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Non-Technical Summary 

 
Simple instrument rules like a Taylor rule that link the policy rate to inflation and measures of 
economic activity are widely used concepts in monetary macroeconomics. Even though the 
idea is simple, Taylor rules have been used in various areas for both positive and normative 
analyses. On the one hand, as Taylor himself originally pointed out, such a rule is able to 
explain U.S. monetary policy extraordinarily well. This finding has frequently been captured 
and confirmed. On the other hand, Taylor rules can be used in order to ex-post evaluate 
monetary policy and assess the quality of the monetary policy stance by comparing actual 
developments in the policy rate with the interest rate implied by the Taylor rule. In other words, 
policy is said to be too loose when the monetary policy instrument was below the Taylor rule-
implied interest rate, whereas it is said to be too tight if it was above the implied rate. 
 
There is evidence that Taylor rules also have some value in evaluating the quality of monetary 
policy, or, put differently, it provides information about what a “good” action for a monetary 
authority might be. In this respect, public statements from policy makers strongly suggest that 
central banks around the globe indeed let the information resulting from simple instrument 
rules influence their policy choice or, at least, use resulting information as cross-checks for their 
decisions. 
 
We examine whether cross-checking policy rate decisions with information from simple 
instrument rules under model uncertainty documented in previous research carries over to the 
case of parameter uncertainty. In other words, we consider a form of uncertainty where the 
monetary authority is to a certain degree confident about the true economic environment. We 
find that adjusting monetary policy based on this kind of cross-checking can be beneficial for 
the monetary authority. This, however, crucially depends on the importance that the monetary 
authority attaches to stabilizing output volatility relative to stabilizing inflation volatility as 
well as the degree of monetary policy commitment. The monetary authority is on average able 
to benefit from policy rate cross-checking when it only moderately cares about stabilizing 
output and when policy is set in a discretionary way. 
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Abstract

We examine whether the robustifying nature of Taylor rule cross-

checking under model uncertainty carries over to the case of parameter

uncertainty. Adjusting monetary policy based on this kind of cross-

checking can improve the outcome for the monetary authority. This,

however, crucially depends on the relative welfare weight that is at-

tached to the output gap and also the degree of monetary policy com-

mitment. We find that Taylor rule cross-checking is on average able

to improve losses when the monetary authority only moderately cares

about output stabilization and when policy is set in a discretionary

way.
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1 Introduction

The Taylor rule is a widely used concept in monetary macroeconomics. Even

though the idea is simple, it has been used in various areas. Taylor (1993)

employs a positive analysis in the sense that he points out that the rule

explains U.S. monetary policy extraordinarily well. Subsequently, this finding

has been frequently captured and confirmed. Gerlach and Schnabel (2000)

apply the concept to pre-European Monetary Union data and estimate a

policy rule for euro area countries. They show that monetary policy can also

be described well by a Taylor rule and obtain similar coefficient estimates

as the ones initially assumed by Taylor (1993). Other studies suggest that

using real time data and projections for estimating the policy rule parameters

might even improve the explanatory power of the Taylor rule (Orphanides

and Wieland, 2008).

On the other hand, Taylor rules can be used in order to ex-post evaluate

monetary policy and therefore to employ a normative analysis. The quality

of monetary policy can be assessed by comparing actual developments in the

short term interest rate with the interest rate implied by a Taylor rule, in

other words policy was too loose when the monetary policy instrument was

below the Taylor rule-implied interest rate, whereas it was too tight if it was

above the implied rate. Poole (2007) defines monetary policy following the

Taylor rule as being “systematic”, hence he is able to find periods where U.S.

monetary policy is not systematic according to his definition.

Selected statements from either policy makers or academics furthermore

suggest that interest rates based on the Taylor rule provide information

whether or not the current monetary policy stance is adequate. Governor

Janet Yellen indicated the Taylor rule as a means of providing her “a rough

sense of whether or not the funds rate is at a reasonable level”. “I do not dis-

agree with the Greenbook strategy. But the Taylor rule and other rules ... call

for a rate in the 5 percent range, which is where we already are. Therefore, I

am not imagining another 150 basis points.” (FOMC transcripts, January 31

to February 1, 1995). Among others, Taylor and Williams (2010) argue that

“simple monetary policy rules are designed to take account of only the most
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basic principle of monetary policy of leaning against the wind of inflation and

output movements. Because they are not fine tuned to specific assumptions,

they are more robust to mistaken assumptions.”

We investigate the usefulness of the Taylor rule for monetary policy as a

“guideline” in the sense that it provides valuable information for the monetary

authority about the adequateness of its monetary policy. More precisely, we

examine the usefulness of “Taylor rule cross-checking”, namely whether devi-

ations of the Taylor rule-implied interest rate from the interest rate resulting

from an optimization problem of the monetary authority should influence pol-

icy rate decisions. The contribution of the paper is twofold. First, we consider

the case where the monetary authority is only faced with uncertainty on the

side of the parameters of the data generating process1 due to, for instance,

insufficient estimation techniques, rather than the entire transmission mech-

anism itself as analyzed in Ilbas et al. (2012). Hence, we consider certainty

with respect to the structure of the economy but parameters are assumed

to be unknown and remain constant over time which clearly influences the

effectiveness of policy actions. Second, we investigate to what extent the

effectiveness of cross-checking is influenced by the monetary authority’s type

reflected by the relative weight it attaches to output stabilization and also

the degree of monetary policy commitment. In order to address the latter

question, we also consider monetary policy under discretion which has not

been examined in this context before. We perform multiple simulations of

a Smets and Wouters (2003) economy using an augmented monetary au-

thority’s objective function and different realizations of the random shock

processes. Hence, our simulations provide us with a whole distribution of the

monetary authority’s objective.

