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Non-technical summary

Some years into the recent financial crisis, there is now a widespread consensus that regula-

tion so far has focused too heavily on the individual risks of financial companies and failed

to address the interconnectedness in the financial sector. From a supervisory point of view

it is thus essential to gain an understanding of how institutions behave in adverse market

environments in order to properly monitor, regulate and, where necessary, support them.

In this paper, we take a novel approach on how to measure systemic risk. Along the lines of

the existing research on systemic risk, we explore the interaction between tail risk measures

for individual companies and the broader financial sector itself, which in our case is a value-

at-risk (VaR). In contrast to the existing literature however, we do not estimate the VaR from

past historical equity data but directly observe the VaR implied from equity option quotes.

We implement our approach in order to estimate the systemic relevance of a broad range of

US financial institutions. Having obtained their option-implied VaRs, we run several rounds

of parametric and non-parametric panel regressions in order to estimate the spillover in the

financial sector. In particular, we estimate a panel conditionally homogeneous vectorautore-

gressive (PCHVAR) model in order to analyze the influence of varying firm characteristics

on the impulse-response functions of individual companies or the financial index.

We find that larger financial institutions with higher leverage, lower market-to-book valua-

tion, lower return on equity and a riskier balance sheet composition have a higher systemic

risk profile. While size and a low market-to-book ratio appear to be dominant factors for a

company’s influence on the financial sector, we also find that negative shocks to the financial

sector have larger effects on highly leveraged firms with a low market-to-book valuation, low

earnings and a riskier balance sheet composition as measured by a high maturity mismatch

and high shares of level-3 assets.

One particular advantage of the employed PCHVAR estimator is that it allows for a causal

interpretation of the results. Comparing the results of our various estimation approaches, our

results highlight the importance of an appropriate identification scheme in order to correctly

distinguish and quantify a company’s systemic risk dependence and its risk contribution.
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Abstract

In this paper, we propose a novel approach on how to estimate systemic risk and

identify its key determinants. For all US financial companies with publicly traded

equity options, we extract their option-implied value-at-risks (VaRs) and measure the

spillover effects between individual company VaRs and the option-implied VaR of an

US financial index. First, we study the spillover effect of increasing company risks

on the financial sector. Second, we analyze which companies are most affected if the

tail risk of the financial sector increases. We find that key accounting and market

valuation metrics such as size, leverage, balance sheet composition, market-to-book

ratio and earnings have a significant influence on the systemic risk profile of a financial

institution. In contrast to earlier studies, the employed panel vector autoregression

(PVAR) estimator allows for a causal interpretation of the results.
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1 Introduction

The events of the recent years have witnessed the enormous destructive power of financial

crises. While researchers and policy makers still try to address the exact causes and conse-

quences of the crisis, there is now a widespread consensus that regulation before the crisis has

focused too heavily on the individual risks of financial companies and failed to address the

interconnectedness in the financial sector. The focus of current regulation is on the default

risks of individual companies and to a lesser extent on systemic risk, which is understood

as the risk that the financial sector as a whole becomes distressed. Individual risks however

have very different implications depending on the overall state in which they occur. During

normal markets times, individual institutions can be taken over or unwound by the financial

sector itself and do not threaten the real economy on a large scale. Only during times of

severe financial distress of a multitude of financial institutions, the financial sector is unable

to absorb failed institutions, credit becomes constraint and exhibits large negative external-

ities to the real economy. In addition, when the whole financial sector is in distress and does

not have the capacity to stabilize itself, even governments as lenders of last resort might not

be able to support the whole financial system anymore, as witnessed by the recent financial

crisis. From a supervisory point of view it is thus essential to gain an understanding of how

institutions behave in adverse market environments in order to properly regulate them ex

ante or, where necessary, to support them ex post.

Along the lines of the existing research on systemic risk, we explore the interaction between

tail risk measures for individual companies and the broader financial sector itself, which in our

case is a value-at-risk (VaR). In contrast to the existing literature however, we do not estimate

the VaR from past historical equity data but directly observe the VaR implied from equity

option quotes. This direct observability of the VaRs simplifies not only its computation, but

allows also for different econometric tools in the analysis of the interaction between the tail

risks of individual companies and the whole financial sector. We implement our approach

in order to estimate the systemic relevance of a broad range of financial institutions with

publicly traded options on US stock exchanges. Based on accounting items and market

valuation characteristics, we run several rounds of parametric and non-parametric panel

regressions and panel vector autoregressions (PVARs) in order to estimate the spillover in

the whole financial sector. In particular, we estimate a panel conditionally homogeneous

1



vectorautoregressive (PCHVAR) model in order to analyze the influence of varying firm

characteristics on the impulse-response functions of individual companies or the financial

index. In line with earlier research findings by Adrian and Brunnermeier (2011) or Acharya

et al. (2010), we find that larger financial institutions with higher leverage, lower market-to-

book valuation, lower return on equity and a riskier balance sheet composition have a higher

systemic risk profile. While size and a low market-to-book ratio appear to be dominant

factors for a company’s influence on the financial sector, we also find that negative shocks

to the financial sector have larger effects on highly leveraged firms with a low market-to-

book valuation, low earnings and a riskier balance sheet composition as measured by a high

maturity mismatch and high shares of level-3 assets.

Our paper thus directly contributes to the growing literature on the measurement of systemic

risks. This literature emphasizes the importance of a financial institution’s interaction with

the systemic risk as a critical factor for its regulation. Of utmost importance is thereby the

identification of institutions and sectors which have the largest impact on the overall financial

stability as well as institutions which are most affected in the event of a marketwide financial

collapse. While most existing papers have analyzed only one argument or the other, in this

paper, we propose to examine both aspects of an institution’s contribution to systemic risk

in a joint panel VAR approach. Thus we are not only able to estimate marginal VaR contri-

butions and dependencies in a static framework along the lines of Adrian and Brunnermeier

(2011), but also analyze the dynamics of spillover effects between the individual companies

and the whole financial sector in a panel vector autoregression (PVAR) framework. The

measurement of dynamic tail risk spillover effects has so far only been attempted by White

et al. (2010) which however includes a complexer setup which is more difficult to estimate due

to their numerically challenging VAR for VaR framework. Adrian and Brunnermeier (2011)

use historical US equity data and quantile regressions in order to estimate the marginal

contribution of individual companies to the overall financial sector risk. Their focus is on

the systemic risk measure ∆CoVaRi which reflects the change in the financial sector VaR,

conditional on institution i being in distress. The authors show that this measure can be

directly related to institution i’s size, leverage and maturity mismatch. Hautsch et al. (2012)

extend the work of Adrian and Brunnermeier (2011) by explicitly allowing for cross-linkages

in the tail risks of individual companies that are identified by penalized quantile regressions

using statistical shrinkage techniques.

In contrast, Acharya et al. (2010) focus on the feedback from the sector on the individual
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company and base their analysis on a firm’s Systemic Expected Shortfall (SES). In a stylized

theoretical model, they derive that financial institutions should be optimally taxed based

on their expected default losses and their SES. A firm’s SES is further shown to be directly

related to its leverage and its Marginal Expected Shortfall (MES), which is the firm’s own

expected shortfall when the whole sector is in distress. The MES is empirically measured as

an institution’s mean return, conditional on the broader index having a return in its lower

5% quantile. Brownlees and Engle (2012) refine the measurement of the MES by introducing

a joint dynamic model for sector and firm returns with time varying volatilities and corre-

lations and estimate a short- and long-run MES using TARCH and DCC methods. Our

panel VAR approach is closest related to the analysis by White et al. (2010) and Adams

et al. (2012) with respect to the general research approach but differs significantly in the

econometric implementation since our option-implied VaRs are directly observable.

Option-implied information have been used in the past in order to estimate forward-looking

VaRs or its key determinant, the future realized variance. Over the last two decades, a broad

literature has evolved which compares the performance of the volatility and VaR estimates

from option-implied and alternative models. While an early study by Canina and Figlewski

(1993) concludes that the implied volatility from S&P 100 index options has almost no fore-

casting power for future realized variance, subsequent research find that implied volatility

is a strong predictor of future variance. Day and Lewis (1992) incorporate implied volatili-

ties as an exogenous factor in a family of GARCH models while Lamoureux and Lastrapes

(1993) regress realized variance on option- and GARCH-implied information. Christensen

and Prabhala (1998) find that the information content of implied volatilities has improved

after the stock crash in October 1987 and give support to the idea that implied volatilities

subsume all information from past volatilities. Blair et al. (2001) support the later finding

using implied volatilities from VIX options and high frequency index returns. More recent

advances support the findings of superior variance forecasts of implied volatilities against

historical return variances. Jian and Tian (2005) additionally find that Black-Scholes im-

plied volatilities are outperformed by a measure of model-free implied volatility derived from

a broad set of options with differing strike prices. Giot and Laurent (2007) run regressions

of implied volatilities on realized intraday variances for S&P 100 and 500 indices and usually

cannot reject the null of a unit coefficient while additional jump components contribute only

marginally to explaining future variance. Busch et al. (2008) analyze the information content

of implied volatilities in stock, bond and foreign exchange markets. Using high-frequency
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data, they find that implied volatilities are unbiased estimators of future variances in the

stock and foreign exchange market and even subsume all relevant information of past realized

variances in the later.

