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Abstract

The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein
enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the
modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell
progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell
derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on
the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we
identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-
Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in
cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by
in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14
of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied.
Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes
including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription
(p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in
cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase
encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in
cHL.
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Introduction

The NADPH oxidase is a multi-protein enzyme consisting of
two membrane bound subunits, the p22-phox and gp91-phox
and three cytoplasmic subunits, the p47-phox, p67-phox and

p40-phox [1]. These proteins are encoded by the CYBA
(16q24.3), CYBB (Xp11.4), NCF1 (7q11.23), NCF2 (1q25.3)
and NCF4 (22q12.3) genes, respectively. The function of
NADPH oxidase has been historically associated
predominantly with phagocytes and their role in host defense.
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Phagocytic cells undergo a process called oxidative burst to
generate large amounts of superoxide anion and other
secondary ROS (reactive oxygen species) of microbicidal
function. In line with this observation, genetic defects in any of
the NADPH oxidase genes cause impaired functionality of
phagocytes, immunodeficiency and manifest in chronic
granulomatous disease characterized by recurrent and severe
infections including pneumonia, infectious dermatitis or
osteomyelitis (Online Mendelian Inheritance in Man database -
OMIM): CYBA 233690, CYBB 306400, NCF1 233700, NCF2
233710, NCF4 613960) [2,3].

Beside the role in host defense, the NADPH oxidase is used
by non-phagocytic cells to synthesize small amounts of ROS
[4-6], that rather than having microbicidal properties modulate
signaling pathways involved in differentiation, cell cycle
regulation and apoptosis. In hematopoietic cells of Drosophila,
for example, scavenging ROS was demonstrated to delay
differentiation of progenitors into mature blood cells [7]. In
humans, reduced NCF4 protein expression impaired normal B-
cell functionality by hampering MHC class II antigen
presentation [8]. Moreover, the link to B-cell lymphoma
pathogenesis is suggested by genotyping studies where
functional polymorphisms of the CYBB gene were shown to
influence outcome in non-Hodgkin lymphoma patients [9-11].
The regulatory role of NADPH oxidase derived superoxide was
demonstrated also in murine B-cells where mice knockouts for
the CYBB protein homolog showed downregulation of the cell
cycle arrest inducing p27Kip1 protein and higher B-cell
proliferation [1].

In light of the above and intrigued by the transcriptional
downregulation of the CYBB gene in classical Hodgkin
lymphoma (cHL) cell lines reported in our previous study [12],
we investigated here the functionality of the NADPH oxidase
complex in cHL cell lines. We show impairment of the NADPH
oxidase function and identify alterations within genes encoding
components of the NADPH oxidase complex as potential
molecular mechanisms resulting in the inactivation of the
enzyme.

Results

Copy number analysis of the CYBA, CYBB, NCF1, NCF2
and NCF4 genes and mutation screen of the CYBB
gene shows frequent deletion of CYBB in cHL

Our recent observation of CYBB downregulation in cHL cell
lines led us to analyze these cell lines for deletions of genes
encoding components of the NADPH oxidase complex. By
mining SNP microarray data we identified deletions of CYBB,
that is located on the X chromosome, in 2/7 (29%) cHL cell
lines including a heterozygous deletion in the L540 cell line
derived from a female cHL patient and the previously described
homozygous deletion in KMH2 [12]. To identify the putative
second hit in CYBB in the heterozygous L540 cell line and
further mutations in the other five cell lines (excluding KMH2) -
out of which four are derived from male patients - we
sequenced the entire coding sequence and exon-intron
boundaries of the gene, but no mutations were identified. We
extended the analysis to a copy number screen of the CYBB

 gene in 18 primary cHL cases and analyzed lymph node
cryosections by combined immunophenotyping and interphase
cytogenetics. Altogether we identified 8/18 (44%) cases with a
signal constellation indicative for deletions of the CYBB gene
with regard to the sex of the patients and the ploidy of the
cases. These included six deletions restricted to the p arm of
the X chromosome harbouring the CYBB locus with retained X
centromere, and two deletions of the entire X chromosome. No
cases with complete CYBB loss were identified.