We find that Taylor-rule cross-checking can on average improve the mon-

etary authority’s losses when it only moderately cares about stabilizing out-

put relative to stabilizing inflation and when policy is set in a discretionary

way. In other words, policy makers which are less concerned about economic

activity and those who cannot credibly commit to an announced policy in

1See, for instance, Tillmann (2011), Giannoni (2007), or Söderström (2002) for other
approaches on parameter uncertainty.
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general benefit more from Taylor rule cross-checking. Attention should be

paid to choosing the appropriate relative weight λ∆ which is attached to the

information resulting from Taylor rule cross-checking.

The paper is broadly related to the literature that examines the useful-

ness of the Taylor rule for the conduct of monetary policy. As the Taylor

rule seems to provide information about what a “good” action for a mon-

etary authority might be, empirical studies examine the responsiveness of

the interest rate to developments in the inflation rate. Judd and Rude-

busch (1998) look at monetary policy of different Federal Reserve chairmen

in terms of estimated policy reaction functions. The Burns chairmanship,

for example, is identified as being less responsive to inflation which is put

forward as a reason for high realized inflation during the same time period.

Furthermore, Tillmann (2012) illustrates the usefulness of simple instrument

rules by showing that cross-checking optimal monetary policy under discre-

tion with information from the Taylor rule reduces the stabilization bias in

a small scale dynamic stochastic general equilibrium (DSGE) model. Ilbas

et al. (2012) show in a different setting that the Taylor rule can robustify

monetary policy in case of model uncertainty, in other words in the case of

a complete mismatch between the model that the monetary authority uses

in order to determine its monetary policy and the true model and therefore

the data generating process of the economy. They find that in such a frame-

work, even putting a small weight on the information resulting from Taylor

rule cross-checking in the process of the determination of optimal monetary

policy is able to insure against bad outcomes.2 In an empirical exercise, they

argue that actual monetary policy may be described by optimal monetary

policy which incorporates cross-checking of this kind. Other approaches on

cross-checking are discussed, for instance, in Beck and Wieland (2008) and

Christiano and Rostagno (2001). Their approaches can be seen as alterna-

tives to the robust policy proposed by Hansen and Sargent (2008) which

is discussed for DSGE models in Giordani and Söderlind (2004) where the

monetary authority also has a reference model at hand and considers the

2See, for instance, Levin et al. (2003), Levin and Williams (2003), or Levin et al. (1999)
for other approaches on optimal monetary policy under model uncertainty.
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possibility of a bad shock hitting the model economy.

The remainder of this paper is organized as follows. Section 2 comments

on the theoretical framework including the conduct of monetary policy and

the model economy while section 3 presents simulation setup and simulation

results. The conclusion follows.

2 The theoretical framework

2.1 The conduct of monetary policy

In most cases, a Taylor-type rule is specified in order to close a DSGE model

where the nominal interest rate is a function of inflation and some measure

of economic activity. However, in our case, this step is obsolete. Our aim is

to replace an ad hoc and exogenously specified policy rule by a policy rule

that is obtained from the optimization problem of the monetary authority.

We assume that the monetary policy objective can be summarized by a

simple quadratic loss function. That is to say that the monetary authority

minimizes the weighted sum of the variances of certain target variables. This

approach is standard and for example presented in Clarida et al. (1999).

However, note that this loss function is not derived from welfare-theoretical

considerations. On the contrary, it is an ad hoc objective function trying to

describe preferences of the monetary authority. One could also think of this

loss function as a way to model flexible inflation targeting as introduced by

Svensson (1999) where the monetary authority seeks to stabilize inflation,

output, and potentially other target variables simultaneously. We define the

“traditional” per period loss function as

Lt ≡ π̂2
t + λyŷ

2
t , (1)

where the parameter λy captures the relative importance of stabilizing

output, ŷt, to stabilizing inflation, π̂t. Variables with circumflex denote log-

deviations from the steady-state.

Motivated by the statements about the usefulness of the Taylor rule
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quoted in the introduction, we argue that equation (1) does not capture

the actual objective of the monetary authority. More precisely, the “tradi-

tional” per period loss function does not incorporate deviations of the interest

rate implied by optimal monetary policy from the interest rate implied by a

Taylor-type rule. Hence, in the standard approach, such interest rate devia-

tions are considered irrelevant for the conduct of monetary policy. However,

previous research suggests that the monetary authority might be better off

following a Taylor-type rule. In the case of uncertainty, the monetary au-

thority may want to insure itself against model misspecification, meaning

that it seeks to robustify its policy. Ilbas et al. (2012) show that the Taylor

rule can indeed robustify monetary policy in case of model uncertainty, in

other words in the case of a complete mismatch between the model that the

monetary authority uses in order to determine its monetary policy and the

true data generating process of the economy.

We assume that there are two types of models. The first model is referred

to as the reference model of the monetary authority which reflects its belief of

how the economy is structured and what the model parameters are. In prin-

cipal, the reference model may or may not entirely reflect the data generating

process of the economy. This gives rise to the second type of model, which

we call the true model or the data generating process. This model describes

the true structure of the economy and may differ from the reference model.

In fact, we assume that both the reference model and the true model are

structurally identical and therefore reflect the same monetary policy trans-

mission mechanism. However, there is a misspecification on the side of the

model parameters as the monetary authority is not able to perfectly estimate

all of them. This approach is realistic in the sense that we do not believe

the monetary authority (at least in the long run) to get it wrong in terms

of the reference model which is the basic implication of Ilbas et al. (2012).

