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Abstract

The random split tree introduced by Devroye (1999) is considered. We derive a second order
expansion for the mean of its internal path length and furthermore obtain a limit law by the
contraction method. As an assumption we need the splitter having a Lebesgue density and mass
in every neighborhood of 1. We use properly stopped homogeneous Markov chains, for which
limit results in total variation distance as well as renewal theory are used. Furthermore, we
extend this method to obtain the corresponding results for the Wiener index.
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1 Introduction

The random split tree introduced by Devroye (1999) is a general tree model which for special
choices of its parameters covers various random trees that are fundamental in Computer Science for
their use as data structures, e.g. binary search trees, quadtrees, m-ary search trees, simplex trees,
tries etc. Many characteristic quantities of these trees such as node depths, height, path length or
other distance measures between nodes describe the complexity of algorithms that make use of the
trees. In the probabilistic analysis of algorithms the asymptotic behavior of such quantities is studied
for this reason. Whereas often such characteristic quantities are studied one by one for each tree
Devroye’s idea was to derive universal results valid for the whole class of his split tree model.

We recall the definition of the split tree from Devroye (1999). Four parameters b, s, s0, s1 ∈ N0 are
given where b ≥ 2 is the branching factor, s > 0 is the vertex capacity and s0 and s1 satisfy the two
conditions

0≤ s0 ≤ s, 0≤ bs1 ≤ s+ 1− s0.

Furthermore, a random vector V = (V1, . . . , Vb) ∈ [0,1]b with
∑b

k=1 Vk = 1 is given. The random
split tree of size n is obtained by distributing n balls to the nodes of the infinite b-ary tree according
to the following procedure. For a node u of the b-ary tree let C(u) denote the number of balls
already assigned to this node and N(u) be the number of balls associated to any node in the subtree
rooted at this node. For each node u take an independent copy V (u) = (V (u)1 , . . . , V (u)b ) of the random
vector V . Initially, there are no balls (i.e. C(u) = 0 for all u) distributed. The balls are added to the
tree sequentially. Adding a ball to a tree rooted at u proceeds as follows:

1. If u is not a leaf (i.e. C(u) < N(u)), choose child i with probability V (u)i , increment N(u) by 1
and recursively add the ball to the subtree rooted at child i.

2. If u is a leaf and C(u) = N(u) < s, then add the ball to u and stop. C(u) and N(u) are
incremented by 1.

3. If u is a leaf but C(u) = N(u) = s, we set N(u) = s+ 1 and C(u) = s0, place s0 ≤ s randomly
selected balls at u, give s1 randomly selected balls to each of the b children of u and set C(v) =
s1 = N(v) for all children v of u. After that, we add each of the remaining s+ 1− s0− bs1 ≥ 0
balls one by one randomly and independently to the subtree rooted at child i with probability
V (u)i by applying the procedure recursively.

Usually, one assumes that Vi
d
= V1 =: V for all i = 2, . . . , b where V is called the splitter and its

distribution is called the splitting distribution. By
d
= it is denoted that left and right hand side

have identical distributions. Whenever the functional under consideration is independent of the
tree ordering, this assumption does not mean any loss of generality. This can be seen by a random
permutation argument, already stated in Devroye (1999). In this paper we need some additional
assumption:

General assumption: Throughout this paper we assume that the distribution of V has a Lebesgue
density fV and that for the distribution function we have FV (x)< 1 for all x < 1.

As mentioned in the beginning, the random split tree models many common random trees. For
instance, choosing s = s0 = b − 1 for some b ≥ 2, s1 = 0 and V = min{U1, . . . , Ub−1} where
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U1, . . . , Ub−1 are independent random variables uniformly distributed on [0,1] one gets the random
b-ary search tree. The random median-of-(2k + 1) binary search tree can be realized by setting
b = 2, s = 2k, s0 = 1, s1 = k and V = median(U1, . . . , U2k+1). Also some digital data structures are
covered by the split tree model. For V uniformly distributed on the deterministic set {p1, . . . , pb},
s = 1 and s1 = 0 one obtains in the case s0 = 0 the trie and in the case s0 = 1 the digital search
tree. In Table 1 in Devroye (1999) more examples of important tree models are listed with the
corresponding choices of the parameters.

The general assumption and with it the results of this paper hold true for many of these examples
as random binary search trees, random b-ary search trees, random quadtrees, random median-of-
(2k+ 1) binary search trees, random simplex trees, (extended) AB trees and random m-grid trees.
Whereas the results are not applicable to the common digital data structures as tries and digital
search trees.

The depth of the n-th ball in a random split tree, denoted by Dn, is the number of edges on the path
from the ball to the root of the tree. The internal path length of balls in the split tree is the sum of
all depths of balls and is denoted by Pn for the tree with n balls. Thus, we have

Pn =
n
∑

k=1

Dk.

The asymptotic expansion of the expectation of Pn was investigated for m-ary search trees in Mah-
moud (1986), for random quadtrees by Flajolet et al. (1995) and for the median of (2k+ 1)-binary
search tree by Chern and Hwang (2001) and Rösler (2001). In Holmgren (2010) the internal path
length of random split trees is considered under the assumption that the splitting distribution is non-
lattice. The first term and an upper bound of the second term of the asymptotic mean are derived
using renewal theory.

Limit theorems for the distribution of the path length are proved for the random binary search tree
in Régnier (1989) and Rösler (1991) and for the random recursive tree in Dobrow and Fill (1999).

Using the contraction method, Neininger and Rüschendorf (1999, Theorem 5.1) showed a universal
limit theorem for the internal path length of random split trees under the assumption that the
asymptotic expansion of the expectation of the internal path length is of the form

E[Pn] = d1n log n+ d2n+ o(n) (1)

as n→∞. Therefore, it is of interest to characterize all splitting distributions providing an asymp-
totic expectation of the form (1). The first result of this paper is the following.

Theorem 1.1. Let Pn denote the internal path length in a random split tree of size n with branching
factor b where the one-dimensional marginal distribution V of the splitting vector fulfills the general
assumption. Then there exists a constant cp ∈R with

E[Pn] =
1

µ
n log n+ cpn+ o(n)

as n→∞ where µ=−bE[V log V ].
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To state the result which follows from the combination of the limit theorem from Neininger and
Rüschendorf (1999) with Theorem 1.1 we introduce some notation. ByM0,2 we denote the set of
centered probability measures on R with finite second moments. We denote the distribution of a
random variable X by L (X ) or PX . The Wasserstein-metric `2 onM0,2 is defined by

`2(ν1,ν2) := inf{‖X − Y ‖2 :L (X ) = ν1,L (Y ) = ν2} (2)

where the L2-norm ‖ · ‖2 is given by ‖X‖2 = (E[‖X‖2])1/2. For random variables X and Y we
set `2(X , Y ) := `2(L (X ),L (Y )). It is well known that convergence with respect to the metric `2

(denoted by
`2−→) is equivalent to weak convergence plus convergence of the second moments (see

e.g. Bickel and Freedman (1981)).

Corollary 1.2. Let Pn denote the internal path length in a random split tree of size n where the one-
dimensional marginal distribution of the splitting vector (V1, . . . , Vb) fulfills the general assumption.
Define Xn := (Pn− E[Pn])/n. Then the following holds true:

1. As n→∞ we have `2(Xn, X )→ 0 where L (X ) is the inM0,2 unique solution of the fixed point
equation

X
d
=

b
∑

k=1

VkX (k)+ 1+
1

µ

b
∑

k=1

Vk log Vk

where µ := −bE[V1 log V1], L (X (k)) = L (X ) for all k = 1, . . . , b and
X , X (1), . . . , X (b), (V1, . . . , Vb) are independent.

