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Miro-Canonial Hadron Prodution in ppollisionsF. M. Liu1,2∗, J. Aihelin3, M. Bleiher2 , K. Werner31st September 2005
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2Institut für Theoretishe Physik, J.W.Goethe Universität, Frankfurt am Main,Germany
3Laboratoire SUBATECH, University of Nantes - IN2P3/CNRS - Eole des Minesde Nantes, Nantes, Frane AbstratWe apply a miroanonial statistial model to investigate hadron produ-tion in pp ollisions. The parameters of the model are the energy E and thevolume V of the system, whih we determine via �tting the average multi-pliity of harged pions, protons and antiprotons in pp ollisions at di�erentollision energies. We then make preditions of mean multipliities and meantransverse momenta of all identi�ed hadrons. Our preditions on nonstrangehadrons are in good agreement with the data, the mean transverse momenta ofstrange hadron as well. However, the mean multipliities of strange hadronsare overpredited. This agrees with anonial and grandanonial studies,where a strange suppression fator is needed. We also investigate the in�u-ene of event-by-event �utuations of the E parameter.1 IntrodutionIn pp ollisions at high energies a multitude of hadrons is produed. In ontradis-tintion to the pp ollisions at low energies even e�etive theories are not able toprovide the matrix elements for these reations and therefore a alulation of theross setion is beyond the present possibilities of partile physis. In addition, evenat moderate energies, many di�erent partiles and resonanes may be reated andtherefore the number of di�erent �nal states beomes huge.
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In this situation, statistial approahes may be of great help [1, 2℄. It wasHagedorn who notied that the transverse mass distributions in high energy hadron-hadron ollisions show a ommon slope for all observed partiles[3℄. This may beinterpreted as a strong hint that it is not the individual matrix elements but phasespae who governs the reation. Therefore Hagedorn introdued statistial methodsinto the strong interation physis in order to alulate the momentum spetra ofthe produed partiles and the prodution of strange partiles.Later, after statistial models have been suessfully applied to relativisti heavyion ollisions [4, 5, 6, 7, 8, 9, 10, 11℄, Beattini and Heinz [12℄ ame bak to thestatistial desription of elementary pp and p̄p reations and used a anonial model(in whih the multipliity of hadrons M is a funtion of volume and temperatureM(V,T)) in order to �gure out whether the partile multipliities predited by thisapproah are in agreement with the (in the meantime very detailed) experimentalresults. For a enter of mass energy of around 20 GeV they found for non strangepartiles a very good agreement between statistial model preditions and dataassuming that the partiles are produed by a hadroni �reball with a temperatureof T = 170 MeV. The strange partiles, however, esaped from this systematis beingsuppressed by fators of the order of two to �ve. Beattini and Heinz oped withthis situation by introduing a γS fator into the partition sum whih was adjustedto reprodue best the multipliity of strange partiles as well.Statistial models are lassi�ed aording to the implementation of onservationlaws:
• miroanonial: both, material onservation laws (Q, B, S, C, · · ·) and mo-tional onservation laws (E, −→p ,−→J , · · ·), hold exatly.
• anonial: material onservation laws hold exatly, but motional onservationlaws hold on average (a temperature is introdued).
• grand-anonial: both material onservation laws and motional onservationlaws hold on the average (temperature and hemial potentials introdued).The intensive physial quantities suh as partile density and average transversemomentum are independent of volume in the grand-anonial alulation , whilethey depend on volume in both anonial and miroanonial alulations. Whatone naively expets is that the miroanonial ensemble must be used for very smallvolumes, for intermediate volumes the anonial ensemble should be a good approxi-mation, while for very large volumes the grand-anonial ensemble an be employed.A numerial study of volume e�ets in paper[14℄ tells us how big the volumes needto be in order to make the grand-anonial ensembles appliable. The omparisonbetween the miroanonial and the anonial treatment in paper[14℄ shows a verygood agreement in partile yields, when the same volume and energy density areused, and the strangeness suppression is aneled in the anonial alulation.2



In this paper, �rst we ignore the �utuations of miroanonial parameters andtry to �x the miroanonial parameters, energy E and volume V , from �tting 4πyields of protons, antiprotons and harged pions from pp ollisions. The one-to-onerelation between the ollision energy √
s and a pair of miroanonial parameters

