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Abstract During cell stress, the transcription and translation
of immediate early genes are prioritized, while most other mes-
senger RNAs (mRNAs) are stored away in stress granules or
degraded in processing bodies (P-bodies). TIA-1 is an mRNA-
binding protein that needs to translocate from the nucleus to seed
the formation of stress granules in the cytoplasm. Because other
stress granule components such as TDP-43, FUS, ATXN2,
SMN, MAPT, HNRNPA2B1, and HNRNPA1 are crucial for
the motor neuron diseases amyotrophic lateral sclerosis (ALS)/
spinal muscular atrophy (SMA) and for the frontotemporal de-
mentia (FTD), here we studied mouse nervous tissue to identify
mRNAs with selective dependence on Tia1 deletion.
Transcriptome profiling with oligonucleotide microarrays in
comparison of spinal cord and cerebellum, together with inde-
pendent validation in quantitative reverse transcriptase PCR and
immunoblots demonstrated several strong and consistent
dysregulations. In agreement with previously reported TIA1
knock down effects, cell cycle and apoptosis regulators were
affected markedly with expression changes up to +2-fold,
exhibiting increased levels for Cdkn1a, Ccnf, and Tprkb vs.

decreased levels for Bid and Inca1 transcripts. Novel and sur-
prisingly strong expression alterations were detected for fat stor-
age and membrane trafficking factors, with prominent +3-fold
upregulations of Plin4,Wdfy1, Tbc1d24, and Pnpla2 vs. a −2.4-
fold downregulation of Cntn4 transcript, encoding an axonal
membrane adhesion factor with established haploinsufficiency.
In comparison, subtle effects on the RNA processing machinery
included up to 1.2-fold upregulations of Dcp1b and Tial1. The
effect on lipid dynamics factors is noteworthy, since also the gene
deletion of Tardbp (encoding TDP-43) and Atxn2 led to fat
metabolism phenotypes inmouse. In conclusion, genetic ablation
of the stress granule nucleator TIA-1 has a novel major effect on
mRNAs encoding lipid homeostasis factors in the brain, similar
to the fasting effect.
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Abbreviations
Angptl4 Angiopoietin-like 4
Atxn2 Ataxin-2
Bid BH3 interacting-domain death agonist
Ccnf Cyclin F
Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21/Cip1)
Cntn4 Contactin-4
Dcp1b DCP1 decapping enzyme homolog B

(S. cerevisiae)
Fgfrl1 Fibroblast growth factor receptor-like 1
Inca1 Inhibitor of CDK cyclin A1 interacting protein 1
Mfsd2a Major facilitator superfamily domain containing

2A and angiopoietin-like 4
Nde1 Nuclear distribution gene E homolog 1 (NudE

neurodevelopment protein 1)
Pabpc1 Poly(A)-binding protein cytoplasmic 1
Plin4 Perilipin-4
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Pnpla2 Patatin-like phospholipase domain containing 2
Pnpla7 Patatin-like phospholipase domain containing 7
Tbc1d24 TBC1 domain family member 24
Tbp TATA-box-binding protein
Tardbp TAR DNA-binding protein-43 (TDP-43)
Tia1 T-cell-restricted intracellular antigen-1 cytotoxic

granule-associated RNA-binding protein (TIA-1)
Tial1 TIA1 cytotoxic granule-associated RNA binding

protein-like 1
Tprkb Tp53rk binding protein
Tsen2 tRNA splicing endonuclease 2 homolog

(S. cerevisiae)
Wdfy1 WD repeat and FYVE domain-containing 1

(FENS-1)

Introduction

Cells have evolved various mechanisms to compensate different
types of environmental stress like UV irradiation, oxidative
stress, or heat. Cytoplasmic stress responses include the forma-
tion of stress granules (SGs) and processing bodies (P-bodies)
[1–4]. During stress, most messenger RNAs (mRNAs) are re-
moved from ribosomal translation, thus conserving energy and
allowing stress-induced damage repair or degradation [5]. While
SGs are thought to be a place where the bulk of mRNAs, as well
as some proteins, undergoes storage and triage, P-bodies contain
mRNAs dedicated for decay [6]. This is compatible with the
observation that SGs contain mRNAs within stalled translation
initiation complexes including 40S ribosomal subunits but are
devoid of eIF2, whereas P-bodies contain multiple mRNA
decapping enzymes [6]. Both SGs and P-bodies are dynamic
structures that assemble and disassemble rapidly [7]. They share
a common pool of components and can fuse to exchange
mRNAs [2, 6, 8]. In contrast to P-bodies, SGs only exist tran-
siently during stress conditions [6].