In addition, there are a few studies which directly compare the performance of the VaR

estimates from different model classes. Chong (2004) compares the estimates of exchange

rate VaRs derived from different historical methods, univariate and multivariate GARCH

models as well as option-implied counterparts. He finds that option-implied VaRs have

comparable exceedance rates as the VaRs from other models even though during normal

market times option implied estimates are somewhat higher. Christoffersen et al. (2001) use

S&P 500 returns in order to analyze the VaR estimates from different models and test for

statistical performance differences. They find that at conventional coverage values, Black-

Scholes based option-implied VaR levels perform statistically indifferent to other GARCH

or stochastic volatility based models.

In summary, option-implied volatilities are generally found to be among the best predictors

of future realized variance and give great support for the validity of option-implied VaR

estimates. At the same time, daily option-implied VaRs can be directly calculated from a

cross-section of options and do not rely on any parameters estimated from past or future

observations. Hence, option-implied VaRs might provide a most useful framework for ana-

lyzing the spillover effects in the financial system.

The remainder of the paper is structured as follows: Section 2 explains how to extract the

VaROI from equity option data and introduces the model how to analyze systemic risk link-

ages in a static and dynamic framework. Section 3 gives an overview of the data we use

in our analysis. Section 4 exhibits the main results of our paper and discusses the key de-

terminants of systemic risk. Section 5 summarizes the results for additionally conducted

robustness analyses. Finally, Section 6 concludes.

2 Model

2.1 Measuring Option-implied value-at-risk

Our paper focuses on analyzing the tail risk dependencies between individual companies and

the whole financial sector. One of the most common tail risk measures is the value-at-risk
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VaRp, the expected loss which is only exceeded in p% and usually defined under the real

world probability measure. Following Adrian and Brunnermeier (2011), the VaRp can be

computed for individual companies and for an index itself and the relationship between the

two can then be explored. The main difficulty of this approach is that the physical VaRp

is not directly observable but must be estimated using non-trivial quantile regressions, uni-

or multivariate GARCH processes or extreme value theory. We therefore depart from the

route of estimating the physical VaRp and instead look at equity options and extract from

their quotes the option-implied value-at-risk VaROI
p . We employ two different approaches to

extract the VaROI
p from the option quotes for robustness reasons. Given a financial company

with stock price St and put price P (St, K, T ), with K and T being the underlying strike

price and maturity of the option, the annualized implied Black-Scholes volatility σ̂K can be

computed. Breeden and Litzenberger (1978) show that the option-implied probability of a

put option ending up in the money is equal to the negative of the first derivative of the put

price with respect to the strike price, i.e. ProbOI(ST ≤ K) = −∂P (St,K,T )
∂K

. Hence, we can

write the VaROI
p over the next time period T as

−V aROI
p,T =

K − St

St

(1)

with K such that p = ProbOI(ST ≤ K) = −∂P (St,K,T )

∂K
= −∆K .

Given a sufficient number of options with differing strike prices, it is thus possible to extract

the VaROI
p,T for the desired p-th quantile at any point in time. Furthermore, the put delta is

equal to

∆S =
∂P

∂St

= Φ(−d1) = Φ
(
− ln(St/K) + (r + σ̂2

K/2)T

σ̂K
√
T

)
(2)

with Φ(x) being a standard normal cumulative distribution function. Furthermore, the dual

delta, i.e. the first derivative of the option with respect to the strike price, can be written as

∆K =
∂P

∂K
= e−rTΦ(−d2) = e−rTΦ

(
− ln(St/K) + (r − σ̂2

K/2)T

σ̂K
√
T

)
= e−rTΦ(−d1 + σ̂K

√
T )

(3)

For a given strike price K, its according implied volatility σ̂t,K and put delta ∆S, the dual
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delta can hence be computed as:

∆K = e−rTΦ(Φ−1(∆S) + σ̂K
√
T )) (4)

with Φ−1(x) being the inverse of a standard normal cumulative distribution function. We use

the VaR estimated from (4) as our primary VaR measure as it incorporates all information

from the implied return distribution function. Yet, for extreme p-quantiles no equivalent

options are traded and we have to use the implied volatility of the option that is most OTM.

Alternatively, under the simplifying assumption that logarithmic returns are conditionally

normal distributed, the implied at-the-money (ATM) volatility σ̂ATM fully determines the

option-implied VaROI
p,T via

−V aROI
p,T = exp(−αp

√
T σ̂ATM)− 1 (5)

with αp being the value of the p-th quintile of a standard normal density function. As a

robustness check we therefore repeat our analysis using the VaR estimates from (5) which

only rely on information from more liquid ATM options (see Section 5).

After calculating the option-implied value-at-risk of individual stocks and an appropriate

financial index from observable market data, we analyze their tail risk dependencies using

a static and a dynamic framework. Unless stated otherwise, all future values-at-risk refer

to their option-implied counterparts and, for simplicity, we henceforth drop the superscript

’OI’.

2.2 Static Analysis

The first part of the econometric analysis is inspired by the underlying idea of Adrian and

Brunnermeier (2011) who estimate both the financial index value-at-risk VaRIndex
p condi-

tional on the individual firm value-at-risk VaRi
p (CoV aR) and the individual firm value-at-

risk VaRi
p conditional on the financial index value-at-risk VaRIndex

p (exposure CoV aR). We

call this approach static because it only measures the contemporaneous impact of the con-

ditioning variable, while in the dynamic analysis we also estimate dynamic feedback effects

over time.
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We are thus interested in estimating the following underlying functional relations:

V aRIndex
t = c1,i + β1,iV aR

i
t + γxX + εt (6)

V aRi
t = c2,i + β2,iV aR

Index
t + γyYi + εt (7)

where X and Y are sector and firm-specific control variables. Adrian and Brunnermeier

(2011) compute their time-varying ”forward-∆CoV aRs” based on those regressions and in a

second step relate them to key characteristics of the firm. Even though our goal of identifying

systemically relevant institutions based on observable firm characteristics is similar, we do

not apply such a two-staged approach. Instead, we directly interact the right-hand side

VaR-term with the key characteristics Z of interest:

V aRIndex
t = c1 + β1 · V aRi

t +
n∑

j=1

β1,j · V aRi
t · Zj,i,t + γxX + εt (8)

V aRi
t = c2 + β2 · V aRIndex

t +
n∑

j=1

β2,j · V aRIndex
t · Zj,i,t + γyYi + εt (9)

where Zj,i,t is the value of characteristic j of company i at time t. Using panel regressions and

fixed effects, we jointly estimate the beta parameters of all n firm characteristics of interest.

Since we expect the εt’s to be serially and cross-sectionally correlated, we use Driscoll and

Kraay (1998) adjusted standard errors. While the β1 and β2 resemble the ”average” feedback

affects from and towards the individual companies, the β1,j and β1,j parameters indicate how

much stronger the effect is for varying levels of e.g. size, leverage or earnings. Hence, the

estimated beta-parameters can directly be interpreted to determine the key characteristics

of systemically important institutions.

Other differences to the setup of Adrian and Brunnermeier (2011) are the following: First,

they analyze the value-at-risk of total assets, while we study equity value-at-risk. Further-

more, due to the direct observability of the option-implied VaROI
p , we do not have to rely

on quantile regression but can estimate the equations of interest by OLS. Note, however,

that in the static approach similar to Adrian and Brunnermeier (2011) we cannot distinguish

”whether the contribution is causal or simply driven by a common factor”. Such an inter-

pretation is only be possible in the dynamic approach where causal relations are identified
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using VAR identification schemes.

We specifically test for structural differences stemming from various accounting items and

other market observables: First, we are interested in the magnitude of a potential firm size

effect as size is usually considered to be of first order importance for systemic risk. In

our baseline regression we measure size by total assets (AT).1 Second, firm leverage might

influence its systemic risk profile, as shown in the theoretical model by Acharya et al. (2010).

