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Abstract

Empirical evidence suggests that asset returns correlate more strongly

in bear markets than conventional correlation estimates imply. We pro-

pose a method for determining complete tail–correlation matrices based on

Value–at–Risk (VaR) estimates. We demonstrate how to obtain more ef-

ficient tail–correlation estimates by use of overidentification strategies and

how to guarantee positive semidefiniteness, a property required for valid

risk aggregation and Markowitz–type portfolio optimization. An empirical

application to a 30–asset universe illustrates the practical applicability and

relevance of the approach in portfolio management.
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1 Introduction

The correlation between financial assets plays also a central role in applied and

theoretical finance. A frequent concern is that correlations increase during periods

of high market stress.1 As a consequence, portfolio strategies, risk–management

practices and regulation focus increasingly on tail–risk, such as the Value–at–Risk

(VaR), and tail–dependence measures. Tail correlations play, for example, a central

role in the proposed European Solvency II regulation for the insurance industry

(European Commission, 2007). The Standard Formula, determining insurers’ risk–

capital requirements, is based on a VaR measure at the 99.5% confidence level and

requires that correlations for aggregating risk components should be specified for

that tail area.

To derive correlation estimates that are compatible with VaR–type risk mea-

sures, Campbell et al. (2002) proposed a VaR–implied correlation estimator, which

measures correlational dependence in the VaR–specific tail area of the distribution.

Given the VaR estimates for two assets and that of a portfolio built from these

two assets (all for the same VaR–confidence level), they derive the correlation

coefficient associated with the particular VaR confidence level. To obtain an esti-

mate of the complete VaR–implied tail–correlation matrix for an n–asset universe,

coefficient estimates are derived—pair by pair—for each of the n(n − 1)/2 asset

pairs.

This pairwise approach has several drawbacks. In case of n assets, relying

exclusively on n(n − 1)/2 two–asset portfolios ignores correlational information

contained in multi–asset portfolio–VaRs and is inefficient. More importantly, pair-

wise derivation does not guarantee that VaR–implied correlations give rise to a

proper correlation matrix, as the estimates may lie outside the [−1,+1]–interval.

Even if there is no interval violation, the resulting matrix may not be positive

semidefinite—a requirement for valid risk aggregation and mean–variance portfo-

lio optimization. Whereas interval violations can be fixed via truncation, there is

no obvious strategy for imposing positive semidefiniteness when estimating tail–

correlation matrices element–by–element.

1Studies supporting this hypothesis are, for example, Erb et al. (1994), Longin and Solnik

(1995), Karolyi and Stulz (1996), Silvapulle and Granger (2001), Longin and Solnik (2001), Ang

and Bekaert (2002), Ang and Chen (2002), Butler and Joaquin (2002), Bae et al. (2003), Das

and Uppal (2004), Hong et al. (2007), Okimoto (2008), and Haas and Mittnik (2009). Possible

explanations are that returns follow non–normal, fat–tailed and asymmetric distributions, so

that linear correlation varies across the support of the distribution (Campbell et al., 2008), or

that dependence structures are state–dependent (Ang and Chen (2002), Haas et al. (2004), Haas

and Mittnik (2009)).
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In the following, we summarize the pairwise approach for deriving VaR–implied

correlations and outline the new method, discussing exactly and overidentified

as well as constrained variants. We present the results of a Monte Carlo study

comparing the properties of alternative strategies. A empirical application to the

30–asset universe of DAX stocks illustrates the practical feasibility and relevance of

the proposed method for measuring complex dependence structures and portfolio

management.

2 Pairwise Approach

Let r1 and r2 denote the returns of two assets and rp = w1r1 + w2r2 the return

of a portfolio with weights w1 and w2, w1 + w2 = 1. Moreover, let σ2
i and qα,i,

i = 1, 2, p, respectively, denote the corresponding return variance and α–quantile,

i.e., the (negative) VaR at confidence level 100× (1− α)%. If r1 and r2 follow an

elliptical distribution,2 we have

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ12. (1)

