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Abstract. We will discuss the issue of Landau levels of quarks in lattice QCD in an ex-
ternal magnetic field. We will show that in the two-dimensional case the lowest Landau
level can be identified unambiguously even if the strong interactions are turned on. Start-
ing from this observation, we will then show how one can define a "lowest Landau level"
in the four-dimensional case, and discuss how much of the observed effects of a mag-
netic field can be explained in terms of it. Our results can be used to test the validity of
low-energy models of QCD that make use of the lowest-Landau-level approximation.

1 Introduction

The effects of a background magnetic field on strongly interacting matter are relevant to a number of
problems in particle physics, astrophysics and cosmology, see the recent reviews [1, 2]. In heavy ion
collisions, the colliding ions generate strong magnetic fields that affect the quark-gluon plasma formed
in the collision. Moreover, the equation of state of hadronic matter in an external magnetic field is
needed in the study of magnetars (a type of neutron stars), and also in the study of the evolution of the
early Universe. This provides enough motivation to study the phase diagram of QCD in an external,
uniform magnetic field.

This task has been (partially) accomplished in recent years by means of numerical calculations
from first principles on the lattice. Due to the yet unsolved sign problem at finite chemical potential,
only the corner of the phase diagram at vanishing chemical potential can be reliably determined in
this way. What is known in this case is that for temperatures well below and well above the QCD
pseudocritical temperature T, at B = 0, a constant magnetic field increases the quark condensate, a
phenomenon dubbed magnetic catalysis (MC), while around T, it decreases the condensate, i.e., it
gives inverse magnetic catalysis (IMC) [3]. This results in 7, decreasing with B. This behaviour was
missed in early lattice studies [4], due to the fact that lattice artefacts can turn IMC into MC: fine
lattices and physical quark masses are needed to observe IMC on the lattice.
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An important question is how can these phenomena be understood in the framework of QCD. To
this end, it is convenient to distinguish the two effects that an external magnetic field has on the for-
mation of a quark condensate. The magnetic field appears in fact both in the operator being averaged
(here the inverse of the Dirac operator) and in the fermionic determinant, i.e., in the functional integral
measure. The presence of a magnetic field has been observed to increase the density of low modes
of the Dirac operator in a typical gauge configuration: this effect, dubbed valence effect, tends to in-
crease the condensate via the Banks-Casher relation, and therefore pushes in the direction of MC. On
the other hand, configurations with a higher density of low modes are relatively suppressed because
of the determinant: this tends to reduce the condensate and therefore goes in the direction of IMC.
This is the so-called sea effect, which is typically weaker than the valence effect, so that in general one
finds MC. Near T, though, where the Polyakov loop effective potential is flatter and so the sea effect
is most effective, the latter ends up winning against the valence effect, therefore leading to IMC [5].

IMC near T, was a quite unexpected result, given the pre-existing common lore based on analytic
calculations in low-energy models for QCD, which predicted MC at all temperatures (see, e.g., the
reviews [2, 6, 7]). The basis for this common lore is the expected behaviour of the lowest Landau level
(LLL) of quarks in a constant magnetic field: as its degeneracy is proportional to the magnetic field,
an increase in the density of low Dirac modes is expected. This would explain the valence effect,
which is required for MC. In this framework, one expects that only the LLL is physically relevant
for sufficiently large magnetic fields: this leads to the frequently used LLL approximation, where
all higher Landau levels are neglected (see, e.g., Refs. [8—11]). However, in QCD quarks interact
with the SU(3) gauge fields besides the external magnetic field, and therefore the very meaning of
Landau levels is not obvious. In the rest of this proceeding we will discuss in detail how the LLL
can be interpreted in this setup, how one can identify it on the lattice, and how much it actually
contributes to the (change of the) chiral condensate in a magnetic field, so testing the validity of the
LLL approximation. This work is based on the paper [12].

2 Landau levels in the continuum

As is well known, Landau levels (LLs) are the energy levels of an otherwise free particle immersed
in a uniform magnetic field B. For brevity, in the following we will refer to this simply as the “free
case”. In the presence of interactions, one expects for weakly coupled particles that the LL structure
gets only slightly perturbed. This has been verified on the lattice in the case of pions in the presence
of both strong interactions and an external magnetic field [3]. The LLs relevant to the problem of MC
are however those of quarks with “Hamiltonian” given by the Dirac operator in the presence of non-
Abelian gauge fields. Since quarks are strongly coupled to the non-Abelian gauge fields, the question
of whether the LL structure survives the introduction of strong interactions is a rather nontrivial one.
We begin our discussion by reviewing the simplest possible case of spin-% fermions of charge g
in the continuum, confined to live in a two-dimensional plane, and subject only to a uniform magnetic
field orthogonal to that plane. In this case the eigenvalues A2 of —I* and their degeneracies v, read

