
Polynomial Equality Testing for Terms with
Shared Substructures

Manfred Schmidt-Schauß

Fachbereich Informatik, J.-W.-Goethe-Universität, Postfach 11 19 32,
D-60054 Frankfurt,Germany

Tel: (+49)69-798-28597, Fax: (+49)69-798-28919
schauss@ki.informatik.uni-frankfurt.de

Technical Report Frank-21
Research Group for Artificial Intelligence and Software Technology,

Institut für Informatik,
J.W.Goethe-Universität Frankfurt,

16.11.2005

Abstract. Sharing of substructures like subterms and subcontexts in
terms is a common method for space-efficient representation of terms,
which allows for example to represent exponentially large terms in poly-
nomial space, or to represent terms with iterated substructures in a com-
pact form. We present singleton tree grammars as a general formalism
for the treatment of sharing in terms. Singleton tree grammars (STG)
are recursion-free context-free tree grammars without alternatives for
non-terminals and at most unary second-order nonterminals. STGs gen-
eralize Plandowski’s singleton context free grammars to terms (trees).
We show that the test, whether two different nonterminals in an STG
generate the same term can be done in polynomial time, which implies
that the equality test of terms with shared terms and contexts, where
composition of contexts is permitted, can be done in polynomial time
in the size of the representation. This will allow polynomial-time algo-
rithms for terms exploiting sharing. We hope that this technique will
lead to improved upper complexity bounds for variants of second order
unification algorithms, in particular for variants of context unification
and bounded second order unification.

Keywords: Sharing – tree grammars – polynomial word problem

1 Introduction

Sharing of substructures is a classic and ubiquitous method for efficient space
usage in software systems. In Automated Deduction, sharing of subterms and
subcontexts in terms is a common method for space-efficient representation of

2 M. Schmidt-Schauß

terms, which allows for example to represent exponentially large terms in polyno-
mial space, or to represent terms with iterated substructures in a compact form.
An example is first-order unification [Rob65,MM82], which is known to be poly-
nomial, and where terms in a most general unifier may be exponentially large,
but can be represented in linear space using sharing of subterms. In Automated
Deduction Systems, methods like Coded Context Trees are used for compression
and indexing of terms, which exploit term sharing and context sharing, however,
without the possibility of composing contexts; see [GNN04].

A first formalization of reasoning about sharing of words was done using a
specialized form of grammars: [Pla94] introduced a grammar formalism, now
called singleton context free grammars (SCFG), which is a very convenient and
rather general formalism for representing large words– using only sharing – in a
compact form, and also for reasoning about complexity of algorithms on words
with shared subwords. The grammars are non-recursive, have exactly one rule
per non-terminal, and are Chomsky grammars, i.e. the right hand side of rules
has at most length 2. Plandowski has proved that in an SCFG, the words wA, wB

represented by two nonterminals A,B, can be compared for equality in time poly-
nomial in the size of the grammar. Usage of these grammars is called grammer
compression (also straight-line program) in literature on word-compressing algo-
rithms (see [Ryt04]). For example, ((ab)100c20)1000 is a specialized representation
of a word of length 220000, which can easily be represented (using sharing) by a
nonterminal in an SCFG of polynomial size in the size of ((ab)100c20)1000, i.e. 16.
For example, Plandowski’s theorem, resp. algorithm, can be applied to efficiently
show that ((ab)300a(ba)100b)200 = (ab)80200, after an easy encoding.

Terms, also called ranked trees, generalize words. The notions of grammars
and automata can also be generalized to terms (see e.g. [CDG+97]). In this paper
we define singleton tree grammars (STGs) as a generalization of SCFG in order
to have a general mechanism for a compressed representation of terms using
sharing. We will employ the restriction that the arity of nonterminals is 0 or
1, i.e. there are tree nonterminals, and context-nonterminals representing trees
with a single hole. STGs are recursion-free context-free tree grammars without
alternatives for non-terminals and at most unary second-order nonterminals.
The right hand sides of rules are flat (second-order) terms, i.e the size is at
most maxarity + 1, where maxarity is the maximal arity of a function symbol
occurring in the grammar. Seen from a tree grammar view, we assume that there
is only one bound variable in the term functions, and that the right hand sides
of rules contain at most one occurrence of a bound variable, i.e., they are linear
in the lambda-bound variable. In our formalism of STGs, these lambda-bound
variable are not mentioned explicitly. The terms represented by an STG may be
exponentially large and also exponentially deep.

The goal of this paper is to generalize Plandowski’s theorem to singleton tree
grammars (see Theorem 9.13), which states that the word problem for two tree
nonterminals in an STG is solvable in polynomial time. The proof is given by
generalizing Plandowski’s algorithm to terms. This generalized algorithm uses
expansion and compaction, which can also be used for STGs. The structure

Polynomial Equality Testing for Terms with Shared Substructures 3

of Plandowski’s proof and several of Plandowski’s lemmas can be transferred
to STGs, however, there are far more cases and also new notions are to be
introduced, e.g., a periodicity lemma for overlaps of a word w with its single-
point mutants has to be proved.

A planned future application of the theorem will be sharper upper complex-
ity bounds for variants of second-order such as bounded second-order unification
[SS04] and algorithms for variants of context unification [SS02,SS01]. We con-
jecture that the results are also extendible to contexts with several holes. It is
unclear whether the result can be extended if nonlinear lambda terms are allowed
in singleton tree grammars. We leave both issues for future work.

There are already methods to represent (sets of) terms in compact form us-
ing exponents: ρ-terms [CH95], I-terms [Com95], R-terms [Sal92], and primal
grammars [HG97]. However, usually these representations are intended to repre-
sent infinite sets of terms and to support unification algorithms. Usually, these
formalisms allow integer variables in terms instead of integers, which is more
general than STGs, however, I-terms and R-terms do not allow nesting of expo-
nents. The considered word problem is usually different from ours (see [HS98]).
Our result can be applied to comparing I-terms for equality if the integer ex-
ponents are already instantiated, and may be applied in an estimation of the
complexity of unification of I-terms. The result cannot be used for R-terms,
since this would require that nonlinear lambda terms are permitted in the tree
grammar formalism.

The paper is structured as follows. After recalling some basic definitions
and singleton context free tree grammars and their properties, we introduce the
singleton tree grammars in section 4 and explore some of their required properties
in section 5. In section 6 we define sets of overlap-triples as data structure and
in section 7 we define the for the algorithm WOPS solving the word problem
efficiently. In sections 8 and 9 it is shown that the algorithm correctly solves the
word problem and that it has the claimed polynomial complexity.

2 Preliminaries

Let Σ be a finite signature of function symbols. Every function symbol comes
with an arity, denoted ar(f), which is a nonnegative integer. The number
maxarity is defined to be the maximal arity of function symbols in the sig-
nature Σ. Function symbols with ar(f) = 0 are also called constant symbols. We
assume that the signature contains at least one constant symbol.
First-order terms (also called ranked trees) t are formed using the grammar
rule t ::= f(t1, . . . , tar(f)) where f is a function symbol of arity n, and ti for
i = 1, . . . , n are terms. For a constant symbol a, we write a instead of a().
Terms are denoted using lower case letters s, t. We call f the head of the term
t = f(t1, . . . , tar(f)), denoted as head(t). We will use words as tree addresses for
pointing to subterms in a term, and call them positions. With Pos(t) we denote
the set of positions of t. For p ∈ Pos(t), the subterm of t at position p is denoted
as t|p. The notation t[s]p means that t has a subterm s at position p. For words

4 M. Schmidt-Schauß

w1, w2 we write w1 ⊥ w2, iff neither w1 is a prefix of w2 nor w2 is a prefix of w1.
We write w1 ‖ w2, otherwise, i.e. iff w1 is a prefix of w2 or w2 is a prefix of w1.

A context W is a first order term over the signature extended with a 0-
ary constant, denoted [·], also called the hole, such that there is exactly one
occurrence of the hole in W . Usually, contexts are denoted as C[.], or also simply
as C. The term that results from plugging in the term t in the hole of the context
C[.] is denoted as C[t]. Similarly, we use this notation for contexts. i.e. the context
that results from C1[.] by plugging in the context C2[.] is denoted as C1[C2[.]], or
also as C1C2. The notation Cn means C . . . C︸ ︷︷ ︸

n

. Another view is that contexts are

functions on terms, e.g. C[.] is the function λx.C[x], where we will always have
the restriction that the body of the abstraction has exactly one occurrence of the
bound variable x, i.e., is a linear term in x. With mp(wC) we denote the position
of the hole in the context C[.]; this position is also called the main path of C.
The number |mpC| is also called the main depth of C. With Pos(C) we denote
the set of positions of C, excluding the position of the hole. If p ∈ Pos(C), the
subcontext of C at position p is denoted as C|p. In the case that mp(wC) is a
prefix of p, we also permit the notation C|p and define C|p := [·].