Moreover, using the SNP microarray data we identified
alterations of the CYBA locus in 3/7 (43%) cHL cell lines
including losses in HDLM2 and L540 and loss of heterozygosity
(LOH) in the KMH2 cell line. LOH of the NCF2 locus was
observed with a similar frequency, that is 3/7 (43%) cell lines,
in L428, KMH2, UHO1, and of the NCF4 locus in one cell line,
namely UHO1 (Table 1). No copy number losses were
identified for the NCF1 gene.

Taken together, beside frequent losses of CYBB, other
NADPH oxidase encoding genes are recurrently targeted by
genetic alterations in cHL.

mRNA expression of NADPH oxidase subunits is
significantly downregulated in cHL cell lines and
primary biopsies

To analyze if the genomic losses of the NADPH oxidase
encoding genes correspond to decreased mRNA expression of
these genes we used published gene expression data sets of
four cHL cell lines and 20 normal B-cell samples, representing
centroblasts, centrocytes, naive B-cells and memory B-cells
[13]. As shown in Figure 1, besides the downregulation of
CYBB reported before, we also observed significantly lower
expression of CYBA (p<0.001) and complete downregulation
(absent calls) for NCF1 (p<0.001) in the four cHL cell lines as
compared to the B-cell controls. For the NCF4 gene lower
expression was observed in 3/4 cHL cell lines (Figure 1). This
confirms that the NADPH oxidase genes are deregulated at
mRNA level in cHL cell lines and suggests that other
mechanisms than deletions must be responsible for the
observed loss of NCF1 expression.

In order to investigate whether loss or downregulation of the
NADPH complex is also a feature of uncultured primary HRS
cells we extended the analysis to microdissected HRS cells

Table 1. Alterations of the NADPH oxidase complex genes
in cHL cell lines based on SNP 6.0 microarray profiles.

 CYBA CYBB NCF1 NCF2 NCF4
L428   Hypermethylated [16] LOH  
HDLM2 loss  Hypermethylated [16]   
KMH2 LOH bi-allelic loss Hypermethylated [16] LOH  
L1236   Hypermethylated [16]   
SUPHD1   na   
UHO1   Hypermethylated [16] LOH LOH
L540 loss loss na   

LOH - loss of heterozygosity; na – not analyzed.
doi: 10.1371/journal.pone.0084928.t001

Loss of NADPH Oxidase in cHL
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from 12 primary cHL cases [14]. As compared to 25 normal B-
cell samples, significantly lower expression of the NCF1 gene
was observed in HRS cells (p=0.006 probe set 223724_s_at
and p<0.001 tag 214084_x_at) but not of the CYBA, CYBB,
NCF2 and NCF4 genes. In line with this finding, we observed
significantly lower expression of NCF1 on protein level in cHL
cell lines compared to non-Hodgkin lymphoma cell lines
(p<0.005) (Figure 2).

Thus, combining genomic data and expression analysis on
mRNA as well as protein level provides a strong rationale for
the hypothesis of NADPH oxidase impairment resulting in
reduced ROS synthesis capacity in cHL.

CYBB protein is absent in HRS cells of primary cHL
biopsies

As in situ hybridisation to the CYBB locus in primary biopsies
showed recurrent deletions of the gene in HRS cells we
analysed to what extent these changes corresponded to
altered CYBB protein expression. By immunohistochemistry we
investigated 14 of the 18 cases studied by interphase
cytogenetics for expression of the CYBB protein. Remarkably,
in all of these 14 cases we observed complete loss of CYBB
protein expression in all HRS cells irrespective of the presence
or absence of a genomic deletion. In contrast, non-neoplastic
lymphatic cells and macrophages stained positive for the CYBB
protein (Figure 3). This suggests that beside deletions other
mechanisms do exist in HRS cells to silence the remaining
alleles and condition the observed phenotype.

HRS cells show reduced ROS synthesis capacity
In order to functionally test the hypothesis of an impaired

ROS synthesis capacity in HRS cells, we used flow cytometry
to detect and quantify superoxide anion synthesis after CD30
stimulation of the cell lines analyzed. To test if CD30
stimulation induces ROS synthesis we stimulated the two
CD30+ positive cell lines including one T-cell lymphoma and
one nodular lymphocyte predominant Hodgkin lymphoma
(NLPHL) cell line and observed a direct increase of superoxide
anion production. As this demonstrated the usefulness of this
approach, we analyzed six cHL cell lines that are characteristic
for CD30 overexpression and were previously reported to have
an active CD30 signalling pathway [15]. Moreover, we
extended the analysis to six CD30- non-Hodgkin lymphoma cell
lines as negative controls (Table S1).

