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1 Introduction

Investigating the microstructure of financial markets has become very pop-

ular over the last twenty years. Theoretical assertions concerning the behavior

of market participants in the presence of asymmetric information are discussed

in many contributions. In this respect Easley et al. (1996) deliver a prominent

approach. Statistical methodology will be employed in order to check empir-

ically the validity of the implications of market microstructure models. Since

rich transaction data sets are available containing detailed information about

the timing of trades, prices, volume and other relevant characteristics for a

wide range of financial securities, it is possible to get to the bottom of financial

markets. Theory and the application of a tailor-made statistical instrument

are combined in the study of Kokot (2004).

Innovative econometric methods appear rapidly and they experience an

extensive application in the research field. The Autoregressive Conditional Du-

ration model (ACD) introduced by Engle and Russell (1998) is an auspicious

approach which couples the spirit of time series models with econometric tools

for the analysis of transition data. Ultra high frequency data, stemming from

transaction data sets and having the characteristic of irregular spacing in time,

are especially appropriate for the use of the innovative framework. The ACD

model is perfectly suitable for the analysis of dynamics of arbitrary events

associated with the trading process along time, and the durations between

successive occurrences of interesting market events are object of investigation.

As demonstrated by Bauwens et al. (2000) the periods of time elapsing be-

tween successive trades exhibit an idiosyncrasy which could not be captured

by the original model. Therefore, recent endeavors give rise to a statistical

superordinate framework which provides the researcher with extraordinary

flexibility. There are two competing methods which bear resemblance to the

general switching autoregression model introduced by Hamilton (1989). Inte-

gral part of both approaches is a latent discrete valued regime variable whose

involvement can be justified by recent market microstructure theories. The

unobservable regime can be associated with the presence (or absence) of pri-

vate information about an asset’s value that is initially available exclusively

to a subset of informed traders and only eventually disseminates through the

mere process of trading to the broader public of all market participants. They

have the discrete mixture of distributions in common with the Threshold ACD

model introduced by Zhang et al. (2001), which allows switches between dif-

ferent regimes to be driven by past realizations of the dependent variable.

Alternative modifying ACD models are based on latent factors giving rise to

a continuous mixture distribution, Bauwens and Veredas (2004) and Ghysels
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et al. (2004) draw this line by introducing the Stochastic Conditional Dura-

tion model and the Stochastic Volatility Duration model model respectively.

As a generalizing concept the discrete mixture ACD framework nests many

existing models developed in the course of propagation of the ordinary ACD

approach.

The Markov Switching ACD model developed by Hujer et al. (2002) is

capable of higher forecast accuracy of the trading process itself, but it requires

much effort and computing power in estimation. We intend to introduce an

alternative model with some parsimonious parameterization. It is called Static

Mixture ACD model which has affinity to the duration model of De Luca and

Gallo (2004) and is conducive to better performance too.

This paper is structured as follows: A brief review of the idea of discrete

mixture modelling inside of the ACD framework is given in section 2. Tech-

niques for estimation will be discussed and specification tests applicable to

discrete mixture ACD models will be presented. Moreover we establish a rela-

tionship to market microstructure theory. In an empirical application in sec-

tion 3 we present estimation results employing a transaction data set for the

common share of Eastman Kodak traded on the New York Stock Exchange.

Finally, in section 4 we summarize our main results and give a perspective on

possible issues for future research.

2 The discrete mixture ACD framework

2.1 The methodological approaches

Let xn = tn − tn−1 be the duration between the (n − 1)-th and the n-th

market event with deterministic conditional mean ψn ≡ E(xn|Fn−1; θ) where

the information set Fn−1 consists of all preceding durations up to time tn−1 and

θ is the set of parameters. The Autoregressive Conditional Duration approach

(ACD) is an innovative method, introduced by Engle and Russell (1998),

which is based on the assumption that the innovation process εn ≡ xn · ψ−1
n

is independent in time across the N observations considered in the sample

and E (εn) = 1 is a requirement which is produced by identical distributions.

The recent research focusses on weak form ACD models which also allow for

higher order dependence in the series of innovations.

A new concept is introduced by the Discrete Mixture ACD framework

which allows for multifarious applications. The essence is that the duration

process xn is accompanied by an unobservable stochastic process sn which is

characterized by a discrete valued random variable with countable support

J = {j | 1 ≤ j ≤ J}, J ∈ N and has the task to represent the regime in which
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the duration process xn prevails since time tn−1. In financial applications the

existence of different trading regimes may provide evidence on the presence

of agents with private information about an asset’s value. The way of fixing

the total number of regimes, given by the integer number J , can take place

in different ways. To begin with, Lindsay and Roeder (1992) propose the use

of diagnostic plots in order to detect the presence of mixing, clarifying the

elementary suspicion of J > 1. Moreover, a theoretical background and also

different residual measures or information criteria can prove to be helpful for

limiting the scope of J .

The basic assumption of the Static Mixture ACD model, also referred to as

SMACD, is that the innovation process has a known discrete mixture distri-

bution with mean equal to unity and serial independence. Thus, the density

of each innovation has the following general form

g(εn; θ)=
J

∑

j=1

π(j) · g(εn | sn = j; θ), (2.1)

where each weight 0 ≤ π(j) ≤ 1 represents the corresponding probability for

prevailing in state j. Any life distribution may be used in order to specify

the regime-specific density of the innovation process. De Luca and Zuccolotto

(2003) discuss the issue of mixtures for financial duration distributions, and

in this regard De Luca and Gallo (2004) build up a duration model where

the innovation process follows the Schuhl distribution, being simply a discrete

mixture of exponential distributions. The expected value of each innovation is

constrained to be equal to one, and at the same time this expected value turns

out to be a discrete mixture of regime-specific expectations. This implies the

maintenance of the equality

1 =
J

∑

j=1

π(j) · E (εn|sn = j; θ) (2.2)

which does not require that all the regime-specific expectations are equal to

one. By the change of variable technique we obtain the corresponding condi-

tional duration density

f(xn | Fn−1; θ) =
J

∑

j=1

π(j) · f (xn | sn = j; θ) (2.3)

which represents the relevant distribution for statistical inference. Conse-

quently, the conditional regime-specific expectancy of xn, denoted by ψ(j)
n ,

turns out to be

ψ(j)
n = ψn · E (εn|sn = j; θ) (2.4)
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saying that the conditional regime-specific duration expectation is a linear

function of the contemporaneous conditional regime-unspecific duration ex-

pectation. Equation (2.2) allows for different specifications with specific re-

strictiveness. Regardless to this possibility, all the conditional regime-specific

duration distributions are entirely different. Even the most constricted variant,

implied by the assumption E (εn|sn = j,Fn−1; θ) = 1 for each regime j ∈ J ,

makes different distributional features possible, i. e. the first moment of xn is

fix across all regimes but all higher moments are regime-variant. The exhaus-

tive freedom of (2.2) provides a cut above in the sense that all moments are

allowed to be regime-specific.

The Markov Switching ACD model, already gained recognition by Liu et al.

(2004) and abbreviated by MSACD in the following, assumes that the innova-

tion process follows a discrete mixture of distributions with conditional mean

equal to unity but its higher moments are allowed to be time-varying. A dy-

namic evolution of the regime variable will come up to this. The regime switch

is governed by a Markov chain which is characterized by a (J×J)-dimensional

transition matrix with typical element pji equal to the transition probability

pji = p (sn = j | sn−1 = i). Thus, the state of the latent process at recent point

of time depends on the state of the previous. Recall the validity of equation

(2.4), and per contra each function ψ(j)
n = E (xn | sn = j,Fn−1; θ) of regime-

specific conditional duration means is allowed to have a life of its own in the

MSACD model. As a result of this stipulation, any regime-specific mean func-

tion will have an autoregressive specification with self-contained parameters.

The combination of them takes place by the regime-unspecific conditional

mean

ψn =
J

∑

j=1

π
(j)
n|n−1 · ψ

(j)
n (2.5)

which corresponds to the following marginal duration density

f(xn | Fn−1; θ) =
J

∑

j=1

π
(j)
n|n−1 · f (xn | sn = j,Fn−1; θ) (2.6)

with π
(j)
n|n−1 ≡ P (sn = j | Fn−1; θ) representing the probability that sn re-

trieves the j-th state given the filtration. The time-varying measure π
(j)
n+1|n

represents the ex-ante probability for being in regime j at time tn+1, condi-

tional on information available up to time tn and can be evaluated using the

two-step recursion
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π
(j)
n|n =

π
(j)
n|n−1 · f (xn | sn = j,Fn−1; θ)

J
∑

k=1
π

(k)
n|n−1 · f (xn | sn = k,Fn−1; θ)

(2.7)

π
(j)
n+1|n =

J
∑

i=1

pji · π
(i)
n|n. (2.8)

according to Hamilton (1994). Even though the transition probabilities pji are

constant, the regime probabilities π
(j)
n|n and π

(j)
n+1|n are time-varying. A static

specification may be regarded as a special case of the MSACD model based on

a restricted transition matrix with pj1 = . . . = pjJ , this implies time-invariant

forecasts of π
(j)
n+1|n but π

(j)
n|n is still varying in time.

