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Abstract. The calculus CHF models Concurrent Haskell extended by
concurrent, implicit futures. It is a lambda and process calculus with
concurrent threads, monadic concurrent evaluation, and includes a pure
functional lambda-calculus PF which comprises data constructors, case-
expressions, letrec-expressions, and Haskell’s seq. Our main result is con-
servativity of CHF as extension of PF. This allows us to argue that com-
piler optimizations and transformations from pure Haskell remain valid
in Concurrent Haskell even if it is extended by futures. We also show that
conservativity does no longer hold if the extension includes Concurrent
Haskell and unsafeInterleaveIO.

1 Introduction

Pure non-strict functional programming is semantically well understood, per-
mits mathematical reasoning and is referentially transparent [SS89]. A wit-
ness is the core language of the functional part of Haskell [Pey03] consist-
ing only of supercombinator definitions, abstractions, applications, data con-
structors and case-expressions. However, useful programming languages require
much more expressive power for programming and controlling IO-interactions.
Haskell employs monadic programming [Wad95,PW93] as an interface between
imperative and non-strict pure functional programming. However, the sequen-
tialization of IO-operations enforced by Haskell’s IO-monad sometimes precludes
declarative programming. Thus Haskell implementations provide the primitives
unsafePerformIO :: IO a→ a which switches off any restrictions enforced by the
IO-monad and unsafeInterleaveIO :: IO a→ IO a which delays a monadic ac-
tion inside Haskell’s IO-monad. Strict sequentialization is also lost in Concurrent
Haskell [PGF96,Pey01,PS09], which adds concurrent threads and synchronizing
variables (so-called MVars) to Haskell.
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All these extensions to the pure part of Haskell give rise to the question
whether the extended language has still the nice reasoning properties of the pure
functional core language, or put differently: whether the extensions are safe. The
motivations behind this are manifold: We want to know whether the formal rea-
soning on purely functional programs we teach in our graduate courses is also
sound for real world implementations of Haskell, and whether all the beautiful
equations and correctness laws we prove for our tiny and innocent looking func-
tions break in real Haskell as extension of pure core Haskell. Another motivation
is to support implementors of Haskell-compilers, aiming at correctness. The is-
sue is whether all the program transformations and optimizations implemented
for the core part can still be performed for extensions without destroying the
semantics of the program.

For the above mentioned extensions of Haskell it is either obvious that they
are unsafe (e.g. unsafePerformIO) or the situation is not well understood. More-
over, it is also unclear what “safety” of an extension means. For instance, Kise-
lyov [Kis09] provides an example showing that the extension of pure Haskell
by unsafeInterleaveIO is not “safe” due to side effects. He exhibits two pure
functions f, g that are semantically equal under pure functional semantics, but
can be distinguished if they get their input through lazy file reading. However,
there appears to be no consensus on the mailing list over the question whether
the example shows “unsafeness”.

A possible approach is to use a precise semantics that models nondetermin-
ism, sharing and laziness (see e.g. [SSS08]) which could be extended to model
impure and non-deterministic computations correctly, and then to adapt the
compiler accordingly. While this approach is theoretically challenging and inter-
esting in itself, it appears to be problematic from the implementor’s point of
view, since it enforces special care in programming optimizations in the com-
piler. Thus we follow a different approach for laying the foundation of correct
reasoning that exploits the separation between pure functional and impure com-
putations by monadic programming. As the notion of “safety” of an extension
we propose conservativity i.e. all the equations that hold in the purely functional
core language must also hold after extending the language.

As model of Concurrent Haskell we use the (monomorphically) typed
calculus CHF which we introduced in [SSS11]. CHF can be seen as a core
language of Concurrent Haskell extended by implicit concurrent futures: Futures
are variables whose value is initially not known, but becomes available in the
future when the corresponding (concurrent) computation is finished (see e.g.
[BH77,Hal85]). Implicit futures do not require explicit forces when their value is
demanded, and thus they permit a declarative programming style using implicit
synchronization by data dependency. Implicit futures can be implemented in
Concurrent Haskell using the extension by the unsafeInterleaveIO-primitive:

future :: IO a → IO a

future act = do ack ← newEmptyMVar

forkIO (act >>= putMVar ack)
unsafeInterleaveIO (takeMVar ack)
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First an empty MVar is created, which is used to store the result of the
concurrent computation, which is performed in a new concurrent thread spawned
by using forkIO. The last part consists of taking the result of the MVar using
takeMVar, which is blocked until the MVar is nonempty. Moreover, it is delayed
using unsafeInterleaveIO. In general, wrapping unsafeInterleaveIO around
action acti in do {x1 ← act1;x2 ← act2; . . .}, breaks the strict sequencing, i.e.
action acti is performed at the time the value of xi is needed and thus not
necessarily before acti+1.

In CHF the above future-operation is a built-in primitive. Unlike the π-
calculus [Mil99,SW01] (which is a message passing model), the calculus CHF
comprises shared memory modelled by MVars, threads (i.e. futures) and heap
bindings. On the expression level CHF provides an extended lambda-calculus
closely related to Haskell’s core language: Expressions comprise data construc-
tors, case-expressions, letrec to express recursive bindings, Haskell’s seq-
operator for sequential evaluation, and monadic operators for accessing MVars,
creating futures, and the bind-operator >>= for monadic sequencing. CHF is
equipped with a monomorphic type system allowing recursive types. In [SSS11]
two (semantically equivalent) small-step reduction strategies are introduced for
CHF : A call-by-need strategy which avoids duplication by sharing and a call-
by-name strategy which copies arbitrary subexpressions. The operational se-
mantics of CHF is related to the one for Concurrent Haskell introduced in
[MJMR01,Pey01] where also exceptions are considered. CHF also borrows some
ideas from the call-by-value lambda calculus with futures [NSS06,NSSSS07].

In [SSS11] we showed correctness of several program transformations and
that the monad laws hold in CHF , under the prerequisite that seq’s first ar-
gument was restricted to functional types, however, we had to leave open the
important question whether the extension of Haskell by concurrency and futures
is conservative.

