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Abstract

We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi-

mation. In particular, the influence of the baryon resonances, and their couplings to the scalar

and vector fields, on the characteristics of the chiral phase transition as a function of temperature

and baryon-chemical potential is investigated. Present and future finite-density lattice calculations

might constrain the couplings of the fields to the baryons. The results are compared to recent

lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold

nuclear matter.
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I. INTRODUCTION

QCD is the accepted underlying theory of strong interactions. It exhibits a very diverse

and fascinating phase structure. At high temperatures or chemical potentials two different

significant changes in the structure of matter are expected: Deconfinement [1] and chiral

symmetry restoration [2, 3, 4]. Relativistic heavy ion collisions and astrophysical objects

like neutron stars are two important experimental windows to gain information about these

transitions, where extreme conditions of temperature and/or density occur. In the hadronic

world, as well as in the region not too far above the phase transition to the deconfined

and chirally restored phase, the strong coupling constant is large and thus QCD can not be

treated perturbatively. From a theoretical point of view, lattice gauge calculations represent

the most direct approach to investigate the QCD phase diagram of strongly interacting

matter. In the last years many lattice results on the phase structure of QCD at finite

temperature T and (recently) also at finite chemical potential µ were obtained (see e.g.

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). In particular, the properties of the chiral and deconfinement

phase transitions and thermodynamic observables like pressure and energy density were

investigated. However, lattice QCD alone does not seem to be able to completely disentangle

the physics of the QCD phase transition and give an explanation of the structure and

the scales of the phase diagram. Uncertainties in the lattice results remain, as e.g. the

large pion mass, large lattice spacings, or the reliability of the expansion schemes and the

continuum limit [14]. Furthermore, in order to understand the dynamics of relativistic heavy

ion collisions and the structure of neutron stars, the equation of state of strongly interacting

matter is needed also at very high µ. This is a region lattice QCD can not describe reliably

up to now and probably neither in the near future. Thus, effective lagrangians [15, 16] are

studied, representing a complementary approach to disentangle and understand the physics

of the QCD phase transition (see e.g [2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

or Refs. in [32]).

At high temperatures, so-called hadron resonance models represent a very successful

effective approach. The hadronic Bootstrap model [33] predicted the existence of a limiting

temperature for hadronic matter long before lattice QCD provided first evidence for the

transition to the deconfined, chirally restored phase [7]. Furthermore, for quark masses

currently used in lattice calculations a resonance gas model with a percolation criterion
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gives a reasonable description of lattice data close to Tc [7]. As was shown in [12, 13], the

density dependence of the QCD equation of state in the hadronic phase observed in recent

lattice studies can be understood in terms of a baryonic resonance gas. Finally, the critical

temperature Tc(µ = 0) from lattice QCD depends only weakly on changes of the lightest

hadron masses [7], in contrast to the predictions of a linear SU(2) × SU(2) linear σ model

[17] without resonances. The pressure of heavy states, however, may reduce the dependence

of Tc on the quark masses [34], in accord with the findings from the lattice. Furthermore,

we point out that typically models relying mainly on order-parameter (infra-red) dynamics

and which do not include more massive states predict significantly smaller phase transition

temperatures in baryon-dense matter than obtained on the lattice (see e.g. Fig. 6 in [32]).

These findings indicate that a hadron resonance gas approach is reasonable below Tc

and that in such an approach the contributions of heavy resonances are very important.

Even though the free resonance gas gives a very good description of the lattice data – the

same lattice data unambigiously show that there are temperature and medium effects, for

example the change in the chiral condensate [7]. This is not accounted for in non-interacting

approaches. In addition, studies of the nucleon-nucleon interaction and dense nuclear matter

in boson exchange models show the importance of various meson exchanges [35]. Many

properties of finite nuclei and of nuclear matter saturation can be understood in terms of

scalar and vector potentials [36, 37, 38, 39].