Under certain circumstances the SMACD model coincides with the MSACD

model. There is a trivial concordance for J = 1 and the corresponding one-

regime models are special cases of the ordinary ACD model. Moreover, the

extremity of E (εn|sn = j; θ) = 1 for all j ≤ J in the DMACD model is equiv-

alent to a static MSACD model with ψ(1)
n = . . . = ψ(J)

n .

2.2 Estimation and statistical inference

For discrete mixture models there are two ways by which maximum like-

lihood estimates of the parameter vector θ may be obtained. The direct nu-

merical maximization of the incomplete log-likelihood function

LI(θ)=
N

∑

n=1

ln [f(xn | Fn−1; θ)] (2.9)

under the linear constraint
∑J

j=1 π
(j) = 1 for any specification of the SMACD

model and
∑J

k=1 pkj = 1 for all j ≤ J in the case of a MSACD model and

additional restrictions for nonnegativity, stationarity and eventually for dis-

tributional parameters is the standard approach. Log-likelihood functions of

mixture models are characterized by the existence of multiple local maxima.

In order to catch the global maximum, the repetition of the parameter esti-

mation with different start values is strongly recommended. Since standard

maximization algorithms often fail or produce nonsensical results, maximum

likelihood estimates for discrete mixture models are often obtained by the

use of the robust Expectation-Maximization (EM ) algorithm introduced by

Dempster et al. (1977).

Diebold et al. (1998) propose a method to test the forecast performance

of general dynamic models. The idea behind this specification test has been

extensively used by Bauwens et al. (2004) to compare different types of ACD

models. Denote by {f(xn | Fn−1; θ̂)}N
n=1 the sequence of density forecasts
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evaluated using the parameter vector estimate θ̂ from some parametric model

and denote by {f(xn | Fn−1; θ)}
N
n=1 the sequence of densities corresponding

to the true but unobservable data generating process of xn. As shown by

Rosenblatt (1952), under the null hypothesis H0 : {f(xn | Fn−1; θ̂)}N
n=1 =

{f(xn | Fn−1; θ)}N
n=1, the sequence of empirical integral transforms

ζ̂n =

xn
∫

−∞

f(u | Fn−1; θ̂) du (2.10)

will be uniform i.i.d. on the unit interval. Any statistical test for uniformity in

the sequence of integral transforms can be used to assess the forecast perfor-

mance of the model under consideration. A first indication for some misspec-

ified model is provided by simple tests on the mean and variance. Checks for

quantiles being equal to the population counterpart implied by the standard

uniform distribution can be conducted additionally. Referring to this, let Np

be the number of empirical integral transforms being less or equal than p with

0 ≤ p ≤ 1, then the statistic

Qζp =
Np −N · p

√

N · p · (1 − p)
(2.11)

follows approximately the standard normal distribution under the null hy-

pothesis H0 : ζp = p. The histogram test is well suited for testing the re-

spectability of any model specification. Consider partitioning the support of

ζ into K equally spaced bins and denote the number of observations falling

into the k-th bin by Nk. The confrontation of theoretical frequencies ςk = 1
K

with observed relative frequencies ς̂k = Nk

N
constitutes the fundament of the

statistic

RTζ = −2 ·
K

∑

k=1

Nk · ln
[

ςk

ς̂k

]

(2.12)

which has a χ2 distribution with (K − 1) degrees of freedom under the null

hypothesis. The statistical tests for uniformity may be supplemented by graph-

ical tools. Departures from uniformity can easily be detected using a quantile-

quantile plot or histogram plot based on the sequence of ζ̂n.

2.3 Link to the market microstructure theory

The modern literature on the microstructure of financial markets, grad-

ually widening in the style of Easley et al. (1996), picks out the presence

of diverse types of market participants (traders) as a central theme. The in-

tercommunity of the broad literature is the initial position that the market
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participants are differentiated by the level of information which they harness

privately and consequently the trading mechanism will be discussed under

the aspect of asymmetric information. Concerning this matter it is easy to

imagine that some traders exist who catch a signal indicating that an asset is

either overpriced or underpriced while other traders do not notice anything.

So, the market development can be easily characterized by the coexistence

and interaction of just two categories of traders: informed traders and unin-

formed traders, also called liquidity traders or followers. The informed trader’s

strategy consists of making purchases and sales of assets in the immediate af-

termath of the recognition of favorable or unfavorable signals. The informed

traders encroach upon the market development conjunctly and trigger heaped

transactions as soon as they bushwhack relevant news. Uninformed traders

are insensible in regard to the information processing and retain the habitual

trading activity. Consequently, instances without news events are exclusively

infested with uninformed traders while news regime drum both trader types.

The instantaneous transaction rates turn out to be different across the

trader categories and that is the design which we want to mimic primarily.

Informed traders make transactions as a result of hasty information based

decisions and this behavior dispose for a transaction rate that breaks out in

a rash. In contrast, the phlegm of uninformed traders swears to a transaction

rate with moderate progression. And possibly, the respective transaction rate

is even flat.

The collectivity of transactions, carried out either by the large attendance

of uninformed traders or by sporadic emersions of informed traders can be

seen as a realization of a point process and the corresponding probability law

that governs the occurrence of trades can be specified by a duration statistic.

The presence of different traders acting on the financial market makes the em-

bedding of a conglomerate of regime-specific characteristics into the ordinary

ACD framework adjacent. Because a specific transaction does not reveal by

which type of trader it has been induced, the introduction of an underlying

unobservable mixing variable with discrete distribution is reasonable.

This methodological advancement, nailing down the presented theoretical

background, is excellently reflected in the general coverage of discrete mixture

ACD models. Thereby the mixing variable is responsible for culling the pres-

ence of unobservable information regimes and the mixing parameters pose

as fractions of different information regimes by which the trading days are

obsessed cyclically. They also allow to appreciate the proportion of different

trader types acting on the financial market. The level of discrepancy between

regime-specific peculiarities in trading behavior can be easily regulated by

adapting the parameters inside of equation (2.2) for the SMACD model. A
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regime j? that belongs to the subset J1 ≡ {j?|E (εn|sn = j?; θ) = 1} deals

with some ”normal” manner of expectations while other regimes come along

with changed expectations as soon as relevant information pervade the market.

The MSACD model allows to enrich the vision of the trading mechanism by a

dynamic design of the regime switch. An important regulator of both models

is the distributional assumption. For mixture models it is a routine to assume

that each regime-specific distribution belongs to the same family. Contrary to

this practice a mix of different distribution types seems to be reasonable which

can be argued from a theoretical point of view. So, the exponential density

with its constant hazard will accommodate to the group of uninformed traders

while hunchbacked hazard rates will be caused by the informed traders which

spring into action in the event of any reception of news. So, a comparison of

regime-specific hazard functions

h (xn | Fn−1; θ)=
f (xn | Fn−1; θ)

xn
∫

0
f (u | Fn−1; θ) du

(2.13)

helps to identify the trader-specific consuetudes.

Bauwens et al. (2000) report on the deficiency of different ACD models

which is well founded by the inability of modelling observations in the tails of

the distributions appropriately. This arouses the suspicion that the duration

process is mulcted of some facts with fundamental importance. The thoughts

stimulated by the market microstructure theory justify an advanced approach

for duration data which is materialized in the concise discrete mixture ACD

framework. By doing this, we hope to succeed in overcoming the lack of sat-

isfactory forecast performance of recent ACD models and we expect a clear

answer from the empirical application.