This formation of cytoplasmic SGs depends on the shuttling
of the 43 kDa protein TIA-1 from the nucleus and on the
aggregation of a C-terminal proteolytic TIA-1 fragment of
15 kDa that includes a glutamine-rich prion-related domain
(PRD) [1, 9–11]. TIA-1 was initially identified as T-cell-
restricted intracellular antigen 1 and was subsequently investi-
gated particularly in immunological cell types [12]. It contains
also three RNA-recognition motifs (RRM) and binds to adenine/
uridine-rich elements (AREs) in the 3’-untranslated region of
mRNAs. TIA-1 (gene symbol TIA1) and its homolog TIAR
(gene symbol TIAL1) have roles not only in the nucleus for gene
transcription and pre-mRNA splicing [13, 14], but also in the
cytoplasm for mRNA stability and translation regulation [5, 15,
16]. TIA-1 is associated with diverse cell processes including
inflammation [16], apoptosis [17], autophagy [18], and cell
proliferation [18, 19].

The role of SGs in human pathology have become increas-
ingly clear, since mutations in several SG components are re-
sponsible for hereditary degeneration syndromes of peripheral
and central motor neurons, namely amyotrophic lateral sclerosis
(ALS), spinal muscular atrophy (SMA), and frontotemporal
dementia (FTD). SG component proteins with a causal role for
motor neuron diseases include TDP-43 (gene symbol TARDBP)
[20–23], FUS [24–26], ATXN2 [27–29], SMN [30, 31], Tau
(gene symbol MAPT) [32, 33], HNRNPA2B1, and HNRNPA1
[34]. In the SG component ATXN2, the presence of a
polyglutamine domainmutationmay lead to pathogenic unstable
expansions. Intermediate size ATXN2 expansions comprise a
risk factor for ALS through mRNA-mediated TDP-43 interac-
tion [27, 35–37], while larger polyglutamine expansions in
ATXN2 lead to Levodopa-responsive Parkinsonism [38] or to
prominent cerebellar involvement with later progression to a
multisystem atrophy of the nervous system, known as
spinocerebellar ataxia type 2 (SCA2) [39]. Like TIA-1, several
of these RNA-binding proteins shuttle from the nucleus to the
cytoplasm during cell stress, and for TDP-43, it is known that its
cytoplasmic accumulation depends on cyclin-dependent kinases
[40]. While the protein composition of SGs is under intense
investigation [41], much work remains to be done for the iden-
tification of mRNAs regulated by SGs, particularly in the vul-
nerable nervous tissue.

While all of these disease-associated proteins and their target
RNAs shuttle to preformed SGs, the initial stress-induced nucle-
ation of SGs appears dependent on TIA1, TIAL1, TTP, G3BP1/
2, and FMRP [10, 32]. G3BP1 deletion results in massive
neuronal death during embryogenesis, suggesting that it has a
developmental role independent from its role(s) in the stress
response [42]. TIA-1 is well characterized as a SG-nucleating
protein, and Tia1 knockout (KO) mice not only exhibit grossly
normal brain development, but also exhibit high embryonic
lethality, consistent with dysregulation of a stress response [16].
We now used these mice for a transcriptome screen of nervous
tissue at adult age, aiming to define the consequences of defective
SG formation on RNA processing. The results confirm previous
results obtained from human TIA1 knock down experiments in
HeLa cells about cell cycle regulator modulation [19].
Importantly, our data documented novel strong effects on lipid
storage and membrane dynamics factors. These insights may
help to understand the disordered mRNA regulation, which
makes a major contribution to the pathology underlying motor
neuron diseases [43, 44].