2. In particular, the convergence in a) implies

Var(Pn) = σ
2n2+ o(n2)

with

σ2 =







1

µ2 E







 

b
∑

k=1

Vk log Vk

!2





− 1







 

1−
b
∑

k=1

E
�

V 2
k

�

!−1

.

3. Exponential moments exist and converge,

E[exp(λXn)]→ E[exp(λX )], λ ∈R.

4. For all k ∈N we have as n→∞,

P(|Pn− E[Pn]| ≥ εE[Pn]) = O(n−k).

Remark 1.3. The tail bound given in d) is known not to be sharp in particular examples. McDiarmid
and Hayward (1996) and Fill and Janson (2002) give a more precise bound for the random binary
search tree.

The Wiener index of a random split tree is defined as the sum of the distances between all un-
ordered pairs of balls, where the distance between two balls is given by the minimum number of
edges connecting the nodes which are associated to the balls. For trees, the two dimensional vector
consisting of the Wiener index and the internal path length suffices a recursion formula similar to
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that of the latter one. Using this recursion formula, Neininger (2002) proved a limit theorem for
the Wiener index of the random binary search tree and the random recursive tree by the use of the
multivariate contraction theorem. In a final remark, Neininger (2002) mentioned that a limit theo-
rem for the Wiener index of the general split tree can be proved in a similar way after determining
the asymptotic expansion of its expectation sufficiently well.

We prove this asymptotic expansion and use the contraction method to obtain the limit theorem for
the Wiener index of random split trees which fulfil the general assumption.

Theorem 1.4. Let Wn denote the Wiener index in a random split tree of size n with branching factor b
where the one-dimensional marginal distribution V of the splitting vector fulfills the general assumption.
Then there exists a constant cw ∈R with

E[Wn] =
1

µ
n2 log n+ cwn2+ o(n)

as n→∞ where µ=−bE[V log V ].

We denote byM 2
0,2 the set of centered probability measures on R2 with finite second moments. The

Wasserstein-metric `2 on the setM 2
0,2 is defined similarly to the one-dimensional case.

Theorem 1.5. Let (Wn, Pn) denote the vector consisting of the Wiener index and the internal path
length of a random split tree of size n with branching factor b where the one-dimensional marginal
distribution of the splitting vector (V1, . . . , Vb) fulfills the general assumption. Then the following holds
true:

1. We have as n→∞,

`2

��

Wn− E[Wn]
n2 ,

Pn− E[Pn]
n

�

, (W, P)
�

→ 0

where (W, P) is the unique distributional fixed-point of the map T : M 2
0,2 → M

2
0,2 given for

ν ∈M 2
0,2 by

T (ν) :=L

 

b
∑

i=1

�

V 2
i Vi(1− Vi)
0 Vi

��

X (i)1

X (i)2

�

+

�

b∗1
b∗2

�

!

with
�

b∗1
b∗2

�

=
1

µ

b
∑

i=1

Vi log Vi

�

1
1

�

+

 

(1+ cp − cw)
�

1−
∑b

i=1 V 2
i

�

1

!

where L (X (i)) = ν for X (i) := (X (i)1 , X (i)2 ), and X (1), . . . , X (b), D, Z are independent.

2. In particular, the convergence in a) implies

Var(Wn) = σ
2n4+ o(n4)

with some constant σ2 > 0.

Remark 1.6. The constant µ = −bE[V log V ] in the first order terms of the expectations of the
internal path length and of the Wiener index appears already in the results about the height and
depth in Devroye (1999). There, the explicit values of this constant for the individual splitting
distributions are given in Table 2.
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Remark 1.7. Besides the internal path length for the balls considered here, there is also the internal
path length for the nodes where the depths of all nodes are summed up. Since there can be up to
s balls in one node, these two path lengths may differ. In Holmgren (2010), the relation between
the two versions is investigated. Let Nn denote the number of nodes in the random split tree with n
balls. Assuming that the distribution of − log V is non-lattice, P(V = 1) = P(V = 0) = 0 and

E[Nn] = αn+O
�

n

(log n)1+ε

�

(3)

for some constant α > 0 and ε > 0, Holmgren (2010) showed that Theorem 1.1 implies the similar
asymptotic behavior for the internal path length for the nodes in that random split tree. This finally
yields the general limit theorem for the internal path length for the nodes in split trees which
additionally fulfil equation (3). For instance, Mahmoud and Pittel (1989) showed the stronger
result E[Nn] = αn+O(n1−ε) in the case of the b-ary search tree.

It seems that there are no results on the corresponding alternative version of the Wiener index in
terms of the node-to-node distances.

The internal path length and the Wiener index have been considered also for random trees that do
not belong to the class of split trees. A universal limit law for the path length of simply generated
trees is proved in Janson (2003) where the limit distribution is given as a function of the Brownian
excursion. Furthermore, the moments of the limit are derived. For the class of random increasing
trees, which covers in particular the random recursive tree and the plane oriented recursive tree,
the second order asymptotic of the expectation of the internal path length is derived in Bergeron
et al. (1992). In Munsonius and Rüschendorf (2010) the asymptotic behavior of the expectation and
a limit theorem for the internal path length of random b-ary trees with weighted edges is proved.
By special choices of the edge weights, the analogous results are obtained for the class of random
linear recursive trees, which encompasses in particular the random plane oriented recursive tree.
Tail bounds for the Wiener index of random binary search trees have been considered by Ali Khan
and Neininger (2007).

For a random split tree with n balls we denote by In = (In,1, . . . , In,b) the vector of the sizes of the
subtrees, i.e. the number of balls assigned to nodes in the subtrees, rooted at the children of the
root. By the construction of the split tree it follows that In is conditionally given V (root) = (v1, . . . , vb)

multinomial distributed M(n− s0 − bs1; v1, . . . , vb). Thus, under the assumption that Vi
d
= V1 =: V

for all i = 2, . . . , b we obtain

P(In,i = k+ s1) =

∫ 1

0

�

ηn

k

�

xk(1− x)ηn−kdPV (x), (4)

where we set ηn := n− s0 − bs1. Throughout this paper, Bin(m, x) denotes a random variable with
binomial distribution with parameters m ∈N and x ∈ [0, 1].

The proofs of Theorem 1.1 and Theorem 1.4 are based on a method developed in Bruhn (1996)
for recurrences where the toll function is bounded. In Section 2, we recall definitions and results
of Bruhn (1996) and extend his method to the case of an unbounded toll function. We check the
conditions of this method in the case of the random split tree in Section 3. Section 4 is devoted to
the application in the case of the internal path length and the proof of Theorem 1.1. In Section 5
we give the proofs of Theorem 1.4 and Theorem 1.5 concerning the Wiener index.
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2 The setting of Bruhn

Starting from recursion formulas of the form

Hn =
n−1
∑

k=0

νn({k})Hk + r(n)

where νn is a probability measure on {0, . . . , n− 1} for all n ∈ N, the main idea of Bruhn (1996) is
to define a homogeneous Markov chain (St)t∈N with state space E = {− log n : n ∈N} ∪ {1} where
the transition probabilities are given for n> 0 by

P(S1 = x | S0 =− log n) =

(

νn({e−x}), for x ∈ {− log(n− 1), . . . ,− log 1}
νn({0}), for x = 1

and P(S1 = 1 | S0 = 1) = 1. Now, let σ(n1) := inf{t | St > − log n1} be the stopping time when the
Markov chain exceeds − log n1 for n1 ∈ N. Then, Bruhn proved the representation formula given
in the following Lemma. (Since the PhD-thesis of Bruhn seems to be not available in English, the
proofs of Bruhn (1996) are stated in Appendix B.)

