In this case E. 

coli is not an ideal model system, because its purified complex I is rather unstable and tends 

to dissociate during purification (Herter et al., 1997). Moreover, all structural genes for 

complex I subunits in E.coli are expressed and controlled by a single operon, what makes 

mutagenesis a non-trivial task. Stable complex I can be purified of mitochondria from bovine 

heart and the filamentous fungus N. crassa, but genetic manipulation in these organisms is 

either impossible or rather tedious. It should be noted here that the widely used lower 

eucaryotic model organism Saccharomyces cerevisiae does not contain complex I (Balcavag 

et al., 1968). 

In contrast to the species mentioned before, the obligate aerobic yeast Yarrowia lipolytica 

provides all essential prerequisites for efficient investigation of complex I. 

Yarrowia lipolytica strains are found in dairy products such as cheese and yoghurts. It is a non 

pathogenic organism with an optimum growth temperature of about 28°C. Y. lipolytica can 

use a variety of compounds as carbon sources: glucose (2 %), sodium acetate (up to 0.4 %), 

ethanol (up to 3 %) as well as n-, l-alkanes and fatty acids. This organism has a simple 

haplo/diplontic life cycle, with two naturally stable mating type alleles MatA and MatB. The 

genome of Y. lipolytica is small with few introns and several genetic markers are available for 

positive and negative selection. Sequencing of the genome of Y. lipolytica has been 

successfully accomplished under the framework of the Genolevures project recently. As a 

strictly aerobic organism Y. lipolytica has a constant high content of mitochondria with 

constitutive expression of stable complex I. 

The respiratory chain of Y. lipolytica resembles its mammalian counterpart. In addition to the 

four main enzymes (complexes I-IV) it contains a hydrophilic external alternative non proton 

pumping NADH dehydrogenase (NDH 2) (de Vries and Marres, 1987; Rasmusson et al., 
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1998) and one alternative terminal oxidase (Kerscher et al., 2002) that transfers electrons 

directly from ubiquinone to oxygen without proton pumping.  
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Figure 1.4 Mitochondrial respiratory chain of Yarrowia lipolytica. 

Four electron transferring respiratory complexes are labelled as: I (NADH:ubiquinone oxidoreductase); II 
(succinate:ubiquinone oxidoreductase); III (cytochrome c reductase); IV (cytochrome c oxidase). Compared to 
the mammalian respiratory chain, Y. lipolytica has an extra external alternative NADH dehydrogenase labelled 
as (NDH2) and one alternative ubihydroquinone oxidase (AltOx). 
The electron flow is shown with white arrows, whereas proton translocation is shown with pink arrows. 
FeS: iron-sulphur centre; FMN: flavin mononucleotide; FAD: flavin - adenine dinucletide; NAD+: nicotinamide-
adenine dinucleotide; NADH: hydronicotineamide–adenine dinucleotide; Q: ubiquinone; QH2: ubihydroquinone; 
b: heme b; bH: high potential heme b; bL: low potential heme b; a3: heme a3; c: cytochrome c; c1: cytochrome c1; 
CuA and CuB: copper centres. 
 

NDH2 consists of a single water soluble subunit with non-covalently bound flavin adenine 

dinucleotide as cofactor (de Vries et al., 1987; Kerscher et al., 2001b) and transfers electrons 

from NADH to the ubiquinone pool without pumping protons. Yarrowia lipolytica has only 

one copy of the alternative NADH dehydrogenase (NDH2) gene. Because of its external 

orientation in Y. lipolytica, NDH 2 is not able to oxidise NADH generated in the matrix and in 

contrast to complex I it is not required for cell survival (Kerscher et al., 1999). To rescue 

lethal complex I mutants, the mitochondrial targeting sequence from the 75- kDa subunit of 

complex I and the NDH 2 gene were fused and an internal version of NDH-2i was generated 

(Kerscher et al., 1999). 
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1.6 Complex I from Yarrowia lipolytica 

The obligate aerobic yeast Yarrowia lipolytica was established in our laboratory as a powerful 

model organism for the investigation of mitochondrial complex I. Thanks to the completely 

sequenced genome of this organism and the available set of tools for genetic manipulation it is 

possible to efficiently create mutations in complex I subunit genes. The generation of an 

internal version of the alternative dehydrogenase (NDH2i) allowed for the survival of 

complex I deletion strains. One among other advantages of the yeast Y. lipolytica is the 

presence of a very stable complex I. A hexa-histidine sequence was attached to the C-

terminus of the 30 kDa subunit (NUGM) of complex I. This allows to isolate very pure 

enzyme using Ni2+ affinity chromatography, followed by gel filtration (Kashani-Poor et al., 

2001a). The original activity of purified complex I can be restored upon reconstitution into 

asolecin vesicles (Dröse et al., 2002). Electron microscopic analysis of single particles 

revealed that complex I from Y. lipolytica, like the enzyme from N. crassa and B. taurus, has 

an L-shaped form (Djafarzadeh et al., 2000), exhibiting a peripheral and a membrane arm. 

The exact molecular weight of complex I from Yarrowia lipolytica and its subunit 

composition is still unknown.  

 

1.7 Proteomic analysis of complex I  

Identification strategies in the field of proteomic analysis often rely on peptide mapping by 

means of mass spectrometry. It is the analytical tool of choice to determine the molecular 

masses. In the case of proteins, the molecular mass of peptides, generated by proteolytic 

cleavage is usually measured. This method is widely accepted and applied, because it is 

highly sensitive, accurate, fast, and relatively easy to use.  

Mass spectrometers consist of an ion source, a mass analyzer, an ion detector, and a data 

acquisition unit. First, molecules are ionized in the ion source. Then they are separated 

according to their mass-to-charge ratio (m/z) in the mass analyzer and the separate ions are 

detected. Many ionisation methods are avaible, which depend on the sample type, but two 

methods are most frequently used for biochemical analysis, namely Electrospray Ionisation 

(ESI) and Matrix Assisted Laser Desorption Ionisation (MALDI). Electrospray ionisation is 

suited for polar molecules ranging from 100 Da to 1 MDa in molecular mass. In electrospray 

ionization, the sample dissolved in polar, volatile solvent is pumped through a narrow 

capillary at a flow rate of between 1 µL/min and 1 mL/min. A high voltage is applied to the 

tip of the capillary and as a consequence of this strong electric field, the sample emerging 
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from the tip is dispersed into an aerosol of highly charged droplets. The ions generated by this 

ionisation method are multiply charged. MALDI (Hillenkamp et al., 1991) is used 

successfully for the analysis of proteins, peptides, glycoproteins, oligosaccharides, and 

oligonucleotides. In MALDI, the sample that was pre-mixed with a matrix is bombarded with 

a laser light. The matrix molecules adsorb the laser energy and transform it into excitation 

energy for the sample. This leads to sputtering of singly charged analyte- and matrix-ions 

from the surface of the mixture. Commonly MALDI is combined with a time-of-flight (TOF) 

ion analyser and ESI with a quadrupole-TOF or ion trap mass. A tandem mass spectrometer 

(MS/MS) is a mass spectrometer that has more than one analyser. This instrumens can select 

specific ions, induce their fragmentation, and measure the m/z of the fragment ions. In 

proteomic analysis MS/MS is used for the sequencing of proteins or to determine their poss-

ible post-translational modifications.  

In order to identify a protein the obtained ion-masses are analysed using genom or protein 

databases. The simplest search is done by a technique called peptide mass fingerprinting 

(PMF) which is usually carried out in combination with MALDI-TOF. The database search 

programs match the observed peptide masses to the theoretical masses derived from  protein 

sequences. It should be noted here that the success rate of protein identification critically 

depends on the completeness of the database. Moreover sequences errors, and amino acid 

modifications, which may occur during sample preparation make the database searches a non-

trivial task. In addition, post translational modifications of proteins are common that can shift 

both mass and charge.  

Another critical point for protein identification is the sample preparation for MS measure-

ments. The identification of protein from a mixture of different proteins is highly complex. 

Thus, it is advantageous to separate the proteins prior to mass analysis. The most commonly 

used method is gel-electrophoresis followed by in-gel digestion of individual protein spots 

with protease. However 1D SDS-PAGE provides a rather low-resolution separation of 

proteins and classical 2D-PAGE (IEF/SDS) is unable to detect membrane, highly basic or 

acidic proteins. In the case of membrane bound multiprotein complexes, doubled 2D SDS-

PAGE discribed by Rais et al., (Rais et al., 2004) is a very simple and elegant method 

allowing separation not only of hydrophilic, but also hydrophobic proteins according their 

molecular mass.   

At present, mammalian complex I is best characterized at the proteomic level. All but one 

subunit (46 subunits) were identified by MS in bovine heart mitochondria complex I. A lot of 

information about subunit topology within complex I subcomplexes has been obtained using 
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ESI-MS (Carroll et al., 2003). Most recently, two new subunits, namely B14.7 and ESSS, 

were found in bovine complex I (Carroll et al., 2002). Post-translation modifications of 

subunits are also best characterized in bovine and human enzyme (Papa et al., 1996;Van den 

Heuvel et al., 1998; Hirst et al., 2003; Chen et al., 2004). This was possible thanks to well 

established proteomic tools and the availability of the most accurate and complete databases. 

In contrast Yarrowia lipolytica sequence genome has been successfully sequenced just 

recently.  
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1.8 Goals of this Study 

 

1.8.1 The determination of the subunit composition of complex I from Y.  

lipolytica. 

 

Complex I from Y. lipolytica contains more than 20 “accessory” subunits in addition to the 14 

“central” subunits. Previously, a limited number of the accessory subunits were identified by 

sequencing of the N-terminus by Edman degradation. Comparison of N-terminal amino acids 

with sequences from N. crassa and B. taurus resulted in the identification of the sequences for 

six Y. lipolytica homologues of accessory subunits (39-kDa subunit (NUEM), NUYM, 

NUZM, B13 (NUFM), ASHI (NIAM), B14 (NB4M)).  

The first aim of this study was to determine the subunit composition of complex I from Y. 

lipolytica. The subunits of complex I have to be separated by 2D PAGE  (doubled SDS and 

IEF/SDS) followed by the determination of the number and apparent masses of the subunits. 

Then, using MALDI-MS and the genome sequence databank, the sequences of proteins have 

to be identified and compared with other species to reveal the differences and similarities 

between complex I from different organisms. 

It is important to establish the subunit composition for two reasons. Firstly, knowledge of the 

subunit composition is prerequisite for determining the atomic structure of complex I and for 

understanding its catalytic mechanism. Secondly, investigation of homologues of the subunits 

of complex I will provide useful information about the function and importance of the 

“accessory” subunits and should reveal possible interactions of the respiratory chain with 

biosynthetic and other metabolic pathways. 

 

1.8.2 Mutagenesis of 39 kDa subunit of complex I 

 

Construction and characterization of  a 39 kDa  deletion strain  

Knock-out of the 39 kDa subunit of complex I in N. crassa led to complete loss of electron 

transport activity from NADH to ubiquinone (Schulte et al., 1999). Based on this observation, 

it was proposed, that this subunit is involved in the biogenesis of a new redox group localised 

between cluster N2 and ubiquinone (see 1.2.4). To examine this hypothesis a mutant carrying 

a deletion of the 39 kDa subunit gene was generated and characterized in terms of assembly, 

catalytic activity of complex I and EPR-spectra of the redox groups. 
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Site-directed mutagenesis of the 39 kDa subunit 

Based on sequence analysis and experimental data (Schulte et al., 1999;Yamaguchi et al., 

2000) it had been proposed, that the 39 kDa subunit tightly binds one molecule of NADPH 

(see 1.2.4). Two parts of the nucleotid-binding domain are crucial for selective binding of 

NADPH, namely a motif which containes three glycines (GXXGXXG) and a basic residue at 

the end of the second β-strand. One of the aims of this study was to generate and characterize 

point mutants in this nucleotide-binding domain. Any changes in the glycine motif should 

interfere with nucleotide binding. The replacement of a basic residue that has shown to be 

responsible for the selective interaction with the 2’-phosphate group of NADPH was expected 

to change the affinity and/or selectivity of the cofactor to the protein. Nevertheless in 

comparison to a 39 kDa subunit deletion, it should affect complex I assembly and activity to a 

much lesser extent. To explore the role of tightly bound NADPH for complex I the point 

mutants had to be characterized in terms of complex I activity, stability and assembly. 
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals 

Methanol, HPLC gradient grade (J.T. Baker, Deventer-Netherland); bovine serum albumin 

(BSA) (Biolabs, New England); n-Dodecyl-β-D-maltoside (Biomol Feinchemikalien GmbH, 

Hamburg-Germany); DEAE Bio-Gel A Agarose (Biorad Laboratories GmbH, München-

Germany); Chelating Sepharose (Pharmacia Biotech AB, Uppsala-Sweden); Agar; bactoTM 

yeast extract, Trypton, selected peptone 140 (Gibco BRL Life Technologies, Paisley-United 

Kingdom); YNB (Difco Laboratories, Sparks, MD, USA); boric acid phenol developer, fixer 

and fixing buffer for X-ray films and X-ray films X-OMAT AR (BioMax MR (Kodak) 

Rochester-New York); acetone, ammonium peroxosulfate, chloroform acetic acid, Folin-

Ciocalteus-Phenol reagent, isoamyl alcohol, isopropanol, MgSO4, HCl, trichlorine acetic acid, 

chlorophorm, cholic acid, sodiumthiosulfate pentahydrate (Merck, Darmstadt-Germany); 

acetonitril, ammonium sulphate, EDTA, glas perls (0.25 – 0.5 mm), KCl, KOH, KH2PO4, 

sodium acetate, sodium citrate, NaCl, NaOH, NiSO4, NaH2PO4, saccharose, X-Gal, 

NH3HCO3, (Carl Roth GmbH & Co, Karlsruhe-Germany); ATP, nucleotides, Ni-NTA Fast 

Flow Sepharose (Pharmacia); acrylamide, bisacrylamide, Coomassie-Blue G-250, urea, 

polyethylene glycol (PEG) 4000, dodecylsulphate sodiumsalt (SDS), Tricine, agarose, 6-

amino caproic acid, amino acids, ampicilline, DMSO, ethidium bromide, glucose, glycerol 

(Pharmacia); hexaammine-ruthenuim(III)-chloride (HAR), Hepes, KCN, lithium acetate, 

mercaptoethanol, Mops, d-NADH, NADH, NADPH, FMN, NaN3, PMSF, TEMED, Tris, 

asolectin, oligonucleotides, nitroblue-tetrazolium (NBT), bovine trypsin, 2,5-dihydroxy-

benzoic acid (DHB), 4-hydroxy-a-cyanocinnamic acid (HCCA), trifluoracetic acid, luminol, 

coumaric acid, hydrogen peroxid (Sigma Chemie GmbH, Deisenhofen-Germany); asolectin, 

silver-nitrate (Fluka); oligonucleotides (MWG-Biotech Ebersberg-Germany). 

 

2.1.2 Inhibitors 

2-decyl-4-quinazolinyl amine (DQA) was a generous gift from Aventis CropScience, 

Biochemical Research, Frankfurt am Main, Germany; rotenone was purchased from Sigma 

Chemie GmbH, Deisenhofen, Germany. 
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2.1.3 Media and Solutions 

Media for Escherichia coli: 

LB-media: 1 % NaCl, 0.5 % yeast extract, 1 % bactotryptone, pH 7.5 (1.5 % agar for plates) 

SOC-media: 0.5 % yeast extract, 2 % bactotryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4, 20 mM glucose 
 

Media for Yarrowia lipolytica: 

YPD-medium: 2 % Bacto™ peptone, 1 % yeast extract, 2 % glucose 
 

Permanent culture medium: YPD-media + 40 % glycerol 
 

Minimal synthetic medium (S): 1.7 % yeast nitrogen base without (NH4)2SO4 and amino 

acids, 5 % (NH4)2SO4, pH 5.0 were prepared as a 10 × stock solution and sterile filtrated. 

Carbon source (0.4 % acetate or 2 % glucose) were autoclaved and added to 10 × S-media. 

Depending of the type of selection one or several of the following components were added: 

130 µM histidine, 200 µM lysine, 460 µM leucine, 180 µM uracil. 
 

Buffers and solutions 

10 × TAE-buffer:  400 mM Tris / acetate, 10 mM EDTA, pH 8.3 

TE: 10 mM Tris / HCl, 1 mM EDTA, pH 8.0                  

20 × SSC-buffer:  3 M NaCl, 0.3 M sodium citrate,  pH 7.0 

One step buffer (freshly prepared):  45 % PEG4000, 0.1 M  lithium acetate (pH 6.0), 100 mM 
DTE, 250 µg/ml salmon sperm DNA as carrier 
                  

Rehydratation buffer for IEF:  8 M Urea, 1.5 % Triton X-100, 10 mg/ml DTE, 0.5 % IPG 
buffer (ampholyte mixture), trace of bromphenol blue 
 

SDS equilibration buffer for IEF:  50 mM Tris-HCl (pH 8.8), 6M Urea, 30 % Glycerol (v/v), 
4 % SDS (w/v), 10 mg/ml DTE, trace of bromphenol blue     
         

K-Cholate buffer:  1 %  K-cholate, 0.15M KCl, 10 mM Tris-acetate, pH 7.5                        

Wash buffer:  1 mM EDTA, 0.1 mM PMSF, 10 mM Tris-acetate, pH 7.5           

PBS-buffer:  80 mM Na2HPO4 x 2H2O, 20 mM NaH2PO4 x H2O, 100 mM NaCl, pH 7.5 

ECL-1 buffer:  0.1 M Tris, 2.5 mM luminol, 450µM coumaric acid            

ECL-2 buffer: 0.1 M Tris, 0.03 % H2O2, pH 8       
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2.1.4 Strains 

 

Escherichia coli competent cells 

 

 

X

X

 

 

 

 

 

 

Yarrowia lipolyti

 

 

 

 

 

 

 

 

2.1.5 Plasmids

 

name

pCR2

pBluescrip

pUB
strain genotype 

L1-Blue 
recA1 endA1yrA96 thi-1 hsdR17 supE44 relA1 

lac [F’proAB laclqZ∆M15 Tn10 (Tetr)] 

L10-Gold 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 
relA1 lac [F’proAB lacIqZ∆M15 Tn10 (Tetr)] 

ca 

strain genotype 

GB10 30Htg2 MatB ndh2i ura3-302 leu2-270 lys-1 

PIPO 
30 Htg pop-in-pop-out MatA, lys-1, ura3-302, 

leu2-270 

 

 property source 

.1 see product’s description 
Invitrogen, Groningen,  

The Netherlands 

t SK(±) see product’s description 
Stratagene, Heidelberg, 

Germany 

4 

Yarrowia lipolytica 

“shuttle”-vector containing 1 kb 

fragment with Hyg BR gene 

Dr. Stefan Kerscher, 

Frankfurt/Main, 

Germany 
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2.1.6 Antibodies 

 

First antibodies 

 

antibody specificity provenience 

30C10 NUBM (51 kDa) 

42A10 
NUCM (49 kDa), internal epitop  

31 PIPSGALGQKVPHV 45 

37G12 
NUEM (39 kDa), internal epitop  

263 VRHIELPKALYQAYTKATQAI 284 

Dr. Volker 

Zickermann 

Frankfurt am Main 

Germany 

 

Secondary antibody 

 

Peroxidase conjugate anti-maus IgG developed in goat (Sigma, Germany) 

 

2.1.7 Instruments 

Centrifuges: 

Heraeus Biofuge A (Osterode, Germany) 

Heraeus Labofuge 400 (Osterode, Germany) 

Heraeus Minifuge GL (Osterode, Germany) 

Heraeus Cryofuge 8500i (Osterode, Germany) 

Cool centrifuge J2-21, Beckman Instruments GmbH (München, Germany) 

Ultracentrifuge L7-65 and L8-70M, Beckman Instruments GmbH (München, Germany) 

Spectrophotometer: 

UV 300 Shimadzu (Düsseldorf, Germany) 

U-3210 Hitachi (Düsseldorf, Germany) 

MultiSpec-1501, Shimadzu (Düsseldorf, Germany) 

SPECTRAmax PLUS384, Molecular Devices GmbH (Ismaning, Germany) 

Thermocycler: 
22 
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DNA Thermal Cycler 480, Perkin Elmer (Weiterstadt, Germany) 

GeneAmp® PCR System 2400, Perkin Elmer (Weiterstadt, Germany) 

cyclone® gradient, Peqlab, Biotechnologie GmbH (Erlangen, Germany) 

Electroporation: 

E. coli Pulser Bio-Rad (Hercules, USA) 

DNA Sequencer: 

ABI PRISMTM 310 Genetic Analyzer, Perkin-Elmer (Weiterstadt, Germany) 

Sonifier: 

B 15 Sonifier / Cell Disrupter, Branson (Danbury, UK) 

EPR-Spectrometer: 

ESP 300 E, Bruker (Rheinstetten, Germany) with continuous flow cryostat ESR 900, 

Tubney Woods Abingdon (Oxon, UK)  

EPR-tubes: 

Quartz glass Nr.: 707-SQ-250M (length: 250 mm, diameter: 4 mm), Rototec Spintec  

(Biebesheim, Germany) 

Instruments for HPLC  

UV/UV-Vis Detector, L-4000/L-4200 eguipped with  Intellligent Inert Pump L-6210 

and D-2500 Chromato-Integrator, Merck, Germany. 

Columns 

TSKgel G 4000 SW filtration column (210.5 mm × 600 mm), TosoHaas GmbH 

(Stuttgart, Germany) 

TSKgel 3000 SW filtration column (75 mm x 600 mm), TosoHaas GmbH (Stuttgart, 

Germany) 

RP-HPLC column: Hibar RT 250-4, LiChospher 100, RP 18 (5 µm), with pre-column 

LiChrospher 100 RP-18 (5µm), (Merck, Germany) 

Other instruments: 

10 l Fermenter, Biostat E; Braun (Melsungen, Germany) 

Bead-Beater glass pearls mill, Biospec (Bartlesville, USA) 

Cell-Desintegrator-C, Bernd Euler (Frankfurt/Main, Germany) 

BioSys 2000 Workstation®, Beckman Instruments GmbH (München, Germany) 

BioLogic HR Workstation, Bio-Rad Laboratories GmbH (München, Germany)  

Photo camera MP4 land camera, Polaroid 
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GelSystem MINI, Biostep (Jahnsdorf, Germany) 

Hybridisations oven HB-1D, Techne (Wertheim, Germany) 

Microscope, Leitz (Wetzlar, Germany) 

Ultrafree - 20 Centrifugal Filter Unit® with Biomax™ - 30 High Flux Polysulfone  

Membrane, Millipore GmbH (Eschborn, Germany) 

Savant Speed Vac System SVC 100 H, (Fischer Laborbedarf, Germany) 

Christ ALPHA I-6 Freeze-dryer (DAMON/IEC (U.K.) Ltd.) 

IPGphor (Amersham Biosciense, Germany) 

MALDI-TOF mass spectrometer Voyager De Pro (Applied Biosystems, USA). 

 

2.1.8 Software 

DNA and Protein Analysis software: 

Mac Vector 3.5, IBI 

VectorNTI Advance 9.0 (InfosMax, USA) 

HIBIO DNASIS™ for Windows® Version 2, Hitachi Software Engineering Co., Ltd. 