E and V makes a link between the pp experiments and the miroanonial ap-proahes (or more generally, the statistial ensembles). One an easily judge ifgrand-anonial ensembles an desribe pp ollisions at any given energy; one analso transform the �tting results to the anonial ase and �nd the orrespondingtemperature and volume of pp ollisions at any energy.Then we study the e�et from the �utuations of the miroanonial energyparameter at a ollision energy of 200 GeV, to hek how reliable it is to �x miro-anonial parameters without energy �utuations.Finally, we would like to make a omparison between statistial models andstring models in desribing pp ollisions. This miroanonial model and this �ttingwork will provide us a bridge to ompare the two lasses of models and help us tounderstand the reation dynamis. In priniple, one an onsider a string as anensemble of �reballs, whih may be onsidered as one e�etive �reball, when onlytotal multipliities are onsidered.2 The approahWe onsider the �nal state of a proton-proton ollision as a �luster� , �droplet�or ��reball� haraterized by its volume V (the sum of individual proper volumes),its energy E (the sum of all the luster masses) and the net �avour ontent Q =
(Nu − Nū, Nd − Nd̄, Ns − Ns̄), deaying �statistially� aording to phase spae.More preisely, the probability of a luster to hadronize into a on�guration K =
{h1, p1; . . . ; hn, pn} of hadrons hi with four momenta pi is given by the miro-anonial partition funtion Ω(K) of an ideal, relativisti gas of the n hadrons[13℄,

Ω(K) =
V n

(2π~)3n

n
∏

i=1

gi

∏

α∈S

1

nα!

n
∏

i=1

d3pi δ(E − Σεi) δ(Σ~pi) δQ,Σqi
,with εi =

√

m2
i + p2

i being the energy, and ~pi the 3-momentum of partile i. Theterm δQ,Σqi
ensures �avour onservation; qi is the �avour vetor of hadron i. Thesymbol S represents the set of hadron speies onsidered: we take S to ontainthe pseudosalar and vetor mesons (π, K, η, η′, ρ, K∗, ω, φ) and the lowest spin-1

2and spin-3

2
baryons (N, Λ, Σ, Ξ, ∆, Σ∗, Ξ∗, Ω) and the orresponding antibaryons. nαis the number of hadrons of speies α, and gi is the degeneray of partile i. Wegenerate randomly on�gurations K aording to the probability distribution Ω(K).For the details see ref. [13℄. The Monte Carlo tehnique allows to alulate meanvalues of observables as

Ā =
∑

K

A(K) Ω(K)/
∑

K ′

Ω(K ′),3
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Figure 1: The 4π multipliities of π+, π+, proton, antiproton produed in a ppollision as a funtion of √s. The full and dashed lines show the result of the χ2 �t.The points are data from [15℄.where ∑ means summation over all possible on�gurations and integration over the
pi variables. A(K) is some observable assigned to eah on�guration, as for examplethe number Mh(K) of hadrons of speies h present in K. Sine Ā depends on E and
V , we usually write Ā(E, V ). Q is not mentioned, sine we only study pp satteringhere, therefore Q is always (4, 2, 0).Let us onsider the hadron multipliity M̄h(E, V ). This quantity is used todetermine the energy E(

√
s) and the volume V (

√
s) whih reprodues best themeasured multipliity of some seleted hadrons in pp ollisions at a given √

s . Thisis ahieved by minimizing χ2:
χ2(E, V ) =

1

α

α
∑

j=1

[M̄exp,j(
√

s) − M̄j(E, V )]2

σ2
jwhere M̄exp,j(

√
s) and σj are the experimentally measured multipliity and its errorof the partile speies j in pp ollisions at an energy of √s.We start out our investigation by taking as input the most opiously produedpartiles (j = p, p̄, π+, π−). The data have been taken from [15℄. Whenever the dataare not available, the extrapolation of multipliities by Antinui [15℄ is used. Fig.1displays the results of our �t proedure in omparison with the experimental data.We observe that these 4 partile speies an be quite well desribed by a ommonvalue of E(

√
s) and V (

√
s).Fig.2 shows E(

√
s) and V (

√
s), and �g.3 the energy density ǫ(

√
s) = E(

√
s)/V (

√
s),whih we obtain as the result of our �t. Both energy and volume inrease with √

sbut rather di�erent, as the energy density shows. We parameterize the energy andvolume dependene on the ollision energy √
s in eq. (1).

