
Contextual Equivalence for the Pi-Calculus that can Stop

David Sabel and Manfred Schmidt-Schauß

Goethe-University, Frankfurt, Germany

Technical Report Frank-53

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

March 10, 2014

Abstract. The pi-calculus is a well-analyzed model for mobile processes and mobile computations.
While a lot of other process and lambda calculi that are core languages of higher-order concurrent
and/or functional programming languages use a contextual semantics observing the termination
behavior of programs in all program contexts, traditional program equivalences in the pi-calculus
are bisimulations and barbed testing equivalences, which observe the communication capabilities of
processes under reduction and in contexts.
There is a distance between these two approaches to program equivalence which makes it hard to
compare the pi-calculus with other languages. In this paper we contribute to bridging this gap by
investigating a contextual semantics of the synchronous pi-calculus with replication and without
sums.
To transfer contextual equivalence to the pi-calculus we add a process Stop as constant which
indicates success and is used as the base to define and analyze the contextual equivalence which
observes may- and should-convergence of processes.
We show as a main result that contextual equivalence in the pi-calculus with Stop conservatively
extends barbed testing equivalence in the (Stop-free) pi-calculus. This implies that results on con-
textual equivalence can be directly transferred to the (Stop-free) pi-calculus with barbed testing
equivalence.
We analyze the contextual ordering, prove some nontrivial process equivalences, and provide proof
tools for showing contextual equivalences. Among them are a context lemma, and new notions of
sound applicative similarities for may- and should-convergence.

1 Introduction

Motivation

The π-calculus [MPW92,Mil99,SW01] is a well-known model for concurrent processes with
shared-message passing. It has a minimalistic syntax including parallel process-composition,
named channels, and input/output-capabilities on the channels. In contrast to function applica-
tion (as in the lambda-calculus) the data flow in the π-calculus is programmed by communication
between processes.

The π-calculus is a very basic model for concurrent processes, and it has become important
not least because it is used and extended for a lot of applications. Examples are the Spi-calculus
[AG97] for reasoning about cryptographic protocols the stochastic π-calculus [Pri95] with appli-
cations in molecular biology, and the join calculus [Lan96,FG02] for distributed computing.

Our long standing research goal includes questions of expressivity of program calculi. Hence
we are investigating the problem whether the π-calculus can be encoded into other concurrent
program calculi (which are mainly extended concurrent lambda-calculi, for instance the call-by-
value lambda calculus with concurrent futures [NSS06,NSSSS07], or the CHF-calculus modelling

2 D. Sabel and M. Schmidt-Schauß

Concurrent Haskell [SSS11,SSS12]), and also vice versa whether other program calculi can be
encoded into the π-calculus. Given such an encoding, the important properties are whether it
reflects and/or preserves program equivalences from source to the target calculus, i.e. whether
the encoding is adequate, full-abstract, etc.

However, before inventing such encodings, a notion of program equivalence for the source
and the target calculus is required.

Contextual Equivalence

For program calculi based on the lambda-calculus the usual approach to program equivalence is
Morris style-contextual equivalence [Mor68,Plo75] which can be used in a uniform way for a lot
of those calculi. For deterministic languages, contextual equivalence is based on the notion of a
terminated (or successful) program, and it equates programs, if the ability to terminate (i.e. so-
called may-convergence) is indistinguishable when exchanging one program by the other in any
surrounding program context. For non-deterministic languages this equivalence is too coarse,
but it can be strengthened by additionally observing whether the program successfully termi-
nates on all execution paths, i.e. whether the program must-converges, or as a slightly different
approach, whether the program should-converges, which holds, if the the property of being may-
convergent holds on all execution paths. In difference to must-convergence, should-convergence
(see e.g. [NC95,CHS05,RV07,SSS10]) has some kind of fairness built-in: the predicate does not
change even if instead of all reduction sequences only fair ones are taken into account, where
fair reduction sequences ensure that every reducible expression is reduced after finitely many
reduction steps.

The advantages of contextual equivalence are many-fold. Contextual equivalence is very
natural, since it identifies programs as equal if exchanging programs is not observable; it is a
congruence on programs which is an inevitable requirement for any program equivalence; and
contextual equivalence is a uniform concept, since it can be defined for any program calcu-
lus which is equipped with a small-step reduction relation and a notion of successfulness for
programs.

Goal of this Paper

For the π-calculus, a lot of process equivalences exists (which will be discussed later), but none
of them is a contextual equivalence in the above sense, since it does not use a notion of successful
termination of processes. It is hard to find such a (at least commonly accepted) notion which
stems from the fact that the π-calculus models reactive systems which naturally may run forever.

However, our goal is to define and analyze a Morris’ style contextual equivalence for π-
processes, which will then support research on the expressivity of program calculi w.r.t. the
π-calculus. Since no notion of success exists in the π-calculus we add such a notion by introduc-
ing a constant Stop as a syntactic construct. The constant indicates termination of a process,
i.e. whenever Stop is a parallel component of the overall program, then the program is successful
– independent of other components. This extended calculus is called ΠStop.

Of course, inventing a new program equivalence in the well-analyzed π-calculus has to be
justified. Besides the already mentioned advantages of a contextual equivalence the following
arguments support our investigation:

– In concurrent programming languages, like e.g. Haskell, the termination of the main thread
leads to termination of the whole program, i.e. all concurrent threads are also terminated.
The π-calculus has no process hierarchy, but the primitive Stop models a similar behavior
of enforcing global termination, since the occurrence of Stop as process component in some
process enforces success of the whole program.

Contextual Equivalence for the Pi-Calculus that can Stop 3

– Concerning encodability results one may also argue that ΠStop is no longer the π-calculus
and thus those results will be exotic. However, as we show, this is not the case, since there
is a very strong connection between the π-calculus without Stop and the ΠStop: for Stop-free
processes contextual equivalence in ΠStop coincides with barbed may- and should testing
equivalence (see below) in the π-calculus without Stop. Thus correctness results of encodings
between ΠStop and other program calculi, can easily be transferred to the π-calculus with
Stop w.r.t. barbed testing equivalence.

– Since barbed testing equivalence and contextual equivalence coincide for Stop-free processes,
contextual equivalence and our developed proof techniques can be used to reason about
barbed testing equivalence of processes.

Process Equivalences in the π-Calculus

For the π-calculus a lot of (different) process equivalences exist. We discuss and compare them
to our approach.

Bisimulations Several different bisimulations were suggested as process equivalence (see
e.g. [SW01,MS92]). They equate processes if testing the processes (using reduction) exhibits
that they have the same input and output capabilities and that they reach equivalent states.
Bisimulations occur in strong variants, where bisimilar processes must have an identical reduc-
tion behavior for every single reduction step, and there are weak bisimulations, where the number
of internal reduction need not coincide, but equivalent states w.r.t. the reflexive-transitive clo-
sure of reduction must be reached. From our point of view, even weak bisimulations are too
fine grained to be used as the notion of process equivalence. However, since proving processes
bisimilar is often easy, bisimulations can be used as proof tools to establish process equivalences.

Testing Equivalences An approach which is close to contextual equivalence are testing equiv-
alences (see e.g. [DH84] for CCS, [BD95,FG05] for the π-calculus, and [Lan96] for the join-
calculus). They are defined analogously to contextual equivalence, but instead of observing
successful termination, other observations are relevant.

For barbed testing equivalences the capability of receiving (or emitting) a name on an (open)
input (or output) channel is observed (i.e. the process has an input or output barb). There are
several variants of this definition, i.e. whether only the possible output, only the possible input,
or both are observed, and also whether the quantification is over all channel names, or one single
channel name, and sometimes also ignoring the concrete name of the channel.

Barbed may-testing only tests whether a process may have a barb after reducing it. How-
ever, barbed may-testing is not sufficiently discriminating, since obviously different processes
are equated, e.g. a process P that can receive input on channel x and a process Q that nonde-
terministically either diverges without communication capabilities or behaves like P are barbed
may-testing equivalent. Consequently, there is some work where may-testing is combined by
using a must-testing predicate or a should-testing predicate (which is sometimes called fair
must-testing). Roughly speaking, these predicates require an input or output capability on ev-
ery execution path. A detailed analysis of barbed may and should-testing for the asynchronous
π-calculus is in [FG05]. Established results are that barbed may-testing can be omitted, since
barbed should-testing already includes may-testing and several soundness and completeness re-
sults for several bisimulations and barbed congruence are presented.

Compared to contextual equivalence, the property of having a barb is different from a pred-
icate which indicates success, since it is not stable under reduction, i.e. a process may have a
barb and reduce to a process which no longer has a barb. This phenomenon was also observed
by [FG05], and as a consequence they also considered a variant of the asynchronous π-calculus
(the so-called local π-calculus) where barbs are stable under reduction, by forbidding reductions
on open channel names. However, this approach changes the semantics of the calculus.

4 D. Sabel and M. Schmidt-Schauß

Another difference between the results in [FG05] and our approach is that we consider the
more expressive synchronous π-calculus instead of the asynchronous variant.

Another observation was chosen in [BD95] for a testing equivalence: they added a special
action ω to the π-calculus, and their testing equivalence observe whether the action ω may or
must occur. This approach looks very similar to our approach of contextual equivalence, since
instead of adding a constant Stop we could also add Stop as a new action prefix and adapt the
successfulness notion accordingly. This would not change our results, since both extensions of
the π-calculus are isomorphic. However, the approach in [BD95] is different. One difference is
that the small-step reduction in [BD95] removes the ω-action by executing it, and thus again
successfulness is not stable under reduction. Another more substantial difference is that the ω-
action only occurs in the contexts for testing, but not in the language itself, and thus the tests
are more discriminating than the language itself, which violates the condition of contextual
equivalence that programs are identified as equal if their behavior cannot be distinguished if
they are used as subprograms in any other program. In [BD95] the surrounding context is no
longer a program. A further substantial difference is that the testing preorders in [BD95] are
not precongruences, which is problematic, since replacing subprograms by testing equivalent
subprograms is not ensured to be semantically correct. Finally, the considered variant of the
π-calculus does not include replication or recursion, but a constant for nontermination, and thus
it is a restricted variant of the π-calculus.

