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ABSTRACT

This paper is intended as a short survey of the most relevant methods for grouped
transition data. The fundamentals of duration analysis are discussed in a continuous
time framework, whereas the treatment of methods for discrete durations is limited to
the peculiarity of these models. In addition, some recent empirical applications of the
methods are discussed.
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I. Introduction

Hazard models – or models for transition data, as LANCASTER (1990) calls them to stress the fact

that the econometrician is usually not only interested in the duration of an event but also in the

destination that is entered at its end – are a rapidly growing field especially in empirical labour

market analysis. Within these methods, models that explicitly account for the fact that economic

data generally are either rounded, grouped or collected at fixed intervals have been getting more

attention in empirical applications in the last few years.

This paper is the result of our studies concerning the theory of hazard models, which we have

done as the first step in our current research project regarding the effects of training on

employment histories of individuals both in the western and eastern part of reunified Germany.

The aim of the paper is to summarise the relevant methods as developed in econometric theory

and practice, thereby giving an overview of the theory and the empirical literature on grouped

duration models. The fundamentals of duration analysis will be demonstrated within the

framework of continuous time, whereas the treatment of discrete data is limited to the peculiarity

of these models.

The paper is organised as follows: In Chapter II we present the theoretical models for transition

data. Recent and – with regard to the methods presented in chapter II – important empirical

applications of grouped duration models in the field of labour econometrics are discussed in

chapter III. A short conclusion completes this paper.
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II. Theoretical Models for Grouped Transition Data

II.1 Cox's Proportional Hazards Model

The starting point for the derivation of models for grouped transition data are continuous hazard

models. They are called continuous, because duration Ti  of observation i is said to be a

continuous random variable.1 In this and the next two sections we will use continuous time

models to introduce the most important concepts of transition models, before we are looking at

the notion of discrete time (or grouped data).

A well known and widely used model for continuous transition data is the Proportional Hazards

model as proposed by COX (1972):2

( ) ( ) ( )λ β λi i it x x t= Φ , 0 (1)

λ0 is called the baseline hazard, because it corresponds to ( )Φ ⋅ = 1, xi  is a vector of exogenous

variables, β  is the vector of the coefficients to be estimated, t is a realisation of Ti  and

( ) ( ) ( )λi i
dt

i it x P t T t dt t T x dt= ≤ < + ≤ ⋅
→ +

−lim ,
0

1 is the hazard rate, i.e. the instantaneous rate of

leaving a certain state of interest per unit time period at t (LANCASTER (1990)). The probability of

survival to t is given by the corresponding survivor function ( ) ( )S t x u dui i i

t
= − ∫exp λ

0
. Durations

refer to the times from the beginning of spells.

In contrast to parametric models, the Proportional Hazards Model allows a far more flexible

approach, because the form of the baseline hazard does not need any further specification.

Instead, λ0 is to be estimated. Thus, the Proportional Hazards model avoids an assumption

regarding the distribution of duration Ti  and thus does not imply a particular evolution of hazard

                                                

1 Generally, observations may either be spells or individuals. In a single spell framework, however, this distinction
is redundant.

2 The name of the model derives from the fact that the hazards for two individuals with vectors of covariates x1

and x2  are in the same ratio for all t (LANCASTER (1990)), which is a quite strong assumption. This property of
the model vanishes if individual covariates are allowed to vary over time.
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and survivor functions over time (duration dependence) as parametric hazard models do. For that

reason, it is also termed as semiparametric.

Usually Φ is chosen as ( )exp ′xiβ . This specification of Φ is convenient, because, as ( )λi it x  has

to be nonnegative, no restrictions need to be imposed on β . Furthermore, as can easily be shown,

it admits a convenient interpretation of the Proportional Hazards Model as a linear model with ε i

distributed as a Type-I extreme value random variable (KIEFER (1988A), RIDDER (1990)):3

( )ln λ β ε00
u du t x

T t

i i i

i = ∗∫ = = − ′ + (2)

The expression on the far left hand side is the logarithm of the integrated baseline hazard ( )Λ 0 t .

Since it could be conceived as a transformed duration t i

∗
, formulation (2) is also called a

Generalized Accelerated Failure-Time (GAFT) model (RIDDER (1990)). As KIEFER (1988A)

points out, least squares estimation methods can only be used for this linear specification, if the

data are not heavily censored and a correction for the estimate of the intercept is made in order to

account for the nonzero mean of ε i . However, this requires knowledge of the integrated baseline

hazard.