Material and methods

Animals

Tia1KOmice (bred into C57BL6/J background for more than
10 generations) were obtained from Harvard University, Dana
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Farber Cancer Institute. In these mice, homologous recombi-
nation of exon 4 results in a shortened Tia1 mRNA and
absence of the 43 kDa TIA-1 protein [16]. C57BL6/J wild-
type (WT) mice from The Jackson Laboratory were used as
control. The animals were housed and kept in individually
ventilated cages under routine health monitoring until the
appropriate adult ages at the FELASA-certified mfd
Diagnostics GmbH in Wendelsheim, Germany. They were
fed ad libitum, were bred in homozygous matings, and were
sacrificed by cervical dislocation. Nervous tissues and liver
were removed in minimal time, frozen in liquid nitrogen, and
stored at −80 °C. Genotypes were controlled by tail biopsy
and DNA analysis. DNA was isolated from tail biopsies of
Tia1 KOmice by Proteinase K (Ambion) treatment. PCR was
performed using 50 ng DNA, 17 μl Pink Juice [125 μM
Cresol Red sodium salt (Sigma Aldrich), 12.5 % 10× PCR
buffer with 15 mM MgCl2 (Applied Biosystems), 250 μM
dNTPs (Thermo Scientific), 25 % sucrose], 0.25 μl Taq
Polymerase (AmpliTaq® DNA Polymerase, Applied
Biosystems) and 1 μl of the primers KO1 5′-GTCGTGAC
AAGCCACACTTG-3′ and KO2 5′-AATTCCATCAGAAGCT
TATCGAT-3′. The following conditions were applied: initial
denaturation at 94 °C for 2 min, 33 cycles of 94 °C for 15 s
denaturation, 58 °C for 30 s annealing, 72 °C for 1 min
elongation, and a final elongation step at 72 °C for 10 min.
The predicted length of the KO allele is 400 bp. Genotypes
were further confirmed by quantitative real-time reverse tran-
scriptase polymerase chain reaction (qPCR) measurement of
Tia1mRNA in the tissues under study. All procedures were in
accordance with the German AnimalWelfare Act, the Council
Directive of 24 November 1986 (86/609/EWG) with Annex II
and the ETS123 (European Convention for the Protection of
Vertebrate Animals).

Transcriptome profiling

The dissected tissues cerebellum, spinal cord, midbrain, and
liver from Tia1KOmice andWTC57BL6/J mice at the age of
12 and 24 weeks (n=3 vs. 3 mice/age) were sent to MFT
Services (Tübingen, Germany). After RNA extraction, linear
amplification and biotinylation of 100 ng of total RNA was
performed with the GeneChip HT 3′IVT Express Kit
(Affymetrix, Santa Clara, CA, USA) according to the manu-
facturer’s instructions. GeneChip HTMouse Genome 430 2.0
Array Plates (Affymetrix) were used to hybridize fifteen mi-
crograms of labeled and fragmented cRNA, to wash, stain,
and scan automatically in a GeneTitan instrument
(Affymetrix). Each of these oligonucleotide microarray chips
is able to detect more than 39,000 transcripts with multiple
probes for each mRNA. Visual inspection of scanned images
was used to control for hybridization artifacts and proper grid
alignment. AGCC 3.0 (Affymetrix) processed results were
stored in CEL files. Further data analysis steps were carried

out with the software platform R 2.14.0 and Bioconductor
2.14.0 [45]. First, the complete expression information from
every chip was background corrected, quantile normalized,
and summarized with Robust Multichip Average [46].
Empirical Bayes shrinkage of the standard errors was
employed to derive the moderated F-statistic [47]. The
resulting p values underwent multiple testing corrections ac-
cording to “Benjamini-Hochberg” [48]. A decision matrix
was produced through the function “decide tests” within the
limma package, to attribute significant changes to individual
contrasts. Thus, significant up- or downregulations were
encoded by values of 1 or −1, respectively, to compare the
consistency of significant expression changes across tissues
and ages. All original transcriptome data were deposited at the
public database Gene Expression Omnibus (GEO series ac-
cession # GSE54418, http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE54418).

RNA isolation and expression analysis

RNA for qPCR expression analysis was extracted from cere-
bellar tissue (25 mg) of 12-week-old mice with Trizol® re-
agent (Invitrogen). Before cDNA synthesis, 1 μg of RNAwas
digested with DNase I Amplification Grade (Invitrogen).
Reverse transcription was performed with SuperScript III
Reverse Transcriptase (Invitrogen). Subsequently, expression
levels were measured with the StepOnePlus Real-Time PCR
System (Applied Biosystems) using 25 ng cDNA, 10 μl of
FastStart Universal Probe Master (Rox) Mix (04914058001,
Roche), and 1 μl of one of the following TaqMan Assays
(Applied Biosystems): Atxn2 (Mm01199894_m1), Bid
(Mm00432073_m1), Ccnf (Mm00432385_m1), Cdkn1a
(Mm00432448_m1), Cntn4 (Mm00476065_m1), Dcp1b
(Mm01183995_m1), Inca1 (Mm01243670_m1), Pabpc1
(Mm00849569_s1), Plin4 (Mm01272159_m1), Pnpla2
(Mm00503046_g1), Tbc1d24 (Mm00557451_m1), Tardbp
(Mm00523870_g1), Tia1 Exon 3–4 (Mm01183616_m1),
Tial1 (Mm00437049_m1), Tprkb (Mm00616325_m1), Tsen2
(Mm01184390_m1), Wdfy1 (Mm00840455_m1), and Tbp
(Mm00446973_m1) as endogenous control. The PCR condi-
tions were 50 °C for 2 min, 95 °C for 10 min, and
40 cycles of 95 °C for 15 s and 60 °C for 60 s. Analysis
of the gene expression data was conducted using the
2−ΔΔCt method [49].