Results

Adding a new syntactic construct to the π-calculus may change the semantics of the calculus
and thus requires an analysis of the contextual equivalence. We first show the coincidence of
barbed testing equivalence with contextual equivalence for Stop-free process. Thus we first intro-
duce the π-calculus and results on barbed testing and then extend the calculus by the constant
Stop. Thereafter we develop proof tools for showing program equivalences. We show that a con-
text lemma holds, which restricts the required class of contexts to show contextual equivalence.
And we introduce notions of applicative similarities for the may- and the should-convergence.
Even though there are soundness results on bisimilarities and may- and should-testing for the
asynchronous π-calculus in [FG05], to the best of our knowledge our notion of an applicative
similarity for should-convergence is new. We prove soundness of these similarities w.r.t. the
contextual preorders and thus they can be used for coinductive proofs to show contextual equiv-
alence. Even though the test for may-convergence is subsumed by testing should-convergence,
our reasoning tools require also reasoning about may-convergence, and thus we will consider
both predicates. Equipped with these tools we show that process interaction is correct, if it is
deterministic, prove some further process equations, and investigate the contextual ordering. We
show that a contextually least element does not exist in ΠStop, but a largest element exists –
the constant Stop.

Outline

In Section 2 we briefly recall (a variant of) the synchronous π-calculus (called Π) and transfer
the results about barbed testing equivalence to this calculus. In Section 3 we extend Π by the
constant Stop resulting in the calculus ΠStop. We introduce contextual equivalence of ΠStop and
prove its connection with barbed testing equivalence in Π. The context lemma and soundness
of an applicative similarity is proven in Section 4. We analyze the contextual ordering and prove
correctness of deterministic process interaction in Section 5. Finally, we conclude in Section 6.
For readability some proofs are given in the appendix.

Contextual Equivalence for the Pi-Calculus that can Stop 5

2 The π-Calculus Π

In this section we briefly recall the synchronous π-calculus, called Π, with replication but without
sums, recursion, and matching operators. We will then give an overview of several variants of
may and should testing preorders and equivalences for π processes and recall the connections
between them. Thereafter we will introduce and discuss our approach of adding the constant
Stop to indicate successfulness and the corresponding contextual equivalence.

2.1 Syntax and Operational Semantics

We consider the variant of the synchronous π-calculus with replication. For simplicity we exclude
sums, however internal choices can be encoded. We also do not include operators for name
matching, since they are not available in usual higher-order programming languages.

Definition 2.1 (Syntax of Processes). Let N be a countably infinite set of names. Processes
Proc and action prefixes π are defined by the following grammar, where x, y ∈ N :

P,Q,R ∈ Proc ::= π.P | P1 |||P2 | !P | 0 | νx.P
π ::= x(y) | xy

The prefix x(y) is called an input-prefix, and xy is called an output-prefix,

The two syntactic constructs which introduce a scope for a name are the ν-binder in νx.P which
restricts the scope of name x to P , and in x(y).P the name y is bound with scope P . This
induces a notion of α-renaming and α-equivalence =α as usual. We will use fn(P) for the set
of free names of process P and bn(P) for the set of bound names of process P . We assume the
distinct name convention, i.e. free names are distinct from bound names and bound names are
pairwise distinct, which can always be achieved by α-renaming bound variables.

We give a brief overview of the syntactic constructs. A process x(y).P has the capability to
receive some name z along the channel named x and then behaves like P [z/y] where [z/y] is
the capture free substitution of name y by name z. A process xy.P has the capability to send a
name y along the channel named x. After sending the name the resulting process behaves like
process P . 0 is the silent process which has no capabilities to communicate.

P1 |||P2 is the parallel composition of processes P1 and P2. νz.P restricts the scope of the
name z to process P . !P is replication of process P , i.e. it can be interpreted as an “abbreviation”
for the (infinitely large) process P |||P ||| . . . |||P .

To ease reading, we will use the following abbreviations: The processes x(y).0 and xy.0 are
abbreviated as x(y), and xy, resp. Instead of νx1.νx2.νxn.P we will also write νx1, . . . , xn.P .
We write νX .P as an abbreviation for νx1, . . . , xn.P if the concrete names x1, . . . , xn and the
number n are not of interest. This also includes the case that νX .P abbreviates P , i.e. if X is
empty. We also use set-notation for X and e.g. write xi ∈ X with its obvious meaning.

We will also use name substitutions σ : N → N . With Σ we denote the set of all name
substitutions.

We will use the following abbreviation for internal choice of two processes: choice(P,Q)
abbreviates the process νx, y.(x(y).P |||x(y).Q |||xy).

In the remainder of the paper, we use several binary relations on processes. Given a relation
R ⊆ (Proc × Proc), we write R−1 for the relation {(Q,P) | (P,Q) ∈ R} and Rσ is defined as:
(P,Q) ∈ Rσ iff (σ(P), σ(Q)) ∈ R for all σ ∈ Σ.

Definition 2.2 (Process Contexts). A process context C ∈ C is a process with a hole (de-
noted with [·]) at process position, i.e. they are generated by the grammar:

C ∈ C ::= [·] | π.C | C |||P | P |||C | !C | νx.C where x ∈ N .

The construct C[P] denotes the process where the hole of C is replaced by process P .

6 D. Sabel and M. Schmidt-Schauß

We define structural congruence of processes:

Definition 2.3 (Structural Congruence). Structural congruence ≡ is the smallest congru-
ence on processes satisfying the axioms:

P ≡Q, if P =α Q
P1 ||| (P2 |||P3)≡ (P1 |||P2) |||P3

νz.(P1 |||P2)≡P1 ||| νz.P2, if z 6∈ fn(P1)
P |||0≡P
P |||Q≡Q |||P
νz.0≡0

νz.νw.P ≡ νw.νz.P
!P ≡P ||| !P

Definition 2.4 (Standard Reduction). The reduction rule
ia−→ performing interaction be-

tween processes is defined as

x(y).P |||xv.Q
ia−→ P [v/y] |||Q.

Reduction contexts D are defined by the grammar:

D ∈ D ::= [·] | D |||P | P |||D | νx.D

A standard reduction
sr−→ consists of applying an

ia−→-reduction in a reduction context (modulo
structural congruence):

P ≡ D[P ′], P ′
ia−→ Q′, D[Q′] ≡ Q, and D ∈ D

P
sr−→ Q

We define
sr,∗−−→ :=

⋃
i≥0

sr,i−−→ and
sr,+−−→ :=

⋃
i>0

sr,i−−→ where for P,Q ∈ Proc: P
sr,0−−→ P and

P
sr,i−−→ Q if there exists P ′ ∈ Proc s.t. P

sr−→ P ′ and P ′
sr,i−1−−−−→ Q.

2.2 Barbed May- and Should-Testing

We now define the notion that a process has a barb on a channel.

Definition 2.5 (Barb). A process P has a barb on input x (written as P �x) iff P can receive
a name on channel x, i.e. P ≡ νX .(x(y).P ′ |||P ′′) where x 6∈ X , and P has a barb on output x
(written as P �x) iff P can emit a name on channel x, i.e. P ≡ νX .(xy.P ′ |||P ′′) where x 6∈ X .

As observations in program equivalences we will use two behaviors w.r.t. barbs. On the one
hand whether a process may reduce to a process that has a barb, and on the other hand whether
the evaluation of processes has the ability to have a barb on every reduction path:

Definition 2.6 (May-barb and Should-barb). For µ ∈ {x, x}, P may have a barb on x

(written as P �µ) iff P
sr,∗−−→ Q ∧ Q �µ, and P should have a barb on x (written as P ��µ) iff

P
sr,∗−−→ P ′ =⇒ P ′ �µ. We also write P �µ iff P ��µ does not hold, and P ��µ if P �µ does not

hold.
As further notations we write P � (P ��, resp.) if there exists a name x such that P �x (P ��x,

resp.). With P �� and P � we denote the logical negations of P � and P ��.

Note that in the existential predicates (� and ��) only barbs on input channels are taken into
account. Note also that P � (P �µ, resp.) means that P can reduce to a process that has no input

capabilities (no input or output capabilities on the channel µ, resp.), i.e. P � holds iff P
sr,∗−−→ P ′

and P ′ ��.

Contextual Equivalence for the Pi-Calculus that can Stop 7

Definition 2.7 (Barbed May- and Should-Preorders). For µ ∈ {x, x}, and ξ ∈ {�µ, ��µ,�µ
, ��µ,�, ��,�, ��}

– vξ denotes the preservation of observation ξ, i.e.

P vξ Q iff Pξ =⇒ Qξ, and

– vc,ξ denotes the closure of vξ w.r.t. contexts, i.e.

P vc,ξ Q iff ∀C ∈ C : C[P] vξ C[Q], and

– let vwξ := vξ ∩ (vξ)−1 and vwc,ξ := vc,ξ ∩ (vc,ξ)−1.

Definition 2.8 (Barbed May- and Should-Testing). Processes P and Q are barbed testing
equivalent (written P vwc Q) iff P vc Q ∧Q vc P , where

vc := vc,may ∩ vc,should
P vc,may Q iff ∀x ∈ N , µ ∈ {x, x}: P vc,�µ Q

P vc,should Q iff ∀x ∈ N , µ ∈ {x, x}: P vc,��µ Q.

We also write vwc,should for vc,should ∩ (vc,should)−1 and vwc,may for vc,may ∩ (vc,may)−1.

Some easy consequences of the definitions are:

Lemma 2.9. – For µ ∈ {x, x}, and ξ ∈ {�µ, ��µ,�µ, ��µ,�, ��,�, ��} the relation vξ is a preorder
and the relation vc,ξ is a precongruence.

– The relations vc, vc,may, and vc,should are precongruences and vwc,vwc,may,vwc,should are con-
gruences.

– For (ξ1, ξ2) ∈ {(�µ, ��µ), (��µ,�µ), (�, ��), (��,�)} and µ ∈ {x, x}, both vξ1 = (vξ2)−1 and vc,ξ1=
(vc,ξ2)−1 holds.

The definition of barbed testing equivalence is given in a general form (or say most discrimi-
nating), since the may- and should-behavior, all channel names, the input and output barbs, and
also all channels are separately considered. However, in the π-calculus the definition is equivalent
to simpler definitions, which also simplify corresponding proofs a little bit. I.e. it is sufficient to
observe the should-behavior only, and to observe input (or output) channels exclusively, and to
either observe a single channel name, or existentially observing the barb capabilities. The cor-
responding soundness and completeness proofs are mostly standard, e.g. for the asynchronous
π-calculus most of the proofs can be found in [FG05]. So we will only state the results, but for
the sake of completeness, the proofs can be found in the appendix.

Theorem 2.10 (Characterizations of Barbed Testing).

– vc,may = vc,�x = vc,�
– vc,should = vc,��x = vc,��
– vc,should ⊂ (vc,may)−1 and thus
vwc = vwc,should = vwc,��x = vwc,��.

3 The Pi-calculus with Stop

Choosing the barb behavior as an observation has the drawback that it not really relates to
a notion of successful termination, since a process that barbs on a channel x may reduce to a
process that does no longer barb on x, e.g. the process x(z) |||xy.