In detail, we observed a mean 6.74-fold higher superoxide
anion production in the CD30+ non-Hodgkin lymphoma cell
lines as compared to unstimulated cells. In contrast, in the
groups of CD30- lymphoma cell lines as well as in the CD30+

cHL cell lines after CD30 receptor stimulation only minor
increase of superoxide anion production was observed; mean
2.9-fold and 1.9-fold respectively, as compared to untreated
cultures. Noteworthy, none of the cHL CD30+ cell lines showed
elevated superoxide anion synthesis comparable to that
observed in the CD30+ lymphoma cell lines (Figure 4). No
differences in superoxide anion production were observed
depending on the applied doses of CD30.

In conclusion, these results show that the functional
impairment of the NADPH oxidase and the observed lower
levels of ROS are features characteristic for cHL.

Figure 1.  Microarray expression analysis of NADPH oxidase encoding genes CYBA, CYBB, NCF1, NCF2 and
NCF4.  Relative expression of the five genes in 4 cHL cell lines and 20 normal B-cell samples. CB - centroblasts, CC - centrocytes,
N- naive B-cells, M - memory B-cells. The p value is given only for genes showing significant changes in expression between cHL
and controls. Based on published Genechip data [13].
doi: 10.1371/journal.pone.0084928.g001

Loss of NADPH Oxidase in cHL

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e84928



Figure 2.  Western blot analysis of the NCF1 protein.  NCF1 protein expression in 8 non-cHL lymphoma cell lines (LM1, Karpas
299 (CD30+), DEV (CD30+), DG-75, Ca 46, Karpas 422, Daudi, Granta 519) and 6 cHL cell lines (L540, UHO1, L1236, KMH2,
HDLM2, L428 - all CD30+). AU – arbitrary units after normalization to actin signal strength. Each bar presents the mean result of 6
independent Western blots and is exemplified by a blot presented below. cHL cell lines show significantly lower (p<0.005)
expression of the NCF1 protein as compared to the control cell lines.
doi: 10.1371/journal.pone.0084928.g002

Figure 3.  Immunohistochemical staining of the CYBB protein in cHL tissue sections.  The tissue section was stained with the
the primary antibody against CYBB protein. HRS cells (examples indicated by arrows) do not show staining for the protein whereas
surrounding bystander cells stain strongly positive.
doi: 10.1371/journal.pone.0084928.g003

Loss of NADPH Oxidase in cHL
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Discussion

Non-phagocytic NADPH oxidase derived ROS are involved
in modulating signalling pathways and may potentially
contribute to tumor pathogenesis. In support of this hypothesis
we previously reported complete loss of the CYBB gene in the
cHL cell line KMH2 suggesting that NADPH oxidase
inactivation may contribute to cHL development [12]. This
prompted us to analyze the other genes encoding NADPH
oxidase subunits in cHL.

We show CYBA, NCF1 and NCF4 genes to be
downregulated on mRNA level in cHL cell lines as compared to
normal mature B cells. Moreover, for CYBB and NCF1, we
extended these findings to primary HRS cells and analyses of
protein expression. Remarkably, all 14 primary cHL cases
analysed for CYBB protein expression by
immunohistochemistry were negative and the complete lack of
the protein was characteristic for all HRS cells. Therefore,
besides deletions other mechanisms must be responsible for
silencing the remaining CYBB alleles in these cells.

In line with the findings on NCF1, in our recent microarray
based methylation study aimed at the identification of genes
hypermethylated exclusively in cHL cell lines but not in normal
mature B-cell or in other B-cell lymphomas we observed
hypermethylation of the NCF1 gene in all five cHL cell lines