E/GeV = −3.8 + 3.76ln
√

s + 6.4/
√

s

V/fm3 = −30.0376 + 14.93ln
√

s − 0.013
√

s (1)where √
s is in unit GeV. Below √

s = 8 GeV the �t produes volumes below 2fm3whih annot be interpreted physially. Above √
s = 8 GeV the volume inreases4
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Figure 2: The dependene of miro-anonial parameters E (left) and volume V(right) on the ollision energy √
s . The parameterization desribed as eq. (1) isplotted as dashed lines.

1

10

10 10
2

10
3

 √s (GeV)

 ε
 (

G
eV

/f
m

3 )

Figure 3: The dependene of energy density ε = E/V on the ollision energy √
s.The dashed line orresponds to onstant energy density 0.342 GeV/fm3 whih omesfrom a anonial alulation[12, 14℄.very fast as ompared to the energy giving rise to a derease in the energy densityuntil - around√

s = 200 GeV - the expeted saturation sets in and the energy densitybeomes onstant. In view of the large volume observed for these large energies thedensity of the di�erent partiles does not hange anymore [14℄ and therefore thepartile ratios stay onstant above this energy.The quality of the �t an be judged from �g.4 where we have plotted the χ2values obtained for di�erent values of E and V and for √s = 200 GeV. We see thatthe energy variation is quite small whereas the volume varies more. Neverthelessthe energy density is rather well de�ned.After having �tted the E(
√

s) and V (
√

s) in using p, p̄, π+ and π− data we annow use these �tted values to predit the multipliity of other hadrons. This studywe start in Fig. 5, where we present the multipliity of π0 and ρ0. For these partilesexperimental data are available. We see that the absolute value as well as the trendof the experimental data is quite well reprodued. The result for those hadrons, forwhih no or only few data are available, is displayed in �g. 6. As one an see theoverall agreement is remarkable. We would like to mention that we have as wellmade a χ2 �t using as input the measured multipliities of p, p̄ and ρ0. The results5
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p, p̄, π+ and π− multipliities, we an as well alulate the multipliity of strangepartiles or partiles with hidden strangeness. The results of these �ts are presentedin Fig. 7. As we an see immediately the results for those partiles are not at all inagreement with the data. Λ and φ multipliities are o� by a fator of 3-5 roughly, for
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Figure 5: Predition of the π0and ρ0 multipliity in pp ollisions as a funtion of√
s. The result of the alulation is ompared to the data [16℄.6
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Figure 6: Preditions of the multipliities of non strange hadrons in pp ollisionsas a funtion of √s. We have plotted, if available, also the data points for √
s =

27.5 GeV [17℄
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Figure 7: Predition of the multipliity of strange hadrons in pp ollisions as afuntion of √s. The result of the alulation is ompared to the data [16℄.the Λ̄ the situation may be similar but the spread of the experimental data does notallow for a onlusion yet. Only the kaons ome loser to the experimental values.Although at lower energies a part of this deviation may ome from the fat thatin our Monte Carlo proedure weak deays are negleted and therefore K0 and K̄0are the partile states whih are treated, at higher energies this is not of onernanymore. At √s = 53 GeV, we �nd - as in experiment - that KL = KS and hene
K0 = K̄0. Therefore, as in experiment, one �nds that the strangeness ontainedin Λ, Λ̄, K+ and K− adds up to zero. The absolute numbers are, however, ratherdi�erent: experimentally one �nds .41 K+, 0.29 K− and 0.12 Λ [18, 19℄, whereasthe �t yields 1.16 K+, 0.66 K− and 0.58 Λ.One is tempted to try to �t the strange partiles separately. The result atlarge √

s is that, in ontradition to experiment, more K0 then K̄0 are produed.Consequently, the strangeness in Λ, Λ̄, K+ and K− does not add up to zero and the�t is far away from the data. Thus we have to onlude that the strange partilemultipliities annot be desribed in a phase spae approah using the parametersone obtains from the �t of non strange partiles, and that there is no understandingpresently why the suppression fator is rather di�erent for the di�erent hadrons.As mentioned above, in the past there has been proposed to use an additionalparameter, γs, in order to desribe the strangeness suppression. This parameterhas been interpreted as a hint that the volume in whih strangeness neutrality has8