Hence we introduce the calculus ΠStop which extends Π by a constant Stop which indicates
successful termination.

8 D. Sabel and M. Schmidt-Schauß

3.1 The Calculus ΠStop and Contextual Equivalence

We define ΠStop by describing the extensions w.r.t. Π defined in the previous section:

Definition 3.1 (Calculus ΠStop). Compared to Π the syntax of the calculus ΠStop additionally
includes the constant Stop which may occur on any process position. We denote the set of all
ΠStop-processes by ProcStop.

Process contexts CStop extend the contexts C such that they may also include the constant
Stop. The structural congruence ≡ is extended by the axiom νx.Stop ≡ Stop. The reduction
contexts and the standard reduction

sr−→ are unchanged except that Stop may occur as process
component.

Successfulness of a ΠStop-process means that the constant Stop occurs on the top-level of the
process:

Definition 3.2 (Successful Process). A process P is successful if P ≡ Stop |||P ′ for some
process P ′.

Clearly, for any successful process P any contractum P ′ is also successful. Thus successfulness
can be used as the usual termination test in contextual equivalence, defined in a straight-forward
way (analogous to barbed testing equivalence, but by observing success instead of observing
barbs):

Definition 3.3 (Convergencies and Contextual Equivalence). A process P is may-

convergent (denoted by P↓) iff there exists a successful process P ′ such that P
sr,∗−−→ P ′. A

process P is should-convergent (denoted by P⇓) iff for all processes P ′: P
sr,∗−−→ P ′ =⇒ P ′↓. If

a process P is not may-convergent, then we say P is must-divergent and denote it as P⇑. We
say a process P is may-divergent iff P⇓ does not hold and denote it as P↑.

For ξ ∈ {↓,⇓, ↑,⇑} the relations ≤ξ are defined as

P ≤ξ Q iff Pξ =⇒ Qξ

and ≤c,ξ denote their contextual closures, i.e.

P ≤c,ξ Q iff ∀C ∈ CStop : C[P] ≤ξ C[Q].

With ∼c,ξ we denote the intersection of ≤c,ξ and (≤c,ξ)−1.
Contextual preorder ≤c is the intersection ≤c,↓ ∩ ≤c,⇓ and contextual equivalence ∼c is

defined as
∼c := ≤c ∩ (≤c)−1.

Since P↑ iff there exists a process P ′ such that P
sr,∗−−→ P ′ and P ′⇑, the following properties are

straight-forward:

Lemma 3.4. • P ≤↑ Q ⇐⇒ Q ≤⇓ P and P ≤⇑ Q ⇐⇒ Q ≤↓ P .
• P ≤c,↑ Q ⇐⇒ Q ≤c,⇓ P and P ≤c,⇑ Q ⇐⇒ Q ≤c,↓ P .
• ≤↓,≤⇓,≤↑,≤⇑ are preorders, ≤c,≤c,↓,≤c,⇓,≤c,↑,≤c,⇑ are precongruences, and ∼c,∼c,↓,∼c,⇓
,∼c,↑,∼c,⇑ are congruences.

Since reduction includes transforming processes using structural congruence, structural con-
gruent processes are contextually equivalent:

Proposition 3.5. If P ≡ Q, then for ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ Q, P ≤c,ξ Q, Q ≤ξ P , Q ≤c,ξ P
and thus in particular P ∼c Q.

Some more easy properties are:

Lemma 3.6. For all processes P,Q it holds:

1. If P
sr−→ Q then νx.P

sr−→ νx.Q
2. If νx.P

sr−→ Q then P
sr−→ Q′ such that either Q ≡ νx.Q′ or Q ≡ Q′

3. For ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ νx.P and νx.P ≤ξ P .

For completeness the proof of these properties can be found in the appendix (Lemma B.1).

Contextual Equivalence for the Pi-Calculus that can Stop 9

3.2 Relating Contextual Equivalence to Barbed Testing Equivalence

We show that the new constant Stop and the related test of successfulness coincides with barbed
testing equivalence on Stop-free processes, i.e. contextual equivalence of ΠStop conservatively
extends barbed testing equivalence of the π-calculus: P vwc Q =⇒ P ∼c Q. Moreover, on stop-
free processes contextual equivalence is not only sound for barbed testing, it is also complete,
i.e. P ∼c Q =⇒ P vwc Q. Or equivalently expressed: the identity translation from Π into ΠStop

is fully-abstract w.r.t. barbed testing equivalence in Π and contextual equivalence in ΠStop.

Theorem 3.7. For all processes P,Q ∈ Proc: P vc Q ⇐⇒ P ≤c Q, and hence also P vwc
Q ⇐⇒ P ∼c Q.

Proof. Let P,Q be Stop-free processes. It is sufficient to show that P vc,may Q iff P ≤c,↓ Q and
P vc,should Q iff P ≤c,⇓ Q.

– P vc,may Q =⇒ P ≤c,↓ Q: Let P vc,may Q and C ∈ C with C[P]↓, i.e. C[P] = P0
sr−→

P1 . . .
sr−→ Pn where Pn is successful. Let C ′ be the context C where every occurrence of Stop

in C is replaced by x(y) where x, y are fresh names, and let P ′i be Pi where every occurrence

of Stop is replaced by x(y). Then C ′[P] = P ′0
sr−→ P ′1 . . .

sr−→ P ′n, since ia-reductions do not use
Stop, and the axiom νz.Stop ≡ Stop of structural congruence can equivalently be replaced
by νz.x(y) ≡ x(y) which holds, since x is chosen fresh.
Since Pn ≡ Stop |||Q also P ′n must be of the right form, i.e. P ′n ≡ (x(y) |||P ′) and thus
P ′n �

x. This shows C ′[P] �x. Now P vc,may Q shows C ′[Q] �x. Convergence C[Q]↓ can be

shown by the same argument: the reduction C ′[Q]
sr−→ Q′1 . . .

sr−→ Q′m where Q′m �
x, i.e.

Q′m ≡ νX .(x(y).R1 |||R2) can never perform an ia-reduction using the input-prefix x(y), since
x was chosen fresh, and thus there is no corresponding output prefix. Inspecting the reduction
possibilities this also shows R1 = 0. Thus the reduction C[Q]

sr−→ Q1 . . .
sr−→ Qm exists where

Qi is Q′i but the subprocesses x(y) are replaced by Stop. Thus Qm ≡ νx1, . . . xn.(Stop |||R
′
2)

and C[Q]↓.
– P ≤c,↓ Q =⇒ P vc,may Q: Since vc,may = vc,�x (Theorem 2.10) it is sufficient to consider

the following case: Let P ≤c,↓ Q, C be a Stop-free context, and C[P] �x. Then C[P]
sr−→

P1 . . .
sr−→ Pn ≡ νX .(x(y).P ′ |||P ′′), and for C1 := ([·] |||xy.Stop) we have C1[C[P]]↓, since

the reduction for C[P] can be used resulting in C1[Pn] which reduces in one step to a
successful process. P ≤c Q also implies C1[C[Q]]↓ and the corresponding reduction sequence

C1[C[Q]]
sr,∗−−→ Qm where Qm is successful must include an ia-reduction with a redex of the

form x(z).R |||xy.Stop. Let Qi
sr,∗−−→ Qi+1 be this step in C1[C[Q]]

sr,∗−−→ Qm. Then the prefix

C1[C[Q]]
sr,i−−→ Qi can be used to construct a reduction sequence C[Q]

sr,i−−→ Q′i where Q′i �
x

and thus C[Q]�x.
– P ≤c,⇓ Q =⇒ P vc,should Q: Let P ≤c,⇓ Q. We show C[Q]�x =⇒ C[P]�x for any Stop-free

context C ∈ C. which is sufficient since vc,should = vc,��x (Theorem 2.10). So let C be a

Stop-free context s.t. C[Q]�x holds, i.e. C[Q]
sr,∗−−→ Q′ and ¬(Q′�x). Then also C1[C[Q]]↑ with

C1 = [·] |||xy.Stop, since C1[C[Q]]
sr,∗−−→ C1[Q

′] and C1[Q
′] cannot become successful, since

otherwise Q′�x would hold. Now P ≤c,⇓ Q implies C1[C[P]]↑, i.e. C1[C[P]]
sr,∗−−→ P ′ and P ′⇑.

Moreover, the reduction sequence C1[C[P]]
sr,∗−−→ P ′ can never reduce xy.Stop, since otherwise

P ′ cannot be must-divergent, and thus we can assume that P ′ ≡ C1[P
′′] and C[P]

sr,∗−−→ P ′′.
Now again P ′′�x cannot hold, since otherwise C1[P

′′]⇑ would not hold. This shows C[P]�x.
– Pvc,shouldQ =⇒ P ≤c,⇓ Q. Let P vc,should Q and C be a context with C[Q]↑. We will show

C[P]↑. Let C[Q] = Q0
sr−→ . . .

sr−→ Qn where Qn⇑. Let C ′ (Q′i, resp.) be the context C (Qi,
resp.) such that all occurrences of Stop are replaced by x(y) where x, y are fresh for C,P,
and Qi. Then ¬(Q′n�x) since otherwise Qn would be may-convergent, and also Q′i

sr−→ Q′i+1

and thus C ′[Q]�x. From P vc,should Q we also have C ′[P]�x, i.e. C ′[P]
sr,∗−−→ P ′n and ¬(P ′n �x).

10 D. Sabel and M. Schmidt-Schauß

Let Pi be P ′i where all occurrences of x(y) are replaced by Stop. Then Pn⇑, since otherwise

P ′n�x would hold. Also Pi
sr−→ Pi+1, since P ′i

sr−→ P ′i+1 cannot reduce any occurrence of x(y).0.
This shows C[P]↑. ut

4 Proof Methods for Contextual Equivalence

For disproving an equation P ∼c Q it is sufficient to find a distinguishing context. Proving an
equation P ∼c Q is in general harder, since all contexts must be considered. Hence, in this
section we develop proof tools for those proofs.

In Section 4.1 we prove a context lemma, which restricts the class of contexts that need
to be taken into account for proving P ∼c Q. In contrast to the coinductive proofs given
in [PS96,SW01] for a context lemma for barbed congruence in the π-calculus, we will use an
inductive argument and also extend the results to should-convergence. In Section 4.2 we show
soundness of applicative similarities which allow coinductive proofs by evaluating the processes
P and Q and then analyzing input or output possibilities on open channels. The applicative
similarities are related to the “weak early bisimilarities” in the π-calculus, but there are some
differences which will be discussed after the definitions.