Results. In this paper we address this question and obtain a positive result:
CHF is a conservative extension of its pure sublanguage (Main Theorem 5.5),
i.e. the equality of pure functional expressions transfers into the full calculus,
where the semantics is defined as a contextual equality for a conjunction of
may- and should-convergence. This result enables equational reasoning, pure
functional transformations and optimizations also in the full concurrent calculus,
CHF . This property is sometimes called referential transparency. Haskell’s type
system is polymorphic with type classes whereas CHF has a monomorphic type
system. Nevertheless we are convinced that our main result can be transferred
to the polymorphic case following our proof scheme, but it would require more
(syntactical) effort. Our results also imply that counterexamples like [Kis09] are
impossible for CHF . We also analyze the boundaries of our conservativity result
and show in Section 6 that if so-called lazy futures [NSS06] are added to CHF
then conservativity breaks. Intuitively, the reason is that lazy futures may remove
some nondeterminism compared to usual futures: While usual futures allow any
interleaving of the concurrent evaluation, lazy futures forbid some of them, since
their computation cannot start before their value is demanded by some other
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thread. Since lazy futures can also be implemented in the unsafeInterleaveIO-
extension of Concurrent Haskell our counterexample implies that Concurrent
Haskell with an unrestricted use of unsafeInterleaveIO is not safe.

Semantics. As program equivalence for CHF we use contextual equiva-
lence (following Abramsky [Abr90]): two programs are equal iff their observ-
able behavior is indistinguishable even if the programs are plugged as a sub-
program into any arbitrary context. Besides observing whether a program can
terminate (called may-convergence) our notion of contextual equivalence also
observes whether a program never looses the ability to terminate after some
reductions (called should-convergence or sometimes must-convergence, see e.g.
[CHS05,NSSSS07,RV07,SSS08]). The latter notion slightly differs from the clas-
sic notion of must-convergence (e.g. [DH84]), which additionally requires that all
possible computation paths are finite. Some advantages of should-convergence
(compared to classical must-convergence) are that restricting the evaluator to
fair scheduling does not modify the convergence predicates nor contextual equiv-
alence; that equivalence based on may- and should-convergence is invariant under
a whole class of test-predicates (see [SSS10]), and inductive reasoning is available
as a tool to prove should-convergence. Moreover, contextual equivalence has the
following invariances: If e ∼ e′, then e may-converges iff e′ may-converges; and
e may reach an error iff e′ may reach an error, where an error is defined as a
program that does not may-converge. Since deadlocks are seen as errors, correct
transformations do not introduce errors nor deadlocks in error- and deadlock-free
programs.

Consequences. The lessons learned are that there are declarative and also
very expressive pure non-strict functional languages with a safe extension by
concurrency.

Since CHF also includes the core parts of Concurrent Haskell our results
also imply that Concurrent Haskell conservatively embeds pure Haskell. This
also justifies to use well-understood (also denotational) semantics for the pure
subcalculus, for example the free theorems in the presence of seq [JV06], or re-
sults from call-by-need lambda calculi (e.g. [NH09,SSSS08]) for reasoning about
pure expressions inside Concurrent Haskell.

Proof Technique. Our goal is to show for the pure (deterministic) sub-
language PF of CHF : two contextually equivalent PF -expressions e1, e2 (i.e.
e1 ∼c,PF e2) remain contextually equivalent in CHF (i.e. e1 ∼c,CHF e2). The
proof of the main result appears to be impossible by a direct attack. So our
proof is indirect and uses the correspondence (see [SSS11]) of the calculus CHF
with a calculus CHFI that unravels recursive bindings into infinite trees and
uses call-by-name reduction. The proof structure is illustrated in Fig. 1. Besides
CHFI there are also sublanguages PFI and PFMI of CHFI which are deter-
ministic and have only expressions, but no processes and MVars. While PFMI
has monadic operators, in PFI (like in PF ) only pure expressions and types are
available. For e1 ∼c,CHF e2 the corresponding infinite expressions IT (e1), IT (e2)
(in the calculus PFI ) are considered in step (1). Using the results of [SSS11] we
are able to show that IT (e1) and IT (e2) are contextually equivalent in PFI .
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CHF

PF

CHFI

PFMI

PFI

(5)∼c,CHF =IT ∼c,CHFI

(1)∼c,PF =IT ∼c,PFI

(2)∼c,PFI =∼b,PFI

(3)

∼b,PFI =∼b,PFMI

(4)
∼b,PFMI ⊆∼c,CHFI

Fig. 1. Proof structure

In the pure (deterministic) sublanguage PFI of CHFI , an applicative bisim-
ulation ∼b,PFI can be shown to be a congruence, using the method of Howe
[How89,How96,Pit11], however extended to infinite expressions. Thus as step
(2) we have that IT (e1) ∼b,PFI IT (e2) holds. As we show, the bisimulation
transfers also to the calculus PFMI which has monadic operators, and hence
we obtain IT (e1) ∼b,PFMI IT (e2) (step (3)). This fact then allows to show
that both expressions remain contextually equivalent in the calculus CHFI
with infinite expressions (step (4)). Finally, in step (5) we transfer the equa-
tion IT (e1) ∼c,CHFI IT (e2) back to our calculus CHF with finite syntax, where
we again use the results of [SSS11].

Outline. In Section 2 we recall the calculus CHF and introduce its pure
fragment PF . In Section 3 we introduce the calculi CHFI , PFI , and PFMI on
infinite processes and expressions. We then define applicative bisimulation for
PFI and PFMI in Section 4 and show that bisimulation of PFI and PFMI
coincide and also that contextual equivalence is equivalent to bisimulation in
PFI . In Section 5 we first show that CHFI conservatively extends PFMI and
then we go back to the calculi CHF and PF and prove our Main Theorem 5.5
showing that CHF is a conservative extension of PF . In Section 6 we show that
extending CHF by lazy futures breaks conservativity. Finally, we conclude in
Section 7.