Assuming, for simplicity sake, that return expectations are zero or that the return

data have been de-meaned, then qα,i = ξασi, i = 1, 2, p, where ξα denotes the

α–quantile of the standardized marginal distribution. Substituting, in (1), σi =

qα,i/ξα and multiplying both sides by ξ2α gives

q2α,p = w2
1q

2
α,1 + w2

2q
2
α,2 + 2w1w2qα,1qα,2ρ12. (2)

Campbell et al. (2002) and also Cotter and Longin (2007) use (2) to solve for the

VaR–implied correlation via3

ρα,12 =
q2α,p − w2

1q
2
α,1 − w2

2q
2
α,2

2w1w2qα,1qα,2
. (3)

For elliptical distributions, ρα,12 will be invariant with respect to weights and

confidence levels. Otherwise, VaR–implied correlations may vary as weights or con-

fidence levels change. In this case, an estimate derived for a specific weight/confidence–

level combination can be viewed as a local elliptical, i.e., correlational, approxima-

tion.

2The multivariate normal and Student’s t distributions are prominent members of the elliptical

family. For details on elliptical distributions, see, for example, Cambanis et al. (1981).
3It is evident from (3) that the estimator only works for α–quantiles away from the cen-

ter. Otherwise, qα,1 and qα,2 will be close to zero, so that the ratio becomes unstable or even

undefined.
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Drawbacks of estimator (3) are that it does not guarantee that ρα,12 satisfies the

interval constraint |ρα,12| ≤ 1 and that the resulting correlation matrix may fail to

be positive semidefinite (PSD). This may be due to VaR not being a coherent risk

measure, in the sense of Artzner et al. (1999), potentially lacking subadditivity in

the presence of non–elliptical distributions.

As the simulation results below will show, even if the data are drawn from an

elliptical distribution, finite–sample variation may easily cause interval violations.

In this situation, a truncated version of (3) can be applied, i.e.,4

ρα,12 =


+1, if qα,p > w1qα,1 + w2qα,2

−1, if qα,p 6 |w1qα,1 − w2qα,2|
q2α,p − w2

1q
2
α,1 − w2

2q
2
α,2

2w1w2qα,1qα,2
, otherwise.

(4)

Being highly susceptible to interval and PSD violations, the practical usefulness

of the pairwise estimation is limited. The approach proposed next tackles these

deficits by jointly estimating all correlation–matrix elements. It allows to reduce

sampling variation and, with that, the frequency and severity of violations by

means of overidentification. Although the joint approach will reduce violations, it

will not necessarily eliminate them. Strategies to do so will be presented.

3 Joint Estimation

3.1 The Approach

Given an n–asset portfolio with weights wi, i = 1, . . . , n,
∑n

i=1wi = 1, denote the

α–quantile of asset i, dropping subscript α, simply by qi. Then, the α–quantile,

qp, of the portfolio return satisfies

q2p =
n∑
i=1

n∑
j=1

wiwjqiqjρij, (5)

with ρii = 1, i = 1, . . . , n. Different from the two–asset case, where we can

uniquely derive ρij from qi, qj and qp, (5) does not allow unique determination

of the correlation parameters, as there are altogether n(n − 1)/2 unknown corre-

lation coefficients. Relationship (5) holds, however, for any hypothetical weight

vector, for which we can empirically derive the corresponding portfolio returns and

quantiles.

4Condition qα,p > w1qα,1 +w2qα,2 in (4) implies superadditivity in the sense of Artzner et al.

(1999). Analogously, condition qα,p 6 |w1qα,1 − w2qα,2| may be referred to as “supersubtractiv-

ity.”
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Let R be the n × n tail–correlation matrix, q = (q1, . . . , qn)′ the n × 1 vector

of asset quantiles, and w = (w1, . . . , wn)′ the vector of weights. Then, (5) can be

written as

q2p = (q �w)′R (q �w) , (6)

where � denotes the Schur product.5 Relationship (6) is linear in R, so that,

given n(n−1)/2 linearly independent analogues, we can uniquely solve for as many

unknowns. To set up the system of equations, we bring all ρii = 1, i = 1, . . . , n,

to the left, i.e.,

q̃p = q2p −
n∑
i=1

q2iw
2
i = (q �w)′(R− I)(q �w). (7)

Quantity q̃p = q2p−
∑n

i=1 q
2
iw

2
i represents the (squared) “correlational excess VaR;”

i.e., if, for given weights, the correlation structure is such that positive (negative)

correlations “outweigh” the negative (positive) ones, q̃p will be positive (negative).