4.1 A Context Lemma for May- and Should-Convergence

As a preparation for the context lemma we show two basic extension lemmas for ≤↓ and ≤↑. We
use contexts of hole depth 1, which are exactly the contexts of the form [·] |||R, R ||| [·], x(y).[·],
xy.[·], νx.[·], and ! [·].

Lemma 4.1. Let P,Q ∈ ProcStop. If σ(P) |||R ≤↓ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop, then
also σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for all C ∈ CStop of hole depth 1, all σ ∈ Σ and R ∈ ProcStop.

Proof. Here we only consider the case C = ! [·], the other cases are proved in the appendix

(Lemma B.2). Let σ(!P) |||R
sr,n−−→ Pn where Pn is successful. We show σ(!Q) |||R↓ by induction

on n. If n = 0, i.e. σ(!P) |||R is successful, then R or P is successful. Thus also σ(P) |||R is
successful, and the precondition of the lemma shows (σ(Q) |||R)↓, which in turn also implies

σ(!Q) |||R↓. For n > 0 let σ(!P) |||R
sr−→ P1 be the first reduction of σ(!P) |||R

sr,n−−→ Pn:

– If the redex is inside R, then the same reduction can be performed for σ(!Q |||R) and there-
after the induction hypothesis shows the claim.

– The redex uses one instance of σ(P) and perhaps parts of R, i.e. P1 ≡ σ(!P) |||RP , where
R |||σ(P)

sr−→ RP . The induction hypothesis applied to P1 shows that (σ(!Q) |||RP)↓. This im-
plies σ(!Q) |||σ(P) |||R)↓, since σ(!Q) |||σ(P) |||R)

sr−→ σ(!Q) |||RP). Finally, the precondition
of the lemma shows that σ(!Q) |||σ(P) |||R ≡ σ(P) ||| (σ(!Q) |||R) ≤↓ σ(Q) ||| (σ(!Q) |||R) ≡
σ(!Q) |||R. Thus we also have σ(!Q) |||R↓.

– The redex uses two instances of σ(P), i.e. P1 ≡ σ(!P) |||R |||P ′, s.t. σ(P) |||σ(P)
sr−→

P ′. The induction hypothesis applied to P1 shows σ(!Q) |||R |||P ′↓. We also have
σ(!Q) |||R |||σ(P) |||σ(P)↓, since σ(P) |||σ(P)

sr−→ P ′. Applying the precondition of the lemma
twice shows:

σ(!Q) |||R |||σ(P) |||σ(P)
≡ σ(P) ||| (σ(P) ||| (σ(!Q) |||R))
≤↓ σ(Q) ||| (σ(P) ||| (σ(!Q) |||R)) ≡ σ(P) ||| (σ(!Q) |||R)
≤↓ σ(Q) ||| (σ(!Q) |||R) ≡ σ(!Q) |||R

and thus σ(!Q) |||R↓. ut

Lemma 4.2. Let P,Q ∈ ProcStop. Assume that σ(C[Q]) |||R ≤↓ σ(C[P]) |||R for all σ ∈ Σ, all
C ∈ CStop, and all R ∈ ProcStop. If σ(P) |||R ≤↑ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop, then
also σ(C[P]) |||R ≤↑ σ(C[Q]) |||R for all C ∈ CStop of hole depth 1, all σ ∈ Σ and R ∈ ProcStop.

Contextual Equivalence for the Pi-Calculus that can Stop 11

Proof. This can be proved analogously to Lemma 4.1 where ≤↓ is replaced by ≤↑, and the
base cases of the form “if σ(C[P]) |||R is successful, then σ(C[Q]) |||R↓” are replaced by “if
(σ(C[P]) |||R)⇑, then (σ(C[Q]) |||R)↑” . which always holds, since σ(C[Q]) |||R ≤↓ σ(C[P]) |||R.

Now we prove the context lemma:

Theorem 4.3 (Context Lemma). For all processes P,Q:

– If for all σ,R: σ(P) |||R ≤↓ σ(Q) |||R, then P ≤c,↓ Q.
– If for all σ,R: σ(P) |||R ≤↓ σ(Q) |||R ∧ σ(P) |||R ≤⇓ σ(Q) |||R, then P ≤c Q.

Proof. For the first part it is sufficient to show that σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for all C ∈ CStop,
all σ ∈ Σ and R ∈ ProcStop, which follows from Lemma 4.1 by using induction on the depth of
the hole of the context C.

For the second part we use the fact that σ(P) |||R ≤↓ σ(Q) |||R for all σ,R implies
σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for all σ,R,C. By induction on the depth of the hole of the context
C, the fact that σ(P) |||R ≤⇓ σ(Q) |||R is equivalent to σ(Q) |||R ≤↑ σ(P) |||R, and Lemma 4.2
it follows σ(C[Q]) |||R ≤↑ σ(C[P]) |||R for all C ∈ CStop, σ ∈ Σ which shows P ≤c,⇓ Q.

Remark 4.4. Note that the condition for all σ,R: σ(P) |||R ≤⇓ σ(Q) |||R is in general not suffi-
cient for P ≤c,⇓ Q. Let P := νx.xy |||x(y).Stop |||x(y) and Q := 0. Then σ(P) |||R ≤⇓ σ(Q) |||R
for all σ and R, but P 6≤c,⇓ Q, since the context ! [·] distinguishes the processes P and Q: !P⇓
while !Q⇑.

4.2 Applicative Similarities

As a first step we provide coinductive definitions of ≤↓ and ≤↑, which will ease some of our
proofs:

Definition 4.5 (↓- and ↑-similarity). ↓-Similarity -↓ is the greatest fixpoint of the operator
F↓ on binary relations on processes: for η ⊆ (ProcStop × ProcStop), (P,Q) ∈ F↓(η) iff

– If P is successful, then Q↓.
– If P

sr−→ P ′, then there exists Q′ such that Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

↑-Similarity -↑ is the greatest fixpoint of the operator F↑ on binary relations on processes:
for η ⊆ (ProcStop × ProcStop), (P,Q) ∈ F↑(η) iff

– If P⇑, then Q↑.
– If P

sr−→ P ′, then there exists Q′ such that Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

For an operator F on relations ⊆ (ProcStop×ProcStop), the relation η is F -dense, iff η ⊆ F (η).
The coinduction principle is that an F -dense relation η is contained in the greatest fixpoint of
F .

Lemma 4.6. ≤↓ = -↓ and ≤↑ = -↑.

Definition of Applicative Similarity

Before defining “applicative similarities” for ↓ and ↑, we define the property of a relation to
preserve the input and output capabilities of one process w.r.t. another process. This definition
is analogous to preserving actions in labelled bisimilarities. We prefer this definition here, since
we can omit the definition of a labelled transition system.

Definition 4.7. Given processes P,Q ∈ ProcStop and a binary relation η ⊆ (ProcStop ×
ProcStop), we say η preserves the input/output capabilities of P w.r.t. Q iff:

12 D. Sabel and M. Schmidt-Schauß

– Open input: If P ≡ νX .(x(y).P1 |||P2) (with x 6∈ X), then for every name z there

exists a process Q′ s.t. Q
sr,∗−−→ Q′, Q′ ≡ νY.(x(y).Q1 |||Q2) with x 6∈ Y and

(νX .(P1[z/y] |||P2), νY.(Q1[z/y] |||Q2)) ∈ η.
– Open output: If P ≡ νX .(xy.P1 |||P2) with x, y 6∈ X , then there exists a process Q′ s.t.

Q
sr,∗−−→ Q′, Q′ ≡ νY.(xy.Q1 |||Q2) with x, y 6∈ Y and (νX .(P1 |||P2), νY.(Q1 |||Q2)) ∈ η.

– Bound output: If P ≡ νX , νy.(xy.P1 |||P2) with x 6∈ X , then there exists a process Q′ s.t.

Q
sr,∗−−→ Q′, Q′ ≡ νY, νy.(xy.Q1 |||Q2) with x 6∈ Y and (νX .(P1 |||P2), νY.(Q1 |||Q2)) ∈ η.

Definition 4.8 ((Full) Applicative Similarities). Let Fb,↓ be the following operator: for
η ⊆ (ProcStop × ProcStop), (P,Q) ∈ Fb,↓(η) iff

– If P is successful, then Q↓.
– If P

sr−→ P ′, then ∃Q′ with Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

– If P is not successful, then η preserves the input/output capabilities of P w.r.t. Q.

Let Fb,↑ be the following operator: for η ⊆ (ProcStop × ProcStop), (P,Q) ∈ Fb,↑(η) iff

– If P⇑, then Q↑.
– If P

sr−→ P ′, then ∃Q′ with Q
sr,∗−−→ Q′ and (P ′, Q′) ∈ η.

– If P is not must-divergent, then η preserves the input/output capabilities of P w.r.t. Q.
– Q -b,↓ P

Applicative ↓-similarity -b,↓ is the greatest fixpoint of Fb,↓, and applicative ↑-similarity -b,↑
is the greatest fixpoint of Fb,↑. Full applicative ↓-similarity -σb,↓ and full applicative ↑-similarity
-σb,↑ are defined as P -σb,↓ Q (P -σb,↑ Q, resp.) iff σ(P) -b,↓ σ(Q) (σ(P) -b,↑ σ(Q), resp.) for
all σ ∈ Σ.

Full applicative similarity -b is defined as the intersection -b := -σb,↓ ∩ (-σb,↑)
−1. Mutual

full ⇓-applicative similarity 'b,⇓ is the intersection -σb,↑ ∩(-σb,↑)
−1 and mutual full applicative

similarity 'b is the intersection of full applicative similarity with its inverse relation, i.e. 'b :=
-b ∩ (-b)−1.

Discussion and Properties

We discuss our definitions of applicative similarity. We first consider the applicative ↓-similarity.
Its definition is related to early labelled bisimilarity for the π-calculus [SW01], but adapted
to the successfulness-test. However, there is a difference whether a similarity or a bisim-
ilarity is used. Applicative ↓-bisimilarity would be defined as the largest relation R such
that R and R−1 are Fb,↓-dense. The intersection of -b,↓ with its inverse, i.e. the relation
-b,↓ ∩ (-b,↓)

−1, is much coarser than applicative ↓-bisimilarity. For instance, the processes
Pa,bc := choice(a(y), choice(b(y), c(y))) and Pab,c := choice(choice(a(y), b(y)), c(y)) are not

applicative ↓-bisimilar, since e.g. after reducing Pa,bc
sr−→ choice(b(y), c(y)) there is no pro-

cess P ′ with Pab,c
sr,∗−−→ P ′ s.t. choice(b(y), c(y)) and P ′ are applicative ↓-bisimilar. However,

Pa,bc -b,↓ Pab,c and Pab,c -b,↓ Pa,bc.
However, the following example adapted from an example given by [SW01] shows that even

-b,↓ is more discriminating than contextual may preorder:

Proposition 4.9. Let Sxy := x(z).yz and Syx := y(z).xz. Then for the processes P :=
ax ||| !Sxy ||| !Syx and Q := ay ||| !Sxy ||| !Syx it holds: ¬(P -b,↓ Q) (and thus also ¬(P -σb,↓ Q)),
but P ≤c,↓ Q.