A context W can be seen as a word of length |mp(W)| by representing it as a
concatenation of |mp(wC)| contexts of main depth 1. So we can use definitions,
tools and properties for words also for contexts. A context W has a period v, if W ,
seen as a word, has the period v, i.e., there is a context W ′ with |mp(W ′)| = v,
and W is a subword of (W ′)n, for some appropriate positive integer n. This
definitions makes only sense, if v < |mp(W)|.

From [Lot83] we see that the following holds:

Lemma 2.1. If a context W has two periods v1, v2 with v1 + v2 ≤ |mp(W)|,
then W has also a period gcd(v1, v2).

Given a signature Σ of functions symbols and a set Σ(2) of unary second-order
symbols, we define also second-order terms as follows: t ::= f(t1, . . . , tn) | X(t),
where f is an n-ary function symbol from Σ, and X a second-order symbol in
Σ(2). Using the hole [.] as a constant, we can form second order terms containing
this hole. Throughout this paper, we allow only one occurrence of [.] in a second
order term. Second order terms containing a single constant [.] are also called
second order context terms.

If we speak of “terms” in the following, we always mean first order terms; if
we mean second order terms, this is mentioned explicitly.

3 Singleton Context Free Grammars

We repeat the definitions and results of Plandowski [Pla94].

3.1 Singleton Context Free Grammars and Plandowski’s Theorem

Definition 3.1. A singleton context free grammar (SCFG) is a CFG G =
(T ,N , R) where T are the terminals, N are the nonterminals with N ∩ T = ∅,

Polynomial Equality Testing for Terms with Shared Substructures 5

and R ⊆ N × (T ∪ N)∗ are the rules, such that the right hand sides of R
are words of length ≤ 2. For every nonterminal N , there is exactly one rule
in R of the form N → t. The grammar must be non-recursive. More formally,
the relation +−→ has no cycles, where +−→ is the transitive closure of the relation
→ ⊆ N ×N , where N → M iff there is a rule N → t ∈ R where M occurs in
t.

The word generated by a non-terminal N is denoted as wG,N ∈ T ∗. If the
grammar is clear from the context, we drop the suffix G. We extend the notation
wN to arbitrary words α ∈ (T ∪ N)∗ such that wε = ε, wa = a for terminals a,
and wa1...an

= wa1 . . . wan
.

Note that the start-symbol is omitted in the definition, since we are interested
in the words generated by each non-terminal.

Theorem 3.2. Given an SCFG G, and two nonterminals N1, N2. Then it is
decidable in polynomial time in the size of G, whether wN1 = wN2 .

Proof. In [Pla94].

An equivalent formulation is to have two different grammars G1, G2 and a
nonterminal Ni from Gi for i = 1, 2, and asking whether N1, N2 define the same
word.

Example 3.3. Given a language for representing words with the syntax
P ::= a | b | Pn | (P) | PP
where a, b are terminals, and n is a positive integer, it is possible to write a1000

to represent a word a . . . a︸ ︷︷ ︸
1000

. More involved examples are ab100(ab100a)15. Test-

ing equality of the represented words takes exponential time if the comparison
is done by first expanding them. A nontrivial test which should succeed is for
example whether (ab)100a = a(ba)100.
It is easy to encode this equality test in a small SCFG, such that the number
of rules is polynomial in the printed size of this equation (which is 21 for this
equation). E.g.: a1000 can be encoded along its representation as binary number
1111101000 using the rules N1 ::= a,N2 ::= N1N1, N3 ::= N2N2, . . . , N9 ::=
N8N8,M9 ::= N9M8,M8 ::= N8M7,M7 ::= N7M6,M6 ::= N6M5,M5 ::=
N5N3. The nonterminal M5 encodes a1000. After the appropriate encoding, The-
orem 3.2 assures us that equality tests are possible in polynomial time.

Definition 3.4. The size of an SCFG G is the number of its rules and denoted
as |G|.
The depth(D) of a nonterminal D is defined as:
depth(D) := 1 + max(depth(D1), depth(D2)) if the rule for D is D = D1D2.
The depth of G is the maximum of the depths of all its nonterminals.

6 M. Schmidt-Schauß

3.2 Operations on Singleton Context Free Grammars

In this section we define several operations on an SCFG G, which may be tests for
specific properties, or extending the grammar, and we also explore the complexity
of these operations.

Definition 3.5. An extension of an SCFG G = (T ,N , R) is a SCFG G′ =
(T ′,N ′, R′) with T ⊆ T ′,N ⊆ N ′, and R ⊆ R′.

An extension of an STG (T N , CN , Σ,R) is a STG G′ = (T N ′, CN ′, Σ′, R′)
with T N ⊆ T N ′, CN ⊆ CN ′, Σ ⊆ Σ′, and R ⊆ R′.

Extending the grammar during the run of an algorithm and estimating the
size increase has to be done carefully, since a polynomial size increase in every
step is in general too large.

Lemma 3.6. Given an SCFG G, a nonterminal N , and a number 0 < n <
|wN |, an extension G′ of G can be constructed in polynomial time in |G|, such
that G′ contains a nonterminal N ′ such that |N ′| = n, and wN ′ is a suffix (or
a prefix, respectively) of wN . Moreover, |G′| ≤ |G| + depth(G), depth(G′) =
depth(G).

Proof. See [LSSV04].

Lemma 3.7. Given an SCFG G, a nonterminal N , and a number n > 0, an
extension G′ of G can be constructed in polynomial time in |G| and log(n),
such that G′ contains a nonterminal N ′ and wN ′ = wN

n. Moreover, |G′| ≤
|G|+ 2 ∗ dlog(n)e, depth(G′) ≤ depth(G) + dlog(n)e.

Proof. See [LSSV04].

Lemma 3.8. Given an SCFG G, nonterminals N1, . . . , Nn, an extension G′ of
G can be constructed in polynomial time in |G| and n, such that G′ contains a
nonterminal N ′ such that wN ′ = wN1 . . . wNn . Moreover, |G′| ≤ |G| + n − 1,
depth(G′) = depth(G) + dlog(n)e.

Proof. See [LSSV04].

Lemma 3.9. Given an SCFG G and two nonterminals N1, N2, the following
tests are polynomial in |G|:
– wN1 is a prefix of wN2 .
– wN1 ⊥ wN2 .
– wN1 ‖ wN2 .

Proof. It is sufficient to prove the first claim. The other claims can be derived
immediately. As already proved in [Pla94], the computation of |wa| can be done
in polynomial time. Given N1, N2, we compute the lengths |wN1 | and |wN2 |. If
|wN1 | > |wN2 |, then |wN1 | cannot be a prefix of |wN2 |. Otherwise, construct an
extension of the grammar G that contains a nonterminal N3 such that wN3 is
a prefix of wN2 and |wN3 | = |wN1 |. This is possible in polynomial time due to
Lemma 3.6, and the size of the new STG is at most polynomial in the size of G.
Then we compare wN1 and wN3 , which can also be done in polynomial time due
to Theorem 3.2.

Polynomial Equality Testing for Terms with Shared Substructures 7

4 Singleton Tree Grammars

We define singleton tree grammars as a generalization of singleton CFGs. We
consider languages of ranked trees and extend the expressivity of SCFGs by per-
mitting contexts. The definition is consistent with the context free tree grammars
in [CDG+97], however a special case.

Definition 4.1. A singleton tree grammar (STG) is a tree grammar, i.e. a
4-tuple (T N , CN , Σ,R), where T N are tree nonterminals, CN are context non-
terminals, and Σ is a signature of function symbols (the terminals), such that
the sets T N , CN , Σ are pairwise disjoint. The set of nonterminals N is defined
as N = T N ∪ CN . The rules in R may be of the form:

– A ::= f(A1, . . . , An), where A,Ai are tree non-terminals, and f ∈ Σ is an
n-ary function symbol.

– A1 ::= C[A2] where A1, A2 are tree nonterminals and C is a context nonter-
minal.