Husar (DKFZ, Heidelberg, Germany)  

CLUSTALW (EMBL-EBI, Heidelberg, Germany)  

Sequence Navigator (Applied Biosystems, USA) 

Sequencing Analysis (Applied Biosystems, USA) 

BCM Search Launcher (Baylor College of Medicine, USA) 

Mascot (Matrix Science Ltd., London)  

Protein Prospector (Mirrors at UCL-Ludwig, UK / Ludwig Institute Melbourne 

(Australia)) 

PROWL (ProteoMetrics, USA)  

SOFTmax PRO, Molecular Devices GmbH (Ismaning, Germany) 

Other software: 

Microsoft Office Package 

 

 

 

 

http://128.40.158.151/mshome3.4.htm
http://jpsl.ludwig.edu.au/
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2.2 Methods of Molecular Biology / Gene Technology 

2.2.1 Deletion strain of NUEM (∆nuem) 

The haploid deletion strain of the 39 kDa subunit of complex I from Y. lipolytica was 

generated using the one-step transformation method as described (Chen et al., 1997). The 

open reading frame (ORF) of the NUEM gene was replaced by a URA3 reporter gene. A 

fragment of NUEM gene in which the ORF had been replaced by URA3 gene was 

transformed into the haploid strain GB10 (30Htg2 MatB, ndh2i, ura3-302, leu2-270, lys1). 

Subsequently a strain carrying the appropriate markers on minimal media plates was selected. 

Finally, the selected clons were checked by PCR and Southern Blotting. 

 

2.2.2 DNA Gel Electrophoresis 

DNA was separated according to standard procedures (Sambrook et al., 1989) in the presence 

of 0.5 µg/ml ethiduim bromide. Depending on the expected DNA fragment length agarose 

concentrations from 0.6 – 2.0 % in 1×TAE buffer were used. If the DNA fragments were 

extracted from the gel, TEA buffer with extra additive was used (UV-safe TAE, MWG-

Biotech, Ebersberg). DNA molecular weight standards: 1 kb Ladder, 100 bp Ladder plus 

(MBI Fermentas, St. Leon-Rot). 

 

2.2.3 Fill-in Reaction of 5`-Overhang 

DNA blunt-ends were made with large fragments of E. coli DNA-polymerase I (Klenow-

polymerase, New England Biolabs GmbH, Schwalbach/Taunus) as described by (Sambrook 

et al., 1989). 

 

2.2.4 DNA-Vector Dephosphorylation 

To avoid self-ligation of empty vectors the DNA ends were dephosphorylated with SAP 

(Shrimp Alkaline Phosphatase, Boeringer Mannheim, Mannheim). 

 

2.2.5 Phosphorylation of PCR-Products 

To enable the ligation of PCR products it was necessary that both fragment ends were 

phosphorylated. Phosphorylation was done with T4 polynucleotide kinase (New England 

Biolabs) as described by Ausubel (2000). Alternatively, primers rather than DNA fragments, 

were phosphorylated before PCR. 
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2.2.6 DNA Extraction from Agarose Gels 

DNA extractions from agarose gels were performed using the “Easy Pure Kit” (Biozym 

Diagnostic GmbH, Hess. Oldendorf) or the QIAprep® Gel Extraction Kit (Qiagen). 

 

2.2.7 Ligation 

T4 DNA-ligase (Gibco BRL Life Technologies) was used in the provided buffer to ligate 

DNA fragments. Usually ligation was carried out over night at 14°C. 

 

2.2.8 Making of Electro-Competent Escherichia coli Cells 

Electro-competent E. coli cells were made according the procedure described in “Current 

Protocols in Molecular Biology” (2000). Transformation efficiency was up to 2×109 

colonies/µg DNA. 

 

2.2.9 Transformation into Escherichia coli (electro-competent cells) 

The transformation of plasmids (with AmpR gene) into E. coli electro competent cells took 

place in an E. coli Pulser (Biorad) as described in “Current protocols in Molecular Biology” 

(2000). Transformants were then streaked out and grown over night on LB solid medium in 

the presence of ampicillin (50 µg/ml). 

 

2.2.10 Preparation of Plasmid-DNA from Escherichia coli 

Plasmid-DNA was prepared according to (Zhou et al., 1990) from a small volume of over 

night cultures (1.5-3 ml). Plasmid DNA for sequencing was prepared using the QIAprep® 

Spin Miniprep Kit (Qiagen). 

 

2.2.11 DNA Sequencing 

Double-strand DNA was used as template for sequencing. The sequencing reaction was made 

using the “ABI Prism dye terminator cycle sequencing kit” (Perkin Elmer, Weiterstadt). 

Sequencing was performed in an ABI Prism Automated Sequencer type ABI 310. 

 

2.2.12 Polymerase Chain Reaction (PCR) 

10 ng of plasmid-DNA resp. 100 ng of genomic DNA, 5 µl of both oligonucleotides (5 µM), 

5 µl of provided 10X reaction buffer were combined in a total reaction volume of 50 µl. To 

avoid dimerisation of oligonucleotides as well as non-specific binding of oliogonucleotides to 

matrix DNA manual “hot-start” was applied. Used polymerases were: Taq DNA polymerase, 
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Taq2000TM DNA polymerase, Pfu DNA polymerase and PfuTurboTM DNA polymerase from 

Stratagene (Heidelberg) as well as Taq DNA polymerase from Sigma Chemie GmbH 

(Deisenhofen). 

 

2.2.13 Generation of Point Mutations 

The shuttle-vector pUB4 carrying a 4.91 kb insert coding for the NUEM gene was used as 

template for site directed mutagenesis. Point mutation was introduced by PCR with the 

“QuikChangeTM site-directed mutagenesis kit” (Stratagene, Heidelberg). After amplification 

of the insert-containing plasmid using phosphorylated primers the reaction mixture was 

digested with DpnI to eliminate methylated template plasmid. Phosphorylated PCR products 

were ligated and transformed into electro-competent cells. To check the presense of the 

desired mutation and the absence of inadvertent sequence changes, the complete ORF of the 

mutagenised gene was sequenced and compared to the wild type ORF. 

 

2.2.14 Southern Blot 

Digested DNA (genomic DNA: 500 ng; plasmid DNA: 50 ng) was separated using agarose 

gel electrophoresis (1 %). The DNA was transferred over night onto Hybond N+-membrane 

(Amersham, Braunschweig). Covalent crosslink of DNA to the membrane was achieved by 

UV-light irradiation (Stratalinker, Stratagene, Heidelberg). 

 

2.2.15  32P DNA Labelling 

DNA fragments were labelled with [α-32P] dCTP (25 µCi for 25 ng DNA) using the “Random 

primer labelling – Prime-It®II” Kit (Stratagene, Heidelberg). The  rate of  radioactive labelling 

was checked by pipetting 3 µl of 1:100 diluted reaction mixtures onto two filter sheets 

(Whatman DE 81 ion exchange paper, Whatman International Ltd., Maidstone, England). One 

of the filters was washed two times for 5 minutes with 2 × SSC buffer and subsequently 

washed for 5 minutes in cold ethanol. To estimate incorporation of the radioactive label, count 

rates of both filters were controlled after drying using a Geiger counter. 

 

2.2.16 Hybridisation of Radio Actively Labelled DNA Probes 

Hybridisation took place in a rotating glass tube using a thermostatted hybridisation oven 

(HB-1D, Techne). The membranes were pre-hybridised for 15 minutes at 68°C followed by a 

main hybridisation period of 60 min at 68°C in “QuikHyb®” hybridisation solution 

(Stratagene, Heidelberg). For the main hybridisation, 32P-labelled DNA fragment was added 
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together with 100 µl (10 mg/ml) salmon sperm DNA. Subsequently, blots were washed four 

times (2 × 15 min with 2 × SSC, 0.1 % SDS; 2 × 15 min with 0.1 × SSC, 0.1 % SDS) to 

remove non-specifically bound radioactive probe. Blots were exposed to Kodak X-Omat AR 

films with an amplifier-sheet over night at –80°C. 

 

2.2.17 Transformation of Yarrowia lipolytica 

Yarrowia lipolytica cells were transformed according to the method of (Chen et al., 1997). A 

single colony was taken from a fresh plate. Alternatively, cells from 0.5 ml of an over night 

culture in complete medium were spun down. The cells were dispersed by vortexing for 1 min 

in 100 µl of freshly prepared one step buffer (45 % PEG4000, 0.1 M lithium acetate pH 6.0, 

100 mM dithiothreitol, 250 µg/ml salmon sperm DNA as carrier). Subsequently the mixture 

was incubated for 1 h at 39°C and was spread on well dried selection plates. Transformants 

could be observed after 3 days incubation at 28°C. 

 

2.2.18 Isolation of Total DNA of Yarrowia lipolytica 

Total DNA isolation was performed according to the “rapid isolation of yeast chromosomal 

DNA” protocol described in “Current Protocols in Molecular Biology” (2000). Plasmid DNA 

was obtained by transformation of 150 ng of total DNA into E. coli competent cells. 

 

2.3 Methods of Protein Chemistry 

2.3.1 Growth of Yarrowia lipolytica 

Yarrowia lipolytica parental strains were grown in YPD medium at 28°C in rotatory flasks. A 

clone of Y. lipolytica from an agarose YPD plate was taken for a 1 l pre-culture and shaken in 

a flask for 18 - 24 hours. Subsequently, the pre-culture was used to inoculate a 10 l fermenter 

(Biostat E; Braun, Melsungen). Fermentation lasted 14 - 18 hours. The yield was up to 90 g 

cells / l (wet weight). 

Mutant strains were grown by fermentation in 10 l of YPD medium. The medium of the pre-

culture depended on the plasmid. In the case of pUB4 YPD containing 100mg/l hygromycin B 

was used. The fermentation was inoculated in a 10 l fermenter with 1 l of pre-culture. Pre-

cultures were shaken in flask for 24 hours and fermentation took futher 24 hours. Even 

without selective pressure during fermentation, no substantial loss of plasmid was observed. 
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2.3.2 Preparation of Mitochondrial Membranes 

Mitochondrial membranes were prepared from freshly harvested cells or from cells that had 

been shock frozen in liquid nitrogen and kept at –80°C. To break the cell walls 0.5 mm glass 

beads (Bernd Euler Biotechnologie, Frankfurt) were used in a cell disintegrator. 300 – 500 g 

of cells were suspended in the same amount of buffer (600 mM sucrose, 20 mM Na/MOPS, 1 

mM EDTA, pH 7.2). Cell breakage was carried out for at least 2 hours in the presence of 2 

mM PMSF (protease inhibitor). Centrifugation for 25 min at 2000 × g was used to separate 

cell debris (pellet) from mitochondrial membranes (supernatant). To collect mitochondrial 

membranes this supernatant was ultracentrifuged for 1 hour at 100,000 × g. The homogenised 

membranes were resuspended in the same buffer as above but without EDTA, shock frozen 

and stored at –80°C.  

Membrane quality was checked by recording cytochome absorption spectra (530-630 nm) of 

the reduced minus oxidised forms. Mitochondrial membranes were reduced by addition of 

dithionite and oxidised by addition of ferricyanide. Content of heme groups b and aa3 

(reduced minus oxidised form) was measured at 562 nm  and at 605 nm, respectively. The 

concentration was usually 1-10 µM and the ratio heme b: heme aa3 about 3:1. 

 

2.3.3 Preparation of Mitochondrial Membranes in Small Amounts 

Freshly harvested cells (4 - 8 g) were used at 1:1:1 cells to buffer to glass beads ratio (same as 

in 2.3.2). Cell breakage was achieved by vortexing in a Falcon tube for 10 × 1 min and 

intermittent cooling in ice for one minute. Centrifugations and further steps were the same as 

in 2.3.2. 

 

2.3.4 Protein Quantitation 

Protein determination was done according to the procedure of Lowry et al. (1951), as  

modified by Helenius and Simons (1972). Calibration was carried out with 0.1 – 2.0 mg/ml 

bovine serum albumin (BSA). 

 

2.3.5 Blue-Native Polyacrylamide Gel Electrophoresis (BN-PAGE) 

Blue-native polyacrylamide gel electrophoresis was used to separate the components of the 

mitochondrial respiratory chain in membranes of Y. lipolytica (Schägger, 2003). 500 µg of 

total protein was solubilised with 1 g/g dodecyl maltoside and 500 mM amino caproic acid. 

The resulting solubilised mitochondrial membranes were put on 4-13% gradient gels.  
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2.3.6 Doubled SDS-Polyacrylamide Gel Electrophoresis (dSDS-PAGE) 

Tricine dSDS-PAGE was used to separate the subunits of complex I from Y. lipolytica and 

was performed as described (Rais et al., 2004). Briefly, lanes from 1D-gels (10% 

polyacrylamide, 6M urea) were incubated in acidic solution containing 100 mM Tris, 150 mM 

HCl, pH 2 for 30 min and analysed by SDS-PAGE as a second dimension using 16% 

polyacrylamide. The 2D-gels were stained with Coomassie blue G 250 or silver. 

 

2.3.7 Isoelectric Focussing 

IEF - separation as first dimension was done in a IPGphor apparatus (Amersham Pharmacia 

Biotech) using 13 cm immobilized pH gradient (IPG) strips (pH 3-10 or 6-11). The samples 

of complex I (~120µg) were rehydrated in a solution containing 8 M urea, 1.5% Triton X-100, 

0.5% IPG Buffer and a trace of bromphenol blue for 12 h at 20 °C. Focusing was carried out 

by 50µA per IPG strip using the following steps: pH 3-10 gel, 200Vh (200V max ), 500Vh 

(500V max), 1000 Vh (1000 V max) and 32000 Vh (8000V max) with a gradient step of 

1125Vh (3500 V); pH 6-11 gel, 200 Vh (200V max), 500Vh (500V max), 1000Vh (1000V 

max) with a gradient step of 1125Vh (3500V max) and 64000Vh (8000V max). After 

focussing, strips were equilibrated using a buffer containing 50mM Tris-HCl pH 8.8, 6M 

urea, 30% glycerol, 4% SDS and a trace of bromphenol blue. The second dimension gel 

consisted of a Tricine-SDS 16% polyacrylamide gel. 

 

2.3.8 Silver-staining of 2D-SDS gels 

After electrophoresis the gel was incubated for 15 minutes in fixation solution, which 

consisted of 50% methanol and 10% acetic acid. Subsequently the gel was incubated in 

0,005% sodiumthiosulfate-pentahydrate. The gel was washed in H2O and incubated in 0.1% 

silver nitrate (w/v) for 30 minutes. Subsequently the gel was briefly washed in H2O and 

developed in freshly prepared developer: 2% (w/v) sodium bicarbonate in 100 mL H2O plus 

100 µL 36.5% formaldehyde. The development reaction was stopped by 50mM EDTA 

solution. 

 

2.3.9 Staining with nitro blue tetrazolium (NBT) 

NBT-staining was used to detect the NADH activity of complex I in BN-PAGE. The non-

fixed gel was incubated in a solution contaning 3mM NBT and 120 µM NADH for 5 minutes. 

In order to stop the reaction, the gel was incubated in 50 % methanol and 10 % acetic acid. 
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2.3.10 Western Blot 

To investigate protein expression, a semidry immunoblotting procedure was followed using a 

polyvinylidendifluoride membrane (Immobilon TMP, Millipore). Membranes and gel-blotting 

paper were incubated in blotting-buffer (cathode buffer: 300mM 6-aminocaproic acid, 30 mM 

Tris, pH 9.2; anode buffer: 300mM Tris, 100mM Tricine, pH 8.7). Gels were blotted for 3 

hours at 200mA and 20V. After blotting, membranes were incubated for 30 minutes in PBS 

buffer containing 0.4% (w/v) Triton-X100 to reduce the background caused by unspecific 

binding. After washing in PBS buffer once for 15 minutes and twice for 5 minutes, 

membranes were incubated over night with primary monolyclonal antibody against 51 kDa, 

49 kDa and 39 kDa subunits of complex I diluted in PBS 1:1. After washing once for 15 

minutes and twice for 5 minutes in PBS, incubation for 1 hour with anti-mouse IgG 

peroxidase conjugate (diluted 1:10000 in PBS) was performed. Proteins were detected by 

enhanced chemiluminescence (ECL). The washed membrane was incubated for 1 minute with 

a 1:1, (v/v) mixture of ECL-1 solution, containing 2.5 mM of luminol, 450 µM of coumaric 

acid (stock solution 90mM in DMSO), and ECL-2 solution, containing 0.03% hydrogen 

peroxide. The peroxidase oxidises luminol in the presence of hydrogen peroxide. Light 

emission occurring during luminal oxidation was detected by placing the blot in contact with 

an X-ray film. 

 

2.3.11 Measurement of NADH:HAR activity 

Detergent- and inhibitor-insensitive NADH:HAR [HAR: hexa-ammine-ruthenium(III) 

chloride] activity was measured using a Shimadzu MultiSpec-1501 or a Molecular Devices 

SPECTRAmax PLUS384 spectrophotometer by following NADH-oxidation at 340 minus 400 

nm (ε=6.22 mM-1cm-1). Assays were performed in the presence of 200 µM NADH and 2 mM 

HAR, in 20 mM Na+/Hepes, pH 8.0, 2 mM NaN3 at 30°C (Sled and Vinogradov, 1993). This 

activity depends only on the presence of FMN and probably Fe-S cluster N3 (Gavrikova et 

al., 1995). The reaction was started by the addition of 50 µg (total protein) of unsealed 

mitochondrial membranes. 

 

2.3.12  Measurement of complex I catalytic activity 

For measurement of complex I activity, dNADH was used as electron donor, and the 

ubiquinone analogue DBQ was used as electron acceptor. dNADH:DBQ activity at 60 µM 

DBQ and 100 µM dNADH was measured using a Shimadzu MultiSpec-1501 or a Molecular 

Devices SPECTRAmax PLUS384 spectrophotometer by following dNADH-oxidation at 340 
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minus 400 nm (ε=6.22 mM-1cm-1) at 30°C in 20 mM Na-MOPS pH 7.2 buffer containing 50 

mM NaCl and 2 mM KCN. The reaction was started by adding mitochondrial membranes 

equivalent to a final concentration of  30 to 50 µg of protein/ml.  

 

2.3.13 Purification of complex I 

Complex I was purified from isolated mitochondrial membranes that were solubilised with n-

dodecyl-β-D-maltoside as described (Kashani-Poor et al., 2001a) with slight modifications. 

Purification was achieved by Ni2+-affinity chromatography with a modest reduction of the 

imidazole concentration from 60 mM to 55 mM in the equilibration and washing buffer and 

subsequent gel filtration using a  TSK4000 column.  

 

2.3.14 Reactivation of purified complex I 

In its natural environment, complex I is embedded in a lipid bilayer. Most of these lipids are 

lost during protein purification, resulting in significant loss of catalytic activity. To reactivate 

complex I dNADH:DBQ activity, asolectin was added (total soy bean extract with 20 % 

lecithin) in a 1:1 (w/w) protein-to-lipid ratio. The asolectin solution was 10 mg/ml solubilised 

by 1.6 % OG in 1 mM KPi and 25 mM K2SO4 pH 7.2. 

 

2.3.15 EPR-Spectra 

Low temperature EPR spectra were obtained with a Bruker ESP 300E spectrometer equipped 

with a liquid helium continuous flow cryostat, ESR 900 from Oxford Instruments. Samples 

were mixed with NADH in the EPR tube and frozen in liquid nitrogen after 30 seconds 

reaction time. Spectra were recorded at 12 K or at 40 K with the following instrument 

settings: microwave frequency 9.475 GHz, microwave power 1 mW, modulation amplitude 

0.64 mT. Under these conditions spectra show contributions from clusters N1, N2, N3 and 

N4. Spectra were recorded and analysed by Dr. Klaus Zwicker. 
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2.4 High Pressure Liquid Chromatography (HPLC) analysis of complex I  

bound NADPH and FMN 

2.4.1 Extraction of NADPH and FMN from mitochondrial membranes and 

complex I 

One volume of mitochondrial membranes was mixed with one volume of 1 % potassium 

cholate in Tris-acetate buffer (0.15 M KCl in 10 mM Tris-acetate buffer, pH 7.5) and 

incubated for 30 minutes on ice. After centrifugation at 35000 g for 1 hour the membranes 

were washed twice in washing buffer containing 1mM EDTA, 0.1 mM PMSF in 10 mM Tris-

acetate buffer (pH 7.5). The pellet was resuspended in washing buffer. Extraction of 

nucleotides was performed as described (Schulte et al., 1999) with some modifications. 3 mg 

of protein were lyophilized and then extracted for ten minutes with 500 µl of chloroform/ 

methanol (2:1, v:v) by vigorous shaking on ice. After addition of 600 µl of 0.1 M NaOH 

adjusted to pH 10 with glycine the  sample was incubated for 15 minutes by vigorous shaking 

on ice. After centrifugation for ten minutes at 11000x g the upper phase was filtered through a 

cellulose minifilter (Minisart-RC/SRP, 0.20µm, Sartorius), lyophilized and then diluted in 

50µl of filtrated water.  

The same extraction procedure was carried out with complex I and standard solutions 

containing 1-5 nmol of nucleotide (NADH, NADPH, FAD or FMN) and 1mg/ml bovine 

serum albumin. 1 mg of complex I was extracted with 200 µl of chloroform/methanol and 

incubated with 300 µl of 0.1 M NaOH.  

 

 Time (min)  Gradient  Flow (ml/min) 

     A %  B % 

 0.0                99      1             0.4 
10.0               99      1             0.4 
40.0               50     50            0.4 
45.0               50     50         0.4 
60.0                0      100          0.4 
70.0                0      100          0.4 
75.0               99      1            0.4
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Figure 2.1  Profile of gradient programm for HPLC analysis of NADPH and FMN 

A-0.05 M potassium dihydrogenphosphat buffer (pH 6); B-HPLC grade methanol. 
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2.4.2 Determination of NADPH and FMN 

HPLC was performed with a MerckHitachi Intelligent Inert Pump L-6210 combined with 

UV-detector (L-400/L-4200 UV/UV-Vis, Merck Hitachi) set to 340 nm. A reversed-phase 

column (Hibar RT 250-4, LiChrospher 100, RP 18 (5 µm) with a pre-column LiChrospher 

100 RP-18 (5µm), Merck, Germany) was used. Elution occured over 75 minutes at a flow rate 

of 0.4 ml/ minute with 1 % (v/v) methanol in 0.05 M potassium dihydrogenphosphate (pH 6), 

followed by a linear gradient from 1 % to 50 % (v/v) methanol in potassium dihydrogen-

phosphate buffer over 40 minutes. Then a methanol/buffer (1:1 v/v) step of 5 minutes was 

followed by a linear gradient from 50 % to 100 % methanol over 15 minutes. Finally, the 

column was flushed with 100 % methanol for 10 minutes (Figure 2.1). Quantitative 

determination of nucleotides in complex I was carried out with standard solutions of the 

nucleotides, in a dilution series from 1–5 nmol (Figure 3.22). 
  

2.5 Matrix assisted laser desorption ionization time of flight mass 

spectrometry (MALDI-TOF-MS) 

Stained protein spots were excised from dSDS polyacrylamide gels and treated following the 

protokol of van Monfort et al.  (2002). The proteins were cleaved with trypsin (12.5 ng/µl) in 

digestion buffer containing 25 mM ammonium hydrogen cabonate, 5 mM CaCl2 at 37°C over 

night. 

The samples were analysed using MALDI-TOF mass spectrometry. Spectra were recorded in 

the positive ion mode with a Voyager De Pro MALDI-TOF mass spectrometer (Applied 

Biosystems, Germany). The samples were deposited on preparative plates by the fast 

evaporation method. DHB (2,5-dihydroxybenzoic acid) or HCCA (4-hydroxy-a-cyano-

cinnamic acid) from Sigma were used as a matrix. Spectra were calibrated internally using 

bovine trypsin autolysis products (m/z 805.4167 and 2163.0567) or, if necessary, externally 

using a reference peptide mixture (bradykinin, angiotensin II, insulin, oxidized B chain, 

adreno corticotropic hormone (ProteoMass Peptide MALDI-MS Calibration Kit, Sigma) 

covering the m/z 757.3997-3494.6513 range. MALDI spectra were analysed by the Mascot 

software package (Matrix Science Ltd., London), Prowl software package (ProteoMetrics, 

LLC, New York, USA) or the Protein Prospector software package (Mirrors at UCL-Ludwig, 

UK / Ludwig Institute Melbourne (Australia)) using a proprietary Y. lipolytica genomic 

database. 