Proof. P -b,↓ Q does not hold, since the output on channel a is different. P ≤c,↓ Q is proved in
the appendix in Lemma B.3.

The definition of applicative ↑-similarity includes the property Q -b,↓ P , i.e.:

Contextual Equivalence for the Pi-Calculus that can Stop 13

Lemma 4.10. P -b,↑ Q =⇒ Q -b,↓ P .

Thus – like the discussion before on bisimilarity – this requirement makes the relation -b,↑ very
fine-grained: the processes Pa,bc and Pab,c are not applicative ↑-similar, although the processes
are contextually equivalent. The reason for our chosing this definition is that we did not find
a coarser ↑-similarity which is sound for contextual should-preorder. Properties that must hold
for such a definition are that it preserves may-divergence, but also (due to Theorem 3.7) that it
preserves the predicate �x for Stop-free processes. The second condition holds for -b,↑, since we
added Q -b,↓ P . Obviously, -b,↓ preserves may-convergence and -b,↑ preserves may-divergence:

Lemma 4.11. -b,↓ ⊆ -↓ and -b,↑ ⊆ -↑.

We show that for Stop-free processes -b,↓ preserves the �-property, and -b,↑ preserves the �-
property:

Lemma 4.12. For Stop-free processes P,Q ∈ Proc:

– If P -b,↓ Q, then P v�x Q.

– If P -b,↑ Q, then P v�x Q.

Proof. The first part can be shown by induction on the length of a reduction P
sr,n−−→ P ′ s.t.

P ′ �x. For the second part let P
sr,n−−→ P ′ such that P ′ ��x. By induction on n and P -b,↑ Q one

can show that there is a process Q′ with Q
sr,∗−−→ Q′ and P ′ -b,↑ Q

′. Since P ′ -b,↑ Q
′ implies

Q′ -b,↓ P
′ the first part of this lemma shows that Q′ ��x must hold.

Soundness of Applicative Similarity

We now show soundness of our applicative similarities.

Proposition 4.13. For all P,Q,R ∈ ProcStop and ν-prefixes X the following implications hold:

1. (P -b,↓ Q) =⇒ νX .(P |||R) -↓ νX .(Q |||R).

2. (P -b,↑ Q) =⇒ νX .(P |||R) -↑ νX .(Q |||R).

Proof. The first claim holds, since the relation-↓∪{(νX .(P |||R), νX .(Q |||R)) | P -b,↓ Q, for any X , R}
is F↓-dense, which is proved in the appendix, Lemma B.4.

The second claim holds, since the relation-↑∪{(νX .(P |||R), νX .(Q |||R)) | P -b,↑ Q, for any X , R}
is F↑-dense, which is proved in the appendix, Lemma B.5.

Theorem 4.14 (Soundness of Full Applicative Similarities). The following inclusions
hold:

– -σb,↓ ⊆ ≤c,↓,
– -b ⊆ ≤c, and

– 'b,⇓ = 'b ⊆ ∼c.

Proof. For the first part Proposition 4.13 part (1) shows that σ(P) -b,↓ σ(Q) implies
σ(P) |||R -↓ σ(Q) |||R for all σ,R. Hence also P -σb,↓ Q implies σ′(P) |||R -↓ σ′(Q) |||R for
all σ′, R. Replacing -↓ by ≤↓ (Lemma 4.6) makes the context lemma (Theorem 4.3) applicable
and shows P ≤c,↓ Q.

For the second part we apply both parts of Proposition 4.13 which shows that P -σb,↓ Q and
Q -σb,↑ P imply that σ′(P) |||R -↓ σ′(Q) |||R and σ′(Q) |||R -↑ σ′(P) |||R for all σ′, R. Replacing
-↓ by ≤↓ and -↑ by ≥⇓ (Lemma 4.6) makes Theorem 4.3 applicable and shows P ≤c Q.

The equation of the last part follows from Lemma 4.10. The inclusion of the last part follows
from the second part and the definitions of 'b and ∼c.

14 D. Sabel and M. Schmidt-Schauß

5 Equivalences and the Contextual Ordering

In this section we analyze the contextual ordering and also show some contextual equivalences.

5.1 Correctness of Deterministic Interaction

As a first result we apply Theorem 4.14 to show correctness of a restricted variant of the ia-
reduction that ensures determinism. This correctness result is expected, but it lets us demon-
strate our developed proof techniques for an exemplary program optimization, and moreover
the result can be used to show a completeness result w.r.t. the tests in the context lemma
(Corollary 5.3).

Theorem 5.1 (Correctness of Deterministic Interaction). For all processes P,Q the equa-
tion νx.(x(y).P |||xz.Q)) ∼c νx.(P [z/y] |||Q) holds.

Proof. We use Theorem 4.14 and show that νx.(x(y).P |||xz.Q)) 'b,⇓ νx.(P [z/y] |||Q). Let

S = {(σ(νx.(x(y).P |||xz.Q)), σ(νx.(P [z/y] |||Q)))
| for all x, y, z, P,Q, σ} ∪ ≡

We will show that S and S−1 are Fb,↑-dense.
We first show that S and S−1 are Fb,↓-dense: Let (R1, R2) =

(σ(νx.(x(y).P |||xz.Q)), σ(νx.(P [z/y] |||Q)))

– R1 is not successful, so there is nothing to show.
– If R1

sr−→ R′1, then R′1 ≡ R2 and (R2, R2) ∈ S
– R1 does not haven an open input or output, thus there is nothing to show.
– If R2 is success, then R1↓, since R1

sr−→ R2.

– If R2
sr−→ R′2, then R1

sr,2−−→ R′2 and (R′2, R
′
2) ∈ S−1

– If R2 has an open input or output, then R1
sr−→ R2 and the condition of Fb,↓ can be fullfilled.

Thus R1 -b,↓ R2 and R2 -b,↓ R1 for any (R1, R2) ∈ S.
We now prove that S and S−1 are Fb,↑-dense.

– If R1⇑ then R2⇑, since R1
sr−→ R2.

– If R1
sr−→ R′1, then R′1 ≡ R2 and (R′1, R

′
1) ∈ S.

– R1 does not have an open input or output, thus there is nothing to show.
– R2 -b,↓ R1 is already proved.
– If R2⇑ then clearly R1 ↑.
– If R2

sr−→ R′2, then R′2 ≡ R1 and (R′2, R
′
2) ∈ S−1.

– If R2 has an open input or output, then R1
sr−→ R2 and the condition of Fb,↑ can be fullfilled.

– R1 -b,↓ R2 is already proved. ut

Now we show that contextual preorder and equivalence do not change, if we additionally
consider all name substitutions:

Lemma 5.2. For ξ ∈ {↓,⇓}: P ≤c,ξ Q iff ∀C ∈ CStop, σ ∈ Σ: C[σ(P)] ≤ξ C[σ(Q)].

Proof. “⇐” is trivial. For “⇒” we define for σ = {x1 7→ y1, . . . , xn 7→ yn} the context
Cσ := νW.(w1(x1).w2(x2).wn(xn).[·] |||w1y1 ||| . . . |||wnyn) where W = {w1, . . . , wn} and

W∩ (fn(P)∪ fn(Q)) = ∅. The reductions Cσ[P]
ia,∗−−→ σ(P) and Cσ[Q]

ia,∗−−→ σ(Q) are valid, where
all ia-steps are deterministic and thus by Theorem 5.1 Cσ[P] ∼c σ(P) and Cσ[Q] ∼c σ(Q). Now
let P ≤c,ξ Q and let C, σ s.t. C[σ(P)]ξ. Since σ(P) ∼c Cσ[P] also C[Cσ(P)]ξ which in turn im-
plies C[Cσ(Q)]ξ. Since Cσ[Q] ∼c σ(Q), this shows C[σ(Q)]ξ. Since C, σ were chosen arbitrarily,
C[σ(P)] ≤ξ C[σ(Q)] holds for all C ∈ CStop and σ ∈ Σ.

Contextual Equivalence for the Pi-Calculus that can Stop 15

The theorem implies that the tests of the context lemma (Theorem 4.3) are complete w.r.t.
contextual preorder:

Corollary 5.3. For all P,Q ∈ ProcStop:

– P ≤c,↓ Q iff for all σ ∈ Σ,R ∈ ProcStop: σ(P) |||R ≤↓ σ(Q) |||R.
– P ≤c Q iff for all σ ∈ Σ,R ∈ ProcStop, ξ ∈ {↓,⇓}: σ(P) |||R ≤ξ σ(Q) |||R.

5.2 Results on the Contextual Ordering

We show several properties on the contextual ordering and equivalence. All successful pro-
cesses are in the same equivalence class. More surprisingly, all may-convergent processes are
equal w.r.t. contextual may-convergence, which is a strong motivation to also consider should-
convergence. Further results are that Stop is the largest element in the contextual ordering, and
there is no least element:

Theorem 5.4. 1. If P,Q are two successful processes, then P ∼c Q.
2. If P,Q are two processes with P↓, Q↓, then P ∼c,↓ Q.
3. There are may-convergent processes P,Q with P 6∼c Q.
4. Stop is the greatest process w.r.t. ≤c.
5. 0 is the smallest process w.r.t. ≤c,↓.
6. There is no smallest process w.r.t. ≤c.

Proof. For (1) let P and Q be successful. Then for any σ ∈ Σ and any R ∈ ProcStop also σ(P) |||R
and σ(Q) |||R are successful. This implies σ(P) |||R↓, σ(Q) |||R↓, σ(P) |||R⇓, and σ(Q) |||R⇓ for
all R ∈ ProcStop and σ ∈ Σ and thus the context lemma (Theorem 4.3) shows P ∼c Q.

Since P↓ =⇒ σ(P) |||R↓ for any process P,R and σ ∈ Σ, the context lemma (Theorem 4.3)
shows part (2).

For (3) the empty context distinguishes choice(Stop,0) and Stop: choice(Stop,0)↓, and
choice(Stop,0)↑, while Stop⇓, hence choice(Stop,0) 6∼c Stop.