studied namely L428, HDLM2, KMH2, L1236 and UHO1 [16].
However, no elevated methylation was observed for the other
NADPH oxidase genes excluding CYBB that was not present
on the microarray [16]. Taken together, these data provide
strong indication for an epigenetic mechanism of NCF1
silencing and shows that NADPH oxidase encoding genes are
targeted by different molecular mechanisms. In contrast to the
epigenetic silencing of NCF1, we show here that CYBB and
CYBA are frequent targets of genomic losses. Importantly,
germ line mutations in any of the genes manifest in chronic
granulomatous disease, showing that all NADPH oxidase
subunits are crucial for its proper functionality. Thus, loss of
any of the genes in cHL irrespective of the triggering
mechanism will result in impaired ROS synthesis capacity that
we observed in the functional assay. In detail, anti-CD30
stimulation resulted in a strong 6.74-fold increase of superoxide
anion production in the control CD30+ cell lines (positive
control) and weak 2.9-fold increase in the CD30- control cell
lines (negative control). The cHL cell lines in turn, despite being
CD30 positive, showed only a background activation of 1.9-fold
suggesting an impaired functionality of the NADPH oxidase.
We interpret the weak increase of superoxide anion production
in the cHL cell lines and the CD30- control cell lines as an
unspecific reaction of the anti-CD30 antibody Ki-1-positive
tumor cell culture supernatant used for stimulation.

Figure 4.  Functional analysis of NADPH oxidase.  For the functional analysis of NADPH oxidase cell lines were divided into
three groups according to their CD30 status. The CD30+ cell lines Karpas 299 and DEV (positive control cell lines), the CD30- cell
lines LM1, DG-75, Ca 46, Karpas 422, Daudi, Granta 519 (negative control cell lines), and in CD30+ cHL cell lines L540, UHO1,
L1236, KMH2, HDLM2, L428 (cHL cell line cohort). For ROS synthesis all cell lines were stimulated by incubation with an anti-CD30
antibody. Intracellular level of superoxide anion (O2

·-) was determined using the oxidation-sensitive fluorescent probe DHE and
measured by flow cytometry (see materials and methods section for details). The bars represent the increase of superoxide anion
production after stimulation. RFUs - relative fluorescent units describe the production of superoxide anion relative to the untreated
cells of each culture (100% RFUs). CD30+ cHL cell lines and CD30- negative control cell lines show limited increase of superoxide
anion production (mean 1.9-fold and 2.9-fold, respectively) in contrast to both CD30+ positive control cell lines showing substantial
increase of superoxide anion production (mean 6.7) suggesting impaired functionality of the NADPH oxidase in cHL.
doi: 10.1371/journal.pone.0084928.g004

Loss of NADPH Oxidase in cHL
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It has been reported that CD30 signalling causes ROS
production by the mitochondrial pathway, whereas inhibitors of
the  NADPH oxidase complex did not affect the ROS levels
measured in this study [17]. However, this interpretation is
inconclusive, because ROS levels in the study by Chandel and
coworkers were measured with a dye that is not responsive to
superoxide anions generated by the NADPH oxidase complex
[17]. This discrepancy is further evident from their observation,
that in their system also TNF did not stimulate ROS-production
by activation of the NADPH oxidase complex. This is in
contrast to the data of Yazdanpanah et al. [18], and other
reports [19-22] having clearly demonstrated that TNF (and IL-1)
stimulates ROS via the NADPH oxidase complex.

Noteworthy, two of the control cell lines in our experiment,
namely LM1 and DG-75, showed an increase of superoxide
anion production above the background level despite being
reported to be CD30-. We therefore measured CD30
expression of LM1, DG-75, DAUDI, and L428 cell lines using
an APC-labeled monoclonal antibody and compared the
fluorescence intensities to a control antibody that was matched
for isotype, concentration, and fluorochrome label (data not
shown). While LM1 and DG-75 cell lines indeed showed a
minimally higher CD30 labelling compared to Daudi, this
difference did not explain the observed increase in ROS
production of LM1 and DG-75 relative to Daudi cells. ROS
formation in LM1 and DG-75 is therefore likely triggered by a
CD30-independent mechanism caused by unspecific binding of
the antibody. Noteworthy, none of the six cHL cell lines showed
a similar increase above background level.

Interestingly, the CD30+ DEV cell line used in this experiment
is derived from a case of NLPHL [23], a rare subtype of
Hodgkin lymphoma characterized by the presence of
lymphocyte predominant (LP) cells. Our results show that
NADPH oxidase activity differentiates between cHL and
NLPHL suggesting that in case of NLPHL the enzyme remains
functional. LP cells in contrast to HRS cells in the classical form
do not lose their B-cell identity [14]. Therefore, it is tempting to
speculate that the observed loss of NADPH oxidase activity
exclusively in cHL may contribute to its loss of the B-cell
phenotype.