2 The CHF-Calculus and its Pure Fragment

We recall the calculus CHF modelling Concurrent Haskell with futures [SSS11].
The syntax of CHF consists of processes which have expressions as subterms. Let
Var be a countably infinite set of variables. We denote variables with x, xi, y, yi.
The syntax of processes ProcCHF and expressions ExprCHF is shown in Fig. 2.

Parallel composition P1 |P2 constructs concurrently running threads (or
other components), name restriction νx.P restricts the scope of variable x to
process P . A concurrent thread x⇐ e evaluates the expression e and binds the
result of the evaluation to the variable x. The variable x is called the future
x. In a process there is usually one distinguished thread – the main thread –

which is labeled with “main” (as notation we use x
main⇐== e). MVars behave like
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P, Pi ∈ ProcCHF ::= P1 |P2 | νx.P | x⇐ e | x = e | xm e | xm−
e, ei ∈ ExprCHF ::= x | me | λx.e | (e1 e2) | c e1 . . . ear(c)
| seq e1 e2 | letrec x1 = e1, . . . , xn = en in e
| caseT e of altT,1 . . . altT,|T |

where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

me ∈ MExprCHF ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

Fig. 2. CHF : Syntax of Processes, Expressions, and Monadic Expressions

τ, τi ∈ TypCHF ::= IO τ | (T τ1 . . . τn) | MVar τ | τ1 → τ2

Fig. 3. CHF : Syntax of Types

one place buffers, i.e. if a thread wants to fill an already filled MVar xm e, the
thread blocks, and a thread also blocks if it tries to take something from an
empty MVar xm−. In xm e or xm− we call x the name of the MVar. Bindings
x = e model the global heap of shared expressions, where we say x is a binding
variable. For a process P we say a variable x is an introduced variable if x is a
future, a name of an MVar, or a binding variable. A process is well-formed, if
all introduced variables are pairwise distinct, and there exists at most one main

thread x
main⇐== e.

We assume a set of data constructors c which is partitioned into sets, such
that each family represents a type T . The constructors of a type T are ordered,
i.e. we write cT,1, . . . , cT,|T |, where |T | is the number of constructors belonging
to type T . We omit the index T, i in cT,i if it is clear from the context. Each data
constructor cT,i has a fixed arity ar(cT,i) ≥ 0. For instance the type Bool has
constructors True and False (both of arity 0) and the type List has constructors
Nil (of arity 0) and Cons (of arity 2). We assume that there is a unit type ()
with a single constant () as constructor.

Expressions ExprCHF have monadic expressions as a subset (see Fig. 2).
Besides the usual constructs of the lambda calculus (variables, abstractions,
applications) expressions comprise constructor applications (c e1 . . . ear(c)),
case-expressions for deconstruction, seq-expressions for sequential evaluation,
letrec-expressions to express recursive shared bindings and monadic expres-
sions which allow to form monadic actions.

There is a caseT -construct for every type T and in case-expressions there
is a case-alternative for every constructor of type T . The variables in a case-
pattern (c x1 . . . xar(c)) and also the bound variables in a letrec-expression
must be pairwise distinct. We sometimes abbreviate the case-alternatives as
alts, i.e. we write caseT e of alts. The expression return e is the monadic action
which returns e as result, the operator >>= combines two monadic actions, the
expression future e will create a concurrent thread evaluating the action e, the
operation newMVar e will create an MVar filled with expression e, takeMVar x
will return the content of MVar x, and putMVar x e will fill MVar x with content
e.
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P1 |P2 ≡ P2 |P1

νx1.νx2.P ≡ νx2.νx1.P
(P1 |P2) |P3 ≡ P1 | (P2 |P3)

P1 ≡ P2 if P1 =α P2

(νx.P1) |P2 ≡ νx.(P1 |P2), if x 6∈ FV (P2)

Fig. 4. CHF : Structural Congruence of Processes

D ∈ PCtxt ::= [·] | D |P | P |D | νx.D
M ∈ MCtxt ::= [·] | M >>= e

E ∈ ECtxt ::= [·] | (E e) | (case E of alts) | (seq E e)

F ∈ FCtxt ::=E | (takeMVar E) | (putMVar E e)

Fig. 5. CHF : Process-, Monadic-, Evaluation-, and Forcing-Contexts

Variable binders are introduced by abstractions, letrec-expressions, case-
alternatives, and for processes by the restriction νx.P . For the induced notion
of free and bound variables we use FV (P ) (FV (e), resp.) to denote the free
variables of process P (expression e, resp.) and =α to denote α-equivalence. We
use the distinct variable convention, i.e. all free variables are distinct from bound
variables, all bound variables are pairwise distinct, and reductions implicitly
perform α-renaming to obey this convention. For processes structural congruence
≡ is defined as the least congruence satisfying the equations shown in Fig. 4.

We use a monomorphic type system where data constructors and monadic
operators are treated like “overloaded” polymorphic constants. The syntax of
types TypCHF is shown in Fig. 3, where IO τ means that an expression of type
τ is the result of a monadic action, MVar τ is the type of an MVar-reference with
content type τ , and τ1 → τ2 is a function type. With types(c) we denote the
set of monomorphic types of constructor c. To fix the types during reduction,
we assume that every variable has a fixed (built-in) type: Let Γ be the global
typing function for variables, i.e. Γ (x) is the type of variable x. We use the
notation Γ ` e :: τ to express that τ can be derived for expression e using the
global typing function Γ . For processes Γ ` P :: wt means that the process P
can be well-typed using the global typing function Γ . We omit the (standard)
monomorphic typing rules. Special typing restrictions are: (i) x⇐ e is well-typed,
if Γ ` e :: IO τ , and Γ ` x :: τ , (ii) the first argument of seq must not be an IO-
or MVar-type, since otherwise the monad laws would not hold in CHF (and even
not in Haskell, see [SSS11]). A process P is well-typed iff P is well-formed and
Γ ` P :: wt holds. An expression e is well-typed with type τ (written as e :: τ)
iff Γ ` e :: τ holds.