We measure leverage (BLEV) as the ratio of total assets and book value of equity. Third, the

riskiness of the balance sheet composition might also influence the systemic risk impact. In

order to proxy for the asset liability mix of a company, we compute the ratio of level-3 assets2

(LEV3A) to total assets. In addition, we approximate a company’s maturity mismatch (MM)

as the ratio of short-term debt over total assets. Fourth, we are interested in the potential

role of earnings. We analyze the impact of earnings by the return on equity (ROE), as

defined by total earnings excluding extraordinary items over the last four quarters divided

by book value of equity. Finally, we look at the market-to-book valuation (MTB), which we

measure as the market capitalization divided by its book value.

As conditioning variables X for the financial sector VaRIndex
p we use standard variables from

the interest rate and equity markets. In particular, we control for the effect of the short

term interest rate, as measured by the 3-month treasury bill rate, the interest rate slope,

as measured by the difference between the 10y- treasury yield and the 3-month treasury

bill rate. Furthermore, we include corporate bond spreads, as defined by the average yield

difference between Moody’s seasoned Baa- and Aaa-rated corporate bonds, and a liquidity

spread, which we compute as the yield difference between one-month financial and non-

financial commercial paper. From the equity universe, we calculate the return of the S&P

500 over the last quarter. For the individual company’s VaRi
p we use all above mentioned

accounting and market valuation items as well as the the firm’s quarterly stock return as

the vector of conditioning variables Yi.

1As a robustness check, we have also analyzed the impact of a firm’s book equity value (CEQ) or its
market capitalization (MCAP) as opposed to its total asset holdings. It turns out that the results are almost
identical and we therefore do not report those results here.

2Level-3 assets are assets whose price cannot be observed directly in the market and which are mainly
marked-to-model.
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2.3 Dynamic Analysis

With the exceptions of White et al. (2010) and Adams et al. (2012), most of the existing lit-

erature focuses on the contemporaneous interaction between individual and index tail risks.

White et al. (2010) estimate a series of bivariate vector autoregressions (VARs) for the in-

dividual and sector VaRs. While their underlying idea of measuring the dynamic spillover

effects between individual companies and the index using impulse-response functions is the

same, we do not have to rely on their involved QML-estimation technique as our option-

implied value-at-risk is directly observable. Instead we can use more standard panel VAR

estimation techniques. Adams et al. (2012) examine the feedback effects between the average

GARCH-implied VaRs of four different financial subindustries. In contrast, we make use of

all individual option-implied VaRs in our panel and estimate the feedback effects between the

individual company and the index conditional on the firm characteristics. This is made pos-

sible by a new panel vector autoregression (PVAR) estimator derived by Georgiadis (2012).

The underlying idea is to estimate a PVAR model that is only conditionally homogeneous

but delivers different PVAR and IRF estimates for various levels of one or more conditioning

variables Zi,t:

Yi,t = Φ1(Zi,t)Yi,t−1 + Φ2(Zi,t)Yi,t−2 + . . .+ εi,t (10)

with Yi,t = [VaRIndex
t ,VaRi

t]
′ and εt = [εIndext , εit]

′. 3 The model itself can be estimated using

standard least squares techniques and allows for company fixed effects. As conditional vari-

ables Zi,t we again use the same variables as in Section 2.2 employing Chebyshev polynomials

of up to second order.

The advantage of this dynamic approach is that based on a standard VAR identification

scheme with a particular ordering of the variables we are able to identify sector and firm

specific shocks uIndext and uit and thus identify causal spillover effects. Following the iden-

tification strategy of White et al. (2010), we allow only index tail risk shocks to affect the

individual company risk contemporaneously, while company shocks can influence the in-

dex only with a lag. After this adjustment, we obtain four basic types of orthogonalized

impulse-response functions (IRF) for the next n periods, i.e.

1. ∂V aRIndex
t+n /∂uIndext , the effect of an index shock on the index itself

3See Appendix A for a more detailed derivation of the PCHVAR model.
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2. ∂V aRi
t+n/∂u

Index
t , the effect of an index shock on the firm

3. ∂V aRIndex
t+n /∂uit, the effect of a firm specific shock on the index

4. ∂V aRi
t+n/∂u

i
t, the effect of a firm shock on the firm itself

Of particular relevance are the index and firm specific cross effects, as they give a direct view

on potential spillover effects between the sector and individual companies. The advantage of

the estimator by Georgiadis (2012) is that the impulse-response functions are again functions

of the underlying firm characteristics and their influence can be estimated directly. While the

PVAR implied by (10) allows for the interpretation of causal spillover effects, it might still

suffer from a potential omitted variable problem inherent in almost all empirical systemic risk

studies, with the paper by Hautsch et al. (2012) being a notable exception. This is because

in each cross-sectional regression only the impact of each company individually is analyzed,

ignoring the possible impact of other institutions. In order to control for that problem, we

further expand our analysis to a trivariate PVAR with Yi,t = [VaRIndex
t ,VaRi,t,VaRi

t]
′ and

VaRi,t = 1
n−1

∑n
j=1,j 6=i VaRj

t . Similar to the idea of a global vector autoregression (GVAR),

the effects of all other companies are aggregated in the second term and allow for a consistent

estimation of the individual spillover effects.

3 Data

We use the Ivy DB OptionMetrics database and include all financial institutions with equity

options traded on US exchanges which can be matched to the combined quarterly and annual

Compustat database for the period January 2002 to December 2010. Financial institutions

are identified based on their SIC codes and grouped into one of the following industry

categories: depositories (SIC 6000-6099), broker-dealer (SIC 6200-6299), insurance (SIC

6300-6499) and other (SIC 6100-6199 and 6500-6699). Following Kelly et al. (2011), as a

proxy for the whole financial sector we use the broadly diversified iShares financial sector

ETF, which has the additional advantage that options on that ETF are traded on the CBOE

(ticker IY F ). For liquidity reasons, we restrict our analysis to short-term put options with

one month remaining maturity. Given the option data, we either compute the VaROI
p based

on ATM (see equation 5) or OTM options. In the later case, we estimate ∆K for each point
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of the implied volatility curve according to equation 4 and search for the strike price K

such that ∆K(K) = p. For extrapolations beyond the most OTM put options (∆S = 0.8) we

thereby keep the implied volatility constant. Furthermore, we use individual and index stock

market data from CRSP, interest rate data from the Federal Reserve Board’s H.15 report

and the VIX from the Philadelphia Stock Exchange. We include a company in the sample if

it has at least 200 non-missing daily volatility surfaces in a single year. The final sample thus

consists of 399 financial institutions. The values for maturity mismatch, returns on equity

and individual 3-month stock returns are winsorized at the 1% and 99% percentiles. Table 1

reports the summary statistics of the accounting data for the total sample and the industry

subsamples. Depository banks constitute the largest group in the sample and are on average

the largest institutions with the smallest cash share. Broker-dealers have the highest cash

share and the highest market-to-book valuation. Their high average maturity mismatch of

13% is only exceeded by non-depository banks (17%) which also have the highest on-average

leverage of 13.76. In the robustness analysis, we assign each company to one of the five

quintile portfolios based on those accounting characteristics. The grouping is carried out for

each year and each balance sheet item such that each quintile group has approximately the

same number of observations per year.

Table 2 summarizes the relevant market data that consists of 440,166 individual quotes. On

average, a company is about 4.5 years in the sample. For both the individual companies

and the index, the first two lines give summary statistics for the extracted one-month VaR’s,

computed for threshold levels of 5%-and 20% using ATM options. The VaRATM
0.2 is mainly

computed for comparison reasons. As expected, the VaRs computed from ATM options are

substantially lower than its counterparts computed from OTM options (row 3,4,7 and 8)

as OTM options contain information about the implied fat tail return distribution. The

remaining volatility, equity and interest rates control variables show large variations as a

result of the crisis.

To shed some further light on the link between the two different option-implied VaROI

extraction methods and their relationship with the VaRP under the physical probability

measure, Figure 1 depicts the time series of the financial sector VaRIndex
t , computed using

the two different methods and for threshold level of p = 0.20 and p = 0.05, and compares

them to the VaRP
t computed from a standard GARCH(2,2) model. As can be seen from

Figure 1, VaRs under the objective and option-implied probability measure move very much

in parallel. This is confirmed by an R2 = 0.89 when regressing the explicit tail risk VaROI
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on the VaRP from the GARCH estimation. The results are comparable to those found in

the literature discussed in Section 1. In summary, the results suggest that even for extreme

quantiles, option-implied VaRs behave qualitatively similar to their physical counterparts.