 

http://128.40.158.151/mshome3.4.htm
http://jpsl.ludwig.edu.au/
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2.6 Sequence analysis 

DNA and protein sequences were analyzed using the DNASIS (Hitachi), HUSAR 

(http://genius.embnet.dkfz-heidelberg.de/) and PredictProtein (http://www.predictprotein.org/) 

program packages. Codon preference plots were generated using the Y. lipolytica codon usage 

table at http://www.kazusa.or.jp/codon/. Homology searches of mammalian and fungal 

databases were done using the BLAST server at http://www.ncbi.nlm.nih.gov/BLAST/. 

Alignments of fungal and mammalian proteins were generated using the program 

CLUSTALW at http://www.ebi.ac.uk/clustalw/index.html. Searches of the NCBI conserved 

domains database (Marchler-Bauer et al., 2003) were performed at the NCBI server (USA). 

(www.ncbi.nlm.nih.gov/structure/cdd/wrpsb.cgi). Prediction of transmembrane helices using 

hidden Markov models (Tusnady, Simon, 1998; Krogh et al., 2001) was done using servers 

www.enzim.hu/hmmtop/ and www.cbs.dtu.dk/services/TMHMM/. All sequence analyses 

have been done in collaboration with Dr. Stefan Kerscher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  RESULTS 

3 RESULTS 

3.1 Subunit composition of complex I from Y. lipolytica 

3.1.1 Isolation of mitochondrial complex from Y. lipolytica and identification of 

its subunits 

 
The attachment of a hexa-histidine sequence to the C-terminus of the 30 kDa subunit 

(NUGM) allowed the isolation of very pure complex I from mitochondrial membranes 

(Kashani-Poor et al., 2001a). Solubilized by n-dodecyl-β-D-maltoside, complex I was 

purified in two steps using Ni2+-affinity and gel-filtration chromatography. After the first 

purification step the majority of other proteins were removed. Subsequent gel-filtration 

resulted in highly pure enzyme as judged by SDS-PAGE.  

Using ESI-MS it has been shown that the molecular mass of isolated complex I from bovine 

heart mitochondria is 980 kDa (Hirst et al., 2003). According to BN-acrylamide gel 

electrophoresis the band corresponding to Y. lipolytica complex I migrates slightly faster than 

that of complex I from bovine heart. The position of the band of complex I from Y. lipolytica 

corresponds to a molecular mass of approximately 900 kDa. NADH dehydrogenase activity of 

this band can be demonstrated by incubating BN-gels with NADH as electron donor and nitro 

blue tetrazolium as electron acceptor (Figure 3.1). 

 

 

 

 

Figure 3.1 The respiratory chain complexes from B. taurus (A) 
and Y. lipolytica (B,C) separated by BN-PAGE 
 
Coomassie-blue stained respiratory chain complexes from B. taurus (A) and Y. 
lipolytica (B), respectively; C-detection of NADH dehydrogenase activity in 
mitochondrial membranes from Y. lipolytica. The BN-gel was stained with 
nitro blue tetrazolium, according to the procedures described in 2.3.9. Roman 
numbers show individual complexes of the respiratory chain from bovine heart 
mitochondria.  

 

The subunits of Y. lipolytica complex I were separated by doubled SDS-PAGE (dSDS-PAGE) 

or isoelectric focusing followed by SDS-PAGE in the second dimension. Some 39 protein 

spots were counted in the Coomassie- and silver-stained dSDS gels (Figure 3.2).  
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Figure 3.2  dSDS-PAGE of purified complex I from Y. lipolytica. 

A-coomassie blue stained dSDS gel with 80 µg of complex I; B-silver stained dSDS gel with 60 µg of complex 
I. The seven central, nuclear coded and six of the seven central, mitochondrially coded subunits are labeled in 
red and blue, respectively, using bovine nomenclature. Spots that could be assigned to individual accessory 
subunits by mass spectrometry are labeled in black using the Y. lipolytica nomenclature. The protein labeled “X” 
is a complex I associated protein which shows homology to the thiosulfate sulfurtransferase enzyme family. 
 

As shown in Figure 3.2 the well separated complex I subunits were dispersed around the 

diagonal, with the hydrophobic proteins found above this diagonal. It is apparent from the 

picture that the level of the protein labeled “X” may be substoichiometric.  

By combination of isoelectic focusing as the first dimension and Tricine-SDS PAGE in the 

second dimension 32 protein spots were identified. However, this method did not allow the 

separation of highly hydrophobic gene products and therefore the mitochondrially encoded 

“ND” proteins were not detectable (Figure 3.3).  

In order to systematically identify the proteins, all 39 protein spots were excised from dSDS 

gels and digested with trypsin.The peptide mixture was analysed by MALDI-MS using 

peptide mass fingerprint (PMF). 

Thirty seven subunits of complex I representing a total molecular mass of about 950 kDa were 

identified (Tables 3.1 and 3.2). The sequence of the 14 central subunits had been determined 

earlier from the cloned genes (Djafarzadeh et al., 2000) or in the case of the ND-subunits 

from the mitochondrial genome of Y. lipolytica (Kerscher et al., 2001a). The identity of the 

seven central hydrophilic proteins in dSDS gels was defined using MALDI-MS. The seven 
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mitochondrial encoded proteins were assigned based on their predicted molecular mass and 

their strong hydrophobicity that places them clearly above the electrophoretic diagonal.  
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igure 3.3   Coomassie stained 2D PAGE (IEF / SDS-PAGE) of purified complex I from Y. 

he first-dimension separation of purified complex I subunits (100µg) was carried out by isoelectic focusing 

y searching the Y. lipolytica genome database, the sequences of 23 accessory subunits were 

F
lipolytica. 
 
T
(IEF) in the pH ranges of 3-10 and 6-11. As second dimension 16 % Tricine-SDS acrylamide gel was used. 
Some 32 protein spots were counted. The seven central mitochondrially encoded subunits were not detectable. 
 

B

found, based on their homology to B. taurus (Table 3.2) and N. crassa subunits. Sixteen of 

these subunits were identified in the purified protein using MALDI-MS (Table 3.2, appendix). 

The N-termini of nine of the accessory subunits had previously been sequenced by Edman 

degradation. One extra protein named “X” exhibited homology to the thiosulfate sulfurtrans-

ferase enzyme family and could be regarded as the 24th accessory subunit of Y. lipolytica 

complex I with yet unknown function. 
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Protein mass MALDI-TOF5

Gene Bos taurus 

precursor Mature 

Amino-

TMDs4

matchi ence 

  Da Da   tal 

name homologue 
terminal 

sequence 
ng sequ

peptides 

found/to

coverage  

% 

NUAM1, 5 kDa 7  7  AEIELT1 0  

Bos t   m

7 8,701 5,195 /0 7/726 116

NUBM1 51 kDa 53,753 51,657 ATTQDA1 0/0 8/567 21 

NUCM1 49 kDa 52,427 49,942 ATTALP1 0/0 3/43 18 

NUGM1 30 kDa 32,344 29,225 QAAPSS1 0/0 5/31 15 

NUHM1 24 kDa 27,215 24,067 IVSVHR3 0/0 4/20 12 

NUIM1 TYKY 25,650 22,320 APATDS3 1/0 6/23 54 

NUKM1 PSST 23,429 20,425 SAPAGT1 0/0 5/197 26 

gene 

name 

aurus

homologue 

predicted ass     

NU1M2 ,345  10/10   ND1 38

NU2M2 ND2 53,328  14/13   

NU3M2 ND3 14,469  3/3   

NU4M2 ND4 54,477  1  

 

3/12   

NU5M2 ND5 73,701  18/16   

NU6M2 ND6 20,757  5/5   

NULM2 ND4L   9,810  2/2   

 

able 3.1: Central subunits of Yarrowia lipolytica complex I 

ubmitted; 4 transmembrane domains 
dicted using servers www.enzim.hu/hmmtop/ and www.cbs.dtu/services/TMH M/; 5 data for tryptic 

T

1 Djafarzadeh et al., 2000; 2 Kerscher et al., 2001; 3 Kerscher et al., s
pre M
peptides, using 50 ppm error; 6 data for V8 (DE) digested peptides, using 50 ppm.  
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protein mass MALDI-TOF5

gene name 
Bos taurus 

precu  

Amino-

TMDs4
mat nce 

  Da Da   foun

homologue rsor mature terminal 

sequence 
ching seque

peptides 

d/total 

coverage  

% 

NUEM 39 a 4 42 32 MNSFEN 0  

tein  

ES S 23,4 6 FALRAY 

18 a 

B1 2 

15,5713 NVSKGV 4/ 6 41 

6/ 6 30 

       11.9 5 AIIATA 

 

PD  

5/ 0 44 

10,3 7 VEL PS 

E 

kD 2,70 40,4 /0 4/43 14 

“X”pro  34,600   0/0 10/33 42 

NUWM S 28,4342 3 1/0 13/33 55 

NUZM - 19,7483 19,7483 MLPGGP 0/0 8/21 38 

NUYM  kD 24,9952 19,219 QKKDVP 0/0 4/22 59 

NUPM PGIV 17,375 2   0/0 4/20 25 

NUXM - 18,5643   3/2 4/19 26 

N7BM 7. 18,5043   0/0 4/19 34 

NUJM1 B14.7 17,3072   2/2   

NUFM B13 16,6343 0/0 1

NIAM ASHI 17,3053  IRASFD 1/1 6/17 57 

NI2M B22 15,2662   0/0   

NB6M B16.6 14,0913   1/1 1

NB4M B14 11,965 6 0/0 4/24 58 

NB8M B18 15,8963 11,067 AEFPPL 0/0   

NUMM 13 14,2562   0/0   

NIDM SW 12,8593   0/0   

ACPM SDAP 12,0393   0/0 2

NUVM B15 10,4783 4 K 1/1 4/13 42 

NIPM 15 10,0183   0/0 5/14 33 

NIMM MWF 9,7923   1/1 4/10 35 

NB2M B12 9.4232   1/1 4/14 28 

NI8M B8 8,7002   0/0 5/19 38 

NI9M B9 7,8353   1/1   

 

able 3.2: Accessory subunits of Yarrowia lipolytica complex I 

xons predicted; 4 transmembrane 
domains predicted using servers http://www.enzim.hu/hmmtop/ and www.cbs.dtu/services/TMHMM/; 5 data for 
tryptic peptides, using 50ppm error. 

T

1 TREMBL entry for B. taurus: Q8HXG6; 2 single exon predicted; 3 two e
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a 

enome with sequences of human, B. taurus, N. crassa, A. thaliana and C. reinhardtii 

pecies. In most eukaryotic organisms, the seven hydrophilic subunits 

.4). Seventeen of them are conserved among the eukaryotes 

teins sequences have an average identity of 43 % and both could be aligned 

pen reading 

3.1.2 Database search for homologues of complex I subunits from Y. lipolytica  

 
Homologous subunits of Y. lipolytica complex I were identified by searching the Y. lipolytic

g

complex I proteins. The results of database searching are summarized in Tables 3.3 and 3.4. 

The subunits from the different organisms were named according to their molecular mass or 

in some cases according to the first four amino acids of the mature subunit. To avoid possible 

confusion the SwissProt nomenclature and accession number of the complex I subunits was 

used in this study.  

The 14 central subunits representing the minimal form of complex I are highly conserved 

between different s

(NUAM, NUBM, NUCM, NUGM, NUHM, NUIM (TYKY), NUKM (PSST)) forming the 

NADH-dehydrogenase part of the enzyme are nuclear coded. However, in higher plants the 

NUCM and NUGM proteins are encoded by the mitochondrial nad7 and nad9 genes, 

respectively (Heazlewood et al., 2003). All central nuclear encoded subunits were found in Y. 

lipolytica at the genomic (Djafarzadeh et al., 2000) and proteomic level. On average, the 

sequences of the nuclear encoded proteins from Y. lipolytica have about 50 % identity (Table 

3.3) to their orthologues in other species. The mitochondrially encoded proteins (NU1M-

NU6M, NULM) of Y. lipolytica complex I exhibited highest sequence similarity to fungal and 

higher plant proteins (Table 3.3). 

By detailed database searching the orthologues for 23 accessory subunits of Y. lipolytica 

complex I were identified (Table 3

analyzed here.  

Two ACPM (YALI0D24629g and YALI0D24643g) orthologs were found in the Y. lipolytica 

genome. The pro

with the ACPM subunits from bovine, N. crassa, A. thaliana and C. reinhardtii complex I. 

The difference between sequence similarities of both subunits and their orthologs in other 

species were insignificant (Table 3.3). However, the ACPM1 (YALI0D24629g) subunit was 

directly identified in Y. lipolytica complex I by MALDI-MS analysis (Table 3.2). 

The molecular mass of the NB4M subunits from various species is about 15 kDa. The 

predicted mass of the Y. lipolytica NB4M subunit, derived from a single large o

frame corresponded to a molecular mass of 21.3 kDa. However, only the first half of the 

predicted Y. lipolytica translation product could be aligned with the N. crassa homologue, 

while the second half was absent in the N. crassa protein. Searching for splicing donor and 

acceptor sites (CTGAG and CTAACTCAG in Y. lipolytica, respectively) revealed that the 



  RESULTS 

42 

 and in photosynthetic eukaryotes like A. thaliana and C. reinhardtii (Cardol et al., 

he subunits of the 

f the bovine and N. crassa genomes. Detailed sequence analysis of NUWM 

lytica complex I using MALDI-TOF-MS. The analysis of 

NB4M protein in Y. lipolytica in fact consists of two exons (see appendix). The second exon 

is very short and encodes only three amino acids. The molecular mass of the NB4M subunit 

predicted from these two exons (11.9 kDa) corresponded to its localisation in 2D gels (Figure 

3.2). 

For eleven subunits of bovine complex I no homologue could be detected in Y. lipolytica, N. 

crassa

2004). They are NIKM, NINM, NIGM, NI9M, NUML, NUOM, N4AM, N4BM, NISM, 

BN7M, NUDM. All of them seem to be specific to mammalian complex I. 

The NUZM subunit that was detected in the genomes of Y. lipolytica and N. crassa is 

conserved among fungi and exhibits no significant homology to any of t

other species. The 9.5 kDa protein from fungal complex I was proposed to be homologous to 

bovine subunit B9. However, Cardol and coworkers (Cardol et al., 2004) showed that these 

subunits are probably not homologues to each other. Thus, NI9M and NUZM present a set of 

fungus-specific subunits. In addition to these two proteins, N. crassa has another subunit 

(NURM), which was not found in the genome of other eukaryotes. Previously reported as 

being fungus specific, the Y. lipolytica NUVM subunit (Abdrakhmanova et al., 2004) was 

also detected in mammalian complex I. The sequence of this subunit shares 58 % similarity 

and 37 % identity with the 7 kDa XP_322246 protein from N. crassa. On the other hand the 

sequences of the bovine B15 and the N. crassa 7 kDa polypeptides exhibit 36 % similarity 

and 24 % identity. Their hydrophobicity profiles match closely in the region aligned with the 

fungal protein sequence (Cardol et al., 2004). Based on these similarities it could be proposed 

that the NUVM subunit of Y. lipolytica complex I is the orthologue of the bovine B15 

(NB5M) protein. 

No homologues could be identified for the Y. lipolytica 23 kDa subunit (NUWM) in standard 

BLAST searches o

provided evidence that this protein could be an orthologue of the NESM subunit. This will be 

described in more detail below. 

Finally, a novel protein named “X” with a molecular mass of 34.6 kDa was identified from 

the 2D gel of purified Y. lipo

fingerprint data revealed that this protein shows close sequence similarity to the thiosulfate 

sulfurtransferase enzyme family and exhibits no homology to any other known subunit of 

complex I. 

 



  RESULTS 

43 

Table 3.3 

Y. lipolytica  
(37subunits) 

H. sapiens 
 S/I 

Mammals 
( B. taurus) 

S/I 

Fungi 
(N. crassa) 

S/I 

Higher plants 
(A. thaliana) 

S/I 

Green algae 
(C. reinhardtii) 

S/I 

  

                                                                                              Central subunits 

NUKM  74/65 72/65 80/75 67/63 78/72 

NUIM  67/61 66/60 77/72 62/57 57/52 

NUHM  62/54 63/54 67/60 53/44 58/49 

NUGM  57/48 60/52 70/59 56/47 56/46 

NUCM  73/64 75/66 77/72 71/63 68/60 

NUBM  75/68 75/69 80/75 76/69 73/67 

NUAM  63/53 63/53 75/69 59/51 59/51 

NU1M  53/42 56/44 65/53 53/42 52/43 

NU2M 39/23 40/24 53/38 39/27 42/25 

NU3M  42/32 43/33 46/38 46/36 46/32 

NU4M  46/32 46/32 56/421 49/37 49/35 

NULM  45/27 46/29 64/52 47/39 43730 

NU5M  47/35 48/34 60/47 50/39 47/36 

NU6M  35/20 35/20 50/351 47/31 45/29 

                                                           Accessory subunits   (Eukaryote-specific subunits (17 subunits)) 

NIMM 42/31 41/31 53/38 48/36 35/28 

ACPM1/ACPM2 46/35 47/37 55/42 54/38 62/57 56/53 51/45 51/39 51/44 44/36 

NI8M 40/34 41/35 46/34 41/32 41/34 

NB2M 38/33 39/32 51/49 45/382 47/36 

NUFM 47/35 46/35 43/34 49/35 37/26 

NUMM 43/31 44/32 50/44 36/29 34/25 

NB4M 38/26 41/28 52/43 33/22 35/19 

NESM*  47/32 50/34 44/38 34/24 67/38 

NIPM 37/32 33/30 45/34 40/32 40/32 

NB6M 50/42 49/40 60/48 48/37 41/35 

N7BM 44/38 43/37 65/53 47/35 43/34 

NB8M 42/27 43/27 43/27 46/39 49/38 

NUYM 43/33 44/33 62/50 43/35 47/34 

NUPM 44/32 46/36 65/58 37/28 29/21 

NI2M 36/26 37/27 47/361 41/32 41/30 

NIDM 32/20 33/18 48/38 42/33 22/19 

NUEM 44/33 47/34 63/50 47/32 45/34 

                                                          Subunits identified in at least two lineages (4 subunits) 

NUJM 41/38 45/36 39/31 N.I. 36/28 

NB5M 41/29 30/17 58/37 N.I. N.I. 

NIAM 32/22 35/23 39/30 N.I. N.I. 

NUXM  N.I. 52/44 36/27 34/27 

                                                                             Fungus-specific subunits (2 subunits) 

NI9M  N.I. 45/36 N.I. N.I. 

NUZM  N.I. 46/42 N.I. N.I. 

 

Table 3.3   Sequence similarity and identity of complex I subunits  

The subunit sequences were alingned with their orthologues from Y. lipolytica using the GAP progroamm from 
the HUSAR (genius.embnet.dkfz-heidelberg.de) program package in standard mode. S-sequence similarity in 
percent; I-identity in percent. *using “gap extention penalty” 1 and allowing gap extensions longer than 20 
amino acids. 1 -Podospora anserina sequences 2 - Oryza sativa gene product identified in complex I. 



  RESULTS 

44 

N

 

 
Bacteria 
(E. coli) 
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42 subunit 

(Y. lipolytica)
37 subunits 

  Table 3.4 

SwissProt 
omenclature 

(for mammals 
and fungi) 14 subunits 46 subunits

 
Mammal
(B.t

0

 
Fungi 

ssa) 
39 

lants 
) 

Green
(C. rei

 
Yeasts 

 

                                                        Bacterial NADH d drogenase orthologues (14 subunits)          ehy

NUKM  NUOB  DUFS7            0) 19.3 O 24 At5g1177 AQ6369 Y 050g 
CAB65525 

N PSST (2
P42026 

47950 0 18 A ALI0F06

NUIM  NUOI  DUFS8            3) 21.3c 25.5 
At1g16700 

AQ63697 Y 924g 
CAB65524 

N TYKY (2
P42028 

Q12644 23 A ALI0F00

NUHM  NUOE  DUFV2            39 24 X7 28.3 
At4g02580 

AQ63695 Y 737g 
CAB65523 

N 24 M225 8083 27 A ALI0D00

NUGM  NUOC  DUFS3            09 31 P2 ND9 (22.6) 
Q95748 

AQ55457 Y 123g 
CAB65522 

N 30 P237 3710 25 A ALI0F02

NUCM  NUOD  DUFS2            04 49 X5 ND7 (44.6) 
P93306 

AQ63700 Y 248g 
CAB65521 

N 49 S041 4508 43 A ALI0F17

NUBM  NUOF  DUFV1            08 51 P2 53.5 
At5g08530 

AQ63696 Y 372g 
CAB65520 

N 51 P257 4917 50 A ALI0B20

NUAM  NUOG           78 X5760 81.5 
At5g37510 

73136 YA
CAB65519 

NDUFS1   75 J02877 2 75 AAQ LI0D05467g 

NU1M  NUOH  D1                    ) ND1 (
P08774 

ND1 (36) 
NP_085565 

 (31.6) N
CAC28089 7

N ND1 (36
P03887 

42) ND1
AAB93446 

D1 

NU2M NUON ND2                    ND2 (39) 
P03892 

ND2 (66) 
A25096 

ND2 (55) 
NP_085584 

ND2 (42.4) 
AAB93444 

ND2 
CAC28115 7

NU3M  NUOA  D3                    ) ND3 Q ND3 (14) AQ55461 N
7

N ND3 (13
P03898 

35141 
NP_085553 

14 A D3 
CAC28116 

NU4M  NUOM         ND4 S02153
NP_085518 

 
93441 CAC28103 7

ND4             ND4 (52) 
P03910 

1 ND4 (55) ND4 (48.7)
AAB

ND4 

NULM  NUOK  D4L                  1) ND4L 
P0550

ND4L (11) 
NP_051111 

3 
61142 

N
CAC28106 7

N ND4L (1
P03902 

(10) 
9 

24.2
AAO

D4L 

NU5M  NUOL                   ND5 (80) 
P0551

ND5 (74) 
NP_085478 93442 

ND5 
CAC28107 7

ND5   ND5 (67) 
P03920 0 

ND5 (59) 
AAB

NU6M  NUOJ  D6                    ) ND6 S ND6 (23.5) 
NP_085495 

 (17.7) N
CAC28088 7

N ND6 (19
P03924 

021561 ND6
AAB934 

D6 

 

                                                               Euk ecific subunits (17 subunits)                aryote-sp

NIMM  DUFA1             7.5) 
  

9.8 CA    7.5 At3g0861  AAS48198  N ed 
ye

N MWFE (
Q02377 

E85571 0    7.53 ot assign
t 

ACPM  DUFAB1 ) 9.6 S1 14 At1g6529 Y 629g 
a
Y 643g 

N SDAP (8
P52505 

7647 0 143 AAQ73138 ALI0D24
nd 
ALI0D24

NI8M  DUFA2            19         10.5 Q   10.8 
At5g47890     
41/32 

AQ63699    Y 201g N B8 X632 07842    
    

11 A ALI0C03

NB2M  DUFB3                  10.63 
XP_331394   

7 AK059007  AAS48194  N ed 
ye

N B12 Q02365 
    

2 6.53 ot assign
t 

NUFM  NDUFA5             B13 P23935       29.9 P24919      19.2 
At5g52840         
49/35 

73139    YA18 AAQ LI0E23089g 

NUMM  DUFS6            38          18.43 
EAA26   

12.2 
At3g03070     
36/29 

AAQ64639    YA 9030g N 13 S282
933          

13 LI0D1

NB4M  NDUFA6            B 3211       14.8 
CAA5   

15 At3g1226
33/22 

AQ84469    Y 419g 14 X6
3963       

0 14 A ALI0A01

NESM   NDUFB11          ESSS (14.5) 11.7
Q8HXG5         XP_32

133 At3g57785   17 AAS48192     YALI0E29095g 3 
4110      

NIPM  NDUFS5            PFFD (15) 
Q02379     

11.53 
EAA31

14 At3g62790 3 AAQ98888   No ned 
yet476       

     11 t assig
 

NB6M  NDUFA12 B16.6 Q95KV7   13.53 
EAA29209        

16.1 
At1g04630        

16 AAQ64637    Not assigned 
yet 

N7BM  NB7M B17.2 O97725    13.43 
EAA31813        

18 At3g03100     18 AAQ64638    YALI0B00792g 

NB8M  NDUFB7            B18 Q02368       89.7  
EAA28195        

12 At2g02050     12 AAQ73135    Not assigned 
yet 

3

NUYM  NDUFS4            AQDQ (18) 
X63215    

21 P25711         17.1 
At5g67590         

19 AAQ64640    YALI0B14861g 
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ntinued) 

N  NDUFA8             PGIV (19) 
P4

20.8 
EAA      

12 At5g18800     12.93 
A

YALI0A206809
g 

Table 3.4 (co

UPM 
2029      35830    AQ5546          

NI2M  NDUFB9       B2    18
C

1
A   A    

Y     2 S28256    3 
AD606921

3.6 
t4g34700       

13.93 
AQ73134     

ALI0D07216g 

NIDM  NDUFB10          PDSW (22) 12.3 X68965      12.5 
t3

17 AAQ55459    Not assigned 
yet Q9DCS9   At1g49140,A

g18410  

NUEM  NDUFA9            39 X59418                 40 P25284      44 At2g20360   38 AAQ55458  YALI0D24585g 

 

                                               leas                       Subunits identified in at t two lineages (4 subunits) 

NUJM  NDUFA11          B14.7 
NP_783649      

7     21.3b S1427 N.I.4 23 AAS58499    YALI0E11891g 

NB5M  NDUFB4            B15 P48305       46    73 XP_3222 N.I. N.I. Not assigned 
yet 

NIAM  NDUFB8            ASHI (19) 
S28242      

20.13 
XP_332152      

N.I.4 N.I.4 YALI0D04939g 

NUXM   N.I. 20.9 Q02854      16450         9 At4g 13 AAQ64641  YALI0E28424g 

 

                                        subu nits)                                      Mammal-specific nits (11 subu

NIKM  NDUFC1 KFYI (6)  
Q02376 

6 N.I. N.I. N.I. N.I. 

NINM  NDUFB1 MNLL (7) 
Q02378 

N.I. N.I. N.I. N.I. 