II.2 Spurious Time Dependence

The observation units in the data set are different from each other for many reasons – there could

be personal differences, variances in the surroundings, etc. Ideally, the covariates in the

specification (1) allow for all potential differences between observation units. In practice,

however, this is rather unlikely. Reasons might be shortcomings in the data set or neglect of the

econometrician, but usually it is simply impossible to include every possible source of variation

in the regressors. The part of heterogeneity between the individuals that is not explicitly

accounted for in the vector of covariates is usually called unmeasured heterogeneity. Therefore,

an additional term, the hererogeneity term, should be included in the hazard to account for this

source of variation.

                                                

3 Note that −ε i  is also distributed as an Type I-extreme value random variable (JOHNSON/KOTZ (1970), p.272).
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Failure to control for unmeasured heterogeneity can result in downward biased estimators and

spurious time dependence (ELBERS/RIDDER (1982), KIEFER (1988A)): It is possible that the

estimated hazard function declines more steeply (or rises more slowly) than the true hazard (or

declines instead of rising or being constant). Intuitively, in a simple model, where the underlying

population consists of two different subpopulations, each with a distinct and constant hazard rate,

individuals of the subpopulation with the higher transition rate tend to leave the state of interest

sooner. Thus, the portion of individuals from the subpopulation with the lower transition rate in

the population at risk increases and the transition rate for the whole population seems to decrease

over time, if unmeasured heterogeneity is not accounted for (figure 1).

Figure 1:
Spurious time dependence as a result of neglecting unmeasured heterogeneity

hazard rate of subpopulation 2

hazard rate of subpopulation 1

spurious negative time dependence of 
hazard rate of total population

λ

t

In the context of the Proportional Hazards model the heterogeneity term θi iv= exp( )  typically

enters the hazard multiplicatively. The resulting model is also known as the Mixed Proportional

Hazards model (RIDDER (1990)):

( ) ( ) ( )λ λ βi i i i it x v t x v, exp= ′ +0 (3),

where v i  is an individual specific random variable with [ ]E v i = 0, i.e. ( )[ ]E v iexp = 1. The Mixed

Proportional Hazards model can also be written as a Generalized Accelerated Failure Time

model:
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( )ln λ β ε β η κ00
u du t x x

T t

i i i i i i

i = ∗∫ = = − ′ + = − ′ + + (4).

Now, ηi is a type-I extreme value random variable representing the Proportional Hazards portion

of the specification, κi iv= −  represents the unobserved heterogeneity, and the distribution of ε i  is

a convolution of the distributions of ηi and κi  (SUEYOSHI (1994)).

The fundamental problem of the integration of unobserved heterogeneity is the fact that the

distribution of v i  (κi ), the so called mixing distribution, is, of course, unknown. In econometric

literature, two solutions to overcome this problem have been proposed:

(1) One may simply assume a particular shape for the distribution of the heterogeneity term.

Then, the relevant parameters of that distribution are also to be estimated. Often the

Gamma distribution is chosen for computational simplicity as it gives a closed form

expression for the likelihood, avoiding integration by numerical methods (LANCASTER

(1979), TUMA/HANNAN (1984), MEYER (1987), HUJER/SCHNEIDER (1996)).

(2) In a widely cited series of papers, HECKMAN/SINGER (1982, 1984A, 1984B, 1985, 1986)

instead propose nonparametric methods to assess the distribution, because of sensitivity

of parameter estimates to the assumed shape of the distribution of the heterogeneity term.

As they argue, specification of both the functional form of structural duration

distributions and the functional form of the distribution of unobservables leads to

overparameterisation of the model. One should rather approximate the true distribution of

the heterogeneity term by fitting a discrete distribution with a finite number of mass

points. This method is used, for instance, by HUJER/SCHNEIDER (1989) or

NARENDRANATHAN/STEWART (1993B).

As TRUSSELL/RICHARDS (1985) point out, much of the parameter instability found by

HECKMAN/SINGER (1982, 1984A, 1984B, 1985, 1986) might be the result of their assumption of a

Weibull baseline hazard. Therefore, when estimating ( )λ0 t  nonparametrically, the functional

form of the heterogeneity distribution may as well be unimportant.  MEYER (1987, 1990) takes

the same view, although he does not prove his assertion. Another problem of the Heckman-

Singer approach is the fact that number of mass points is not predetermined but is to be assessed

using an iterative procedure (HECKMAN/SINGER (1984A), TRUSSELL/RICHARDS (1985)).

NARENDRANATHAN/STEWART (1993B) compare a two mass point mixing model using the

Heckman-Singer procedure with a normal mixture model and get very similar results.
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II.3 Competing Risks

The discussion so far has been restricted to single risk models. In these models there is only one

kind of event terminating the duration spent in the state of interest. Most studies regarding the

effect of unemployment compensation on the duration of unemployment, for example, focus on

the exit of unemployment through transition into employment. In reality, however, further causes

(or risks) for leaving the state of interest can exist. Currently unemployed may not only find a

new job, but alternatively may leave the unemployment register by completely dropping out of

the workforce (exit into non-employment). It is then appropriate to extend the framework to

competing risks.