If returns are uncorrelated, q̃p = 0.

Let “vecl” denote the vectorization operator, which stacks all elements below

the main diagonal of a square matrix into a column vector.6 There exists a unique

duplication matrix, D, of dimension n2×n(n−1)/2 whose entries consist of zeros

and ones, such that vec(R−I) = Dvecl(R−I) = Dvecl(R), where “vec” denotes

the conventional vectorization operator. Then, using vec(ABC) = (C ′ ⊗ A)

vec(B), with ⊗ denoting the Kronecker product, (7) can be rewritten as

q̃p = [(q �w)′ ⊗ (q �w)′] vec(R− I) = [(q �w)′ ⊗ (q �w)′]Dρ, (8)

where the n(n− 1)/2× 1 vector ρ = vecl(R) collects all unique correlations in R.

3.2 Exact Identification

To construct an exactly–identified system of equations, n(n − 1)/2 linearly in-

dependent equations of type (8) are required. They can be established by ap-

plying the pairwise approach (3) to each of the n(n − 1)/2 (i, j)–pairs. Con-

sidering, for example, all equal–weight, two–asset portfolios (k = 2) in a four–

asset universe (n = 4), the pairwise approach delivers the necessary number of

m2 =
(
n
k

)
= n!/(k! (n− k)!) = 6 weight vectors wi, i = 1, . . . , 6, shown in Table 1.

5I.e., if m × n matrices A and B have typical elements aij and bij , respectively, the m × n
matrix C = A�B = B �A has typical element cij = aijbij .

6The “vecl” operator is similar to the more familiar “vech” operator but omits the diagonal

elements.
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Table 1: Possible weight vectors for two–, three– and four–asset portfolios with

equal weights in a four–asset universe.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

w1· 1/2 1/2 1/2 0 0 0 1/3 1/3 1/3 0 1/4

w2· 1/2 0 0 1/2 1/2 0 1/3 1/3 0 1/3 1/4

w3· 0 1/2 0 1/2 0 1/2 1/3 0 1/3 1/3 1/4

w4· 0 0 1/2 0 1/2 1/2 0 1/3 1/3 1/3 1/4

Let q̃pi denote the excess VaR of portfolio pi associated with weight vector wi,

i.e.,

q̃pi =
[
(q �wi)

′ ⊗ (q �wi)
′]Dρ, (9)

and consider portfolios pi, i = 1, . . . ,m, m = n(n−1)/2. Defining q̃ = (q̃p1 , . . . , q̃pm)′

and the m × n2 matrix Z =
[
1m (q ⊗ q)′

]
� (w1 ⊗w1, . . . ,wm ⊗wm)′, with 1m

being an m × 1 vector of ones, the n(n − 1)/2 equations take the matrix form

q̃ = Xρ with X = ZD. For linearly independent weight vectors, X is a non-

singular square matrix, so that the vector of VaR–implied correlation estimates is

obtained by

ρ = X−1q̃. (10)

Note that the exactly–identified joint estimator, based only on two–asset portfo-

lios, is equivalent to the pairwise estimator (3). Expression (10) provides, however,

a compact joint expression for all correlation coefficients in R.

3.3 Overidentification

VaR estimates from portfolios consisting of more assets than just i and j also con-

vey information about ρij and may help to gain estimation efficiency. Overdeter-

mined systems use more information than exactly–identified ones by taking more

risk “measurements” based on additional, linearly independent weight vectors.