In line with this hypothesis it was demonstrated that ROS
signalling is necessary for normal B-cell differentiation [24].
Besides, ROS were shown to regulate the activity of histone
deacetylases class II (HDACs II) [25,26] and Ehlers et al.
showed that inhibition of HDACs in B-cells leads to almost
complete silencing of B-cell specific genes inducing a HRS cell-
like phenotype [27]. Moreover, we have recently identified the
B-cell related transcription factor ETS1 to be significantly
downregulated in cHL [28]. Interestingly, ETS1 was shown to
function in a loop with the NADPH oxidase and in mice to
regulate ROS levels via the regulation of NCF1 protein
expression [29,30]. Thus, the observed loss of ETS1 in cHL
may result in epigenetic silencing of the NCF1 gene reported
here.

In light of the induction of ROS by CD30 signaling in several
CD30+ cell lines and the strong and constitutive CD30
expression in primary HRS cells of cHL, one may speculate
that the inactivation or downregulation of NADPH oxidase

represents a strategy of the HRS cells to escape from an
overwhelming and toxic ROS production, that could otherwise
impair HRS cell survival.

In summary, in this study we show multiple alterations
targeting the NADPH oxidase genes and impaired functionality
of the enzyme in vivo. Moreover, we suggest that the loss of
ROS signaling during B-cell lineage development may
potentially contribute to the loss of B-cell phenotype of HRS
cells.

Materials and Methods

Cell lines
DNA and / or cells from seven cHL cell lines, i.e. L428,

HDLM2, KMH2, L1236, SUPHD1, UHO1, L540 were obtained
from Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (DSMZ) (Braunschweig, Germany) or were
kindly provided by Dr. Andreas Bräuninger (University Hospital
Giessen, Germany) (cells: UHO1 [31], L540 [32]). Cell line DEV
(of NLPHL origin) [33] was obtained from the Department of
Genetics of the University of Groningen, the Netherlands. The
non-Hodgkin cell lines DG-75, Ca 46 and Daudi (Burkitt
lymphomas), Karpas 422 (diffuse large B-cell lymphoma) and
Granta 519 (mantle cell lymphoma) were obtained from DSMZ,
whereas LM1 (diffuse large B-cell lymphoma) [34] was kindly
provided by Dr. Wilhelm Woessmann (University Hospital
Giessen, Germany), Karpas 299 (histiocytic high-grade
lymphoma) [35] was obtained from the II Department of
Medicine (University Clinic Kiel, Germany) (Table S1). Cell
lines were grown in RPMI-1640 medium with Glutamax-1
(Invitrogen, Karlsruhe, Germany), supplemented with 10% or
20% (HDLM2, SUPHD1, LM1) fetal calf serum and 100 U/ml
penicillin/streptomycin at 37°C in an atmosphere containing 5%
CO2 with the exception of Granta 519 which was cultured in
DMEM medium.

SNP 6.0 microarray analysis of cHL cell lines
DNA from cHL cell lines L428, HDLM2, KMH2, L1236,

SUPHD1, UHO1 and L540 was hybridized to genome-wide
human SNP array 6.0 (Affymetrix, Santa Clara, CA, USA) as
described before [36]. In detail, microarrays were washed and
stained with the Fluidics Station 450 (Affymetrix) and scanned
with the GeneChip Scanner 3000 (Affymetrix) using the
Command Console software (Affymetrix). The Birdseed v2
algorithm was used for genotyping. Copy number analysis, loss
of heterozygosity (LOH) analysis and segmentation was
calculated using Genotyping Console software version 3.0.2
(Affymetrix).

Mutation screen of the CYBB gene
The cHL cell lines L428, HDLM2, L1236, SUPHD1, UHO1

and L540 were analyzed for mutations in the CYBB gene.
Primer sequences for the mutation screening were designed
using the Primer3 v. 0.4.0 software (http://frodo.wi.mit.edu/
primer3/) and are available on request. DNA genomic
sequences were downloaded from the UCSC Genome Browser
(www.genome.ucsc.edu). PCR products encompassing each
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exon together with the 5’ and 3’ splicing sites were Sanger
sequenced using both the forward and reverse primer by
standard procedures. The fluorograms were analyzed using the
Chromas Lite 2.01 software.