3 Empirical application

3.1 The data set

The data used for empirical application consists of transactions of the com-

mon stock of Eastman Kodak, recorded on the New York stock exchange from

the trades and quotes database provided by the NYSE Inc. The sampling pe-

riod spans twenty trading days, covering all working days from Monday to

Friday, during the month of March in the year 2004. We focus on all ”regular”

trades recorded during the six and a half trading hours lasting from 9:30 to
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16:00. 1 The trading times have been recorded with a precision measured in

seconds. Durations with length of zero seconds deserve closer attention. Since

the ACD framework does not permit the inclusion of null durations, a twofold

treatment will be our answer to this problem. The entire elimination of null

durations is a common treatment, which relies on the argument that trades

executed within the same second are splits of a big order block initiated by

the same trader. But we limit this procedure to durations that arise from suc-

cessive trades without any price change. This logic can be called into question

when we deal with successive trades having a price change, because it is plau-

sible to think of null durations that evolve from actions of retail traders. So,

transactions occurring within the same second with price change have been

transformed according to Veredas et al. (2002), the concept behind this idea

is the artificial enlargement of null durations while the next positive duration

shrinks. In the final data set we removed censored observations: durations from

the last trade of the day until the close and durations from the open until the

first trade of the day. It is well known that the length of the durations varies

in a deterministic manner during the trading day that resembles an inverted

U -shaped pattern. Engle and Russell (1997) propose to decompose the dura-

tion series into a deterministic time-of-day function Φ(tn−1) and a stochastic

component xn, so that the raw durations are generated from the multiplicative

form x̃n = xn · Φ(tn−1). In order to remove the deterministic component we

apply the two step method proposed by Engle and Russell (1997) in which the

time-of-day function is estimated separately from other model parameters. 2

Dividing each raw duration x̃n in the sample by an estimate of the time-of-day

function Φ(tn−1), a sequence of deseasonalized durations xn is obtained which

is used in all subsequent efforts to look into the long run duration dynamic. 3

Descriptive information about sample moments of the raw and the season-

ally adjusted duration data is reported in the left block of Table 1.

< insert Table 1 about here >

As expected, the series of adjusted durations has a mean of approximately

1 A transaction is said to be regular if its execution has been realized without any
condition or correction.
2 Simultaneous ML-estimation as in Engle and Russell (1998) and Veredas et al.
(2002) is also feasible. Engle and Russell (1998) report that both procedures give
similar results if sufficient data is available.
3 Estimates of the time-of-day function were obtained by conducting a polynomial-
trigonometric regression of the durations on the time-of-day according to Gallant
(1981) and Eubank and Speckman (1990), with separate application to each day of
the week.
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one. Both time series exhibit overdispersion relative to the exponential dis-

tribution which has standard error equal to mean. A mixture of distributions

will accommodate well to the stylized fact of overdispersion. The goodness of

fit, associated with each model specification, will by inquired by a twofold ex-

ercise. Each column entitled ”In”-sample in the right block of Table 1 contains

a statistical description of seasonally adjusted durations that cover the first

ten trading days and they are employed to estimate the model parameters.

The rest of the total data set is used to compute out-of-sample forecasts based

on the estimated parameters. Descriptive statistics for the second subsample

are contained in the column named ”Out”-sample. The duration distributions

in both subsamples appear to be qualitatively similar. They are branded by

overdispersion and skewness to the right (because the mean exceeds the me-

dian), but the very large durations tend to appear more concentrated in the

second subsample.

An obvious characteristic of the data is the presence of strong positive au-

tocorrelation in the series of raw and seasonally adjusted intertrade durations.

The pronounced autocorrelation can be directly recognized from the cutouts

of the autocorrelation functions displayed in Figure 1.

< insert Figure 1 about here >

The series of raw durations have a recurrent dependence structure for each

trading day environed by dotted vertical lines (dashed lines separate a join of

trading days which constitutes a week). The bathtub-shaped evolution of the

autocorrelation function recurs every day and of course, this plausible feature

is due to the seasonality. The bathtub-shaped episode of the autocorrelation

function for the adjusted durations disappears almost completely. Anyway,

remaining dependence structure is present in the series of seasonally adjusted

durations as evidenced by the plentitude of autocorrelations that reside out-

side the confidence band of 95 percent. Note that the autocorrelation function

associated with the seasonally adjusted durations decreases dramatically for

the beginning band of lag orders. This notice allows to make an educated

guess that the separation of the seasonality part and the part of autocorre-

lated dynamic due to the gradual processing of information does not success

completely. The proper community of ”orthogonal” components of the process

of raw durations seems to collapse in the incipient minutes of NYSE trading.

The pivotal causation for this fact may come from the batch-auction which

is an exceptional circumstance, characterized by a monopolistic status of the

market maker (specialist). As a measure of precaution, we initiate a clearing

up of the data set which corresponds to the suggested treatment of Engle and
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Russell (1998): Observations recorded up to fifteen minutes after the opening

of the NYSE will be excluded from our estimation task, they are suspected

of being parts of the batch auction which might cause a contamination of the

model that will be used for description of the trading velocity.

The simultaneous disappearance of autocorrelations will checked by the

Ljung and Box (1978) test statistic. We fix the relevant lag order, required

for this autocorrelation test, onto the number of diurnal observations which

is given at the top of Table 2. 4 The entries at the bottom evidence the fol-

lowing fact: Even after seasonal adjustment the joint hypothesis that all the

autocorrelation coefficients are simultaneously equal to zero can be rejected

at conventional significance levels, (see the p-value of the LB-test pLB which

is permanently equal to zero), although the shape of the autocorrelation func-

tion changes dramatically.

< insert Table 2 about here >

Therefore, an autoregressive approach appears to be appropriate as a model

for the transaction durations.

3.2 Specifications of discrete mixture ACD models

We enrich the ordinary ACD model by allowing for the possibility of in-

terchange between a limited number of regimes. The consideration of two and

three regimes will be effectual. Our fixing onto J = 2 is well founded by the

theoretical vision of the trading mechanism which is outlined in paragraph

2.3. So we think of a news and a no news regime mastering the trading pro-

cess interchangeably during the course of a trading day. The consideration

of three regimes can be motivated from theoretical point of view as well:

The distinction between favorable and unfavorable signals, catched by the in-

formed market participants, might be a reasonable amelioration of the trading

process under the news regime. This breeds the application of the general phi-

losophy of discrete mixture ACD models, becoming manifest either in a static

or dynamic manner. First of all, we intend to estimate the model of De Luca

and Gallo (2004) which develops behind the scene of the SMACD approach

4 Exemplary, we find that Friday, 26 March (Monday, 8 March) records 1222 (1936)
transactions representing the datum that has the lowest (highest) number of diurnal
observations and the whole-numbered average of daily durations is equal to 1590.
Hence, the Ljung and Box (1978) statistic is computed for a couple of moderate
lag orders: `L = 1222 represents the minimum lag order, `H = 1936 illustrates the
maximum lag order and `M = 1590 is a compromise between the two extremities,
demonstrating our procedure when considering the whole data set.
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and other contrastable specifications will be of interest too. In order to make

them comparable to the dynamic world we impose the restriction of regime-

independence of conditional durations means when considering specifications

belonging to the MSACD model.

We distinguish between two extreme specifications of the SMACD model.

The restrictive variant, denoted by the character R in the following, com-

prises the fact that all regime specific expectations of the innovation process

are forced to be equal to one, so that absolutely no care for equation (2.2)

is needed. This variant may be estimated by employing the EM -algorithm,

while the nonrestrictive variant, characterized by the negation of the require-

ment that E (εn|sn = j; θ) = 1 holds true for each j ≤ J and denoted by the

character R in the following, has to be estimated by maximizing the incom-

plete log-likelihood function directly. A semirestrictive representative of the

SMACD model, denoted by the symbol R, arises from a compromise between

the restrictive and nonrestrictive variant. It is based on the fact that one

regime-specific mean of the innovation process is fixed to be equal to one. 5

Before running any estimation we have to make an important decision

which decides on the mean function. The observed sequence of durations on

a trading day will be treated independently of durations recorded on other

trading days. This means that on every trading day a recursion determining

the mean function starts anew. 6 This design circumvents any transmission of

the trading dynamic levelled off at the end of a trading day on the subsequent

trading day. The mean function ψn is assumed to be linear and the two relevant

lag orders in the recursion are equal to one, i. e.

ψn =ω + α · xn−1 + β · ψn−1 (3.1)

where the index n includes a trade day counter d ≤ 20 and also a counter

for daily transactions k ≤ Nd. The function of conditional duration means

obeys an autoregressive recursion, demanding for an appropriate initializing

value for each trading day. An assortment of durations, belonging to the data

subset reserved for the empirical analysis, will render an adjuvant service.

Observations, recorded on each trading day between the time of day 9:45 and

10:00, are predestinated candidates for this purpose and we assume that the

corresponding arithmetic mean gives a reasonable description of the genesis

of the mean function.