Protein extraction and quantitative immunoblots

For SDS-PAGE followed by immunoblotting, protein was
extracted from 25 mg cerebellar tissue of 12-week-old mice.
The tissue was homogenized with a motor pestle in 10 vol.
RIPA buffer [50 mM Tris–HCl (pH 8.0), 150 mM NaCl,
1 mM EDTA, 1 mM EGTA, 1 % Igepal CA-630 (Sigma),
0.5 % sodium deoxycholate, 0.1 % SDS, 1 mM PMSF,
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Complete Protease Inhibitor Cocktail (Roche)] and incubated
on ice for 15 min. After centrifugation at 4 °C and 16,000×g
for 20 min, the supernatant was stored (RIPA-soluble
fraction), and the remaining pellet was dissolved in ½ vol.
2×SDS buffer [137 mM Tris–HCl (pH 6.8), 4 % SDS, 20 %
glycerol, Complete Protease Inhibitor Cocktail (Roche)] by
sonification followed by 10min of centrifugation at 16,000×g.
The resulting supernatant was stored as RIPA-insoluble frac-
tion. Protein concentration was determined with the BCA
protein assay kit (Interchim, France), and 20 μg of each
sample were loaded onto a 7.5 % polyacrylamide gel. After
gel electrophoresis, the proteins were transferred to a PVDF
membrane by wet blotting. The membranes were blocked
with 5 % slim milk powder in PBST and incubated with
antibodies against PLIN4 (1:500, Novus Biologicals),
WDFY1 (1:500, Life Span BioSciences), CNTN4 (1:1,000,
Abcam), or β-ACTIN (1:10,000, Sigma). ECL (Pierce) was
used for visualizing the bands, which were subsequently
quantified via densitometric analysis with ImageJ.

Statistical analysis

Data were analyzed with GraphPad Prism software version
5.04 (2010) using Student’s t test. Error bars indicate SEM.
Significant p values (<0.05) were marked as follows: p<0.05
*, p<0.01 **, p<0.001 ***.

Results

Transcriptome survey identifies strong changes of specific
mRNAs in spinal cord

Microarray chip profiling of the transcriptome detected the
loss o f Tia1 cor rec t ly by one o l igonuc leo t i de
(1431708_PM_a_at) corresponding to sequences at exon 4,
whereas Tia1 oligonucleotides covering exons 9–11
(1416813_PM_at, 1416812_PM_at, 1416814_PM_at,
1437934_PM_at) detected significant upregulation of expres-
sion. These observations are in good agreement with a previ-
ous report [16] stating that the homologous recombination
event within the Tia1 gene deletes sequences at exon 4,
resulting in a shortened stable mRNA and in absence of
TIA-1 protein. In the spinal cord, the expression profiling
documented 115 oligonucleotides with significant upregula-
tion both at 12 and 24 weeks of age vs. 70 oligonucleotides
with significant downregulation at both ages, upon compari-
son of 3 KO and 3 WT tissues. The strongest three
upregulations in spinal cord concerned Plin4 (3.3-fold),
Wdfy1 (average 2.3-fold, detected consistently by three oligo-
nucleotide spots), and Cdkn1a (average 2.2-fold, detected
consistently by two oligonucleotide spots), while the strongest
three downregulations concerned Gkn3 (in human only a

pseudogene is conserved [50]), Bid (−1.9-fold), and Tsen2
(−1.8-fold) (Table 1). To further eliminate false positive can-
didates and to focus the investigation on mRNAs with rele-
vance also for other tissues, the consistency of significant
expression changes was compared from spinal cord to cere-
bellum, midbrain, and liver at both ages. Transcripts with
significant expression change in the same direction in at least
six out of the eight conditions under study were selected. They
constituted 32 upregulations and 20 downregulations. All
these Tia1 KO transcriptome data were made publically avail-
able via the GEO database. We concentrated further research
on 17 transcripts with known function in shared pathways
(Table 1).