Furthermore, it is desirable that effective models incorporate some known features of

QCD. Thus, an interacting hadron gas accounting for chiral symmetry restoration and other

known medium effects should be investigated, like it has been done e.g. in [23]. To this

end, we consider here the phase transition properties of the chiral hadronic model presented

in [40]. It represents a relativistic field theoretical model of baryons and mesons built on

chiral SU(3)L × SU(3)R symmetry and broken scale invariance. A non-linear realization

(see [41, 42]) of chiral symmetry is adopted. The model has been shown to successfully

describe hadronic vacuum properties, nuclear matter saturation, finite nuclei and hypernuclei

[40, 43, 44]. Furthermore, it has been applied to the description of hot and cold non-

strange and strange hadronic matter [45], the structure of rotating neutron stars [46, 47]

and observables in relativistic heavy ion collisions [48, 49]. In Refs. [49, 50] it was shown that

a chiral phase transition to a chirally restored phase occurs at high densities or temperatures.

At vanishing chemical potential the critical temperature is 150− 180 MeV, i.e. in the range
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predicted by lattice calculations. The nature of this transition – at finite temperature as

well as at finite chemical potential – crucially depends on the number of degrees of freedom

coupled to the mesonic fields and on the strength of these couplings [49, 51, 52]. For a

deeper understanding of the chiral phase transition in strongly interacting matter, we will

thus systematically analyze the role of baryon resonances, which in our investigation are

effectively represented by the lightest baryon decuplet.

Note that only the chiral transition is adressed by our model since only hadronic degrees

of freedom are considered. Nevertheless, we can ask when particle densities are that large

that hadrons should no longer be the suitable degrees of freedom anymore. It turns out that

the coupling of the baryon decuplet may give the right scale for the critical temperature and

also lead to a drastically increasing energy- and baryon density at the phase boundary. By

simultaneously studying different observables, like here the predicted phase diagram and nu-

clear matter saturation, it is possible to relate these different aspects of strongly interacting

matter. This should on one hand help to get a deeper understanding of the different regions

of the QCD phase diagram and on the other hand provide more constraints on effective

models, especially in the resonance sector but also, for example, on the form of the poten-

tials. Furthermore, we can study how the restoration and the different symmetry breaking

patterns are reflected in the properties of the model under different external conditions.

The paper is organized as follows. In section II we introduce the chiral SU(3) model.

Section III shows the results for the phase diagram and for thermodynamic observables. In

section IV we conclude and give an outlook to future work.

II. THE CHIRAL MODEL

The chiral hadronic SU(3) lagrangian in the mean field approximation has the following

basic structure

L = Lkin + LBM + LBV + Lvec + L0 + LSB , (1)

consisting of interaction terms between baryons respectively spin-0 (BM) and spin-1 (BV)

mesons

LBM + LBV = −
∑

i

ψi

[

giσσ + giζζ + giωγ0ω
0 + giφγ0φ

0
]

ψi ,
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Lvec =
1

2
m2

ω

χ2

χ2
0

ω2 +
1

2
m2

φ

χ2

χ2
0

φ2 + g4
4(ω

4 + 2φ4) (2)

summing over the baryonic octet (N,Λ,Σ,Ξ), and decuplet (∆,Σ∗,Ξ∗,Ω). The interactions

between the scalar mesons (with the scale breaking terms containing the dilaton field χ)

read

L0 = −1

2
k0χ

2(σ2 + ζ2) + k1(σ
2 + ζ2)2 + k2(

σ4

2
+ ζ4) + k3χσ

2ζ

− k4χ
4 − 1

4
χ4 ln

χ4

χ4
0

+
δ

3
ln
σ2ζ

σ2
0ζ0

. (3)

An explicit symmetry breaking term mimics the QCD effect of non-zero current quark masses

LSB = −
(

χ

χ0

)2 [

m2
πfπσ + (

√
2m2

KfK − 1√
2
m2

πfπ)ζ

]

. (4)