5 This idea makes sense for models that incorporate at least three regimes, i. e.
J ≥ 3. Otherwise, a two-regime model will be swamped with restrictions and there
is nothing else for it but to reproduce the restrictive variant.
6 Consequently, the log-likelihood function considering all available durations can
be expressed as the sum of twenty daily log-likelihoods.
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As argued previously, the exponential distribution is a candidate which

comes into question for our purposes. Consulting the distributional proposal

of Grammig et al. (1998), some regime-specific distribution can be taken from

the Burr (1942) family of distributions. We introduce an identifying notation

in order to distinguish between the different specifications appearing as ap-

propriate for framing a multi-regime model. The realization of the variable

D(j) denotes the distribution assumed for the j-th regime. D(j) = E indicates

the application of the exponential distribution for the j-th regime, while the

character B stands for the Burr (1942) distribution with regular time-invariant

distribution parameters κ(j) and σ(j). To some extent additional time-invariant

distribution parameters λ(j) and µ(j) will come into existence when considering

the nonrestrictive and semirestrictive specifications of the SMACD model. In

return, the equality
J
∑

j=1
π(j) ·m(j) = 1 with distributional case differentiation

in the j-th regime

m(j) =



























λ(j) if D(j) = E

[

µ(j)
]− 1

κ(j) ·
Γ

(

1+ 1

κ(j)

)

·Γ

(

1

σ(j)
− 1

κ(j)

)

σ(j)

(

1+ 1

κ(j)

)

·Γ

(

1

σ(j)
+1

)

if D(j) = B
(3.2)

has to be ensured in the course of estimation. 7 In contrast, the restrictive

specification variant of the SMACD model and also the MSACD model incor-

porate corresponding distributional parameters which obey a parameterization

according to

λ(j) = 1 (3.3)

and

µ(j) =











σ(j)

(

1+ 1

κ(j)

)

· Γ
(

1
σ(j) + 1

)

Γ
(

1 + 1
κ(j)

)

· Γ
(

1
σ(j) −

1
κ(j)

)











−κ(j)

(3.4)

respectively. 8 Bringing together the different variants, the regime-specific con-

ditional density of the duration xn turns out to be

7 Because of the need to consider two constrictive facts in estimation, i. e. the sum
of all regime probabilities is equal to one and the requirement given in (2.2), we
abandon the estimation of π(J) and λ(J) or µ(J) respectively.
8 These parameter determinations imply that each regime-specific expectation of
the innovation process is equal to one.
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fn (xn | sn = j,Fn−1; θ) =



















λ(j)
n · exp

(

λ(j)
n · xn

)

if D(j) = E

µ
(j)
n ·κ(j)·xκ(j)−1

n
(

1+σ(j) ·µ
(j)
n ·xκ(j)

n

) 1

σ(j)
+1

if D(j) = B (3.5)

with the time-variant parameter λ(j)
n = ψ−1

n in the exponential case while

µ(j)
n = ψ−κ(j)

n · µ(j) is the corresponding alternative.

We attend to the topic concerning the outclassing performance of our spec-

ifications compared to the reference model of De Luca and Gallo (2004), which

conforms to the nonrestrictive instruction associated with the SMACD model

with exponential distribution in each existent regime. Coming from this model

there is no exorbitant increase in the number of parameters composing our pre-

ferred specifications of the SMACD and MSACD model. Another interesting

issue becoming apparent is whether the predetermined arrangement of λ(j)

and µ(j) allows for flexibility which is sufficient to catch regime-specific char-

acteristics hidden in the duration process. And the question for dynamics in

the regime switch is also relevant. We expect answers from our estimation

results.

3.3 Estimation results

For each two-regime specification, that arises from the general SMACD

model, its parameter estimates and corresponding standard errors are given

in the upper block of Table 3. 9 The subsequent entries comprehend the value

of the incomplete log-likelihood function LI and also the Bayesian information

criterion BIC of Schwarz (1978), which is computed as −2 · LI + ln(N) · ]θ

with N denoting the number of durations exclusively used for the estimation

purpose and ]θ representing the number of estimated parameters. By means

of estimation results we carry out a couple of specification tests. Descriptive

statistics for the series of empirical integral transforms and p-values of sta-

tistical tests for the corresponding parameters being equal to the population

counterpart implied by the standard uniform distribution are given in the end.

< insert Table 3 about here >

At first, the BIC does not support the introducing specification {E , E} which

reflects the De Luca and Gallo (2004) model. Some specification tests produce

results which are in favor of the uniformity hypothesis. In this concern, the test

9 Standard errors have been computed based on numerical derivatives of the in-
complete log likelihood function using the quasi-maximum likelihood estimates of
the information matrix as suggested by White (1982).
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on the mean argues for the null hypothesis H0 : E (ζ) = 0.5, and the variance

test does the same. In addition, the test on the median (third quartile) accepts

the null hypothesis H0: ζ0.5 = 0.5 (ζ0.75 = 0.75) from statistical point of

view. But all these intercessional results do not have power of persuasion. The

disappearing p-value obtained from the test associated with the first quartile is

a sign of bad adaption in the tail of the distribution. Moreover, the alternative

histogram specification test does not support this model specification, this

conclusion can be recognized from the p-value of the ratio test which is equal

to zero. Hence, the apparent defect of this reference specification stems from

the improper choice of distribution.

Does any distributional modification, taking place either in one or both

regimes, overcomes these serious problems ? In order to answer this ques-

tion we consult the estimation results of the two supplementary specifica-

tions {E ,B} and {B,B} which voice realizations of the replacement characters

{D(1), D(2)}. Both routes will be concretized by the restrictive and also by the

nonrestrictive instruction. All the specifications, that evolve from the combi-

nation of the distributional aspect and the room for restrictiveness, call for

more parameters than the inaugurating model of De Luca and Gallo (2004),

but the fact of reduced BIC values assigns them as reasonable alternatives.

And by assuming the comprehending Burr (1942) distribution for each exis-

tent regime best trade-offs between parsimony and likelihood benefit will be

achieved. The commonness of the four widening specifications is that they

adapt to the real data in some better manner, but this improved performance

does not suffice to authenticate the superiority of them. In fact, they effectu-

ate a dramatic reduction of the value associated with the RTζ-test, but the

corresponding p-values are still equal to zero. So the restrictive variant R of

the most extensive distribution composition generates a 85 percent retrench-

ment of the RTζ-value, compared to the reference specification {E , E}. The

replacement of the exponential distribution by the Burr (1942) distribution in

both regimes seems to get a grip on the distributional rigidity for very small

durations, from which the reference model suffers. Anyhow, a distributional

shortcoming relocates to the medial durations as the negligible p-value of the

median test demonstrates.

This general result prompts us to combine the amenities of the exponential

and Burr (1942) distribution, showing to advantage for our data situation, in a

three-regime fashion of the SMACD model. The twofold use of the exponential

(Burr (1942)) distribution and the unique appearance of the Burr (1942) (ex-

ponential) distribution provides us with reasonable options. The corresponding

specifications are transliterated by {E , E ,B} and {E ,B,B} respectively. And

since the exponential distribution turns out to be a limiting case of the Burr
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(1942) as in the j-th regime the parameter σ(j) tends to zero and κ(j) = 1

holds true, we also consider the vision of the {B,B,B} specification. A pre-

liminary investigation shows that restrictive variants of these specifications

are not able to identify three diversified regimes, so that semirestrictive and

nonrestrictive representatives quicken our interests. The estimation results are

given in Table 4 which has the the same system as the last-mentioned and J=

gives the regime j? that ensures the validity of E (εn|sn = j?; θ) = 1 for the

semirestrictive variants.

< insert Table 4 about here >

Specifications, characterized by distributional heterogeneity, have problems to

model edging durations appropriately. Thus, the dominance of the exponential

(Burr (1942)) distribution comes along with some unsatisfactory modelling of

short (large) durations, as the negatory results of the quartile tests give reason

to believe. The specifications under {E , E ,B} seem to be devoted to some ”nor-

mal” durations ascribed to the uninformed traders, while the exceptional trade

durations of the informed traders have profuse consideration in the {E ,B,B}

specifications. Loosely speaking, it is either the group of uninformed or in-

formed traders which stands up to the other. The estimates for the regime

probabilities support this impression: The former specifications seem to con-

sider the uninformed traders twice as much as the informed traders, while

the latter specifications do the converse. Therefore, we feel well advised to

bring an equality of opportunity into being, attempted by the homogeneous

specification {B,B,B}. Therein, the arithmetic mean of the empirical integral

transforms draws near one half, the corresponding empirical variance becomes

significantly one twelfth and the first, second and third quartile does not differ

significantly from 0.25, 0.50 and 0.75 - these facts express the extraordinary

conformance to the uniform distribution on the unit interval. The values of

the RTζ-test register further increase and the BIC prefers these specification,

even more than the corresponding two-regime specification.