We denote by Yt := St −St−1 the increments of S. For x ∈ E we write Px(·) in short for P(· | S0 = x)
and correspondingly Ex[·] for the expectation with respect to the measure Px . We denote by Fx the
distribution function of PS1−x

x , i.e. Fx(y) = P(S1− x ≤ y | S0 = x).

Lemma 2.1. Let Hn be a sequence of real numbers satisfying

Hn =
n−1
∑

k=0

νn({k})Hk + r(n)

for some function r. Then it is for any n1 ∈N with the notations above

Hn = E− log nHexp(−Sσ(n1))
+ E− log n

σ(n1)−1
∑

t=0

r(exp(−St)). (5)

To analyze the Markov chain (St)t∈N we consider in the following a general state space E ⊂R.

Definition 2.2. The Markov chain (St)t∈N0
is said to be an AR-process (approximate renewal) if the

state space E has no lower bound, the increments Yt := St − St−1 are strictly positive, Fx converges
in distribution as x →−∞ to a distribution function F , i.e. for all points t where F is continuous it
is

lim
x→−∞

Fx(t) = F(t),

and 0<
∫

t dF(t)<∞.
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For a ∈ R− we define F̄a : R → [0,1] by F̄a(t) := infx≤a Fx(t) and F a : R → [0,1] by F a(t) :=
supx≤a Fx(t).

Definition 2.3. The set of distributions {Fx} fulfills the integrability condition if

lim
a→−∞

∫

x dF̄a(x) =

∫

x dF(x).

In the case of an AR-process, the theorem of dominated convergence implies that the integrability
condition is equivalent to

∫

x dF̄a(x)<∞ (6)

for some a ∈R.

The first summand in (5) can be handled by considering the distribution of Sσ(n1). The following
key result is implicitly given in Rösler (2001) in a more general setting. The essential part of
Rösler (2001) which gives the proof is stated in Appendix A in a self-contained way. For probability
measures P and Q, let dTV(P,Q) denote their total variation distance. Moreover, we define τ(d) :=
inf{t : St ≥ d}.

Lemma 2.4. Let (St)t∈N be an AR-process which fulfills the integrability condition with a discrete state
space E . If there exist ε > 0, x0 ∈R− and K > 0 such that for all x , y ≤ x0 with |x − y| ≤ K we have

dTV

�

PS1
x , PS1

y

�

< 2(1− ε) and lim
x0→−∞

inf
z<y≤x0

Pz(Sτ(y)− y ≤ K)> 0, (7)

then it holds for any a ∈R−

lim
x0→−∞

sup
x ,y≤x0

dTV

�

P
Sτ(a)
x , P

Sτ(a)
y

�

= 0.

The asymptotic behavior of the second summand in (5) can be analyzed by using the elementary
renewal theorem. Since the Markov chain (St)t∈N is not a renewal process, we couple it with three
renewal processes using the functions F , F̄a and F a. Because of the convergence limx→−∞ Fx(t) =
F(t), the functions F̄a and F a are again distribution functions.

Considering the AR-process (St) from above, there exists a sequence of independent random vari-
ables (Ur)r∈N uniformly distributed on [0,1] such that

Yt = F−1
St−1
◦ Ut

for all t ∈N.

For a ∈ R we define three renewal processes S̄(a), S(a) and S̃ by S̄(a)0 = S(a)0 = S̃0 = S0 and the i.i.d.
increments Ȳ (a)r , Y (a)r and Ỹr given by

Ȳ (a)t := F̄−1
a ◦ Ut , Y (a)t := F−1

a ◦ Ut and Ỹr := F−1 ◦ Ut .

Thus, for all t ∈N we have Y (a)t ≤ St − St−1 ≤ Ȳ (a)t whenever St−1 ≤ a.

Moreover, for each t ∈ N the sequence Ȳ (a)t is decreasing and Y (a)t is increasing as a → −∞. Both
sequences converge almost surely to Ỹr .
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Finally, we define the following stopping times for a, d ∈R:

τ(d) := inf{t : St ≥ d}, γ(d) := inf{t : St − S0 ≥ d},

τ̄(a)(d) := inf{t : S̄(a)t ≥ d}, γ̄(a)(d) := inf{t : S̄(a)t − S̄(a)0 ≥ d},

τ(a)(d) := inf{t : S(a)t ≥ d}, γ(a)(d) := inf{t : S(a)t − S(a)0 ≥ d},

and γ̃(d) := inf{t : S̃t − S̃0 ≥ d}.

Using the renewal process (S̄t)t∈N, Bruhn (1996) shows the following result. (The proof is given in
AppendixB.)

Lemma 2.5 (Bruhn (1996), Lemma 3.4). Consider an AR-process (St) with the notations above. Then
there exist a real number a∗ and a positive real number û(a∗) such that for all measurable functions
l :R→R+, all real numbers y, z and all x ∈ E with x < y < z < a∗ we have

Ex







τ(z)−1
∑

t=τ(y)

l(St)






≤ û(a∗)

dze
∑

n=byc

sup
t∈(n−1,n]

l(t).

To investigate also recurrences where the toll function r is not bounded as it is for example in the
case of the Wiener index, we complete the results of Bruhn by the following lemma and corollary.

Lemma 2.6. It holds for all decreasing continuous functions l :R→R+ and any d ∈R+

lim
a→−∞

E







γ̄(a)(d)
∑

t=1

l
�

S̄(a)t − S̄(a)0

�






= lim

a→−∞
E









γ(a)(d)
∑

t=1

l
�

S(a)t − S(a)0

�









= E





γ̃(d)
∑

t=1

l
�

S̃t − S̃0

�



<∞.

Proof. First, we consider the sequence (S̄(a)t ). By the construction we know that for each s, t ∈N the
mapping a 7→ Ȳ (a)s and thus the mapping a 7→ S̄(a)t − S̄(a)0 are decreasing and converge almost surely
to Ỹs and S̃t − S̃0 as a→−∞. This yields that for d ∈ R the mapping a 7→ γ̄(a)(d) is increasing and
bounded from above by γ̃(d). It is easy to see that γ̄(a)(d)→ γ̃(d) almost surely as a→−∞. Since
γ̄(a)(d) ∈N for all a ∈R and l is continuous, we obtain as a→−∞ almost surely

γ̄(a)(d)
∑

t=1

l
�

S̄(a)t − S̄(a)0

�

→
γ̃(d)
∑

t=1

l
�

S̃(a)t − S̃(a)0

�

.

Furthermore, the left hand side is increasing as a→−∞ and

E





γ̃(d)
∑

t=1

l
�

S̃(a)t − S̃(a)0

�



≤ l(0)E[γ̃(d)]
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where we use that l is decreasing. The positivity of Ỹs ensures by Gut (1988, Chapter II, Theorem
3.1) that E[γ̃(d)]<∞ and the claim follows for the first sum.

With the same arguments, we have

γ(a)(d)
∑

t=1

l
�

S(a)t − S(a)0

�

→
γ̃(d)
∑

t=1

l
�

S̃(a)t − S̃(a)0

�

(8)

almost surely as a→−∞ and the left hand side is decreasing. It is

E









γ(a)(d)
∑

t=1

l
�

S(a)t − S(a)0

�









≤ l(0)E[γ(a)(d)].

The monotone convergence theorem provides lima→−∞ E[Y (a)t ] = E[Ỹt] > 0. Thus, E[Y (a)t ] > 0 for
a ∈ R small enough and the elementary renewal theorem (see e.g. Gut 1988, Section II.4) implies
E[γ(a)(d)]<∞. So, the claim follows from (8) by the monotone convergence theorem.

Choosing l(x) = exp(−αx) with α > 0 yields the following result.