For part (4) clearly Stop |||R⇓ for all R. Since Stop |||R⇓ =⇒ Stop |||R↓, we have σ(P) |||R ≤↓
Stop |||R and σ(P) |||R ≤⇓ Stop |||R for any P , σ, and R. Thus the Theorem 4.3 shows P ≤c Stop
for any process P .

Part (5) follows from Theorem 4.14, since {(0, P) | P ∈ ProcStop} is Fb,↓-dense.
For (6) assume that there is a process P0 that is the smallest one, i.e. P0 ≤c P for all processes

P . Then P0⇑, since P0 ≤c 0. Let P0
∗−→ P1, such that P1 = D[x(y).P3], and where x is free. With

D1 = xy.Stop we obtain D1[P1]↓, but D1[0] ≡ xy.Stop⇑. We argue similarly for outputs. Thus
the reducts of P0 do not have open outputs. Now let P = x(y).0, where by our assumption
P0 ≤c,⇓ P holds. Let D = [·] |||xy.0 |||x(y).Stop. Then D[P0]⇓, since there is no communication
between the reducts of P0 and D, but D can always be reduced to a successful process. Now
consider D[P]. It is D[P] → 0 |||x(y).Stop, which is must-divergent, hence we have reached the
contradiction P0 6≤c,⇓ P .

As an important result, we show that it is sufficient to test the should-convergence behavior
in all contexts, since all tests for may-convergence can be encoded:

Theorem 5.5. ≤c,⇓ = ≤c 6= ≤c,↓.

Proof. For the equation ≤c,⇓ = ≤c it sufficient to show that ≤c,⇓⊆≤c,↓: let Cx,y,X :=
! νx, y, νX .[·]. For any process P with x, y 6∈ fn(P) and X ⊇ fn(P) one can verify that P↓ iff
Cx,y,X [P]⇓: If P↓ then P ′ := νx, y.νX .P↓ by Lemma 3.6 and for !P ′ we can always generate a
parallel copy of P ′, and thus Cx,y,X [P]⇓. If Cx,y,X [P]⇓, then νx, y,X .P↓, since parallel copies of
νx, y,X .P cannot communicate due to the name restriction. Now Lemma 3.6 shows P↓. Now
let P ≤⇓ Q, C[P]↓, but C[Q]⇑. With fresh names x, y, X = fn(P) ∪ fn(Q): Cx,y[C[P]]⇓ but
Cx,y[C[Q]]↑ which contradicts P ≤⇓ Q. The inequality follows from Theorem 5.4 items (5), (6).

16 D. Sabel and M. Schmidt-Schauß

In ΠStop contextual should-preorder does not imply contextual may-equivalence.

Proposition 5.6. ≤c,⇓ 6⊆ ∼c,↓

Proof. Clearly, 0 ≤c Stop, since Stop is a largest element of ≤c, but 0 ⇑ while Stop ↓.

We conclude this subsection, by analyzing several equations, including the ones from [EG04].

Theorem 5.7. For all processes P,Q the following equivalences hold:

1. !P ∼c ! !P .

2. !P ||| !P ∼c !P .

3. ! (P |||Q) ∼c !P ||| !Q.

4. ! 0 ∼c 0.

5. !Stop ∼c Stop.

6. ! (P |||Q) ∼c ! (P |||Q) |||P .

7. x(y).νz.P ∼c νz.x(y).P if z 6∈ {x, y}.
8. xy.νz.P ∼c νz.xy.P if z 6∈ {x, y}.

Proof. This holds, since Si ∪ -b,↑ and S−1i ∪ -b,↑ are Fb,↑-dense, where Si := {(R ||| li, R ||| ri) |
for all R,P,Q}, and li, ri are the left and right hand side of the ith equation.

5.3 Results for the Stop-free Calculus

In this section we go back to the π-calculus Π, and transfer some of the results for ΠStop into
Π. The key property is Theorem 3.7 which enables this transfer.

Corollary 5.8. All equations in Theorem 5.7 (except for equation 5) also hold in Π for Stop-free
processes, and for barbed testing equivalence vwc. Deterministic interaction (see Theorem 5.1) is
correct in Π for vwc.

Also Theorem 5.5 can be transferred to Π by applying Theorem 3.7, which shows that barbed
should-testing preorder implies barbed may-testing equivalence (which does not hold for ΠStop

and contextual preorders, see Proposition 5.6):

Corollary 5.9. For all Stop-free processes P,Q ∈ Proc: P vc,should Q implies P vwc,may Q.

Proof. The inclusion vc,should ⊆ (vc,may)−1 was proved in Theorem 2.10. The inclusion
vc,should ⊆ (vc,may) follows from Theorems 5.5 and 3.7.

Finally, we show that there is no surjective encoding from ΠStop into Π which preserves the
ordering of processes w.r.t. contextual preorder in ΠStop and barbed testing preorder in Π. This
result supports the conjecture that Stop cannot be encoded in the Stop-free calculus.

Theorem 5.10. There is no surjective translation ψ : ΠStop → Π s.t. for all P,Q ∈ ProcStop:
P ≤c Q =⇒ ψ(P) vc ψ(Q).

Proof. This holds since Stop is a largest element of ΠStop w.r.t. ≤c, but in Π there is no largest
element w.r.t. vc: Assume the claim is false, and P is a largest element w.r.t. vc. Let X = fn(P)
and x 6∈ X . Then x(z) 6vc P , since νX .x(z)�x but νX .P ��x.

Contextual Equivalence for the Pi-Calculus that can Stop 17

6 Conclusion

We introduced and analyzed the calculus ΠStop – a π-calculus with Stop which indicates success-
ful termination. Using contextual equivalence with may- and should-convergence we have shown
a context lemma and proved soundness of an applicative similarity. By proving that ΠStop with
contextual equivalence conservatively extends the π-calculus without Stop and barbed testing
equivalence we provided an alternative method to prove processes to be barbed testing equiva-
lent.

Future work may investigate extensions or variants of the calculus ΠStop, e.g. with (guarded)
sums, or with recursion. But more importantly the results of this paper now opens easier pos-
sibilites to define and analyze embeddings of ΠStop into other concurrent program calculi (for
instance, the CHF-calculus [SSS12]) which also use a contextual semantics.

References

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
Richard Graveman, Philippe A. Janson, Clifford Neumann, and Li Gong, editors, CCS ’97, pages
36–47. ACM, 1997.

[BD95] Michele Boreale and Rocco De Nicola. Testing equivalence for mobile processes. Inform. and Comput.,
120(2):279–303, 1995.

[CHS05] Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the representation of McCarthy’s amb
in the pi-calculus. Theoret. Comput. Sci., 330(3):439–473, 2005.

[DH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoret. Comput. Sci., 34:83–133,
1984.

[EG04] Joost Engelfriet and Tjalling Gelsema. A new natural structural congruence in the pi-calculus with
replication. Acta Inf., 40(6-7):385–430, 2004.

[FG02] Cédric Fournet and Georges Gonthier. The join calculus: A language for distributed mobile program-
ming. In APPSEM 2000, volume 2395 of Lecture Notes in Comput. Sci., pages 268–332. Springer,
2002.

[FG05] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asynchronous calculi. J. Log.
Algebr. Program., 63(1):131–173, 2005.

[Lan96] C. Laneve. On testing equivalence: May and must testing in the join-calculus. Technical Report
Technical Report UBLCS 96-04, University of Bologna, 1996.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge university press, 1999.
[Mor68] J.H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, MIT, 1968.
[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i & ii. Inform. and

Comput., 100(1):1–77, 1992.
[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Automata, Languages

and Programming, volume 623 of Lecture Notes in Comput. Sci., pages 685–695. Springer, 1992.
[NC95] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In ICALP 1995, volume 944 of

Lecture Notes in Comput. Sci., pages 648–659. Springer, 1995.
[NSS06] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus with futures.

Theoret. Comput. Sci., 364(3):338–356, November 2006.
[NSSSS07] Joachim Niehren, David Sabel, Manfred Schmidt-Schauß, and Jan Schwinghammer. Observational

semantics for a concurrent lambda calculus with reference cells and futures. Electron. Notes Theor.
Comput. Sci., 173:313–337, 2007.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. Theoret. Comput. Sci.,
1:125–159, 1975.

[Pri95] Corrado Priami. Stochastic pi-calculus. Comput. J., 38(7):578–589, 1995.
[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Math. Structures

Comput. Sci., 6(5):409–453, 1996.
[RV07] Arend Rensink and Walter Vogler. Fair testing. Inform. and Comput., 205(2):125–198, 2007.
[SSS10] Manfred Schmidt-Schauß and David Sabel. Closures of may-, should- and must-convergences for

contextual equivalence. Inform. Process. Lett., 110(6):232 – 235, 2010.
[SSS11] David Sabel and Manfred Schmidt-Schauß. A contextual semantics for Concurrent Haskell with futures.

In Proc. 13th international ACM SIGPLAN symposium on principles and practices of declarative
programming, PPDP ’11, pages 101–112, New York, NY, USA, July 2011. ACM.

[SSS12] David Sabel and Manfred Schmidt-Schauß. Conservative concurrency in Haskell. In Nachum Der-
showitz, editor, LICS, pages 561–570. IEEE, 2012.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. Cambridge university press,
2001.

18 D. Sabel and M. Schmidt-Schauß

A Proofs for Barbed Testing Equivalence in Π

In this section we prove the following theorem in a series of lemmas:

Theorem A.1 (Characterizations of Barbed Testing).

– vc,may = vc,�x = vc,�
– vc,should = vc,��x = vc,��
– vc,should ⊂ (vc,may)−1 and thus
vwc = vwc,should = vwc,��x = vwc,��.

Proof. The first two items will be proved in Lemmas A.4 and A.5. The inclusion
in the third item will be proved in Lemma A.3, and the inclusion is strict, since
e.g. νu, z.(z(w).x(y) ||| z(w) ||| zu) vc,may x(y) but x(y) 6vc,should νu, z.(z(w).x(y) ||| z(w) ||| zu)
Finally, the last item follows from the three previous parts.

Lemma A.2. It is sufficient to observe the input behavior for the testing preorders, i.e.

– P vc,may Q iff ∀x ∈ N : P vc,�x Q
– P vc,should Q iff ∀x ∈ N : P vc,��x Q

Proof. For the first item and the nontrivial direction, assume that P vc,�x Q for all x ∈ N and
there is a context C and a name x such that C[P] �x but C[Q] ��x. Let C1 = x(a).y(b) ||| [·] and
w.l.o.g. a, b, y 6∈ (fn(C[P])∪ fn(C[Q])) then C1[C[P]]�y but C1[C[Q]] ��y, but this contradicts the
assumption P vc,�y Q.