The term Lkin in (1) contains the kinetic energy terms of the hadrons. The general model

incorporates the full lowest baryon (octet and decuplet) and meson multiplets. Here, instead,

we only consider the mesons relevant for symmetric nuclear matter, namely the scalar field

σ and its ss̄ counterpart ζ (which can be identified with the observed f0 particle), as well

as the ω and φ vector mesons. All other mesons as well as heavier baryon resonances are

treated as free particles and thus do not act as sources of the field equations. The term Lvec

generates the masses of the spin-1 mesons through the interactions with spin-0 mesons. The

scalar interactions L0 induce the spontaneous chiral symmetry breaking. Another scalar

isoscalar field, the dilaton χ, which simulates the breaking of the QCD scale invariance,

can be identified with the gluon condensate [53] (for a more detailed discussion see [40]).

The effective masses m∗

i (σ, ζ) = giσ σ + giζ ζ of the baryons are generated through their

coupling to the scalar fields, which attain non-zero vacuum expectation values due to the

self-interactions [40] [62]. For the decuplet D we introduce an explicitly symmetry breaking

mass term of the form

L = −mDecD̄D . (5)

With this term, it is possible to systematically study how the strength of the scalar coupling

of the resonances influences the properties of hadronic matter, as will be discussed in more

detail. In the strange sector an additional symmetry breaking term of the form m3(
√

2(σ−
σ0) + (ζ − ζ0)) is introduced, where m3 = 1.25. It is chosen in accord with the octet sector

[40, 49], and guarantees that the decuplet masses always stay above the corresponding octet

masses [63].
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The resulting mass terms read

m∆ = mDec + gS
D

[

(3 − αDS)σ + αDS

√
2ζ

]

mΣ∗ = mDec +m3(
√

2(σ − σ0) + ζ − ζ0) + gS
D

[

2σ +
√

2ζ
]

mΞ∗ = mDec +m3(
√

2(σ − σ0) + ζ − ζ0) + gS
D

[

(1 + αDS)σ + (2 − αDS)
√

2ζ
]

mΩ = mDec +m3(
√

2(σ − σ0) + ζ − ζ0) + gS
D

[

2αDSσ + (3 − αDS)
√

2ζ
]

. (6)

The two extreme cases mDec = 0 and mDec = 1232 MeV correspond to the parameter studies

CII and CI in Ref. [49], respectively [64].

For a given value of the explicit symmetry breaking mDec, the two couplings gS
D and αDS

are adjusted to the vacuum masses of the decuplet resonances. (Note that the coupling of

the ∆ to the strange condensate is non-zero but small.)

The vector couplings giω and giφ for the octet as well as for the decuplet result from pure

f -type coupling as discussed in [40, 54],

giω = (ni
q − ni

q̄)g
V
8,10

giφ = −(ni
s − ni

s̄)
√

2gV
8,10 , (7)

with i = N,Λ,Σ,Ξ,∆,Σ∗,Ξ∗,Ω , while gV
8 and gV

10 denote the vector coupling of the baryon

octet and decuplet, respectively. ni represents the number of constituent quarks of a par-

ticular species in a given hadron, where the index q represents the light u- and d-quarks, s

the strange quark, and q̄, s̄ the corresponding antiquarks. The resulting relative couplings

correspond to the additive quark model constraints.

The grand canonical thermodynamic potential of the system can be written as

Ω

V
= −Lvec −L0 − LSB − Vvac ∓ T

∑

i

γi

(2π)3

∫

d3k
[

ln
(

1 ± e−
1

T
[E∗

i
(k)−µ∗

i
]
)]

, (8)

where γi denote the hadronic spin-isospin degeneracy factors and E∗

i (k) =
√

k2
i +m∗

i
2 are

the single particle energies. The effective chemical potentials read µ∗

i = µi − giωω − giφφ,

with µi = (ni
q −ni

q̄)µq +(ni
s − ni

s̄)µs. The vacuum energy Vvac (the potential at ρB = T = 0)

has been subtracted in order to get a vanishing vacuum energy.