Considering, again, a universe of n = 4 assets and, for example, all equal–

weight, three–asset portfolios (k = 3), we can construct the m3 =
(
4
3

)
= 4 weight

vectors w7 through w10 in listed Table 1. Finally, we can construct one (m4 = 1)

additional equal–weight vector, w11, from all four assets. Thus, in a four–asset

universe, confining ourselves to equal–weight subset–portfolios, we can specify an

overdetermined system of altogether m2:4 = m2 + m3 + m4 = 11 equations to

derive the six unknowns. In the general n–asset case, we can construct m2:n =∑n
k=2

(
n
k

)
= 2n − n− 1 different two– to n–asset portfolios with equal weights, to
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solve for the n(n− 1)/2 unknowns.7

In an overdetermined system with m > n(n− 1)/2 equations, (9) will hold only

approximately, so that q̃ = Xρ + u, where vector u captures the approximation

errors. Then, the least–squares estimator of ρ is given by

ρ̂ = (X ′X)
−1
X ′q̃. (11)

Instead of equal–weight portfolios, which maximize the “degree of orthogonal-

ity” (i.e., minimize w′iwj), the choice of weights may be motivated by practical

consideration. Fund managers, for example, are typically restricted in their asset

allocation.8 Then, it is desirable to obtain good correlation estimates for weights

from the permissable region. Clearly, a good fit in regions, where a fund manager

is not allowed to operate, is of little use.

3.4 Constrained Estimation

Joint estimation via (10) or (11) does not guarantee that interval restriction |ρ̂ij| ≤
1 holds nor that the fitted correlation matrix is PSD. In this section, we discuss

two strategies to overcome this: a direct approach and a two–step procedure.

As in the pairwise approach, the interval restriction can be achieved via trun-

cation. To do so, view the joint estimation as a constrained quadratic programing

problem, minimizing u′u = q̃′q̃ + ρ′X ′Xρ − 2q̃′Xρ, with inequality constraints

|ρ| ≤ 1n(n−1) being imposed. To also guarantee PSDness, a further constraint

needs to be imposed. Because the correlation matrix is a symmetric, real matrix,

PSDness requires all eigenvalues of R(ρ), collected in (n× 1) vector λ, to be non-

negative. Then, to directly estimate tail–correlations matrices satisfying interval

and PSD constraints, solve

min
ρ

1

2
ρ′X ′Xρ− q̃′Xρ, subject to: |ρ| ≤ 1n(n−1)/2 and λ ≥ 0. (12)

If strict positive definiteness is required, we specify the last inequality in (12) as

λ ≥ ε1n(n−1)/2 > 0, with ε chosen such that R is “reasonably” well–conditioned

to guarantee, for example, stable inversion.

As n grows, direct constrained estimation via (12) becomes impractical, since

the number of unknowns, n(n − 1)/2, quickly becomes too large for iterative nu-

merical optimization. A two–step strategy, based on the spectral decomposition

of R(ρ), i.e.,

R(ρ̂) = UΛU ′, (13)

7For large n, m2:n becomes too large, so that one may set up m equations with m < m2:n.
8E.g., fund managers may be limited to holding no more than a certain percentage of a specific

asset type, or have to track a specific benchmark and, thus, to approximately follow its weights.
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Table 2: Overview of the estimators investigated in the Monte Carlo study.

Label Method Estimator Constraints Weight vectors

Pair/J2:2NC pairwise (3)/(10) unconstrained w1–w6

Pair/J2:22S joint (3)/(10)+(15) |ρij| ≤ 1 & PSD w1–w6

J2:3NC joint (11) unconstrained w1–w10

J2:32S joint (11)+(15) |ρij| ≤ 1 & PSD w1–w10

J2:4NC joint (11) unconstrained w1–w11

J2:42S joint (11)+(15) |ρij| ≤ 1 & PSD w1–w11

circumvents this drawback. In (13), the n× n diagonal matrix Λ, with λ1 ≥ λ2 ≥
· · · ≥ λn, contains the eigenvalues and matrix U the eigenvectors of R(ρ). If R(ρ)

is not PSD, one or more of the eigenvalues are negative. Driessel (2007) shows

that by replacing Λ with Λ̃, which matches Λ but has all negative eigenvalues set

to zero,9 we obtain a PSD approximation of the non–PSD matrix R(ρ̂),10 say

R̃ = UΛ̃U ′, (14)

that is best in terms of the Frobenius norm, ‖ · ‖F , and spectral norm ‖ · ‖S, i.e.,

‖R− R̃‖2F = trace((R− R̃)2) and ‖R− R̃‖2S = λmax((R− R̃)2).