– C1 ::= C2C3, where Ci are context non-terminals.
– C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), where Ai are tree nonterminals, C

is a context non-terminal, [·] is the hole, and f ∈ Σ an n-ary function symbol.

The tree grammar must be non-recursive. More formally, the relation +−→ has
no cycles, where +−→ is the transitive closure of the relation → ⊆ N ×N , where
N → M iff there is a rule N → t ∈ R where M occurs in t.

Furthermore, for every non-terminal N there is exactly one rule having N
as left hand side.
The derivation using the rules is performed for second order terms over a signa-
ture Σ ∪ T N , where the tree nonterminals have zero arity, and a second order
signature CN . The derivation starts with A as second order term, where A is
a tree nonterminal, or with the second order context term C([.]), where C is a
context nonterminal. The rules are used in the derivation process as follows.

– If A ::= f(A1, . . . , An) or A ::= C[A′], then A in a second order term or sec-
ond order context term is replaced by f(A1, . . . , An), or C(A′), respectively.

– If C1 ::= C2C3, then C1(s) in a second order term or or second order context
term is replaced by C2(C3(s)).

– If C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), then C(s) in a term or context is
replaced by f(A1, . . . , Ai−1, s, Ai+1, . . . , An).

The derivation process stops if there are no more replacement possibilities, and
the result is either a first order term or a context. We write α →G β if there is a
derivation starting with the second order term α and reaching the second order
term β. Given a non-terminal A, or C, respectively, of G, by wG,A or wG,C we
denote the generated first order term or first order context, respectively. More
general, if t is a second order term or a second order context term over the
signature given above, then wG,t is the generated first order term or the context,
respectively. If the grammar G is clear, we omit the suffix in our notation. We
also may use the notation mp(wC) as a short hand for mp(wC).

8 M. Schmidt-Schauß

Note that we omit the rules of the form A ::= A′, C ::= C ′, C ::= [·] in the
definition, since these rules can easily be eliminated (see Remark 4.4).

Definition 4.2. The size of a grammar (STG) G is the number of its rules and
denoted as |G|.
The depth(D) of a nonterminal D is defined as:

– depth(D) := 1 + max(depth(D1), depth(D2)) if the rule for D is D = D1D2

or D1[D2].
– depth(D) := 1 + max{depth(Aj) | j = 1, . . . , n} if the rule for D is D =

f(A1, . . . , An), where we presume that the depth of the hole [·] is zero and
the maximum over an empty set is 0.

The depth of a grammar is the maximum of the depths of all nonterminals.
In an STG G, we write A > B, iff one of the following holds: A ∈ T N ,

A
+−→ α for a second-order term α, and B occurs in α; or A ∈ CN , A([.]) +−→ α

for a second-order context term α, and B occurs in α.

Example 4.3. If C is the context C = f(g(x), [·], h(x)), then the term C100(b)
can be represented using a singleton tree grammar as follows:

C0 ::= f(A1, [·], A2)
A1 ::= g(A3)
A2 ::= h(A3)
A3 ::= x

C1 ::= C0C0

C2 ::= C1C1

C3 ::= C2C2

C4 ::= C3C3

C5 ::= C4C4

C6 ::= C5C5

D1 ::= C6C5

D2 ::= D1C2

B ::= b
D3 ::= D2[B]

The nonterminal D3 represents the term

f(g(x), f(g(x), f(. . . (b) . . .), h(x)), h(x)),

where the nesting depth is 100. In an exponent notation for contexts as unary
functions with C ≡ λz.f(g(x), z, h(x)), it could be represented as C100(b).

The goal is to prove the following theorem (see Theorem 9.13).

Theorem Given an STG G, and two tree nonterminals A,B from G,
it is decidable in polynomial time depending on |G| whether wA = wB .

The proof will be given in the following sections.
An equivalent problem is the question, given two different STGs G1, G2 and Ni

from Gi for i = 1, 2, whether wN1 = wN2 .

Remark 4.4. Note that it would be possible to permit more kinds of rules in an
STG. Suppose we also allow rules of the form:

– C1 ::= C2.
– A1 ::= A2.
– C1 ::= [·].

Polynomial Equality Testing for Terms with Shared Substructures 9

These rule formats allow a more compact representation of the terms in certain
cases.

The first two kinds of rules can be eliminated by replacing e.g. the rule
C1 ::= C2 by the rule C1 ::= W , where C2 ::= W is the rule for C2. Similarly for
the second rule. The complexity will slightly increase, since there may be a size
increase of O(|G|2). The third rule is irrelevant for the worst case complexity of
the word problem.

5 Operations on Singleton Tree Grammars Using SCFGs
for Positions

Lemma 5.1. Given an STG G and a nonterminal D from G. Then head(wD)
can be computed in polynomial time in |G|.

Proof. The grammar is nonrecursive. Thus the number of steps is at most
depth(G), since in the right hand sides of rules only C[A] and CC ′ are non-
trivial, and only C needs to be further expanded.

Corollary 5.2. Given an STG G and two nonterminals D1, D2 from G. Then
the test head(wD1) = head(wD2) can be performed in polynomial time in |G|.

Definition 5.3. Given an STG G, an SCFG G′ with positive integers as ter-
minals, and a (partial) injective mapping CNG → NG′ , such that C 7→ Cs for
every context nonterminal. If mp(wG,C) = wG′,Cs

for every C ∈ CNG, then G′

is called a position grammar of G.

Definition 5.4. Given an STG G. Then we define an SCFG GpG with positive
integers as terminals, as follows:
For every context nonterminal C in G, there is a unique nonterminal C ′ in GpG.
The rules are as follows:

– C ′ ::= i if C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An) is a rule in RG.
– C ′ ::= C ′

1C
′
2 if C ::= C1C2 is a rule in RG.

Lemma 5.5. Given an STG G, then GpG can be constructed in polynomial
time.
Moreover, GpG is a position grammar of G.

Proof. By induction.

Lemma 5.6. Given an STG G and a position grammar Gs. For a nonterminal
D from G and a nonterminal N from Gs the test whether wN ∈ Pos(wD) can
be performed in polynomial time in |G| and |Gs|.

Proof. We show that a recursive algorithm using smaller and smaller STGs G
has at most |G| recursions and every step is polynomial. Let d = depth(G).

10 M. Schmidt-Schauß

– Consider the case that D is a context nonterminal. Then the nonterminal
ND corresponding to D is already in Gs. The computation of a nonterminal
N1 representing the longest common prefix of wN and wND

, a number k, and
a nonterminal N2 representing the suffix, such that wN1kwN2 = wN can be
done in polynomial time giving G′

s with |G′
s| ≤ |Gs|+2 ∗d. Determining the

right hand side component in G, where the derivation starting from D forks
for N and ND, can be done in polynomial time and results in a component
f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), and a number k 6= i. Then the computa-
tion can proceed recursively using a smaller grammar G′ of all nonterminals
necessary to define the tree nonterminal Ak, and the nonterminal N2.

– Let D be a tree nonterminal. Then either D ::= f(A1, . . . , An), and we
can argue as above. If D ::= C[A], then again we can compare N with the
nonterminal Cs for mp(wC). If mp(wC) is a prefix of wN , then we construct
a suffix nonterminal N1 with wN = mp(wC)wN1 , and use then the same
algorithm for A and N1. If mp(wC) ⊥ wN , we call the same procedure using
C and N .

It is clear that the number of recursive calls is at most |G|, since in every call
at least one rule can be removed from the current G. Hence the size of the final
G′′

s is at most |Gs|+ 2|G| ∗ d ≤ |Gs|+ 2|G|2. Thus there is a size increase that is
overall bounded by a polynomial, all intermediate steps are polynomial. We can
estimate the sum of all steps and obtain a polynomial upper bound in |G| and
|Gs|. 2

6 Triples for a Representation of Overlappings

We define overlay triples as a data structure for the algorithm solving the word
problem of STGs.

Definition 6.1. Two contexts or trees W1,W2 have a top-overlap, iff for every
position p ∈ Pos(W1) ∩ Pos(W2): head(W1|p) = head(W2|p), i.e. the function
symbols at all common positions are the same, where the position of the hole and
the positions below the hole of contexts are ignored.