2.1 Operational Semantics and Program Equivalence

In [SSS11] a call-by-need as well as a call-by-name small step reduction for CHF
were introduced and it has been proved that both reduction strategies induce the
same notion of program equivalence. Here we will only recall the call-by-name
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Monadic Computations

(lunit) y⇐M[return e1 >>= e2]
CHF−−−→ y⇐M[e2 e1]

(tmvar) y⇐M[takeMVar x] |xm e
CHF−−−→ y⇐M[return e] |xm−

(pmvar) y⇐M[putMVar x e] |xm− CHF−−−→ y⇐M[return ()] |xm e

(nmvar) y⇐M[newMVar e]
CHF−−−→ νx.(y⇐M[return x] |xm e)

(fork) y⇐M[future e]
CHF−−−→ νz.(y⇐M[return z] | z⇐ e)

where z is fresh and the new thread is not main

(unIO) y⇐ return e
CHF−−−→ y = e

if the thread is not the main-thread
Functional Evaluation

(cpce) y⇐M[F[x]] |x = e
CHF−−−→ y⇐M[F[e]] |x = e

(mkbinds) y⇐M[F[letrec x1 = e1, . . . , xn = en in e]]
CHF−−−→ νx1 . . . xn.(y⇐M[F[e]] |x1 = e1 | . . . |xn = en)

(beta) y⇐M[F[((λx.e1) e2)]]
CHF−−−→ y⇐M[F[e1[e2/x]]]

(case) y⇐M[F[caseT (c e1 . . . en) of . . . (c y1 . . . yn → e)]]
CHF−−−→ y⇐M[F[e[e1/y1, . . . , en/yn]]]

(seq) y⇐M[F[(seq v e)]]
CHF−−−→ y⇐M[F[e]] v a funct. value

Closure w.r.t. ≡ and Process Contexts

P ≡ D[P ′], Q ≡ D[Q′], and P ′ CHF−−−→ Q′

P
CHF−−−→ Q

Fig. 6. Call-by-name reduction rules of CHF

reduction. As a first step we introduce some classes of contexts in Fig. 5. On
the process level there are process contexts PCtxt, on expressions first monadic
contexts MCtxt are used to find the next to-be-evaluated monadic action in a
sequence of actions. For the evaluation of (purely functional) expressions usual
(call-by-name) expression evaluation contexts ECtxt are used, and to enforce
the evaluation of the (first) argument of the monadic operators takeMVar and
putMVar the class of forcing contexts FCtxt is used. A functional value is an ab-
straction or a constructor application, a value is a functional value or a monadic
expression in MExpr.

Definition 2.1 (Call-by-name Standard Reduction). The call-by-name

standard reduction
CHF−−−→ is defined by the rules and the closure in Fig. 6. We

assume that only well-formed processes are reducible.

The rules for functional evaluation include classical call-by-name β-reduction
(rule (beta)), a rule for copying shared bindings into a needed position (rule
(cpce)), rules to evaluate case- and seq-expressions (rules (case) and (seq)),
and the rule (mkbinds) to move letrec-bindings into the global set of shared
bindings. For monadic computations the rule (lunit) is the direct implementation
of the monad and applies the first monad law to proceed a sequence of monadic
actions. The rules (nmvar), (tmvar), and (pmvar) handle the MVar creation and
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access. Note that a takeMVar-operation can only be performed on a filled MVar,
and a putMVar-operation needs an empty MVar for being executed. The rule
(fork) spawns a new concurrent thread, where the calling thread receives the
name of the thread (the future) as result. If a concurrent thread finishes its
computation, then the result is shared as a global binding and the thread is
removed (rule (unIO)). Note that if the calling thread needs the result of the
future, it gets blocked until the result becomes available.

Contextual equivalence equates two processes P1, P2 in case their observ-
able behavior is indistinguishable if P1 and P2 are plugged into any process
context. Thereby the usual observation is whether the evaluation of the pro-
cess successfully terminates or does not. In nondeterministic (and also concur-
rent) calculi this observation is called may-convergence, and it does not suf-
fice to distinguish obviously different processes: It is also necessary to analyze
the possibility of introducing errors or non-termination. Thus we will observe
may-convergence and a variant of must-convergence which is called should-
convergence (see [RV07,SSS08,SSS11]).

Definition 2.2. A process P is successful iff it is well-formed and contains a

main thread of the form x
main⇐== return e.

A process P may-converges (written as P↓CHF ), iff it is well-formed and

reduces to a successful process, i.e. ∃P ′ : P
CHF ,∗−−−−→ P ′ ∧ P ′ is successful. If

P↓CHF does not hold, then P must-diverges written as P⇑CHF .
A process P should-converges (written as P⇓CHF ), iff it is well-formed and

remains may-convergent under reduction, i.e. ∀P ′ : P
CHF ,∗−−−−→ P ′ =⇒ P ′↓CHF .

If P is not should-convergent then we say P may-diverges written as P↑CHF .

Note that a process P is may-divergent if there is a finite reduction sequence

P
CHF ,∗−−−−→ P ′ such that P ′⇑CHF . We sometimes write P↓CHFP

′ (or P↑CHFP
′,

resp.) if P
CHF ,∗−−−−→ P ′ and P ′ is a successful (or must-divergent, resp.) process.

Definition 2.3. Contextual approximation ≤c,CHF and contextual equiv-
alence ∼c,CHF on processes are defined as ≤c,CHF :=≤↓CHF

∩ ≤⇓CHF
and

∼c,CHF :=≤c,CHF ∩ ≥c,CHF where for χ ∈ {↓CHF ,⇓CHF}:

P1 ≤χ P2 iff ∀D ∈ PCtxt : D[P1]χ =⇒ D[P2]χ

Let C ∈ Ctxt be contexts that are constructed by replacing a subexpression in a
process by a (typed) context hole. Contextual approximation ≤c,CHF and contex-
tual equivalence ∼c,CHF on equally typed expressions are defined as ≤c,CHF :=
≤↓CHF

∩ ≤⇓CHF
and ∼c,CHF := ≤c,CHF ∩ ≥c,CHF , where for expressions e1, e2 of

type τ and χ ∈ {↓CHF ,⇓CHF}: e1 ≤χ e2 iff ∀C[·τ ] ∈ Ctxt : C[e1]χ =⇒ C[e2]χ.