Hence, the true model lies in the neighborhood of the monetary authority’s

reference model and we let the monetary authority optimize using the correct

structural model.

The monetary authority uses the reference model and knows about its

biased view of the world. It is therefore crucial to note that the policy based
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on the reference model is “optimal” just precisely in this model. In case of

parameter misspecification the policy may very well turn out to be subopti-

mal and it is difficult to judge ex ante, what the quantitative consequences of

a mismatch between the monetary authority’s reference model and the data

generating process in terms of loss will be. Hence, it might be beneficial to

find some way to insure against those misspecification as the exact type of

the misspecification is assumed to be unknown.

In what follows, we do not argue that the monetary authority should

completely and mechanically follow the Taylor rule in setting the interest

rate. Still, the monetary authority should be able to adjust its monetary

policy according to the signals it receives from performing Taylor rule cross-

checking. Therefore, we redefine its objective by an augmented loss function

L̃t. Consider that the monetary authority also reacts to deviations of the

policy instrument from the Taylor rule-implied interest rate. We define this

spread as

∆t ≡ ît − îTR
t , (2)

where îTR
t denotes the interest rate implied by the Taylor rule. The specific

form we use is standard and reads

îTR
t ≡ φππ̂t + φyŷt. (3)

Inspired by Ilbas et al. (2012), we augment the standard loss function (1)

by a cross-checking term representing the squared interest rate spread and a

corresponding weighting parameter λ∆. Hence,

L̃t ≡ π̂2
t + λyŷ

2
t + λ∆∆

2
t . (4)

Equation (4) belongs to the class of “modified” loss functions, with the most

well-known examples presented in Rogoff (1985) and Walsh (1995).

It is worthwhile to point out that we do not focus on maximizing welfare

with respect to the choice of the Taylor-rule parameters in (3). In contrast,

our concern is the monetary authority’s choice of λ∆ and its impact on wel-
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Figure 1: Losses and squared deviations between the federal funds rate and
the Taylor rule-implied interest rate for the U.S. .

fare. Hence, we calibrate the Taylor-rule parameters as originally done in

Taylor (1993), in other words φπ = 1.5 and φy = 0.5. In order to empirically

motivate this approach, consider figure 1 where we plot the squared value of

∆t against the loss resulting from the period loss function (1). We compute

those series from actual quarterly U.S. data. For the sake of simplicity, the

output gap refers to a Hodrick-Prescott filter de-trended time series. A stan-

dard smoothing parameter of 1,600 was applied. A constant inflation target

of zero was assumed.3 The figure suggests that there is a relationship be-

tween the monetary authority’s loss and deviations of the federal funds rate

from the Taylor rule-implied interest rate. Both series are positively corre-

lated. Therefore, it seems that the monetary authority experiences higher

losses when deviations of the policy instrument from the Taylor rule-implied

interest rate are large and vice versa.

Since the monetary authority faces a dynamic problem, it minimizes a

discounted “lifetime” loss function

L0 = E0

∞
∑

t=0

(1− β)βtL̃t, (5)

where 0 < β < 1 is the discount factor subject to the equations characterizing

the reference model. The standard approach of flexible inflation targeting is

nested by setting λ∆ = 0 in (4). Under commitment the monetary authority

3Assuming a moderate inflation target of 1 percent and excluding the recent financial
crisis starting August 2007 (see, for instance, Trichet, 2010) do not affect the results.
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is able to credibly convince the public that it will stick to a particular policy,

and thus, it can influence the agents’ expectations. This enables the mon-

etary authority, compared to a discretionary policy maker, to obtain lower

future losses at the cost of higher losses today. The commitment case is use-

ful in order to isolate the effects of Taylor rule cross-checking from that of

lack of credibility and makes results comparable to Ilbas et al. (2012) where

a commitment technology is available to the monetary authority. We ad-

ditionally consider the discretionary case and employ numerical approaches

in order to calculate both optimal policies. In particular, we follow Svens-

son (2010), who also shows how to solve a linear quadratic regulator (LQR)

problem with rational expectations.4

Let the linear dynamic model equations be

[

X̂t+1

Hx̂t+1|t

]

= A

[

X̂t

x̂t

]

+Bît +

[

C

0

]

εt+1, (6)

where X̂t is an (nX × 1)-vector of predetermined variables, x̂t is an (nx × 1)-

vector of non-predetermined variables, εt+1 is an (nε × 1)-vector of i.i.d.

shocks with mean zero, and x̂t+1|t is the expectation of x̂t+1 conditional on

information available at time t.

Minimizing the loss function (5) subject to the linear dynamic model

equations (6) under commitment with respect to X̂t, x̂t, and ît yields nX +

nx + 1 first-order conditions. In order to implement a policy which is opti-

mal in a certain model with one parameter set into a different potentially

misspecified model, the first-order condition of the Lagrangian with respect

to the interest rate ît is replaced by the policy resulting from the optimiza-

tion problem of the monetary authority. In contrast, implementing optimal

discretionary policy only involves replacing an ad hoc policy rule.

4Dennis (2007), Dennis (2004), or Söderlind (1999) suggest alternative solution methods
to the LQR problem which are equivalent to the method in Svensson (2010).
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Parameter Description Value
β discount factor 0.999
τ depreciation rate of capital 0.025
α capital output ratio 0.300
λw markup in wage setting 0.500
h habit portion of past consumption 0.573 ∗

ξw Calvo wage stickiness 0.737 ∗

ξp Calvo price stickiness 0.908 ∗

γw degree of partial indexation wages 0.763 ∗

γp degree of partial indexation prices 0.469 ∗

1/ϕ investment adj. cost 6.771 ∗

σc coeff. of relative risk aversion 1.353 ∗

σl inverse elasticity of labor supply 2.400 ∗

φ 1+ share of fixed cost in prod. 1.408 ∗

1/ψ elasticity of cap. util. cost 0.169 ∗

invy investment share of GDP 8.8τ
cy consumption share of GDP 1− 0.18− invy
r̄k steady-state return on capital 1/β − 1 + τ

Table 1: Calibrated model parameters. Parameters marked with “∗” are
considered for misspecification.