qPCR validates dysregulated levels of several transcripts
in three pathways

Convergent effects were evident for the pathways of lipid
storage and membrane trafficking, of cell cycle control, and
additionally of the RNA processing machinery. The changes
in expression levels of such genes were reassessed by the
independent technique qPCR in cerebellum (Suppl.
Figure 1). The results on the lipid pathway confirmed
upregulations for Plin4 which encodes a lipid droplet storage
factor (3.2-fold), for Wdfy1 encoding a modulator of PI3K
control over endosome membrane trafficking (3.2-fold), for
Tbc1d24 as Rab-GTPase activating vesicle dynamics factor
(2.1-fold), and for Pnpla2 as component of the lipolytic cas-
cade and as regulator of adiposome size (1.5-fold). A mem-
brane pathway relevant downregulation was observed for
Cntn4 as a glycosylphosphatidylinositol-anchored membrane
adhesion factor implicated in axon network connections and
synaptogenesis (−2.4-fold). Regarding the cell cycle pathway,
upregulations were confirmed for Cdkn1a as cycle progres-
sion inhibitor (1.5-fold), Ccnf as a centrosome reduplication
inhibitor during G2 phase (1.6-fold), and Tprkb as an ADP-
ribose activated and p53-related protein kinase that transduces
the PI3K/TOR pathway (1.1-fold). Cell cycle pathway rele-
vant downregulations were confirmed for Bid as an ATM-
effector that also activates the S-phase checkpoint (−1.7-fold),
and Inca1 as an interactor of cyclin A1 that inhibits cyclin-
dependent kinase and proliferation (−1.3-fold). Regarding the
RNA processing pathway, the upregulation was confirmed for
Dcp1b (1.2-fold) as a component of the RNA decapping and
degradation machinery in P-bodies. In contrast, for Tsen2, the
qPCR results suggested a significant upregulation (1.1-fold)
instead of the downregulation previously observed by oligo-
nucleotide microarray chips, a puzzling result since alternative
splicing isoforms for this transcript are not documented. Since
microarray chip data depend on the oligonucleotide choice
and quality, additional hypothesis-driven qPCR were per-
formed for important SG components with relevance for
neurodegeneration and general mRNA translation. These
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experiments revealed a significant increase in the levels of
Tial1 (1.2-fold), but did not detect major changes for the
Pabpc1, Tardbp, or Atxn2 transcript levels. Altogether, most
strong candidates from the transcriptome screening could be
validated upon individual reassessment.

Quantitative immunoblots demonstrate altered levels
for PLIN4, WDFY1, and CNTN4

To test whether these alterations of mRNA levels are compen-
sated, for example by increased translation rates, or possess
downstream consequences for the respective protein levels,
quantitative immunoblots of cerebellar tissue were performed
for three factors in the membrane dynamics pathway.
Corresponding to the upregulation of the Plin4 transcript,

the perilipin-4 protein levels were significantly upregulated
(2.2-fold) in the RIPA-soluble tissue fraction that contains the
freely soluble proteins (Fig. 1a), while they were undetectable
in the SDS-soluble tissue fraction that contains membranes
and more insoluble proteins. This observation is consistent
with previous reports that perilipin-4 is recruited onto ER-
membranes and lipid droplets only when factors such as
diacylglycerol become abundant [51]. Again, in parallel to
the upregulation of the Wdfy1 transcript, the WD repeat and
FYVE domain-containing 1 protein levels were significantly
upregulated (1.5-fold) in the SDS-soluble tissue fraction,
while its presence in the RIPA-soluble tissue fraction was
not significantly altered (Fig. 1b). The localization of
WDFY1 to the SDS fraction is consistent with the FYVE
domain association with the phosphatidylinositol 3-

Table 1 Transcriptome profiling in four Tia1KOmice tissues at two ages
identifies consistent expression dysregulations. Tia1 KO andWTmice (3
vs. 3 at age 12 and 24 weeks) were compared, the significance of
expression changes was determined, and consistently dysregulated tran-
script levels were shown with average fold changes. Negative values
represent reduced expression (with green color highlighting its

significance), while positive values represent induced expression (with
red color highlighting its significance). Bold values illustrates transcripts
with established induction by fasting conditions. The transcripts were
grouped to reflect the convergent functions of the corresponding gene
products in three pathways and were shown in alphabetical order