By extremizing Ω/V one obtains self-consistent equations for the meson fields. We here

consider non-strange matter, i.e., for given T - and µq-values the strange chemical potential
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µs is chosen such that the net number of strange quarks in the system is zero. Then the

dominant fields are the σ and the ω. Their field equations read

∂(L0)

∂σ
+
∂(LSB)

∂σ
=

∑

i

∂m∗

i

∂σ

γi

(2π)3

∫

d3k
m∗

i

E∗

i

(nk,i + n̄k,i) ≡
∑

i

giσρ
s
i

χ

χ0

m2
ωω + 4g4

4ω
3 =

∑

i

giω

γi

(2π)3

∫

d3k (nk,i − n̄k,i) ≡
∑

i

giωρi, (9)

with the fermionic (anti-)particle distribution functions

nk,i ≡ nk,i(T, µ
∗

i ) =
1

e
1

T
[E∗

i
−µ∗

i
] + 1

(10)

n̄k,i ≡ n̄k,i(T, µ
∗

i ) =
1

e
1

T
[E∗

i
+µ∗

i
] + 1

, (11)

while ρs
i and ρi denote the scalar and vector density of particle species i, respectively.

The sources for the scalar and vector fields mainly depend on two parameters: the number

of degrees of freedom coupled to the fields and the corresponding coupling constants. For

the octet, the scalar couplings are fixed by the vacuum masses and the vector coupling is

adjusted to give the correct binding energy of nuclear matter [40].

In the current investigation we will systematically study the dependence of the hadronic

matter properties on the strength of the scalar and vector coupling for the decuplet. These

are controlled by the explicit symmetry breaking mDec and the relative strength of the vector

coupling,

rv =
gV
10

gV
8

=
g∆ω

gNω

, (12)

respectively [65]. The two parameters mDec and rv determine the abundance and the con-

tribution of the baryon resonances to the scalar and vector field equations and, as will be

shown later, also determine the phase diagram of the model. From Eq. (6) one sees that the

larger the explicit symmetry breaking value mDec, the smaller are the resulting decuplet-

scalar couplings giσ , giζ , i.e. the contribution of the resonances to the source terms of the

field equations. In addition, a large explicit symmetry breaking mDec also gives a higher

effective mass in the medium. Equation (12) shows that the larger rv, the larger is gV
10,

which leads to smaller effective potentials µ∗

i for the decuplet states. This reduces the net

number of baryon resonances at a given chemical potential.
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III. RESULTS

First, we concentrate on the phase transition behavior at vanishing chemical potential.

Since the vector field ω couples to the vector densities ρi, it vanishes independently of the

coupling chosen. Thus, the phase transition behavior at µ = 0 depends only on the scalar

coupling, i.e. on the choice of mDec, not on rv. Figure 1 shows the scalar fields σ and ζ

as a function of temperature T for different values of the scalar coupling. For mDec < 260

MeV (i.e. g∆σ
>∼ gNσ), a first-order phase transition occurs, as indicated by the jump in

the chiral condensates at Tc ≈ 155 MeV. For smaller couplings of the baryon resonances

the scalar fields decrease continuously and a crossover is observed. The strange condensate

ζ is much less affected around Tc than the non-strange condensate σ, reflecting the fact

that most of the produced pairs are nucleons and deltas. If the value of the additional

symmetry breaking for the strange resonances (m3 from Eq. 6) is decreased – re-adjusting

the corresponding coupling strength to keep the masses at their vaccuum expectation values

– these decuplet states contribute stronger and might even produce another first-order phase

transition characterized by a discontinuity in the strange condensate. This will be discussed

in detail in [55].
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FIG. 1: Non-strange condensate σ (left) and strange condensate ζ (right) as a function of tem-

perature for vanishing chemical potential (µq=0). The curves correspond to different values of the

explicit symmetry breaking term mDec.