2.2 The model economy

In order to determine optimal monetary policy on the basis of the reference

model and to simulate data using the true model, we use a standard DSGE

model incorporating sticky wages and prices. The linearized model we employ

is closely related to the one developed by Smets and Wouters (2003). Hence,

we use a model that is on the one hand accepted in the profession, and on

the other hand captures the most relevant frictions necessary to fit actual

data. Our calibration can be found in tables 1 and 2 and mostly follows the

results in Smets and Wouters (2003) for their estimated euro area model.

In what follows, we will just give a brief and non-technical overview of the

model features.5 We focus on the general structure of the model commenting

on the frictions implemented.

5For readers interested in details of the model and the linearized model equations, we
recommend to consult Smets and Wouters (2003).
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Parameter Description Value
ρǫa AR for productivity shock 0.823 ∗

ρǫb AR for preference shock 0.855 ∗

ρǫg AR for government expenditure shock 0.949 ∗

ρǫl AR for labor supply shock 0.889 ∗

ρǫinv
AR for investment shock 0.927 ∗

σǫl S.D. of labor supply shock 3.520
σǫa S.D. of productivity shock 0.598
σǫb S.D. of preference shock 0.336
σg S.D. of government expenditures shock 0.325
σπ S.D. of inflation objective shock 0.017
σǫinv

S.D. of investment shock 0.085
σλp

S.D. of price markup shock 0.160
σλw

S.D. of wage markup shock 0.289
σǫq S.D. of equity premium shock 0.604

Table 2: Calibrated shock processes. Parameters marked with “∗” are con-
sidered for misspecification.

The economy is inhabited by a continuum of households who maximize

their expected lifetime utility. Those households decide upon their intertem-

poral allocation of consumption and are subject to external habit formation

meaning that today’s utility depends not only on today’s consumption but

also on last period’s aggregate consumption. Technically, consumption habits

work as if one assumed consumption adjustment cost, thus they induce con-

sumers to adjust consumption levels more gradually. According to Abel

(1990), this effect is sometimes referred to as “catching up with the Jone-

ses”, capturing the idea that households compare their consumption level to

the one of neighboring households’. Furthermore, they intratemporally face

a labor/leisure decision. A shock to the discount factor as well as a shock

to preferences are added to the households’ optimization problem. House-

holds face a budget constraint which allows them to shift funds intertem-

porally via riskless bonds and have labor income, income from investment

into state-contingent securities, and income from capital investments. Note

that a variable capital utilization rate is assumed which in turn affects house-

holds’ return on capital and improves upon the persistence of the variables in
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sticky prices general equilibrium models (Dotsey and King, 2006). Therefore,

it might be preferable to first increase the utilization rate before extending

the existing capital stock.

Wages are set in a staggered way following Erceg et al. (2000). With a

fixed and exogenous probability 1 − ξw wages can be reoptimized whereas

with the converse probability, wages cannot be adjusted. As a result, wages

are set in a forward looking manner such that future expectations of wages

also become relevant for current wages. It is assumed that those wages which

cannot be reoptimized are subject to partial indexation which makes current

wages also depend on past wages.

On the one hand, households decide about their investment into the capi-

tal stock. This investment will be available for production with a one-period

lag. On the other hand, households influence the capital utilization rate

which determines how intensively the existing capital stock is used. This

is of particular importance as households face capital adjustment costs that

induce a wedge between the marginal product of capital and its rental rate,

introducing a variable price for capital.

The production sector consists of final and intermediate goods producers.

Final goods producers construct consumption goods using intermediate goods

and sell them to households. Furthermore, they are subject to cost-push

shocks. The intermediate goods sector uses utilized capital and labor for

production. In order to motivate price setting on the side of the firms, they

act under monopolistic competition. Hence, firms have some degree of market

power. Prices are set according to Calvo (1983), in other words, firms are able

to reoptimize prices with a fixed and exogenous probability 1 − ξp whereas

the non-optimized prices are partially indexed to last period’s inflation. This

induces price setting to be forward and backward looking at the same time

which results in a hybrid version of the New Keynesian Phillips curve.

As indicated before, we do not adopt the monetary policy rule used in

Smets and Wouters (2003) since it is our goal to implement a policy that is

also based on Taylor rule cross-checking.
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3 Simulation

3.1 Simulation setup

As pointed out earlier, we assume that the monetary authority is faced with

uncertainty on the side of the parameters of the data generating process.

Consequently, the monetary authority is completely aware of the true struc-

ture of the economy but does not know all relevant parameters entirely.

At a first stage, we consider cases where only single elements of the param-

eter vector are estimated with error by the monetary authority whereas all

remaining parameters are assumed to be known. We include those exercises

to isolate the effects of misspecification in single parameters. In particu-

lar, we focus on the Phillips curve parameters which refer to Calvo price

stickiness, ξp, and the degree of price indexation, γp. We do so because the

Philips curve is of particular importance for the conduct of monetary policy.

Note, however, that those illustrative cases shall not be regarded as adequate

depictions of reality. We will return to this point later.

At a second stage, we think of the misspecification as being of a random

nature.6 In this case, parameter sets of the true model are randomly drawn.