4 Results

The following results are based on VaRs calculated from OTM options according to equation

4 and a threshold level of p = 0.2. A discussion of the robustness analysis using ATM option

volatilities and other threshold levels can be found Section 5.

4.1 Results for Static Analysis

Tables 3 and 4 report the regression results from the static analysis based on equations 8

and 9. All interacted variables with the exception of the dummy variables (DIB and DDep)

are standardized with mean zero and unit standard deviation.

Table 3 reports the regression results for the feedback from the individual company on the

index itself. Overall, a larger size (as measured by total assets) and higher market-to-book

ratios, maturity mismatches as well as higher earnings increase the spillover effect while

interestingly the effect is negative for book leverage. Also the broker dummy DIB indicates

a substantially higher feedback effect for investment banks. The deposits share DPS is

insignificant in all regressions. The regression in the third column also includes the share of

level-3 assets, a balance sheet item only available from 2008 onwards for particular companies.

The effect of level-3 assets from 2008 onwards is found to be negative. The control variables

are in line with economic intuition. Higher credit and liquidity spreads or lower interest rates

and equity index returns over the last quarter indicate times of heightened market stress and

increase financial sector tail risks.

Table 3 summarizes the evidence from the static approach for a company’s exposure to

the sector risk. As expected, the average effect of an index shock is close to one but firm

characteristics matter significantly. Higher market-to-book valuations and earnings reduce

a companies exposure to sector risk while it increases in book leverage and in size. Once

maturity mismatch and deposits share (for depository banks only) are included, the broker
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and depository dummies turn positive even though the effect is strongly reduced by a larger

deposits share. Columns (2) and (3) also report that companies with a larger maturity

mismatch and higher level-3 assets share are significantly more exposed to market wide

risks.

Again, the control variables are mostly in line with economic intuition as more leveraged

firms with lower last quarter earnings and quarterly cumulative equity returns are perceived

to be more risky and feature higher tail risks.

Both the return on equity and the market-to-book ratio are indicators of a firm’s financial

healthiness. By contrast, maturity mismatch and level-3 asset share are measures for the

riskiness of the left and right hand side of the balance sheet. Results from the static analysis

hence suggest that in particular the tail risks of large and healthy financial institutions have

a high impact on the whole financial sector risk. Furthermore, the results suggest that large

and highly leveraged companies with a risky asset liability mix are particularly exposed to

sector-wide downturns. The effect is even more pronounced for less healthy firms with below

average earnings and low market valuations.

4.2 Results for Dynamic Analysis

As outlined in Section 2.2, one of the drawbacks of the static approach is the difficulty to infer

about the causality of the effects. Here, the PVAR approach offers an insightful alternative

as the orthogonalized VAR error terms allow for a causal interpretation of the results. At

the same time, the estimation approach by Georgiadis (2012) enables us to determine the

impact of the conditioning firm variables on the impulse-response functions. In order to do

so, we use the same identification strategy as White et al. (2010) and orthogonalize the error

terms by assuming that only the index can affect individual firms contemporaneously but

not vice-versa. Finally, we compare the resulting impulse response functions, in this case

with a forecast horizon of up to t = 22 business days. Overall, we find that a firm’s exposure

to sector-wide shocks increase in its leverage and level-3 asset holdings and decline in its

size, market-to-book ratio, return on equity and maturity mismatch. On the other hand,

a company’s impact on the overall sector increases in its size and maturity mismatch. In

contrast to the static approach, its impact declines in its market-to-book ratio and its return

on equity.
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Before looking at the impulse-response functions, Table 5 reports that all items have a

statistically significant influence on the VaR coefficient matrix Γ. All regressions include the

level of the VIX and the quarterly stock returns as additional conditioning variables. Yet,

even though all variables in the Γ-matrix are statistically significant at the 10% confidence

level, the economic significance on the estimated impulse response function varies. Figures

2 and 3 depict the estimated impulse response functions with the response being a function

of time and the standardized conditioning variable. For each conditional variable, the lower

left figure depicts the response function of the index tail risk after an (orthogonalized) unit

shock to a company. Just as in the static approach, a firm’s impact on the index increases in

its size. In addition, the index response function strongly increases with the share of level-3

assets while the effect of a larger maturity mismatch and leverage is only marginally positive.

On the other hand, the effect of a tail risk shock to the financial sector can be seen in the

upper right corner of each figure group. A high leverage and a low market-to-book ratio or

return on equity are characteristics of companies with strong dependence on the index tail

risk. Interestingly, independent of the choice of the size variable (total assets, equity book

value or market capitalization), we find evidence for a negative relationship between size

and a firm’s dependence on the sector tail risk, i.e. an increase in sector risks affects smaller

companies more than larger ones.

One potential problem of the bivariate PVAR approach might be that we estimate the

influence of one company on the index independent of the influence of all other companies.

As outlined in Section 2.3, in order to overcome that potential problem we include VaR,

the average of all other company VaRs, as an additional variable in the VAR. While both

the V aRIndex and the VaR can now be interpreted as sector shocks, the cross-sectional

results displayed in Figures 4 and 5 are qualitatively the same as in the bivariate PVAR.

Conditioning on each firm characteristic, the two top row subfigures in Figures 4 and 5 display

the company VaRi response after an unit shock to the overall sector VaRIndex or the average

firm VaR. On the other hand, the lower two subfigures display the response functions of the

sector VaRIndex or the average firm VaR after a company VaRi shock. While in the top two

subfigures, the overall shape of the VaRi response functions differs in the time dimension due

to identification scheme, the shape of the response function in the cross-sectional dimension

is very similar for the top and bottom subfigures. Looking at the bottom row response

functions of Figures 4 and 5, a firm’s impact on the index increases in its size, just as in the

bivariate setup. Yet, the positive maturity mismatch effect is now much more pronounced.
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The same is true for the negative relation between higher market-to-book ratios or higher

return on equities and a firm’s feedback on the index. The level-3 assets and leverage effect

however are broadly flat now. In contrast, a firm’s exposure to sector wide risk shocks can

be seen in the top two subfigures. In line with earlier results, more leveraged small firms

with low market-to-book ratio/returns on equity and high level-3 asset holdings are most

exposed to sector wide risk changes. The negative relationship between size and a firm’s

dependence on the sector tail risk remains also in the trivariate case.

In addition, the size of the response functions after a company or sector VaR shock can

be compared for the bivariate and trivariate PVARs. The average VaRi response after a

sector shock VaRIndex remains in the range between 0.4 and 0.5 in both setups. Yet, in the

trivariate PVAR the estimated sector VaRIndex response after a company VaR shock and 22

business days drops to about 0.05 on average (down from about 0.1− 0.2). Estimating indi-

vidual systemic risk contributions without conditioning on other companies might therefore

overestimate individual effects by a factor of 2− 4.

In summary, both PVAR estimation setups qualitatively agree on the key characteristics of

systemically relevant institutions. If one is mainly interested in the identification of those

characteristics and a causal interpretation is of less interest, ignoring the impact of other

companies does not seem to be a major problem. The same, however, does not hold true if

the goal is to quantify systemic risk contributions and for instance to tax financial institutions

based on their systemic risk profile. In that case, taking account of the information from

all other companies is essential as otherwise individual risk contributions might be grossly

overestimated.

Comparing the results from the static and dynamic approach, we find similar effects for

most of the variables in question. However, individual differences in the direction of the

size, market-to-book ratio and earnings effects highlight the importance of the identification

scheme. While both approaches identify the same systemically relevant firm characteristics,

an appropriate causal interpretation is only possible in the dynamic approach. Generally

speaking, the results show the importance of an appropriate identification scheme to dis-

tinguish between a company’s systemic risk dependence and its own risk contribution. By

contrast, the mere inclusion of company and sector specific control variables does not seem

to be sufficient to identify the direction of the effects in any kind of non-causal static frame-

work.
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5 Robustness Analysis

5.1 Pre- vs Post-Crisis Analysis

The total dataset covers the complete time horizon from 2002 to 2010 with the second half

of the sample being dominated by the recent financial crisis. In order to analyze the im-

pact of these different time periods, we split the sample into a pre- and post-crisis period

and conduct the static and dynamic analysis for each subsample individually.4 In the static

analysis, prior to July 2007 only size appears to increase systemic risk contributions signifi-

cantly while size and leverage increase dependence on sector risk. Also, the estimated sign

for the market-to-book ratio is positive and significant. All other effects, including the sign

switch for the market-to-book ratio, occur in the data only afterwards. Interestingly, the

company size effect on the index is much stronger before the crisis. Finally, both depositary

and broker dummies indicate that the systemic risk related to banks was largely underesti-

mated as its coefficients are negative before the crisis and only catch up during the crisis.