NIGM  NDUFB2 AGGG (8) 
Q02374 

N.I. N.I. N.I.4 N.I. 

NI9M  NDUFA3 B9  Q0235,6 71 5N.I. N.I. N.I. N.I. 5

NUML  NDUFA4 MLRQ (9) 
Q01321 

N.I. N.I. N.I. N.I. 

NUOM  NDUFV3 12 106 P257 N.I. N.I. N.I. N.I. 

N4AM  NDUFA7 B14.5a 
Q05752 

N.I. N.I. N.I. N.I. 

N4BM  NDUFC2 B14.5b 
Q02827 

N.I. N.I. N.I. N.I. 

NISM  NDUFB5 SGDH (16) N.I. N.I. N.I. N.I. 
Q02380 

NB7M  NDUFB6 B17 Q02367 N.I. N.I. N.I. N.I. 

NUDM  NDUFA10 N.I. N.I. N.I. 42 P34942 N.I. 

 

                                                                                 F cific subunits (4 subunits) ungus-spe

NI9M   N.I.5 9.55 A44210       N.I. N.I. Not assigned 
yet 

NURM   N.I. 17.8 X71414 N.I.  N.I. N.I.  

NUZM   N.I. 21.3a P19968     N.I. N.I. YALI0A02651g

10.49   N.I N.I N.I 10.4 
NCU01467.1 

N.I 

 

                                                     subunits)                               Plant-specific subunits (12

   N.I. 10 AAS58501 N.I. N.I. 6 At4g20150  

   N.I. N.I. 8 At2g31490  13 AAS48193 N.I. 

   N.I. N.I. 173 At3g07480 19 AAS58502 N.I. 

   N.I. N.I. 25 (γCA-like)8 
At5g63510  

27 AAS48195 N.I. 

   N.I. N.I. 27 (γCA-like)8 
At3g48680  

N.I. N.I. 

   N.I. N.I. 30 (γCA-lik
At1g47260  

e)8 32 AAS48197 N.I. 

   N.I. N.I. 32 (γCA-like)8 
At5g66510  

29 AAS48196 N.I. 

   N.I. N.I. 11 (NDH11) 
At1g67350  

N.I. N.I. 

   N.I. N.I. 16 (N
At2g27730  

DH16) N.I. N.I. 

   N.I.4 N.I. N.I. 9 AAS58498 N.I. 
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 N.I. N.I. N.I. 16 AAS58503 N.I.   

   N.I. N.I. N.I. 19 AAS58500 N.I. 
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the evisiae itochondria . 8 simil  bacterial 
 

3. The N WM su f Y tica plex I

 
As reported previosely (Abdrakhmanova , 2004) no homologue of the complex I subunit 

NUW  from Y. lipolytica  

m lian g nomes. S , n logous sequence for the NURM subunit of N. 

cr ompl  I was fo the  of er organisms. It was proposed, that these 

two subunits are specific to complex I from Y. lipolytica and N. crassa, respectively.  

The NUWM and NURM proteins ha terminal targeting sequences which are cleaved off 

during mitochondrial import (45 and ino acids in the NUWM and NURM, respectively. 

See appendix). Although both subunits show no sequence similarity  are co

size (23.4 kDa for NUWM and 17.8 kDa for NURM) and for both proteins a single 

tra mbrane domain was predicted. Remarka embranous domains of the two 
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but also four arginines and seven lysines are fo  in the i  s of the 

m ure Y. lipolytica NUWM subunit, resulting in a theoretical pI of 5.2. These domains are 
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domain of N. crassa NURM has five arginines, eleven 

glutamates and a theoretical pI of 7.8. The 122 am Y. lipolytica 

NUWM has nine arginines, thirteen es, sev tam  a 
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Figure 3.5   Predicted structural fold of the NUWM subunit. 

The predicted membrane helix is shaded in gray; basic and acidic residues in the extramembraneous domains are 
shown in blue and red, respectively. The N-terminal domain of the subunit is predicted to point towards the 
intermembrane space. 
 

In bovine heart complex I several subunits are present that are designed in a similar fa

Y. lipolytica NUWM. These include subunits which have no counterpart in the Y. lipolytica 

enzyme (NESM, NB7M, NISM, NUML, NIGM, N4BM, NINM, NIKM; Table 3.4) and 

subunits for which homologues could be detected in Y. lipolytica (NIAM, NB6M, NB2M, 

B9M, NIMM; Table 3.4). The NB7M, NISM, NUML, NIGM, N4BM, NINM, NIKM are also 

missing in N. crassa, A. thaliana and C. reinhardtii complex I. Remarkably, the NESM 

subunit was identified in fungal and higher plant genomes recently (Cardol et al., 2004). The 

NESM protein from Chlamydomonas complex I displays significant similarity to complex I 

proteins from  rice and to an 11.7 kDa unknown protein from N. crassa. By position-specific 

iterative BLAST analysis (PSI-BLAST) it was revealed that these four proteins are distant 

relatives to the bovine NESM (ESSS) subunit of complex I. Interestingly, the PSI-BLAST 

search showed that the NUWM subunit from the Y. lipolytica and the NESM subunit from N. 

crassa are putative homologues. The NESM subunits from N. crassa (11.7 kDa) is much 

smaller than NUWM (23.4 kDa), but seems to have a similar design with a single 

transmembrane domain and two highly charged extramembraneous domains (Figure 3.5). By 

sequence alignment allowing longer gaps than in standard analysis it was found that both 

proteins share 44% similarity and 38 % identity (Table 3.3).  
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    Y.l_NUWM      
    

MLKLHYRNFITAQHSTTNTTPTMIASVCKRAGLRAGPRAYPGVRQFALRAYNEEKELALK 60 
   N.c_NESM      ----------------------MPAPTILRAGALASRRAFSTSRAVRSGGAPHYD----- 33 

* *..  ***  *. **:.  * .   .  . .      

QRLSQLPPPGKAFVTAEGEPRPAKEAELAELAEIAALYKTDRVGILDILLLGNKHARLYR 120 
   N.c_NESM      ------PPSGWLFGVRPGE----------------------------------------- 46 
                       **.*  * .  **                                          

   Y.l_NUWM      DNTALLKDYYYNGRRILDKIPVKDKQTGKVTWEIKREGAEKEDWVNQMYFLYAPSLILLL 180 
   N.c_NESM      --------------------------------EYKREG-----WEIPFFYGFCGSFAVAT 69 
                                                 * ****     *   ::: :. *: :   

   Y.l_NUWM      IVMVYKSREDITFWAKKELDQRVLDKHPEINDAPENERDALIVERIIAGDYDKLASLQKK 240 
   N.c_NESM      IAYAFKPDTSIQTWALEEARRRLEAEG--ILEDPHPEK---------------------- 105 
                 *. .:*.  .*  ** :*  :*:  :   * : *. *:                       

   Y.l_NUWM      ATPTPATLI 249 
   N.c_NESM      --------- 

 
 
                

M from N. crassa  

y background. 

 
                                        
 
    Y.l_NUWM      
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6   Alignment of NUWM from Y. lipolytica and NES

The sequences were aligned using the CLUSTALW program (www.ebi.ac.uk/clustalw/index.html). * - 
conserved amino acids; : - conserved substitutions; . - semi-conserved substitutions. Small and hydrophobic 
amino acids are red, acidic are blue, basic are magenta; hydroxyl + amine + basic are green. The transmembrane 

amain is shown in gred
 
 
 
                                                                                               

                                                                                                                                 Bt_NESM  

   
 
                                                                                                                                                          Nc_NESM 
 
 
 
                                                                                                                                                         Yl_NUWM 
 
 
 
                                                                            
 
 
 
                                                                     Residue position 
 
 

Figure 3.7   Comparison of the hydrophathy profiles of the NUWM and NESM subunits 

The hydrophathy profiles were done using the HUSAR (htt://genius.embnet.dkfz-heidelberg.de/) program 
package. The NUWM protein from Y. lipolytica (Yl) is not compatible in size with the NESM subunits from 
bovine (Bt) and N. crassa (Nc), but shows a similar design. A single transmembrane domain is predicted for all 
three proteins. 
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2 Exploring the accessory 39 kDa subunit of complex I from Y. lipolytica  

s 

 

f 

 

 

ne. The 5.2 kb NotI/SalI URA3 containing fragment was 

oid Y. lipolytica GB10 cells (30Htg2 MatB ndh2i ura3-302 

leu2-270 lys-1).  

mer pairs (AA39-ü_for, ylura3/ds) and (AA39-ü_rev, aa-ns1) and Southern Blot were used for 
erification (see Figure 3.12). 

3.

3.2.1 Generation of 39 kDa subunit (NUEM) mutants  

3.2.1.1 ∆nuem strain 

The NUEM gene encoding the accessory 39-kDa subunit of complex I from Y. lipolytica wa

deleted by homologous recombination with a URA3-marked deletion allele. First, the genomic

4.91 kb NotI/SalI fragment was subcloned into the pBluescript SK(-) vector. A region o

about 1.2 kb including the complete NUEM open reading frame (ORF) was replaced by a

BamHI/EcoRI restricted PCR product carring the URA3 gene from Y. lipolytica in opposite

orientation of the original NUEM ge

used for transformation of hapl

 

 

Figure 3.11   Strategy for generation of ∆nuem strain 

The ORF in the genomic NUEM locus was replaced with the URA3 marker gene by homologous recombination. 
A fragment of a construct carrying a URA3 gene flanked with genomic sequences was used for transformation of 
Y. lipolytica GB10 cells. The transformants were selected and screened for homologous recombination. PCR 

roducts from prip
v
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The transformants were selected on minimal media without uracil and screened for 

s by PCR (Figure 3.12) and 

Southern blot analysis (Figure 3.13). For verification, a primer pair (AA39-ü_for/ylura3/ds) 

d in a PCR-product spanning the upstream region of NUEM including 

 

Figure 3.12   PCR test for deletion of the NUEM gene.  

A) PCR product was generated with primer pair AA39-ü_for, ylura3/ds. B) PCR product was generated with 
primer pair AA39-ü_rev, aa-ns1. The wild type product (2.5 kb) was missing in the selected transformants.  
 

 

 

 

Figure 3.13  Southern Blot test to verify deletion of 
the NUEM gene 
 
Genomic DNA from transformants was extracted and digested 

nsformants that contain the URA3 gene have 
 ORF of the marker gene (Figure 3.12) and 

therefore 2 bands should be detectable by a NotI/SalI probe. 

homolougous recombination at the chromosomal NUEM locu

was use  wich resulted 

the sequence of the inserted URA3 gene (Figure 3.11). Only clones with inserted URA3 gene 

resulted in a PCR-product of 1.7kb (Figure 3.12A). Additionally, the absence of the wild type 

NUEM gene was checked in transformants by PCR with primer pair aa-ns1 and AA39ü_rev 

(Figure 3.11 and 3.12B). Six correct deletion mutants were identified, but for subsequent 

analysis of the ∆nuem strain and creation of point mutants strain AA39/25.1 was used.  

 

with PstI. The tra
a PstI site in the

Transformant 26.1 has NUEM (12 kb band) and URA3 (8 and 4 
kb band) indicating non-homologous recombination.   
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asmid 

UB4/NUEM is named ‘parental’. The plasmid pUB4/NUEM was used as a template for site 

directed mutagenesis in NUEM gene. Several point mutations in the nucleotide binding motif 

and of the basic residue at the end of the second β-strand were generated (Figure 3.14). Since 

the pyrophosphate moiety of NADPH makes close contact with the middle glycine (Lesk, 

1995) in the nucleotide binding motif attention was focussed on glycine-43.  

 

 

Figure 3.14  Point mutations in the NUEM 
gene 

Mutations were generated in the nucleotide binding 
XXG and in arginine-65 supposed to be 
for selective interaction with the 2’-

phosphate group of NADPH. 

 

3.2.2 Characterisation of 39-kDa s bunit (NUEM) mutants 

3.2.2.1 ∆nuem mutant 

Mitochondrial membranes from strain ∆ ytica were isolated and analysed 

using BN-PAGE in the first dimensio

dimension. First, the complexes of OXPH

dodecyl-β-D-maltoside (LM) per g of 

using a 4 to 13 % polyacrylamide grad ly of 

omplex I, the respiratory chain complexes were divided into subunits on denaturating 16% 

Tricine SDS-PAGE in the second dimension. As shown in Figure 3.14A, complex I of the 

3.2.1.2 Site-directed mutagenesis of subunit NUEM 

 
To create point mutations in the NUEM gene, the deletion strain was complemented with 

plasmid pUB4 with an insert carrying a mutated 39 kDa subunit gene. The NUEM gene was 

amplified and subcloned into pPCR 2.1. The resulting vector was cut with EcoRI to obtain a 

NUEM containing fragment that was cloned into “shuttle”-vector pUB4 harboring the Hyg BR 

gene. Transformants carrying plasmid pUB4/NUEM were able to grow on YPD complete 

medium with hygromycin as selection marker instead of SD minimal medium with URA3 as 

selection marker. In the following, the ∆nuem strain complemented with pl

p

 

motif GXXG
responsible 

 

 

u

nuem of Y. lipol

n followed by Tricine-SDS-PAGE as the second 

OS were solubilized from the membranes with 1g n-

total protein and separated under native conditions 

ient gel. As critical test to identify the assemb

c
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imer and complex V monomer. In 

ontrast, complex I was not observed in the deletion mutant (Figure 3.14B). Even if a lower 

ei

ricine-SDS-PAGE. 
l complexes of the 

respiratory chain of Y. lipolytica. VD – complex V 
dimeric form. 
 

 

The NADH:HAR activities of isolated mitoch l membranes from parental and deletion 

trains were measured. This activity is based on the ability of complex I to oxidize NADH in 

the presence of the electron acceptor hexammi

dependent on the presence of FMN in the 

biquinone oxidoreductase activity and  proton pumping, the NADH:HAR activity can reflect 

e amount of assembled complex I in membrane preparations. Since all transformants 

ontained the internal version of alternative dehydrogenase (NDH2i) (Kerscher et al., 2001b), 

), for measurements of 

complex I activity dNADH was used to discriminate between complex I and the alternative 

. 

parental strain can be identified between complex V d

c

concentation (0.7 g of LM per g protein) of detergent was used, no assembled complex I 

could be identified in strain ∆nuem (data not shown). 

 

  

  

Figure 3.15  2D-PAGE of mitochondrial  
membranes from parental (A) and ∆nuem (B) 
strains 
 
The complexes of the respiratory chain were solubilized 
with 1g n-dodecyl-β-D-maltoside (LM) per g of total 
prot n and loaded on a blue native gel (4-13% 
acrylamide gradient). In the second dimension, the 
complexes were separated by 10 % T
Roman numbers indicate individua

ondria

s

neruthenium-III (HAR). Because this process is 

NUBM (51 kDa) subunit, but independent of 

u

th

c

which is able to oxidize NADH, but not dNADH (deamino-NADH

enzyme

Mitochondrial membranes from strain ∆nuem exhibited lower dNADH:HAR activity than 

wild type membranes (16 % of the parental strain activity). However, no specific ubiquinone 

reductase activity was detected in the deletion strain (Table 3.5). The absence of assembled 

complex I in BN-gels and the loss of complex I activity in membrane preparations provided 

evidence that complex I was not assembled in the deletion strain. The residual dNADH:HAR 

activity could have been due to subcomplexes containing the NUBM subunit. 
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65D.  Although after replacement of 

lycine-43 to valine dNADH:HAR activity in membranes still corresponded to 29 % of the 

parental strain activity (0.4 and 1.4 µmol m n-1 mg-1 for G43V and the parental strain, 

respectively), no assembled complex I was found in this mutant by BN-PAGE. 

al strain activity. A very weak signal of complex I NADH dehydrogenase activity in 

 at the front of 

e gel, probably as the monomeric subunit (Figure 3.18). These data show that the 

3.2.2.2 Point mutations 

 
As judged by BN-PAGE (Figure 3.16), complex I was fully assembled to near wild type 

expression levels only in mutants G43A, R65L, R

g

i

 

Figure 3.16   BN-PAGE of point mutants of the NUEM subunit 
The respiratory chain complexes were solubilised from membranes with 1g n-dodecyl-β-D-maltoside (LM) per g 
of total protein. A – Coomassie stained BN-gel. B – Nitro blue tetrazolium stained BN-gel to show in-gel 
complex I activity. WT – parental strain, G43V*- cells were grown at 20°C, others at 27°C. 
 

Based on the assumption that the change of glycine-43 to valine may have led to formation of 

a more labile enzyme, the G43V mutant was also grown at lower temparature (20°C). The 

respiratory chain complexes of strain G43V grown at 20°C were separated using the milder 

detergent digitonin described by Schägger (2003). Still, no assembled complex I was 

observed in a BN-gel under these conditions, but dNADH:HAR activity increased to 43 % of 

the parent

the G43V mutant could be identified by an in-gel complex I activity assay using nitro blue 

tetrazolium under native condition (Figure 3.17B). Western blotting with antibodies against 

NUBM (51-kDa), NUCM (49-kDa) and NUEM (39-kDa) subunits revealed the presence of 

fully assembled complex I in small amounts in the G43V cells grown at 20°C. Remarkably, 

NUBM (51-kDa) and NUCM (49-kDa) subunits were found in fully assembled complex I as 

well as in the subcomplexes, whereas NUEM (39-kDa) subunit was detected

th
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 a valine resulted in the formation of less stable enzyme, which 

robably contains loosely bound subunit NUEM. 

 

Figure 3.17 Coomassie (A) and nitro blue 
tetrazolium (B) stained BN gel of G43V mutant 

 
Mitochondrial membranes from mutant G43V grown at 
normal (27°C) and G43V* lower (20°C) temperature were 
solubilised from membranes with digitonin (3g per gram of 
protein) and OXPHOS complexes were separated by BN-
PAGE. 

 

 

replacement of glycine-43 to

p

 

 

 

 

 

 

 

Figure 3.18   Western blot analysis of mutant G43V grown at 20°C  

First dimension BN-PAGE with mitochondrial membranes was followed by Tricine SDS-PAGE as second 
dimension. The proteins were blotted on PVDF membrane and tested using antibodies against NUBM, NUCM, 
NUEM subunits. The subcomplexes are marked with red arrows. The 39-kDa subunit was found at the front of 
the gel, probaly as the monomeric subunit. 
 

 

 

 



  RESULTS 

55 

he mutation of glycine-43 to alanine (mutant G43A) took place at a position that is common 

 all nucleotide binding motifs whereas the replacement of argine-65 to a leucine or aspartate 

utants R65L and R65D) affected a position in the cofactor binding site that is responsible 

r selective binding of NADPH. As mentioned above all three mutants contained fully 

ssembled complex I, which exibited in-gel NADH dehydrogenase activity (Figure 3.16B). 

Although the enzyme content in mutant mitochondria decreased to 50-60 % of the parental 

mutants retained specific ubiquinone redu

vel of 80-90 % of the wild type (Table 3.5).  

Assembled complex I could be purified

described in section 2.3.13. The use of n-d

subunit pattern of complex I from the mu ll subunits were still present in the mutant 

e in amounts comparable with parental complex I (Figure 3.19). Interestingly, the “X” 

ass spectrometry and exhibits close similarity to the 

thiosulfate sulfurtransferase family was present in lower amounts in mutants G43A and R65L 

than in wild type. In mutant R65D, only traces of this protein could be identified.  

 

 

 

 

 

 

 

 

sured on mitochondrial membranes from wild type and 
utants 

omplex I content and activity in mitochondrial membranes of Y. lipolytica mutants in the NUEM subunit are 
pared to parental cells. Complex I content is given as specific dNADH:HAR oxidoreductase activity in 

itochondrial membranes (100% = 1.4 µmol min-1mg-1), Vmax - dNADH:DBQ oxidoreductase activity 
alized for complex I content (100% = 0.41 µmol min-1mg-1). 

3.2.3 Mutants G43A, R65L, R65D 
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Figure 3.19   Doubled SDS-PAGE of complex I isolated from parental and mutant strains. 

Coomassie stained dSDS-gels with 70-80µg of isolated complex I. All subunits could be identified in purified 
enzyme of the mutants, except protein “X”(noted with red arrows). This protein was present in lower amount 
than in parental strain or was missing (mutant R65D).  
 

Isolated complex I was reactivated by incuba

phospholipids). All three m

tion with asolectin (mixture of soybean 

utants were able to oxidise NADH, but showed a decrease in 

plex I. The G43A mutant had retained about 80 

Q activity, whereas R65D and R65L had 13% and 32 % activity 

  

8 µmol min mg ), Vmax - dNADH:DBQ 
xidoreductase activity was normalized for complex I content measured as dNADH:HAR activity  (100% = 3.1 
mol min-1mg-1). 

specific ubiquinone reductase activity of com

% of dNADH:DB

respectively (Table 3.6). 

 

 

 

 

 

 

 

 

Table 3.6   Activity tests on purified complex I from wild type and mutants. 

