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Abstract. Robots of the future should communicate with humans in a
natural way. We are especially interested in vision-based gesture inter-
faces. In the context of robotics several constraints exist, which make
the task of gesture recognition particularly challenging. We discuss these
constraints and report on progress being made in our lab in the devel-
opment of techniques for building robust gesture interfaces which can
handle these constraints. In an example application, the techniques are
shown to be easily combined to build a gesture interface for a real robot
grasping objects on a table in front of it.

1 Introduction

Robots of the future must interact with humans in a natural way if they are to
become part of our everyday lives. They must understand spoken and gestural
commands and also articulate themselves by these means. We are especially
interested in vision-based gesture recognition for robots operating in real world
environments. This poses a number of constraints to human robot interaction as
a special case of human computer interaction:

— The robot must be capable of realtime gesture recognition. If the robot’s
responses are slow, it is tiresome to use. However, with the increasing speed
of standard hardware a system that falls short of realtime perfomance today,
will work satisfactorily in a couple of years.

— The system must be person independent. For most applications it is desirable
that many potential users can operate the robot, even if the robot has never
seen them before.

— The system must not require the user to wear special clothes or cumbersome
devices such as coloured markers or data gloves, since this is too tedious for
the user.

— The robot will face variable and possibly complex backgrounds against which
a user operates it. A system requiring constant background is not flexible
enough for real world applications.



— The robot must cope with variable lighting situations. The requirement of
constant lighting is too big a restriction for any real world application.

Fig. 1. The robot at our lab has a kinematically redundant arm and a three degrees
of freedom stereo camera head.

Automatic visual gesture recognition has received much attention recently,
for a review see [10]. However, hardly any published work acknowledges all the
requirements stated above.

In the work of Franklin et al. [4] an attempt to build a robot waiter is pre-
sented, a domain which indeed poses all the above challenges. The robot’s gesture
analysis, however, so far only distinguishes between an empty hand and a hand
holding an object based on how much skin colour is visible. The system presented
by Cui and Weng [3] recognizes different hand gestures in front of complex back-
grounds. It reaches 93.1% correct recognition for 28 different gestures, but is
not person independent and relies on a rather slow segmentation scheme taking
58.3 seconds per image. Heap and Hogg [5] present a method for hand tracking
using a deformable model, which also works against complex backgrounds. The
deformable model describes one hand posture and certain variations of it and
is not aimed at recognizing different postures. The work presented by Campbell
et al. [2] is an example of a system recognizing two-handed gestures. It allows
only for motion based gestures, because it is not analyzing the shape of the
user’s hands. In Kjeldsen’s and Kender'’s work [7] a realtime gesture system for
controlling a window-based computer user interface is presented. The posture
analysis is indeed quite fast (2 Hz). A minor drawback of the system is that its
hand tracking has to be specifically adapted for each user. The system presented
by Maggioni [9] has a similar setup. It requires a constant background to the
gesturing hand.



We are working with a real robot and try to acknowledge all the constraints
mentioned. The robot at our lab has a kinematically redundant arm with seven
degrees of freedom, which allows it to grasp an object from various directions
(figure 1). On top of the arm a stereo camera head with three degrees of freedom
is mounted; this allows for pan, tilt and vergence motion. The cameras yield
images 768 x 572 pixels in size (35° field of view).

The rest of the paper is organized as follows. In section 2 we will present
techniques for tracking the head and hands of a person. Section 3 deals with
techniques for the recognition of hand postures from camera images. In section
4 we describe how these techniques may be combined to implement an example
gesture interface for our robot whose task it is to move around objects scattered
on a table in front of it. Finally, section 5 discusses the achievements and gives
an outlook.

2 Tracking of Heads and Hands

A prerequisite for the successful recognition of gestures is tracking the head and
hands of the gesturing person. We combine motion, colour and stereo cues to
reach the robustness demanded by real world applications. Let us first consider a
hand pointing to some objects on a table in front of the robot (figure 2). We work

Fig. 2. Tracking scenario. The user’s hand is pointing to objects on a table and has to
be tracked. This is also the setting of our example application described in section 4.

on low resolution images with a size of 96 x 71 pixels in HSI (hue, saturation,
intensity) colour format. The tracking currently runs at a maximal speed of 8
Hz using stereo and 12.5 Hz using only one camera on a standard PentiumPro
PC without any special image processing hardware.



2.1 Motion Cue

We compute a thresholded version of the absolute difference images of the in-
tensity (I) components of consecutive images according to

MU (2,y,t) = O(| I (,y,t) — I"" (2,y,t — 1) | = T),

where I' is a fixed threshold and € is the Heavyside function. Afterwards, we
apply a local regularization algorithm, which switches on pixels that have a high
number of direct neighbours which are on and which switches off isolated pixels
being on. The result of such processing is depicted in figure 3. The motion cue
responds to all moving image regions, i.e., to all moving objects and to some
extent also to their shadows falling over still objects, producing artifacts. Also,
it is of course fooled by motions of the camera head itself resulting in perceived
motion almost everywhere.