The results suggest that market participants focused on market valuations before the crisis

and underestimated systemic bank risks. Only with the onset of the crisis they payed full

attention to the systemic downside risks stemming from a company’s balance sheet compo-

sition and its business model. These findings are supported by the time sample split for the

dynamic analysis. Again, the effects are weaker or insignificant before the crisis, resulting in

much flatter impulse response functions. Only from July 2007 onwards one can observe the

patterns as shown in Section 4.2.

We suspect that the negative relationship between the size variables and a firm’s dependence

on the sector tail risk might be due to implicit bailout expectations priced into the put

options of financial institutions. Intuitively, the larger the bailout probability of a company,

the smaller should be its dependence on the sector risk. The opposite however need not to

be true, as implicit bailout guarantees might reduce an institution’s risk (as measured by

its VaR) but conditional on the institution’s failure, the whole sector might very well be

affected. In order to further investigate that question, again we split our sample into a pre-

crisis (until July 2007) and post-crisis period and re-estimate the effect separately for both

time periods and for different industries using our PCHVAR model. As mentioned above, the

4Results not shown in this paper but available upon request.
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negative size effect is stronger before the crisis than afterwards and present for all financial

subsectors (broker, depository and non-depository banks, insurance and insurance agency

companies as well as real-estate firms). With the onset of the crisis however, the negative

size effect persists in the brokerage and insurance subsectors only. These findings are also

robust to the inclusion of additional conditional variables in the estimation. The findings

thus suggest that as a result of the crisis there has been shift in bailout expectations towards

large financial institutions and investment banks in particular. In addition, we scrutinize

the effects of all other accounting items over time and for each industry separately. The

market-to-book, leverage and earnings effects are qualitatively the same in all specifications

while the maturity mismatch effects are not present in all subperiods and industry splits.

5.2 Non-parametric Estimation Approach

The static and dynamic approaches in Section 4 are based on a parametric specification of

the link between firm characteristics and feedback effects. In order to exclude any effects

from a potential misspecification, we also apply a non-parametric approach for robustness

reasons. Instead of interacting the VaRs with the conditioning variables, we now sort each

company into one of five quintiles based on characteristics such as size, leverage, market-

to-book ratio, maturity mismatch, level-3 asset share and return on equity. In a second

step, we analyze the impacts of the various quintile groups by running the following panel

estimations:

V aRIndex
t = c1 + β1 · V aRi

t +
5∑

j=2

β1,K,j · V aRi
t ·DK,j + γxX + εt (11)

V aRi
t = c2 + β2 · V aRIndex

t +
5∑

j=2

β2,K,j · V aRIndex
t ·DK,j + γyYi + εt (12)

where DK,j is a dummy that is one if company i belongs to quintile group j for account-

ing item K and zero otherwise. The sorting into the quintile groups is then repeated for

the various accounting items and we can check for monotone patterns in the estimated β

coefficients. If for instance we expect a higher leverage to have a positive influence on a

company’s systemic risk contribution, we would expect monotonically increasing β’s going

from group five to one. Tables 6 and 7 report the regression results from the non-parametric
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static analysis with univariate sorting. Table 6 summarizes the evidence on key character-

istics of firms with a large impact on the whole financial sector. Going from group 5 to

1, there are clear monotonic increasing patterns for both size variables (total assets (AT)

and book equity value (CEQ)) as well as for the market-to-book-ratio (MTB) and return on

equity (ROE). The empirical results are less conclusive for leverage (BLEV), the maturity

mismatch (MM) or the level-3 asset share (LEV3A) which show no clear evidence of mono-

tonicity. With respect to the feedback from the sector on the individual companies, Table

7 reports clear monotonically increasing pattern for both size measures, leverage as well as

the maturity mismatch and level-3 asset share. On the other hand, the pattern is decreasing

for the market-to-book ratio and the return on equity.

We use a similar approach for the PVAR estimation. Again, we sort each company into one

of the five quintile groups and estimate the unconditional average impulse response functions

for each group separately. Table 8 reports the 95% confidence bands of the estimated spillover

effects after 22 business days. Overall, the patterns appear be more distinct for the spillover

effects from the index on the individual companies (left-hand side of Table 8). Larger

companies with higher leverage and more level-3 assets are more exposed to sector-wide

shocks, even if the response functions for the last quantiles are not perfectly monotone.

Similarly, a small market-to-book ratio and a small return on equity are characteristics

of companies whose tail risks depend heavily on the state of the whole financial sector.

Regarding the maturity mismatch, the impulse response functions are rather similar for all

but the last quintile group, which is substantially lower. With respect to the feedback from

individual shocks on the index (right-hand side of Table 8), size seems to be one of the

dominant factors. Interestingly however, a monotone pattern can only be observed for the

quantiles 2-4 with respect to total assets, while the first quantile is significantly lower than

the second. In addition, there are positive patterns for the quintile groups of the market-to-

book ratio and return on equity. By contrast, there are no distinctive patterns with respect

to leverage, maturity mismatch and level-3 assets.

One possible concern regarding the positive size effect is that it mainly mirrors the effects

of the value-weighted firms’ VaRis on the index VaRIndex. We therefore repeat all baseline

estimations of the static and dynamic approach but replace the VaRIndex by the equally

weighted average VaRi,t of all other companies. Overall, the results remain qualitatively

the same. Regarding the size effect in particular, we continue to find significant positive
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size effects in the static approach and a positive/negative size effect in the bivariate PVAR

approach with respect to company/index shocks.

As a further robustness check, we also estimate the conditional PVAR employing second

order Chebyshev polynomials. The inclusion of higher order polynomials however does not

change the main results. We only find minor differences for the market-to-book and total

assets items. Here, the response curve is slightly u-shaped after a VaRi shock and the positive

size effects flattens out for large companies. Additionally, we repeat all estimations using a

VaR threshold level of p = 0.05 or VaRs calculated from ATM options according to equation

5. The only difference is that the firm leverage effect on the average sector VaR is positive

while it is negative but almost flat for VaRIndex . Otherwise the results are qualitatively and

quantitatively similar to the ones from Section 4. Overall, the results in the non-parametric

approach are broadly comparable and show only minor deviations to the parametric baseline

approach.

6 Conclusion

In this paper, we propose a novel approach on how to estimate systemic tail risk depen-

dencies in the financial sector. Value-at-risks are extracted from equity options. Tail risk

dependencies between individual companies and the sector are estimated using panel and

panel VAR estimation techniques. We find that key accounting and market valuation met-

rics such as size, leverage, market-to-book ratio, earnings as well as the riskiness of the

balance sheet have a significant influence on an institution’s contribution to systemic risk.

Our panel VAR approach allows for a structural decomposition of a firm’s impact on the fi-

nancial sector and a firm’s vulnerability to financial sector risks. In contrast to earlier studies

that quantify only contemporaneous contagion, our panel VAR approach measures dynamic

spillover effects using impulse response functions and allows for a causal interpretation of the

effects. The results of all test setups suggest that firm size is of first-order importance for

a company’s contribution to systemic risk. Furthermore, a company with a high maturity

mismatch, low earnings and a low market-to-book ratio has a higher systemic risk impact.

On the other hand, highly leveraged small institutions with a low market-to-book ratio and

low earnings are most sensitive to changes in overall financial sector risk. Additionally, the

results point towards a higher systemic risk profile for companies with a riskier asset liability
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mix. A higher level-3 asset share further increases an institution’s dependence on the sector

tail risk.
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Appendix A: The PCHVAR Model

Georgiadis (2012) assumes the following time-varying VAR model:

yt = Φ1(zi,t)yi,t−1 + Φ2(zi,t)yt−2 + . . .+ Φp(zi,t)yi,t−p + εt (13)

such that the effective VAR parameter can be time-varying and depend on the conditioning

variable zt in an unknown functional form. It is therefore assumed that the individual

scalar coefficients φj,rc(zit) can be approximated by a linear function of τ -th order chebyshev

polynomials such that

φj,rc(zi,t) = π(zit) · γj,rc (14)

with π(zit) a 1 × τ vector of chebyshev polynomials and γj,rc the τ × 1 vector of linear

coefficients. Hence,

Φj(zi,t) =


π(zi,t) · γj,11 . . . π(zi,t) · γj,1K

...
. . .

...

π(zi,t) · γj,K1 . . . π(zi,t) · γj,KK



=


γ′j,11 . . . γ′j,1K

...
. . .

...