Isolated enzyme was reactivated with asolectin at a 1:1 (w/w) protein-to-lipid ratio. Complex I content is given 
as specific dNADH:HAR oxidoreductase activity (100% = 4 -1 -1

o
µ



  RESULTS 

The EPR spectra of iron sulfur clusters N1, N2, N3 and N4 of mutant complex I preparations 

showed no significant changes compared to the parental strain. Only in the spectrum of 

mutant R65D a slightly diminished intensity of cluster N2 signal was observed (Figure 3.20). 

Thus only those mutants that exhinited a marked decrease in catalytic activity showed rather 

minor changes in their EPR spectra. However, while  a dramatic decrease of dNADH:DBQ 

activity was observed for mutant R65D, in membrane preparations of this mutant specific 

complex I was 80 % of the parental strain. Probably, the observed loss of activity that was 

observed for two of the mutants was rather unspecific and reflected instability of the enzyme 

during the purification procedure. 

 

 

 

Figure 3.20  EPR spectra of 
 

parental strain and mutants. 

from parental and mutant strains. EPR 
spectra of complex I reduced with 

signal in R65D shows a slightly 
decrease. The spectra were obtained 
by Dr. Klaus Zwicker. 
 

.2.3.1 Determination of NADPH and FMN content in complex I  

 order to determine the content of NADPH in complex I, purified enzyme was treated with 

n alkaline chloroform/methanol mixture. Then the extract was analysed by reversed-phase 

PLC (RP-HPLC). In RP-HPLC, compounds are separated based on their hydrophobic 

is unpolar while 

complex I purified from

 
EPR spectra of purified complex I 

NADH were recorded at a temperature 
of 12 K, a microwave frequency of 
9.48 GHz, a microwave power of 2 
mW, and a modulation amplitude of 
0.8 mT. Under these conditions 
spectra show contributions from 
clusters N1, N2, N3 and N4 
(Djafarzadeh et al., 2000). The N2 

 

3

 
In

a

H

character. Unlike traditional HPLC, RP-HPLC uses a stationary phase that 

the mobile phase is polar. Therefore the more hydrophobic the analyte the better it binds to 

the column and the later it will be eluted from the column. 
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Figure 3.21 RP-HPLC 
elution profile of NADPH 
and FMN extracted from 
complex I of parental and 
mutants strains. 
 
NADPH and FMN were extracted 
from purified enzyme with an 
alkaline chloroform/ methanol mix-
ture. The extracts were analysed 
using RP-HPLC detecting at 340 
nm. The peak obtained at 27 and 42-

 

 

Analysis of wild type complex I yielded FMN and NADPH, 

revealed by RP-HPLC with standard solutions containing 0.5

FMN, NADH appeared at a retention time of 31 minutes (no

to its higher polarity eluted at 27 minutes retention time. Thi

evidence that the 39 kDa subunit can bind NADPH and not N

complex I both peaks were observed, but in lower amounts th

R65D and R65L did not contain NADPH, but FMN was still nts.  

Compared to NADPH in standard solutions (Figure 3.22), the absorption intensity of NADPH 

bound to complex I from the wild type corresponded to 0.56 nmol of NADPH per mg of 

n curve NADPH and 

MN were extracted from a mixture with BSA and treated like the complex I samples. The 

sed by changes in the nucleotide 

binding domain and not by global disturbance of the enzyme structure. Intactness of complex 

43 minutes showed the characte-
ristic absorption spectrum of 
NADPH and FMN, respectively 
(not shown). 

but no NADH (Figure 3.21). As 

-5 nmol of NADH, NADPH and 

t shown), whereas NADPH due 

s experiment provided additional 

ADH. In the extract from G43A 

an in the parental strain. Mutants 

present in both muta

complex I (Table 3.7). It should be emphasized that for the calibratio

F

FMN content in parental complex I corresponded to 1 nmol of FMN per nmol of enzyme, 

consistent with data obtained for Y. lipolytica complex I (Djafarzadeh, Dissertation 

Universität Frankfurt 2000). The mutant G43A enzyme was still able to bind NADPH, but 

with lower affinity than the wild type enzyme. The FMN amount in this mutant correspond to 

almost 90 % of the wild type value. This finding could be taken as evidence that the 

impairment of NADPH binding in mutant G43A was cau
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I was also suggested by the near normal specific activity measured in mitochondrial 

membranes (Table 3.5). 

 

 

Figure 3.22   Calibration plots of NADPH (A) and FMN (B) 

Aliquots of standa
were treated with an alkaline chl ol mixture. The extracts w
nm. The Y axis corresponds to the area of NADPH or FMN peaks o  and 42-43 minutes, 

spectively; the X axis  correspond to the concentration of the nucleotides in standard solutions. 

rd solutions co ol of NADPH ontaining 1-5 nm
oroform/methan

r FMN and 1mg/ml of bovine serum albumin 
ere analysed using RP-HPLC at 340 
bserved at 27

re
 

The FMN yield of R65D mutant was comparable to wild type amounts, whereas in mutant 

R65L its content decreased to 66 % of the parental strain. As mentioned above NADPH was 

missing in both mutants.  

 

 

 

 

 

 

 

 

 

 

Table 3.7   Content of NADPH and FMN in complex I from parental strain and mutants 

Determination of nucleotide content in complex I was carried out using calibration solutions of NADPH and 
FMN in a dilution series from 0.5-5 nmol (see Fig. 3.22). The standard solutions were treated following the same 
procedure as for purified complex I and analysed by RP-HPLC. n.d - not detectable. 
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 was supposed that arginine-65 is crucial for selective binding of NADPH to the 39-kDa 

subunit. The absence of NADPH in isolated complex I of R65D and R65L mutants and the 

dramatic decrease of enzyme activity could have been caused by changes of complex I 

structure during purification. It was also unclear wheather the mutation had abolished the 

protein’s ability to bind the cofactor or wheather the cofactor was simply lost during the 

purification procedure. To answer these questions, cholate-treated mitochondrial membranes 

were analysed by RP-HPLC. Washing of the membrane with cholate was done to reduce the 

amounts soluble and of other weakly membrane-associated proteins. 

Y. lipolytica membranes were prepared as described in part 2.3.3 and washed with buffer 

 cholate. The ratio of cholate to protein was 1:1 (w/w). The 

able 3.8   Complex I activity tests measured in cholate-treated mitochondrial membranes 

he membranes were treated with potassium cholate at 1:1 (w/w) protein-to-cholate ratio. Complex I activity is 
given as dNADH:DBQ oxidoreductase activity (100% = 0.4 µmol min-1mg-1) normalized for complex I content 

in-

mg ). 

following RP-HPLC analysis of washed mitochondrial membranes (Figure 3.23).  

 

3.2.3.2 Determination of NADPH and FMN in mitochondrial membranes 

 
It

containing 1% of potassium

cholate-treated membranes from the parental strain and mutant R65L retained about 90% of 

complex I specific ubiquinone reductase activity compared to untreated membranes (Table 

3.8). In contrast, washing of membranes from strain R65D with cholate containing buffer 

educed complex I activity to about 50 %. r

 

 

 

 

 

 

 

 

 

 

T
prepared from wild type and mutants 
 
T

in mitochondrial membranes measured as specific dNADH:HAR oxidoreductase activity (100% = 1.1 µmol m
1 -1

 

Peaks corresponding to NADPH and FMN in the R65D and R65L mutants were analysed 
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 both mutants FMN was present in wild type amounts, whereas NADPH content was 

duced. The replacement of arginine-65 to aspartate led to a more dramatic decrease in 

ffinity for the cofactor. Only traces of NADPH were found in this mutant. In all membranes 

e content of NADPH was too low for quantitative analysis. The additional peak observed at 

 retention time of 41-41.5 minutes may correspond to FAD, a cofactor of complex II 

uccinat dehydrogenase) and NDH2 (alternative dehydrogenase) and several other quinone 

ductases of the Y. lipolytica respiratory chain. 

 

Figure 3.24   HPLC analysis of 
the pure FAD dissolved in 

alkaline chloroform/methanol 
mixture (B) 

traces of FMN (43.6 minutes) were 
identified in a sample dissolved in 

Presumably, 
ed into FMN 

under alkaline conditions. 

 

 

 

 

Figure 3.23   HPLC analysis 
of washed mitochondrial 
membranes from parental 
and mutants strains  
 
The fragments of mitochondrial 
membranes were treated with 1 
gram of potassium cholate per 1 
gram of protein. The peaks obtained 
at 27 and 42-43 minutes showed the 
characteristic absorption spectrum 
of NADPH and FMN, respectively. 
 

 
In

re

a

th

a

(s
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water (A) and treated with 

 
The FAD peak was observed at the 
retention time of 41.5 minutes. Only 

water while its content was higher 
after treatment with alkaline chloro-
form/methanol mixture. 
the FAD is partially turn
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In order to verify this assumption, pure FAD was treated with an alkaline chloroform/ 

methanol mixture. Then the extract was analysed by RP-HPL . As shown in Figure 3.24B, 

two peaks were identified in the extract of pur e of 

41- 41.5 minutes corresponds to FAD and concides with the peak observed at the same 

retention time in the membrane fraction. The second peak visible at the retention time of 43.6 

minutes seems to coorespond to FMN that was derived from FAD due to alkali treatment. The 

very low size of this peak in a control sample (pure FAD diss

this assumption (Figure 3.24A).  

Surp , in strain ∆nuem that was analyzed as a negative control a FMN peak could be 

observed that was higher than in wild type. Similarly, the FAD peak was higher in the 

deletion strain, but no fully assembled complex I was prese

above). On the other hand, the deletion mutant exhibited 16% o

activity. As this residual ac d by HPL

from subcomplexes containing the NUBM (51kDa) subu  

analysed by Western blotting using antibodies against the NUBM (51-kDa) and NUCM (49-

Mitochondrial membrane proteins were separated on a SDS-
Tricine gel. Then, the proteins were transferred on PVDF 
membrane and tested wit tibodies against NUBM (51-kDa), 
NUC -kDa) EM (39-kDa) subunits of complex I. No 
signal from the Da 
strain.  

 

  

 

 

 

 

 

 

C

e FAD. The higher peak at the retention tim

olved in water) could confirm 

risingly

nt in the deletion mutant (see 

f parental strain dNADH:HAR 

C analysis may have resulted 

nit, ∆nuem membranes were

tivity and the FMN foun

kDa) subunits. As clearly seen in Figure 3.25 the two subunits were detected at near wild-type 

levels, demonstrating the presence of subcomplexes in the deletion strain. As expected, no 

signal was detected using antibodies against the NUEM subunit.  

 

Figure 3.25   Western blot analysis of mitochondrial  
membranes isolated from parental (WT) and ∆nuem 
strains 

 

h an
M (49  and NU

39-k subunit was observed in the deletion 
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he subunit composition of mitochondrial complex I from the 

n compared to the NB4M 

ubunit. The position of the ACPM1 subunit in the acrylamide gel was also anomalous. It 

could be speculated that the subunits th

in vivo modifications.  

Using MALDI-TOF mass spectrometry, 23 proteins were identified, including the seven 

plex I. Th

unambiguously detected by MS. The po

predicted based on their molecular w

electrophoretic diagonal. Identification of the hydrophobic proteins by peptide mass 

ngerprinting (PMF) is generally difficult. Since charged residues, that in many cases are the 

embrane-spanning regions, enzymatic cleavage tends to 

ad to the generation of large hydrophobic fragments. These are mostly poorly soluble 

ading to poor MS detection and low sequence coverage. Moreover, proteins that contain 

nly few trypsin cleavage sites, generate only a limited number of peptides in the mass range 

uitable for PMF (1-3.5 kDa).  

y genome database searches, 37 open reading frames could be assigned to complex I. These 

re 14 central and 23 accessory subunits. Assuming that complex I contains only one copy of 

4 DISCUSSION 

4.1 Complex I from Y. lipolytica 

Mitochondial NADH:ubiquinone oxidoreductase (complex I) is a very large multiprotein 

complex. In addition to the 14 strictly conserved central subunits it contains a variable number 

of accessory subunits. At present, the best characterized enzyme is complex I from bovine 

heart with a molecular mass of about 980 kDa and 32 accessory proteins (Carroll et al., 2002; 

Hirst et al., 2003). In this study, t

aerobic yeast Y. lipolytica has been analysed by a combination of proteomic and genomic 

approaches. The purified enzyme was resolved into 39 spots by doubled SDS-PAGE. This 

method which has been developed especially for the mass spectrometric analysis of 

multimeric membrane proteins (Rais et al., 2004) allowed to separate well not only the 

hydrophilic but also the hydrophobic constituents of complex I. The hydrophobic subunits 

were found above the electrophoretic diagonal which is defined by the hydrophilic subunits. 

Remarkably, the hydrophilic proteins are not found exactly on the diagonal. In the second 

dimension, some proteins migrated somewhat faster than expected (Figure 3.2). For example, 

the mature NB4M and NI8M subunits have almost similar molecular masses of 11.9- and 11-

kDa, respectively. However, NI8M migrated much faster whe

s

at migrated anomalously in the second dimension have 

central subunits of com e seven central hydrophobic subunits were not 

sitions of the ND-subunits in 2D acrylamide gels were 

eight and hydrophobicity that places them above the 

fi

target site for proteases, are rare in m

le

le

o

s

B

a
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ass in Y. lipolytica is approximately, 930 kDa, consistent with its 

apparent native molecular weight in BN- gels (about 900 kDa). It should be noted that the 

 differ from the calculated mass. The protein masses 

e for the Y. lipolytica accessory subunits was 35 % that is 

each subunit, its molecular m

actual molecular mass of complex I could

were predicted from sequence analysis of the predicted gene translation products, which were 

compatible with and/or displayed significant sequence similarities to complex I sequences 

present in the genomes of N. crassa and other fungi. The mature protein masses of the central 

nuclear coded subunits were calculated from single exons and some N-terminal sequences 

obtained by Edman degradation (Kerscher et al., 2001a). For thirteen accessory subunits two 

exons were predicted, and in most cases splice site predictions were well supported. However, 

only for a few accessory subunits the N-terminal ends have been sequenced. For many other 

proteins information about mitochondrial import sequences was missing and only precursor 

molecular masses could be calculated. In addition, post-translation modifications like 

phosphorylation, myristoylation, acetylation, are common and could change the actual protein 

masses.  

In summary, 37 coding sequences of complex I subunits from Y. lipolytica were identified, 

which compose the complex with a predicted total molecular mass of approximately 930 kDa. 

It is still possible that Y. lipolytica complex I contains more subunits than were counted in 

dSDS acrylamide gels. 

  

4.2 Conserved subunits of complex I 

The successful completion of several genomic sequencing projects allowed or the 

determination of the subunit composition of complex I from different eucaryotic organisms. 

The number of subunits that were identified as being conserved between eucaryotic kingdoms 

increased as new genome databases became available. Comparison of the complex I 

constituents from bovine heart, the filamentous fungus N. crassa, the higher plant A. thaliana 

and the green alga C. reinhardtii  revealed 31 conserved subunits (Cardol et al., 2004). In this 

study, it has been attempted to compare all identified Y. lipolytica complex I subunits with 

enzyme components from the species mentioned above. Apart from the 14 highly conserved 

central subunits which also have counterparts in bacterial NADH dehydrogenase, all 

examined organisms contain 18 additional conserved proteins (Tables 3.3 and 3.4). The 

average sequence identity scor

significantly lower than the value of 47 % for the nuclear coded core subunits.  
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ion of most of the 18 conserved accessory subunits in eucaryotic complex I is still 

he enzyme and in protecting the complex against oxidative stress. 

ecause the majority of the supernumerary subunits were found to be localized in subcomplex 

Iα (Iγ and Iλ subcomplexes) of bovine complex I (Carroll et al., 2003; Table 1.1 see 

ld form stabilizers to keep the redox groups in 

utative kinase 

motif is absent from the homologous proteins in all other examined organisms. Apparently, 

The 18th conserved subunit NUJM (B14.7) was identified recently in bovine complex I 

(Carroll et al., 2003) and found to be conserved among mammals, fungi (Abdrakhmanova et 

al., 2004) and green algae (Cardol et al., 2004). This subunit also shows homology to TIM22 

and TIM23 complex proteins, which are involved in the transport of proteins from the cytosol 

across and into the inner mitochondral membrane (Rehling et al., 2004). For the Y. lipolytica 

NUJM homologue, two transmembrane helices were predicted. The molecular mass of the 

NUJM subunit calculated from a single exon corresponds to 17.3 kDa and no cleavable 

mitochondrial import sequence can be predicted. The C-teminal extension which brings the N. 

crassa B14.7 homologue up to 21.3-kDa is not present in Y. lipolytica NUJM subunit. The 

B14.7 bovine homologue was also identified in the genome of the green alga C. reinhardtii 

(Cardol et al., 2004). However, no clear homologues of the B14.7 subunit could be found in 

the worm C. elegans and in the genomes of the higher plants A. thaliana and O. sativa 

(Cardol et al., 2004; Heazlewood et al., 2003).  

The funct

largely unknown. Since they do not have counterparts in the bacterial enzyme it can be 

assumed that they are not involved in electron transfer and in proton translocation across the 

membrane. It has been suggested that accessory subunits may play a role in improving the 

structural stability of t

B

Introduction), it was speculated that they cou

the right position. Thus the accessory subunits could prevent the escape of electrons and the 

production of superoxide radicals (Friedrich and Weiss, 1996). Moreover, some of them show 

some homology to enzymes or proteins with alternative function and so they may also have a 

specific role essential not only for complex I activity or assembly. The influence of several 

accessory subunits on the activity or assembly of complex I has been studied (see 1.2.1). 

However, a potential involvment of these subunits in other synthetic pathways was not 

supported in most cases by experimental evidence. 

As mentioned above (see 1.2.1), two complex I subunits with similar molecular mass are 

supposed to be phosphorylated by a cAMP dependent protein kinase, namely NUYM (AQDQ 

in bovine; Papa et al., 1996; Papa, 2002) and NESM (ESSS in bovine; Chen et al., 2004). The 

phosphorylation site in the NUYM protein is conserved among mammals, but has been 

deduced only from sequence motifs and not determined experimentally. This p
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which have no counterpart in the Y. lipolytica 

t cellular processes has been disscussed 

this control device is not implemented in the enzyme of other eucaryotic species. In contrast, 

the phosphorylation of serine-20 in the bovine NESM subunit was shown experimentally by 

Edman sequencing and mass spectrometric analysis of the radiolabeled band isolated by SDS-

polyacrylamide gel electrophoresis. However, this residue is not conserved even among 

mammals, despite good conservation of the protein. The homologue of the bovine NESM 

subunit was also identified in Y. lipolytica. Previosely reported as an organism specific 

complex I protein, the NUWM subunit shows homology to the XP_324110 protein from N. 

crassa, which has been reported to be a distant relative of the bovine NESM subunit (Cardol 

et al., 2004). The NUWM protein of Y. lipolytica is not compatible in size with its 

homologues in bovine and N. crassa, but they seem to be similar in design, with a single 

transmembrane domain and two small, but highly charged extramembraneous domains. 

Similarly designed are several other subunits conserved among eukaryotes (NIAM, NB6M, 

NB2M, B9M, NIMM; Table 3.4) and subunits, 

enzyme (NB7M, NISM, NUML, NIGM, N4BM, NINM, NIKM; Table 3.4). It is tempting to 

speculate that the common functional requirements for this group of subunits are structure- 

rather than sequence-specific. By their ability to readily insert into the mitochondrial inner 

membrane these single transmembrane helix subunits could support assembly of the 

membrane arm, function as chaperones by interacting with transmembrane helices of other 

subunits. Some support for this proposal comes from the fact that a similar situation was 

reported for one of the accessory subunits of mitochondrial cytochrome bc1 complex (Brandt 

et al., 1994): The 6.4 kDa subunit from bovine and the 8.0 kDa subunit from Saccharomyces 

cerevisiae bc1 complex exhibit very low sequence similarity and consist of a single 

transmembrane helix bounded on both ends by highly charged domains. 

The NB6M subunit (bovine B16.6 homologue) was identified only recently as a complex I 

component in mammals (Fearnley et al., 2001; Carroll et al., 2002). This subunit is identical 

to the mammalian GRIM-19 protein, which is involved in apoptotic cell death induced by 

interferon-β and retinoic acid (Lufei et al., 2003). The observation that GRIM-19 and NB6M 

are the same protein involved in two independen

(Hirst et al., 2003). The identification of a Y. lipolytica homologue supports the view that this 

subunit is a genuine component of complex I. It should be noted however that sequence 

similarity between the fungal and mammalian proteins is low around the 40 C-terminal amino 

acids representing the part of GRIM-19 that has been demonstrated to be essential for its pro-

apoptotic function (Angell et al., 2000).  
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polytica genome and 

yme assembly. As was discussed above (see 1.3), 

biogenesis of complex I in various species could occur in different ways depending on its 

Two genes coding for ACPM proteins were identified in Y. lipolytica. It is known that most 

eukaryotes contain two mitochondrial ACPs (Schulte, 2001). One ACPM, most likely located 

in the mitochondrial matrix is needed for fatty acid synthesis (Jordan et al., 1997). Another 

ACPM is part of complex I and essential for its assembly. Disruption of the complex I 

associated ACP gene in N. crassa resulted not only in a deficiency of complex I assembly, but 

also in an increase of the lysophospholipid content of the mitochondrial membranes 

(Schneider et al., 1995; Schneider et al., 1997). It has been speculated that the ACP subunit of 

complex I is involved in recycling of lysophospholipids formed from lipid hydroperoxides by 

a phospholipase. Both ACPM proteins discovered in Y. lipolytica show close homology to the 

complex I ACP subunit from bovine heart and N. crassa. However, sequence identity of 

ACPM2 was 46%, i.e somewhat lower than the identity score of 50% found for ACPM1. 

Moreover, using MALDI-MS analysis of the purified complex I revealed that Y. lipolytica 

ACPM1 is the isoform incorporated into complex I.  

 

4.3 Nonconserved components of complex I 

Besides the subunits conserved among all eukaryotic species there are several proteins, which 

represent a set of phylum specific complex I subunits. It has been shown that eleven subunits 

are specific to mammalian species and have no related sequences in non-mamalian species. 

Three proteins are specific for fungi and six are typical for photosyntetic organisms like A. 

thaliana and C. reinhardtii (Heazlewood et al., 2003; Cardol et al., 2004). The subunits 

NI9M, NURM and NUZM were found in N. crassa complex I and were described as fungus 

specific proteins. However, the NURM subunit was not found in the Y. li

is likely to be specific for N. crassa complex I. The NUJM, NB5M and NIAM subunits are 

conserved in mammals and N. crassa (Cardol et al., 2004). As it was reported previousely no 

homologue was found for the NUVM subunits of Y. lipolytica (Abdrakhmanova et al., 2004). 

Detailed analysis of the NUVM sequence revealed that this subunit is similar to the NB5M 

protein from N. crassa. Thus, these three subunits represent a set of proteins specific for 

mammalian and fungal complex I. And finally, there is one subunit (NUXM) common to 

fungi and plants (Abdrakhmanova et al., 2004; Cardol et al., 2004). 

In addition to possible functions such as improving enzyme stability and/or protecting 

complex I against reactive oxygen species, it was proposed that the non conserved 

components play important roles in enz
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X” is related to the thiosulfate:cyanide 

ulfurtransferase enzyme family, often referred to as rhodaneses (TSTs, EC 2.8.1.1). 

Rhodaneses are ubiquitous enzymes present in all living organisms, from bacteria to man. In 

n mitochondria (Matthies et al., 2004), 

f its activity and possibly 

subunit composition. Thus, deletion of the NUXM subunit in N. crassa prevented the 

formation of the membrane arm but did not affect the assembly of the peripheral arm (Schulte 

and Weiss, 1995). Remarkably, this subunit is the only one that does not have a counterpart in 

the animal enzyme and is common for fungal and plant complex I. This may point to a 

specific role of this non-conserved “accessory” subunit in the assembly of the membrane arm 

in non-mammalian enzymes (Cardol et al., 2004).  