Corollary 2.7. For α, d > 0 there exists a constant c ∈ R such that for each ε > 0 there exists n0 ∈N
with

1

nα
E− log n





τ(− log n+d)
∑

t=0

exp(−αSt)



 ∈ (c− ε, c+ ε)

for all n≥ n0.

Proof. By construction we have for − log n+ d ≤ a

γ̄(a)(d)
∑

t=0

exp(−α(S̄(a)t − S̄(a)0 ))≤
γ(d)
∑

t=0

exp(−α(St − S0)

≤
γ(d)
∑

t=0

exp(−α(S(a)t − S(a)0 )).

For ε > 0, Lemma 2.6 provides a∗ ∈R such that for all a < a∗ we have
�

�

�

�

�

�

E





γ̄(d)
∑

t=0

exp
�

−α
�

S̄(a)t − S̄(a)0

��



− E







γ(d)
∑

t=0

exp
�

−α
�

S(a)t − S(a)0

��







�

�

�

�

�

�

< ε.

We choose n0 such that − log n0+ d ≤ a∗. Since we have for n≥ n0

E− log n





τ(− log n+d)
∑

t=0

exp(−αSt)



= nαE− log n





γ(d)
∑

t=0

exp
�

−α(St − S0)
�





the claim follows using Lemma 2.6 once more.
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3 Recurrences for the random split tree

We consider a random split tree with the notation as introduced in Section 1 and set νn({k}) :=
b k

n
P(In,1 = k)+ s0

n
1{k=n−s0}. This function νn defines a probability measure on the set {0, . . . , n−s0}.

This is seen by summing up all values

n−s0
∑

k=0

νn({k}) = b
1

n
E[In,1] +

s0

n

=
n− s0

n
+

s0

n
= 1.

For the rest of the paper, we consider the Markov chain (St)t∈N from Section 2 where the transition
probabilities are given by this special choice of ν . In this section, we prove that for this choice the
conditions of the Lemmata of the previous section are fulfilled.

3.1 The distribution of the subtreesize

When doing this, we frequently use the fact that the size of the first subtree rescaled properly
converges.

Lemma 3.1. For ε > 0 we have

P

�
�

�

�

�

In,1

n
− V

�

�

�

�

≥ ε
�

≤ 2 exp

�

−
nε2

4

�

1+O
�

1

n

��

�

.

In particular, this yields

E

�
�

�

�

�

In,1

n
− V

�

�

�

�

�

= O
�

n−
1
3

�

.

Proof. Starting from the distribution of In,1 given in (4) we obtain by Bernstein’s inequality

P

�
�

�

�

�

In,1

n
− V

�

�

�

�

≥ ε
�

=

∫ 1

0

P
��

�Bin(ηn, x)− nx
�

�≥ nε
�

dPV (x)

≤ 2exp

�

−
nε2

4

�

1+O
�

1

n

��

�

.

Since it is |In,1/n− V | ≤ 1, this yields for the expectation

E

�
�

�

�

�

In,1

n
− V

�

�

�

�

�

= E

��

1§�
�

�

In,1
n −V

�

�

�≤n−
1
3

ª+1§�
�

�

In,1
n −V

�

�

�>n−
1
3

ª

�
�

�

�

�

In,1

n
− V

�

�

�

�

�

≤ n−
1
3 + 2exp

�

−
n1/3

4

�

1+O
�

1

n

��

�

= O
�

n−
1
3

�

.
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At this point, we prove some asymptotic expansions needed later.

Lemma 3.2. For the size of the first subtree In,1 in a random split tree with splitting distribution V it
holds

E[I2
n,1] = E[V 2]n2+ o(n2),

E[In,1 log In,1] =
1

b
n log n+ E[V log V ]n+ o(n)

and
E[I2

n,1 log In,1] = E[V 2]n2 log n+ E[V 2 log V ]n2+ o(n2).

Proof. It is

E[I2
n,1] =

∫ 1

0

E[Bin(ηn, x)2]dPV (x)

=

∫ 1

0

(ηn x(1− x) +η2
n x2)dPV (x)

= E[V 2]n2+ o(n2). (9)

Furthermore, we have by Lemma 3.1 In,1/n→ V in probability. Since x 7→ xk log x is bounded on
the interval [0,1], we obtain for k = 1,2

E





I k
n,1

nk
log

In,1

n



→ E[V k log V ].

This implies

E
�

I k
n,1 log

In,1

n

�

= E[V k log V ]nk + o(nk).

On the other hand we have

E
�

I k
n,1 log

In,1

n

�

= E
h

I k
n,1 log In,1

i

− E
h

I k
n,1

i

log n.

The claims follow with result (9) since we have E[In,1] = (n− s0)/b.

3.2 The Markov chain for the random split tree

Now, we consider the Markov chain from Section 2 with the transition probabilities νn({k}) =
b k

n
P(In,1 = k) + s0

n
1{k=n−s0}.

Lemma 3.3. The process (St)t∈N0
is an AR-process and the corresponding set of distributions {Fx}

fulfills the integrability condition.
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Proof. Since νn is a probability measure on the set {0, . . . , n − s0} we have Yt > 0 for all t. For
x =− log n we have by dominated convergence and Lemma 3.1 for any y ∈R

Fx(y) = P(Y1 ≤ y | S0 = x)

=
∑

k∈N:− log k
n≤y

νn({k})

=
∑

k∈N:− log k
n≤y

b
k

n
P(In,1 = k) +

s0

n
1{n−s0≥e−y n}

= bE
�

In,1

n
1{− log(In,1/n)≤y}

�

+
s0

n
1{n−s0≥e−y n}

n→∞−−−→ bE[V1{− log V≤y}] =: F(y).

Moreover, we obtain with Fubini’s Theorem
∫ ∞

0

t dF(t) =

∫ ∞

0

(1− F(t))dt

=

∫ ∞

0

bE
�

V1{− log V>t}
�

dt

= − bE[V log V ].

This yields 0<
∫

t dF(t)<∞.

It remains to show the integrability condition, which means
∫

t dF̄a(t)<∞

for an a ∈R and F̄a(t) := infx≤a Fx(t). Using again Fubini’s Theorem we obtain

∫

t dF̄a(t) =

∫ ∫ ∞

0

1[0,t](y)dydF̄a(t)

=

∫ ∞

0

∫

1[y,∞)(t)dF̄a(t)dy.

Since
∫

1[y,∞)(t)dF̄a(t) = lim
z→∞

F̄a(z)− F̄a(y)≤ 1− F̄a(y)

it follows for a =− log m
∫

t dF̄a(t)≤
∫ ∞

0

sup
x≤a
(1− Fx(y))dy

≤
∫ ∞

0

b sup
n≥m

E
�

In,1

n
1{− log(In,1/n)>y}

�

︸ ︷︷ ︸

≤e−y

dy
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≤
∫ ∞

0

be−y dy

<∞.

Lemma 3.4. The process (St)t∈N fulfills the assumptions of Lemma 2.4.

Proof. In the previous proof we have already shown that (St)t∈N is an AR-process, which fulfills the
integrability condition. The state space E = {− log n | n ∈ N} ∪ {1} is discrete. It remains to show
conditions (7). Let x =− log n and y =− log m with m< n. It is

dTV

�

PS1
x , PS1

y

�

= 2− 2
∑

z∈E

min{Px(S1 = z), Py(S1 = z)}. (10)

We will show that there exists 0< α̃ < β̃ < 1 such that for n large enough

0<
bβ̃nc+s1
∑

k=dα̃ne+s1

min

(

∫ 1

0

�

ηl − 1

k− s1− 1

�

zk−s1(1− z)ηl−k+s1dPV (z) | l = n, m

)

. (11)

For k = cn+ o(n) with c ∈ (0,1) and n→∞ we have

Px(S1 =− log k)

= b
k

n
P(In,1 = k) +

s0

n
1{k=n−s0}

= b
k

k− s1

ηn

n

∫ 1

0

k− s1

ηn
P(Bin(ηn, z) = k− s1)dPV (z) +

s0

n
1{k=n−s0}

= (1+ o(1))b

∫ 1

0

�

ηn− 1

k− s1− 1

�

zk−s1(1− z)ηn−k+s1dPV (z) + o(1).