γ′j,K1 . . . γ′j,KK

 · [IK ⊗ π′(zi,t)]

= Γ ·
[
IK ⊗ π′(zi,t)

]
(15)

and (13) can thus be re-written as

yt =

p∑
j=1

Γj

[
IK ⊗ π′(zi,t)

]
yi,t−j + εi,t

≡
p∑

j=1

Γjxi,t−j + εi,t

(16)
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Industry No of firms No of quarterly firm items Variable Mean Median Std Min Max

Total 399 7,128 AT 143,163 14,264 364,758 37 2,950,316
7,128 CEQ 9,228 2,303 19,900 35 210,000
6,848 CASH 0.06 0.03 0.10 - 0.84
7,084 MM 0.07 0.02 0.12 - 0.70
7,128 BLEV 10.03 8.59 9.08 1.00 76.82
7,128 MTB 1.99 1.52 1.97 0.12 36.61
2,044 LEV3A 0.03 0.01 0.06 - 0.86
7,116 ROE 0.10 0.12 0.18 - 1.33 0.61

Agents 12 246 AT 137,425 3,400 239,964 66 1,330,066
246 CEQ 8,398 1,097 12,027 55 48,624
246 CASH 0.11 0.06 0.16 - 0.77
246 MM 0.02 0.01 0.02 - 0.10
246 BLEV 7.94 4.11 7.56 1.09 31.03
246 MTB 2.44 2.23 1.41 0.15 5.83
35 LEV3A 0.03 0.04 0.02 - 0.05
246 ROE 0.13 0.15 0.22 - 1.33 0.61

Broker 66 1,146 AT 92,384 4,105 271,287 37 2,528,580
1,146 CEQ 5,001 1,065 9,237 35 85,318
1,102 CASH 0.13 0.08 0.13 - 0.84
1,142 MM 0.13 0.02 0.19 - 0.70
1,146 BLEV 8.58 2.99 10.84 1.00 58.57
1,146 MTB 3.23 2.04 3.28 0.46 28.94
263 LEV3A 0.03 0.02 0.04 - 0.17

1,142 ROE 0.12 0.13 0.24 - 1.33 0.61

Depository 164 2,653 AT 234,040 23,508 502,084 293 2,950,316
2,653 CEQ 14,126 2,275 28,999 122 210,000
2,581 CASH 0.03 0.02 0.04 - 0.37
2,613 MM 0.10 0.08 0.07 - 0.54
2,653 BLEV 13.11 11.28 6.85 1.49 64.53
2,653 MTB 1.86 1.61 1.77 0.20 36.61
756 LEV3A 0.02 0.01 0.02 - 0.11

2,653 ROE 0.09 0.13 0.16 - 1.33 0.61

Insurance 112 2,392 AT 80,279 15,095 217,434 593 1,916,658
2,392 CEQ 7,046 3,505 11,393 141 160,000
2,248 CASH 0.06 0.02 0.09 - 0.76
2,392 MM 0.01 - 0.03 - 0.45
2,392 BLEV 7.09 4.29 7.58 1.13 76.82
2,392 MTB 1.51 1.25 1.03 0.12 8.95
818 LEV3A 0.02 0.01 0.03 - 0.23

2,388 ROE 0.10 0.12 0.15 - 1.33 0.61

Non-Depository 29 543 AT 124,079 14,275 238,584 259 1,020,934
543 CEQ 6,434 2,122 8,453 43 32,398
523 CASH 0.05 0.03 0.07 - 0.35
543 MM 0.17 0.09 0.18 - 0.70
543 BLEV 13.76 7.81 14.27 1.15 65.21
543 MTB 2.02 1.53 1.60 0.19 7.70
140 LEV3A 0.11 0.03 0.19 - 0.86
539 ROE 0.14 0.16 0.24 - 1.33 0.61

Real-Estate 16 148 AT 3,251 1,472 4,347 108 20,420
148 CEQ 1,036 895 1,264 92 7,883
148 CASH 0.12 0.05 0.18 - 0.72
148 MM 0.03 0.01 0.05 - 0.22
148 BLEV 3.27 2.25 4.21 1.09 25.19
148 MTB 1.76 1.53 1.04 0.26 5.51
32 LEV3A 0.01 0.01 0.01 - 0.02
148 ROE 0.06 0.08 0.11 - 0.21 0.25

Table 1: Summary statistics of the accounting information, split by industry. Above are the (arithmetic) mean, median, standard
deviation, absolute minimum and maximum for the following conditioning accounting variables: total assets (AT), equity book value (CEQ),
leverage as measured by total asset to equity book value (BLEV), market-to-book ratio (MTB), cash (CASH), maturity mismatch (MM) and
level-3 assets (LEV3A) as a share of total assets, earnings-per-share (EPS) and return on equity (ROE) as defined by total earnings divided by
equity market value. The information is displayed for the total sample as well as split up for each industry subsector. The second and third row
report the number of firms included in the total sample and for each subsector as well as the number of quarterly and annually reported firm items.
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Category Variable Obs Mean Median Std. Dev. Min Max

VaRi p = .20, ATM 440,166 9% 8% 5% 1% 53%
p = .05, ATM 440,166 17% 14% 9% 2% 78%
p = .20, OTM 440,166 12% 10% 8% 2% 77%
p = .05, OTM 440,166 21% 18% 11% 4% 89%

VaRIndex p = .20, ATM 2,265 7% 5% 4% 2% 26%
p = .05, ATM 2,265 12% 10% 7% 4% 45%
p = .20, OTM 2,265 8% 7% 6% 3% 38%
p = .05, OTM 2,265 15% 13% 9% 5% 55%

Volatility VIX 2,267 21.6 19.3 10.3 9.9 80.9

Equity 3M S&P500 c. return 2,267 1% 2% 9% -41% 38%
3M c. stock return 439,733 2% 2% 22% -94% 1068%

Rates 3M TB yield 2,250 2.03 1.64 1.70 0.00 5.19
Slope 2,250 2.05 2.48 1.32 -0.64 3.85
Liquidity Spread 2,198 0.07 0.03 0.18 -0.10 2.36
Credit Spread 2,251 1.19 1.04 0.55 0.57 3.50

Table 2: Summary statistics of the VaRs and other market data. Above are the (arithmetic) mean,
median, standard deviation , absolute minimum and maximum for the individual and index VaRs, the VIX
volatility index, daily S&P500 and individual stock returns and the interest rate data. The individual VaRs
(row 1-4) and index VaRs (row 5-8) are estimated using ATM options according to Equation (5) (row 1,2,5,6)
or using OTM options according to Equation (4) (row 3,4,7,8) for the 20% percentile (row 1,3,5,7) or the
5% percentile (row 2,4,6,8).
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Dependent variable: VaRIndex, p = 0.2, OTM
(1) (2) (3)

VaRi 0.121 *** 0.124 *** 0.139 ***

VaRi · ATS 0.007 *** 0.005 ** 0.000

VaRi · BLEVS -0.006 *** -0.006 *** -0.006 **

VaRi · MTBS 0.007 ** 0.007 ** 0.027 ***

VaRi · ROES 0.004 ** 0.004 * -0.002

VaRi · DIB 0.027 *** 0.026 *** 0.019 ***

VaRi · DDep 0.01 *** 0.014 ** -0.002

VaRi · MM1S 0.005 *** 0.006 ***

VaRi · DPS -0.007 0.017

VaRi · LEV 3AS -0.005 ***

Constant 0.038 *** 0.036 *** 0.005
3-month TB yield -0.011 *** -0.011 *** -0.002
Baa spread 0.055 *** 0.055 *** 0.057 ***
Slope -0.009 *** -0.008 *** 0.000
Liquidity spread 0.035 *** 0.035 *** 0.030 ***
3-month S&P500 c. return -0.093 *** -0.092 *** -0.081 ***

Observations 428,957 377,817 109,884
Number of groups 398 371 200

R2 0.62 0.62 0.65

Table 3: Panel regression results I for static analysis Above are the estimation results according to
equation (9) using VaRs computed from OTM options according to equation (4) and p = 0.2. The dependent
variable VaRIndex is regressed on the VaRi, interacted with a set of standardized firm characteristics (AT,
BLEV, MTB, ROE, MM, DP, LEV3A) and broker (DIB) and depository dummy variables DDep as well as
a set of control variables. The dummy variables are one if the firm is a broker or a depository bank and
zero otherwise. The share of deposits is constrained to be zero if the bank is a not depository bank. *
(**,***) means that the estimated parameter is significant at the 10%(5%,1%) level. The confidence levels
are Driscoll and Kraay (1998) adjusted for serially and cross-sectionally correlated error terms.
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Dependent variable: VaRi, p = 0.2, OTM
(1) (2) (3)