The parameters that we consider for misspecification are marked with “∗”

in tables 1 and 2. The reason for this choice is twofold. First, the stan-

dard deviations of the shocks that are incorporated in the reference model

do not influence optimal monetary policy. This is the so-called certainty

equivalence property (Svensson, 2010). Second, we exclude parameters that

were calibrated in Smets and Wouters (2003) or are directly pinned down

by those calibrations. Hence, we assume that those calibrated parameters

are known. A monetary authority is naturally confronted with uncertainty

about the economic environment that is not restricted to a subset of param-

eters only, let alone uncertainty about only a single parameter. Hence, it is

not sufficient to consider uncertainty about single elements of the parameter

6We also considered the case of a systematic over- or underestimation of the model
parameters. Even though it may or may not be realistic to assume that the monetary
authority estimates all parameters of a DSGE model to be higher or lower than what they
actually are, we analyzed those cases for completeness. Simulation results are not reported
for brevity but are available from the authors upon request.
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vector in order to assess the usefulness of Taylor rule cross-checking and to

make normative statements for policy making institutions. In reality, a mon-

etary authority will not be able to estimate the parameters of the true model

without uncertainty. The parameter estimates will always be associated with

corresponding standard errors. In order to incorporate this in our analysis,

we assume that the parameters of the data generating process are the result

of random draws and therefore in general differ from the reference model pa-

rameters. As such, we combine prior and posterior reasoning in order to fix

a distribution for each parameter under consideration from which the corre-

sponding parameter of the data generating process is drawn. This allows us

to generate parameter draws that are in a reasonable range and ensures, for

instance, that none of the autocorrelation coefficients of the shock processes

are equal to or exceed unity. More precisely, we adopt the distributional

assumption of the prior distribution for each parameter and subsequently fix

the parameter pair (a, b) that uniquely identifies the distribution in a way

such that the estimated posterior mode and standard deviation are perfectly

reproduced.

Whether an estimation bias is small or large is naturally related to the

standard deviation of the respective parameter estimate. Hence, we assume

that the estimation bias is in fact related to the estimated standard devi-

ation in Smets and Wouters (2003). Table 3 shows the parameters under

consideration together with the distributional assumption, posterior estima-

tion results, and the corresponding parameter pair (a, b) of the respective

probability distribution.

Optimal monetary policy is obtained using the reference model of the

monetary authority. The weighting parameter λy is initialliy fixed to 2/3. In

reality, monetary authorities differ in the relative emphasis placed on their

targets. While the ECB, for instance, is primarily concerned with price sta-

bility, the mandate of the Federal Reserve explicitly incorporates economic

activity. Hence, we consider different values for the weighting parameter λy

in order to investigate heterogeneity also in this respect. We are interested in

the relative importance of the squared interest rate spread. Hence, we per-

form a series of simulations for different values of λ∆ where the parameter is

13



Parameter Distribution Mode S.D. a b
ρǫa Beta 0.823 0.065 29.094 7.042
ρǫb Beta 0.855 0.035 88.311 15.807
ρǫg Beta 0.949 0.029 65.572 4.470
ρǫl Beta 0.889 0.052 35.529 5.311
ρǫinv

Beta 0.927 0.022 137.148 11.721
h Beta 0.573 0.076 23.603 17.844
ξw Beta 0.737 0.049 59.129 21.743
ξp Beta 0.908 0.011 632.285 64.963
γw Beta 0.763 0.188 3.527 1.785
γp Beta 0.469 0.103 10.610 11.880
1/ϕ Normal 6.771 1.026 6.771 1.026
σc Normal 1.353 0.282 1.353 0.282
σl Normal 2.400 0.589 2.400 0.589
φ Normal 1.408 0.166 1.408 0.166

1/ψ Normal 0.169 0.075 0.169 0.075
σǫl Inv. Gamma 3.520 1.027 16.891 62.975
σǫa Inv. Gamma 0.598 0.113 33.553 20.663
σǫb Inv. Gamma 0.336 0.096 17.417 6.188
σg Inv. Gamma 0.325 0.026 162.151 53.024
σπ Inv. Gamma 0.017 0.008 9.0412 0.1707
σǫinv

Inv. Gamma 0.085 0.030 12.942 1.185
σλp

Inv. Gamma 0.160 0.016 105.846 17.095
σλw

Inv. Gamma 0.289 0.027 120.438 35.096
σǫq Inv. Gamma 0.604 0.063 97.756 59.648

Table 3: a and b refer to mean and standard deviation for the normal dis-
tribution, to the shape parameters for the Beta distribution, and to shape
and scale parameters for the Inverse Gamma distribution. Given the dis-
tributional assumptions, a and b are chosen in order to perfectly reproduce
the respective posterior mode and standard deviation. Properties for the
Inverse Gamma distribution are displayed for completeness and are used in
a robustness exercise.

14



chosen to be in the range [0; 0.25]. The reason for this choice is twofold. First,

Ilbas et al. (2012) find that already small weights attached to the squared in-

terest rate spread are able to insure against bad outcomes. Second, we would

naturally expect λ∆ to be substantially smaller than the weights attached to

stabilizing inflation or output, respectively. For the model simulations, the

true model is used which is closed using the policy obtained from the opti-

mization problem of the monetary authority using the reference model. Since

squared deviations of the interest rate from the Taylor rule-implied interest

rate are irrelevant from a welfare-theoretical perspective, there is no reason

why one should evaluate the monetary authority’s loss using the per period

loss function given by equation (4) with λ∆ 6= 0. A reasonable alternative is

to compute the loss with respect to the traditional per period loss function

(1) even though the optimal policy is determined using (4). Therefore, it is

important to note that for model evaluation and loss determination λ∆ is set

equal to zero in all cases. This is in line with Ilbas et al. (2012) and ensures

comparability of the simulation results.