Hence, inequality (11) and equation (10) will imply

dTV

�

PS1
x , PS1

y

�

< 2− 2ε

for some ε > 0. The condition |x − y| ≤ K is equivalent to m≥ e−K n.

By the general assumption, the distribution of V has a Lebesgue density fV . Thus, there exists
z̃ ∈ (0, 1) with fV (z̃) > 0. Theorem 3 in Section 1.7.2 of Evans and Gariepy (1992) (which is a
Corollary from the Lebesgue-Besicovitch Differentiation Theorem) implies that we can find a non-
empty interval (α,β) ⊂ (0,1) and ε1 > 0 such that λ({z ∈ (α,β) | fV (z) < ε1}) = 0 with λ the
Lebesgue measure. Now, we can choose some ε2 > 0 and K > 0 with α̃ := α+ε2 < e−K(β−ε2) =: β̃ .

We will show that for n large enough, for all k ∈ [α̃n+ s1, β̃n+ s1]∩N and for all l ∈ [e−K n, n]∩N
it holds

∫ 1

0

�

ηl − 1

k− s1− 1

�

zk−s1(1− z)ηl−k+s1dPV (z)≥
1

2
ε1

1

n+ 1
.
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First, we consider the function g : z 7→ zk−s1(1− z)ηl−k+s1 . Integration by parts yields

∫ 1

0

zk−s1(1− z)ηl−k+s1dz =
k− s1

(ηl + 1)ηl

�

ηl − 1

k− s1− 1

�−1

. (12)

For k = cηl + s1 the function g reaches its maximum at ẑ = c, is increasing on the interval [0, c] and
decreasing on [c, 1]. Therefore, we have for any ε3 ∈ (0, c ∧ (1− c))

∫ c−ε3

0

zcηl (1− z)(1−c)ηl dz ≤ g̃c(ε3)
ηl

and
∫ 1

c+ε3

zcηl (1− z)(1−c)ηl dz ≤ g̃c(−ε3)
ηl

where we set g̃c(ε3) := (c− ε3)c(1− c+ ε3)(1−c). Stirling’s formula yields

�

ηl − 1

cηl − 1

�−1

∼
p

2πc(1− c)
1

c
((1− c)1−ccc)ηl

p
ηl =

r

2π
1− c

c
g̃c(0)

ηl
p
ηl .

Considering the derivative of g̃c in a neighborhood of 0, we obtain g̃c(x) < g̃(0) ≤ 1 for all x 6=
0 with |x | small enough. More precisely, for all c ∈ [α̃, β̃] and ε3 > 0 small enough we have
g̃c(ε3)/ g̃c(0) ∈ (0, C) for some constant C < 1. Thus, for ε3 > 0 small enough and l large enough
we have

∫ c−ε3

0

zcηl (1− z)(1−c)ηl dz ≤
1

4

�

ηl − 1

cηl − 1

�−1 c

ηl + 1

and
∫ 1

c+ε3

zcηl (1− z)(1−c)ηl dz ≤
1

4

�

ηl − 1

cηl − 1

�−1 c

ηl + 1
.

Together with (12), this implies for some 0< ε3 < ε2, l large enough and c ∈ [α̃, β̃] with cηl ∈N
∫ c+ε3

c−ε3

�

ηl − 1

cηl − 1

�

zcηl (1− z)(1−c)ηl dz ≥
1

2

c

ηl + 1
.

We obtain for any k ∈ [α̃n+ s1, β̃n+ s1]∩N and l ∈ [e−K n, n]∩N when n is large enough

∫ 1

0

�

ηl − 1

k− s1− 1

�

zk−s1(1− z)ηl−k+s1dPV (z)

≥ ε1

∫ β

α

�

ηl − 1

k− s1− 1

�

zk−s1(1− z)ηl−k+s1dz

≥
1

2
ε1

α̃

ηl + 1

≥
1

2
ε1

α̃

n+ 1
.
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This finally yields (11):

bβ̃nc+s1
∑

k=dα̃ne+s1

min

(

∫ 1

0

�

ηl − 1

k− s1− 1

�

zk−s1(1− z)ηl−k+s1dPV (z) | l = n, m

)

≥
1

2
ε1

�

β̃ − α̃
�

α̃+ o(1)

> 0.

As in the proof of Lemma 3.3 we see that

Px(Sτ(y)− y ≤ K)≥ inf
x<y

Px(S1− S0 ≤ K)

= F̄y(K)
y→−∞
−−−−→ bE

�

V1{V≥e−K}
�

.

Since e−K < 1 the general assumption FV (x) < 1 for all x < 1 implies bE
�

V1{V≥e−K}
�

> 0. This
shows the second condition and the proof is finished.

4 The internal path length

After these preliminaries, we are now able to prove Theorem 1.1. To show Theorem 1.1 we have to
prove that the sequence

Hn :=
E[Pn]−µ−1n log n

n
converges. The internal path length Pn suffices a recursive representation (see e.g. Neininger and
Rüschendorf 1999, equation (50)) from where we get

E[Pn] =
n−s0
∑

k=0

bP(In,1 = k)E[Pk] + n− s0.

This recursion formula implies

Hn =
n−s0
∑

k=0

νn({k})Hk + t(n)−
s0

n
Hn−s0

with t(n) = 1
n
(n− s0−µ−1n log n+ bµ−1E[In,1 log In,1]) and νn({k}) as in the previous section.

From the result about the mean of the depth in Devroye (1999) we know Hn ≤ C log n for some
constant C > 0. Therefore, we have for any δ1 ∈ (0, 1)

s0

n
Hn−s0

≤ Cs0
log n

n
= O

�

1

nδ1

�

.

Furthermore, because of n= bE[In,1] + s0, we have

t(n) = 1−
1

E[V log V ]
E
�

In,1

n
log

In,1

n

�

+O
�

1
p

n

�

.
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The function x 7→ x log x is Hölder continuous. Using this and considering the rate of convergence
of E[| In,1

n
− V |] in Lemma 3.1 we obtain with Jensen’s inequality t(n) = O(n−δ2) for some δ2 > 0.

Taking all this into account, we get

Hn =
n−s0
∑

k=0

νn({k})Hk + r(n) (13)

where r(n) = O(n−δ) for some δ ∈ (0, 1].

Proof of Theorem 1.1. Equation (13) shows that the condition of Lemma 2.1 is fulfilled. Thus, we
start with the representation of

Hn =
E[Pn]−µ−1n log n

n
from there and show that (Hn)n∈N is a Cauchy sequence. Let ε > 0 be given.

For the second term in (5) we keep in mind that we have already shown |r(n)| ≤ Cn−δ for some
constant 0 < C <∞ and δ ∈ (0,1]. We define l : R→ R+ by l(x) := exp(δx). As in the proof of
Theorem 4.2 in Bruhn (1996) we obtain with Lemma 2.5 for n1 ∈N with − log n1 ≤ a∗

�

�

�

�

E− log n

σ(n1)−1
∑

t=0

r(exp(−St))

�

�

�

�

≤ E− log n

σ(n1)−1
∑

t=0

Cl(St)

≤ Cû(a∗)
d− log n1e
∑

n=−∞
sup

t∈(n−1,n]
l(t)

≤ Cû(a∗)

∫ d− log n1e

−∞
l(t + 1)dt.