Definition 6.2. Let G be a STG, and let Gs be a position grammar of G. A
triple (wrt. G and Gs) is either of the form (A,B, ε) or of the form (A,B,N)
where A,B are non-terminals from G, and N is a non-terminal in Gs.
A triple (A,B, N) is well-formed, iff wN ∈ Pos(wB), or if wB is a context and
mp(wB) is a prefix of wN . Triples (A,B, ε) are always well-formed.
A well-formed triple (A,B,N) is valid, iff (wB)|wN

and wA have a top-overlap.

Definition 6.3. Assume given an STG G and a position grammar Gs. The
valid triples are partitioned into the following classes:

– ε-triples: triples of the form (D1, D2, ε).

Polynomial Equality Testing for Terms with Shared Substructures 11

– inclusion triples: Triples of the form (D1, D2, N), such that one of the fol-
lowing holds:
1. D2 is a tree nonterminal, or
2. D2 is a context non-terminal with wN ⊥ mp(wD2).
3. D2 is a context non-terminal with wN ‖ mp(wD2), and wNmp(wD1) is

a prefix of mp(wD2).
– overlay triples: (D,C,N), where C is a context nonterminal, wN ‖ mp(wC),

and one of the following holds:
1. D is a tree nonterminal ((D,C,N) is a tree overlay triple), or
2. D is a context nonterminal, and wNmp(wD) is not a prefix of mp(wC).

These are further distinguished into
• parallel overlay triples, if mp(wC)||wNmp(wD).
• orthogonal overlay triples, if mp(wC) ⊥ wNmp(wD).

We say that the ε-triples and the inclusion triples are transient triples, since
the algorithm WOPS will try to eliminate them first. The nontransient triples
are the overlay triples.

We illustrate the parallel and orthogonal overlay triple (D,C,N). From
left to right, the first two diagrams show a parallel overlay triple,
a full tree picture and a picture showing only the main paths,
whereas the third and fourth shows the same for an orthogonal

N

C

D

C

D

C

D

C

D
NN

N

We also order triples:

Definition 6.4. For i = 1, . . . , 4 let Di be nonterminals in an STG G. Given
two pairs (D1, D2) and (D3, D4), we say (D1, D2) > (D3, D4), iff D1 ≥ D3,
D2 ≥ D4 and one of the two relations is strict, where the base ordering is the
derivation ordering w.r.t. G (see Definition 4.1).
Given two triples (D1, D2, N) and (D3, D4, N

′), we write (D1, D2, N) >
(D3, D4, N

′), iff (D1, D2) > (D3, D4) or (D1, D2) > (D4, D3).

Note that the ordering is exactly the multiset-ordering for {D1, D2} and
{D3, D4} with base ordering > on nonterminals.

7 The Algorithm WOPS

In this section we define the algorithm WOPS for solving an equation N1 = N2

of nonterminals of an STG using transformation rules. The data structure is

12 M. Schmidt-Schauß

mainly a set of triples. However, for control purposes, the triples are partitioned
into different sets.

The main algorithmic parts are:

– straightforward unfolding of triples by transformations, however controlled
by a strategy.

– Simplification rules for triples
– Failure Rules for compaction.
– Compaction rules for overlay triples

Definition 7.1. The algorithm WOPS has as input an STG G and two tree
nonterminals N1, N2. It has as state a tuple (Gs, Sε,closed , Sε,open , Snot , Sot),
consisting of a singleton context free grammar Gs as position grammar of G,
a set Sε,closed of ε-triples already expanded, a set Sε,open of ε-triples not yet
expanded, a set Snot containing the inclusion triples, and a set Sot of overlay
triples.

1. The initial state is (GpG, ∅, {(N1, N2, ε)}, ∅, ∅), where GpG is the position
grammar of G (see Definition 6.2), and N1, N2 are the tree nonterminals
that have to be compared for equality.

2. Halting The algorithm WOPS returns “YES”, i.e. it halts with success, if
there are no more triples to be selected, i.e., if Sε,open = Sot = Snot = ∅. It
halts with failure (i.e., returns “NO”), if an explicit Fail is the result of a
simplification or transformation.

3. Apply the simplification rules in subsection 7.1 and the failure rules in sub-
section 7.3 exhaustively.

4. Apply the compaction rules in subsection 7.4 exhaustively.
5. Apply a transformation rule according to the following strategy:

A triple T is selected from one of the sets in the state according to the
following priorities:
– Snot ,
– Sε,open

– Sot , where a maximal triple according to Definition 6.4 in Sot has to be
selected.

After the selection, the following is performed:
If T ∈ Snot ∪ Sot , then T will be removed from each set.
If T ∈ Sε,open , then it will be removed from Sε,open and added to Sε,closed .

The selected triple T will then be subject to a transformation as defined
below in subsection 7.2, which may extend the singleton grammar Gs to G′

s.
If the triples T1, . . . , Tn are the outcome of the transformation, then do the
following for each triple Ti:
– If Ti is an ε-triple, and Ti ∈ Sε,open∪Sε,closed , then do nothing, otherwise

add it to the set Sε,open .
– Otherwise, if Ti is an overlay triple, then add it to Sot .
– Otherwise, if Ti is an inclusion triple, then add it to Snot .

6. For iterating this cycle, go to step 2

Polynomial Equality Testing for Terms with Shared Substructures 13

7.1 The Transformation Rules of the Algorithm WOPS

First we define simplification rules on the state.

Simplification Rules The simplification rules operate on the state. The sim-
plification rules are tested in the stated sequence, i.e. the simplification rule j′

is applied only if the simplification rules j < j′ are not applicable.
We write D,Di if we mean a tree or context nonterminal.

1. If there is some (D1, D2, ε) ∈ Sε,open with head(wD1) 6= head(wD2), then
Fail: The initial equation is False.

2. Remove (D,C,N) from Sot or Snot , if mp(wC) is a prefix of wN .
3. If there is some (D1, D2, N) ∈ Sot ∪ Snot such that wN 6∈ Pos(wD2), then

Fail: The initial equation is False.
4. If there is some (D1, D2, N) ∈ Sot ∪ Snot with head(wD2 |wN

) 6= head(wD1),
then Fail: The initial equation is False.

5. If there is some (A,B,N) ∈ Sot ∪ Snot , where wA or wB is a constant, then
remove this triple from Sot ∪ Snot . If there is a triple (A,B, ε) ∈ Sε,open ,
where wA or wB is a constant, then move it to Sε,closed .

7.2 Transformation Rules

We assume that the simplification rules are applied exhaustively to the state
before the transformation rules are applied.
Note that in the following rules, the notation (A,B, N) means that wN 6= ε. The
main case distinction are four cases, depending on the types of the nonterminals
in the triples: (tree, tree), (tree, context), (context, context) and (context, tree).
In some cases, the position grammar Gs is extended to a new position grammar
G′

s, since a new nonterminal has to be constructed. In the following we use
diagrams for illustrating the relation of the main path of contexts and a position
nonterminal. Usually, this is sufficient to understand and analyse the possibilities,
ignoring the rest of the context.

– (T,T)-case. An illustration of the cases 4 to 6 is:

N’

N C N C CN

B’

A AA
N´

B’

14 M. Schmidt-Schauß

1. (A,B, ε) → {(A1, B,N1), . . . , (Ak, B,Nk)} if A ::= f(A1, . . . , Ak), where
G′

s contains the nonterminals N1, . . . , Nk with rules Ni ::= i for i =
1, . . . , k. Note that due to simplification, ar(f) > 0.

2. (A,B, ε) → {(C,B, ε), (A′, B,N)} if A ::= C[A′], where N is the non-
terminal in Gs with wN = mp(wC).

3. (A,B,N) → (A,Bi, N
′) if B ::= f(B1, . . . , Bk), and wN = iwN ′ , where

N ′ is a nonterminal in G′
s.

4. (A,B,N) → (A,C, N) if B ::= C[B′], and wN ⊥ mp(wC).

5. (A,B,N) → {(A,C, N), (B′, A, N ′)} if B ::= C[B′], and wN is a proper
prefix of mp(wC), where N ′ is a nonterminal in G′

s with wNwN ′ =
mp(wC), otherwise.

6. (A,B,N) → (A,B′, N ′) if B ::= C[B′], and mp(wC) is a prefix of wN ,
where N ′ = ε if wN = mp(wC), or N ′ is a nonterminal in G′

s with
wN = mp(wC)wN ′ .

7. (A,A, N) → Fail if wN 6= ε.