For each value of λ∆, we perform a set of N = 250 simulations7, each

using different realizations of the shock processes and containing T = 5, 000

simulated quarters. By doing so, we ensure that for each set of simulated time

series, simulated quarters that are more than T periods ahead are negligible

for loss evaluation.

3.2 Simulation results - commitment

Figures 2 to 6 show the simulation results where figures 2 and 3 refer to

the case where single model parameters are either over- or underestimated

compared to the reference model that is used to determine monetary policy.

Furthermore, we consider the case where the parameters of the true model

are randomly drawn in figures 4 to 6. Except for figures 5 and 6, we plot in

the upper panel the average relative loss between using the traditional loss

function (1) for the determination of monetary policy and using loss function

7Results remain robust if the number of simulations N is increased. We therefore fixed
it for computational convenience as stated in the main text.
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(4) that is adjusted for a Taylor rule cross-checking term. When the respec-

tive values falls below 100%, adding the cross-checking term is on average

not beneficial in terms of the monetary authority’s objective. Since we sim-

ulate the true model for each value of λ∆ N = 250 times, we end up with

a whole distribution of relative losses such that we are able to compute the

standard deviations of the relative losses. The respective plot can be found in

the lower left panel. Furthermore, conditional on assuming Gaussian relative

losses, we plot the probability that Taylor rule cross-checking is on average

not beneficial for the monetary authority, in other words the probability that

the relative loss will be smaller than 100%.

The case where ξp is lower compared to the reference model by one pa-

rameter standard deviation is depicted in figure 2. Putting even a very small

weight on the Taylor rule cross-checking term worsens the situation of the

monetary authority in terms of the relative loss. The average relative loss

immediately falls below 100%, reflecting that the loss is smaller when stick-

ing to the non-adjusted policy. A weight of λ∆ = 0.1, for instance, results in

a loss which is on average about 6% larger compared to the loss incurred in

the baseline case. The standard deviation increases and approaches a value

of about 1.8% at λ∆ = 0.25. The lower right panel emphasizes that putting

a positive weight on λ∆ will almost always increase the loss. Hence, for this

parameter specification, the monetary authority should not use the Taylor

rule when deciding about its monetary policy as this has on average adverse

effects on the associated losses.

Next, we analyze the case where ξp is higher compared to the reference

model by one parameter standard deviation. The results in figure 3 are

qualitatively similar compared to the previous case, in other words adjusting

monetary policy for Taylor rule cross-checking deteriorates the monetary

authority’s loss. However, the effect is stronger. The standard deviation

approaches a value slightly below 3%. The probability of ending up worse

compared to the baseline case is around 100% and can hardly be distinguished

from the certainty case.

It turns out that the results for Calvo wage stickiness, ξw, and the degrees

of price and wage indexation, γp and γw, are qualitatively similar and are
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Figure 2: ξp is lower compared to the reference model by one parameter
standard deviation (commitment case).

therefore skipped for brevity but available upon request. Also note that

results are qualitatively similar for different values of λy. We return to the

importance of λy for the efficiency of Taylor rule cross-checking in detail later.

At this point, it is useful to emphasize that the above results are intuitive.

Cross-checking necessarily increases the loss for the monetary authority if its

reference model is almost identical to the true underlying economy as is the

case in those exercises. In what follows, we will show that once we allow

for a more realistic degree of uncertainty and different degrees of monetary

policy commitment, results change such that cross-checking can be beneficial

even though the reference model and the data generating process differ in

parameter values only.

We now assume that misspecification is of random nature. In this case,

nonlinear effects may be important such that the overall effect of Taylor rule

cross-checking on the relative losses cannot be deduced from cases where

only single elements of the parameter vector are misspecified. Whether or

not Taylor rule cross-checking is beneficial for the monetary authority assum-

ing this kind of realistic misspecification must therefore not only be based on
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Figure 3: ξp is higher compared to the reference model by one parameter
standard deviation (commitment case).

one single random parameter set. In order to make a normative statement

one has to take into account that there is in principle an infinite number of

different possible parameter combinations. Hence, we examine how Taylor

rule cross-checking influences the relative losses when considering a variety

of different parameter draws reflecting potential data generating processes.

This will shed light on the average impact of Taylor rule cross-checking given

that the true model is in the neighborhood of the monetary authority’s ref-

erence model. We consider N = 250 different random parameter sets and

simulate for each of those sets T = 5, 000 quarters. Recall that for each of

the N = 250 simulated series different realizations of the shock processes

are used. Since we do not a priori know whether a certain combination

of parameters leads to a determinate solution of the model, the parameter

combinations have to be checked for determinacy first.8 We end up with a

8Reconsidering the statements about the usefulness of the Taylor rule quoted in the
introduction, it is likely that central banks indeed let the information resulting from simple
instrument rules influence their policy decisions. Hence, we conclude that determinacy
of the model even when including a Taylor rule cross-checking term in the monetary
authority’s loss function must be guaranteed. This justifies only considering determinate
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Figure 4: True parameters are drawn from the respective distribution given
in table 3. For each of the N = 250 simulations, each containing T = 5, 000
simulated quarters, a different random parameter set is used (commitment
case).

total of 250 different parameter sets reflecting potential data generating pro-

cesses at our disposal. The subsequent analysis is the same as before such

that the corresponding results can be found in figure 4. The effectiveness

of Taylor rule cross-checking crucially depends on the weight λy as a mon-

etary authority on average benefits more from cross-checking the less it is

concerned about economic activity. Comparing the three cases reveals that

ceteris paribus losses are lower the lower λy.
9 However, it does not seem to

be advisable to perform the type of cross-checking presented in this paper

in the full commitment case. As we will show later, the degree of monetary

policy commitment will also be of importance.