For given T - and µq-values the thermodynamic potential is given by Eq. (8). Minima in

the potential characterize the different phases present. In addition, the knowledge of the
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potential as a function of the fields, i.e. away from the minimum, is also of interest, e.g. for

non-equlibrium dynamics of the phase transition [56]. In Fig. 2 the effective potential for

two different values of the scalar coupling of the baryon resonances is depicted around Tc.

For mDec = 0 (left) two distinct minima appear, showing the same depth at Tc (full line).

Thus, at this temperature the stable phase of the system jumps from large to low σ values.

For mDec = 300 MeV, in contrast, there exists only one minimum in the effective potential

which continuously changes with temperature. This characterizes the crossover transition.

0 20 40 60 80 100
| | [MeV]

-80
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-40

-20

0

20

/V Sp2: T=157.0 MeV
P. T.: T=154.7 MeV
Sp1: T=153.2 MeV
T=159 MeV
T=151 MeV

0 20 40 60 80 100
| | [MeV]

-80
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T=164 MeV
T=162 MeV
T=159 MeV
T=155 MeV

FIG. 2: Effective potential as a function of (the order parameter) σ. The left panel depicts the case

with a first-order phase transition for mDec = 0. In between both of the spinodals (broken lines) the

potential has two minima which have the same depth at the phase transition temperature (full line).

The right panel shows an example for the crossover case, here mDec = 300 MeV. The minimum of

the potential achieves values of the σ-field of ≈ 20 MeV yet at notably higher temperatures than

in the first-order phase transition case.

We now turn to finite chemical potentials to investigate the phase diagram in the whole

T -µ plane. Recent lattice QCD data predict a crossover at vanishing chemical potential

[5, 14, 57] and a critical end point at Tc ≈ 150− 170 MeV and µq,c ≈ 100− 250 MeV. Since

several sources of uncertainty remain in these calculations, as e.g. the large π mass or the

finite lattice spacings, we will also discuss the case of a first-order phase transition at µ = 0.

First, however, we want to consider the case with a crossover at µ = 0. As discussed above

this is obtained for mDec ≥ 260 MeV. Then, the highest Tc is obtained for a minimal vector

coupling rv = 0. We find Tc ≈ 155 MeV and µq,c ≈ 70 MeV. The resulting phase diagram is

depicted in Fig. 3 (left), showing a critical point in the same region as predicted by lattice
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QCD. However, the critical temperature drops much faster in our model calculation than

in the lattice results. Increasing the vector coupling of the baryon resonances decreases Tc

and increases µq,c (see Fig. 3 middle and right). Very similar behavior is observed when

decreasing the scalar coupling and keeping the vector coupling constant. However, for all

choices shown in Fig. 3 (rv = 0, 0.2, 0.4), the chiral phase transition occurs at µq < 300 MeV

for T = 0, which implies a stable chirally restored phase. Hence, the current form of the

model it is not able to obtain simultaneously a critical temperature in the region predicted

by lattice QCD and a successful description of nuclear matter properties (density, binding

energy).

FIG. 3: Phase diagram for mDec = 300 MeV and increasing values of the decuplet vector coupling

from left to right (rv = 0, 0.2, 0.4).

In Fig. 4 (left) we show the parameter regions, which, at T = 0, either give a first-order

phase transition and an absolutely stable chirally restored phase, or a chiral phase transition

but stable normal nuclear matter, or no phase transition at all (crossover), respectively. We

observe that the smaller the explicit symmetry breaking term mDec, i.e. the larger the scalar

coupling of the baryon resonances, the larger the vector coupling constant must be chosen

to guarantee stable normal nuclear matter. This is in agreement with the results obtained

in [45, 52, 58]. Insisting that normal nuclear matter be stable reduces the maximum critical

temperature to Tc ≈ 50 MeV, with a critical chemical potential µq,c ≈ 290 MeV. This phase

diagram is shown in Fig. 4 (right) for mDec = 300 MeV and rv = 0.5, the correspondingly
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lowest possible value for rv, which leads to stable normal nuclear matter. The resulting phase

diagrams for higher values of the explicit symmetry breaking mDec and the corresponding

smallest possible vector couplings, look nearly identical. Thus, in the present form the chiral

model yields Tc
<∼ 50 MeV, if we insist on normal nuclear matter being stable.