VaRIndex 0.911 *** 0.9 *** 0.969 ***

VaRIndex · ATS 0.022 ** 0.020 ** 0.080 ***

VaRIndex · BLEVS 0.079 *** 0.058 *** 0.073 ***

VaRIndex · MTBS -0.057 *** -0.050 *** -0.053 ***

VaRIndex · ROES -0.049 *** -0.044 *** -0.045 ***

VaRIndex · DDEP -0.013 0.057 *** 0.063

VaRIndex · DIB -0.019 0.007 0.013

VaRIndex · MMS 0.033 *** 0.01

VaRIndex · DPS -0.044 *** -0.096 ***

VaRIndex · LEV 3AS 0.149 ***

log(AT) -0.007 *** -0.005 *** -0.006
BLEV 0.001 *** 0.001 *** -0.001 ***
MTB -0.001 *** -0.002 *** -0.007 ***
MM -0.045 *** -0.059 ***
3M c. stock return -0.028 *** -0.029 *** -0.015 ***
ROE -0.034 *** -0.029 *** 0.023 ***
LEV3A -0.352 ***
Constant 0.113 *** 0.097 *** 0.135 ***

Observations 439,088 386,800 112,706
Number of groups 398 371 200

R2 0.88 0.88 0.89

Table 4: Panel regression results II for static analysis Above are the estimation results according to
equation (8) using VaRs computed from OTM options according to equation (4) and p = 0.2. The dependent
variable VaRi is regressed on the VaRIndex, interacted with a set of standardized firm characteristics (AT,
BLEV, MTB, ROE, MM, DP, LEV3A) and broker (DIB) and depository dummy variables DDep as well as
a set of control variables. The dummy variables are one if the firm is a broker or a depository bank and
zero otherwise. The share of deposits is constrained to be zero if the bank is a not depository bank. *
(**,***) means that the estimated parameter is significant at the 10%(5%,1%) level. The confidence levels
are Driscoll and Kraay (1998) adjusted for serially and cross-sectionally correlated error terms.

27



Φ(1, 1) Φ(1, 2) Φ(2, 1) Φ(2, 2)

Full Sample Constant 0.925 *** 0.137 *** 0.024 *** 0.826 ***
AT -0.008 *** -0.022 *** 0.006 *** 0.018 ***
BLEV 0.002 *** 0.012 *** -0.001 *** 0.003 ***
MTB -0.005 *** -0.007 *** 0.002 *** -0.004 ***
MM -0.008 *** -0.008 *** 0.004 *** 0.007 ***
ROE -0.005 *** -0.002 * 0.003 *** -0.007 ***
VIX 0.013 *** -0.003 *** -0.003 *** 0.007 ***
3M c. stock return 0.006 *** 0.014 *** -0.002 *** -0.012 ***

incl. LEV3A Constant 0.961 *** 0.208 *** 0.012 *** 0.748 ***
AT -0.022 *** -0.032 *** 0.011 *** 0.036 ***
BLEV 0.002 ** -0.015 *** -0.001 * 0.018 ***
MTB -0.003 *** 0.015 *** 0.005 *** -0.036 ***
MM -0.006 *** 0.029 *** 0.004 *** -0.025 ***
ROE -0.002 *** 0.013 *** 0.002 *** -0.013 ***
LEV3A -0.003 *** -0.014 *** 0.001 ** 0.018 ***
VIX 0.001 ** -0.022 *** 0.001 *** 0.025 ***
3M c. stock return 0.005 *** 0.011 *** -0.002 *** -0.009 ***

Table 5: Estimated parameters of the Γ matrix using OTM options and p=0.20. Above table
reports the estimated parameters of matrix Γ from equation (16) which determine the VaR coefficient matrix
Φ. The individual entries of the matrix Φ are estimated as linear functions of the standardized values of
total assets (AT), leverage (BLEV), market-to-book-ratio (MTB), maturity mismatch (MM), return-on-
equity (ROE), level-3 assets (LEV3A), the VIX and the 3-month cumululative past stock return . Leverage
is measured as total assets over equity book value and MTB as the ratio of market to book value of equity.
Maturity mismatch and level-3 asset share are calculated as the ratio of short-term debt less cash and level-3
assets to total assets. Return on equity is measured as total earnings over equity book value. *** (**,*)
means that the estimated parameter is significant at the 1%(5%,10%) level.
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Dependent variable: VaRIndex, p = 0.2, OTM
AT CEQ MLEV MTB MM LEV3A ROE

VaRi 0.088 *** 0.093 *** 0.078 *** 0.102 *** 0.081 *** 0.057 *** 0.100 ***

VaRi · DAT2 0.000

VaRi · DAT3 -0.006 ***

VaRi · DAT4 -0.006 **

VaRi · DAT5 -0.010 ***

VaRi · DCEQ2 0.000

VaRi · DCEQ3 -0.005 **

VaRi · DCEQ4 -0.006 **

VaRi · DCEQ5 -0.021 ***

VaRi · DBLEV 2 0.011 ***

VaRi · DBLEV 3 0.027 ***

VaRi · DBLEV 4 0.019 ***

VaRi · DBLEV 5 0.019 ***

VaRi · DMTB2 0.000

VaRi · DMTB3 -0.005 ***

VaRi · DMTB4 -0.012 ***

VaRi · DMTB5 -0.025 ***

VaRi · DMM2 0.004 ***

VaRi · DMM3 0.004 ***

VaRi · DMM4 0.009 ***

VaRi · DMM5 -0.018 ***

VaRi · DLEV 3A2 0.008 ***

VaRi · DLEV 3A3 0.017 ***

VaRi · DLEV 3A4 0.009 ***

VaRi · DLEV 3A5 0.010 ***

VaRi · DROE2 0.005 ***

VaRi · DROE3 0.003 **

VaRi · DROE4 -0.012 ***

VaRi · DROE5 -0.025 ***

Constant 0.044 *** 0.044 *** 0.043 *** 0.043 *** 0.043 *** 0.007 0.043 ***
3-month TB yield -0.012 *** -0.012 *** -0.012 *** -0.012 *** -0.012 *** -0.003 -0.012 ***
Baa spread 0.058 *** 0.058 *** 0.058 *** 0.058 *** 0.058 *** 0.063 *** 0.058 ***
Slope -0.010 *** -0.010 *** -0.010 *** -0.010 *** -0.010 *** 0.001 -0.010 ***
Liquidity spread 0.039 *** 0.038 *** 0.039 *** 0.038 *** 0.039 *** 0.032 *** 0.038 ***
3-month S&P500 c. return -0.093 *** -0.093 *** -0.093 *** -0.093 *** -0.095 *** -0.081 *** -0.093 ***

Observations 429,666 429,666 429,666 429,666 426,992 122,854 428,957
Number of groups 399 399 399 399 399 223 398
R-squared 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Table 6: Panel regression results I from static analysis with univariate sorting. Above are the estimation results according
to equation (11) using VaRs computed from OTM options according to equation (4) and p = 0.2. The dependent variable VaRIndex

is regressed on the VaRi, interacted with a dummy variable Dk,l and a set of control variables. The dummy variable Dj,i is one if the
company i belongs to the quantile group l with respect to the conditioning variable k and zero otherwise. * (**,***) means that the
estimated parameter is significant at the 10% (5%, 1%) level. The confidence levels are Driscoll and Kraay (1998) adjusted for serially
and cross-sectionally correlated error terms.
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Dependent variable: VaRi, p = 0.2, OTM
AT CEQ MLEV MTB MM LEV3A ROE