2.2 The Pure Fragment PF of CHF

The calculus PF comprises the pure (i.e. non-monadic) expressions and types of
CHF , i.e. expressions ExprPF are the expressions ExprCHF where no monadic
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r, s, t ∈ IExprPFMI ::=x | a | ms | Bot | λx.s | (s1 s2)
| (c s1 · · · sar(c)) | seq s1 s2
| caseT s of altT,1 . . . altT,|T |
where altT,i = (cT,i x1 . . . xar(cT,i) → si) and a are from

an infinite set of constants of type MVar τ for every τ

ms ∈ IMExprPFMI ::= return s | s1 >>= s2 | future s
| takeMVar s | newMVar s | putMVar s1 s2

S, Si,∈ IProcCHFI ::=S1 |S2 | x⇐ s | νx.S | xm s | xm− | 0
where s ∈ IExprPFMI

Fig. 7. Syntax of infinite expressions IExprPFI and infinite processes IProcCHFI

expression of MExprCHF is allowed as (sub)-expression. The calculus PF only
has pure types TypP ⊂ TypCHF , which exclude types which have a subtype of the
form IO τ or MVar τ . An expression e ∈ ExprPF is well-typed with type τ ∈ TypP
iff Γ ` e :: τ .

Instead of providing an operational semantics inside the expressions of PF ,
we define convergence of ExprPF by using the (larger) calculus CHF as follows: A

PF -expression e converges (denoted by e↓PF ) iff y
main⇐== seq e (return ())↓CHF

for some y /∈ FV (e). The results in [SSS11] show that convergence does
not change if we would have used call-by-need evaluation in CHF (defined in
[SSS11]). This allows us to show that PF is semantically equivalent (w.r.t. con-
textual equivalence) to a usual extended call-by-need letrec-calculus as e.g. the
calculi in [Ses97,SSSS08].

PF -contexts CtxtPF are ExprPF -expressions where a subterm is replaced by
the context hole. For e1, e2 ∈ ExprPF of type τ , the relation e1 ≤c,PF e2 holds,
if for all C[·τ ] ∈ CtxtPF , C[e1]↓PF =⇒ C[e2]↓PF . Note that it is not necessary
to observe should-convergence, since the calculus PF is deterministic.

Our main goal of this paper is to show that for any e1, e2 :: τ ∈ ExprPF the
following holds: e1 ∼c,PF e2 =⇒ e1 ∼c,CHF e2. This implies that two contextu-
ally equal pure expressions cannot be distinguished in CHF .

3 The Calculi on Infinite Expressions

In this section we introduce three calculi which use infinite expressions and we
provide the translation IT which translates finite processes ProcCHF into infinite
processes and also finite expressions into infinite expressions.

Using the results of [SSS11] we show at the end of this section, that we can
perform our proofs in the calculi with infinite expressions before transferring
them back to the original calculi CHF and PF with finite syntax.

3.1 The Calculus CHFI and the Fragments PFMI and PFI

The calculus CHFI (see also [SSS11]) is similar to CHF where instead of fi-
nite expressions ExprCHF infinite expressions IExprPFMI are used, and shared
bindings are omitted.
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(beta) E[((λx.s1) s2)]→ E[s1[s2/x]]
(case) E[caseT (c s1 . . . sn) of ((c y1 . . . yn)→ s) . . .]

→ E[s[s1/y1, . . . , sn/yn]]
(seq) E[(seq v s)]→ E[s] if v is a functional value

Fig. 8. Call-by-name reduction rules on infinite expressions of PFI and PFMI

The reduction
CHFI−−−→ is assumed to be closed w.r.t. process contexts and structural

congruence and
CHFI−−−→ includes the rules (beta), (case), (seq) for functional evalu-

ation and (lunit), (tmvar), (pmvar), (nmvar), (fork) of Fig. 6 where the contexts
and subexpressions are adapted to infinite expressions and the following reduction rule:

(unIOTr) D[y⇐ return y]
CHFI−−−→ (D[0])[Bot/y]

(unIOTr) D[y⇐ return s]
CHFI−−−→ (D[0])[s // y]

if s 6= y; and the thread is not the main-thread and where D means the whole
process that is in scope of y and // means the infinite recursive replacement of s
for y.

Fig. 9. Standard reduction in CHFI

In Fig.7 the syntax of infinite monadic expressions IExprPFMI and infinite
processes IProcCHFI is defined, while the former grammar is interpreted co-
inductively, the latter is interpreted inductively, but has infinite expressions
as subterms. To distinguish infinite expressions from finite expressions (on the
meta-level) we always use e, ei for finite expressions and r, s, t for infinite ex-
pressions, and also S, Si for infinite processes, and P, Pi for finite processes.
Nevertheless, in abuse of notation we will use the same meta symbols for finite
as well as infinite contexts.

Compared to finite processes, infinite processes do not comprise shared bind-
ings, but the silent process 0 is allowed. In infinite expressions letrec is not
included, but some other special constructs are allowed: The constant Bot which
represents nontermination and can have any type, and the constants a which
are special constants and are available for every type MVar τ for any type
τ ∈ TypCHF . The calculus CHFI uses the finite types TypCHF where we assume
that in every infinite expression or infinite process every subterm is labeled by
its monomorphic type. An infinite expression s ∈ IExprPFMI is well-typed with
type τ , if Γ ` s :: τ cannot be disproved by applying the usual monomorphic
typing rules. For an infinite process S well-typedness and also well-formedness
is defined accordingly. We also use structural congruence ≡ for infinite processes
which is defined in the obvious way where S |0 ≡ S is an additional rule.