Let us assume R possible mutually exclusive destination states. Note, that any set of destination

states always can be redefined as to yield mutually exclusivity. Consider independent latent

random variables Tir

∗
, r R= 1, ,� , each measuring the time until event of type r (transition in state

r). The duration Ti  we observe in practice is the minimum of these theoretical durations:

T Ti
r

ir= ∗
min

One can now define R (cause-specific) transition intensities:

( ) ( ) ( )λ ir ir
dt

i i i irt x P t T t dt Y r t T x dt= ≤ < + = ≤ ⋅
→ +

−lim , ,
0

1 ∀ r (5).

Yi  is a variable indicating which of the R events occurs. ( )λir irt x  represents the probability of

transition to state r after duration time t, conditional on not having left prior to t in presence of

the other possible events and on the set of cause-specific covariates xir . In the context of the

Mixed Proportional Hazards model, the ( )λ ir it x  can be written as:

( ) ( ) ( )λ λ βir ir ir r ir ir irt x v t x v, exp= ′ +0 ∀ r (6).

The (overall) hazard function gives the instantaneous rate for failure of any type. As the R

destination states are mutually exclusive, it equals the sum of all cause-specific transition

intensities:
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( ) ( )λ λi i iR ir ir
r

t x x t x1, ,� = ∑ (7).

In the case of competing risks inclusion of the heterogeneity component in the transition

intensities as in (6) raises the question whether it can be safely assumed that these disturbances

are independent across the intensities (NARENDRANATHAN/STEWART (1993A)). Only in that case

can the transition intensities be estimated one at a time as in the single risk case. Dependent

competing risks, i.e. risks with correlations across the individual transition intensities, will be

discussed in section II.4.4.

II.4 Discrete Hazard Rate Models

II.4.1 Discrete Hazard Rate Models and Panel Data

Until now, we have been restricting our discussion to the concept of continuous time to introduce

the most important concepts in duration analysis. The use of continuous time models in

econometric practice is only justified, if the times, at which the events of interest occur, can be

exactly determined. However, adequate data are usually not accessible. In a narrow sense, all

economic data are not available on a continuous time basis. Some data are quite near to the ideal

(as are stock exchange prices for example), but especially microeconometric databases like

panels are based on weekly, monthly or even yearly interviews and, as a result, only time

intervals can be specified, in which certain events have occurred. Economic data are also

frequently rounded or grouped. In the literature of duration analysis all three phenomenons

(interval spacing, rounding, grouping) are subsumed under the term grouped data (KIEFER

(1988B)).

When using continuous time models with grouped duration data, problems result from the

existence of ties, equal durations for different observations. In continuous data, true ties are the

exception, but with grouped data, many ties can be expected. As a consequence, the parameter

estimates of various models (as of the Cox model for instance) are useless

(BLOSSFELD/HAMERLE/MAYER (1986); see also KALBFLEISCH/PRENTICE (1980), COX/OAKES

(1984)). Often the application of discrete hazard rate models is called for in this case, though the
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issue is not yet settled (SUEYOSHI (1995)): HECKMAN/SINGER (1984B) or LANCASTER (1990)

instead propose to work in continuous time and translate to discrete time as necessary. In

empirical studies, MEYER (1990), for instance, applies discrete time and GRITZ (1993) continuous

time models to weekly data. In the end, the discrete methods presented below are nothing more

than a mapping from a continuous-time specification to the discrete observations (SUEYOSHI

(1995)).

The data which we will be using are panel data from the Socio-Economic Panel (SOEP) for

Germany. Individuals in this panel are interviewed once a year, but data for the individuals’

spells are available on a monthly basis. Of course, in such a huge database, ties are a common

feature in this context, especially since one typically observes a kind of "year-bias" in duration

data: first, in retrospective interviews people often are mistaken about the correct duration of a

certain spell and tend to specify longer durations in entire years even if a more accurate time

scale is at hand (memory bias); secondly, many contracts, benefits, etc. usually expire after 12,

18, 24 or so months. Thus, the application of discrete models is necessary for our project.

II.4.2 Specification of Discrete Hazard Rate Models

We consider the case where individual duration data are grouped into J+1 intervals with the j-th

interval defined as [ )t tj j, +1 , j J= 0 1, ,� . For an arbitrary j the discrete hazard rate ( )h j xi i  is

defined as the probabilit y that a spell ends before t j+1, given that it has lasted at least until t j and

the set of covariates:

( ) [ ] ( ) ( )h j x P T t T t x S t x S t xi i i j i j i i j i i j i= < ≥ = − ⋅+ +

−

1 1

1

1, (8).