Gene symbol Gene name Oligo spot ID Fold change

Spinal cord
12 weeks

Spinal cord
24 weeks

Cerebellum
12 weeks

Cerebellum
24 weeks

Tia1 Cytotoxic granule-associated RNA-binding protein 1 (TIA-1) 1431708_PM_a_at −4.78 −4.72 −3.60 −3.45
Cell cycle control

Bid BH3 interacting domain death agonist 1417045_PM_at −1.98 −1.82 −1.67 −1.70
Ccnf Cyclin F 1422513_PM_at 1.44 1.35 1.65 1.40

Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21/Cip1) 1421679_PM_a_at 1.83 2.48 3.07 1.98

1424638_PM_at 1.88 2.57 2.74 1.88

Fgfrl1 Fibroblast growth factor receptor-like 1 1447878_PM_s_at −1.36 −1.35 −1.21 −1.59
Inca1 Inhibitor of CDK, cyclin A1 interacting protein 1 1448034_PM_at −1.28 −1.15 −1.26 −1.33
Nde1 Nuclear distribution gene E homolog 1 (A. nidulans) 1435737_PM_a_at 1.32 1.28 1.53 1.31

Tprkb Tp53rk binding protein 1425410_PM_at 1.32 1.28 1.55 1.54

Lipid storage and membrane trafficking

Angptl4 Angiopoietin-like 4 1417130_PM_s_at 2.30 2.50 2.05 1.79

Cntn4 Contactin-4 1438782_PM_at −1.31 −1.50 −2.32 −2.61
Mfsd2a Major facilitator superfamily domain containing 2A 1428223_PM_at 1.51 1.37 1.58 1.49

Plin4 Perilipin-4 1418595_PM_at 3.51 3.05 2.62 2.11

Pnpla2 Patatin-like phospholipase domain containing 2 1428143_PM_a_at 1.42 1.41 1.40 1.20

Pnpla7 Patatin-like phospholipase domain containing 7 1451361_PM_a_at 1.24 1.42 1.28 1.37

Tbc1d24 TBC1 domain family, member 24 1448028_PM_at 1.68 1.42 1.95 1.54

1442325_PM_at 1.97 1.46 1.73 1.55

Wdfy1 WD repeat and FYVE domain-containing 1 1424749_PM_at 1.36 3.15 1.38 2.94

1437358_PM_at 1.37 3.32 1.31 2.91

1435588_PM_at 1.34 3.17 1.39 2.75

RNA processing machinery

Dcp1b DCP1 decapping enzyme homolog b (S. cerevisiae) 1444030_PM_at 1.93 1.94 2.73 1.71

Tsen2 tRNA splicing endonuclease 2 homolog (S. cerevisiae) 1459346_PM_at −1.66 −1.87 −1.83 −1.67
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phosphates of endosomal membranes [52]. In agreement with
the downregulation of the Cntn4 transcript, the contactin-4
protein levels were significantly decreased (−1.9-fold) in the
SDS-soluble tissue fraction (Fig. 1c). Thus, the Tia1 knockout
has selective effects on mRNA levels, resulting in abnormal
levels of at least three proteins in the pathway of membrane
dynamics and lipid storage.

Discussion

In the past, transcriptome profiling has been helpful to docu-
ment changes in overall transcription and RNA processing,
leading to the discovery of altered pathways and signaling
networks in human disease [53]. While it is usually cumber-
some in an organism to unravel how stressors impact neuronal
function in molecular detail, this study of knockout tissues
identifies novel selective RNA effects of TIA-1, which cause
altered levels of the corresponding proteins that modulate
membrane dynamics and lipid storage.

TIA-1 is a key stress granule component, capable of nucle-
ating SGs when overexpressed and inhibiting SG formation
when absent [10]. As a consequence, one might have expected
an alteration in the levels of other stress granule components
when TIA-1 is depleted. However, this assumption was not
corroborated in the Tia1KOmouse tissues for most of the SG-
associated genes tested. In the transcriptome data, there was
no obvious dysregulation for any other known SG compo-
nents. There are several possible explanations for this: (1) the
loss of Tia1 might be compensated by expression changes in
other genes that were not present on the chip, by alternative
splicing changes that are not represented on the microarray
chip or by expression changes with bare significance (e.g.
Tial1); (2) a Tia1 KO could have severe effects on the local-
ization of stress granule components without influencing their
expression; or (3) Tia1 deletion might only have an effect on
their expression levels under acute stress, which was absent
from the tissue of young mice that were kept in a pathogen-

free environment and were allowed to eat ad libitum. The
slight upregulation of Tial1 mRNA levels is probably a com-
pensatory effort, since TIA-1 overexpression was observed to
substitute for Tial1 deletion and to correlate inversely with
Tial1 expression levels [54]. Interestingly, a relatively stronger
upregulation of Dcp1b, encoding a core component of the
mRNA decapping complex in P-bodies, may indicate in-
creased mRNA decay in the absence of TIA-1.