Since
∫ 0

−∞ l(t)dt <∞ we can choose n1 ∈N such that we have for all n, m> n1,

�

�

�

�

E− log n

�σ(n1)−1
∑

t=0

r(exp(−St))
�
�

�

�

�

≤
ε

4
.

Considering the first term in (5), we set

a(n1, n) := E− log nHexp(−Sσ(n1))

and claim that there exists n0 such that for all n, m≥ n0 we have |a(n1, n)− a(n1, m)| ≤ ε/2. It is

|a(n1, n)− a(n1, m)|=
�

�

�E− log nHexp(−Sσ(n1))
− E− log mHexp(−Sσ(n1))

�

�

�

=

∫

Hexp(−x)

�

�

�P
Sσ(n1)

− log n− P
Sσ(n1)

− log m

�

�

� (dx)

≤ dTV

�

P
Sσ(n1)

− log n, P
Sσ(n1)

− log m

�

sup
k∈{0,...,n1}

Hk.
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Since n1 is fixed we have supk∈{0,...,n1} |Hk| ≤ C < ∞ with some constant C ∈ R. Lemma 2.4 in
combination with Lemma 3.4 yields the claim.

Taking everything into account, we obtain for all n, m≥max{n0, n1}

�

�Hn−Hm

�

� ≤
�

�a(n1, n)− a(n1, m)
�

�+

�

�

�

�

E− log n

�σ(n1)−1
∑

t=0

r(exp(−St))
�
�

�

�

�

+

�

�

�

�

E− log m

�σ(n1)−1
∑

t=0

r(exp(−St))
�
�

�

�

�

≤ ε.

This shows that (Hn)n∈N is a Cauchy sequence and thus it converges.

Proof of Corollary 1.2. Parts a), c) and d) of Corollary 1.2 are immediate consequences of Theorem
1.1 and Neininger and Rüschendorf (1999, Theorem 5.1). To prove part b), we use that conver-
gence with respect to the `2-metric implies convergence of the second moments. Thus, we obtain
as consequence of part a) limn→∞ E[X 2

n] = E[X 2]. Using the distributional fixed point equation
characterizing X , we have

E[X 2] = E







 

b
∑

k=1

VkX (k)+ 1+
1

µ

b
∑

k=1

Vk log Vk

!2






=
b
∑

k=1

E[V 2
k ]E
h

�

X (k)
�2
i

+E






1+

2

µ

b
∑

k=1

Vk log Vk +
1

µ2

 

b
∑

k=1

Vk log Vk

!2






where we used the independence between (V1, . . . , Vb) and (X (1), . . . , X (b)) as well as the fact that
E[X (k)] = 0 for all k. Since µ=−bE[Vi log Vi] for all i = 1, . . . , b and E[X 2] = E[(X (k))2] =: σ2 the
claim follows.

5 The Wiener index

We now turn to the investigation of the Wiener index. To handle the Wiener index similarly to the
internal path length, we first need a recursion formula for it. The Wiener index is the sum of the
distances between all unordered pairs of balls in the tree. Let ∆k,l denote the distance between the
balls k and l. Then we have

Wn =
∑

k<l

∆k,l .

Subdividing the sum into the sum for all pairs, where both balls are located in the same subtree,
and the sum for all other pairs, we obtain

Wn =
b
∑

i=1

W (i)
In,i
+
∑

i< j

∑

l∈Tn, j

∑

k∈Tn,i

∆k,l
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where W (i)
In,i

denotes the Wiener index of the i-th subtree Tn,i being of size In,i . For k ∈ Tn,i and

l ∈ Tn, j with i 6= j it is ∆k,l = D(i)k + 1+ D( j)l + 1 where D(i)k is the depth of the ball k with respect to

the subtree Tn,i . By symmetry of ∆k,l we can sum up only the first part D(i)k + 1 but for all ordered
pairs of balls and we obtain

∑

i< j

∑

l∈Tn, j

∑

k∈Tn,i

∆k,l =
∑

i 6= j

∑

l∈Tn, j

∑

k∈Tn,i

(D(i)k + 1).

The summation over k ∈ Tn,i yields
∑

i 6= j

∑

l∈Tn, j

∑

k∈Tn,i

(D(i)k + 1) =
∑

i 6= j

∑

l∈Tn, j

(P(i)In,i
+ In,i)

where P(i)In,i
denotes the internal path length of the i-th subtree Tn,i . Since there are all together

n− In,i balls not lying in Tn,i , we finally obtain the recursion formula for the Wiener index of the
random split tree with n balls:

Wn =
b
∑

i=1

h

W (i)
In,i
+ (n− In,i)P

(i)
In,i
+ In,i(n− In,i)

i

. (14)

Proof of Theorem 1.4. Starting from equation (14) and taking the expectation yields

E[Wn] = b
n−s0
∑

k=0

P(In,1 = k)
�

E[Wk] + (n− k)E[Pk] + nk− k2
�

(15)

because all subtrees are identically distributed. Theorem 1.1 implies E[Pk] =
1
µ

k log k+ cpk+ o(k).
Substituting this in (15) yields with E[In,1] = n/b+ o(n),

E[Wn] = b
n−s0
∑

k=0

P(In,1 = k)E[Wk] +
1

µ
b
�

nE[In,1 log In,1]− E[I2
n,1 log In,1]

�

+ (cp + 1)n2− (cp + 1)bE[I2
n,1] + o(n2). (16)

Substituting the results from Lemma 3.2 in (16) provides

E[Wn] =
n−s0
∑

k=0

bP(In,1 = k)E[Wk] +
1

µ
(1− bE[V 2])n2 log n

−
�

b

µ
E[V 2 log V ] + bE[V 2]− cp(1− bE[V 2])

�

n2+ o(n2). (17)

We set

Hn :=
E[Wn]−

1
µ

n2 log n

n
.

To prove Theorem 1.4 it suffices to show that for each ε > 0 there exists a constant c ∈R and n0 ∈N
such that for all n≥ n0

Hn

n
∈ (c− ε, c+ ε).
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So, let ε > 0 be given. Substituting Hn in (17) and using Lemma 3.2 yields

Hn =
n−s0
∑

k=0

νn({k})Hk + r(n)

with
r(n) :=−

�

bE[V 2]− cp(1− bE[V 2])
�

n+ o(n).

We set d̃ := −bE[V 2] + cp(1− bE[V 2]). As in the proof of Theorem 1.1 the conditions of Lemma
2.1 are fulfilled and we have the representation

Hn = E− log nHexp(−Sσ(n1))
+ E− log n

σ(n1)−1
∑

t=0

r(exp(−St)). (18)

We start again with the second term and split it in the following way

E− log n

σ(n1)−1
∑

t=0

r(exp(−St)) = E− log n

τ(− log n+d)
∑

t=0

r(exp(−St))

+ E− log n

σ(n1)−1
∑

t=τ(− log n+d)+1

r(exp(−St)).

For the second summand we obtain by Lemma 2.5 with l(x) := d̃ exp(−x) and n1 large enough such
that − log n1 ≤ a∗

0≤

�

�

�

�

�

�

E− log n

σ(n1)−1
∑

t=τ(− log n+d)+1

r(exp(−St))

�

�

�

�

�

�

≤ û(a∗)
d− log n1e
∑

n=b− log n+dc

sup
t∈(n−1,n]

|d̃|e−t

≤ C

∫ − log n1

− log n+d−3

e−x dx

≤ Cne−d+3

with some constant C . We choose d large enough, such that Ce−d+3 < ε/3. For this d Corollary 2.7
yields n̂0 ∈N such that for all n≥ n̂0

1

n
E− log n

τ(− log n+d)
∑

t=0

r(exp(−St)) ∈
�

c−
ε

3
, c+

ε

3

�

(19)

for some constant c. As in the proof of Theorem 1.1 the first summand in (18) is a Cauchy sequence,
i.e. there exists ñ0 ∈N such that for all n≥ ñ0 we have

�

�

�

�

1

n
E− log n[Hexp(Sσ(n1))

]

�

�

�

�

<
ε

3
.