Summarizing, the estimation results for SMACD models will induce us to

cling to distributions that are more comprehensive than the exponential. The

Burr (1942) distribution proves to be a good choice, placing at the disposal

nonmonotonic shapes of the hazard rate. It is able to alleviate the distribu-

tional ailment from which thrifty models occasionally suffer. We polish the

scaffolding of discrete mixture ACD models by fathering some closer connec-

tivity between the existent regimes. The interdependent change of regimes,

realized by the MSACD model, will make one’s debut now. Table 5 renders

an account of forecast performance of MSACD model specifications that have
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been able to be carried forward from its static pendants.

< insert Table 5 about here >

The specification {B,B,B} is high in parameters but it brings out the best

in terms of likelihood and data adaption. It will be favored by the BIC and

even the RTζ-test convinces of its outstanding performance.

For purposes of comparison Figure 2 contains QQ-plots and histograms

for the series of integral transforms implied by the promising three-regime ho-

mogeneity specification {B,B,B} of the general discrete mixture ACD frame-

work.

< insert Figure 2 about here >

The charts clearly show that the different designs of the towering three-regime

specification produce empirical integral transforms that match the implied the-

oretical density very well and tends to give accurate forecasts over the whole

range of observed values of x. In contrast, the plots of the corresponding two-

regime model specifications, presented in Figure 3, show that the empirical

integral transforms disagree sharply with the theoretical density, and that

they tend to produce systematically biased forecasts of small and/or large x,

as can be seen from some histogram bars that lie outside of the 95% confidence

interval. Thereby, the exponential model {E , E} of De Luca and Gallo (2004)

comes off very badly.

< insert Figure 3 about here >

So, the distributional assumption is the most efficient tool by which the fore-

cast performance of discrete mixture ACD models can be highly improved.

The quantile points form increasingly a diagonal line and the steep incline

associated with the histogram bars disappears. The number of regimes and

the modelling of the regime variable via Markov chain are also important is-

sues which account for some reasonable fine-tuning. These influencing factors

have a share in a total harmonization of the histogram bars. Note that the

subordinate specifications to the nonrestrictive variant of the SMACD model

do not sustain a serious loss in performance.

Summarizing, our assemblage of advanced regime switch model specifica-

tions displays a superior data fit relative to the simple De Luca and Gallo

(2004) model. By our out-of-sample analysis we intend to form an opinion

about their gain in prediction. Does a suasive forecast performance can be ev-
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idenced as in the in-sample inquiry ? In order to answer this question we use

a procedure which has been adventured by Bessec and Bouabdallah (2005).

The forecast accuracy will be examined by rolling the origin of forecasting and

a weekly horizon is an reasonable assumption for computing the forecasts.

By using the parameter estimates, we calculate the arithmetic mean of the

squared prediction errors (xN+k − ψN+k)
2 and absolute errors |xN+k − ψN+k|

for 1 ≤ k ≤ 7100, corresponding to the first quintet of out-sample trading

days, and the relevant measures will be denoted by MSE and MAE respec-

tively. The 6441 recordings associated with the next five out-sample trading

days will experience the analogue treatment, thereby the estimated parame-

ters will be recalibrated by considering the durations of the first forecast week.

Additionally, we carry out the same tests as in the in-sample analysis. Its p-

values and also the two conglomerates of prediction errors are given in Table

6 for specifications belonging to the group of SMACD models and Table 7

concerns the category of MSACD models.

< insert Table 6 and 7 about here >

In the category of two-regime models it is the reference specification {E , E}

of De Luca and Gallo (2004) which hands over the best predictions for the

first future trading week, i. e. no other specification is able to underbid the

value 1.441 (0.846) associated with the mean of squared (absolute) prediction

errors. But on the other hand, the distributional problem is still present as the

evanescent p-value of the histogram test indicates, and a humble improvement

is provided by the homogeneous specification {B,B} of the MSACD model.

The view on the second future trading week gives rise to another conclusion:

Indeed, the nonrestrictive competitors overtake the De Luca and Gallo (2004)

model in terms of the MSE, but none of the two-regime specifications reduces

the value 59.102 of the histogram test. Loosely speaking, for two-regime mod-

els we have to deal with a trade-off between distributional acclimatization and

forecast accuracy. But the migration to a three-regime fashion can be conve-

nient for both objectives. So, each nonrestrictive specification of the SMACD

model with supernumerous consideration of the Burr (1942) distribution out-

performs the addressed reference model for the first week of predictions: the

distributional deficiency will be reduced and the accuracy of predictions will

be upgraded. The ideal capacity of the {B,B,B} specification, affirmed by

the in-sample analysis, does not correspond to some excellent forecast perfor-

mance. This fact allows to make the following general conclusion: Although

extensive discrete mixture ACD models display a superior in-sample fit, the

gain in prediction is small, does not even emerge or deteriorates the predic-
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tions. The same empirical finding has been noticed by Bessec and Bouabdallah

(2005) and they argue that the main source of this flaw is due to the failure

of forecasting the regime indicator.

3.4 Theoretical interpretation

We discuss the theory-related content of the {B,B,B} specification, evi-

denced as the most promising representative associated with the discrete mix-

ture ACD framework. By applying both the SMACD model and the MSACD

model the existence of three constitutively different streams, governing the

process of intertrade durations, will be affirmed. They allow to visualize the

different velocities from which trading evolves.

The estimation results show that the two regular distribution parameters

κ(j) and σ(j) vary keenly across the regimes. Expectedly, several Wald-tests (see

Buse (1982)) conform this disparity of regimes: The corresponding results are

given in Table 8, rejecting any hypothesis of pairwise equality between regime-

specific distribution parameters at the conventional significance level of five

percent.

< insert Table 8 about here >

This stamping of regime-specificity has a strong impact on the shape of the

hazard function considered for each regime separately. The distributional pa-

rameter κ(j) is the sole control instrument of the hazard shape in the j-th

regime. For κ(j) ≤ 1 the Burr (1942) distribution implies a strong decreasing

failure rate, while the case κ(j) > 1 gives rise to a nonmontonic hazard shape.

By conducting the t-test we can confirm the hypothesis of a hunchbacked

hazard rate for each regime under consideration. Figure 4 displays the three

regime-specific survivor functions S(x|sn = j,Fn−1; θ̂) and the corresponding

hazard rates h(x|sn = j,Fn−1; θ̂) each evaluated for ψn = 1 and by taking the

estimates of the distribution parameters into account.

< insert Figure 4 about here >

Note that the choice for one or the other mixture model specification does

not change the qualitative nature of the functions which are relevant for sur-

vival analysis. The hazard rates for two regimes tend to rise rather quickly

after a transaction has been observed, one is characterized by some moderate

hazard amplitude while the other has some sharp peak. In contrast the haz-

ard function under the remaining regime increases slightly and gives clearly
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more weight to spells with a length of more than two units of time. This

hazard tends to be constant for large durations, approximating the feature of

memoryless implied by the exponential distribution. Thus, large durations are

relative insensitive to an arbitrary change of the distributional assumption

while contaminations will be predominantly caused by the small durations.

The imagination of an overall constant hazard, implied by the exponential

distribution, is far from reality and the model of De Luca and Gallo (2004) is

not appropriate for the recent trading mechanism.

Let us look at the parameters estimates that determine the mixing vari-

able. In order to compare the transition probabilities of the MSACD model

with the regime probabilities of the SMACD model we throw a glance at the

so called steady state distribution associated with the Markov process. 10 A

solution providing us with the steady spate distribution {πj |j ≤ J} is given in

Hamilton (1994). Table 9 confronts the regime probabilities π(j) of the SMACD

model with the ergodic probabilities πj of the MSACD model.

< insert Table 9 about here >

It also contains the regime-specific innovation means E
(

εn|sn = j; θ̂
)

calcu-

lated by the parameter vector estimate θ̂. First of all, we have to mention the

ordinal congruence between the regime probabilities and the regime-specific

means, i. e. the relation E
(

εn|sn = i; θ̂
)

≥ E
(

εn|sn = j; θ̂
)

comes along with

the validity of π(i) > π(j) and πi > πj respectively. Obviously, any three-regime

specification under consideration does the same job and the theoretical inter-

pretation of this common feature is that small (medium and large) durations

are present by a small (medium and large) fraction. There is always one regime

which occupies round fifty percent of all regime emersions, and it comes along

with some above-average duration expectancy if countenanced by the art of

specification. An important note is that it corresponds to the regime that has

a flat hazard rate. The other two regimes share the remaining fifty percent of

regime fraction and in the case of E
(

εn|sn = j; θ̂
)

= 1 there will be a relative

equable proportioning.