In general, approximation R̃ will not be a proper correlation matrix, as the

diagonal elements will not be exactly one, and needs to be rescaled. Then, the

two–step joint estimator is given by

R2S = S̃R̃S̃, (15)

where the diagonal scaling matrix S̃ contains the reciprocal square roots of the

diagonal elements of R̃.

Exactly–identified joint estimators, Pair/J2:2, use only two–asset portfolios, i.e.,

w1 through w6 in Table 1. The overidentified versions, J2:3 and J2:4, make use of

weight vectors w1 through w10 and w1 through w11, respectively. Also for the

overidentified joint estimators, we investigate unconstrained (labeled “NC”) and

constrained two–step versions (labeled “2S”).

9As with the direct estimator, setting the negative eigenvalues to zero will produce a

semidefinite tail–correlation matrix. The matrix will be strictly positive definite, if we set the

negative eigenvalues to some (small) positive value.
10The approximation was also suggested in Rebonato and Jäckel (2000) without, however,

discussing or proving its properties. Decomposition–based lower–rank approximations have a

long and successful tradition in state space model reduction (see Pernebo and Silverman (1982)

and Mittnik (1990)).
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Table 3: Correlations used in the Monte Carlo simulation.

DJIA DAX Brazil

DAX .9

Brazil .6 .7

Russia .4 .5 .6

Note that we do not report results for the constrained direct estimator (12),

because it did not produce better fits, measured in terms of mean squared error

(MSE), than the two–step estimator. In fact, to reach the accuracy of the two–

step estimator, a large number of iterations are typically required, so that the

computational burden can be high without gaining precision.

We simulate 10,000 samples of size 1, 000, making iid draws from the joint nor-

mal distribution N(0,R). Hence, dependence is fully described by conventional

Pearson correlations, which were estimated from monthly returns (January 2002–

July 2010) of the following stock indices: Dow Jones Industrial Average (DJIA),

German DAX, MSCI Brazil, and MSCI Russia. The (rounded) correlation esti-

mates are shown in Table 3. The Monte Carlo results for the 90%, 95%, 99%,

and 99.5% VaR–implied tail correlations are summarized in Table 4, reporting the

estimators’ bias and MSE. The columns “Int. Viol.” and “PSD Viol.” state the

percentage of cases, where the estimated correlation matrix violates interval or the

PSD condition, respectively.

The simulation results clearly demonstrate that the unconstrained pairwise esti-

mator, Pair/J2:2NC, is prone to interval violations. The violations tend to increase

as one moves into the tail and range from 6.94% of the cases (for the VaR90–implied

estimates) to 16.27% (VaR99.5). For the unconstrained overidentified estimators

J2:3NC and J2:4NC, interval–violation frequencies diminish as the degree of overi-

dentification grows. For the J2:4NC estimator, relative improvements over the

unconstrained pairwise estimator range from 15% to 35%, across all confidence

levels considered.

Regarding PSD violations, we obtain a similar picture. Their frequency ranges

from 13.72% to 30.95% for the pairwise estimator; and there are consistently fewer

PSD violations for the overidentified estimators—with relative improvements rang-

ing from 14% to 28% for J2:4NC. The results in columns “Int. Viol.” and “PSD

Viol.” in Table 4 document that the two–step estimator does, indeed, avoid PSD

violations.

With respect to accuracy, we observe that all bias statistics are extremely small,

but tend to increase as the VaR–confidence level rises. With 0.29 (after multipli-
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Table 4: Monte Carlo evaluation of interval and PSD violations and of the good-

ness of fit of tail–correlation estimates (multiplied by 100).