Altogether, we have seen that for n1 ∈ N with − log n1 ≤ a∗ there exists n0 ∈ N such that for all
n≥ n0 we have

Hn

n
=

1

n
E− log nHexp(−Sσ(n1))

+
1

n
E− log n

σ(n1)−1
∑

t=0

r(exp(−St))
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∈ (c− ε, c+ ε)

with the constant c in (19). Thus, the claim follows.

Proof of Theorem 1.5. We define

wn := E[Wn] =
1

µ
n2 log n+ cwn2+ o(n2),

pn := E[Pn] =
1

µ
n log n+ cpn+ o(n)

and

Xn :=
�

Wn−wn

n2 ,
Pn− pn

n

�T

.

For i ∈ {1, . . . , b} let X (i)n be an independent copy of Xn. Since the subtrees of the random split tree
are independent conditioned upon there sizes, we obtain from (14) for the standardized vector Xn
the following recursion formula

Xn
d
=

b
∑

i=1

A(n)i X (i)In,i
+ b(n)

with

A(n)i :=

�

1
n2 0
0 1

n

��

1 n− In,i
0 1

��

I2
n,i 0
0 In,i

�

=







I2
n,i

n2

In,i(n−In,i)
n2

0
In,i

n







and b(n) =
�

b(n)1 , b(n)2

�T
where

b(n)1 =
1

n2

(

b
∑

i=1

In,i

�

n− In,i

�

−
1

µ
n2 log n− cwn2+ o(n2)

+
b
∑

i=1

wIn,i
+ n

b
∑

i=1

pIn,i
−

b
∑

i=1

In,i pIn,i

)

and

b(n)2 := 1−
1

µ
log n− cp + o(1) +

1

n

b
∑

i=1

pIn,i
+ o(1).

Using
∑b

i=1 In,i = n− s0 it follows

n
b
∑

i=1

pIn,i
−

1

µ
n2 log n= n

1

µ

b
∑

i=1

In,i log
In,i

n
+ cpn(n− s0) + o(n2)

and

b
∑

i=1

wIn,i
−

b
∑

i=1

In,i pIn,i
= (cw − cp)

b
∑

i=1

I2
n,i + o(n2).
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This yields with In,i = o(n2)

b(n)1 =
1

µ

b
∑

i=1

In,i

n
log

In,i

n
+ (1+ cp − cw)

 

1−
b
∑

i=1

I2
n,i

n2

!

+ o(1). (20)

By similar arguments we have

b(n)2 =
1

µ

b
∑

i=1

In,i

n
log

In,i

n
+ 1+ o(1). (21)

In order to use the contraction method as in Neininger (2001, Theorem 4.1) it suffices to show that
for n→∞

�

A(n)1 , . . . , A(n)b , b(n)
�

`2−→
�

A∗1, . . . , A∗b, b∗
�

, (22)

E
�

1{In,i≤l}∪{In,i=n}





(A(n)i )
T A(n)i







op

�

→ 0 (23)

for all l ∈N and
b
∑

i=1

E


(A∗i )
T A∗i




op < 1 (24)

where ‖ · ‖op is the operator norm.

By Lemma 3.1 we know that In/n converges in probability to V := (V1, . . . , Vb), which is the splitting
vector. By equations (20) and (21) we have b(n)→ b∗ in probability as n→∞ with

b∗ =
1

µ

b
∑

i=1

Vi log Vi

�

1
1

�

+

 

(1+ cp − cw)
�

1−
∑b

i=1 V 2
i

�

1

!

.

By the boundedness of the function x 7→ x log x on [0,1] and as In,i/n ∈ [0, 1] there exists a constant
C such that

�

�

�b(n)1

�

�

� ≤ C and
�

�

�b(n)2

�

�

� ≤ C .

Thus, we get the uniform integrability of (b(n)1 )
2 and (b(n)2 )

2 and consequently the convergence of

b(n) with respect to the `2-metric. Similar arguments yield the convergence of A(n)i with respect to
the `2-metric to

A∗i =

�

V 2
i Vi(1− Vi)
0 Vi

�

.

This shows condition (22).

Condition (23) follows from the deterministic boundedness of ‖A(n)i ‖op and from the fact that

lim
n→∞

P
�

{In,i ≤ l} ∪ {In,i = n}
�

= lim
n→∞

∫ 1

0

P(Bin(ηn, x)≤ l − s1)dPV (x)
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≤ lim
n→∞

P
�

V ≤
�

(l − s1)/ηn
�

1
3

�

+ lim
n→∞

∫ 1

�

l−s1
ηn

�
1
3

exp






−

1

4
η

1
3
n (l − s1)

2
3

 

1−
�

l − s1

ηn

�
2
3

!2





dPV (x)

= 0

where we used Bernstein’s inequality.

It remains to show (24). We observe that the eigenvalues of A∗i are V 2
i and Vi . Since Vi is bounded

by 1 and non-negative, it is ‖A∗i‖op = ‖(A∗i )
T‖op = Vi . We use the inequality ‖AB‖op ≤ ‖A‖op‖B‖op.

With
∑b

i=1 V 2
i < 1 almost surely we finally conclude

E





b
∑

i=1



(A∗i )
T A∗i




op



≤ E





b
∑

i=1

V 2
i



< 1. (25)

The claim for the asymptotic behavior of the variance of Wn follows directly from the first part, since
convergence with respect to the `2-metric implies convergence of the second moments.
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Proof of Lemma 2.4. Let a ∈R−. We use the notation

∆(a) := lim
x0→−∞

sup
x ,y≤x0

dTV

�

P
Sτ(a)
x , P

Sτ(a)
y

�

.

Since the function
x0 7→ sup

x ,y≤x0

dTV

�

P
Sτ(a)
x , P

Sτ(a)
y

�

is increasing and non-negative, the limit for x0 → −∞ exists. We will show that ∆(a) ≤ (1 −
ε̃)∆(a) +δ for some ε̃ > 0 and all δ > 0. Then the claim follows.

Let δ > 0 be an arbitrary number. Since the process S fulfills the integrability condition and Sτ(y)−
y ≤ Sτ(y)− Sτ(y)−1, there exists x1 ∈R− such that for all x < y < x1

Ex[Sτ(y)− y] ≤
∫

z dF̄y(z) ≤ C <∞

for some constant C . Thus, there exists K1 ≥ K such that for all y < x1

Px(Sτ(y)− y > K1)≤
Ex[Sτ(y)− y]

K1
≤
δ

4
. (26)

Furthermore, we have for this K1

sup
y+K≤z≤y+K1

dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

≤ sup
u,v≤y+K1

dTV

�

P
Sτ(a)
u , P

Sτ(a)
v

�

. (27)

The distribution of the Markov chain S on the state space E is given by the kernel

κ(x , A) := P(St+1 ∈ A | St = x) for all t ∈N0 and A⊂ E .

Let S(a) be the process S stopped at the moment when it exceeds a ∈ E . The kernel κa corresponding
to the process S(a) is then given by κa(x , A) = κ(x , A) for x ≤ a and κa(x , A) := 1A(x) for x > a and
for all A⊂ E .