A novel protein named “X” with a molecular mass of 34.6 kDa was identified in Y. lipolytica 

complex I by MALDI-MS. It is apparent from the gel electrophoresis pattern that the level of 

this protein may be substoichiometric (Figure 3.2). The are two possible explanations for this 

observation: either protein “X” is a novel subunit that is loosely bound to complex I or it is an 

independent protein the attachment of which to complex I is strong enough to be stable during 

purification. This protein exhibits no homology to any other known subunit of complex I. 

However, database searching revealed that protein “

s

mammals, these enzymes are predominantely located i

where they form stable complexes through disulfide bonds with membrane-bound enzymes 

(Hatzfeld and Saito, 2000). In vitro, the members of this enzyme family catalyse the transfer 

of a sulfane sulfur atom from thiosulfate to cyanide, yielding sulfite and thiocyanate as final 

reaction products. The reaction occurs via a double displacement mechanism involving the 

transient formation of a persulfite-containing intermediate (Rhod-S), in which the transferring 

sulfur is covalently bound to the invariant catalytic cysteine residue. The biological role of 

rhodanese is largely speculative, because their in vivo substrates remain unknown. Proposed 

functions include cyanide detoxification (Sorbo, 1957), maintenance of the sulfane pool 

(Westley, 1988), selenium metabolism (Osagawara et al., 2001; Bordo and Bork, 2002) and 

thiamine biosynthesis (Palenchar et al., 2000). Due to their ability to transfer sulfur atoms and 

their mitochondrial location it was suggested that rhodaneses could catalyze the formation of 

iron-sulfur centers (Ogata and Volini, 1990). There have been reports which show that the 

sulfur transferred by rhodanese activates NADH dehydrogenase activity (Pagani and Galante, 

1983). In bovine heart, phosphorylation of rhodanese leads to loss o

converts the enzyme into a protein sulfurase, which would extract “labile” sulfur from iron-

sulfur centers of the respiratory chain. It was speculated that the rhodanese may regulate the 

respiration rate by controlling the status of iron-sulfur centers of enzymes of the respiratory 

chain (Ogata et al., 1990). 
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 absence in some mutants (see 3.2.3) of Y. 

from the deletion strain could arise from membrane associated 

In the context of previous work on sulfotransferases it appears very likely that the “X” protein 

of Y. lipolytica is an independent enzyme which is stronly bound to complex I and stable 

during the purification. However, the “X” protein was found in a dissolved crystal of complex 

I (Zickermann, personal communication) which could be a valid reason to believe that this 

protein may be the 38th “bona fide“ subunit of Y. lipolytica complex I. The substoichiometric 

levels of the “X” protein in 2D gel patterns and its

lipolytica complex I could reflect a loose attachment to complex I. Similarly, the NUDM (42 

kDa) subunit of bovine complex I was also found in substoichiometric amounts in purified 

enzyme. This subunit was lost gradually during chromatography, suggesting that it is only 

loosely bound to the complex (Hirst et al., 2003). 

The identification of complex I-associated proteins with a putative function for iron-sulfur 

clusters modification supports the idea that the activity of Y. lipolytica respiratory chain 

enzymes could be regulated via control of the status their iron-sulfur clusters.  

 

4.4 NADPH binding to the accessory 39 kDa subunits of Y. lipolytica 

complex I 

 

An attempt had been made previously to determine the function of the 39 kDa (NUEM) 

subunit of N. crassa complex I. Schulte and coworkers (1999) had shown that in N. crassa 

this subunit is not required for assembly of complex I, but is crucial for catalytic activity. 

However, the postulated function of the 39 kDa subunit in the biosynthesis of the hypothetical 

but yet unidentified redox group “X” is not supported by the experimental evidence presented 

here. 

 

4.4.1 Deletion mutant 

Unlike in N. crassa, complex I was not assembled in the ∆39 kDa mutant of Y. lipolytica. The 

absence of the enzyme in BN-gels and the loss of specific complex I activity demonstrated the 

absence of assembled complex I. This result might indicate different pathways or control of 

complex I assembly in both organisms. In this context, the additional subunit NURM present 

in N. crassa and absent in Y. lipolytica complex I may be involved by playing a specific role 

for enzyme assembly and stability.  

The residual dNADH:HAR activity and the FMN detected by HPLC analysis in the 

mitochondrial membranes 
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ee glycines (GXXGXXG). The middle one 

.  

eplacement of glycine-43 with alanine in the 39 kDa subunit seems to result in damage of 

but e t in mitochondrial membranes was reduced to 50%. Interestingly, the 

ADPH amount in isolated complex I was also reduced to 40 % in comparison to the parental 

rd conditions. Only small amounts of assembled enzyme were identified in cells grown 

t lower temperature, indicating the formation of an unstable enzyme complex that did not 

This protein was found at the front of the gel as a free pool. It 

protein. Considering that NADPH is tightly bound to the 

subcomplexes including the NUBM (51 kDa) and NUCM (49 kDa) subunits. These subunits 

were identified in the membrane by Western-Blot analysis. The higher amount of FAD in 

mitochondrial membranes of ∆nuem may reflect an increased content of FAD-binding 

enzymes. There are at least two enzymes of the Y. lipolytica respiratory chain containing FAD 

as a cofactor, namely succinate:dehydrogenase (complex II) and alternative dehydrogenase 

(NDH2 and NDH2i). Apparently, the higher expression level of both enzymes is a 

compensatory mechanism in the cells as a response to the lack of assembled complex I.  

 

4.4.2 Site-directed mutagenesis in the nucleotide binding domain 

The typical nucleotide binding site consists of thr

makes close contact to the pyrophosphate moiety of the cofactor and is crucial for nucleotide 

binding (Lesk, 1995). It should be noted here that it is not clear whether NADPH is 

exchangeable or tightly bound to the protein and required for structural stability

R

the cofactor binding site within the protein, accompanied by minimal overall changes in 

protein structure. Complex I from mutant G43A retained almost 90% of wild type activity, 

nzyme conten

N

strain, pointing to a decrease in affinity for the cofactor. As the decrease in NADPH binding 

correlated with a corresponding defect in the assembly of complex I one might speculate that 

the 39 kDa subunit may participate in a biosynthetic pathway, delivering a product which is 

needed for complex I assembly. 

After replacement of glycine-43 with valine no assembled complex I was found under 

standa

a

contain the 39 kDa subunit. 

remains unclear whether in this mutant the 39 kDa protein was not at all associated with the 

assembled enzyme or whether it was lost during solubilisation. A number of reports show that 

at earlier stages of complex I assembly, the 39 kDa subunit forms a subcomplex with other 

proteins including the 49 kDa and 30 kDa subunit (Antonicka et al., 2003; Ugalde et al., 

2004). However, no signal was observed in the subcomplex containing the 49 kDa subunit 

using antibodies against the 39 kDa 

protein seems likely that exchanging glycine-43 to valine led to complete displacement of the 

cofactor from the nucleotide-binding pocket due to the much bulkier side chain of valine in 



  DISCUSSION 

71 

comparison to glycine. The loss of the ability to bind the nucleotide could cause steric 

alteration of the protein, which may prevent incorporation of the 39 kDa subunit into the 

subcomplex. This assumption is however speculative and needs futher investigation. 

Overall, the results presented here indicate a key role for the 39 kDa subunit for complex I 

assembly in Y. lipolytica. 

 

4.4.3 Mutants R65D and R65L 

The presence one or two basic residues determines the ability of SDRs to bind NADPH: the 

) and the second 

in green. From Agarwal and Auchus, Endocrinology, (2005) Mar 
17; [Epub ahead of print 2005].  

1990; Perham et al., 1991) 

first basic amino acid is located at the end of the second β-strand (Figure 4.1

basic residue is in the Gly-motif. In the 39 kDa subunit of Y. lipolytica complex I, the highly 

conserved arginine at position 65 is predicted to reside at the end of the second β-strand 

(Figure 4.2).  

 

 

 

 
Figure 4.1 Cofactor binding region of human 17β-
hydrosteroid dehydrogenase (17β-HSD1), an SDR 
enzyme (pdb ID 1QYV) 
 
The presence of arginine at the end of the second β-strand in 17β-
HSD1 determines the selective binding of NADPH. The arginine 
residue (blue) forms a salt bridge with the 2'-phosphate (red) of 
NADPH (yellow). The GXXXGXG motif of 17β-HSD1 is shown 

 

The positively charged arginine-65 could interact with the 2’-phosphate of NADPH. It 

stabilizes the binding of the cofactor and neutralizes its intrinsic negative charge through two 

hydrogen bonds (Persson et al., 2003). NADH-prefering enzymes have an acidic amino acid 

at the same position. Computer simulations of the NADPH binding poket in 17β−hydrosteroid 

dehydrogenase type 3 (17β−HSD3), a member of the SDR enzyme family, have shown that 

the trunk of the side chain of arginine-80 corresponding to arginine-65 in the 39 kDa subunit 

of Y. lipolytica forms part of the hydrophobic pocket for the purine ring of adenosine while its 

guanidinium moiety is in contact with the 2’-phosphate of NADPH (McKeever et al., 2002). 

The position of this basic residue is probably quite conserved so that removal of arginine-80 

would appear to be prerequisite to reduce the enzyme’s affinity for NADPH (Scrutton et al., 
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tivity of 

 subunit a peak corresponding to the NADPH was still observed 

fter HPLC analysis of washed mitochondrial membranes. However, it was much smaller for 

for R65D indicating significantly reduced binding of 

nine-65 to aspartate resulted in a dramatic reduction in the affinity for NADPH 

nd only traces of the cofactor were found in the mitochondrial membrane fraction. As 

expected, the negatively charged side chain of aspartate severely interferred with binding of 

NADPH to the protein. Interestingly, no NADH could be extracted from complex I of the 

R65D mutant. As revealed by HPLC analysis of pure NADH, it has a longer retention time 

(30-31 minutes) than NADPH (27 min

due with an acidic one did not change 

milar result was obtained for 17β−HSD3 when changing arginine-80 to aspartate (McKeever 

et al., 2002), this mutant was inactive w

able to bind NADH. Modelling of as

aspartate is not able to effectively inte

short side chain.  

in mitochondrial membranes to 13 % in purified enzyme. This was accompanied with slightly 

Arginine-65 in the 39 kDa subunit was changed to a neutral (leucine) and a negatively 

charged (aspartate) amino acid. In both mutants, fully assembled complex I was found. 

Despite a reduced content of enzyme in mitochondrial membranes, specific ac

complex I from mutants R65L and R65D was 80-90% of wild type. After replacement of 

arginine-65 in the 39 kDa

a

mutant R65L and hardly detectable 

NADPH to the protein. Leucine is neutral and can not make a hydrogen bond with 2’-

phosphate of NADPH and neutralize its negative charge, but it has a short side chain and can 

fulfill the role of the hydrophobic portion of arginine. Therefore it is very likely that leucine 

did not prevent the cofactor binding, but weakened its binding to the protein. In contrast, the 

change of argi

a

utes). This suggested that replacement of a basic resi-

the cofactor preference from NADPH to NADH. A si-

hen NADPH was used as cosubstrate but was also not 

partic acid at position 80 in this enzyme showed that 

ract with the 2’- and 3’-hydroxyls of NADH due to its 

Enzyme purification from both mutants resulted in a significant decrease of complex I activity 

and complete loss of NADPH. The negative effect of purification was more pronounced in  

mutant R65D, since specific complex I activity was reduced from 80 % of wild type activity 

diminished intensity of the cluster N2 signal in this mutant. It is very likely that the changes 

observed in the mutants were due to some instability of the enzyme during the purification 

procedure.  

As shown from secondary structure analysis (Figure 4.2) of the 39 kDa subunit, arginine-65 is 

located at the end of the second β-strand. From this observation and from general 

considerations on structural dynamics of  membrane proteins (Ash et al., 2004; Roux and 

Schulten, 2004) one can conclude that a single mutation at position 65 may lead to structural 
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changes of the protein. This is especially important for mutant R65D, because a positively 

charged arginine is replaced by a negatively charged aspartate. This mutation might change 

electrostatic interactions in the region close to the NADPH pocket and may also explain loss 

of activity in the mutant. In comparison, mutation R65L does not introduce additional charge 

and may not change electrostatic interactions in it surroundings. 

 

 

Figure 4.2 Secondary structure prediction of the 
nucleotide-binding domain of the 39-kDa 
complex I subunit from Y. lipolytica 
 
The prediction of secondary structure was done using the 
PredictProtein programm package from Internet 
(www.predictprotein.org). E – β-strand, H- α-helix, L- loop. 

 

Remarkably, the amount of protein “X” also correlated with complex I activity. It may be 

speculated that this protein could also influence enzyme stability.  

These results confirm the conclusions made from experiments with the deletion strain and 

mutant G43A, namely that the 39 kDa subunit is not essential for complex I activity but is 

involved in assembly and stability of the enzyme complex. The basic residue located at the 

end of the second β-sheet in the cofactor binding domain of the 39 kDa subunit of complex I 

is required for binding of NADPH to the protein. Replacement of this amino acid not only led 

to decreased affinity of the protein for NADPH but also caused sterical changes in the 39 kDa 

subunit.  



  SUMMARY 

74 

are highly conserved among 

rocaryotes and eucaryotes. The first aim of this work was the identification and sequence 

etermination of accessory subunits of complex I from the aerobic yeast Yarrowia lipolytica. 

39 protein spots were counted on double

including the seven central nuclear code

combination of proteomic and genomic approaches, the sequences of 37 complex I subunits 

were identified. The sum of their individua

with the native molecular mass of approxim  

y BN-PAGE. A genomic analysis with Y. lipolytica and other eukaryotic databases to search 

unit, previously postulated 

s through disulfide bonds with membrane associated enzymes. It has been proposed 

that rhodaneses could regulate the respiration rate by reversible sulfuration of iron-sulfur 

clusters of respiratory chain complexes. The finding of a rhodanese-like protein in isolated 

complex I of Y. lipolytica suggests a specific regulatory mechanism of complex I activity 

through control of the status of its iron-sulfur clusters.  

 

The function of most accessory subunits is still largely unknown. In contrast to the 14 central 

subunits which present the minimal form of the enzyme, accessory subunits do not have a 

counterpart in the bacterial enzyme. Most likely, they are not involved in electron transfer and 

proton translocation across the membrane. It has been suggested that they could play a role in 

improving enzyme stability and in protecting complex I against oxidative stress. Some of the 

accessory subunits show homology to enzymes or proteins with alternative functions and thus 

are probably essential for complex I assembly and/or activity. 

5 SUMMARY 

5.1 Subunit composition of Y. lipolytica complex I 

Complex I, the largest multiprotein enzyme of the respiratory chain, consists of 23-32 

accessory subunits in addition to the 14 central subunits that 

p

d

d SDS gels, the identity of 23 complex I subunits 

d subunits was defined using MALDI-MS. By a 

l molecular masses (about 930 kDa) was consistent 

ately 900 kDa for Y. lipolytica complex I obtained

b

for homologues of complex I subunits revealed 31 conserved proteins among the examined 

species. Detailed sequence analysis of the NUWM complex I sub

to be a Y. lipolytica specific protein showed that this subunit is a putative homologue of the 

NESM subunit from N. crassa.  

 

A novel protein named “X” was found in purified Y. lipolytica complex I by MALDI-MS. 

This protein exhibits homology to the thiosulfate sulfurtransferase enzyme referred to as 

rhodanese. Human rhodaneses are mostly located in mitochondria where they form stable 

complexe
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nit of complex I  

The second part of this study was aimed at investigating the possible role of the accessory 39 

ology to the short-chain 

 a biosynthetic pathway delivering a product which is needed 

r complex I assembly. The conservation of wild type activity in the G43A mutant complex I 

d prevent the incorporation of the 39 

Da subunit into complex I.  

ubiquinone reductase activity, 

5.2 The 39 kDa subu

kDa subunit of Y. lipolytica complex I. This subunit shows hom

dehydrogenase/reductase enzyme family and is able to bind NADPH as cofactor. However, it 

is not clear whether NADPH is exchangeable or tightly bound to the protein and whether it is 

required for structural stability.  

The postulated function of the 39 kDa subunit in the biosynthesis of a yet unidentified redox 

group for N. crassa complex I, is not supported by any new experimental evidence at present.  

In contrast to the situation in N. crassa, deletion of the 39 kDa encoding gene in Y. lipolytica 

led to the absence of fully assembled complex I. This result might indicate a different 

pathway of complex I assembly in both organisms.  

The replacement of the middle glycine-43 with alanine in the NADPH-binding site 

(GXXGXXG) did not prevent assembly of active complex I. The G43A mutant retained 90% 

of wild type activity. However, the reduced amount of enzyme in mitochondrial membranes 

correlated with reduced cofactor content in the mutant complex I. Based on these findings and 

on the assumption that NADPH is exchangeable, it could be speculated that NADPH bound to 

the 39 kDa subunit is needed for

fo

after partitial loss of the cofactor indicated that the 39 kDa subunit is probably not essential 

for complex I activity. Surprisingly, after changing glycine-43 to valine, no assembled 

complex I was detected by BN-PAGE. Only traces of assembled complex I were found by 

Western blot analysis in cells grown at lower temperature. While the mutant complex I did 

not contain the 39 kDa subunit, the subunit was observed at the front of the gel as a 

monomeric protein. If NADPH is tightly bound to the protein, the displacement of the 

cofactor from the nucleotide-binding domain due to the longer side chain of valine could lead 

to the conformational change in the protein. This coul

k

 

Mutations of arginine-65 that is located at the end of the second β-strand and responsible for 

selective interaction with the 2’-phosphate group of NADPH retained complex I activity in 

mitochondrial membranes but the affinity for the cofactor was markedly decreased. Complex 

I from mutant R65L was able to bind NADPH while only traces of cofactor were found in 

cholate-washed mitochondrial membranes of mutant R65D. Purification of complex I from 

mutants R65L and R65D resulted in decrease or loss of 
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5 not only led to a decrease in respectively. It is very likely that replacement of arginine-6

affinity for NADPH but also caused instability of the enzyme due to steric changes in the 39 

kDa subunit.  
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igation will be needed to identify all proteins present in a preparation of 

omplex I from Y. lipolytica and to confirm which of them are true subunits. Sequencing of 

DNAs for the accessory subunits will be required to confirm some splicing events 

xperimentally. ESI-MS measurements of the masses of intact mature subunits and 

omparison of these value with masses calculated from sequences of cDNAs will allow to 

entify potential post-translation modifications of complex I subunits.  

he finding of a sulfurtransferase-like protein in purified Y. lipolytica complex I is of special 

terest. The generation of a deletion mutant of the gene encoding this protein will allow to 

vestigate its possible role for complex I activity and biogenesis.  

he investigation of subcomplexes in the ∆39 and G43V mutants could shed light on the 

bly pathway of complex I in Y. lipolytica and allow to determine the role of the 39 kDa 

utant R65D shows the characteristics needed to study the function of the 39 kDa subunit for 

omplex I activity: the enzyme retains wild type activity while it is almost devoid of  

ortunately the complex in the R65D mutant is unstable during purification 

rocedure. Therefore, it should be interesting to explore the R65D mutant complex I in terms 

f enzyme activity in more detail in submitochondrial particles while preserving its native 

6 OUTLOOK 
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ASSUNG 

otonenpotential, das 

tte sind: NADH:Ubichinon 

on (UQ) und Cytochrome c fungieren als mobile Elektronencarrier. 

stalt aufweist, wobei der sogenannte Membranarm in die innere mitochondriale 

Membran eingebettet ist und der periphere Arm in die mitochondriale Matrix hineinragt. Im 

ergleich zum bakteriellen Enzym ist der mitochondriale Komplex I komplizierter aufgebaut 

nd hat eine größere molekulare Masse. Die 14 sogenannten zentralen Untereinheiten, die 

uch im bakteriellen Komplex I vorkommen, bilden die „minimale“ Form des Enzyms. 

ieben davon befinden sich im peripheren Arm und sind kernkodiert (75, 51, 49, 30, 24 kDa, 

YKY, PSST). Diese enthalten alle bekannte Redoxgruppen des Komplex I: FMN und die 

isen-Schwefel Zentren N1a, N1b, N2-N5, N6a,b. Der Membranarm besteht aus weiteren 

ieben Untereinheiten (ND1-ND6, ND4L), die hydrophob sind und von mitochondrialer DNA 

odiert werden. Der eukaryotische Komplex I besitzt zusätzlich zu den 14 zentralen 

ntereinheiten noch 23-32 „akzessorische“ Untereinheiten. Komplex I der Säugetiere hat ein 

olekulargewicht von etwa 1 MDa und  besteht aus 46 Untereinheiten (Skehel et al., 1998; 

arroll et al., 2003), Komplex I der Grünalge Chlamydomonas reinhardtii besteht aus 42 (970 

Da) (Cardol et al., 2004) Untereinheiten und der vom Fadenpilz Neurospora crassa aus 39 

Untereinheiten (1.1 kDa) (Marques et al., 2005) Die Funktion der meisten akzessorischen 

7 ZUSAMMENF
 

Die mitochondriale Atmungskette ist Teil der oxidativen Phosphorylierung. Die 

Komponenten der Atmungskette katalysieren die Übertragung von Elektronen aus den 

Reduktions-Äquivalenten NADH und FADH2 auf molekularen Sauerstoff. Die freie Energie 

der Redoxreaktionen wird für das Pumpen von Protonen verwendet. Die Protonen werden aus 

der Matrix in den Intermembranraum zwischen der inneren und äußeren Mitochondrien-

membran transportiert. Dabei einsteht ein elektrochemisches Pr

schließlich zur ATP-Synthese genutzt wird. Insgesamt sind vier Enzymkomplexe und zwei 

mobile Elektronüberträger an der Atmungskette beteiligt. Ein Enzymkomplex, die ATP-

Synthase, sorgt für die ATP-Synthese. Die Enzyme der Atmungske

Oxidoreduktase (Komplex I), Succinat:Ubichinon Dehydrogenase (Komplex II), 

Ubihydrochinon:Cytochrom c-Oxidoreduktase (Komplex III), Cytochrome c-Oxidase 

(Komplex  IV). Ubichin

 

Die NADH:Ubichinon Oxidoreduktase (Komplex I) ist das größte und komplizierteste Enzym 

der Atmungskette, es katalysiert den Transfer von zwei Elektronen von NADH auf 

Ubichinon. Daran gekoppelt ist die Translokation von vier Protonen über die innere 

Membran. Elektronenmikroskopische Untersuchungen haben gezeigt, dass Komplex I eine L-

förmige Ge
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e Homologe im bakteriellen Enzym haben, ist es 

ehr wahrscheinlich, dass die akzessorischen Untereinheiten nicht an der 

 I 

erscher et al., 2002). 

Untereinheiten ist unbekannt. Da sie kein

s

Elektronenübertragung und dem Protonenpumpen beteiligt sind. Einige von ihnen zeigen 

eindeutige Homologie zu Enzymen oder Proteinen mit alternativen Funktionen, und könnten 

weitere Aufgaben übernehmen, die für die Aktivität und/oder Assemblierung des Komplex I 

erforderlich ist. Derzeit sind nur wenige der akzessorischen Untereinheiten detailliert 

untersucht worden. 