Fig. 3. Results of the motion cue (left) and colour cue (right). Usually, none of the cues
alone allows perfect tracking. Only by combining several cues the robustness necessary
for real world applications is reached.

2.2 Color Cue

Skin colour detection is based on the hue (H) and saturation (S) components of
the image. We distinguish two types of processing. The first uses a very coarse
and unrestrictive model of skin colour, defined as a prototypical point in the HS
plane. For each pixel of the input image we compute its Euclidean distance to
this point, where the axes are appropriately rescaled. The closer the pixel is to
the prototype, the higher is its likelyhood of stemming from the head or hands of
a person. When the lighting situation changes, e.g., due to the spotlights of a TV
team, the prototypical point may no longer be appropriate. In order to deal with
such cases we have introduced a second scheme which works with an adapted
skin colour table. Before actually using the system its colour table is adapted
to the current lighting situation (and the subjects particular skin colour) by
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the subject showing his or her hand to the robot for a couple of frames. With
this scheme the colour cue can be made much more restrictive. A result for the
restrictive colour cue is depicted in figure 3. There is still a lot of noise in the
cue and it will react to any approximately skin coloured objetcs such as the
subject’s jumper in figure 3. For the future, it would be desirable to have an
online recalibration taking place while the robot is performing, which detects
changes in the lighting situation and automatically adapts to them.

Fig. 4. Attention maps extracted from the two cameras. Each attention map contains
two strong blobs of activity referring to the two hands of the subject. The circles are
drawn around the hand selected due to the stereo cue (see section 2.4.

2.3 Attention Maps

We compute attention maps for each camera by combining motion and colour
cue. For each camera the result of the colour cue and the motion cue are added
with appropriate weighting factors. The stronger weight is put on the colour cue
since it appears more reliable as head and hands are not necessarily moving all
the time. The additive combination of cues ensures that the system will keep
working (although in a deteriorated fashion) if one of the cues breaks down.
The attention maps are then computed by convolving the summation results
with a Gaussian kernel in order to make them smooth and emphasize larger
blobs. For the scene of figure 3 the attention maps of the left and right camera
are depicted in figure 4. In both attention maps there are two strong blobs of
activity belonging to the left and right hand of the subject.

2.4 Stereo Cue

The stereo cue is intended to select only objects that are in the plane of fixation
of the robot. For this purpose, the attention maps of left and right image (figure
4) are simply added (figure 5). This highlights only the responses of objects in
the plane of fixation because only for these do the contributions of the left and
right attention map overlap in image space. The point with the highest response



in the sum of the attention maps is the assumed position of the target hand.
Starting from its coordinates, a gradient ascent is performed in the attention
maps of the left and right image until the local maxima corresponding to the
selected hand are reached. The spatial positon of the hand can now be easily
computed by triangulation.

Fig. 5. Stereo cue. When the attenion maps of left and right image are added only the
responses of objects in the plane of fixation lead to high responses. In this way, the
hand moving in the background could be ruled out.

2.5 Active Tracking

Active tracking means that the camera head uses its three degrees of freedom
to keep the target object approximately centered in both camera images. We
control the vergence angle independently of the pan and tilt angles.

For control of the vergence angle between the cameras, we add the attention
maps of left and right image with three different disparities, i.e., different relative
horizontal displacements of a positive, zero and negative number of pixels. The
resultant images stress features in front of, in, and behind the plane of fixation,
respectively. We compute the global maxima in the three images. If the highest
response was for the image focusing in front of the plane of fixation, the vergence
angle is increased, i.e., the cameras are converged. Conversely, if it was highest
behind the plane of fixation, the vergence angle is decreased.

If the highest of the three global maxima comes close to a vertical or horizon-
tal border of the image, indicating that the hand is about to leave the current
field of view, an appropriate saccade with the other two degrees of freedom is
made to bring it back to the center. For fast moving objects bigger saccades have
to be made in order to compensate for the object’s motion during the time nec-
essary to perform the saccade. During saccades the image acquisition is stopped
so that the effective frame rate of the tracking depends on the rate and sizes of
saccades and is generally slower than for passive tracking.



Fig. 6. Simultaneous tracking of several objects.

2.6 Multiple Objects

For some applications, e.g., sign language recognition, head and both hands of
the subject have to be tracked simultaneously. This is done by simply looking
for targets in the current frame in the vicinity of targets detected in previous
frames (figure 6), i.e., the continuity of the targets’ motion is exploited. This
simple scheme has of course problems with mutually overlapping targets. If,
for instance, both hands overlap strongly and then move apart again, tracking
will not be able to tell which one was which. The incorporation of techniques
for explicitely modelling the motion of the hands and predicting their future
positions should attenuate this problem.

3 Hand Posture Classification

The second important building block of a gesture recognition system is the analy-
sis of hand postures. Our posture recognition is based on elastic graph matching,
which has already been successfully applied to object and face recognition [8, 13].
For some applications such as sign language recognition, the analysis of facial
expressions is important. This can also be done with elastic graph matching (see
[6]), but we will not discuss this point any further here.

Processing is done on grey scale images and has been shown to work in-
dependent of person and despite varying complex backgrounds. The system is
described in more detail in [11]. It is an adaptation of our earlier system [12].
Here, we only give an outline of the system.