– (T,C)-case. An illustration of the cases 4 to 6 is:

6

C1

C2

N N

C1

C2

N

C1

N

C1

C2

A A

A

A

C2

4 5 5

1. (A,C, ε) → {(A1, C, 1), . . . , (An, C, n), } if A ::= f(A1, . . . , An).

2. (A,C, ε) → {(C2, C, ε), (A′, C, N)} if A ::= C2[A′], where N is the non-
terminal in Gs with wN = mp(wC2).

3. (A,C,N) → (A,Bk, N ′) if C ::= f(B1, . . . , Bi−1, [·], Bi+1, . . . Bn), and
wN ⊥ mp(wC), i.e. k 6= i, where N ′ is a nonterminal in G′

s with wN =
kwN ′ .

4. (A,C,N) → (A,C1, N) if C ::= C1C2, wN ⊥ mp(wC1).

5. (A,C,N) → (A,C2, N
′) if C ::= C1C2, and mp(wC1) is a prefix of wN ,

where N ′ = ε if mp(wC1) = wN , or N ′ is a nonterminal in G′
s with

wN = mp(wC1)wN ′ .

6. (A,C,N) → {(A,C1, N), (C2, A, N ′)} if C ::= C1C2, and wN is a proper
prefix of mp(wC1), where wNwN ′ = mp(wC1) and N ′ is a nonterminal
in G′

s.

Polynomial Equality Testing for Terms with Shared Substructures 15

– (C,C)-case. An illustration of the cases 4 to 6:

6

N N

NN
C3

C4

C2

C3

C4

C2

C4 C4

C2 C2

C3 C3

C1 C1

C1

C1

4 5 5

1. (C1, C2, ε) → {(A1, C2, N1), . . . , (Ai−1, C2, Ni−1), (Ai+1, C2, Ni+1),
. . . , (An, C2, Nn)} if C1 ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), where G′

s

contains the nonterminals N1, . . . , Nn with rules Ni ::= i for i = 1, . . . , n.

2. (C1, C2, ε) → {(C3, C2, ε), (C4, C2, N)} if C1 ::= C3C4, where N is the
nonterminal in Gs with wN = mp(wC3).

3. (C1, C2, N) → (C1, Ak, N ′) if C2 ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . An)
and wN ⊥ mp(wC2), i.e., k 6= i, where N ′ is a nonterminal in G′

s with
wN = kwN ′ .

4. (C1, C2, N) → (C1, C3, N) if C2 ::= C3C4, wN ⊥ mp(wC3).

5. (C1, C2, N) → (C1, C4, N
′) if C2 ::= C3C4, and mp(wC3) is a prefix of

wN , where N ′ = ε if mp(wC3) = wN , or N ′ is a nonterminal in G′
s with

wN = mp(wC3)wN ′ .

6. (C1, C2, N) → {(C1, C3, N), (C4, C1, N
′)} if C2 ::= C3C4, and wN is

a proper prefix of mp(wC3), where wNwN ′ = mp(wC3) and N ′ is a
nonterminal in G′

s.

– (C,T)-case. An illustration of the transformations of ε-triples in cases 2 to 4
is:

4

AC1

C2
C1

A’
A’

A’

C1 C2

A A

C2

2 3

16 M. Schmidt-Schauß

An illustration of the transformation in cases 6 to 8 is:

8

N

A

C2

C1A’

N

A

C2

N’A’

C1

A

C2
N

A’

N’C1

6 7

1. (C,A, ε) → {(A1, C,N1), . . . , (An, C, Nn)} if A ::= f(A1, . . . , An), where
G′

s contains the nonterminals N1, . . . , Nn with rules Ni ::= i for i =
1, . . . , n.

2. (C1, A, ε) → {(C1, C2, ε), (A′, C1, N)} if A ::= C2[A′] and mp(wC1) ⊥
mp(wC2) where wN = mp(wC2).

3. (C1, A, ε) → (C1, C2, ε) if A ::= C2[A′] and mp(wC1) is a prefix of
mp(wC2).

4. (C1, A, ε) → {(C1, C2, ε), (A′, C1, N)} if A ::= C2[A′] and mp(wC2) is
a proper prefix of mp(wC1), where N is the nonterminal in Gs with
wN = mp(wC2).

5. (C,A,N) → (C,Ai, N
′) if A ::= f(A1, . . . , An), where either N ′ = ε if

wN = i, or N ′ is a nonterminal in G′
s with wN = iwN ′ .

6. (C1, A, N) → (C1, C2, N) if A ::= C2[A′] and wN ⊥ mp(wC2).
7. (C1, A, N) → {(C1, A

′, N ′)} if A ::= C2[A′] and mp(wC2) is a prefix of
wN , where either N ′ = ε if wN = mp(wC2), or N ′ is a nonterminal in
G′

s with wN = mp(wC2)wN ′

8. (C1, A, N) → {(C1, C2, N), (A′, C1, N
′)} if A ::= C2[A′] and wN is

a proper prefix of mp(wC2), where N ′ is a nonterminal in G′
s with

wNwN ′ = mp(wC2).

7.3 Failure Rules for Compaction

We will use periodicities of contexts for compaction of the set Sot .
There are three failure rules, which we apply with high priority in the algorithm
WOPS .

(CompFailAC) Given two different overlay triples (A,C, N1), (A,C, N2) where
A is a tree nonterminal and C is a context nonterminal. Let pi be such that
mp(wC) = wNi

pi for i = 1, 2. Fail, if p1 ⊥ p2.
(CompFailCCorth) Given two different orthogonal overlay triples

(D,C,N1), (D,C,N2), where D,C are context nonterminals, |wN1 | < |wN2 |,
mp(wC) ⊥ wN1mp(wD) and mp(wC) ⊥ wN2mp(wD).
For i = 1, 2, let pi be the maximal position, such that wNipi is a prefix of
mp(wC). For i = 1, 2, let qi be the position, such that wNipiqi = mp(wC).
Fail, if one of the following conditions hold:

Polynomial Equality Testing for Terms with Shared Substructures 17

– p1 6= p2.
– q1 ⊥ q2

Correctness of the failure rule (CompFailCCorth) is proved in Lemma 9.7.
Hence for orthogonal overlay triples (D,C,N) the part of the main path of D
that is parallel to the main path of C is independent of N , and we can define
the common path length (p1 above) for orthogonal overlay triples (D,C, ·) as
cp(D,C).

7.4 Compaction Rules

For the application of the compaction rules we assume that no failure rule applies.
There are three different variants of the compaction rule for Sot :

(CompactAC) Given three different tree overlay triples
(A,C, N1), (A,C, N2), (A,C, N3) where A is a tree nonterminal
and C is a context nonterminal, and |wN1 | < |wN2 | < |wN3 |. If
(|wN2 | − |wN1 |) + (|wN3 | − |wN1 |) ≤ |mp(wC)| − |wN1 |, then re-
place the three triples by two triples (A,C,N1), (A,C,N4), where N4

is a nonterminal in G′
s and wN4 is a prefix of mp(wC) such that

|wN4 | = |wN1 |+ gcd((|wN2 | − |wN1 |), (|wN3 | − |wN1)).
(CompactCCpar) Given three different parallel overlay triples

(D,C,N1), (D,C,N2), (D,C,N3) where D,C are context nontermi-
nals, mp(wC)||wNi

mp(wD) for i = 1, 2, 3, and |wN1 | < |wN2 | < |wN3 |.
If (|wN2 | − |wN1 |) + (|wN3 | − |wN1 |) ≤ |mp(wC)| − |wN1 |, then re-
place the three triples by two triples (D,C,N1), (D,C,N4), where
N4 is a nonterminal in G′

s and wN4 is a prefix of mp(wC) such that
|wN4 | = |wN1 |+ gcd((|wN2 | − |wN1 |), (|wN3 | − |wN1)).

(CompactCCorth) Given four different orthogonal overlay triples
(D,C,N0), (D,C,N1), (D,C,N2), (D,C,N3) where D,C are con-
text nonterminals, mp(wC) ⊥ wNi

mp(wD) for i = 0, . . . , 3, and
|wN0 | < |wN1 | < |wN2 | < |wN3 |. Let p := |cp(D,C)| and let
d := |mp(wC)| − p − 1. If (|wN1 | − |wN0 |) + (|wN2 | − |wN0 |) ≤ (d − |wN0 |),
and (|wN2 | − |wN1 |) + (|wN3 | − |wN1 |) ≤ (d − |wN1 |), then replace
the two triples (D,C,N2), (D,C,N3) by the triple (D,C,N4), where
N4 is a nonterminal in G′

s and wN4 is a prefix of mp(wC) such that
|wN4 | = |wN1 |+ gcd((|wN2 | − |wN1 |), (|wN3 | − |wN1)).