Interphase cytogenetic analysis of the CYBB gene in
primary cHL biopsies

For FICTION (Fluorescence Immunophenotyping and
interphase Cytogenetic as a Tool for Investigation Of
Neoplasia) the Bacterial Artificial Chromosome (BAC) probe
RP11-299O2 labeled in SpectrumGreen (Abbott/Vysis,
Downers Grove, IL, USA) spanning the CYBB locus together
with the centromeric CEPX SpectrumOrange (Abbott/Vysis)
probe was used as described before [37,38]. Cryosections
were first incubated with a monoclonal antibody against CD30
and detected with Alexa-594-conjugated secondary antibody
(Molecular Probes, Leiden, The Netherlands). Always 5-20
large, CD30+ cells /case were evaluated independently by two
observers.

The threshold for the detection of a deletion was arbitrarily
set to 30%. In detail, a deletion was scored in two cases: (i) if
the signal number of the CYBB probe was lower than the signal
number of the CEPX probe and lower than the expected
number of CEPX signals in at least 30% HRS cell nuclei / case;
(ii) if the signal number of the CYBB probe was lower than the
expected number of CEPX signals in at least 30% HRS cell
nuclei / case. In the first case a deletion of the X p arm
harbouring the CYBB locus was scored and in the second a
deletion of whole chromosome X.

The expected number of CEPX signals was estimated based
on the ploidy of the case and the sex of the patient. Ploidy
levels of the cases were estimated by taking median signal
numbers for the chromosome enumeration probes CEP6 [36]
CEP10 (unpublished), CEP16 [39] and CEP17 [40].

Slides were analyzed using a Zeiss fluorescence microscope
(Göttingen, Germany) equipped with appropriate filter sets
(AHF, Tübingen, Germany) and documented using an ISIS
imaging system (MetaSystems, Altlussheim, Germany).

Mining of microarray gene expression profiles of cell
lines, microdissected primary HRS cells and controls

Published gene expression profiles from Affymetrix U95
array of L428, HDLM2, KMH2 and L1236 cHL cell lines and
normal B-cell controls (5 x centroblasts, 5 x centrocytes, 5 x
naive B-cells, 5 x memory B-cells) [13] and U133 plus 2.0 array
of 12 microdissected primary HRS cells samples and normal B-
cell controls (5 x memory B-cells, 5 x plasma cells, 5 x naive B-
cells, 5 x centrocytes, 5 x centroblasts) [14] were used for
expression analysis. Data for the respective expression tags for
the CYBA, CYBB, NCF1, NCF2 and NCF4 genes was
extracted and visualised using the GeneCluster 2.0 software.
Relative expression of the analyzed genes across the samples
was compared using t-test. The gene expression dataset is
available at http://ICG.cpmc.columbia.edu/faculty.htm and
http://www.ncbi.nlm.nih.gov/geo (accession no. GSE 12453,
14879, 40160).

Western blot
The cHL cell lines L428, HDLM2, KMH2, L1236, UHO1 and

L540 and control cell lines LM1, Karpas 299, DEV, DG-75,
Ca-46, Karpas 422, Daudi and Granta 519 were analyzed for
NCF1 protein expression. Primary anti-NCF1 / p47-phox
(ab795) (Abcam, Cambridge, UK) antibody detected by the
secondary anti-Goat IgG (H+L) antibody conjugated with
alkaline phosphatase (Jakson ImmunoResearch, USA) was
used.

Chemicals were purchased from Sigma-Aldrich (Sigma-
Aldrich Chemie GmbH Munich, Germany) unless otherwise
stated. Cells were harvested, washed twice with PBS
(phosphate-buffered sodium) and lysed for 15 min at 4°C in
lysis buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 0.25%
sodium deoxycholate, 1 mM sodium orthovanadate, pH 7.4,
1% Nonidet P40, 1% Triton X–100, 1 mM PMSF
(phenylmethylsulfonyl fluoride), protease inhibitor cocktail
(Roche Diagnostics Deutschland GmbH, Mannheim, Germany)
and sonicated for 5 s on ice. The homogenate cells were
centrifuged at 1000 x g for 10 min at 4°C. Protein concentration
of cell lysates was determined by the bicinchoninic acid method
using the BCA Protein Assay Reagents (Thermo Scientific /
Pierce, Waltham, USA).