The standard reduction
CHFI−−→ of the calculus CHFI uses the call-by-name re-

duction rules of CHF but adapted to infinite expressions performed as infinitary
rewriting. For space reasons we do not list all the reduction rules again, they
are analogous to rules for CHF (see Fig. 6), but work on infinite expressions
(and adapted contexts) and rule (unIO) is replaced by (unIOTr) which copies
the result of a future into all positions. Since in a completely evaluated future
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y⇐ return s the variable y may occur in s this copy operation perhaps must
be applied recursively. We formalize this replacement:

Definition 3.1. Let x be a variable and s be a PFMI -expression (there may
be free occurrences of x in s) of the same type. Then s // x is a substitution
that replaces recursively x by s. In case s is the variable x, then s // x is the
substitution x 7→ Bot. The operation // is also used for infinite processes with
an obvious meaning.

For example, (c x) // x replaces x by the infinite expression (c (c (c . . .))).

An infinite process S is successful if it is well-formed (i.e. all introduced vari-

ables are distinct) and if it is of the form S ≡ νx1, . . . , xn.(x
main⇐== return s |S′).

May-convergence ↓CHFI , should-convergence ⇓CHFI (and also ↑CHFI , ⇑CHFI ) as
well as contextual equivalence ∼CHFI and contextual preorder ≤CHFI for pro-
cesses as well as for infinite expressions are defined analogously to CHF where
CHFI−−→ is used instead of

CHF−−→.

We also consider the pure fragment of CHFI , called the calculus PFI , which
has as syntax infinite expressions IExprPFI ⊂ IExprPFMI , and contains all infi-
nite expressions of IExprPFMI that do not have monadic operators ms and also
no MVar-constants a at any position. As a further calculus we introduce the cal-
culus PFMI which has exactly the set IExprPFMI as syntax. In PFMI and PFI
a functional value is an abstraction or a constructor application (except for the
constant Bot). A value of PFI is a functional value and in PFMI a functional
value or a monadic expression.

Typing for PFI and PFMI is as explained for CHFI where in the calculus
PFI only the pure types TypP are available. Standard reduction in PFI and
in PFMI is a call-by-name reduction using the rules shown in Fig. 8, where E
are call-by-name reduction contexts with infinite expressions as subterms. Note
that the substitutions used in (beta) and (case) may substitute infinitely many
occurrences of variables. For PFMI reduction cannot extract subexpressions
from monadic expressions, hence they behave similarly to constants.

The (normal-order) call-by-name reduction is written s
PFMI−−−→ t (s

PFI−−→ t,
resp.), and s↓PFMI t (s↓PFI t, resp.) means that there is a value t, such that

s
PFMI,∗−−−−→ t (s

PFI,∗−−−→ t). If we are not interested in the specific value t we also
write s↓PFMI (or s↓PFI , resp.). Contexts ICtxtPFMI (ICtxtPFI , resp.) of PFMI
(PFI , resp.) comprise all infinite expressions with a single hole at an expression
position.

Definition 3.2. Contextual equivalence w.r.t. PFI is defined as
∼c,PFI :=≤c,PFI ∩ ≥c,PFI where for s, t :: τ
s ≤c,PFI t iff ∀C[· :: τ ] ∈ ICtxtPFI : C[s]↓PFI =⇒ C[t]↓PFI .

As a further notation we introduce the set IExprcPFMI (IExprcPFI , resp.) as
the set of closed infinite expressions of IExprPFMI (IExprPFI , resp.).



On Conservativity of Concurrent Haskell 13

3.2 The Translation IT

We will now use a translation from [SSS11] which translates CHF -processes into
CHFI -processes by removing letrec- and shared bindings. It is known that the
translation does not change the convergence behavior of processes.

Definition 3.3 ([SSS11]). Let P be a process. The translation IT :: Proc →
IProc translates a process P into its infinite tree process IT (P ). It recursively
unfolds all bindings of letrec- and top-level bindings where cyclic variable chains
x1 = x2, . . . , xn = x1 are removed and all occurrences of xi on other positions
are replaced by the new constant Bot. Top-level bindings are replaced by a 0-
component. Free variables, futures, and names of MVars are kept in the tree
(are not replaced). Equivalence of infinite processes is syntactic, where we do
not distinguish α-equal trees. Similarly, IT is also defined for expressions to
translate PFI -expressions into PF -expressions.

Theorem 3.4 ([SSS11]). For all processes P ∈ ProcCHF it holds: P↓CHF ⇐⇒
IT (P )↓CHFI and P⇓CHF ⇐⇒ IT (P )⇓CHFI .

An analogous result can also be derived for the pure fragments of CHF and
CHFI :

Proposition 3.5. Let e1, e2 be PF -expressions. Then e1 ≤c,PF e2 iff
IT (e1) ≤c,PFI IT (e2).

Proof. From Theorem 3.4 it easily follows that IT (e1) ≤c,PFI IT (e2) implies
e1 ≤c,PF e2. For the other direction, we have to note that there are infinite
expressions that are not IT (·)-images of PF -expressions. We give a sketch of
the proof: Let e1, e2 be PF -expressions with e1 ≤c,PF e2. Let C be a PFI -
context such that C[IT (e1)]↓PFI . We have to show that also C[IT (e2)]↓PFI .
Since C[IT (e1)]↓PFI by a finite reduction, there is a finite context C′ such that C′
can be derived from C by replacing subexpressions by Bot, with C′[IT (e1)]↓PFI .
Since equivalence of convergence holds and since C′ is invariant under IT , this
shows C′[e1]↓PF . The assumption shows C′[e2]↓PF . This implies C′[IT (e2)]↓PFI .
Standard reasoning shows that also C[IT (e2)]↓PFI .

As the next step we will show that CHFI conservatively extends PFI . The-
orem 3.4 and Proposition 3.5 will then enable us to conclude that CHF conser-
vatively extends PF .