By construction, welfare effects shown before necessarily originate from

draws.
9The results remain qualitatively similar assuming a discount factor β of 0.995. Fur-

thermore, results remain robust if the standard deviations of the shock processes are also
considered for misspecification even though they do not influence optimal monetary policy
(Svensson, 2010).
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Taylor rule cross-checking as only the uncertainty case is considered. This

raises the question how uncertainty affects the efficiency of Taylor rule cross-

checking. In order to provide some intuition about the behavior of relative

losses in the certainty case relative to the uncertainty case, we present related

results in figure 5. In the certainty case, the monetary authority knows the

model parameters. Hence, the reference model that is used in order to deter-

mine monetary policy coincides with the model reflecting the data generating

process. The relative losses of the certainty case are depicted by dashed lines

in the upper panels. By construction, λ∆ > 0 deteriorates the monetary

authority’s objective since a loss-minimizing policy requires setting λ∆ = 0.

Put differently, the monetary authority cannot do better than following its

optimal commitment policy when it has complete knowledge about the econ-

omy. The solid lines refer to the relative losses in the uncertainty case. The

results on the left-hand side (λy = 1/10) and the right-hand side (λy = 2/3)

are identical to those depicted in figure 4. We consider those two cases just

for expositional purposes. In either of the cases, the relevant measure is the

vertical difference between the two lines which is depicted in the respective

lower panel. It is only of minor relevance in this context whether or not the

threshold of 100% is exceeded. The difference can in fact be interpreted as

the impact of uncertainty on the efficiency of Taylor rule cross-checking. In

other words, a positive value as obtained in the simulations indicates that

cross-checking becomes useful when moving from the certainty to the un-

certainty case. As a monetary authority always faces uncertainty, however,

only the uncertainty case remains relevant from a policy maker’s perspective.

Complete information about the data generating process necessarily renders

Taylor rule cross-checking obsolete.

As stated before, the results in figure 4 suggest that the monetary au-

thority’s type influences the effectiveness of Taylor rule cross-checking sig-

nificantly. In order to provide a more detailed picture of the impact of λy,

we perform the exercise above for a grid of different values of λy reflecting

different central bank types. Results are depicted in figure 6. We find that

for a substantial number of parameter pairs (λy, λ∆) relative losses behave

qualitatively similar compared to the case before where λy has been fixed
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Figure 5: Comparison of cross-checking under uncertainty (solid line) and
certainty (dashed line). The upper panels show the relative losses whereas
the vertical difference in percentage points is depicted in the corresponding
lower panel. The results on the left-hand side (λy = 1/10) and the right-
hand side (λy = 2/3) refer to the simulation exercises depicted in figure 4
(commitment case).
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Figure 6: Relative losses and contour plot for different combinations of the
relative weights λy and λ∆. The lower right panel plots the choice of λ∆ as a
function of λy. True parameters are drawn from the respective distribution
given in table 3. For each of the N = 250 simulations, each containing
T = 5, 000 simulated quarters, a different random parameter set is used
(commitment case).

to 2/3. Relative losses start at 100% by construction when λ∆ = 0 and

decrease steadily with λ∆ in most of the cases. Even though Taylor rule

cross-checking turns out to be not beneficial in the full commitment case it

is again worthwhile to emphasize that the monetary authority’s type seems

to influence its effectiveness significantly.

In general, different parameter sets will impact differently on the mon-

etary authority’s objective. Losses may be lower for some parameter com-

binations while they may be substantially higher for others. In particular

the latter case is of importance if the monetary authority wants to insure

against worst-case scenarios, in other words parameter combinations that

produce overproportionally adverse outcomes. Hence, we shed light on the

relationship between the severity of parameter misspecification reflected by
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the monetary authority’s absolute losses and the effectiveness of Taylor rule

cross-checking represented by the relative losses. The setup is similar to be-

fore and we simulate N economies for a range of λ∆ and λy. Note, however,

that the same realizations of the random shock processes are now considered

for each of the simulations in order to make welfare effects resulting from pa-

rameter misspecification comparable. The absolute loss that the monetary

authority would incur in a hypothetical scenario without cross-checking, in

other words when λ∆ = 0 in the augmented loss function, is used as a measure

of the severity of parameter misspecification. Put differently, parameter com-

binations that produce higher losses without cross-checking are interpreted

as worst-case scenarios. Given that it would be arbitrary to present simula-

tion results of a scenario using only one particular parameter draw, our aim

is to analyze the relationship between the effectiveness of Taylor rule cross-

checking and such worst-case scenarios in general. We operationalize this by

calculating the coefficients of correlation between the series of N absolute

non-cross-checking losses (λ∆ = 0) and the corresponding relative losses for

different values of λ∆ and λy. The respective plot can be found in figure

7. The positive coefficients of correlation indicate the following: Scenarios/-

parameter combinations that yield higher absolute losses for the monetary

authority assuming λ∆ = 0 tend to be associated with more effective Taylor-

rule cross-checking (when λ∆ > 0) and vice versa. That is the sense in which

cross-checking indeed insures against worst-case scenarios. The ability to in-

sure against those bad outcomes tends to be stronger, the less the monetary

authority is concerned about stabilizing economic activity and the smaller

λ∆. In particular the former insight is supportive of our previous findings.