Specifying the continuous hazard function ( )λ i t  that corresponds to ( )S t xi i  using the

Proportional Hazards model (1) and substituting ( ) ( )γ λj u du
t

t

j

j

=
+∫ln 0

1

 gives the following

expression for the hazard rate:

( )( ) ( ) ( )( )[ ]h j x t x t ji i j i j= − − ′ +1 exp exp β γ (9).
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Notice that we have also introduced time varying covariates ( )x ti j . Specification (9) requires that

the covariates are constant over the interval [ )t tj j, +1  (NARENDRANATHAN/STEWART (1993B)).

Also note that the discrete hazard rate has the shape of a Type I-extreme value distribution even

without any distributional assumptions regarding any of the variables of the model so far. Thus,

the variable ( ) ( ) ( )ε β γi j i j jt x t t= ′ +  is – as in the GAFT-specification (2) for continuous time –

again a Type I-extreme value random variable. HAN/HAUSMAN (1990) use this fact and the

relation of the model above to ordered response models (MADDALA (1983)) to specify the

likelihood function over the density of ( )ε i jt .

Alternatively, the likelihood function can be derived in the following way: Define a dummy

variable δi , indicating whether the observation of the i-th individual is right-censored (δ i = 0 ) or

not. k i  is either the interval, in which an event for individual i can be observed (δ i = 1), or the

censoring interval (δ i = 0 ). For a sample of N individuals the likelihood function is (MEYER

(1987, 1990)):

( ) ( ) ( )[ ]( ) ( ) ( )[ ]{ }L x t k x t mi k i i m
m

k

i

N

i

i

i

γ β β γ β γ

δ

, exp exp exp exp

(1) ( )

= − − ′ +
















⋅ − ′ +



















=

−

=
∏∏ 1

0

1

2

1 	 
����� ������
	 
����� ������

(10).

Part (1) of (10) is the hazard rate (9), the probability of having an event in interval k i  conditional

on survival to that interval. The whole part between both product signs equals one except when a

spell ends in interval k i . Part (2) is the probability of survival at least until t k i
, the overall

survivor function ( )S t xi k ii
, ,β . Survival to t k i

 is the same as surviving each of the preceding

intervals [ )t tm m, +1  for m k i= −0 1, ,� , so the overall survivor function may be expressed in

terms of interval specific, conditional survivor functions α (KIEFER (1988B), SUEYOSHI (1995)):

( ) ( )( )S t x x ti k i im i m
m

k

i

i

, , ,β α β=
=

−

∏
0

1

(11a)

where

( )( ) ( )
( )( ) ( )( )

α β β

λ β

im i m i m i i m

i i mt

t

i i m

x t S t x T t

s x t ds h m x t
m

m

, , ,

exp , ,

= ≥

= −

 


 = −

+

+∫
1

1

1
(11b).
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Thus, the probability that a spell ends in interval k i , which is the probability of surviving the first

k i −1  intervals but not the k i -th is given by (SUEYOSHI (1995)):

( ) ( ) ( ) ( )( )( ) ( )( )P t T t S t x S t x x t x tk i k i k i i k i ik i k im i m
m

k

i i i i i i

i

≤ < = − = − ⋅+ +
=

−

∏1 1
0

1

1, , , , , ,β β α β α β (12a)

( )( ) ( )( )= ⋅
=

−

∏h k x t x ti i k im i m
m

k

i

i

α β,
0

1

(12b).

Formulation (12b) leads us to the above likelihood function. A fundamental assumption

underlying the derivation of the likelihood (10) and of the overall survivor function (11a) is that

censoring occurs at the beginning of intervals (KIEFER (1990)). Thus, k i  is the first interval of the

following new spell in case of a transition or the first interval in which the individual is not

observable anymore in case of right-censoring.

Discrete hazard models have an intriguing relationship to binomial models that allows us to

reformulate the likelihood function (10) in order to get a more familiar specification. Instead of

the each individual or each spell, each individual-period combination may be conceived as a

separate observation: Each individual contributes k i  observations, one for each interval j he

enters. This leads to a sample size of N k ii

∗ = ∑  observations. Then, a new dummy variable d n

can be defined, taking a value of zero, if the spell was completed in the n-th individual-interval,

and a value of one, if the n-th individual-interval was survived. An individual i thus contributes

for a completed spell with a duration of six intervals, for instance, a sequence of six

observations: 0, 0, 0, 0, 0, 1. The likelihood function can then be written as (KIEFER (1988B)):

( ) ( )L n
d

n

d

n

N
n n∗ −

=
= −

∗

∏γ β α α, 1
1

1

(13).