 

In den letzten Jahren wurde Yarrowia lipolytica, eine obligat aerobe Hefe, als Modellsystem 

in unserem Labor etabliert. Im Vergleich zur Atmungskette der Hefe S. cerevisiae, die keinen 

Komplex I beinhaltet, besitzt Y. lipolytica einen stabilen Komplex I. Das Enzym lässt sich gut 

reinigen und ist dem Komplex I aus N. crassa sehr ähnlich. Die Sequenzierung des Genoms 

von Y. lipolytica wurde vor kurzem abgeschlossen. All dies macht diese Hefe zu einem 

hervorragenden Modellsystem für strukturelle und funktionelle Untersuchungen an Komplex

(K

 

Das erste Ziel dieser Arbeit war die Bestimmung der Untereinheiten, aus denen sich Komplex 

I von Y. lipolytica zusammensetzt. Kenntnisse der Untereinheitenzusammensetzung können 

für die Bestimmung der Enzymstruktur und des Reaktionsmechanismus wichtig sein. 

Außerdem liefert die Aufdeckung von Homologien einzelner Untereinheiten nützliche 

Informationen über mögliche Aufgaben der akzessorischen Untereinheiten und mögliche 

Wechselwirkungen der Atmungskette mit weiteren biosynthetischen Prozessen.  

Die His-tag Markierung der 30 kDa Untereinheit des Komplex I ermöglicht die Isolierung des 

hochreinen Enzyms mittels Ni2+-Affinitätschromatographie und nachfolgender Gelchromato-

graphie (Kashani-Poor et al., 2001a). Der isolierte Komplex I wurde mithilfe von dSDS-

PAGE (Rais et al., 2004) in einzelne Untereinheiten zerlegt. Die meisten Proteine liegen auf 

einer Diagonalen, wobei die hydrophoben Untereinheiten sich oberhalb derselben befinden. 

39 Proteinspots wurden im Gelmuster separiert, davon wurden 23 Untereinheiten mittels 

Massenspektrometrie (MALDI-MS) identifiziert, inklusive der sieben zentralen kernkodierten 

Untereinheiten. Die sieben zentralen hydrophoben Untereinheiten lassen sich mittels MALDI-

MS bisher nicht eindeutig identifizieren. Aufgrund ihrer molekularen Masse und ihrer Hydro-

phobizität wurde ihre Position in 2D-Polyacrylamidgelen vorausgesagt. Durch die Kombina-

tion von proteinbiochemischen und genomanalytischen Methoden wurden insgesamt 37 

Untereinheiten von Komplex I aus Y. lypolytica identifiziert. Die Summe ihrer individuellen 
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tereinheit aus Y. lipolytica Komplex I wurde zunächst als 

rganismusspezifisches Protein betrachtet (Abdrakhmanova et al., 2004). Eine detaillierte 

 Ergebnissen 

molekularen Massen (zirka 930 kDa) stimmt gut überein mit der molekularen Masse von 

ungefähr 900 kDa für Y. lipolytica Komplex I, die mithilfe der BN-PAGE bestimmt wurde. 

Die Datenbanksuche nach Untereinheithomologien für Y. lipolytica Komplex I zeigte, dass 31 

Untereinheiten zwischen Säugetieren, Pilzen und photosynthetisch aktiven Organismen wie 

Chlamydomonas reinhardtii und Arabidopsis thaliana konserviert sind.  

 

Die NUWM Un

o

Analyse der Proteinsequenzen zeigte jedoch, dass diese Untereinheit Homologie zum 

XP_324110 Protein von N. crassa aufweist, das als entfernter Verwandter der NESM 

Untereinheit aus Rind beschrieben wurde (Cardol et al., 2004). Obwohl das NUWM Protein 

von Y. lipolytica in Bezug auf die Größe nicht mit seinen Homologen in Rind und N. crassa 

kompatibel ist, scheinen diese drei Proteine im Aufbau ähnlich zu sein: sie haben eine 

einzelne transmembranäre Domäne und zwei kleine, aber stark geladene extramembranäre 

Domänen. 

 

Weitere Untersuchungen sind erforderlich, um alle Untereinheiten von Komplex I zu identi-

fizieren und zu verifizieren, welche von ihnen authentische Komplex I Untereinheiten sind. 

Sequenzierung von cDNAs für die akzessorischen Untereinheiten ist nötig, um das Spleißen 

die Exon-Intron-Strukturen der zugrundeliegenden Gene experimentell zu bestätigen. 

Potenzielle posttranslationale Modifikationen der Untereinheiten können identifiziert werden, 

indem die aus den cDNA-Sequenzen berechneten molekularen Massen mit den

von ESI-MS-Messungen an intakten reifen Untereinheiten vergleichen werden. 

 

Ein neues Protein "X" wurde in gereinigtem Y. lipolytica Komplex I mithilfe von MALDI-MS 

identifiziert. Kein Homolog dieses Proteins konnte in Komplex I von anderen eukaryotischen 

Organismen gefunden werden. Es zeigt aber eindeutige Homologie zu Mitgliedern der 

Thiosulfat Sulfurtransferase Enzymfamilie, welche auch als Rhodanesen bezeichnet werden 

(TSTs, EC 2.8.1.1). Menschliche Rhodanese wird größtenteils in Mitochondrien gefunden 

(Matthies et al., 2004), wo sie sich durch Disulfidbindungen an Membranproteinkomplexe 

binden können (Hatzfeld et al., 2000). Die Mitglieder dieser Enzymfamilie katalysieren in 

vitro die Übertragung eines Sulfan Schwefel-Atoms von Thiosulfat auf Zyanid, dabei 

entstehen Sulfit und Thiocyanat als Endprodukte. Es ist spekuliert worden, dass die 

Rhodanesen die Atmungsrate durch reversible Sulfurierung von Eisen-Schwefel-Clustern von 
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„X“ für Y. lipolytica 

omplex I abzuklären.  

esitzt, wird NADPH als Cofaktor gebunden. Es wird angenommen, dass dieser 

asische Rest mit der 2’-Phosphatgruppe des NADPH eine Wasserstoffbrückenbindung 

n Cluster N2 

nd Ubichinon befindet interpretiert worden waren, wurden in der Deletionsmutante nicht 

Atmungskettenkomplexen regulieren könnten (Ogata et al., 1989). Die Identifizierung eines 

möglichen Sulfotransferase-Proteins im gereinigten Y. lipolytica Komplex I könnte ein erster 

experimenteller Hinweis darauf sein, dass Y. lipolytica einen regulatorischen Mechanismus 

für Atmungsketten Komplexe besitzt, der über den Status ihrer Eisen-Schwefel Cluster wirkt. 

Weitere Untersuchungen sind nötig um die mögliche Rolle des Proteins 

K

 

Im zweiten Teil dieser Arbeit wurde die Funktion der NUEM (39 kDa) Untereinheit 

untersucht. Die akzessorische 39 kDa Untereinheit gehört zu der short-chain Reduktase/ 

Dehydrogenase Enzymfamilie. Diese Enzyme enthalten in der Nähe des N-Terminus eine 

typische Nukleotid-Bindungsstelle für NADPH oder NADH. Diese bestehen üblicherweise 

aus einer βαβ Rossmann-Faltung und drei Glycinen in der Anordnung GXXGXXG, wobei 

das mittlere Glycin für die Nukleotidbindung besonders wichtig ist (Kallberg et al., 2002b; 

Persson et al., 2003). Da die 39 kDa Untereinheit einen basischen Rest am Ende des zweiten 

β-Strangs b

b

eingehen kann, wodurch wird die negative Ladung des Phosphats neutralisiert und die ganze 

Struktur stabilisiert wird (Lesk, 1995;Kallberg et al., 2002b; Persson et al., 2003). Jedoch ist 

nicht klar, ob das NADPH ein austauschbares Substrat darstellt oder ob es fest an das Protein 

gebunden ist und für die Strukturstabilität des Proteins erforderlich ist. 

Deletion der NUEM (39 kDa) Untereinheit in N. crassa lieferte einen assemblierten, aber 

inaktiven Komplex I. UV/Vis-spektroskopische Signale, die als Hinweis auf eine neuartige, 

bisher nicht identifizierte Redoxgruppe „X“, die sich möglicherweise zwische

u

identifiziert. Es ist daher postuliert worden, dass die 39 kDa Untereinheit an der Biosynthese 

der  Redoxgruppe „X“ beteiligt ist (Schulte et al., 1999). Jedoch wurden seither keine neuen 

Nachweise erbracht, die diese Hypothese bestätigen könnten. Außerdem ist die Existenz der  

Redoxgruppe „X“, deren chemische Natur nach wie vor unklar ist, insbesondere durch die 

sorgfältige chromatographische und massenspektroskopische Untersuchung von Komplex I 

aus Rinderherz, in Frage gestellt.  

 

Im Gegensatz zu N. crassa, lieferte die Deletion der 39 kDa Untereinheit in Y. lipolytica 

keinen assemblierten Komplex I. Assembliertes Enzym war nicht im BN-Gel nachweisbar, 

selbst bei niedriger Detergenzkonzentration. Jedoch zeigten mitochondriale Membranen des 
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darauf hin, dass N. crassa und Y. lipolytica möglicherweise 

erschiedene Assemblierungswege des Komplex I haben. 

s beteiligt ist, welcher 

r Annahme, dass das NADPH fest an das Protein gebunden 

nd nicht austauschbar ist, könnte dies zu strukturellen Änderungen des Proteins führen. Dies 

Deletionsstammes 16 % dNADH:HAR Aktivität. Da die dNADH:HAR Aktivität nur von der 

NUBM (51 kDa) Untereinheit abhängt, kommt diese restliche Aktivität vermutlich von 

Subkomplexen, die die NUBM (51 kDa) Untereinheit besitzen. Eindeutige Signale der 

NUBM (51 kDa) und NUCM (49 kDa) Untereinheiten wurden in Membranen des ∆nuem 

Stamms mittels Western-Blot Analyse nachgewiesen.  

Dieses Ergebnis weist 

v

 

Der Deletionsstamm konnte erfolgreich komplementiert werden. Es wurde eine Reihe von 

Punktmutationen in die 39 kDa Untereinheit eingeführt. Die Punkmutationen wurden direkt in 

der Nukleotidbindunsstelle (mittleres Glycin-43) und an der Position des basischen Restes am 

Ende des zweiten β-Strangs (Arginin-65) generiert.  

Anhand eines Blau-Nativ Gels konnte gezeigt werden, dass der Austausch von Glycin-43 

gegen Alanin in der 39 kDa Untereinheit eine vollständige Assemblierung von Komplex I 

erlaubt. Komplex I der G43A Mutante zeigte fast 90 % der wildtypischen DBQ-Aktivität, 

jedoch ist der Enzymgehalt in der mitochondrialen Membran auf 50 % reduziert. Auch das 

molare Verhältnis von NADPH zu Komplex I beträgt nur 40 %, was auf eine niedrigere 

Affinität des mutierten Proteins für NADPH hinweisen könnte. Ausgehend von diesen 

Ergebnissen und der Annahme eines austauschbaren NADPH kann spekuliert werden, dass 

das NADPH der 39 kDa Untereinheit an einem biosynthetischen Prozes

ein Produkt liefert, das für die Komplex I Assemblierung erforderlich ist. Die Tatsache, dass 

die G43A, bei partiellem Verlust des Kofaktors wildtypische DBQ-Aktivität besaß, zeigte an, 

dass die 39 kDa Untereinheit wahrscheinlich nicht für die Komplex I Aktivität notwendig ist.  

Überraschenderweise konnte nach dem Austausch von Glycin-43 gegen Valin kein 

assemblierter Komplex I im Blau-Nativen Gel nachgewiesen werden. Nur Spuren des Enzyms 

wurden mithilfe der Western-Blot Analyse in Zellen identifiziert, die bei einer niedrigen 

Temperatur angezogen wurden. Dabei enthielt der Komplex I keine 39 kDa Untereinheit. 

Diese wurde an der Front des Gels als monomere Untereinheit gefunden. Es kann spekuliert 

werden, dass wegen der längeren Seitenkette von Valin der Kofaktor aus der Bindingdomäne 

verdrängt wird. Ausgehend von de

u

könnte die Integration der 39 kDa Untereinheit in den Komplex I verhindern. 
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 Kofaktors in Cholat-gewaschenen 

eduzierung (Mutante R65L) bzw. 

um Verlust (Mutante R65D) der Ubichinon-Reduktase Aktivität. Vermutlich führte der 

chungen der 39 kDa Funktion nötig sind: 

 

Mutationen des Arginin-65 am Ende des zweiten β-Stranges, das für die selektive Bindung 

von NADPH verantwortlich ist, lieferte in den mitochondrialen Membranen einen 

assemblierten und aktiven Komplex I. Jedoch war die Menge des Kofaktors in den Mutanten 

im Vergleich zum Elternstamm geringer. Die Mutante R65L war noch in der Lage NADPH 

zu binden, jedoch wurden nur noch Spuren des

mitochondrialen Membran der R65D Mutante gefunden. Die Reinigung des Komplexes I aus 

den Mutanten R65L und R65D führte zu einer starken R

z

Austausch von Arginin-65 nicht nur zur Abnahme der Affinität des Proteins für NADPH, 

sondern auch zu einer verminderten Enzyminstabilität aufgrund von strukturellen Änderungen 

des Proteins. Es wäre sehr interessant, die Mutante R65D detaillierter zu untersuchen, da 

diese viele Eigenschaften besitzt, die für die Untersu

Sie enthält einen aktiven Komplex I, der NADPH sehr schwach binden kann. Leider war das 

Enzym dieser Mutante jedoch zu instabil. Trotzdem wäre es sehr interessant, den Komplex I 

der R65D Mutante z.B. in submitochondrialen Partikeln ausführlicher zu erforschen. 
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9.1 N

 
CAAACG
TGTAGTTCTGGAACTCGGGCTCGGTCATATGGACAGAGGAGTCTGAGCCGCCCCACCCCTCGCCGCCAAAAACTT
GTCGCAGAAACGGCTCACTGCCCTCTCGGGTAGCAAAGTCCTTGGAAGCATCTCCGATAAGATATGCCTGGTAGG

ACGTGGCAATGGCCTCGACCCGGTGCGGAAAGTATAGGTACAGCTTGGGACCCAGATAGGCACCATAGTCGTGTC
CAATGA
AGCAGTACAGGTCCTTCAATGCGTCGGTTCCATCCTCAAGACCGAGCTCGGGATACTCGCCCTTTTCGTTGGGTT
CAGGTGTGGGGTATAGGGGAGCTTCGGACCGGGTGTATCCCATTTGGGAAGGTACTAGGAGTCTGTAGCCAAGAT

CGTACT
TTGGTT
GATTAG
AGTTGGTTCTAGTTGGGAGGAAAGG
GAGCGAATACTTTGTCGATCGGGAATCGGAAAAGTGCAAATGTCTTCAAATCCGGCCTAAACCAAATTACCAAAG

CCGGAA
GTTTTC
CTTTGC
CCGATT
CTTCTGGAAGCAGCAGGCCCAGTTCCTCAAGTACTTCCCTGAGGAGGACGACATCCAGGGACGACACCAGCCCTC
TAACTT GCTTTCAACTGGCTGATGGACAACTTAATGT

GTCAAT
TCTGGCCAATCCGACCATGGTTGGTTGTGGCATATTGAAAGAAGTCAGATTATCCCTATCAGCAAGTTTGAAGTG
GAGCTA
ACAACCTAACGATGAAACAACACAATTCGATACAGAAGGAAATGAAGGGTGTTTGAGATTGGTCGAGTGGAGATT
GGTCGTGTGGAGATTGGTCGTGTGGTGCGCCATAGGATGTGGTGTTTTTGGGTGTTGTAGCATCATGCTATGTGA

ATAGGG
CACCTT
GACTCC
TTGAAATGATACACTA
 

igure 9.1  Y. lipolytica NB4M subunit encoding gene. 

ene has two exons (marked with blue) and one intron (marked with red). The 
cond exon is very short and encoded only three amino acids. The predicted from two exons molecular mass of 

NB4M subunit is 11.9 kDa.   
 
 

 

 

 

 

9 APPENDIX 

B4M gene, ACC. No YALI0A01419g 
 

TCAGTCGACGAGCCTTGTAGGTGGACACCATGTAGCTCAGAAAGCGACCACCAGTGGCAAACTCGGTCA

ACAATGAGGGAGCCAGCTTGATAAAGTCGGGGATGGCAAAAAACTTCTTCAGAGCAGGAACGTAGTGCCAGCAAG

TGGTAACCGTGGGAATACCCAGCTGGGTCAGCAGCTCGTCCATGCACTGGGCGTAGAACTTGCCAGTGT

TGCGCAGTATGGGAATCTGTTTTCGCCATCCATACCAGCTATCGGGGAAGCCGTGGCACAGCATCAGGGTCTTTC
CGGATCCAAGAAGAGCGGGGCTCGGACTGGTGGGTGGAATGTCGAGATAGTGCCATCTTTTGTCTCCGAGAACGG

TGTGGAACAGTTGGTAGTATCCGAGCGAGAGGGAGTCGGTCATGTTGGCGATACGGTGGAGGTGTTGTC
GTGATAATCTGGGGTAAACATGCACGGGGTGCATTAGCGAACGTGATTTCGATGAGGTTTTTTAGTTGA
TGAGGAAACTCAGTTATGGTGGTGATATTTGTTGAGAGTCTGGTTCGATCTCACTAAACTGTATTTTTC

ATGTTGATGCGGTTAGGGATGATTAATCGTCTGGAATGGAGACTGCAGAA

AAATAATTCCACTTTTTTTCCCCCATTCACACGTTTCTCACACTACAAACACGTCTTCCCAGTCCGGCGCATTAA
AGTTCGAATCCGGCCAATCACTGGGCCCAAATTGTTATTACTATACTGCAGAGCATTATTTACGCTACACAGCAT

CGGACCTCTGAAAAAAAGAACACCACACACAATGGCCATCATCGCTACCGCCTTTGCCGAGACCGTCAA
GGGATCCAAGCAGGAGCTCCAGAAGCGAACCCTGGCTCTGTACCGACAGTTCCTGCGAGGTGCCCCCAC
CGATTTGTACGAGGTCCAGTTCTCCATCCCCACCATCCGAACCAAGATTCGACAGGAGTTTGAGCGACA
TGTCGACGACCTGTCCATCCAGAACGTGCTGTACGCCAAGGGCCACATGGAGTACCAGGAGTGCATCAA

TGTGGACAAGTTCCTGAAGGTGAGTATCATTAGAAGCG
TGAGAGTGTGATCATGAAGAGAGCGACAAGCGTGACACGACCCCAATCGAGGCCAGACAAACGAGAAGGCATTCA
TTACACGACCCTCAACGACCCTGAAACGACACATGCCATTGACTCTATTCGATTATGGCACTAGCTGAAGATGAA

TGCAGATCAGGATGACAATGGAACAACGACGGAAACTCTCACTGCGGCCAATAACGGTTGGTTGATCAT

CACAACGACAAGGTGATACCCTTGGGAAGAAGAAGATGACTGAGAATGACACTGAAGATTTGACAGCGT

CATTTTTAGCAGCAAGCTGTTACTTCGTGTTCTGCTGTTGGGCCCTAAGACAAAGGGTTGTGCTGGAGTAGTTGG
TGCAGAGCCCTGAGCTCTGTCGTGACGCCTCATGGAACGCAGCTCTGTAAACTGGCATCAATACACGGTCTGGTT

CACCCTCAACTGCTCATTTGATGACCACTTTCAGCCTGACATCATCCCAGGAACATCCCATATCCTGGT
TCTTACTTCTTTCTTACTTCGTCTACGCTTTTCCAAACCAGCAGCAACTGTCCCAATTCTCACAGATGA
TGACATTCCAACATCTTCCACCACCTCTTTCGTATACTAACTCAGAACCGTGCTTAAACACATTATATA

 

F

G
se
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9.2    Mass spectra 

 

 

igure 9.3 MALDI-TOF mass spectra of in-gel trypsin digested NUBM and NUCM 

hey are mixture from two proteins NUCM and NUBM. The NUCM subunit was identified using Protein  
rospector and NUBM using Prowl programm package. The found sequences were compared with N-termini 

obtained by Edman degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2  MALDI-TOF mass spectra of in-gel V8 (DE) digested NUAM subunit. 
MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica
genomic database. The found sequence was compared with N-termini obtained by Edman degradation. 
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Figure 9.4 MALDI-TOF mass spectra of in-gel trypsin digested NUGM subunit 

 lipolytica 

Figure 9.5  MALDI-TOF mass spectra of in-gel trypsin digested  NUHM subunit. 

base.  The found sequence was compared with N-termini obtained by Edman degradation. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y.
genomic database. The found sequence was compared with N-termini obtained by Edman degradation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic data
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igure 9.6  MALDI-TOF mass spectra of in-gel trypsin digested NUIM subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 

subunits. 

 

genomic database.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7 MALDI-TOF mass spectra of in-gel trypsin digested PSST and NUPM 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.   
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igure 9.8  MALDI-TOF mass spectra of in-gel trypsin digested NUEM subunit. 

ALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
enomic database. The found sequence was compared with N-termini obtained by Edman degradation. 

 analysed by the Mascot software package. 
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Figure 9.9  MALDI-TOF mass spectra of in-gel trypsin digested “X” protein. 

ALDI spectra wereM
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igure 9.10  MALDI-TOF mass spectra of in-gel trypsin digested NUWM subunit. 

Y. lipolytica 
genomic database. Peaks marked by asteriks correspond to the trypsin autolysis fragments. The found sequence 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.11  MALDI-TOF mass spectra of in-gel trypsin digested NUZM subunit 
ALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 

omic database. Peaks marked by asteriks correspond to the trypsin autolysis fragments. The found sequence 
was compared with N-termini obtained by Edman degradation. 
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MALDI spectra were analysed by the Protein Prospector software package using a proprietary 

was compared with N-termini obtained by Edman degradation. 
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enomic database. Peaks marked by asteriks correspond to the trypsin autolysis fragments. The found sequence 
compared with N-termini obtained by Edman degradation. 

Figure 9.12  MALDI-TOF mass spectra of in-gel trypsin digested NUYM subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
g
was 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13  MALDI-TOF mass spectra of in-gel trypsin digested NUPM subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database. Peaks marked by asteriks correspond to the trypsin autolysis fragments. 
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Figure 9.14  MALDI-TOF mass spectra of in-gel trypsin digested NUXM subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the trypsin autolysis fragments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.15  MALDI-TOF mass spectra of in-gel trypsin digested NB7M subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.   
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igure 9.16  MALDI-TOF mass spectra of in-gel trypsin digested NUFM subunit. 

 lipolytica 
genomic database. Peaks marked by asteriks correspond to the trypsin autolysis fragments. The found sequence 

-termini obtained by Edman degradation. 
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MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y.

was compared with N-termini obtained by Edman degradation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.17  MALDI-TOF mass spectra of in-gel trypsin digested NIAM subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the trypsin autolysis fragments. The found sequence 
was compared with N
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Figure 9.18  MALDI-TOF mass spectra of in-gel trypsin digested  NB6M subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the trypsin autolysis fragments. 
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Figure 9.19  MALDI-TOF mass spectra of in-gel trypsin digested NB4M subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the trypsin autolysis fragments. The found sequence 
was compared with N-termini obtained by Edman degradation. 
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Figure 9.20 MALDI-TOF mass spectra of in-gel trypsin digested ACPM 1 subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database. The picks in lower m/z range (600-1000) corresponded to polymers dissolved from the 

action vessels.  