All these stylized facts are in line with the theoretical background discussed

in section 2.3. The inertial trading activity, adumbrated by some flatness of

the hazard rate, predominates the whole trading process and can be associ-

ated with the vision of trading behavior ascribed to the group of uninformed

10 An ergodic Markov chain implies that as k increases ad infinitum the k-step
transition matrix P k converges elementwise to a matrix in which each column is the

unique steady state distribution, id est limk→∞ p
(k)
ji = πj for all i ≤ J .
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traders. Following the theory, the lack of news events gives rise to this con-

stellation of characteristics and consequently, we have to think of a so called

no news regime when dealing with an extremely large regime-specific innova-

tion mean and regime probability. The other two regimes award the image of

succinct trading which can be traced back to the informed traders. The hunch-

backed hazard functions reflect their abrupt spooking on the financial market.

So, a superior regime of news happenings is formed by these twin regimes.

The considered two-regime specifications of the discrete mixture ACD frame-

work identify the coexistence of the no news regime and news regime but

the internal difference of the latter is preeminent, so that they experience a

statistical refuse as discussed in section 3.3. The three-regime models allow

to consider a case differentiation of the news regime, disclosing a good news

regime for favorable signals and a bad news regime for unfavorable signals.

But until now, it is impossible to identify them unambiguously. But we find

a remedy by analyzing the trade direction, determined by the quote test of

Lee and Ready (1991) and formalized by a indicator variable with valuation

equal to one if the transaction was buyer initiated and minus one otherwise,

and the log-ratios of smoothed regime inferences

rn

(

k; k
)

= ln







π
(k)
n|N

π
(k)
n|N





 (3.6)

Rn

(

k, k; k
)

= ln







π
(k)
n|N + π

(k)
n|N

π
(k)
n|N





 (3.7)

considering available information up to the end of each trading day, which

can be computed by using the algorithm of Kim (1994). 11 If the regime k has

higher probability than the regime k then the corresponding log ratio rn(k; k)

will be positive. Observing a sequence of buy orders allows to perceive a pro-

pitious situation for the informed traders, coming along with risen (fallen)

probabilities for good (bad) news. For the first hundred transactions Figure

5 visualizes a comparison of the trade direction and the log-ratios, where k is

chosen to be the no news regime characterized by the motionless hazard rate,

and k denotes the regime that has the most sensitive hazard, so that k reflects

the regime with the moderate hazard function.

< insert Figure 5 about here >

11 The equality π
(j)
n|N = π

(j)
n|n for j ≤ J holds true in the case of static MSACD

models. The analoge measure for SMACD models can be obtained by stretching a
matrix of probabilities with pji = π(j) for all i, j ≤ J .
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Obviously, a parallel progression of the trade direction and the corresponding

log-ratios is certifiable. Consequently, it is the third (second) regime of the

SMACD (MSACD) trinity model which may be presumed to mask the bad

one. Note that the two competing SMACD model specifications imply a quasi

proportional relationship between r(1; 3) and R(1, 2; 3), while an oscillating

proportion is due to the Markov property of the regime variable. It is an

indication of varying presence of informed trades.

4 Conclusion

The Discrete Mixture ACD framework flows from the idea of an unobserv-

able regime switch accompanying the process of durations. Encroaching upon

its flexibility can be done in a couple of directions. Effective regulators are

given by the number of regimes and the distributional assumption. The recur-

sion of the mean function and the design of the residual expectancy, satisfying

the obligatory demand for a unit mean, are also important starting points for

altering the comprehension of the framework.

In this paper we present, challenge and put to the test two alternative

approaches of this general framework. The empirical work allows to conclude

that even the SMACD model, characterized by the constancy of the regime

probabilities all along the trading time, is a promising new approach for mod-

elling autocorrelated intraday durations obtained from high frequency data

sets from stock and foreign exchange markets. As a static representative it is

able to reduce the distributional problem from which the pioneering model

of De Luca and Gallo (2004) racily suffers. The alternative MSACD model

provides a better service by solving this problem, whereas strong restrictions

on the function of conditional means do not get in the way of its performance.

Beyond that, its allowance for time-varying regime probabilities makes ad-

vances to recent data reality which calls for extensive dynamic behavior of the

regime variable. Although superior data adaption can be registered for copi-

ous mixture models the gain in forecast performance, if it exists, is poor. The

misclassification of future regimes seems to be a crucial reason for eminent

errors of prediction.

Under certain circumstances the SMACD model coincides with the MSACD

model. There is a trivial concordance for one-regime specifications stooping to

the ordinary ACD model introduced by Engle and Russell (1998). Moreover,

the lack of regime-specificity associated with the conditional mean function

makes the static MSACD model equivalent to the SMACD model.

An interesting asset of both is the interpretation in the context of recent
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market microstructure models. The unobservable regime variable emulates the

arrival or absence of private information harnessed by the informed traders

acting on the financial market. The representatives of the Discrete Mixture

ACD framework afford an excellent opportunity to look into the trade behavior

of market participants influenced by the vicissitude of the information flow.
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Catholique de Louvain and University of Frankfurt, forthcoming in: International

Journal of Forecasting.

Bauwens, L., Giot, P., Grammig, J. Veredas, D., 2004. A comparison of financial

duration models via density forecasts. International Journal of Forecasting 20,

589–609, forthcoming.

Bauwens, L., Veredas, D., 2004. The stochastic conditional duration model: a latent

variable model for the analysis of financial durations. Journal of Econometrics

119, 381–412.

Bessec, M., Bouabdallah, O., 2005. What causes the forecasting failure of Markov-

switching models ? A Monte Carlo study. Tech. rep., Social Science Research

Network.

Burr, I. W., 1942. Cumulative frequency functions. Annals of Mathematical Statis-

tics 13, 215–232.

Buse, A., 1982. The likelihood ration, wald and lagrange multiplier tests: An expos-

itory note. American Statistician 36, 153–157.

De Luca, G., Gallo, Giampiero, M., 2004. Mixture processes for financial intradaily

durations. Studies in Nonlinear Dynamics & Econometrics 8 (2), 1–18, article 8.

De Luca, G., Zuccolotto, P., 2003. Finite and infinite mixtures for financial dura-

tions. Metron - International Journal of Statistics LXI (3), 431–456.

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society 39,

1–38, series B.

Diebold, F. X., Gunther, T. A., Tay, A. S., 1998. Evaluating density forecasts with

applications to financial risk management. International Economic Review 39 (4),

863–883.

24



Easley, D., Kiefer, N., O’Hara, M., Paperman, J. P., 1996. Liquidity, information

and infrequently traded stocks. Journal of Finance 51 (4), 1405–1436.

Engle, R. F., Russell, J. R., 1997. Forecasting the frequency of changes in quoted for-

eign exchange prices with the autoregressive conditional duration model. Journal

of Empirical Finance 4 (2-3), 187–212.

Engle, R. F., Russell, J. R., 1998. Autoregressive conditional duration: A new model

for irregulary spaced transaction data. Econometrica 66 (5), 1127–1162.

Eubank, R. L., Speckman, P., 1990. Curve fitting by polynomial-trigometric regres-

sion. Biometrica 77 (1), 1–9.

Gallant, A. R., 1981. On the bias in flexible functional forms and an essentially

unbiased form. Journal of Econometrics 20 (2), 285–323.

Ghysels, E., Gouriéroux, C., Jasiak, J., 2004. Stochastic volatility duration models.

Journal of Econometrics 119, 413–433.

Grammig, J., Hujer, R., Kokot, S., Maurer, K. O., 1998. Modeling the Deutsche

Telekom IPO using a new ACD specification - An application of the Burr-ACD

model using high frequency IBIS data. Discussion Paper 55, Sonderforschungs-

bereich 373, Humboldt Universität zu Berlin.

Hamilton, J. D., 1989. A new approach to the economic analysis of nonstationary

time series and the business cycle. Econometrica 57 (2), 357–384.