Note that the difference between the three rules is in the kind of the nontermi-
nal D, the relative position of the different D’s in case D is a context nonterminal,
and in the extra required triple (D,C,N0) in rule (CompactCCorth).

Note also that it is possible for two context nonterminals C,D that there are
orthogonal overlay triples as well as parallel overlay triples in Sot .

8 Properties of the Transformation Rules

Lemma 8.1. The simplification and transformation rules are sound and com-
plete, i.e., if the state S is transformed into S′, then

18 M. Schmidt-Schauß

1. all the triples in S are well-formed iff all triples are well-formed in S′; and
2. all triples in S are valid iff they are valid in S′.

Proof. This follows by a straightforward, but tedious inspection of the rules. 2

Now we count the the number of different triples during the transformation
and the number of necessary transformations. The critical transformation rules
are TT.5, TC.6, CC.6, and CT.8, since these rules increase the number of triples
and can be applied more than once.

Lemma 8.2. The transformation rules TT.5, TC.6, CC.6, and CT.8 have the
following possibilities to generate new kinds of triples:

1. In case TT.5, with transformation (A,B,N) → {(A,C, N), (B′, A, N ′)}, the
triple (A,C,N) is an overlay triple.

2. In case TC. 6, with transformation (A,C, N) → {(A,C1, N), (C2, A, N ′)},
the triple (A,C1, N) is an overlay triple.

3. In case CC.6, with transformation (C1, C2, N) →
{(C1, C3, N), (C4, C1, N

′)}, either (C1, C3, N) is an overlay triple, or
(C4, C1, N

′) is immediately removed by simplification.
4. In case CT.8, with transformation (C1, A, N) → {(C1, C2, N), (A′, C1, N

′)},
either the triple (C1, C2, N) is an overlay triple, or the triple (A′, C1, N

′) is
removed immediately by simplification.

Proof. 1. The following picture illustrates the TT-case TT.5 and the TC-case
TC.6:

TC.6

B

C

B’

N

N’
A

TT.5

N

A

N’

C

C1

C2

In the TT.5 it is obvious that (A,C, N) is an overlay triple, since A is a tree
nonterminal and wN ‖ mp(wC). In TC.6 case it is obvious that (A,C1, N)
is an overlay triple, since A is a tree nonterminal and wN ‖ mp(wC1).

Polynomial Equality Testing for Terms with Shared Substructures 19

2. The following picture illustrates the three CC-cases corresponding to CC.6:

C1

N

N’

C2

C3

C4

C1

N

N’

C2

C3

C4

C1

N

N’

C2

C3

C4

In the first and second case, (C1, C3, N) is an overlay triple, since wN ‖
mp(wC3) and C1 is a context nonterminal such that wNmp(wC1) is not a
prefix of mp(wC3). In the third case, (C1, C3, N) is an inclusion triple, and
(C4, C1, N

′) will be removed by simplification , since mp(wC1) is a prefix of
wN ′ .

3. The following picture illustrates the three CT-cases corresponding to CT.8:

N’

N

N’

A

A’

C2
C1

N

N’

A

A’

C2
C1

A

A’

C2

C1

N

In the first and second case, (C1, C2, N) is an overlay triple, since wN ‖
mp(wC2) and C1 is a context nonterminal such that wNmp(wC1) is not a
prefix of mp(wC2). In the third case, (C1, C2, N) is an inclusion triple, and
(A′, C1, N

′) will be removed by simplification , since mp(wC1) is a prefix of
wN ′ .

Lemma 8.3. All strictly descending chains w.r.t. the strict ordering on triples
have length at most 2 ∗ |G|.

Proof. Obvious.

Lemma 8.4. For every transformation of a triple (D1, D2, N), the resulting
triples are strictly smaller w.r.t. the ordering on triples defined in 6.4.

Proof. Follows from an inspection of the rules.

Proposition 8.5. For every transformation of a triple, the resulting triples are
strictly smaller.

For every transformation of a non-ε-triple, after applying simplification to
the resulting triples, at most one triple of the result is not an overlay triple.

Lemma 8.6. Let G be the initial STG.
The number of ε-triples is at most |G|2.
The number of non-ε-triples coming from a single transformation from ε-triples
is ≤ (|G|2) ∗maxarity.

20 M. Schmidt-Schauß

Proof. The upper bound is obvious. The treatment of ε-triples in the transfor-
mations shows that at most maxarity triples may arise from a single ε-triple.

Lemma 8.7. Let G be the initial STG. During every run of the algorithm
WOPS, the number of triples in Snot is bounded by maxarity.

Proof. Only ε-triples may add maxarity triples to Snot . The priority of choosing
triples for further transformations and Proposition 8.5 show that the focussed
triple may result in at most one further triple from Snot , and perhaps triples in
the other sets.

Since we already have bounded the sets of ε-triples and the set Snot , it
remains to treat the set Sot .

9 Correctness of the Compaction and Failure Rules

For the proofs of correctness we assume that the simplifications are exhaustively
applied.

9.1 The tree-context-case

The following lemma is also proved in [SSS98].

Lemma 9.1. Let W be a nontrivial context, and let p be a position, such that
W overlaps itself at position p, i.e., for every position q, such that pq ∈ Pos(W),
we have head(W |pq) = head(W |q). Then the following holds:

1. p ‖ mp(W), i.e. the overlapping start on the main path.
2. mp(W) ‖ p ·mp(W), i.e., the paths of both occurrences of W are on the same

path.

Proof. The first claim is clear, since p ⊥ mp(W) would imply that W contains
W properly.

In the second case, assume that mp(W) ⊥ p · mp(W). Then p 6= ε. Let
p′ be the maximal prefix of mp(W), such that pp′ ‖ mp(W). Then W |pp′ =
f(t1, . . . , ti−1, ·, ti+1, . . . , tn), and there is k 6= i, such that p′k is a prefix of
mp(W). But then tk contains itself properly, a contradiction.

Lemma 9.2. The failure rule (CompFailAC) is correct.

Proof. Assume we have two valid overlay triples (A,C, N1), (A,C, N2), where
A is a tree nonterminal and C is a context nonterminal. Since N1||N2, we can
assume w.l.o.g. that |wN1 | < |wN2 |.
Let pi be such that mp(wC) = wNipi for i = 1, 2. Let W be the context derived
from wA by plugging in the hole at position p1. Since (A,C, N1) is a overlay triple,
we also have W = wC |wN1

. The valid overlay triple (A,C,N2) with |wN1 | < |wN2 |
implies that there is another overlay of W in wC starting at position wN2 . Now
Lemma 9.1 shows that p1||p2.

Polynomial Equality Testing for Terms with Shared Substructures 21

Lemma 9.3. The compaction rule (CompactAC) is sound and complete.

Proof. Assume we have three valid overlay triples
(A,C,N1), (A,C,N2), (A,C,N3), where A is a tree nonterminal and C is a
context nonterminal, the failure rules do not apply, and |wN1 | < |wN2 | < |wN3 |.
Let pi be such that mp(wC) = wNipi for i = 1, 2, 3. Since the failure rules do not
apply, p3 is a prefix of p2 and p2 is a prefix of p1. Thus we have an overlapping
situation for contexts (similar to words). Let W := wC |wN1

. The two triples
(A,C, N1), (A,C,N2) show that W has a period |wN2 | − |wN1 |, the two triples
(A,C, N1), (A,C,N3) show that W has a period |wN3 | − |wN1 |, and the context
W seen as word, has length |mp(wC)| − |wN1 |. Hence we can use Lemma 2.1,
and obtain that if (|wN2 | − |wN1 |) + (|wN3 | − |wN1 |) ≤ |mp(wC)| − |wN1 |,
the context W also has period gcd((|wN2 | − |wN1 |), (|wN3 | − |wN1)). Thus the
generation of N4 and the replacement of (A,C, N2), (A,C, N3) with (A,C,N4)
keeps exactly the information.

9.2 The parallel context-context-case

Similar to the tree-context-case.

Lemma 9.4. The compaction rule (CompactCCpar) is sound and complete.

Proof. The proof is the same as the proof of Lemma 9.3 by replacing W with
W ′, where W ′ = wD|p, and wN1p = mp(wC).