to be guaranteed is small as ompared to the volume of the system. However, adetailed omparison of the multipliity of all strange partiles with the data shows[12℄ that one additional parameter alone is not su�ient to desribe the measuredmultipliities of the di�erent strange partiles in a phase spae approah to ppollisions.4 Transverse MomentaPhase spae alulations predit not only partile multipliities but also the mo-menta of the produed partiles. The average transverse momenta of the produedpartile give a good hek whether the energy density obtained in the �t an reallybe interpreted as the energy density of a hadron gas. Fig. 8 shows the averagetransverse momenta in omparison with the experimental data [18℄. We see thatover the whole range of beam energies the average transverse momenta are in goodagreement with the data. This on�rms that the partition of the available energyinto energy for partile prodution and kineti energy is orretly reprodued in thephase spae alulation. It is remarkable that the average transverse momenta ofstrange partiles is orretly predited.5 Energy FlutuationsUp to now we have assumed that for a given enter of mass energy, the energy ofthe droplet E has an unique value, given in �g. 2. This is of ourse not a realistiassumption. Most probably the energy varies from event to event but little is knownabout the form of this �utuation. The only quantity for whih data are availableis the multipliity distribution of harged partiles, whih has been the subjet ofan extensive disussion in the seventies due to the �nding of a saling law, alledKNO saling. Of ourse, one an try now to �nd an energy distribution whih yieldsthe experimental harge partile distribution but this relation is not unique andtherefore little may be learnt.It has also been suggested to replae the miroanonial ensemble alulation,presented here, in favor of a anonial ensemble or an ensemble where the pressureis the ontrol parameter, however it is di�ult to �nd a onvining argument. It isthe dynamis of the reation whih determines whih fration of the energy goes intoolletive motion, and whih fration into partile prodution. This has nothing todo with a heat bath nor with onstant pressure on the droplet. Consequently, therelation between the energy �utuation, seen in a system with a �xed temperature,and the true energy �utuation is all but evident.Therefore, we use another approah to study the in�uene of energy �utuationson the observables. We assume that the volume of the system remains unhanged inorder not to have too many variables and that the energy �utuates. For tehnialreasons, we use disrete distributions, using Ei = i ∆E, with ∆E = 1GeV. For √s =9



0.3

0.4

0.5

0.6

10 10
2

 <
p t>

  (
G

eV
)

 C data
microcanonical

0.2

0.25

0.3

0.35

0.4

0.45

10 10
2

 π+

0.2

0.25

0.3

0.35

0.4

0.45

10 10
2

 π-

0.2

0.3

0.4

0.5

0.6

10 10
2

 K+

0.2

0.3

0.4

0.5

0.6

10 10
2

 K-

0.2

0.4

0.6

0.8

10 10
2

 √s (GeV)

 p
_

Figure 8: Average transverse momenta as predited in the phase spae alulationas a funtion of √s in omparison with the experimental values [18℄ for di�erentpartile speies.
10



10
-5

10
-4

10
-3

10
-2

10
-1

1

0 20 40 60 80
 E (GeV)

 P
ro

b(
E

)

Poissonian E

Gaussian E

NB E

Figure 9: The Gaussian, Poissonian and the NB energy �utuations.
200 GeV, we have 〈E〉 = 16.15 GeV from the above �tting work, and orrespondinglywe take < i >= 16.15. We study three ases:a) The energy distribution is Poissonian

Prob(i) =
〈i〉i exp(−〈i〉)

i!andb) The energy distribution is Gaussian
Prob(i) =

{

1

0.63
1√
2πσ

exp(−Ei−µ

σ
)2 when Ei ∈ [2.5 GeV,∞)

0 otherwise.where an energy threshold of 2.5 GeV is taken for the proton-proton system. µ =
σ = 14.01GeV to obtain 〈i〉 = 16.15 and the fator 0.63 is used to normalize theenergy distribution, and) The energy distribution is a negative binomial distribution

PNB(i; n, k) =
k(k + 1) · · · (k + i − 1)

i!