This specification is similar to the standard binary response likelihood. The only difference is

that the usual normal or logistic cumulative distribution functions are replaced by the interval

specific survivor functions depending upon integrated hazards. It is tempting, however, to simply

disregard this difference and estimate a common binary (or with competing risks a multinomial)

logit or probit model. As we will see below, this is often done in empirical applications.

However, as SUEYOSHI (1995) points out, one should consider the implications for hazard

behaviour of different specifications for the αn . The results of his comparison of various

specifications for the αn  indicate very different effects of changes in the explanatory variables.
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The probit model also tends to depart quite far from propotionality as opposed to logistic or

extreme value specifications.

II.4.3 Integration of Competing Risks and Unobserved Heterogeneity

As HUJER/SCHNEIDER (1996, p.58) point out, the best basis for formulating the likelihood

function is now the concept of the survivor function. The reason is that the inclusion of an

observation-specific heterogeneity term, be it cause-specific or not, does not permit a interval

specific factorization – as e.g. in (10) – any longer. Also, when formulating the transition rates it

now has to be ensured that no other transition in the same interval occurs. This was unnecessary

in the continuous time framework as the probability that more than one transition occurs at the

same time is zero if time is a continuous random variable.

Recalling transition intensity (6) and hazard function (7) for continuous time, we obtain for the

continuous time overall survivor function for r R= 1, ,�  independent destination states

( ) ( )( ) ( )( )

( )( )( )

S t x t x t s x s v ds

s x s v ds

i i iR ir ir r ir

t

r

R

ir ir r ir

t

r

R

1 0
1

0
1

, , exp , ,

exp , ,

� = −






= −

∫∑

∫∏

=

=

λ β

λ β

(14).

The discrete time overall survivor function then is

( ) ( )( ) ( )( )S t x t x t v v S t x t vi j i j iR j i iR ir j ir j ir
r

R

1 1
1

, , , , , ,� � =
=

∏ (15),

where

( )( ) ( ) ( )( )

( ) ( ) ( )( )

S t x t v s x s v ds

v x t m

ir j ir j ir ir r irt

t

m

j

ir ir m r r
m

j

m

m

, exp exp

exp exp exp

= − ′ +








= − ′ +








+∫∑

∑

=

−

=

−

λ β

β γ

0
0

1

0

1

1

(16).
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In addition, we assume that heterogeneity components for different destination states are

stochastically independent from each other (HUJER/SCHNEIDER (1996), p.60): ( )cov ,v viq ir = 0

∀ ≠q r . If ( )G irθ  is the unknown mixing distribution function for θir irv= exp( )  equation (16)

can be rewritten as:

( )( ) ( ) ( )( ) ( )S t x t v x t t dGir j ir j ir ir ir m r r m
m

j

ir, exp exp= − ′ +






=

−∞ ∑∫ θ β γ θ
0

1

0
(17).

The likelihood function again can be specified with the help of a dummy variable δ ir  which

indicates, if individual i exits in destination state r (δ ir = 1) or not. k i  indicates either the interval

of transition or the censoring interval:

( )( ) ( )( )
( )( ) ( )( )L

S t x t v S t x t v

S t x t v
S t x t v

ir k ir k ir ir k ir k ir

ir k ir k ir
r

R

ir k ir k ir
i

N
i i i i

i i

ir

i i
=

−















+ +

+ +
==

∏∏
, ,

,
,

1 1

1 1
11

δ

(18).

II.4.4 Dependent Competing Risks

So far, in the context of competing risks, it has been assumed that the latent failure times Tir

∗
,

r R= 1, ,� , are independent from each other. This assumption is usually questionable in

economic problems. As LANCASTER (1990, p.107) points out, "eliminating a possible destination

will generally alter people’s behaviour". If one allows for interdependence between the different

risks, simultaneous estimation of the various transitions will be necessary. The intriguing relation

of hazard models to the linear regression models via the GAFT-specification is very useful in this

respect, because, in linear models, simultaneity can be more easily dealt with than in the direct

hazard specification. This fact has been utili sed by HAN/HAUSMAN (1990) or BELZIL (1995), for

example. To repeat the GAFT-model (4):

( )ln λ β ε β η κ00
u du t x x

T t

i i i i i i

i = ∗∫ = = − ′ + = − ′ + + (19).

Remember that the distribution of ε i  ultimately depends on the distribution of the heterogeneity

component κi  and that ηi  is extreme value distributed. HAN/HAUSMAN (1990) simply assume ε i
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to be normally distributed. As the choice of a Gamma distribution for κi  is also arbitrary, this

assumption might be equally justified.