In elastic graph matching, objects are represented as labelled graphs, where
the nodes carry local image information and the edges contain information about
the geometry. One model graph is created for each object. The local image
information at each node is often represented by a vector of responses to Gabor-



based kernels called a jet. These kernels are DC-free and defined by:

i~ () oo ()

They are depicted in figure 7.

Fig. 7. Nodes of graphs are labeled with the responses to Gabor based kernels. They
have the form of a plane wave restricted by a Gaussian envelope function. Left: real
part, right: imaginary part.

We fuse the graphs obtained from two persons performing the posture into a
single bunch graph for each posture; for details on the bunch graph concept see
[13]. We currently use a set of six postures taken from a finger spelling alphabet
(figure 8).

A graph representing a particular posture is matched onto an image by mov-
ing it across the image until the jets at each node fit best to the regions in the
image they come to lie on. During the matching process we allow for certain
geometrical transformations of the graph such as scaling and rotation in plane.
For recognition of a posture, the graphs of all postures are sequentially matched
onto the images of left and right camera and the posture whose graph obtains
the highest total similarity (sum of similarities in left and right image) is selected
as the winner.

The result of a matching process on the image of one camera is depicted
in figure 9. As we do not use a local diffusion of nodes but keep the graph
rigid, the match does not fit particularly well, but is reliable enough for posture
recognition.

Our previous system [12] reached about 86% correct recognition for 10 dif-
ferent postures in front of complex backgrounds, but recognition took about 16
seconds on a Sun Ultra Sparc Workstation. By means of a smaller alphabet of
six postures and coarser model graphs, we managed to reduce the recognition
time by a factor 3-5. Experiments with novices using the system show a correct
classification in four out of five cases. The positions of the graphs in the left and
right images after matching are usually precise enough to allow for an estimate
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Fig. 8. The six postures tell the robot whether to grasp an object from above, the

front, the side, and so on. They are taken from the American Manual Alphabet and
were slightly adapted to make them more comfortable and more intuitive.

of the hand’s three-dimensional position with 1-2 cm accuracy for a distance of
about 1 m from the robot.

3.1 Using Colour

It seems likely that graph matching can be improved by adding colour informa-
tion to the models. We have done a preliminary study, where we have added also
colour information to the nodes of the model graphs. The similarity of such a
compound jet to a region of the image is defined as a weighted sum of the Gabor
responses’ similarity and a measure of the local colour similarity. We prepared
a model graph for each of the six postures from a single example image of one
person signing against uniform background and tested it on a gallery of 108 test
images of different persons signing against complex backgrounds (see figure 10),
varying the influence of the colour and the Gabor cue. The results are depicted
in figure 11. While recognition was relatively poor using only colour (39%) or
only Gabor information (54%), the combination of both lead to recognition rates
of 70%. The generally low scores are due to the fact that the model graphs were
created from only a single example image.

4 An Example Application

We have designed an example application where the robot stands in front of a
table with objects on it. The user tells it with gestures which object to grasp and
how to grasp it, as well as where to put it (figure 2). This application requires
a number of other skills needed by the robot, e.g., recognition of shape and
orientation of the object pointed to, grip planning and grip execution, which are
discussed elsewhere [1].
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Fig. 9. Example of a graph of the correct posture being matched onto the input image.

The gestures are defined as pointing movements to the objects with a par-
ticular hand shape. The user’s hand is tracked until it comes to rest using the
techniques described in section 2. As the whole table is within the robot’s field
of view, we can do without active tracking. Also, gestures are single handed so
only one hand has to be tracked. After tracking the hand posture is analyzed as
described in section 3. It tells the robot whether to grasp the object from, e.g.,
above, the side, the front, and so on. After the robot has grasped the object the
user indicates with a second gesture where the object shall be placed and the
robot puts it there.

5 Discussion and Outlook

We have discussed the requirements for gesture interfaces of robots operating in
the real world. We have presented vision-based techniques for tracking the head
and hands of a person, as well as for the analysis of hand shapes taking these real
world requirements into account. Both the tracking and the hand posture recog-
nition are purely vision-based and do not require the user to wear gloves or other
devices. They function person independent and despite complex backgrounds.
The tracking is capable of realtime performance. For the computationally more
extensive posture analysis, there is a complex tradeoff between the allowed num-
ber of postures, the spatial accuracy and the speed of the matching process. In
its current guise, however, it is not far from realtime performance without any
special hardware. In order to increase the robustness with respect to different
lighting situations we are currently working on an automatic color constancy
module.
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Fig. 10. One of the six postures of the preliminary color study performed by nine
different subjects against varying complex backgrounds.

We have presented preliminary results indicating that colour information
can significantly enhance the hand posture analysis. This point will be further
investigated.

For the future, we intend to close the gestural communications loop by letting
the robot perform gestures itself, e.g., by pointing to unfamiliar objects whose
names or associated gestures the user then supplies to the robot.

Also, we are interested in imitation learning, where the robot learns how to
grasp particular objects by observing the human example.
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