Estimator Int. Viol. (%) PSD Viol. (%) Bias MSE

VaR90

Pair/J2:2NC 6.94 14.08 0.06 61.93

Pair/J2:22S 0.00 0.00 -0.06 59.81

J2:3NC 4.92 10.37 0.04 54.68

J2:32S 0.00 0.00 -0.03 53.44

J2:4NC 4.75 10.21 0.04 54.52

J2:42S 0.00 0.00 -0.03 53.33

VaR95

Pair/J2:2NC 6.77 13.72 0.10 65.28

Pair/J2:22S 0.00 0.00 -0.02 63.20

J2:3NC 4.75 10.20 0.10 57.90

J2:32S 0.00 0.00 0.02 56.68

J2:4NC 4.42 9.90 0.09 57.69

J2:42S 0.00 0.00 0.02 56.53

VaR99

Pair/J2:2NC 12.38 23.96 0.13 119.71

Pair/J2:22S 0.00 0.00 -0.19 112.53

J2:3NC 9.78 20.32 0.13 107.83

J2:32S 0.00 0.00 -0.10 103.03

J2:4NC 9.66 20.28 0.15 107.59

J2:42S 0.00 0.00 -0.08 102.89

VaR99.5

Pair/J2:2NC 16.27 30.95 0.29 165.98

Pair/J2:22S 0.00 0.00 -0.20 153.37

J2:3NC 14.04 27.05 0.26 150.75

J2:32S 0.00 0.00 -0.10 141.98

J2:4NC 13.86 26.77 0.26 150.41

J2:42S 0.00 0.00 -0.10 141.87
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cation by 100), the unconstrained pairwise estimator has the largest bias reported.

With one exception, the constrained two–step estimator is always less biased than

the unconstrained one. Also for the MSEs a consistent picture arises: pairwise

approaches always perform worse; i.e., overidentification consistently improves ac-

curacy. The best results are obtained for J2:42S, the two–step estimator that uses

all weight vectors listed in Table 1 and corrects for PSD violations. This suggests

that imposing definiteness tends to improve accuracy by enforcing a form of reg-

ularization, which gives the estimates less room to stray away from “reasonable”

values.

4 Empirical Illustration

To assess the applicability of the two–step estimator to larger sets of assets, we

estimate tail–correlation matrices for the 30 stocks belonging to the German DAX

index. Using daily returns over the period March 2003 to April 2013, we estimate

left– and right–tail correlations for quantiles ranging from 1% to 25% and 75% to

99%.

With a total of 435 correlation coefficients, the degree of overidentification, as

outlined in Section 3.3, can become excessively large. We obtain, for example,

435 two–, 4,060 three– and 27,405 four–asset portfolios. Overidentification using

all possible two– through n–asset portfolios—as done in the Monto Carlo simu-

lations reported above—would produce close to 230 ≈ 109 equations. Below, we

confine ourselves to specifying only equal–weight portfolios made up of all pos-

sible two–, three– and (n − 3)–asset combinations. This amounts to a total of

8,555 (=435+4060+4060) linearly independent portfolios for determining the 435

tail–correlation coefficients.

The results for both tails are summarized in Figure 1, displaying the average of

the 435 estimated tail correlations (marked by “+”) associated with the respective

quantiles. The horizontal line at 0.444 indicates the average of the 435 Pearson

correlation estimates. The averages of the left–tail correlations start at the 25%–

quantile with 0.400, i.e., well below the Pearson average, but increases as we

move further into the loss tail, reaching 0.534 at the 1%–quantile. The right–tail

correlations behave quite differently, starting with 0.463 at the 75%–quantile and

falling monotonically to 0.349 at the 99%–quantile.

To check, we also estimate tail correlations from simulated iid draws from the

multivariate normal distribution N(0, R̂), with R̂ being the Pearson correlation

matrix estimated from the 30 stock–return series. As they should, the averages

of the tail–correlation estimates (in Figure 1 marked by “o”) are, indeed, about

10
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Figure 1: Average tail and Pearson correlation estimates for the 30 DAX stocks.

constant across both tails and very close to the Pearson value.11 This exercise

demonstrates that the correlational dependence of the DAX returns varies dis-

tinctly as we move into the tails and that it is not compatible with an elliptical

data–generating process.