4 Simulation in the Calculi PFI and PFMI

We will now consider a simulation relation in the two calculi PFI and PFMI .
Using Howe’s method it is possible to show that both similarities are precongru-
ences. For space reasons the congruence proof can be found in the appendix. We
will then show that PFMI extends PFI conservatively w.r.t. similarity.
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4.1 Similarities in PFMI and PFI are Precongruences

We define similarity for both calculi PFMI and PFI . For simplicity, we some-
times use as e.g. in [How89] the higher-order abstract syntax and write ξ(..) for
an expression with top operator ξ, which may be all possible term constructors,
like case, application, a constructor, seq, or λ, and θ for an operator that may be
the head of a value, i.e. a constructor or monadic operator or λ. Note that ξ and
θ may represent also the binding λ using λ(x.s) as representing λx.s. In order to
stick to terms, and be consistent with other papers like [How89], we assume that
removing the top constructor λx. in relations is done after a renaming. For ex-
ample, λx.s µ λy.t is renamed before further treatment to λz.s[z/x] µ λz.t[z/y]
for a fresh variable z. Hence λx.s µ λx.t means s µo t for open expressions s, t, if
µ is a relation on closed expressions. Similarly for case, where the first argument
is without scope, and the case alternative like (c x1 . . . xn → s) is seen as s with
a scoping of x1, . . . xn. We assume that binary relations η relate expressions of
equal type. A substitution σ that replaces all free variables by closed infinite
expressions is called a closing substitution.

Definition 4.1. Let η be a binary relation on closed infinite expressions. Then
the open extension ηo on all infinite expressions is defined as s ηo t for any ex-
pressions s, t iff for all closing substitutions σ: σ(s) η σ(t). Conversely, for binary
relations µ on open expressions, (µ)c is the restriction to closed expressions.

Lemma 4.2. For a relation η on closed expressions, the equation ((η)o)c = η
holds, and s ηo t implies σ(s) ηo σ(t) for any substitution σ. For a relation
µ on open expressions the inclusion µ ⊆ ((µ)c)o is equivalent to s µ t =⇒
σ(s) (µ)c σ(t) for all closing substitutions σ.

Definition 4.3. Let ≤b,PFMI (called similarity) be the greatest fixpoint, on the
set of binary relations over closed (infinite) expressions, of the following operator
FPFMI on binary relations η over closed expressions IExprcPFMI :

For s, t ∈ IExprcPFMI the relation s FPFMI (η) t holds iff s↓PFMI θ(s1, . . . , sn)
implies that there exist t1, . . . , tn such that t↓PFMI θ(t1, . . . , tn) and si η

o ti for
i = 1, . . . , n.

The operator FPFMI is monotone, hence the greatest fixpoint ≤b,PFMI exists.

Proposition 4.4 (Coinduction). The principle of coinduction for the greatest
fixpoint of FPFMI shows that for every relation η on closed expressions with
η ⊆ FPFMI (η), we derive η ⊆ ≤b,PFMI . This also implies (η)o ⊆ (≤b,PFMI )o.

Similarly, Definition 4.3 and Proposition 4.4 can be transferred to PFI , where

we use ≤b,PFI and FPFI as notation. Determinism of
PFMI−−−→ implies:

Lemma 4.5. If s
PFMI−−−→ s′, then s′≤ob,PFMI s ∧ s≤ob,PFMI s

′.

In the appendix (Theorem B.16) we show that ≤ob,PFMI and ≤ob,PFI are pre-
congruences by adapting Howe’s method [How89,How96] to the infinite syntax
of the calculi.



On Conservativity of Concurrent Haskell 15

Theorem 4.6. ≤ob,PFMI is a precongruence on infinite expressions IExprPFMI

and ≤ob,PFI is a precongruence on infinite expressions IExprPFI . If σ is a substi-
tution, then s ≤ob,PFMI t implies σ(s) ≤ob,PFMI σ(t) and also s ≤ob,PFI t implies
σ(s) ≤ob,PFI σ(t).

4.2 Behavioral and Contextual Preorder in PFI

We now investigate the relationships between the behavioral and contextual pre-
orders in the two calculi PFI and PFMI of infinite expressions. We show that in
PFI , the contextual and behavioral preorder coincide. Note that this is wrong
for PFMI , because there are expressions like return True and return False

that cannot be contextually distinguished since PFMI cannot look into the com-
ponents of these terms.

Lemma 4.7. ≤ob,PFI ⊆ ≤c,PFI .

Proof. Let s, t be expressions with s ≤ob,PFI t such that C[s]↓PFI . Let σ be a sub-
stitution that replaces all free variables of C[s],C[t] by Bot. The properties of the
call-by-name reduction show that also σ(C[s])↓PFI . Since σ(C[s]) = σ(C)[σ(s)],
σ(C[t]) = σ(C)[σ(t)] and since σ(s) ≤ob,PFI σ(t), we obtain from the precongru-
ence property of ≤ob,PFI that also σ(C[s]) ≤b,PFI σ(C[t]). Hence σ(C[t])↓PFI .
This is equivalent to C[t]↓PFI , since free variables are replaced by Bot, and thus
they cannot overlap with redexes. Hence ≤ob,PFI ⊆ ≤c,PFI .

Lemma 4.8. In PFI , the contextual preorder on expressions is contained in the
behavioral preorder on open expressions, i.e. ≤c,PFI ⊆ ≤ob,PFI .

Proof. We show that (≤c,PFI )c satisfies the fixpoint condition, i.e. (≤c,PFI )c ⊆
FPFI ((≤c,PFI )c): Let s, t be closed and s ≤c,PFI t. If s↓PFI θ(s1, . . . , sn), then
also t↓PFI . Using the appropriate case-expressions as contexts, it is easy to see
that t↓PFI θ(t1, . . . , tn). Now we have to show that si ≤oc,PFI ti. This could be

done using an appropriate context Ci that selects the components, i.e. Ci[s]
PFI,∗−−−→

si and Ci[t]
PFI,∗−−−→ ti Since reduction preserves similarity and Lemma 4.7 show

that r
PFI−−→ r′ implies r ≤c,PFI r

′ holds. Moreover, since ≤oc,PFI is obviously a
precongruence, we obtain that si ≤oc,PFI ti. Thus the proof is finished.