Ay=gqBn,  n=2%k+1-2s5, vy =Ny(2~ o), M
where k = 0,1,..., 5. = +1 is the spin of the particle along the direction of the magnetic field, and
son = 0,1,2,..., and where N, = L‘lz“quB = ?—7‘; € Z due to the quantisation of the magnetic flux

®p in a finite volume. For quarks with N, colours one gets an extra factor N, in the degeneracies.
The generalisation to quarks in four dimensions is easy. The eigenvalues get also contributions from
the momenta in the ¢ and z directions, while the degeneracies are doubled due to particle-antiparticle
symmetry:

Ay = aBn+ pl +pi Vi = 2NNp(2 = 80,) )
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Figure 1. Classification of the lattice eigenvalues according to continuum Landau level degeneracies in the free
case. Continuum Landau levels are shown as gray dashed lines. The right panel shows a zoom into the region
around the origin, where the continuum Landau levels are approached.

This result provides the basis for a simple argument for the valence effect and in favour of MC. If we
believe that the LL structure is not affected very much by the strong interactions, then since the LLL is
just at 4 = 0 one would expect an increase in the spectral density near the origin roughly proportional
to B, and therefore an increase in the chiral condensate. Assuming that the LL structure is preserved
is, however, quite a strong assumption that should be carefully tested on the lattice, especially in the
light of the fact that quarks are strongly coupled.

3 Landau levels on the lattice: two-dimensional case

Our next step is to study the two-dimensional case on the lattice, using the staggered Dirac operator
Dy This discretisation entails an exact twofold doubling of the squared eigenvalues, which in the
continuum limit in the free case would lead to an extra factor of two in the degeneracy of the LLs. The
results for the spectrum in the free case are well known (see Fig. 1): the eigenvalues spread around the
continuum values due to lattice artefacts, and give rise to a fractal structure known in the condensed
matter literature as Hofstadter’s butterfly [13, 14]. The LL structure is spoiled by the lattice, but
nevertheless a remnant of it still remains, as signalled by the presence of clear gaps between groups
of eigenvalues that match in size the degeneracies of the continuum levels.

We then switch on non-Abelian interactions, in practice by taking a 2D spatial slice of a
typical four-dimensional QCD configuration (for 2+1 dynamical flavours with physical masses at
T = 400MeV). This results into the butterfly being smeared out and the gaps disappearing, with a
notable exception: the lowest group of eigenvalues remains clearly separated from the rest even in the
presence of colour interactions (see Fig. 2, left panel). Moreover, the number of eigenvalues in this
group matches precisely those of the continuum LLL. These features are not lattice artefacts: they
survive as the lattice is made finer and finer, if the appropriate units are used, namely if eigenval-
ues are divided by the bare quark mass (see Fig. 2, right panel). The notion of a LLL can then be
defined without ambiguity on the lattice also in the interacting case. For brevity, higher modes will
be collectively labelled as higher Landau levels (HLLs), even though such higher levels do not exist
individually.
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Figure 2. Lattice eigenvalues in the interacting case. In the left panel eigenmodes from a single configuration are
compared to the eigenmodes in the free case. The colour code corresponds to the classification into Landau levels
according to the continuum degeneracy. In the right panel, the gap between the LLL and the HLLs in physical
units is shown for various lattice spacings (corresponding to the different colours) in the interacting case.

3.1 Lowest Landau level and topology

The reason behind the survival of the LLL in 2D in the presence of non-Abelian fields is its topological
origin, which makes it robust under (relatively) small deformations. In 2D the index theorem reads
tz(g = N; — Ny, with Qtzcg the topological charge and Ny, N| the number of zero modes with spin-up
and spin-down polarisation in the direction of the magnetic field. Here the topological charge is just
the magnetic flux (even in the presence of non-Abelian interactions),
Q2D—ifd2xF —iLZ- B =N, 3)
P o W o ="
Moreover, the “vanishing theorem” [15—-17] entails that Ny-N| = 0, and so for gB > 0 there are exactly
N}, spin-up zero modes: these are precisely the LLL modes in the continuum (for each colour). Notice
that these are the only modes with well-defined spin. When switching on non-Abelian interactions,
LLL modes survive as they are protected by topology, while HLL modes mix and the corresponding
structure is washed away.

For staggered fermions the LLL modes are not exact zero modes, but are expected to be (and
indeed are) well separated from the HLL eigenvalues. The identification of these near-zero modes as
LLL modes is further supported by the finding that the matrix elements of the spin operator oy, = o,
are almost perfectly diagonal, and considerably different from zero only for the near-zero, LLL modes.