Transformed duration t i

∗
 can be conceived as a latent variable, whereas the number { }j J∈ 0, ,�

of the interval where transition occurs is observable. One can interpret the spell duration of

individual i as a choice between ordered categories, i.e. the discrete intervals. Thus, there is also

a close relationship between hazard models and ordered response models, which is quite useful,

because interdependence of the competing risks and simultaneous estimation can easily be dealt

with in a multivariate ordered response models, especially if ε i  is assumed to be distributed as a

normal or logistic random variable, leading to ordered probit and logit models, respectively. In an

ordered response framework based on discrete hazard models, HAMERLE/TUTZ (1989) propose to

interpret the latent variable of the model as the sum of forces prolonging survival time or,

alternatively, as time-continuous survival time in the respective interval.
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III. Empirical Applications of Grouped Duration Models

This chapter reviews some papers using methods for grouped duration data as discussed in the

previous chapter. This overview is not meant to be complete. Instead we focus on those papers

that are, in our opinion, most relevant to our project and represent major lines of development in

methods for grouped duration data.

MEYER (1990), based on his own earlier work (MEYER (1987)), examines the effects of

unemployment insurance benefits on unemployment durations using data from Continuous Wage

and Benefit History Unemployment Insurance administrative records for 1978-1983. His sample

consists of 3,365 males from twelve U.S. states. The data are available on weekly basis, and

MEYER (1990) decides to use duration models for discrete time. The analysis is limited to the

transition from unemployment to employment, so that his initial likelihood function is identical

to equation (10) in the previous chapter. Unobserved heterogeneity is accounted for by adding a

heterogeneity component following a gamma distribution with mean one and variance σ2
,

leading to the following log-likelihood:
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MEYER (1990) rejects nonparametric methods for measuring unobserved heterogeneity on the

basis of the criticism by TRUSSELL/RICHARDS (1985), which has already been outlined above. He

compares different specifications without heterogeneity, with gamma distributed heterogeneity

and with a Weibull baseline hazard and with non-parametric estimation of the baseline hazard.

He finds that the non-parametric estimation of the baseline hazard dominates the Weibull

specification, thereby confirming presumptions about the effects of misspecifying the baseline

hazard. Surprisingly, however, most estimates are not significantly affected when introducing

unobserved heterogeneity. In substance, MEYER'S (1990) results suggest a relatively large

disincentive effect of unemployment insurance benefits.



– 17 –

The effect of unemployment insurance on the probability of an individual leaving unemployment

is also studied by NARENDRANATHAN/STEWART (1993B), but they give special attention to the

variation of this effect over the duration of the individual' s unemployment spell. The underlying

data are taken from the UK Department of Health and Social Security Cohort Study of the

Unemployed 1978/1979 and seems to be grouped in weekly intervals. The sample consists of

1,571 men, who reported to be unemployed at the beginning of the study and had valid

information on benefit payments. Actual estimation is done only for those who were unemployed

for at least four weeks. As only the first spell of registered unemployment is included in the

estimation, there are as many spells as individuals in the sample.

Initial model development prior to the inclusion of unobserved heterogeneity is similar to MEYER

(1990), but NARENDRANATHAN/STEWART (1993B) utilise the connection to binary response

models as suggested by equation (13) above and also estimate probit and logit formulations,

though they are not directly implied by the Proportional Hazards model. They find that both the

probit and the logit-model dominate the extreme value-formulation in likelihood terms. The

results suggest no benefit effect past the twelfth week of a spell and a declining effect within the

first twelve weeks.

Since the estimated elasticities from the logit model are found to lie between the values obtained

from the other two formulations, the further analysis, now including unobserved heterogeneity, is

done on the basis of the logit specification. Following HECKMAN/SINGER (1982, 1984A, 1984B,

1985, 1986), a set of two mass points is taken as a discrete approximation of the distribution of

the heterogeneity component. Alternatively, the component is assumed to be normally

distributed, which is justified by the Central Limit Theorem. However, results for both mixture

specifications are very similar. Now the benefit effect is significant up to the twentieth week with

a steady decline in the effect up to this point. Thus, omitted heterogeneity seems to intensify the

negative duration dependence in the unemployment income elasticity.

An interesting econometric issue discussed by NARENDRANATHAN/STEWART (1993B) is the

assumption of independence between the covariates and the error term, if variables capturing the

individual' s previous labour market experience are included in the specification. There might be a

correlation between those variables and the heterogeneity component. On the other hand,

excluding those variables to avoid an endogeneity bias can also cause a serious misspecification

as the previous labour market experience clearly influences the transition probability.
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In the context of modelling the probability of leaving unemployment, transition into employment

is not the only way of leaving unemployment. Individuals might simply withdraw completely

from the labour market, retire because of age, illness or disability, etc. as has already been

discussed in section II.3 above. NARENDRANATHAN/STEWART (1993A) extend their model just

outlined to the case of competing risks using the same data and distinguishing between an "exit

hazard" and a "return-to-employment hazard".