VaRIndex 1.120 *** 1.058 *** 1.233 *** 0.768 *** 0.964 1.189 *** 0.846 ***

VaRIndex · DAT2 -0.213 ***

VaRIndex · DAT3 -0.280 ***

VaRIndex · DAT4 -0.393 ***

VaRIndex · DAT5 -0.407 ***

VaRIndex · DCEQ2 -0.161 ***

VaRIndex · DCEQ3 -0.200 ***

VaRIndex · DCEQ4 -0.331 ***

VaRIndex · DCEQ5 -0.284 ***

VaRIndex · DBLEV 2 -0.218 ***

VaRIndex · DBLEV 3 -0.384 ***

VaRIndex · DBLEV 4 -0.504 ***

VaRIndex · DBLEV 5 -0.545 ***

VaRIndex · DMTB2 0.073 ***

VaRIndex · DMTB3 0.088 ***

VaRIndex · DMTB4 0.144 ***

VaRIndex · DMTB5 0.346 ***

VaRIndex · DMM2 -0.077 ***

VaRIndex · DMM3 -0.093 ***

VaRIndex · DMM4 -0.109 ***

VaRIndex · DMM5 -0.127 ***

VaRIndex · DLEV 3A2 -0.102 ***

VaRIndex · DLEV 3A3 -0.250 ***

VaRIndex · DLEV 3A4 -0.366 ***

VaRIndex · DLEV 3A5 -0.383 ***

VaRIndex · DROE2 -0.042 ***

VaRIndex · DROE3 -0.002 ***

VaRIndex · DROE4 0.103 ***

VaRIndex · DROE5 0.225 ***

Constant 0.206 *** 0.187 *** 0.159 *** 0.129 *** 0.147 *** 0.053 * 0.110 ***
log(AT) -0.017 *** -0.015 *** -0.012 *** -0.009 *** -0.011 *** 0.000 -0.008 ***
BLEV 0.002 *** 0.002 *** 0.001 *** 0.002 *** 0.002 *** 0.001 ** 0.002 ***
MTB -0.001 *** -0.001 ** -0.001 *** 0.001 ** 0.000 -0.008 *** 0.000 ***
MM -0.006 -0.007 -0.016 *** -0.016 *** -0.037 *** 0.056 *** -0.013 ***
3-month c. stock return -0.024 *** -0.024 *** -0.020 *** -0.021 *** -0.025 *** -0.018 *** -0.024 ***
ROE -0.050 *** -0.051 *** -0.043 *** -0.050 *** -0.051 *** -0.010 *** -0.027 ***

Observations 436,359 436,359 436,359 436,359 436,359 126,022 436,359
Number of groups 398 398 398 398 398 223 398

Table 7: Panel regression results II from static analysis with univariate sorting. Above are the estimation results according
to equation (12) using VaRs computed from OTM options according to equation (4) and p = 0.2. The dependent variable VaRi is
regressed on the VaRIndex, interacted with a dummy variable Dk,l and a set of control variables. The dummy variable Dj,i is one if the
company i belongs to the quantile group l with respect to the conditioning variable k and zero otherwise. * (**,***) means that the
estimated parameter is significant at the 10% (5%, 1%) level. The confidence levels are Driscoll and Kraay (1998) adjusted for serially
and cross-sectionally correlated error terms.
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∂V aRi

∂V aRIndex
∂V aRIndex

∂V aRi

lower bound upper bound lower bound upper bound

AT quantile 1 0.64 0.69 0.21 0.24
quantile 2 0.35 0.43 0.36 0.42
quantile 3 0.25 0.31 0.10 0.14
quantile 4 0.39 0.48 0.04 0.06
quantile 5 0.33 0.41 0.05 0.08

CEQ quantile 1 0.63 0.67 0.21 0.24
quantile 2 0.49 0.55 0.25 0.28
quantile 3 0.51 0.61 0.09 0.12
quantile 4 0.43 0.51 0.03 0.05
quantile 5 0.46 0.58 0.02 0.04

BLEV quantile 1 0.58 0.64 0.17 0.21
quantile 2 0.53 0.61 0.09 0.12
quantile 3 0.28 0.36 0.22 0.27
quantile 4 0.33 0.39 0.18 0.25
quantile 5 0.42 0.47 0.15 0.20

MTB quantile 1 0.42 0.47 0.17 0.22
quantile 2 0.44 0.50 0.13 0.17
quantile 3 0.42 0.48 0.16 0.20
quantile 4 0.47 0.53 0.10 0.13
quantile 5 0.74 0.85 0.07 0.10

MM quantile 1 0.54 0.60 0.16 0.19
quantile 2 0.57 0.66 0.08 0.11
quantile 3 0.61 0.67 0.10 0.14
quantile 4 0.56 0.64 0.08 0.12
quantile 5 0.36 0.42 0.12 0.16

LEV3A quantile 1 0.73 0.92 0.07 0.14
quantile 2 0.58 0.71 0.12 0.18
quantile 3 0.51 0.65 0.04 0.09
quantile 4 0.40 0.55 0.08 0.13
quantile 5 0.45 0.65 0.02 0.10

ROE quantile 1 0.46 0.51 0.13 0.16
quantile 2 0.42 0.48 0.11 0.15
quantile 3 0.39 0.45 0.10 0.13
quantile 4 0.53 0.61 0.08 0.11
quantile 5 0.63 0.72 0.08 0.11

Table 8: Estimated confidence intervals for impulse response functions after 22 business days,
using OTM options and p=0.2. Above are the lower and upper limits to the 95% confidence intervals
for the estimated impulse response function of the VaRi (VaRIndex) after an index (individual) VaR shock
after 22 days. The VaRs are calculated from OTM options according to equation (4) and for p = 0.2.
The impulse response functions are estimated individually for each quantile of the conditioning variables
total assets (AT), book equity value (CEQ), book leverage (BLEV), market-to-book-ratio (MTB), maturity
mismatch (MM), level-3 asset share (LEV3A) and return-on-equity (ROE). Leverage is measured as total
assets over book equity value and MTB as the ratio of market to book value of equity. Maturity mismatch,
cash share and level-3 asset share are calculated as the ratio of short-term debt less cash holdings and level-3
assets to total assets. Return on equity is measured as total earnings over book equity value.
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Appendix C: Figures

Figure 1: Comparison of GARCH- and option-implied index VaRs. Above figures depict the
estimated time-series evolution of the index VaR, computed for the 20% (left) and 5% (right) percentile. The
dark grey line depicts the option-implied VaROI , calculated as in equation (5) using ATM option volatilites,
while the light grey line depicts the option-implied VaROI , calculated according to equation (4) using OTM
option volatilites. The black line depicts the VaR estimated by a GARCH(2,2) model, using the daily close
of business share prices of the underlying financial sector index ETF (ticker: IYF) from 2002 to 2012.
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(Total assets) (Book Leverage)

(Market − to − Book) (Return on Equity)

Figure 2: Impulse-Response functions, jointly estimated conditional on selected accounting
or market valuation items, the VIX and the 3-month cumulative stock return. Above pictures
depict the impulse-response functions, estimated by the PCHVAR model of Georgiadis (2012). For each
conditional variable, the impulse-responses represent the response functions of the index VaR (left top and
bottom) or the individual company VaR (right top and bottom) after an orthogonalized unit shock to the
sector VaRIndex (top left and right) or to the individual company VaRi (bottom left and right). The impulse-
responses are functions of time (left axis, in days) and the conditioning variable (right axis, standardized
values).
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(Maturity Mismatch) (Level − 3 Assets)

(V IX) (3 − month c. stock return)

Figure 3: Impulse-Response functions, jointly estimated conditional on selected accounting
or market valuation items, the VIX and the 3-month cumulative stock return. Above pictures
depict the impulse-response functions, estimated by the PCHVAR model of Georgiadis (2012). For each
conditional variable, the impulse-responses represent the response functions of the index VaR (left top and
bottom) or the individual company VaR (right top and bottom) after an orthogonalized unit shock to the
sector VaRIndex (top left and right) or to the individual company VaRi (bottom left and right). The impulse-
responses are functions of time (left axis, in days) and the conditioning variable (right axis, standardized
values).
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(Total assets) (Book Leverage)

(Market − to − Book) (Return on Equity)

Figure 4: Impulse-Response functions, jointly estimated conditional on selected accounting
or market valuation items, the VIX and the 3-month cumulative stock return. Above pictures
depict the impulse-response functions, estimated by the PCHVAR model of Georgiadis (2012). For each
conditional variable, the impulse-responses represent the response functions of the index VaR (left top and
bottom) or the individual company VaR (right top and bottom) after an orthogonalized unit shock to the
sector VaRIndex (top left and right) or to the individual company VaRi (bottom left and right). The impulse-
responses are functions of time (left axis, in days) and the conditioning variable (right axis, standardized
values).
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(Maturity Mismatch) (Level − 3 Assets)

(V IX) (3 − month c. stock return)

Figure 5: Impulse-Response functions, jointly estimated conditional on selected accounting
or market valuation items, the VIX and the 3-month cumulative stock return. Above pictures
depict the impulse-response functions, estimated by the PCHVAR model of Georgiadis (2012). For each
conditional variable, the impulse-responses represent the response functions of the index VaR (left top and
bottom) or the individual company VaR (right top and bottom) after an orthogonalized unit shock to the
sector VaRIndex (top left and right) or to the individual company VaRi (bottom left and right). The impulse-
responses are functions of time (left axis, in days) and the conditioning variable (right axis, standardized
values).
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