Proteins were fractionated by 12.5% SDS-PAGE and
transferred to nitrocellulose membrane. Membranes were
blocked for 30 min at room temperature in Tris-buffered saline
containing 0.1% (v/v) Tween-20, 5% milk powder and washed
twice in Tris-buffered saline containing 0.1% (v/v) Tween-20.
After incubation at room temperature with primary antibodies,
membranes were washed with Tris-buffered saline containing
0.1% (v/v) Tween-20 and incubated with a 1:5,000 dilution of
secondary anti-mouse horseradish peroxidase conjugated
antibodies for 2 h at room temperature. Membranes were
washed and developed using ECL detection reagent (GE
Healthcare, Munich, Germany). Developed membranes were
exposed to x-ray film (GE Healthcare). Antibodies against actin
(C-11) SC-1615 (Santa Cruz) were used to verify equal loading
of the lanes.

Western blot quantification was done by densitometric
analysis of the scanned films using Molecular Dynamics
Personal Densitometer (Molecular Dynamics, Sunnyvale, USA)
and the Image Quant 5.2 software (Molecular Dynamics).
Relative protein quantity in relation to actin was measured and
calculated for each cell line as arbitrary units (AU). For each of
the analyzed proteins 6 independent Western blots were
performed and a mean value of the quantifications was
calculated.

Immunohistochemistry
Immunohistochemical staining of CYBB protein was

performed using a mouse monoclonal antibody as follows.
FFPE tissue section (1-2 µm) were processed for antigen
retrieval by boiling in citrate puffer of pH6 in a pressure cooker
for 3 minutes. Incubation by the primary antibody against
CYBB (NOX2/gp91phox clone ab139371, Abcam,
Cambridge/UK) (1:100 dilution) was performed for 1 h at room
temperature. Immunoperoxidase staining was developed using
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a diaminobenzidine chromogen kit (DAKO, Glostur, Denmark).
Counterstaining was done with Hemalaun.

The sections were evaluated with a Olympus BX43
microscope equipped with a CCD camera DP 72 (Olympus)
and documented with CellSens Entry (Olympus) software.

Detection and quantification of superoxide anion in cell
lines

The cHL cell lines L428, HDLM2, KMH2, L1236, UHO1 and
L540 and control cell lines Karpas 299, DEV, LM1, DG-75,
Ca-46, Karpas 422, Daudi and Granta 519 were analyzed for
superoxide anion production. To stimulate superoxide anions
synthesis we used anti-CD30 antibody from Ki-1-positive tumor
cell culture supernatant that was kindly provided by Dr. H.P.
Hansen (Department of Internal Medicine I, University Hospital
Cologne, Germany). The supernatant was purified using
protein G Sepharose (GE Healthcare) and diluted on the
protein G matrix (GE Healthcare) with Glycin / HCl buffer pH
2.7. The antibody was stored in phosphate-buffered solution,
pH 7.2.

Prior to stimulation, cells were harvested and diluted to a
concentration of 3.10E5 cells/150 µl in fresh RPMI 1640
medium or DMEM. Cells were incubated simultaneously with
anti-CD30 antibody and 0.03 mM DHE (dihydroethidium)
(Invitrogen / Molecular Probes, Karlsruhe, Germany) for 30
min. at 37°C in the dark.

Intracellular level of superoxide anion (O2
·-) was determined

using the oxidation-sensitive fluorescent probe DHE resulting in
a color shift of the dyes as described before [41,42]. The red
fluorescence was detected with the FL2 filter by the
FACSCalibur flow cytometer and analyzed by the BD
CellQuest Pro software (BD FACSCalibur, Becton Dickinson,
Heidelberg, Germany).

Each cell line was independently analyzed in two or three
replications in four CD30 concentrations: untreated, 1 µg, 5 µg
and 10 µg. In each replication the fluorescence intensity was
measured three to four times after 30 min incubation with anti-
CD30 and mean values were calculated. The mean value of

the untreated cells served as standard and was regarded as
100% RFUs (relative fluorescent unit). The % RFUs of the cell
lines incubated with the anti-CD30 antibody were calculated
relatively to untreated cells and presented as fold change of
superoxide anion production.

The cell lines analyzed were divided into three groups: 2
CD30+ lymphoma cell lines as positive control; 6 CD30-

lymphoma cell lines as negative controls, and 6 CD30+ cHL cell
lines (Figure 4).
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