4 Landau levels on the lattice: four-dimensional case

In four dimensions the LLs cannot be identified by looking at the spectrum even in the free continuum
case, as the contribution of the ¢ and z momenta make them overlap with each other. This is however

not a major obstacle: the eigenmodes J/(p’ )pr are in fact factorised,

1Dy, 2.1 = 6P (x, y)ePEel )



EPJ Web of Conferences 175, 07014 (2018) https://doi.org/10.1051/epjcont/201817507014
Lattice 2017

]
B — N
N,

0
d
d

0.6 = 'y N=12 |
= cont. limit

W, x 100
W, x 100
W, x 100

Figure 3. The overlap Eq. (7) of 4D eigenmodes with the 2D modes as a function of the 2D index (in units of
N, = 3) for a magnetic flux quantum N, = 8, on configurations generated at 7 ~ 400 MeV. Left panel: low-lying
4D modes (with eigenvalue 220 < A/m < 225). Central panel: bulk 4D modes (535 < A/m < 545). Right panel:
same 4D modes as in the left panel, but overlap on 2D modes at N, = 0.

with ¢ a solution of the 2D Dirac equation, and so one can define a projector on the LLL (or on the
other levels, if so desired) and extract its contribution to any observable:

Z Z%ﬂp = Z e @1 @1, = Z Z‘/’m ot )

j € LLL p;,p; jeLLL jeLLL zt

In the last passage we have recast the projector as a sum over modes localised on x, y slices at fixed
z.t, namely ¢ (x,y,2,1) = ¢Y(x, )5, 0, This construction carries over unchanged to the free
lattice case, provided the appropriate extra degeneracy of staggered fermions is taken into account.
Moreover, the formulation in terms of slice-localised states can be exported with little modification
to the interacting case. In fact, as we have seen in the previous section, the LLL can be defined on
2D slices even in the interacting case. If we now denote with tjlg)m the solutions of the 2D Dirac
equation on the x, y slice at z = zp and ¢ = 1 including the non-Abelian fields, the projector P extracts
precisely the contribution of the LLLs on all the slices to the desired observable. Ordering the 2D
modes according to their eigenvalue, and taking into account the appropriate doubling and colour
factors we find for staggered fermions on the lattice in the interacting case

2NN,

P(B) = Z Zw“’ww“”w» ©)

where we have made explicit the dependence on the magnetic field.! Our procedure consists essen-
tially in changing basis from the usual localised basis, where basis vectors are localised on the lattice
sites, to a new basis where the basis vectors are localised on an x, y slice at fixed z, #, and solve the 2D
Dirac equation on that slice, and then extract the LLL contribution to observables by projecting on the
union of the modes corresponding to the 2D LLLs.

If the 2D LLLs have any physical effect we should be able to see some distinctive feature in the
overlap z,bi’lﬁq’) between the solutions ¢ of the 4D Dirac equation and the 2D LLL modes defined on
the slices. Summing over slices and 2D doublers, we define the overlap factor as

Wiy =y > |l )

doublers z,!

1A similar projector for Wilson quarks in the free case is used in Ref. [18].
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Figure 4. The ratio Dj of Eq. (11) for the d quark as a function of the magnetic field at temperatures below 7.
(left panel) and above T (right panel).

In Fig. 3 we show W;(¢) after averaging over a small spectral interval of the 4D Dirac operator and
over gauge configurations. The overlap of low 4D modes with the LLL modes is almost independent
of the 2D mode index, and jumps abruptly downwards at the end of the LLL; in contrast, in the B = 0
case this quantity is just continuous and monotonically decreasing. For bulk modes the jump turns
upwards, but the flatness in the LLL remains. All modes turn out to have an LLL component, which is
bigger for low modes. Notice that the overlap with 2D modes seems to have a finite continuum limit.

5 LLL approximation for the quark condensate

Having defined the LLL in the 4D interacting case we can now return to our main problem, and
measure its contribution to the quark condensate. We have already answered (mostly negatively) the
question whether the LL structure survives the introduction of colour interactions, but since the LLL
survives it is still possible that it is indeed mostly responsible for MC. The LLL contribution to the
condensate is simply obtained by projecting the Dirac operator on the LLL. Denoting with (...)p
the average over gauge configurations in the presence of an external magnetic field, the full and the
projected condensates read

Wyp = (TtDGdp. (W M)p = (Tr PD3, P)p . ®)

However, both the full and the projected condensate are affected by UV divergences, and they have
to be renormalised. For the full condensate it is known that the change in the condensate due to
a magnetic field, AW)B) = p)p — (J)p=o, is free from additive divergences. On the other
hand, subtracting the LLL projected condensate at B = 0 from that at nonzero B cannot cure the
analogous problem, since at B = 0 the LLL is empty and (Jyy""*)p_o = 0 identically. Instead, we
notice that from the 2D perspective the change in the full condensate corresponds to the change in the
contribution from all the 2D modes on all slices. Its analogue in the projected case is thus the change
in the contribution of the first 2NN, 2D modes on all slices from zero to nonzero B, measuring the
change in the condensate due to the change in the nature of the modes which end up forming the LLL.