The more substantial effects of the Tia1 KO on cell cycle
and apoptosis-related factors are in agreement with previous
reports [19]. A team investigating the effects of TIA1
knock down in human HeLa cells observed proliferative ef-
fects with increased cell numbers in S- or G2/M-phases and an
induction of anchorage-independent growth, in parallel to
upregulation of interleukin/chemokine transcripts and down-
regulation of transcript levels for the tumor necrosis factor
superfamily member 10 and the P21protein/CDKN1A-
activated kinase PAK3 [19]. In partial accord, a recent study
of Tia1 KO effects in murine embryonic fibroblasts observed
again a prominent cell cycle effect, but documented reduced
rates of cell proliferation, cell cycle progression delay, in-
creased cell size, and apoptosis enhancement [18]. Our data
documented downregulated transcript levels for apoptosis-
promoting factors such asBid and Fgfrl1. The downregulation
of Bid was previously described to occur after serum starva-
tion and to induce autophagy [55, 56]. The downregulated
transcript levels of cell cycle inhibitors such as Fgfrl1 and
Inca1 on the one hand, together with the upregulated tran-
script levels of cell cycle enhancers like Ccnf and Nde1
transcripts, seem difficult to integrate with the upregulation
of the cell cycle inhibitor Cdkn1a on the other hand. Beyond
possible consequences for neurogenesis, there is a clear role of
CDKN1A/p21 for glia proliferation [57]. The upregulation of
CDKN1A expression is a known response to starvation,
which arrests the cell cycle and thus protects from cell death
[58, 59]. Beyond glia cells, an additional role of CDKN1A/
p21 in adult neurons regarding DNA damage response, neu-
roprotection, neuronal senescence, motor neuron regenera-
tion, and tauopathy is established [60–66]. In this context,

Fig. 1 Quantitative immunoblots demonstrate significantly increased
levels of perilipin-4 and WDFY1, but decreased levels of CNTN4 in
Tia1 KO tissue. In cerebellum of 12-week-old mice (a), the PLIN4 levels

were elevated in the RIPA-soluble protein fraction, whereas (b) the
WDFY1 levels were elevated in the SDS fraction and (c) the CNTN4
levels were decreased in the SDS fraction (n=4 WT vs. 5 KO mice)
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also the upregulation of Nde1 is interesting, since it encodes a
modulator of mitotic spindle function and progenitor migra-
tion, which is responsible for neuron number in cortical layers
II-IV [67]. Altogether, the role of TIA-1 for regulating cell
cycle, cell death, and stress responses in adult nervous tissue is
credible.

Our transcriptome profiling highlighted an unknown func-
tion for TIA-1 in membrane dynamics and lipid storage. One-
fifth of the altered transcripts detected are involved in lipid
storage, transport, or membrane trafficking, a number far ex-
ceeding stochastic expectations even in view of the high lipid
content of brain tissue. Several dysregulated factors are in-
volved in the formation of lipid droplets. These structures store
neutral lipids in their core and are important for lipid transpor-
tation [68], vesicle trafficking, and cell signaling [69]. Perilipin
4 (encoded by Plin4) was shown in adipocytes to coat the
nascent lipid droplets [70]. Accordingly, an upregulation of
Plin4 in the Tia-1 KO mice might correlate with an enhanced
formation or turnover of lipid droplets. This notion is strength-
ened by the fact that two other lipid droplet components,
Pnpla2 and Pnpla7 (encoding patatin-like phospholipase do-
main containing 2 and 7, respectively) also show increased
transcript levels. Pnpla2 hydrolyzes triglycerides, thus provid-
ing the organism with energy through the supply of free fatty
acids and altering membrane composition [68, 71]. This mech-
anism becomes important during starvation stress. Furthermore,
it has been shown that Pnpla7 levels are increased by fasting
and that PNPLA7 may be involved in organophosphorus
compound-induced motor neuron degeneration [72, 73].
Although our animals were not fasting, two other transcripts
that are normally increased under this condition were also
upregulated, namely Mfsd2a and Angptl4 [74–76]. These data
suggest that there are fasting-like stress conditions in the Tia1
KO mouse model, which are independent of food availability,
but balance the organism towards gaining energy from fatty
acids. Thus, deletion of Tia1 increases the levels of transcripts
that are normally induced by fasting conditions and are in-
volved in lipid transport and membrane trafficking.