Let D := {(x , x) | x ∈ E} denote the diagonal in E2. We define a kernel % on E2 by the so called
Wasserstein coupling (see e.g. Griffeath 1974/75), i.e. for (x , y), (u, v) ∈ E2 it is

%((x , y), (u, v)) :=

(

min{κa(x , u),κa(y, v)}, if u= v
(κa(x ,u)−κa(y,u))+(κa(y,v)−κa(x ,v))+

1−α(x ,y) , if u 6= v

where α(x , y) :=
∑

z∈E min
�

κa(x , z),κa(y, z)
	

and r+ = max{r, 0} denotes the positive part of a
real number r. Then the following properties hold:

1. %((x , y), A×E ) = κa(x , A) and %((x , y),E × A) = κa(y, A) for all x , y ∈ E and A⊂ E

2. %((x , x), D) = 1 for all x ∈ E and

3. %((x , y), Dc)≤ 1− ε for all x , y ∈ E with |x − y| ≤ K and x , y < x0.
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The property c) follows from the assumption (7) and the fact that

dTV

�

PS1
x , PS1

y

�

=
∑

z∈E

�

�κa(x , z)−κa(y, z)
�

�

= 2

 

1−
∑

z∈E

min{κa(x , z),κa(y, z)}

!

.

For (x , y) ∈ E2 let Z (x ,y) = (U (x ,y), V (x ,y)) be the Markov chain generated by the kernel % which
starts in (x , y). We define the stopping time

θ(a) := inf{t | Z (x ,y)
t ∈ (a,∞)× (a,∞)}.

Using this coupling we obtain for any K2 > 0 and z, y < a

dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

=
∑

w∈E

�

�Pz(Sτ(a) = w)− Py(Sτ(a) = w)
�

�

=
∑

w∈E

�

�

�

�

P
�

U (z,y)
θ(a) = w

�

− P
�

V (z,y)
θ(a) = w

�

�

�

�

�

=
∑

(u,v)∈E2

∑

w∈E
P
�

Z (z,y)
1 = (u, v)

�

×
�

�

�

�

P
�

U (z,y)
θ(a) = w | Z (z,y)

1 = (u, v)
�

︸ ︷︷ ︸

=Pu(Sτ(a)=w)

− P
�

V (z,y)
θ(a) = w | Z (z,y)

1 = (u, v)
�

︸ ︷︷ ︸

=Pv(Sτ(a)=w)

�

�

�

�

≤ sup
u,v≤y+K2

dTV

�

P
Sτ(a)
u , P

Sτ(a)
v

�

%((z, y), Dc) + 2P
�

Z (z,y)
1 /∈ (−∞, y + K2]

2
�

. (28)

In the last step we used that Pu(Sτ(a) = w)− Pv(Sτ(a) = w) = 0 for u = v. As seen in equation (26)
and using property a) of the coupling, there exists by the integrability condition K2 > K such that
for all y < x1− K and y < z < y + K

P
�

Z (z,y)
1 /∈ (−∞, y + K2]

2
�

≤ κa
�

z, (−∞, y + K2]
c�+κa

�

y, (−∞, y + K2]
c�

≤
δ

4
. (29)

After these preliminaries, we now turn to ∆(a). It is for x < y < a− K

dTV

�

P
Sτ(a)
x , P

Sτ(a)
y

�

=

∫

dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

dP
Sτ(y)
x (z)

=

∫

[y,y+K]
dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

dP
Sτ(y)
x (z)

+

∫

(y+K ,y+K1]
dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

dP
Sτ(y)
x (z)
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+

∫

(y+K1,∞)
dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

dP
Sτ(y)
x (z)

≤ Px(Sτ(y)− y ≤ K) sup
y≤z≤y+K

dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

+ Px(Sτ(y)− y > K) sup
y+K≤z≤y+K1

dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

+ 2Px(Sτ(y)− y ≥ K1).

With the results in (26), (27), (28) and (29) as well as property c) of the kernel % this finally yields

∆(a)≤ lim
x0→−∞

sup
x<y≤x0

�

Px(Sτ(y)− y ≤ K) sup
u,v≤y+K2

dTV

�

P
Sτ(a)
u , P

Sτ(a)
v

�

(1− ε)

+ Px(Sτ(y)− y > K) sup
u,v≤y+K1

dTV

�

P
Sτ(a)
z , P

Sτ(a)
y

�

+2P
�

Z (z,y)
1 /∈ (−∞, y + K2]

2
�i

+
δ

2
≤∆(a) lim

x0→−∞
sup

x<y≤x0

�

1− εPx(Sτ(y)− y ≤ K)
�

+δ

≤ (1− ε̃)∆(a) +δ

where ε̃ = ε limx0→−∞ infx<y≤x0
Px(Sτ(y)− y ≤ K)> 0.

B Proofs from Bruhn (1996)

Proof of Lemma 2.1. For n≤ n1 the claim follows immediately since σ(n1) = 0. For n> n1 equation
(5) follows by induction on n. It is with H1/e := H0

Hn+1 =
n
∑

k=0

νn+1({k})Hk + r(n+ 1)

=
n
∑

k=1

P− log(n+1)(S1 =− log k) E− log k






Hexp(−Sσ(n1))

+
σ(n1)−1
∑

t=0

r(exp(−St))







+ E− log(n+1)[r(exp(−S0))] + P− log(n+1)(S1 = 1)E1[Hexp(−Sσ(n1))
]

= E− log(n+1)Hexp(−Sσ(n1))
+ E− log(n+1)







σ(n1)−1
∑

t=0

r(exp(−St))







where we use the Kolmogorov-Chapman equation for Markov chains in the last step.

Proof of Lemma 2.5. We use the notation from Section 2 and define for x ∈R− the function ux by

ux(a) := Ex[|{t : St ∈ (a, a+ 1]}|].
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By the monotone convergence theorem we have lima→−∞ E[Y (a)t ] = E[Ỹt] > 0. Thus, there exists
a∗ ∈R such that for all a < a∗ it is E[Y (a)t ]> 0. For x , n, a < a∗ and k ∈N it holds

Px(|{t : St ∈ (n− 1, n]}| ≥ k) =

∫

(n−1,n]
Py(Sk−1 ≤ n) dP

Sτ(n−1)
x (y)

≤
∫

(n−1,n]
Py(S

(a)
k−1 ≤ n) dP

Sτ(n−1)
x (y)

≤
∫

(n−1,n]
P0(S

(a)
k−1 ≤ 1) dP

Sτ(n−1)
x (y)

≤ P0(S
(a)
k−1 ≤ 1)

= P0(|{t : S(a)t ∈ [0, 1]}| ≥ k).

Thus, we have

ux(n− 1)≤
∞
∑

k=1

P0(|{t : S(a)t ∈ [0, 1]}| ≥ k)

= E0[|{t : S(a)t ∈ [0,1]}|]
=: û(a).

Since it is E[Y (a)t ] > 0 the elementary renewal theorem (see e.g. Gut 1988, Section II.4) provides
û(a) <∞. Furthermore, the function a 7→ û(a) is decreasing as a → −∞, i.e. û(a) ≤ û(a∗) for all
a < a∗.

So we finally obtain for a function l :R→R+, y, z ∈R and x ∈ E with x < y < z < a∗

Ex







τ(z)−1
∑

t=τ(y)

l(St)






≤

dze
∑

n=dye

ux(n− 1) sup
t∈(n−1,n]

l(t)

≤ û(a∗)
dze
∑

n=dye

sup
t∈(n−1,n]

l(t).

1047


	1 Introduction
	2 The setting of Bruhn
	3 Recurrences for the random split tree
	3.1 The distribution of the subtreesize
	3.2 The Markov chain for the random split tree

	4 The internal path length
	5 The Wiener index
	References
	A Proof of Lemma 2.4
	B Proofs from bruhn96