9.3 The orthogonal context-context-case

We need a helpful lemma on overlaps of a word with itself, where one position
is undefined, before we can treat the orthogonal CC-case. It can be seen as a
generalization of a periodicity lemma for a word overlapping with itself to a
periodicity lemma of a word w overlapping with its single-point mutants where
the mutations are at a fixed position in w.

We denote the letter at position i in a word with w[i], where we assume that
the first letter is w[1]. With (v, w, k) we denote an overlap of the words v, w

where w starts with the (k + 1)st letter of v. The notation (v, w, k) means that
for all i = k +1, . . . ,min(|v|, |w|+k), we have v[i] = w[i−k]. The triple (v, v, k)
implies that the word v has period k.

Lemma 9.5. Let w1, w2 be words, x1, x2, x3 be letters, and vi = w1xiw2 for
i = 1, 2, 3. Let there be two overlaps (v1, v2,m), (v1, v3, n) for 1 ≤ m < n. Then
the following holds:

If m + n ≤ |w2|, then v2 has period gcd(m,n), x2 = x3 = w2[gcd(m,n)], and
v2 = v3.

22 M. Schmidt-Schauß

Proof.

w1

x1

x2

x3

w1

w1v2

v3

v1
w2

w2

w2

There are also overlaps (w2, w2,m), (w2, w2, n), which means w2 has periods
m,n. Hence by the condition m + n ≤ |w2| and Lemma 2.1, r := gcd(m,n) ≤
min(m,n) is also a period of w2. The overlap shows (see e.g. the illustration), that
x2 = w2[m]. Comparing v1, v2 and from the period r, we obtain x2 = w2[m] =
w2[m + h ∗ r] for integers h, as long as 1 ≤ m + h ∗ r ≤ |w2|, hence x2 = w2[r].
The same holds for the comparison of v1, v3, which implies x2 = x3 = w2[r], and
also v2 = v3. There is an overlap (v3, w2, n), and the overlap is synchronized,
since m + n ≤ |w2| and the w2-parts of v1, v3 have an overlap larger than r.
Let w3 be the maximal suffix of length ≤ n of w1. Then the overlap of v1 with
v3 shows that w3x3w2 is a suffix of v3 and has period r. If |w1| < m, then
w3x3w2 = v2 = v3, and v2, v3 have period r. If |w1| ≥ m, then v2 and x1 in v1

have a common position in the overlap of v1, v2. Due to the period r, we obtain
that x1 = x2.

Example 9.6. There are examples with x1 6= x2 in the first case of Lemma
9.5; e.g.: w1 = a, w2 = ababab, x1 = c, x2 = x3 = b, m = 2, n = 4. We use
x = x,y = x2, z = x3. The values of y, z are fixed to be b, but the value of x is
not restricted.
v3 a z a b a b a b a b a b
v1 a x a b a b a b a b a b
v2 . . a y a b a b a b a b a b

Lemma 9.7. Let there be two valid orthogonal overlay triples
(D,C,N1), (D,C,N2), where C,D are context nonterminals, such that
wN1mp(wD) ⊥ mp(wC) and wN2mp(wD) ⊥ mp(wC). For i = 1, 2 let pi be the
maximal paths such that pi is a prefix of wD and wNipi ‖ mp(wC), and let qi be
such that wN1piqi = mp(wC). Then the following holds:

– p1 = p2.

– q1 ‖ q2.

Polynomial Equality Testing for Terms with Shared Substructures 23

A picture of a possible situation is:

D

C

p1

p2

q1

q2

D

Proof. W.l.o.g. we assume that |wN1 | < |wN2 |.
First suppose that p1 6= p2. From the assumptions it is clear that p1 ‖ p2. Let
q be such that wN1p1q = wN2p1. Looking at the picture, we have to distinguish
the cases that p1 is a prefix of p2, and the case that p2 is a prefix of p1. It is easy
to see that in each of the cases we can construct an arbitrarily long path in D
of the form p1q

+, which contradicts the finiteness of contexts. This proves the
first part.

Now assume that q1 ⊥ q2. Let wD|p1 = f(t1, . . . , ti−1,W
′, ti+1, . . . , tn) and

let k be the first letter of wq1 . It is clear that k 6= i. Let D′ be generated from
D|p1k by plugging in a hole at position q1. Now we can apply Lemma 9.1 to the
overlap of D′ with itself and obtain that q1 ‖ q2.

Example 9.8. We give an example that the orthogonal case treated in Lemma
9.7 may indeed be possible.

C := g(f(g(f([·], a)), a)) p1 := ε
D := f(g(f(a, a)), [·]) p2 := ε
wN1 := 1 q1 := 1.1.1
wN2 := 1.1.1 q2 := 1

A picture of the overlapping situation is:

24 M. Schmidt-Schauß

D

f

g

g

f

a

a

C

D

Lemma 9.9. The failure rule (CompFailCCorth) is correct.

Proof. Follows from Lemma 9.7.

Lemma 9.10. The compaction rule (CompactCCorth) is sound and complete.

Proof. Recall the notation of the rule (CompactCCorth). For i = 0, . . . , 3, let ki

be a letter and ri be a postion string, such that ∓(C) = wNi
· cp(D,C) · ki · ri,

where ki is a letter. For i = 0, 1, 2, 3, let u1,i, xi, u2,i be contexts, such that
u1,ixiu2,i = (wC)|Ni

, and mp(u1,i) = cp(D,C). Lemma 9.7 can be applied to
show that u1,0 = u1,1 = u1,2 = u1,3 and that u2,3 is a prefix of u2,2, u2,2 is a
prefix of u2,1, and u2,1 is a prefix of u2,0. Now we can apply Lemma 9.5 to the
words v0 := u1,0x0u2,0 and v1 := u1,0x1u2,0 and v2 := u1,0x2u2,0, which due to
the first length condition in the rule implies that x1 = x2 and v1 = v2. A further
application of Lemma 9.5 to the words v′1 := u1,0x1u2,1 and v′2 := u1,0x2u2,1

and v2 := u1,0x3u2,1 shows that x2 = x3 and v′2 = v′3 due to the second length
condition in the rule. This implies that v′1 = v′2 = v′3, and we can use the
periodicity Lemma 9.5 and Lemma 9.7 can be applied. The length condition on
N0, N1, N2 in rule (CompactCCorth) implies by Lemma 9.5 (by appropriately
prolonging that v′i is a suffix of w2,1 and the length condition on N1, N2, N3 in
rule (CompactCCorth) implies that w2,3 is a suffix of w2,2. Thus we can use
periods of words as in the parallel case (see the proof of Lemma 9.3), and no
information is lost by replacing the two triples by the N4-triple.

9.4 Restricting the Number of Overlay Triples

We generalize Plandowski’s argument to show that there will be at most O(n3)
overlay triples for (A,C,N).

Lemma 9.11. If failure and compaction rules have been exhaustively applied,
then the cardinality of Sot is bounded by (5n + 4) ∗ n2, where n = |G|, i.e. by
O(n3).

Polynomial Equality Testing for Terms with Shared Substructures 25

Proof. The proof follows Plandowski’s reasoning [Pla94]:
We fix D,C and assume that there are overlay triples in Sot . There may be
parallel overlay triples and orthogonal overlay triples in Sot . First we con-
sider sequences of triples that consist only of parallel overlay triples. Let
(D,C,N1), (D,C,N2), (D,C,N3), . . . , (D,C,Nk) be triples in Sot , where we as-
sume that |wN1 | < |wN2 | < . . . < |wNk

|. Let j be an index in the sequence. To
simplify the reasoning, let di := |wNi | for all appropriate i. Since compaction is
not applicable, the inequation (dj+2 − dj) + (dj+1 − dj) > |mp(wC)| − dj holds.
Since dj+2 > dj+1, this implies 2 ∗dj+2−dj > |mp(wC)|. This gives |mp(wC)|+
2 ∗ dj+2 − dj > 2 ∗ |mp(wC)| which implies |mp(wC)| − dj > 2(|mp(wC)| − dj+2)
and 0.5(|mp(wC)| − dj) > |mp(wC)| − dj+2. Since |mp(wC)| ≤ 2|G|, and the
numbers on the left and right of the inequation are positive, the sequence of
numbers |mp(wC)| − d1, |mp(wC)| − d2, . . . , |mp(wC)| − dk has at most 2|G|+ 1
elements.