3.3 Simulation results - discretion

We drop the assumption that the monetary authority can credibly commit

to an announced policy and assume instead that no commitment technology

is available. As such, the monetary authority will not be able to perfectly

manage expectations. Whether or not commitment or discretion is a more

adequate depiction of reality is not obvious. Schaumburg and Tambalotti

23



0 0.05 0.1 0.15 0.2 0.25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ∆

C
oe

ff
ic

ie
nt

 o
f 

co
rr

el
at

io
n

 

 

λ
y
=1/10 λ

y
=1/3 λ

y
=2/3

Figure 7: Coefficients of correlation between the monetary authority’s abso-
lute losses (λ∆ = 0) and the corresponding relative losses (λ∆ > 0). For each
of the N simulations the same realizations of the random shock processes are
used (commitment case).

(2007) and Debortoli and Nunes (2007), for instance, argue that an interme-

diate case may perhaps be more realistic.

The solution algorithms for the commitment and the discretion case dif-

fer significantly. In contrast to the commitment case finding optimal discre-

tionary monetary policy is an iterative process and convergence properties

are highly sensitive to parametrization as pointed out by Söderlind (1999).

The simulation setup is identical to the one of the commitment case. Recall

that figures 2 and 3 depicted cases where single elements of the parameter

vectors were misspecified. Results do not change significantly for the discre-

tionary policy maker and thus, we do not report comparable figures. The

results where the misspecification is of a random nature can be found in

figures 8 and 9.

Again, in order to make a normative statement, a variety of different

parameter draws for different weights λy is considered in figure 8. Similar

to the commitment case, reducing λy improves the efficiency of Taylor rule

cross-checking. In contrast to before, however, for λy = 1/10 and over the

whole range of λ∆, cross-checking on average improves the relative losses. A

value of λ∆ = 0.25, for instance, produces a relative loss of about 112%.

In what follows, we again fully analyze the impact of λy on the monetary

authority’s objective. Results are depicted in figure 9. Again, we find that
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Figure 8: True parameters are drawn from the respective distribution given
in table 3. For each of the N = 250 simulations, each containing T = 5, 000
simulated quarters, a different random parameter set is used (discretionary
case).
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results are qualitatively similar to the ones obtained in the commitment case

in the sense that low values of λy tend to increase the efficiency of Taylor

rule cross-checking ex ante. Most importantly, we find that adjusting the

policy instrument in the direction of the Taylor rule has a stronger impact in

the discretionary case. When the monetary authority only moderately cares

about output relative to inflation stabilization, Taylor rule cross-checking

turns out to be on average beneficial. This case is potentially relevant for

the Eurosystem as the mandate of the ECB emphasizes the inflation objec-

tive as the primary target of its monetary policy strategy. If the weight on

output stabilization is less than or equal to 20% of the weight on inflation

stabilization, the monetary authority is on average able to improve its loss

independent of the chosen value of λ∆. Summing up, our results suggest

that Taylor rule cross-checking can be beneficial even in a setup where the

monetary authority is sufficiently confident about its reference model at hand

and that the central bank type influences the effectiveness of cross-checking

significantly. We conclude that cross-checking is more effective the less the

monetary authority cares about output stabilization and the lower the degree

of monetary policy commitment.

4 Conclusion

This paper builds upon Ilbas et al. (2012) and sheds light on the question

whether the robustifying nature of Taylor rule cross-checking in their spirit

carries over to the case of parameter uncertainty. We consider certainty with

respect to the structure of the economy but uncertainty of the monetary

authority about model parameters. In particular, we examine how much

attention the monetary authority should pay to choosing the relative weight

λ∆ for the conduct of its monetary policy and how results are sensitive to

changes in the monetary authority’s type and its degree of commitment.

Our results suggest that even though the monetary authority is faced with

uncertainty, it should be prudent in letting information resulting from Taylor

rule cross-checking of the kind presented in this paper influence the conduct

of its monetary policy. Put differently, while Taylor-rule cross-checking has

26



80

84

88

92

96

100

104
108112116 120

λ y

λ∆

0 0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

00.050.10.150.20.25

0 0.2 0.4 0.6 0.8 1

70

80

90

100

110

120

130

λ∆λ
y

R
el

at
iv

e 
lo

ss
 in

 %

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

λ y

λ∆
∗

Figure 9: Relative losses and contour plot for different combinations of the
relative weights λy and λ∆. The lower right panel plots the choice of λ∆ as a
function of λy. True parameters are drawn from the respective distribution
given in table 3. For each of the N = 250 simulations, each containing
T = 5, 000 simulated quarters, a different random parameter set is used
(discretionary case).
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shown to be beneficial in cases where the monetary authority is faced with

different potentially non-nested models reflecting diverse representations of

the true economy, this result does not necessarily carry over to other forms

of uncertainty where the true model of the economy lies in the neighborhood

of the monetary authority’s reference model.

Whether or not cross-checking is on average able to reduce the mone-

tary authority’s loss incurred from inflation and output deviating from the

respective steady-state values crucially hinges on its type reflected by the

relative importance it attaches to output stabilization and also the degree of

monetary policy commitment. Much attention should be paid to choosing

the appropriate relative weight λ∆. This point is pivotal as we find that for

high values of λy, for instance, putting already small weights on the Taylor

rule cross-checking term in an uncertain environment may have severe effects

on the monetary policy objective.

As the monetary authority knows its own type and its degree of commit-

ment, it can choose λ∆ optimally. We find that when the monetary authority

sets its policy in a discretionary way and at the same time only moderately

cares about output stabilization, Taylor rule cross-checking is on average able

to improve the associated losses. This insight deserves more attention in fu-

ture research and may potentially justify Taylor rule cross-checking for the

Eurosystem where output stabilization is generally considered a second order

objective.
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