stable chirally
restored phase

no phase transitionstable normal nuclear matter

FIG. 4: (Left) Regions in the rv–mDec parameter space giving a first-order phase transition with

an absolutely stable chirally restored phase, a chiral phase transition but stable normal nuclear

matter and a crossover, respectively, for T = 0. (Right) Phase diagram for rv and mDek chosen

such that nuclear matter is stable (mDek = 300 MeV and rv = 0.5).

Examples for the energy density are shown in Fig. 5 as a function of temperature at

constant chemical potential and for different values of rv and mDec (broken lines) as well as

for an ideal hadron gas (full lines). The left panel shows the case for µq = 0, where rv has

no influence due to the vanishing net baryon density. The right panel shows the case for

µq = 170 MeV, illustrating the qualitatively similar effect of increasing either rv or mDec.

For both chemical potentials the interacting and the free gas show similar properties at low

T , but exhibit large differences at higher T . For a first-order phase transition the energy

density jumps to extremely high values (dashed line on right panel).

Recent lattice QCD results show a crossover at µ = 0. However, as stated above, several

uncertainties remain. Thus, we also want to consider a first-order phase transition at µ = 0.

Then, new and different structures can be observed as shown in Fig. 6 for mDec = 0. The
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FIG. 5: Energy density over T 4 as a function of T with µq = 0 (left) and µq = 170 MeV (right) for

different values of rv (for µq 6= 0) and mDec. In each figure, one can clearly see the rapid departure

of the model results from the ideal hadron gas curve (full line) in the respective phase transition

region.

line representing the first-order phase transition starts from the T -axis. For small rv this line

continues down to the µq-axis. However, the phase transition weakens at moderate chemical

potential, then becomes stronger again as T → 0. For rv
>∼ 0.5 the first-order phase

transition line ends at µq ≈ 100 MeV and re-appears again at high chemical potentials if

rv ≤ 0.9 (cf. Fig. 4 left).

The right panel shows the prediction for an acceptable description of nuclear matter

groundstate properties. The first-order phase transition line starting from µ = 0 ends in a

critical point Tc ≈ 150 MeV and µq,c ≈ 100 MeV. For 150 MeV ≤ µq ≤ 280 MeV a crossover

occurs. Then a first-order phase transition line appears again, reaching down to the T = 0

axis. This phase diagram differs markedly from the lattice results. Figure 7 shows how this

behavior is reflected in the non-strange condensate. One can clearly see the jumps in the

σ-field for low and high chemical potentials and the continuous behavior for intermediate µq.

The phase transition at high temperatures and small chemical potentials is driven by the

abundant production of particle-antiparticle pairs, which decreases the chiral condensates

and thus the effective baryon masses. Therefrom a further increase of the pair production

results. This is a similar mechanism as the one described in [51]. At small temperatures and

high chemical potentials the phase transition is driven by the rapid increase of the vector

density of the baryon resonances, especially the ∆s, leading to a second minimum in the
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FIG. 6: Phase diagram for mDec = 0 and rv = 0, 0.4, 0.7 (from left to right). For rv = 0.4 the phase

transition weakens at intermediate chemical potentials and for rv ≥ 0.5 the phase transition line

is disconnected, as can be seen in the right figure for rv = 0.7, which yields stable nuclear matter.

0 20 40 60 80 100 120 140 160 180
T [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

/
0

300
290
270
200
100
0

FIG. 7: Non-strange condensate σ as a function of temperature for mDec = 0, rv = 0.7 and for

different values of the chemical potential µq = 0 . . . 300 MeV. For low and high chemical potential

the σ-field jumps, which corresponds to a first-order phase transition. For intermediate values of

µq, instead, a continuous behavior results.

energy per particle.