The Tia1 KO-induced upregulation of Wdfy1 and down-
regulation of Cntn4 levels modulate two factors implicated in
phosphoinositide-dependent membrane binding. The WD re-
peat and FYVE domain-containing 1 protein interacts with
phosphoinositide-3-phosphate enriched endosomal mem-
branes, in particular under stress-induced acidic conditions,
helping to recruit other proteins involved in membrane traf-
ficking [52, 77]. Upregulation of Wdfy1 can be induced by
pharmacological inhibition of autophagy during starvation
stress [78]. Interestingly, Wdfy1 level upregulation and Tia1
dysregulation were among the 16 most promising biomarkers
that characterized the brain of mouse model of Alzheimer’s
disease, with Wdfy1 showing the changes earlier than Tia1
[79]. Similarly, the upregulation detected consistently by two
oligonucleotide spots for Tbc1d24 encodes an activator of

small GTPases involved in the regulation of membrane traf-
ficking, which was shown to act as potent modulator of
primary axonal arborization [80, 81]. Its homolog Tbc1d1
was linked to human obesity and a Tbc1d1mutation underlies
the absence of diet-induced obesity in the lean mouse strain
[82–84]. A perhaps even more intriguing finding regarding
medical relevance is the downregulation of contactin-4, since
this glycosylphosphatidylinositol-anchored neuronal adhe-
sion protein is involved in axon guidance and synaptic plas-
ticity [85–88] and interacts with the Alzheimer’s disease me-
dia tor amyloid precursor prote in [89] . Genet ic
haploinsufficiency of contactin-4 was demonstrated to cause
developmental delay [90]. Other members of the contactin
protein family have been implicated in selective motor neuron
pathology, namely contactin-1 in human [91] and the
contactin-2 ortholog in zebrafish [92, 93]. It is noteworthy
that contactin-2/TAG1 is a strong regulator of diet-induced
obesity [94]. Thus, these data emphasize the role of TIA-1 for
the stress-dependent composition and trafficking of mem-
branes as well as their protein interactions.

It is important to note that the effect of TIA-1 on lipid and
membrane dynamics is paralleled by similar effect of two other
SG components. A genetic ablation of the RNA-binding pro-
tein ATXN2 in mice leads to obesity, appearance of lipid
droplets in the liver, increased blood cholesterol, cerebellar
gangliosides, and sulfatides [95]. Conversely, gain-of-function
mutations of ATXN2 lead to a multisystem atrophy of the
nervous system [39]. This scenario with ATXN2 loss-of-
function affecting lipid homeostasis, while its excess causes
neurodegenerative diseases, shows a striking similarity to the
effects of TDP-43. Postnatal deletion of the TDP-43-encoding
Tardbp gene was shown to cause dramatic loss of body fat and
weight together with a downregulation of the leanness factor
Tbc1d1 [96]. Conversely again, the overexpression of Tardbp
leads to increased fat deposition and adipocyte hypertrophy
together with an upregulation of Tbc1d1 [97]. A representative
TDP-43 mutation that causes neurodegenerative diseases was
shown to enhance normal TDP-43 splicing function for some
RNA targets but loss-of-function for others, in the absence of
aggregation or nuclear depletion of TDP-43 [98]. Jointly, these
data underscore a prominent role of three SG components for
mRNAs that regulate lipid metabolism and membrane compo-
sition under stress.

In conclusion, our data show that ablation of Tia1 in mouse
tissues leads to changed expression levels of few constituents of
the mRNA processing machinery, of specific cell cycle and
apoptosis pathways components, and of various lipid storage
and membrane dynamics factors. We propose that TIA-1 deple-
tion induces starvation-like conditions as a trigger for the upreg-
ulation of these transcripts. These findings may be relevant to
elucidate the role of stress granules and aberrant RNA processing
for the prominent axon transport pathology in motor neuron
diseases such as ALS, SMA, FTD, and SCA2.
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