Defining the new projector
2NN,

PB)= ) > u w0, ©)
j=1 zt
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Figure 5. Visualisation of the validity of the LLL-approximation for the d quark condensate. The lighter the
color, the closer the LLL-projected condensate is to the full result. The orange dots denote our simulation points
and the solid black line marks |g;B| = (nT)*.

which is B-dependent due to the upper limit in the sum, the subtracted LLL-projected condensate is
defined as _

A1) (B) = WG P(BYYYs ~ (WP(BW Yo - (10)
It can be shown explicitly that this quantity is indeed free of additive divergences in the free case. Since
the additive divergence comes from the large 4D modes where the SU(3) interaction is negligible, we
expect that A(y"'1)(B) be free of additive divergences also in the interacting case.

The multiplicative divergence can be studied by means of a spectral decomposition of the pro-
jected condensate. If the overlap of 4D modes with the LLL, averaged over configurations and small
(infinitesimal) spectral intervals, has a continuum limit throughout the spectrum both at zero and finite
B, then the multiplicative divergence is the same as in the full condensate, and therefore cancels in
ratios. The plots in Fig. 3 indeed support the existence of a continuum limit for the overlap. Nonethe-
less, such a delicate issue requires more detailed studies than the present one, and for this reason the
continuum limit is not taken in this work.

Independently of the issue of renormalisability, the ratio of the projected and full condensates after
subtracting their additive divergences,

s = MHLB) _ GPBW ~ TPBY an
Aypr)(B) Wy = o ’
measures how much of the change of the condensate is due to the LLL at a given lattice spacing. If this
ratio is divergence-free, then it has full physical meaning, and it measures the physical contribution of
the LLL to the change of the condensate. By measuring it we can therefore answer our question about
the role of the LLL in the valence effect. If the LLL dominates the (change in the) condensate, then this
would naturally provide an explanation for the valence effect (and thus for MC) as a consequence of
the increased degeneracy of the LLL. If the LLL does indeed dominate the condensate, it is expected
to do so on a configuration-by-configuration basis, and therefore it should not matter, at least from
the qualitative point of view, whether we include the magnetic field in the fermionic determinant
or not: this would just lead to a reweighting of the configurations. For this reason, we decided to
simplify our problem and consider only the valence effect of the magnetic field, i.e., we included it
in the observables but not in the fermionic determinant. This should be enough to decide whether the
condensate is dominated by the LLL or not.
In Fig. 4 we show the results for DS at two temperatures, one below and one above T, obtained
for the d quark condensate (g; = —%) in our numerical simulations of 2+1 flavours of improved
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rooted staggered fermions (see Ref. [3] for technical details). The B field was not included in the
fermionic determinant. We show results for various magnetic fields and different lattice spacings
a = 1/(N,T), where N, is the temporal extension of the lattice in lattice units. The ratio Di seems
to show a nice scaling towards the continuum limit; increases with B, slowly approaching 1, as one
expects; and decreases with 7. The results of all our simulations are summarised in Fig. 5, where we
show the regions of the T — B plane where the change in the projected condensate reaches a given
fraction of the change in the full condensate. This is estimated using our finest lattices, which, given
the trend shown in Fig. 4, probably overestimates this fraction. This allows to answer our question
whether the LLL dominates or not the change in the condensate: except for very large magnetic fields
(eB ~ 1+ 1.5GeV?) the LLL is responsible for less than 50% of the change in the condensate.

6 Conclusions

In this work we studied the issue of Landau levels on the lattice and investigated the validity of the
lowest-Landau-level (LLL) approximation to QCD in the presence of background magnetic fields.
The presence of (nonperturbative) color interactions mixes the levels, washing away the Landau level
structure, with the exception of the LLL. This can be defined in a consistent manner even for strongly
interacting quarks, thanks to a two-dimensional topological argument that characterises the plane
perpendicular to the magnetic field. This allows to define a projector on the LLL that can be used
to extract its contribution to the observables. Observables in 4D are sensitive to the LLL, and in
particular a sizeable fraction of the change in the quark condensate comes from it. On the other
hand, the LLL does not dominate this change except for very large magnetic fields, i.e., the LLL
approximation typically underestimates the change in the condensate. In other words, the LLL alone
cannot fully explain the valence effect and MC in most of the 7 — B plane.
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