IV. CONCLUSION

Using a chiral SU(3) model we investigated the dependence of the QCD phase diagram on

the scalar- and vector-coupling of the baryon decuplet. We found that qualitative agreement
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with recent lattice results can be obtained, as for example a critical point around Tc ≈ 150

MeV and finite µq,c. However, the slow decrease of the phase transition temperature with

increasing chemical potential could not be reproduced. Moreover, demanding existence of

a normal nuclear matter ground-state at T = 0 reduces Tc significantly to approximately

50 MeV. Allowing for a first-order phase transition at µ = 0, which cannot unambigiously

be excluded from current lattice data, a rich phase structure is possible, depending on the

vector coupling of the baryon resonances. If these are chosen to be small then a continuous

first-order phase transition line from the T - to the µ-axis results. However, if the vector

coupling is increased, the first-order phase transition line starting at the T -axis ends at

intermediate chemical potentials. Depending on the adopted vector coupling, a first-order

phase transition line re-appears at higher chemical potentials and lower temperature. Hence,

there are two critical endpoints appearing in the QCD phase diagram for such a choice of

parameters.

These results show that the simultaneous description of the phase diagram and nuclear

matter saturation gives strong constraints on the model. Even more constraints may appear

if also neutron stars are considered [59]. Since many different models with different equa-

tions of state give a good description of nuclear matter saturation and neutron stars, such

additional constraints are urgently needed – although there is still considerable uncertainty

in the lattice calculations. However, further improvement can be expected in the near fu-

ture in this area and thus more reliable results will appear. Then one should be able to find

connections between the phase diagram and the structure of specific models.

Our results also show that a very diverse structure of the phase diagram is possible. To

get a better understanding of the characteristics of the phase transition at high chemical

potential, it would be very helpful to gain knowledge on the latent heat and correlation

lengths as a function of chemical potential from lattice calculations. Then one might be able

to pin down the phase diagram in a more quantitative fashion.

Although our study neglected many contributions, especially the pions and the higher

resonances, some very interesting conclusions appear. First of all, the baryon resonances

may very well drive the chiral phase transition and give a structure in agreement with

lattice QCD. The question how the QCD phase diagram with realistic pion masses looks

like is still open. As was shown in [32], several different approaches, which do not take into

account baryon resonances, yield much lower critical temperatures. This clearly suggests
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an important role of baryonic degrees of freedom for the characteristics of the chiral phase

transition. The stronger curvature of Tc(µ) as compared to lattice results might be due to

only including the baryon decuplet. At the same time, however, the validity of a hadronic

description of the thermodynamic state becomes quite questionable due to the ’explosion’

of density and energy density at the first-order chiral phase transition.

So far we only took into account the contribution of the resonances by coupling the baryon

decuplet to the fields. The extension to more degrees of freedom is in progress. It will be

very interesting to see how the results obtained here may be changed by a larger hadronic

spectrum.

Another very promising investigation is the comparison to the equation of state and the

chiral condensate as obtained from lattice calculations with a distorted mass spectrum – as

proposed in [12, 13]. There it was shown that a non-interacting resonance gas can give a

good description of the lattice equation of state. Since close to Tc the effect of interactions

should definitely be present, however, the comparisons to the lattice results should help

to disentangle the field contributions from those of an ideal gas and to learn more about

the nature of the interactions close to the phase boundary. In particular, within the chiral

SU(3) model one is able to study the behavior of the chiral condensate and thermodynamic

quantities simultaneously. In addition, it is possible to make contact between the theory

of the phase diagram and experimental observables, e.g. by determining in one model the

chemical freeze-out temperature in relativistic heavy ion collisions – as obtained from fits to

the measured particle ratios – and the phase transition temperature [60, 61].
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