nikk

(n + k)n+k
.The negative binomial distribution is well normalized, and < i >= n. So we take

n = 16.15. The parameter k = 3 is hosen to get the best �t to multipliitydistribution data from UA5.All the three types of energy �utuations are displayed in �g. 9. In Fig. 10, wedisplay the in�uene of these �utuations on the harged hadron multipliity distri-butions. We ompare the results from a �xed energy of 16.15 GeV, the energy witha �utuation of the above-mentioned Poissonian, Gaussian and the NB type. We seethat already for a �xed energy the �utuation of the harged partile multipliity isonsiderable. Di�erent energy �utuations give di�erent multipliity distributions.The NB energy �utuation reprodues the UA5 data for non single di�rative eventsin antiproton-proton ollisions at √s = 200GeV.11
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〈K+〉
〈π+〉

〈K−〉
〈π−〉

〈

K+

π+

〉 〈

K−

π−

〉�xed E 0.214 0.163 0.253 0.197Poissonian E dis. 0.213 0.163 0.251 0.194Gaussian E dis. 0.208 0.162 0.241 0.179NB E dis. 0.208 0.163 0.241 0.180Table 1: Di�erent K to π ratios where 〈...〉 means event averaging.How does the multipliity of identi�ed hadrons �utuate if the droplet energy�utuates? This is studied in �g. 11, where we display the multipliity distributionof the most opiously produed partiles for �xed energy E = 16.15 GeV and fora Poissonian, Gaussian and NB energy distribution. We see here as well that al-ready for a �xed droplet energy the multipliity �utuations are important. Thoughdi�erent energy �utuations ause di�erent multipliity distribution, the energy �u-tuation gives very little e�et in the average multipliities. So our approah, �xingmiroanonial parameters by �tting the averager multipliity data, is quite reliable.There is also a orrelation between the pion and kaon multipliity in a givenevent, shown in table.1. The event averaged K/π ratio is onsiderably di�erentfrom the ratio of the average kaon and the pion multipliity. The energy �utuationshange more the event averaged K/π ratio than the ratio of the average kaon andthe pion multipliity.6 ConlusionWe have presented a miro-anonial phase spae alulation to obtain partile mul-tipliities and average transverse momenta of partiles produed in pp ollisions as12
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a funtion of √s. Using the multipliities of p, p̄, π+, π−, we �t the two parametersof the phase spae approah, the volume and the energy.Using these two parameters, we alulate the multipliities of all the otherhadrons as well as their average transverse momenta. The alulated multiplii-ties agree quite well with experiment as far as non strange hadrons are onerned.For the yields of strange hadrons (as well as those with hidden strangeness),the predition is o� by large fators. In anonial and grand-anonial approahes,strangeness suppression fator have been used to solve this problem.The energy obtained by this �t is muh smaller than the energy available inthe enter of mass system of the pp reation, beause part of the energy goes intoolletive motion in beam diretion. Nevertheless, the average transverse momentaof the produed partiles (not only non-strange but also strange) from this �ttingagree quite well with experiment.We learn that the volume of the pp ollision system inreases with the ollisionenergy. However, it saturates at very high energy(with Antinnui's parameterizationas input). The maximum value does not exeed 100 fm3. Together with the resultsfrom artile [14℄, we onlude that the grand-anonial treatment annot desribepartile prodution in pp ollisions even at high energy.We study the e�ets from energy �utuations and �nd that it is quite reliable to�x the miroanonial parameters without onsidering energy �utuations.AknowledgementF.M.L would like to thank H. Stöker and the theory group in Frankfurt for thekind hospitality and F. Beattini for many helpful disussions.Referenes[1℄ E. Fermi, Prog. Theor. Phys. 5, 570 (1950); Phys.Rev. 81 (1951) 683.[2℄ L. D. Landau, Lzv. Akd. Nauk SSSR 17 (1953) 51; Colleted papers of L. D.Landau, ed. D. Ter Haar, Gordon and Breah, New York, 1965[3℄ R. Hagedorn, Supplemento al Nuovo Cimento, 3 (1965) 147.R. Hagedorn and J. Randt, Supplemento al Nuovo Cimento, 6 (1968) 169.R. Hagedorn, Supplemento al Nuovo Cimento, 6 (1968) 311.[4℄ R. Hagedorn, Nul. Phys. B 24 (1970) 93.[5℄ P. Siemens, J. Kapusta, Phys. Rev. Lett. 43 (1979) 1486.[6℄ A. Z. Mekjian, Nul. Phys. A384 (1982) 492.[7℄ L. Csernai, J. Kapusta Phys. Rep. 131 (1986) 223.[8℄ H. Stoeker, W. Greiner, Phys. Rep. 137 (1986) 279.14
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