Now we can also treat sequences of purely orthogonal overlay triples. The dif-
ference is that given a sequence (D,C,N1), (D,C,N2), (D,C,N3), . . ., the same
estimation as above shows that for everyj, provided the indices j +1, j +2, j +3
are valid, the inequation 0.5(d−dj) > d−dj+2 or 0.5(d−dj+1) > d−dj+3 holds,
where d := |mp(wC)| − |cp(D,C)| − 1. It is clear that d− dk ≥ 0 for all k must
hold. The estimation shows that the possible interval length (d− dk) is divided
at least by two going from j to j + 3, hence there are at most 3|G|+ 3 elements
in a sequence di. Since per pair D,C there may be 2 kinds of sequences, the
overall maximal number is (5n + 4) ∗ n2, where n = |G|.

9.5 Complexity of WOPS

Lemma 9.12. The size of the position grammar in WOPS is bounded by |G|+
P ∗ depth(G), where P is the number of transformation and compaction steps of
WOPS.

Proof. The size-increase of Gs in every step is always the addition of a prefix or
suffix of a position of a certain length. This may happen in the transformation
rules or in the compaction rules. By Lemma 3.6 the size increase in every step
is at most by adding depth(G).

Now we can prove the main theorem:

Theorem 9.13. The algorithm WOPS requires at most polynomially many
steps in the size |G| of the input STG G.

Proof. For the complexity of the algorithm we have to take into account the pri-
ority of the rule applications. The sequence of states can be divided into interme-
diate states (we call them pot-states) where only Sε,closed and Sot are nonempty
and failure and compaction rules are applied exhaustively. The transformation
sequence between two such pot-states is called pot-meta-transformation. We
have to argue that only polynomially many pot-states are possible.

26 M. Schmidt-Schauß

The first argument is that Sot itself is polynomially bounded by O(|G|3), which is
proved in Lemma 9.11. Let (D,C,N) be a maximal triple in Sot . Then there are
at most 5|G|+4 triples of the form (D,C,N ′) in Sot . Thus after at most 5|G|+4
pot-meta-transformations of Sot , a pot-state is reached, such that it is no longer
possible to have a triple (D,C,N ′) in any active set in any successor state. This
can happen at most |G|2 times. Thus the number of pot-meta-transformations
is O(|G|3), i.e., polynomial.

The number of transformations and compactions in a single pot-meta-
transformation can be bounded above as follows. There may be at most O(|G|2)
triples in Sε,open , and the immediate successor triples are at most O(|G|2) (see
Lemma 8.6). Every triple may give rise to a transformation of length at most
O(|G|2). Every step may be accompanied by polynomially many compaction
rule applications. Hence the number of transformations and compaction rule ap-
plications in a pot-meta-transformation is polynomially bounded. Lemma 9.12
shows that the size of the position grammar is polynomially bounded, since we
have at most polynomially many transformations and compactions. It is now
easy to see that a single rule application: transformation, simplification, com-
paction, and compaction failure rules, can be done in polynomial time, hence a
pot-meta-transformation can be performed in polynomial time.

We conclude that the algorithm WOPS requires polynomial time depending
on |G|.

The maximal exponent in the polynomial is at least 6, however, a thorough
estimation of the exponent is not possible, since I did not find any estimation in
the literature of the degree of the polynomial of the worst case running timer of
Plandowski’s algorithm for context free grammars.

Corollary 9.14. The word problem for tree and context nonterminals in STGs
is in P.

Proof. For tree nonterminals, this follows from 9.13. For context nonterminals
C1, C2 we extend the grammar by new tree nonterminals and the rules A1 :=
C1[a], A2 := C2[a], where a is a fresh constant. Now Theorem 9.13 shows that
the complexity is polynomial.

Potential Optimizations The algorithm WOPS has a potential for optimiza-
tions, which we will not include, e.g. the following rules would be advantageous.

– Do not expand (D,D, ε), where D is a tree or context nonterminal. I.e., move
this triple immediately to Sε,closed.

– Fail if there is (A,A, N), where A is a tree nonterminal, wN 6= ε.
– Fail if there is (C,C,N), where C is a tree nonterminal, and mp(wC) ⊥ wN .

10 Conclusion and Future Work

It is shown that in a sharing representation of terms, sharing subterms and
unary contexts where also composition of contexts is permitted, it is possible to

Polynomial Equality Testing for Terms with Shared Substructures 27

compare the represented terms for equality in polynomial time. The base are sin-
gleton tree grammars with (unary) contexts as a generalization of Plandowski’s
singleton grammars.

Applications of this work may be in determining an improved upper bound
of the complexity of stratified context unification and bounded second order
unification, which are conjectured to be NP-complete. More practical applica-
tions may be in implementations of Automated Deduction Systems using a term
representations with exponents, or using a representation with sharing of terms
and contexts and exploiting the polynomial equality test to ensure a unique
representation.

Future work is to exhibit the smallest degree of the necessary polynomial in
the complexity and to optimize the algorithm; this, however, requires to first
exhibit the degree of the worst case running time of Plandowski’s algorithm.
Another direction of future work is to investigate whether the polynomial com-
plexity also holds if contexts with multiple holes or if nonlinear term functions
instead of contexts are used in the representation.

Another line of research is to investigate the word problem for unordered,
labelled trees.

11 Acknowledgements

I thank David Sabel for reading a draft of this paper, and Klaus Schulz for
his comments on a draft of this paper.

References

CDG+97. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available
on: http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst
2002.

CH95. Hong Chen and Jieh Hsiang. Recurrence domains: Their unification and ap-
plication to logic programming. Information and Computation, 122(1):45–
69, 1995.

Com95. Hubert Comon. On unification of terms with integer exponents. Mathemat-
ical Systems Theory, 28(1):67–883, 1995.

GNN04. Harald Ganzinger, Robert Nieuwenhuis, and Pilar Nivela. Fast term in-
dexing with coded context trees. J. of Automated Reasoning, 32:103–120,
2004.

HG97. Miki Hermann and Roman Galbavý. Unification of infinite sets of terms
schematized by primal grammars. Theor. Comput. Sci., 176(1–2):111–158,
1997.

HS98. Miki Hermann and Gernot Salzer. On the word, subsumption, and comple-
ment problem for recurrent term schematizations. In MFCS 19989, volume
1450 of Lecture Notes in Computer Science, pages 257–266, 1998.

Lot83. M. Lothaire, editor. Combinatorics on words. Cambridge University Press,
1983.

28 M. Schmidt-Schauß

LSSV04. Jordi Levy, Manfred Schmidt-Schauß, and Matteu Villaret. Monadic second-
order unification is NP-complete. In Rewriting Techniques and Applications
(RTA-15), LNCS 3091, pages 55–69. Springer, 2004.

MM82. Alberto Martelli and Ugo Montanari. An efficient unification algorithm.
ACM Transactions on Programming Languages and Systems, 4(2):258–282,
1982.

Pla94. Wojciech Plandowski. Testing equivalence of morphisms in context-free
languages. In ESA 94, volume 855 of Lecture Notes in Computer Science,
pages 460–470, 1994.

Rob65. J.Alan Robinson. A machine oriented logic based on the resolution principle.
J. of the ACM, 12(1):23–41, 1965.

Ryt04. Wojciech Rytter. Grammar Compression, LZ-encodings, and string algo-
rithms with implicit input. In J. Diaz et. al., editor, ICALP 2004, volume
3142 of LNCS, pages 15–27. Springer-Verlag, 2004.

Sal92. Gernot Salzer. The unification of infinite sets of terms and its applications.
In LPAR 1992, volume 624 of Lecture Notes in Computer Science, pages
409–420, 1992.

SS01. Manfred Schmidt-Schauß. Stratified context unification is in PSPACE. In
Proceedings of CSL’01, LNCS 2142, pages 498–512, 2001.

SS02. Manfred Schmidt-Schauß. A decision algorithm for stratified context unifi-
cation. Journal of Logic and Computation, 12(6):929–953, 2002.

SS04. Manfred Schmidt-Schauß. Decidability of bounded second order unification.
Information and Computation, 188(2):143–178, 2004.

SSS98. Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodic-
ity of minimal solutions of context equations. In Proceedings of the 9th Int.
Conf. on Rewriting Techniques and Applications, volume 1379 of Lecture
Notes in Computer Science, pages 61–75, 1998.

	Polynomial Equality Testing for Terms with Shared Substructures