 

Figure 9.21  MALDI-TOF mass spectra of in-gel trypsin digested  NUVM subunit. 

trypsin autolysis fragments. The found sequence 
as compared with N-termini obtained by Edman degradation. 
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MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the 
w
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Figure 9.22  MALDI-TOF mass spectra of in-gel trypsin digested  of NIPM subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the trypsin autolysis fragments. 
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Figure 9.23  MALDI-TOF mass spectra of in-gel trypsin digested of NI8M subunit. 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.   
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igure 9.24  MALDI-TOF mass spectra of in-gel trypsin digested NB2M subunit 

ipolytica 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.24  MALDI-TOF mass spectra of in-gel trypsin digested NIMM subunit 

MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. lipolytica 
genomic database.  Peaks marked by asteriks correspond to the trypsin autolysis fragments. 
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MALDI spectra were analysed by the Protein Prospector software package using a proprietary Y. l
genomic database. Peaks marked by asteriks correspond to the trypsin autolysis fragments.  
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.3   NUEM Gene 

.3.1  NUEM Gene encoding 39-kDa subunit, ACC. No. YALI0D24585g ID    

9

9

2910508 
           GCGGCCGC                                  AA39-not1_for 

 
 
      TGTTCTGGTCGTTCGACATCTAACTGGCAGATGACACAGTGGACAGAGGCAGGACGAAA   1 
     GTACAATTTACAAGTGGTCTTAGGTATCGGAAGAACCTCTGATGAGGTTATACCCAATGT   60  
     TCAAGTCCACTTGTATTTCGCTCATCATTCACGGTCGTAAACGGCAATCTGGTGACGTTT  120  
     AGCAGTGTTCTAGGCGGGCTACCACGGACTCTCGGACCTCGTCACCGAGTGGGGACAGAA  180  
     GACTTGTCCAGCTCTCGAGTTCAGAAAGATGCCGTGTATCTAACCAGTCTGGCCCGCAGA  240  
     AGTAATAGTTTTCACGCCAAGTCGAACTGATAACCGCAGCAGGTCTCCAAGGTGAACAGC  300  
     CTTTGGAACTAGTTTGTCTAGAGATCGGGTATCGTTCAGGTAGGGAGAGAAAGAGATGTT  360  
     GACAGTTGGACCATGTCTGACCCTATCAACTGGAAACACTTTGGAAACACTTTGAAAACA  420  
     CTTTGGGGCGTTTGGGCTGGACTGACAACTTTTGCTTCTTCCCCAGTTACTGACTATTAG  480  
     TTGACTTGCTCACAAAACATTAAGTAATGTCTGGAACCCGAGAGCCACGATTAGGACCGA  540  
     TTGAGAGACAGTGAATCAACCAAAACACCTCCATACCAAACATATTTCTGTGCGTCCACT  600  
     CATCCACTCAATGCCCAACAGCCCAACACAATAATCCAAGAGCTCTGTTGGAGTCGGACT  660  
     CCTCGGTACAGTACCAGATATACGTTCACCTACCGACTATACGTGAACATTTGGGTCCGA  720  
     TACGATGCTCGAAAAAGTACACCAATCGAAAGCTCCAGATCGGAAGAGTAAAACTCCGAC  840  
     GTTTACCAACCTCTCAATCCTCTCCCAGAAGTCAGACCAATCGGTTAAGTGTTTCCCCAT  900  
     TCCCGTTTAGCCTTGCAACCTCCCACACTGTTCATCCAATCGGAGGACATGTAAAATCAA  960  
     ACCCAAACCAAGGGGGGACCATAGGAGAACGAAAATGTGGCGGAAAAAAACGAAAAAACG 1020  
     AAAAAACGACGACATTTTCAAAGCCCTCCCCAGTTGGACAAGTCCACAAAACCCCAGCCA 1080  
      ATCACCGCCGTCTCCACCTGGTAGCCTGCGTAGGGCGTGATATTTTTTCTCTCGCTTACT 1140  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      AAGCAAAGTCCCAACCCTCGGGCCAATCACAACCCGCACATTGTCCCAATATGCACCACC 1200  
      TCTTCACTCACCACCGCAGCAGCTGTTCACTAACATCACAACCACACAATGCTGCGAACT 1260  
                  39-bamh1_rev            CCTAGG           MetLeuArgThr    1  
                                                        aa-ns1 
      ACCCGTGCTGTGAAGCCTCTCAAGGCCATCACCACCTCCGTGCGGTTCATGAACTCGTTC 13

ThrArgAlaValLysProLeuLysAlaIleThrThrSerValArgPheMet
20  

     AsnSerPhe    5   
 
 
 
     GAGAACCTGGCCCAGGACGTCAACATCACCCGGTCCGGCAAGACTCTGATTGCCAAGGGT 1380  
     GluAsnLeuAlaGlnAspValAsnIleThrArgSerGlyLysThrLeuIleAlaLysGly   25  
                                                  AA39-mut1_rev (G43V)mut2_for     
      ACCGGTGGCCGGTCGTCTCGAACCGGCTACACCGCGACCGTGTTTGGAGCCAACGGCTTC 1440  
 
    
     ThrGlyGlyArgSerSerArgThrGlyTyrThrAlaThrValPheGlyAlaAsnGlyPhe   45 

                                                                                                 mut7_rev                     AA39-mut1_for 

 
 
     CTGGGCAGCTACCTGACTGCCAAGCTGGCCAAGCATGGAACCACGGTGGTGGTGCCGTAC 1500 
     LeuGlySerTyrLeuThrAlaLysLeuAlaLysHisGlyThrThrValValValProTyr   65 
      (R65L)mut7_for / (R65D)mut8_for  
      CGAGAGGAGATGGCCAAGCGACATCTCAAGGTGACCGGAGACCTGGGCGTGGTCAACTTT 1560 
      ArgGluGluMetAlaLysArgHisLeuLysValThrGlyAspLeuGlyValValAsnPhe   85 

       
     TTGGGAATGGACCTGCGAAACCTGGAGTCCATCGACGAGGCGGTGCGTCACTCGGACATT 1620 
     LeuGluMetAspLeuArgAsnLeuGluSerIleAspGluAlaValArgHisSerAspIle  105 

       
     GTGGTCAACCTGATTGGCAGGGAGTACGAGACCAAGAACTTCAACTACTACGACGTGCAC 1680 
     ValValAsnLeuIleGlyArgGluTyrGluThrLysAsnPheAsnTyrTyrAspValHis  125 

     GTTGAGGGAGCCCGACGAATCGCAGAGGCAGTCAAGAAACACAACATTGCTCGATACATC 1740 
     ValGluGlyAlaArgArgIleAlaGluAlaValLysLysHisAsnIleAlaArgTyrIle  145 

     CACGTGTCTGCGTTCAACGCCGAGATTGACTCGCCCTCCGAGTTCAACCACACCAAGGGT 1800 

     LeuGlyGluGlnValThrLysAspIleValProTrpAlaThrIleValArgProAlaPro  185 
                                                 PvuI 

 
 

 
 
 
 
 
  
 
      HisValSerAlaPheAsnAlaGluIleAspSerProSerGluPheAsnHisThrLysGly  165 
 
      CTGGGCGAGCAGGTCACCAAGGACATTGTGCCCTGGGCCACCATTGTGCGACCGGCCCCC 1860 
 

      ATGTTTGGACGGGAGGACAAGTGGTTCCTGGACCGAATGGCCCGATCGCCCTGTCTGGTG 1920 
      MetPheGlyArgGluAspLysTrpPheLeuAspArgMetAlaArgSerProCysLeuVal  205 
 

25 

     CTCGAGCGAATCTGCTTCGACGACTCCACCGTTGCCCAGACCTTTGAGCTGTACGGCCCC 2040 
      LeuGluArgIleCysPheAspAspSerThrValAlaGlnThrPheGluLeuTyrGlyPro  245 
 

      TCCGCCAACAAGTTCCAGGAGACCTCCAACCCCGTGCACGTGATTGACGTGGCTGCCGCT 1980 
      SerAlaAsnLysPheGlnGluThrSerAsnProValHisValIleAspValAlaAlaAla  2
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AAGCAGATCATTGACATGGTTTCCGAGACCCTGCGAAAGGAGGTA 2100 
LysGlnIleIleAspMetValSerGluThrLeuArgLysGluVal  265 

      CAAAAGTTCACCCAG
      GlnLysPheThrGln
 
      CGACACATTGAGCTGCCCAAGGCTCTGTACCAGGCTTACACCAAGGCCACCCAGGCCATC 2160 
      ArgHisIleGluLeuProLysAlaLeuTyrGlnAlaTyrThrLysAlaThrGlnAlaIle  285 
 
      TGGTGGCCCACCTACTCCCCCGACCAGGTCGAGCGACAGTTCCTGAGCCAGAAGATTGAT 2220 
      TrpTrpProThrTyrSerProAspGlnValGluArgGlnPheLeuSerGlnLysIleAsp  305 
 
      CCTTCTGCTAAGACCTTCAACGATCTGGACCTGACCCCCATGGAGCTGCCCGATCTCATG 2280 
      ProSerAlaLysThrPheAsnAspLeuAspLeuThrProMetGluLeuProAspLeuMet  325 
                                                      aa-ns2 
      TTCAAGCTGATTCGACCCTACCGAGTCAACACCTTCCAGCATGATGTGTCGCAGCTGGAG 2340 
      PheLysLeuIleArgProTyrArgValAsnThrPheGlnHisAspValSerGlnLeuGlu  345 
 
      AACAAGGAGAAGACTTTTGTTCATATTCTTGACTAGTGTGTGAGCGCACCGGGCGAAATG 2400 
      AsnLysGluLysThrPheValHisIleLeuAsp***                          365 
              GAATTC             39-ecor1_for 
      AACACAAGTTCGTGATTGAGCGAGCACACTGCATCACAGGACGACGACTGTGGGCTGTCG 2460 
      AAGAATATAAAGTATTAGAAGTTGTATTAACCAGCAGTGCAGCGCTGCAAGTGTAGTGGG 2520 
      CAAAGTGAGATGCTGTGTATTGTAGTTGTAGGTGACTTACGGAACGTCTATCCACATGTT 2580 
      CAACTCCGAAATGTGTGCTGGAGACATTGCTCCGTTTCTCTTGTCTACTGTACTCGTATT 2640 
      CGTTACTCGTATTCGTCTACTCATATAAATCTAATACCTGCCTAATGAACACTTCCAACA 2700 
      GTGGTCTGTTCGGAACGCCGCTCTCCGTAGACCTCCATCGCCTCGTCTTCGACCAGCTTG 2760 
      GTCTCAGGGCCTACGAGCTCTCCGACCACCATCTCCGCATTTCTGTTTTCGGGGCCCAGG 2820 
      AATGTGCACACCAGCACAAAAAAGAAGACGCAGCCCATGAGAATCGCCATGACCAGACTG 2880 
      TAGTCGTAGATCCTGGCCGGGCGTTGCCGTGAGCGTCAGTCAGCGGAAACCGCTCTCCAA 2940 
      TTTTCGCCTCG ATGGTGGAGGACGCCGAGGAGGCCAGATTGCCCAGCTGGTAGGCCAGA 3000 
      CCCACGAGCGAAGACCGCAGGCTCGGAGGAGCGAGCTCGGTGAGATGGATGGGGATGATT 3060 
      CCCCAGGCTCCAGCGACACAAAATTGCAGAAAGAAGACGCCGGCGTTGATTCCGGCGTTA 3120 
      CTGGAGACAAACGCCCAGGGATAGATGAGAGCGCCTCCCACGACGCACGAAATCATGATG 3180 
      CACAGCCGTCTGCCGGCAAACGAGGAAATGTGACCCATAAAGATTCCTCCGGCGATGGCT 3240 
      CCGAGGTTGGCGACGCATTGGTTGACGGTGGAGGCGTCGGGCGAGAACTCCAGCTGGTTT 3300 
      TTGAGCCGCGTGGGGTACAGGTCCTGGGAGCCATGGGACATGAAGTTGAATCCGGACATG 3360 
      AGAATCACCAGGTAGATGAACGTGAGCCAATAGGTGCTGAAAGTCGTTTTGAGACCGACA 3420 
      AAAAAGTTTTTGCCCGTATCCAGCACCGCTTCATTGTGCTTGGAC GGTGGATATA TGTCA 3480 
      GTTTCGGGCAGGGCCATTCGGAAGATGATGATGAGGACTGGGGGGCCGGCACCGAACCAG 3540 
      AAAAGAGATCGCCAGCCGTGGGGAGTTGTGTAGACGAGAGCTCGGGTGAAGACCACACAC 3600 
  GCAAGTACCCCAGGGCGTATCCTTCCTGAAGGATTCCTGAGACGAGGCCTCTGG      36    A 60 
                            
                                                    

39-sal1_rev                             GTCGAC   

                                 

Figure 9.25  The fragment of NUEM gene encoding 39 kDa subunit used for generating 

, R65D and, 
he amino acids 

the mutants.   

Oligonuc used for generating the ∆39 kDa strain, point mutants G43A, G43V, R65Lleotides 
restriction sites for PvuI are marked with grey. Darker grey indicates direction of the primer. T
which were mutated are marked with red.  
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binding site 

9.3.2  Used oligonucleotides in NUEM gene 

 
name sequence 

5’-TGTGCGGCCGCCGCTCGACATCTAACTGGCA-  3’ 1-29     39-not_for 

39-ecor1_for              5’-AAGGAATTCATTGAGCGAGCACACTGCAT-3’ 2465-2494 

3713-3687              5’-AGACAGCTGGTCTCAGGAATCCTTCA-3’     39-sal1_rev 

  39-bamh1_rev              5’-TTGGGATCCTAGTGAACAGCTGCTGCGGT-3’ 1301-1272 

 
Table 9.1  Oligonucleotides for generation the deletion strain of NUEM gene 

 
name sequence binding site 

AA39-ü_for  5’-GAGCGTATACAAGGAAGCCA-3’ 
AA39-ü_rev              5’-GTCACCACCTACAAGCAGTT-3’ 

outside of sequenced area 

389 aa-ns1   5’ –GAACTCGTTCGAGAACCTGG-3’ 1369-1

 
Table 9.2  Oligonucleotides for deletion checking via PCR  

 
name sequence binding site 

AA39-mut1_for           5’-GCATTCCTGGGCAGCTAC-3’ 
(G43V)mut2_for           5’- GTCTTCCTGGGCAGCTAC-3’ 

(G43L)mut3_for           5’- CTCTTCCTGGGCAGCTAC-3’ 

(G43W)mut4_for           5’- TGGTTCCTGGGCAGCTAC-3’ 

(G43Y)mut5_for           5’- TACTTCCTGGGCAGCTAC-3’ 

1493-1511 

   5’- GCCAACGCATTCCTGGGCAG-3’ 1487-1506 

mut8_for           5’- GACGAGGAGATGGCCAAGC-3’ 
1560-1578 

aa-mut6(G40A+G43A)2_rev           5’- TGCAAACACGGTCGCGGTGT-3’ 1488-1468 

aa-mut6(G40A-G43A)2_for        

(R65L)mut7_for           5’- CTAGAGGAGATGGCCAAGC-3’ 

(R65D)

mut7_rev           5’- GTACGGCACCACCACCGTG-3’ 1541-1560 

 
Table 9.3  Oligonucleotides for creating the point mutants of NUEM gene  

name sequence binding site 

 

39-seq1_for 5’- GAGCGTATACAAGGAAGCCA-3’ outside of sequenced area 

39-seq2_for 5’- GCAGCAGGTCTCCAAGGTGA-3’ 335-355 

39-seq3_for 5’- CGTTCACCTACCGACTATAC-3’ 802-822 

39-seq4_for 5’- TTGCCGTGAGCGTCAGTCAG-3’ 2983-2963 

39-seq_for 5’- CGAGTTCAACCACACCAAGG-3’ 1837-1857 

 

Table 9.4  Oligonucleotides for checking NUEM gene  
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9kDa_A.thaliana         MQVVSRRLVQRPLVGGASIYSSSSLRSLYGVSNHLNGTDNCR-YSSSLATKGVGHLARKG 59 
39kDa_C.reinhardtii      ---------MLPILG--RNA GLRWAAAASQSSRDYSSTLMTA-----DK
39kDa_B.taurus           ----------------MAAA PMSRSSVPALAASVFHSPPQRQ

9.3.3  Alignment of NUEM (39 kDa) subunit
 
3

AGSALARLA
VHPRVVRVL

LG 44 
LHHAVIP

sa         
HG 44 

39kDa_N.cras   ---------------MAPLTAAMRRTPRIIVSNAFG--FQRRAISDVTIT
  ---------------MLRTTRAVKPLKAITTSVRFM

RTGKPIIRN- 
lytica     

42 
39kDa_Y.lipo NSFEN-LAQDVNITRSGKTLIAKG 
                 
                                    NADPH-binding site                                                

44 
                                                                   . 

 
39kDa_A.thaliana         TGGRSSVSGIVATVFGATGFLGRYLVQQLAKMGSQVLVPFRGSEDSPRHLKLMGDLGQVV 119 
3 dt AMHLKQMGDLGQI9kDa_C.reinhar ii      PGGRSSVSGITATVFGANGFLGSYIVNELAKRGSQVVCPFRSTENE V 104 
39kDa_B.taurus           TMHLRPMGDLGQIIKGGRSSVSGIVATVFGATGFLGRYVVNHLGRMGSQVIVPHRCEPYD  104 
39kDa_N.crassa           QGGRSSLGGHTATVFGATGQLGRYIVNRLARQGCTVVIPFR-DEYNKRHLKVTGDLGKVV 101 
39kDa_Y.lipolytica       TGGRSSRTRYTATVFGANGFLGSYLTAKLAKHGTTVVVPYR-EEMAKRHLKVTGDL
                          *****    .******.* ** *:. .*.: *  *: *.*       **:  ***

GVVN 103 
* :  

9kDa_A.thaliana         PM-KFDPRDEDSIKAVMAKANVVINLIGREYETRNFSFEDANHHIAEKLALVAKEHGGIM 178 
LLPELDIRNDDDIKRAISRSNVIINCVGMRLQTKNWSFEDVHVDFPKRLAKLAAETGQVQ 164 

39kDa_B.taurus           FM-DWNGRDKD SVVINLVGREWETQNFDFEDVFVKIPQAIA 162 
39kDa_N.crassa           MI-EFDLRNTQ DVVYNLIGRDYPTKNFSFEDVHIEGAERIA 159 
39 tica    KNFNYYDVHVEGARRIAEAVKKHN-IA 161 
           :*:.: *.  .
 
39kDa_A.thaliana         EATIMRPATMIGTEDRIL  238 
39kD nhardtii   DATIVRPGDIVGIEDH

KFIHISHLNADIKSSSKYLRSKAVGEKEVRETFPEATIIKPAEIFGREDRFLNYFANIRW 222 
9kDa_N.crassa           RFIHVSSYNADPNSECEFFATKARGEQVVRSIFPETTIVRPAPMFGFEDR----LLHKLA 215 

IVRPAPMFGREDKW---FLDRMA 218 
::*. :.* **:           

9kDa_A.thaliana         KYGFLPLIGGGTTKFQPVYVVDVAAAIVAALKDDGSSMGKTYELGGPDVFTTHELAEIMY 298 
LTVFAPVVESGSNKIQPTYVLDVADAVAALLRKP-DTAGKTLYLGGPEVLTMREVYDLLL 283 

39kDa_B.taurus           FGGVPLISLGKKTVKQPVYIVDVTKGII RGKTFAFVGPSRYLLFDLVQY
39kDa_N.crassa           SVKNILTSNGMQEKYNPVHVIDVGQALE ASETFELYGPKTYTTAEISEMV
39kDa_Y.lipolytica       RSPCLVSAN PQKFTQKQIIDMVS 277 
                   *.     :: : :  
 
39kDa_A.thaliana         DMIREWPR- INALTTDTLVSD
39kDa_C.reinhardtii      KTLRIYRDD VEEMLRDKVVPA
39kDa_B.taurus           AVA-----H ERIHTTDKILPHL 332 
39kDa_N.crassa           REIY----- EREFHDQVIDPEA 325 
39kDa_Y.lipolytica       ETLR----- ERQFLSQKIDPSA 327 
                   :       :     
 
39kD DLDLV ---- 402
39kDa_C.reinhardtii      LGYADLGIV IKQ 397 
39kDa_B.taurus           PGLEDLGVE ----- 380
39kDa_N.crassa           KTFKDLGIE ML--- 375
39kDa_Y.lipolytica       KTFNDLDLT ILD-- 375 
    **.: 

 

igure 9.26  Alignment of NUEM subunits from different species. 

uences were aligned using the CLUSTALW program (http://www.ebi.ac.uk/clustalw/index.html). * - 
onserved amino acids; : - conserved substitutions; . - semi-conserved substitutions. Small and hydrophobic 

amino acids are red, acidic are blue, basic a a; hydroxyl + amine + basic are green. T equences 
are u d. The amino acids, which c NADPH-binding domain are mark  
 

 

 

 

 
3
39kDa_C.reinhardtii      

SIRRAVEHS
SIEESVRHS

QVSKEAG-VE 
ERVAKYD-VD 

kDa_Y.lipoly
           

   FL-EMDLRNLESIDEAVRHSDIVVNLIGREYET
    : . : *: :.*   : ::.:: * :*    *  .. :*    : . :  

RYIQVSCLGASVSSPSRMLRAKAAAEEAVLNALP
   RLIHFSDMGADENHKSLRMRTKAVGDKEVLDAFP

NPWSMFVK
FYNYLIYQLT 224 a_C.rei

39kDa_B.taurus           
3
39kDa_Y.lipolytica       RYIHVSAFNAEIDSPSEFNHTKGLGEQVTKDIVPWAT
                         : *:.*  .*. .  .    :*. .:: . . .* :**
 
3
39kDa_C.reinhardtii      

NAIKDP-DA
QMLWDD-NT

VF 281 
D 274 

KFQETSNPVHVIDVAAALERICFDD-STVAQTFELYG
      :*.:::**  .:     .  .: .:*  : *               

YVKLPFPIAKAMAAPRDFMVNKVPFPLPSPQIFNLDQ
TVHLPAWAVKAMYKPFDSVRRMLPGLPMTSPLATEDY

NA 357 
GA 343 

RPFLPYPLPHFAYRWIGRLFEISPFEPWT----TRDKV
KRRRHVNVPKKILKPIAGVLNKALWWPIMS----ADEI
KEVRQIELPKALYQAYT-KPAQAIWWPTYS----PDQV
         :                         * :               

a_A.thaliana         LKFQ PHKLKG-YPVEFLIQYRKGGPNFG--STVSEKIPTDFYP--  
PQKVTDGLAIEPVRHARVGGYRWGDMSAVAKDIPESVRKYYN
ATPLEL-KAIEVLRRHRTYRWLSSEIEDVQPAKTIPTSGP  

 PADIAN-FTYHYLQSYRSNAYYDLPPATEKERREDREYIH
PMELPD-LMFKLIRPYRVNTFQHDVSQLEN---KEKTFVH

                         .  :      . :   *        

F

The seq
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ed with grey .nderlinde
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AD Flavin Adenine Dinucleotide 

Protein 

CCA alpha-cyano-4-hydroxycinnamic acid 

AR Hexaammine ruthenuim(III) chloride 

b kilobase 

MALDI-TOF- Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass 

10  ABBREVIATIONS 
 

cAMP cyclic Adenosine MonoPosphate 

(mt)ACP (mitochondrial) Acyl carrier protein 

(mt)DNA (mitochondrial) Deoxy Ribonucleic Acid 

17βHSD3 17beta-Hydroxysteroid Dehydrogenase type 3 

ACC. No. Accession Number 

ATP Adenosine Triphosphate 

BN-PAGE Blue-Native Polyacryl Amide Gel Electrophoresis 

bp base pair 

BSA Bovine Serum Albumin 

2,5-DHB 2,5-dihydroxybenzoic acid 

dSDS-PAGE doubled Sodium Dodecylsulphate Polyacryl Gel Electrophoresis 

DBQ n-Decyl-Benzoquinone 

dNADH deamino Hydronicotineamide Adenine Dinucleotide (reduced form) 

DQA 2-decyl-4-quinazolinyl amine 

EPR Electron Paramagnetic Resonance 

ESI-MS Electrospray Ionization Mass Spectrometry 

F
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