For the second item and the nontrivial direction, assume that P vc,��x Q for all x ∈ N and
there is a context C and a name x such that C[P] ��x but C[Q]�x. Let C2 = !x(a).y(b) ||| [·] where

a, b, y 6∈ (fn(C[P])∪fn(C[Q])). Then C2[C[P]] ��y. Since C[Q]�x there is a reduction C[Q]
sr,∗−−→ Q′

with Q′ ��x. The reduction is also possible for C2[C[Q]] resulting in Q′′ = !x(−).y(−) |||Q′.
Obviously Q′′ ��y, since Q′ cannot emit x, and thus C2[C[Q]]�y. This contradicts the assumption
P vc,��y Q.

Lemma A.3. vc,should ⊆ (vc,may)−1 and thus vwc,should = vwc.

Proof. Due to the previous lemma it is sufficient to observe the input behavior. Let P be a process
and let C1 = νz.(zy ||| z(w).w(w′) |||xx′.z(z′)) ||| [·] where w.l.o.g fn(P)∩{w,w′, z, z′, x′} = ∅. Then
P �x iff C1[P] �y. If P �x then C1[P] can be reduced to P ′′ := νz.(z(w).w(w′)) |||P ′ where P ′ is
the contractum of P after receiving x′ along x. Clearly, P ′′ cannot barb on y (i.e. P ′′ ��x) and
thus C1[P]�x.

Now we prove the lemma: Let P vc,should Q, C[Q] �x, but C[P] ��x. From P vc,should Q it
follows Q ≤�y P . But C1[C[Q]]�y while C1[C[P]] ��y which is a contradiction.

Lemma A.4. Let x ∈ N . Then

– P vc,may Q iff P vc,�x Q
– P vc,should Q iff P vc,��x Q.

Proof. For the nontrivial part of the first item let P vc,�x Q, C[P] �y, but C[Q] ��y Then for
C1 = νa, b.(ya.x(b)) ||| νX .[·] where X = (fn(C[P]) ∪ fn(C[Q])) \ {y} we have C1[C[P]] �x, but
C1[C[Q]] ��x which contradicts P vc,�x Q.

For the nontrivial part of the second item let P vc,��x Q, C[P] ��y, but C[Q] �y. Then for
C2 = νa, b.(ya.x(b)) ||| νX .[·] where X = (fn(C[P]) ∪ fn(C[Q])) \ {y} we have C2[C[P]] ��x, but
C2[C[Q]]�x which contradicts P vc,��x Q.

Lemma A.5. vc,may = vc,� and vc,should = vc,��

Contextual Equivalence for the Pi-Calculus that can Stop 19

Proof. For the nontrivial direction of the first part, we show that vc,�x ⊇ vc,� which is sufficient
due to the previous lemma.

Let P vc,� Q, and C[P] �x. Let C1 = νX .[·] where X = (fn(C[P]) ∪ fn(C[Q])) \ {x}. Then
C1[C[P]] �x and since P vc,� Q we have C1[C[Q]] �x′ . However, since x is the only free name in
C1[C[Q]] the equation x = x′ must hold and thus also C1[C[Q]] �x which implies C[Q] �x, since
C1 only hides names.

For the second item the reasoning is completely analogous.

B Proofs for the Calculus ΠStop

Lemma B.1. For all processes P,Q it holds:

1. If P
sr−→ Q then νx.P

sr−→ νx.Q
2. If νx.P

sr−→ Q then P
sr−→ Q′ such that either Q ≡ νx.Q′ or Q ≡ Q′

3. For ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ νx.P and νx.P ≤ξ P .

Proof. (1) holds, since νx.D ∈ D whenever D ∈ D. (2) follows by induction on the number
of congruence axiom applications using the facts that the ia-reduction does not depend on ν-
binders and that ν-binders can be reintroduced by structural congruence if they were deleted
by reduction. For (3) clearly P is successful iff νx.P is successful. Hence, by induction on the
length of a given reduction sequence ending in a successful process and the first two items we
can show P ≤↓ νx.P and νx.P ≤↓ P . By Lemma 3.4 this also shows P ⇑ =⇒ νx.P ⇑ and
νx.P ⇑ =⇒ P ⇑. Now by induction on the length of a reduction sequence ending in a must-
divergent process using the first two items and using the last shown implications as a base case
we can verify that P ≤↑ νx.P and νx.P ≤↑ P which is equivalent to νx.P ≤⇓ P and P ≤⇓ νx.P
(Lemma 3.4).

Lemma B.2. Let P,Q ∈ ProcStop. If σ(P) |||R ≤↓ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop,
then also σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for C ∈ {[·] |||S, S ||| [·], C = νx.[·], x(y).[·], C = xy.[·] |
x, y ∈ N , S ∈ ProcStop}, all σ ∈ Σ and R ∈ ProcStop.

Proof. 1. C = [·] |||S: Then σ(C[P]) |||R ≡ (σ(P) |||R′) and σ(C[Q]) |||R ≡ σ(Q) |||R′ with
R′ = σ(S) |||R. The precondition of the claim implies that σ(P) |||R′ ≤↓ σ(Q) |||R′ and
thus Proposition 3.5 shows σ(C[P]) |||R ≤↓ σ(C[Q]) |||R.

2. C = S ||| [·]: The claim follows from the previous item and Proposition 3.5.
3. C = νx.[·]: Since σ(P) |||R ≤↓ σ(Q) |||R holds by the precondition of the claim, Lemma 3.6

shows the claim.
4. C = x(y).[·]: Let σ(C[P]) |||R

sr,n−−→ Pn where Pn is successful. We use induction on n.
The base case n = 0 holds, since in this case R must be successful, and thus σ(C[Q]) |||R
is successful, too. For the induction step assume σ(x) = x1 and w.l.o.g. σ(y) = y. Let
x1(y).σ(P) |||R

sr−→ νX .σ(P)[z/y] |||R′ be the first reduction step of the reduction sequence,
where X ⊆ {z}. The same reduction step for σ(x(y).Q) |||R results in νX .σ′(Q)[z/y] |||R′. By
induction assumption, the lemma holds for the pair σ(P)[z/y] and σ(Q)[z/y], and by item
(3) also for extending it with ν.

5. C = xy.[·]: This case is similar to the previous item. ut

Lemma B.3. For P,Q, Sxy, Syx as defined in Proposition 4.9: P ≤c,↓ Q.

Proof. Let S := S1 ∪ S2 ∪-↓ where

S1 := {(!Sxy ||| !Syx |||R[x/w] ||| yu1 ||| . . . ||| yun,
!Sxy ||| !Syx |||R[y/w] |||xu1 ||| . . . |||xun)
| for any R, any x, y, w, ui, and any n ≥ 0}

S2 := {(σ(P) |||R, σ(Q) |||R) | for any R and σ}

20 D. Sabel and M. Schmidt-Schauß

For proving P ≤c,↓ Q it suffices to show that S is F↓-dense: This implies σ(P) |||R ≤↓ σ(Q) |||R
for all R, σ and thus the context lemma (Theorem 4.3) shows P ≤c,↓ Q.

First let (P1, P2) ∈ S1. If P1 is successful, then clearly also P2 is successful and thus P2 ↓. If
P1

sr−→ P ′1, then there are following cases:

– If the redex is inside R[x/w], then either the same reduction can also be performed for P2,
then P2

sr−→ P ′2 and (P ′1, P
′
2) ∈ S, or the name x occurs in R. We consider two cases, where

we use the abbreviations Lx := xu1 ||| . . . |||xun and Ly := yu1 ||| . . . ||| yun:

• IfR = νW.(w(z′).R1 |||xv.R2 |||R3) and P ′1 = !Sxy ||| !Syx ||| νW.(R1[v/z
′] |||R2 |||R3)[x/w] |||Ly,

then P2
sr−→ P ′2

sr−→ P ′′2 with

P2 = !Sxy ||| !Syx |||Lx
||| νW.(w(z′).R1 |||xv.R2 |||R3)[y/w]

P ′′2 := !Sxy ||| !Syx |||Lx
||| νW.(R1[v/z

′] |||R2 |||R3))[y/w],

since xv.R2 |||Sxy
sr−→ R2 ||| yv. Now (P ′1, P

′′
2) ∈ S and thus we are finished.

• IfR = νW.(x(z′).R1 |||wv.R2 |||R3) and P ′1 = !Sxy ||| !Syx ||| νW.(R1[v/z
′] |||R2 |||R3)[x/w] |||Ly,

then P2
sr−→ P ′2

P ′′
2−−→ with

P2 = !Sxy ||| !Syx |||Lx
νW.(x(z′).R1 |||wv.R2 |||R3)[y/w]

P ′′2 := !Sxy ||| !Syx |||Lx
||| νW.(R1[v/z

′] |||R2 |||R3))[y/w],

since yv.R2 |||Syx
sr−→ R2 |||xv and thus (P ′1, P

′′
2) ∈ S.

– The redex is Syx ||| yui, i.e. for Ly = yu1 ||| . . . yui−1 ||| yui+1 ||| . . . yun:

P1 = !Sxy ||| !Syx |||R[x/w] ||| yui |||Ly
sr−→ !Sxy ||| !Syx |||R[x/w] |||xui |||Ly ≡

!Sxy ||| !Syx ||| (R |||wui)[x/w] |||Ly = P ′1.
Then for Lx := xu1 ||| . . . xui−1 |||xui+1 ||| . . . xun:
P2 = !Sxy ||| !Syx |||R[y/w] |||xui |||Lx

sr−→ !Sxy ||| !Syx |||R[y/w] ||| yui |||Lx ≡
!Sxy ||| !Syx ||| (R |||wui)[y/w] |||Lx = P ′2 and thus (P ′1, P

′
2) ∈ S.

– The redex is Sxy |||R[x/w], i.e. R = wv.R′ and for Ly := yu1 ||| . . . ||| yun:

P1 = !Sxy ||| !Syx |||xv.R
′[x/w] |||Ly

sr−→ !Sxy ||| !Syx |||R
′[x/w] ||| yv |||Ly = P ′1. Then for Lx :=

xu1 ||| . . . |||xun: P2 = !Sxy ||| !Syx ||| yv.R
′[y/w] |||Lx

sr−→ !Sxy ||| !Syx |||R
′[y/w] |||xv |||Lx = P ′2

and thus (P ′1, P
′
2) ∈ S.

Now let (P1, P2) ∈ S2 and let a′ = σ(a), x′ = σ(x), y′ = σ(y), z′ = σ(z) . If P1 is successful,
then P2 is successful. If P1

sr−→ P ′1, then there are the cases:

– The redex is inside R, then P2
sr−→ P ′2 and (P ′1, P

′
2) ∈ S.