Hamilton, J. D., 1994. Time Series Analysis. Princeton University Press, Princeton,

New Jersey.
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Tables

Table 1
Descriptive statistics

Duration Subsample
Statistic x̃n xn In Out

Mean 14.630 1.000 0.930 1.082
Standard dev. 18.398 1.198 1.124 1.273
Overdispersion 23.137 1.434 1.359 1.498
Minimum 0.333 0.017 0.017 0.018
First quartile 3.000 0.194 0.175 0.212
Median 8.000 0.563 0.512 0.631
Third quartile 19.000 1.350 1.233 1.467
Maximum 231.000 13.806 11.594 13.806
Interquartile range 16.000 1.156 1.057 1.255
Number of obs. 31802 31802 17083 14719

Table 2
Number of observations and tests for autocorrelation

In - sample Out - sample
Day Nob. Date Nob. Date

Mo 1605 Mar, 1 1365 Mar, 15
Tu 1902 Mar, 2 1804 Mar, 16
We 1543 Mar, 3 1428 Mar, 17
Th 1394 Mar, 4 1586 Mar, 18
Fr 1418 Mar, 5 1525 Mar, 19

Mo 1936 Mar, 8 1609 Mar, 22
Tu 1860 Mar, 9 1229 Mar, 23
We 1930 Mar, 10 1594 Mar, 24
Th 1873 Mar, 11 1357 Mar, 25
Fr 1622 Mar, 12 1222 Mar, 26

Raw durations Adj. durations
Lag LB-test pLB Lag LB-test pLB

`L 1222 14553.15 0.00 1222 4672.23 0.00
`M 1590 18626.49 0.00 1590 5148.69 0.00
`H 1936 21001.65 0.00 1936 5570.52 0.00

In - sample (adj.) Out - sample (adj.)
Lag LB-test pLB Lag LB-test pLB

`L 1394 2174.36 0.00 1222 1886.41 0.00
`M 1708 2526.00 0.00 1471 2151.69 0.00
`H 1936 2802.78 0.00 1804 2516.89 0.00
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Table 3. Estimation results for two-regime specifications of the SMACD model

{E, E} {E, B} {B,B}

Variant R Variant R Variant R Variant R Variant R
Coeff. Est Stderr Est Stderr Est Stderr Est Stderr Est Stderr

ω 0.003 0.001 0.013 0.004 0.008 0.002 0.015 0.005 0.007 0.002
α 0.007 0.001 0.009 0.002 0.007 0.001 0.011 0.002 0.006 0.001
β 0.990 0.002 0.981 0.004 0.986 0.003 0.979 0.005 0.988 0.002

λ(1) 0.754 0.010 0.912 0.019

µ(1) 0.963 0.031

κ(1) 1.294 0.015 1.303 0.015

κ(2) 6.073 0.735 5.968 0.690 4.504 0.315 4.303 0.303

σ(1) 0.284 0.021 0.294 0.021

σ(2) 5.747 0.701 5.446 0.617 4.269 0.303 3.745 0.292

π(1) 0.671 0.016 0.769 0.009 0.771 0.009 0.718 0.010 0.723 0.010

]θ 5 6 7 8 9
N 15801 15801 15801 15801 15801
LI -14101.700 -13559.100 -13557.000 -13455.000 -13448.400
BIC 28251.800 27176.360 27181.740 26987.530 26983.870

Variant R Variant R Variant R Variant R Variant R
Integral Tr. Test p-value Test p-value Test p-value Test p-value Test p-value

Mean 0.500 0.873 0.504 0.110 0.504 0.104 0.500 0.815 0.500 0.907
Stand. dev. 0.286 0.055 0.280 0.000 0.280 0.000 0.287 0.438 0.287 0.417
First quart. 4.680 0.000 -6.490 0.000 -6.619 0.000 -2.338 0.019 -2.742 0.006

Median 0.485 0.628 1.599 0.110 1.679 0.093 3.874 0.000 3.922 0.000

Third quart. -0.253 0.801 2.632 0.009 2.577 0.010 0.188 0.851 0.097 0.923

RTζ , K = 10 352.486 0.000 154.241 0.000 160.569 0.000 141.699 0.000 161.808 0.000
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Table 4. Estimation results for three-regime specifications of the SMACD model

{E, E, B} {E, B,B} {B,B,B}

Variant R Variant R Variant R Variant R Variant R Variant R
Coeff. Est Stderr Est Stderr Est Stderr Est Stderr Est Stderr Est Stderr

ω 0.008 0.002 0.008 0.002 0.007 0.002 0.008 0.002 0.008 0.002 0.007 0.001
α1 0.007 0.001 0.007 0.001 0.006 0.001 0.006 0.001 0.006 0.001 0.005 0.001
β1 0.986 0.003 0.986 0.003 0.987 0.002 0.986 0.003 0.987 0.002 0.988 0.002

λ(1) 1.119 0.080 0.650 0.011 0.680 0.027

λ(2) 0.702 0.056 0.772 0.046

µ(1) 5.378 1.311

µ(2) 2.096 0.927 0.611 0.059 0.459 0.037

κ(1) 2.659 0.247 2.040 0.086

κ(2) 1.494 0.036 1.670 0.181 1.417 0.020 1.540 0.026

κ(3) 6.394 0.809 6.567 0.901 4.819 0.318 5.427 0.676 4.249 0.227 4.444 0.204

σ(1) 1.914 0.295 0.814 0.082

σ(2) 0.456 0.056 0.592 0.168 0.166 0.045 0.232 0.032

σ(3) 5.757 0.694 5.943 0.779 3.947 0.270 4.316 0.419 3.039 0.160 3.137 0.157

π(1) 0.574 0.057 0.373 0.106 0.297 0.019 0.449 0.103 0.280 0.037 0.320 0.026

π(2) 0.207 0.053 0.411 0.105 0.457 0.018 0.331 0.082 0.465 0.048 0.446 0.031

J= 1 2 1
]θ 8 9 10 11 12 13
N 15801 15801 15801 15801 15801 15801
LI -13554.100 -13553.600 -13436.400 -13433.400 -13358.400 -13324.300
BIC 27185.550 27194.380 26969.480 26973.250 26832.900 26774.400

Variant R Variant R Variant R Variant R Variant R Variant R
Integral Tr. Test p-value Test p-value Test p-value Test p-value Test p-value Test p-value

Mean 0.505 0.043 0.505 0.032 0.503 0.178 0.505 0.033 0.500 0.898 0.500 0.995
Stand. dev. 0.280 0.000 0.280 0.000 0.288 0.620 0.287 0.432 0.287 0.447 0.288 0.775
First quart. -6.343 0.000 -6.380 0.000 -2.375 0.018 -1.750 0.080 -0.152 0.880 0.381 0.703
Median 1.376 0.169 1.058 0.290 1.710 0.087 -0.199 0.842 -0.581 0.561 -0.676 0.499
Third quart. 2.026 0.043 1.750 0.080 -2.457 0.014 -2.751 0.006 1.364 0.173 1.309 0.191

RTζ , K = 10 148.823 0.000 142.695 0.000 107.953 0.000 77.424 0.000 55.411 0.000 52.463 0.000
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Table 5. Estimation results for static specifications of the MSACD model

2-regime 3-regime

{E.B} {B,B} {E, B,B} {B,B,B}
Coeff. Est Stderr Est Stderr Est Stderr Est Stderr

ω 0.014 0.004 0.019 0.006 0.011 0.003 0.033 0.010
α 0.011 0.002 0.013 0.003 0.008 0.002 0.018 0.003
β 0.979 0.005 0.974 0.006 0.984 0.003 0.962 0.009

κ(1) 1.298 0.027 1.323 0.038

κ(2) 5.634 0.461 4.449 0.259 5.133 0.333 4.793 0.252

κ(3) 1.366 0.046 2.658 0.235

σ(1) 0.290 0.028 0.176 0.034

σ(2) 5.331 0.440 4.217 0.249 4.870 0.319 4.589 0.243

σ(3) 0.414 0.055 2.175 0.213

p11 0.724 0.011 0.673 0.013 0.483 0.032 0.569 0.025
p12 0.904 0.019 0.832 0.019 0.679 0.044 0.706 0.038
p13 0.000 - 0.263 0.056
p21 0.517 0.032 0.358 0.018
p22 0.137 0.017 0.194 0.021
p23 0.107 0.018 0.072 0.050

]θ 7 9 13 15
N 15801 15801 15801 15801
LI -13537.500 -13428.100 -13372.600 -13346.600
BIC 27142.870 26943.340 26870.980 26838.400

{E, B} {B,B} {E, B,B} {B,B,B}
Integral Tr. Test p-value Test p-value Test p-value Test p-value

Mean 0.504 0.103 0.499 0.733 0.500 0.880 0.498 0.425
Stand. dev. 0.280 0.000 0.288 0.511 0.286 0.154 0.287 0.453
First quart. -6.931 0.000 -2.650 0.008 -2.411 0.016 0.345 0.731
Median 1.440 0.150 3.667 0.000 2.872 0.004 0.979 0.328
Third quart. 2.981 0.003 0.409 0.683 0.097 0.923 1.603 0.109

RTζ . K = 10 124.906 0.000 100.951 0.000 64.357 0.000 16.422 0.059
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Table 6
Out-sample performance of the SMACD model

2-regime 3-regime

Semirestrictive {E, E, B}

First week Second week
Test p-value Test p-value

Mean 0,522 0,000 0,520 0,000
Stand. Dev. 0,281 0,001 0,289 0,848
1-st quart. -8,277 0,000 -5,734 0,000
Median -4,439 0,000 -3,377 0,001
3-rd quart. -2,494 0,013 -4,539 0,000