The behavior of the empirical tail–correlation estimates is in line with the liter-

ature cited in Footnote 1: during severe market downturns, DAX stocks tend to be

more in sync than in sideways or upward markets. This finding does have direct

implications for portfolio construction. Assume, for example, a portfolio manager

pursues a so–called risk–parity strategy, where the portfolio weights are such that

each asset contributes the same amount of volatility to the portfolio. Then, the

weights satisfy wiσi = 1/n, i = 1, . . . , n. In this case, the portfolio variance is

simply given by σ2
p = w′Σw = 1

n2

∑n
i=1

∑n
j=1 ρij, where Σ denotes the covariance

matrix. In other words, the portfolio variance is directly related to the average

correlation, ρ̄ reported in Figure 1, since ρ̄ = 2
n(n−1)

∑n
i=2

∑i−1
j=1 ρij. The annual-

11The plotted estimates are the means from 20 replications with the sample size matching that

of the underlying stock data.
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Figure 2: Annualized portfolio volatilities based on tail– and Pearson–correlation

estimates for the 30 DAX stocks under a risk–parity strategy.

ized (i.e., multiplied by
√

252) portfolio volatilities based on the above tail– and

Pearson–correlation estimates are shown in Figure 2. The Pearson estimate for

the portfolio volatility is 10.79%, whereas, for example, the tail–correlation–based

estimate at the 1%–quantile amounts to 11.76%.

Furthermore, assume that, with a confidence level of 99%, the portfolio manager

wants to limit the annualized portfolio volatility to 10% by holding an appropriate

risk–free cash position. This can be accomplished by setting the weight of the

cash component, wcash, such that (1− wcash)σp = 10 or wcash = 1− 10/σp. Then,

regardless of the confidence level chosen, the “Pearson manager’s” cash position

would be 1−10/10.79 or 7.34%, whereas the “tail–correlation manager” would hold

more than twice as much cash, namely, 1−10/11.76 or 15.02%. This demonstrates

that tail–correlation analysis can be a valuable tool for portfolio management when

trying to control downside risk.

12



5 Concluding Remarks

We have proposed a method for jointly estimating the elements of VaR–implied

tail–correlation matrices which simply requires the solution of a system of linear

equations. Monte Carlo simulations show that overidentified versions of the es-

timator improve efficiency. Two variants, guaranteeing positive semidefiniteness

of the estimated matrix, have been presented: a direct and a two–step approach.

Both are similarly accurate, but the latter is computationally more appealing, as

it does not involve complex iterative numerical optimization. An application to 30

German DAX stocks has demonstrated that the two–step estimator is straightfor-

wardly applicable to “larger–than–textbook” asset universes. The resulting tail–

correlation estimates strongly suggest that the DAX stocks’ dependence structure

varies systematically and distinctly across left and right tails. Knowledge about

such properties is useful when pursuing, for example, downside–risk–based portfo-

lio optimization.

The conventional Pearson–correlation concept assumes that the joint distribu-

tion is elliptical. Given that any distributional assumption represents a—more

or less accurate—approximation of the true data–generating process, we do not

expect ellipticity to hold exactly in practice. In this case, VaR–implied corre-

lation estimates can be viewed as local elliptical approximations, with the loca-

tion being determined by both the VaR–confidence level and the portfolio weights

specified. If a portfolio manager needs to operate in a particular subspace of the

investment–opportunity set, the proposed estimation strategy enables the man-

ager to obtain a best local correlational approximation in that portfolio–weight

region which matters most. Similarly, in situations where assets do not adhere to

idealizing distributional assumptions and a portfolio manager pursues VaR–based

strategies for downside–risk protection, he or she can obtain correlation estimates

that are relevant for the particular VaR confidence level implied by the strategy.

Note that the computational cost for the two–step estimator is rather modest.

In the 30–asset DAX case, the estimation of a tail–correlation matrix took about

0.63 seconds (using Matlab on a laptop with an Intel i7Q740 CPU). Obtaining the

set of empirical quantiles used in Figure 1, involving altogether 8,585 (individual

and Portfolio) return series with 2,099 observation each, took about another 2

seconds. Thus, computational burden is no argument against estimating VaR–

implied tail correlation matrices.12

Throughout the analysis, we have assumed that the assets’ VaRs are constant

12Still, with about 0.073 seconds, the computation of a 30 × 30 Pearson correlation matrix

from 2,099 observations is almost ten times faster.
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over time. Dynamic extensions are currently under investigation. One strategy

is to adopt the Conditional Autoregressive Value at Risk (CAViaR) framework

suggested by Engle and Manganelli (2004), which is based on quantile regressions

and, as, for example, shown in Kuester et al. (2006), well capable of capturing

GARCH–type conditional heteroskedasticity in asset returns.
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