– R = νW.(a′(w).R′ |||R′′) and P1
sr−→ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′[x/w] |||R′′) ≡

!σ(Sxy) ||| !σ(Syx) ||| νW.(R′ |||R′′)[x/w] = P ′1 where the last congruence step is possi-
ble, since we may assume that w was renamed fresh for R′′.

Then P2
sr−→ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′[y/w] |||R′′)≡ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′ |||R′′)[y/w]

= P ′2 and (P ′1, P
′
2) ∈ S.

– R = νW.(x′u.R′ |||R′′) and P1
sr−→ a′x′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) ||| y′u = P ′1. Then P2

sr−→ a′y′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) ||| y′u = P ′2. and (P ′1, P
′
2) ∈ S.

– R = νW.(y′u.R′ |||R′′) and P1
sr−→ a′x′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) |||x′u = P ′1. Then P2

sr−→ a′y′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) |||x′u = P ′2 and (P ′1, P
′
2) ∈ S. ut

Contextual Equivalence for the Pi-Calculus that can Stop 21

Lemma B.4. The relation

S :=

{
(νX .(P |||R), νX .(Q |||R))

P -b,↓ Q,
for any X , R

}
∪-↓.

is F↓-dense.

Proof. Let (νX .(P |||R), νX .(Q |||R)) ∈ S. We have to show (νX .(P |||R), νX .(Q |||R)) ∈ F↓(S).
If νX .(P |||R) is successful, then P or R is successful too, and thus either Q ↓ and so does

νX .Q |||R or νX .(Q |||R) is already successful.

For νX .(P |||R)
sr−→ P1 we show that νX .(Q |||R)

sr,∗−−→ Q1, s.t. (P1, Q1) ∈ S:
If the redex of νX .(P |||R)

sr−→ P1 is inside P , i.e. P1 = νX .(P ′ |||R), then by P -b,↓ Q

there exists Q′ with Q
sr,∗−−→ Q′, P ′ -b,↓ Q

′. Since also νX .(Q |||R)
sr,∗−−→ νX .(Q′ |||R) and thus

(νX .(P ′ |||R), νX .(Q′ |||R)) ∈ S, this case is finished.
If the redex of νX .(P |||R)

sr−→ P1 is inside R, i.e. P1 = νX .(P |||R′) then also νX .(Q |||R)
sr−→

νX .(Q |||R′) and (νX .(P |||R′), νX .(Q |||R′)) ∈ S.
The remaining cases are that the redex uses parts of P and parts of R.

– If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νX2.(xz.R
′ |||R′′) with z 6∈ X2 and νX .(P |||R)

sr−→
νX .(νX1.(P

′[z/y] |||P ′′) ||| νX2.R
′ |||R′′) =: P1, then by P -b,↓ Q there exists Q0 with

Q
sr,∗−−→ Q0, Q0 = νY1.(x(y).Q′ |||Q′′) s.t. X1.(P

′[z/y] |||P ′′) -b,↓ νY1.(Q′[z/y] |||Q′′). Since

νX .(Q |||R)
sr,∗−−→ νX .(Q0 |||R)

sr−→ νY1.(Q′[z/y] |||Q′′) ||| νX2.R
′ |||R′′) = Q1, also (P1, Q1) ∈ S.

– If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νz,X2.(xz.R
′ |||R′′) and νX .(P |||R)

sr−→
νX .(νz.(νX1.P

′[z/y] |||P ′′ ||| νX2.(R
′ |||R′′))) = P1, then by P -b,↓ Q there exists Q0 with

Q
sr,∗−−→ Q0, Q0 = νY1.(x(y).Q′ |||Q′′) s.t. νX1.(P

′[z/y] |||P ′′) -b,↓ νY1.(Q′[z/y] |||Q′′). Since

also νX .(Q |||R)
sr,∗−−→ νX .(Q0 |||R)

sr−→ νX .(νz.(νY1.(Q′[z/y] |||Q′′) ||| νX2.(R
′ |||R′′))) =: Q1

we have (P1, Q1) ∈ S.
– If P ≡ νX1.(xy.P

′ |||P ′′) and R ≡ νX2.(x(z).R′ |||R′′) with y 6∈ X1 and νX .(P |||R)
sr−→

νX .(νX1.P
′ |||P ′′) ||| νX2.(R

′[y/z] |||R′′) =: P1, then by P -b,↓ Q there exists Q0 with Q
sr,∗−−→

Q0, Q0 = νY1.(xy.Q′ |||Q′′) where y 6∈ Y1 s.t. νX1.(P
′ |||P ′′) -b,↓ Y1.(Q′ |||Q′′). Since also

νX .(Q |||R)
sr,∗−−→ νX .(Q0 |||R)

sr−→ νX .(νY1.(Q′ |||Q′′) ||| νX2.(R
′[y/z] |||R′′)) =: Q1, we have

(P1, Q1) ∈ S.
– If P ≡ νy.νX1.(xy.P

′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′), and νX .(P |||R)
sr−→

νX .νy.(νX1.(P
′ |||P ′′) ||| νX2.(R

′[y/z] |||R′′)) =: P1, then by P -b,↓ Q there exists Q0 with

Q
sr,∗−−→ Q0, Q0 = νy.νY1.(xy.Q′ |||Q′′) s.t. νX1.(P

′ |||P ′′) -b,↓ νY1.(Q′ |||Q′′). Since also

νX .νy.(Q |||R)
sr,∗−−→ νX .νy.(Q0 |||R)

sr−→ νX .νy.(νY1.(Q′ |||Q′′) ||| νX2.(R
′[y/z] |||R′′)) =: Q1,

we have (P1, Q1) ∈ S. ut

Lemma B.5. The relation

S :=

{
(νX .(P |||R), νX .(Q |||R))

P -b,↑ Q,
for any X , R

}
∪-↑

is F↑-dense.

Proof. Note that if P -b,↑ Q, then Q -b,↓ P .
Now let (νX .(P |||R), νX .(Q |||R)) ∈ S. We have to show that (νX .(P |||R), νX .(Q |||R)) ∈

F↑(S).
If νX .(P |||R) ⇑, then Q -b,↓ P and Proposition 4.13 show that νX .(Q |||R) -↓ νX .(P |||R)

which implies that νX .(P |||R) ≤⇑ νX .(Q |||R) and thus νX .(Q |||R) ↓ .
If νX .(P |||R)

sr−→ P1, then we have to show that νX .(Q |||R)
sr,∗−−→ Q1, s.t. (P1, Q1) ∈ S.

If the redex of νX .(P |||R)
sr−→ P1 is inside P , i.e. νX .(P |||R)

sr−→ νX .(P ′ |||R) then P -b,↑

Q shows that there exists Q′ with Q
sr,∗−−→ Q′ and P ′ -b,↑ Q

′. Since also νX .(Q |||R)
sr,∗−−→

νX .(Q′ |||R) and thus (νX .(P ′ |||R), νX .(Q′ |||R)) ∈ S this case is finished.

22 D. Sabel and M. Schmidt-Schauß

If the redex of νX .(P |||R)
sr−→ P1 is inside R, i.e. νX .(P |||R)

sr−→ νX .(P |||R′) then also
νX .(Q |||R)

sr−→ νX .(Q |||R′) and thus (νX .(P |||R′), νX .(Q |||R′)) ∈ S and this case is finished.
It remains to consider the cases where the redex uses parts of P and parts of R.

– If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νX2.(xz.R
′ |||R′′) with z 6∈ X2 and νX .(P |||R)

sr−→
νX .(νX1.(P

′[z/y] |||P ′′) ||| νX2.R
′ |||R′′) = P1 then P -b,↑ Q shows that there exists Q0

with Q
sr,∗−−→ Q0 and Q0 = νY1.(x(y).Q′ |||Q′′) s.t. X1.(P

′[z/y] |||P ′′) -b,↑ νY1.(Q′[z/y] |||Q′′)

Since νX .(Q |||R)
sr,∗−−→ νX .(Q0 |||R)

sr−→ νY1.(Q′[z/y] |||Q′′) ||| νX2.R
′ |||R′′) = Q1 this shows

(P1, Q1) ∈ S.
– If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νz,X2.(xz.R

′ |||R′′) and νX .(P |||R)
sr−→

νX .(νz.(νX1.P
′[z/y] |||P ′′ ||| νX2.(R

′ |||R′′))) = P1 then P -b,↑ Q shows that there exists Q0

with Q
sr,∗−−→ Q0 and Q0 = νY1.(x(y).Q′ |||Q′′) s.t. νX1.(P

′[z/y] |||P ′′) -b,↑ νY1.(Q′[y/z] |||Q′′).
Since also νX .(Q |||R)

sr,∗−−→ νX .(Q0 |||R)
sr−→ νX .(νz.(νY1.(Q′[z/y] |||Q′′) ||| νX2.(R

′ |||R′′))) =
Q1 we have (P1, Q1) ∈ S.

– If P ≡ νX1.(xy.P
′ |||P ′′) and R ≡ νX2.(x(z).R′ |||R′′) with y 6∈ X1 and νX .(P |||R)

sr−→
νX .(νX1.P

′ |||P ′′) ||| νX2.(R
′[y/z] |||R′′) = P1, then P -b,↑ Q shows that there exists Q0 with

Q
sr,∗−−→ Q0 and Q0 = νY1.(y.Q′ |||Q′′) where y 6∈ Y1 s.t. νX1.(P

′ |||P ′′) -b,↑ Y1.(Q′ |||Q′′).
Since also νX .(Q |||R)

sr,∗−−→ νX .(Q0 |||R)
sr−→ νX .(νY1.(Q′ |||Q′′) ||| νX2.(R

′[y/z] |||R′′)) = Q1,
we have (P1, Q1) ∈ S.

– If P ≡ νy,X1.(xy.P
′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′), and νX .(P |||R)

sr−→
νX .νy.(νX1.(P

′ |||P ′′) ||| νX2.(R
′[y/z] |||R′′)) = P1, then P -b,↑ Q shows that there exists

Q0 with Q
sr,∗−−→ Q0 and Q0 = νy.νY1.(y.Q′ |||Q′′) s.t. νX1.(P

′ |||P ′′) -b,↑ νY1.(Q′ |||Q′′). Since

also νX .νy.(Q |||R)
sr,∗−−→ νX .νy.(Q0 |||R)

sr−→ νX .νy.(νY1.(Q′ |||Q′′) ||| νX2.(R
′[y/z] |||R′′)) =

Q1, we have (P1, Q1) ∈ S. ut