Estimation in a dependent competing risks environment along the lines of II.4.4 is done by

HAN/HAUSMAN (1990) following KATZ'S (1986) paper based on the Panel Study of Income

Dynamics (PSID), who had studied the determinants of unemployment duration and divided the

hazards into either new jobs or recalls. Unlike HAN/HAUSMAN (1990), KATZ (1986) had assumed

independence of the risks and specified the baseline hazard as being of a Weibull type. Like

MEYER (1987, 1990) or NARENDRANATHAN/STEWART (1993A,B), HAN/HAUSMAN (1990) instead

conduct nonparametric estimation of the baseline hazard. Their model for both hazards is

specified as a two-equation-GAFT-model
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To allow for stochastic dependence between the two hazards HAN/HAUSMAN (1990) assume the

joint distribution function of ε1, ε2  to be joint standard normal, which leads to a bivariate ordered

probit model. As the authors admit, this is only an approximation to the proportional hazards

specification, but has the advantage of permitting unrestricted correlation between the

disturbances.

The results of HAN/HAUSMAN (1990) show – like KATZ (1986) – significantly different hazards

for the two types of risks, but reject his baseline hazard specification. His finding of strong

positive duration dependence in the case of the new job hazard appears to be the result of the

Weibull specification rather than actual individual behaviour. His assumption of stochastic

independence, however, is not rejected at usual significance levels.
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Another empirical application where dependence play an important role is BELZIL (1995), who

analyses the impact of unemployment insurance on the likelihood of re-entering unemployment:

On one hand, a more generous unemployment compensation tends to increase reservation wages,

thereby, perhaps, significantly improving subsequent job matching and employment duration. On

the other hand, longer unemployment durations, implied by higher benefits, might have adverse

effects on reemployment wages and durations. Clearly, in this framework, because reemployment

duration depends inter alia on the completed duration of unemployment, in the presence of

unobserved heterogeneity, the unemployment and reemployment equations must be specified as a

simultaneous system. The model ultimately estimated by BELZIL (1995) using data from the

Longitudinal Labor Force File of Employment and Immigration Canada 1972-1984, however, is

a simple recursive and linear two-equation-model with the logarithm of duration spent in

unemployment (employment) t u  (t e ) as the dependent variable

log

log

t x

t x

u u u u

e e e e

= ′ +

= ′ +

β ε

β ε
(22),

where x u  contains the logarithm of the level and of the potential duration of unemployment

benefits when unemployment began and x e  includes log t u as explanatory variables. Again, the

error terms are assumed to be jointly normal. Formulation (21) implies a particular parametric

specification of the hazard function: It corresponds to an exponential model for the hazard since

the baseline hazard is equal to unity. BELZIL (1995) presents estimates both for the complete

sample and for subsamples based on a distinction between recalls and new jobs. These

competing risks are obviously treated as independent from each other since both subsamples are

analysed "separately" (BELZIL (1995), p.121). BELZIL'S (1995) results sustain the hypothesis that

unemployment benefits increase unemployment durations and that unemployment duration

decrease reemployment durations. Also, his findings indicate "that the unemployment durations

of those who have obtained a new job are more sensitive" to unemployment insurance parameters

"and that their reemployment durations are more sensitive to completed unemployment duration"

(BELZIL (1995), p.124).

HUJER/SCHNEIDER (1996) analyse inter alia determinants of the transitions from unemployment

to either employment or non-employment for women in the Socio-Economic Panel for West
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Germany 1983-1992. They too assume independence between both transitions. Using a discrete

hazard model with unobserved heterogeneity following a gamma distribution, they find that

young, high qualified and experienced unemployed have the best chances of obtaining a new job.

An interesting result is also that the transition into non-employment seems to be influenced by

moral-hazard considerations.

The focus of STEINER (1994) is on the relative importance of state dependence versus sorting

effects for explaining the duration and persistence of unemployment. Under the former theory,

employment probabilities might deteriorate with the duration of the ongoing unemployment spell

because of, for example, loss of human capital (negative duration dependence). Instead of or in

addition to the present unemployment spell, previous unemployment experience could have the

same effect (lagged duration, occurrence dependence). Sorting effects can explain rising long-

term unemployment even if individual re-employment probabilities do not deteriorate with

unemployment duration: The proportion of people with low re-employment probabilities might

increase during and after a recession thereby leading to a rising share of long-term unemployment

(STEINER (1994), p.2).

To answer his question, STEINER (1994) analyses the transitions from unemployment into

employment and – for females only – non-participation, which he assumes to be independent

from each other, on the basis of waves 1-9 of the Socio-Economic Panel for West Germany using

a multinomial logit model with a set of three mass points as a discrete approximation of the

heterogeneity distribution. His estimates indicate that there is no decline in individual re-

employment probabilities for males and the great majority of females and instead point to sorting

effects as the cause for incereasing unemployment persistence.