RT , K = 10 102,273 0,000 89,793 0,000

N 7100 6441
MSE 1,441 1,812
MAE 0,858 0,953

Nonrestrictive {E, E} Nonrestrictive {E, E, B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,512 0,000 0,509 0,016 0,522 0,000 0,521 0,000
Stand. Dev. 0,285 0,130 0,293 0,124 0,281 0,001 0,289 0,845
1-st quart. -0,713 0,476 2,842 0,005 -8,277 0,000 -5,705 0,000
Median -3,632 0,000 -1,782 0,075 -4,676 0,000 -3,427 0,001
3-rd quart. -2,412 0,016 -3,619 0,000 -2,741 0,006 -4,597 0,000

RT , K = 10 87,045 0,000 59,102 0,000 101,012 0,000 89,830 0,000

N 7100 6441 7100 6441
MSE 1,441 1,813 1,441 1,812
MAE 0,846 0,946 0,860 0,954

Restrictive {E, B} Semirestrictive {E, B,B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,522 0,000 0,520 0,000 0,521 0,000 0,519 0,000
Stand. Dev. 0,281 0,001 0,289 0,828 0,288 0,879 0,296 0,003
1-st quart. -8,387 0,000 -5,849 0,000 -6,222 0,000 -3,288 0,001
Median -4,510 0,000 -3,302 0,001 -3,893 0,000 -2,878 0,004
3-rd quart. -2,412 0,016 -4,453 0,000 -5,180 0,000 -6,899 0,000

RT , K = 10 105,181 0,000 91,499 0,000 94,768 0,000 98,075 0,000

N 7100 6441 7100 6441
MSE 1,459 1,820 1,442 1,815
MAE 0,900 0,990 0,846 0,944

Nonrestrictive {E, B} Nonrestrictive {E, B,B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,521 0,000 0,519 0,000 0,523 0,000 0,519 0,000
Stand. Dev. 0,280 0,001 0,289 0,925 0,288 0,713 0,296 0,003
1-st quart. -8,332 0,000 -5,877 0,000 -6,057 0,000 -3,288 0,001
Median -4,154 0,000 -3,028 0,003 -5,934 0,000 -3,277 0,001
3-rd quart. -1,891 0,059 -3,964 0,000 -5,783 0,000 -7,187 0,000

RT , K = 10 109,798 0,000 90,759 0,000 98,763 0,000 95,661 0,000

N 7100 6441 7100 6441
MSE 1,443 1,811 1,443 1,815
MAE 0,866 0,959 0,842 0,943

Restrictive {B,B} Semirestrictive {B,B,B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,518 0,000 0,517 0,000 0,518 0,000 0,516 0,000
Stand. Dev. 0,288 0,813 0,296 0,003 0,288 0,702 0,296 0,005
1-st quart. -6,359 0,000 -4,122 0,000 -4,879 0,000 -1,734 0,083
Median -3,086 0,002 -2,181 0,029 -6,029 0,000 -4,349 0,000
3-rd quart. -4,111 0,000 -5,892 0,000 -2,905 0,004 -4,885 0,000

RT , K = 10 90,922 0,000 103,042 0,000 78,013 0,000 58,434 0,000

N 7100 6441 7100 6441
MSE 1,483 1,839 1,442 1,811
MAE 0,928 1,018 0,861 0,958

Nonrestrictive {B,B} Nonrestrictive {B,B,B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,516 0,000 0,515 0,000 0,517 0,000 0,516 0,000
Stand. Dev. 0,288 0,713 0,296 0,004 0,288 0,926 0,296 0,002
1-st quart. -6,276 0,000 -3,489 0,001 -4,550 0,000 -1,360 0,174
Median -2,231 0,026 -1,782 0,075 -6,053 0,000 -4,847 0,000
3-rd quart. -3,700 0,000 -5,345 0,000 -2,933 0,003 -4,741 0,000

RT , K = 10 93,302 0,000 98,715 0,000 76,339 0,000 61,348 0,000

N 7100 6441 7100 6441
MSE 1,441 1,811 1,444 1,820
MAE 0,860 0,954 0,839 0,935
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Table 7
Out-sample performance of the MSACD model

2-regime 3-regime

{E,B} {E, B,B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,523 0,000 0,521 0,000 0,517 0,000 0,517 0,000
Stand. Dev. 0,280 0,001 0,289 0,912 0,288 0,865 0,296 0,004
1-st quart. -8,798 0,000 -4,957 0,000 -4,851 0,000 -2,511 0,012
Median -4,771 0,000 -3,427 0,001 -3,299 0,001 -2,629 0,009
3-rd quart. -2,330 0,020 -4,309 0,000 -4,358 0,000 -5,806 0,000

RT , K = 10 99,440 0,000 76,975 0,000 40,327 0,000 75,998 0,000

N 7100 6441 7100 6441
MSE 1,460 1,820 1,472 1,830
MAE 0,902 0,992 0,916 1,007

{B,B} {B,B,B}

First week Second week First week Second week
Test p-value Test p-value Test p-value Test p-value

Mean 0,519 0,000 0,518 0,000 0,520 0,000 0,520 0,000
Stand. Dev. 0,288 0,842 0,296 0,003 0,288 0,653 0,296 0,007
1-st quart. -6,139 0,000 -3,604 0,000 -5,290 0,000 -2,885 0,004
Median -3,442 0,001 -2,505 0,012 -5,744 0,000 -4,249 0,000
3-rd quart. -4,467 0,000 -5,978 0,000 -3,590 0,000 -5,662 0,000

RT , K = 10 83,373 0,000 104,791 0,000 45,031 0,000 62,571 0,000

N 7100 6441 7100 6441
MSE 1,484 1,838 1,554 1,889
MAE 0,929 1,018 0,987 1,065
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Table 8
Testing parameter equalities for the {B,B,B} specification

Null hypothesis Regime (combinations)

(i, j) = (1, 2) (i, j) = (1, 3) (i, j) = (2, 3)
Linear equality W -test p-value W -test p-value W -test p-value

Semirestrictive SMACD model

H0 : κ(i) = κ(j) 25.922 0.000 50.650 0.000 151.904 0.000

H0 : σ(i) = σ(j) 45.367 0.000 18.544 0.000 388.828 0.000

H0 : πi = πj 4.794 0.029

Nonrestrictive SMACD model

H0 : κ(i) = κ(j) 32.140 0.000 142.654 0.000 186.834 0.000

H0 : σ(i) = σ(j) 83.133 0.000 188.367 0.000 334.562 0.000

H0 : πi = πj 5.033 0.025

MSACD model

H0 : κ(i) = κ(j) 171.393 0.000 33.712 0.000 33.354 0.000

H0 : σ(i) = σ(j) 314.271 0.000 92.911 0.000 50.759 0.000

H0 : p2i = p2j 11.940 0.001 18.365 0.000 41.164 0.000
H0 : p1i = p1j 60.464 0.000 26.686 0.000 4.221 0.040

j = 1 j = 2 j = 3
Linear inequality t-test p-value t-test p-value t-test p-value

Semirestrictive SMACD model

H0 : κ(j) < 1 6.717 0.000 20.850 0.000 14.313 0.000

Nonrestrictive SMACD model

H0 : κ(j) < 1 12.093 0.000 20.769 0.000 16.882 0.000

MSACD model

H0 : κ(j) < 1 8.500 0.000 15.052 0.000 7.055 0.000

Table 9
Regime characteristics for the {B,B,B} specification

Regime
j = 1 j = 2 j = 3

Semirestrictive SMACD model

π(j) 0.280 0.465 0.255

E

(

εn|sn = j; θ̂

)

1.000 1.434 0.211

Nonrestrictive SMACD model

π(j) 0.320 0.446 0.234

E

(

εn|sn = j; θ̂

)

0.585 1.711 0.215

MSACD model

πj 0.545 0.259 0.196

E

(

εn|sn = j; θ̂

)

1.000 1.000 1.000
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Figures

Fig. 1. Autocorrelation function for durations

Raw durations x̃n Adjusted durations xn
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Fig. 2. QQ -plots and histograms for integral transforms implied by the {B,B,B}
specification

Semirestrictive SMACD model

Nonrestrictive SMACD model

MSACD model
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Fig. 3. QQ -plots and histograms for integral transforms implied by an assortment
of two-regime specifications

{E, E} specification of the nonrestrictive SMACD model

{B,B} specification of the restrictive SMACD model

{B,B} specification of the nonrestrictive SMACD model

{B,B} specification of the MSACD model
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Fig. 4. Analysis of the {B,B,B} specification

Semirestrictive SMACD model

Nonrestrictive SMACD model

MSACD model
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Fig. 5. Regime identification of the {B,B,B} specification
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