In Eastern Germany Arbeitsbeschaffungsmaßnahmen (ABM; employment schemes) are an

important policy instrument to prevent unemployment in a narrow sense. The question, whether

participation in those employment schemes has a positive reemployment effect, is examined by

STEINER/KRAUS (1995) using data for 1990-1992 from the Arbeitsmarktmonitor (labour market

monitor), a panel study undertaken by the Bundesanstalt für Arbeit (German Federal Bureau of

Labor) in East Germany between 1990 and 1994. Since data in the Arbeitsmarktmonitor for the

duration/transition are only measured on a monthly basis, STEINER/KRAUS (1995) define their

model in discrete time. Their econometric model is basically identical to that used by STEINER

(1994): They specify separate multinomial logit-models for the transition from unemployment
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into employment, ABM and non-employment on one hand and for the transition from ABM into

employment and non-employment (including unemployment) on the other. By comparing the

transition probabilities into employment from unemployment with those from ABM,

STEINER/KRAUS (1995) arrive at the result that for women the participation effect is negative

whereas for men there is a short-run positive effect after completion of the scheme.

STEINER/KRAUS (1995) think that by incorporating unobserved heterogeneity (of

Heckman/Singer type) they can overcome the problem of sample selection. Though they do not

have the problem of a possible correlation between the heterogeneity component and the

participation status of the individual because participation status is not an exogenous variable in

their model, their comparison between transition probabilities, however, is still biased by sample

selection (see HUJER/MAURER/WELLNER (1996) for a more complete discussion). The fact that

they also estimate the transition into ABM does not help in that respect as it does not influence

the estimates for the transition from ABM into employment.

HAM/LALONDE (1996) have the advantage of being able to rely on a social experiment (National

Supported Work Demonstration for women in seven cities in the US 1976/1977) in order to

analyse the effects of a training program on the duration of participants' subsequent employment

and unemployment spells. Thus, they avoid the problem of a correlation between training status

and heterogeneity component and do not need to simultaneously model the selection process into

training in addition to "the process that generates the outcomes of interest" (HAM/LALONDE

(1996), p.177). HAM/LALONDE (1996) direct their attention to transitions between employment

and unemployment for the control group and between training, employment and unemployment

for the experimental group. In their more advanced specifications they allow for correlation

between the cause-specific transition rates, which are basically of simple logit type.

Heterogeneity is incorporated following HECKMAN/SINGER (1982, 1984A, 1984B, 1985, 1986).

They find "that NSW raised employment rates because it helped women who found jobs remain

employed longer than they would have otherwise" (HAM/LALONDE (1996), p.199). However, the

program had no significant effect on the duration of unemployment spells.
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IV. Conclusion

This paper has surveyed methods for the evaluation of grouped transition data as well as recent

empirical applications of these methods – though this separation is rather arbitrary, because, as it

is often the case in econometrics, the innovation of theoretical methods usually coincides with

their empirical application. Of course, time is a continuous phenomenon and therefore time-

continuous hazard models are the basis for models for grouped transition data, but the latter

models take explicitly into account the fact that economic processes and decisions generally are

only observed at discrete points in time, thereby avoiding the possibility of biased estimates

resulting from too many ties.

Perhaps, the most intriguing aspects of models for grouped transition data are

(1) the shape of the discrete hazard rate developed from the Proportional Hazards model

without any distributional assumptions, which is identical to the extreme value distribution;

(2) the similarity to binary/ordered response models.

As we have seen, both aspects often lead to the specification and estimation of these related

models in empirical application. Results like those of NARENDRANATHAN/STEWART (1993B)

seem to indicate that the error thus made can be neglected. Binary or ordered response models

have the advantage of being far more wide-spread and often of being easier to apply. The work of

SUEYOSHI (1995), who compares the implications for the hazard behaviour of a logit, normal and

extreme value specification for interval specific survivor functions, however, "suggests that some

care should be taken to investigate the assumptions embodied in a particular specification of the

conditional exit probabilities" (SUEYOSHI (1995), p.430).

Up to now, most empirical applications of hazard models for grouped (but also for continuous)

data focus on unemployment benefit effects. Only a few tried to analyse the effects of training on

employment histories using these methods. The examination of training effects is usually more

complicated because of the possibility of sample selection bias, at least in a non-experimental

framework. Experimental designs have other serious drawbacks. For instance, the effects one has

arrived at by examining social experiments can not be easily transferred to the labour market or

training in general, because social experiments are normally limited to specific training
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programs. Thus, our analysis of training effects using a panel study like the Socio-Economic

Panel might provide further insight into the working of training if we manage to adequately

account for sample selection effects.
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