Concluding, Lemmas 4.7 and 4.8 imply:

Theorem 4.9. In PFI the behavioral preorder is the same as the contextual
preorder on expressions, i.e. ≤ob,PFI = ≤c,PFI .

In the proofs in Section 5 for the language PFMI the following technical
lemma on ≤ob,PFI is required. In the appendix (Lemma B.18) we prove:

Lemma 4.10. Let x be a variable and s1, s2, t1, t2 be PFMI -expressions with
si ≤ob,PFMI ti for i = 1, 2. Then s2[s1 // x] ≤ob,PFMI t2[t1 // x].
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4.3 Behavioral Preorder in PFMI

We now show that for PFI -expressions s, t, the behavioral preorders w.r.t. PFMI
and PFI are equivalent, i.e., that ≤b,PFMI is a conservative extension of ≤b,PFI

when extending the language PFI to PFMI . This is not immediate, since the
behavioral preorders w.r.t. PFMI requires to test abstractions on more closed
expressions than PFI . Put differently, the open extension of relations is w.r.t. a
larger set of closing substitutions.

Definition 4.11. Let φ : PFMI → PFI be the mapping with φ(x) := x, if x
is a variable; φ(c s1 . . . sn) := (), if c is a monadic operator; φ(a) := (), if a is
a name of an MVar; and φ(ξ(s1, . . . , sn)) := ξ(φ(s1), . . . , φ(sn)) for any other
operator ξ. The types are translated by replacing all (IO τ) and (MVar τ)-types
by type () and retaining the other types.

This translation is compositional, i.e., it translates along the structure:
φ(C[s]) = φ(C)[φ(s)] if φ(C) is again a context, or φ(C[s]) = φ(C) if the hole of
the context is removed by the translation. In the following we write φ(C)[φ(s)]
also in the case that the hole is removed, in which case we let φ(C) be a constant
function. Now the following lemma is easy to verify:

Lemma 4.12. For all closed PFMI -expressions s it holds: s↓PFMI iff
φ(s)↓PFI , and if s↓PFMI θ(s1, . . . , sn) then φ(s)↓PFIφ(θ(s1, . . . , sn)). Conversely,
if φ(s)↓PFI θ(s1, . . . , sn), then s↓PFMI θ(s

′
1, . . . , s

′
n) such that φ(s′i) = si for all i.

Now we show that ≤b,PFI is the same as ≤b,PFMI restricted to PFI -
expressions using coinduction:

Lemma 4.13. ≤b,PFI ⊆ ≤b,PFMI .

Proof. Let ρ be the relation {(s, t) | φ(s) ≤b,PFI φ(t)} on closed PFMI -
expressions, i.e., s ρ t holds iff φ(s) ≤b,PFI φ(t). We show that ρ ⊆ FPFMI (ρ). As-
sume s ρ t for s, t ∈ IExprPFMI . Then φ(s) ≤b,PFI φ(t). If φ(s)↓PFI θ(s1, . . . , sn),
then also φ(t)↓PFI θ(t1, . . . , tn) and si ≤ob,PFI ti. Now let σ be a PFMI -
substitution such that σ(si), σ(ti) are closed. Then φ(σ) is a PFI -substitution,
hence φ(σ)(si) ≤b,PFI φ(σ)(ti). We also have φ(σ(si)) = φ(σ)(si), φ(σ(ti)) =
φ(σ)(ti), since si, ti are PFI -expressions and since φ is compositional. The re-
lation si ρ

o ti w.r.t. PFMI is equivalent to σ(si) ρ σ(ti) for all closing PFMI -
substitutions σ, which in turn is equivalent φ(σ(si)) ≤b,PFI φ(σ(si)). Hence
si ρ

o ti for all i where the open extension is w.r.t. PFMI . Thus ρ ⊆ FPFMI (ρ)
and hence ρ ⊆ ≤b,PFMI . Since ≤b,PFI ⊆ ρ, this implies ≤b,PFI ⊆ ≤b,PFMI .

Proposition 4.14. Let s, t ∈ IExprPFI . Then s ≤b,PFI t iff s ≤b,PFMI t.

Proof. The relation s ≤b,PFMI t implies s ≤b,PFI t, since the fixpoint w.r.t.
FPFMI is a subset of the fixpoint of FPFI . The other direction is Lemma 4.13.

Proposition 4.15. Let x be a variable of type (MVar τ) for some τ , and let s
be a PFMI -expression of the same type such that x ≤ob,PFMI s. Then s↓PFMIx.
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Proof. Let σ be a substitution such that σ(x) = a where a is a name of an MVar,
a does not occur in s, σ(s) is closed and such that σ(x) ≤b,PFMI σ(s). We can
choose σ in such a way that σ(y) does not contain a for any variable y 6= x. By
the properties of ≤b,PFMI , we obtain σ(s)↓PFMI a. Since the reduction rules of
PFMI cannot distinguish between a or x, and since σ(y) does not contain a, the
only possibility is that s reduces to x.

5 Conservativity of PF in CHF

In this section we will first show that s ≤ob,PFMI t implies s ≤c,CHFI t and then
we transfer the results back to the calculi with finite expressions and processes
and derive our main theorem.

5.1 Conservativity of PFMI in CHFI

We will show that s ≤ob,PFMI t implies C[s]↓CHFI =⇒ C[t]↓CHFI and
C[s]↑CHFI =⇒ C[t]↑CHFI for all infinite process contexts C[·τ ] with an ex-
pression hole and s, t :: τ .

In the following, we drop the distinction between MVar-constants and vari-
ables. This change does not make a difference in convergence behavior.

Let GCtxt be process-contexts with several holes, where the holes appear only
in subcontexts x⇐ [·] or xm [·]. We assume that G ∈ GCtxt is in prenex normal
form (i.e. all ν-binders are on the top), that we can rearrange the concurrent
processes as in a multiset exploiting that the parallel composition is associative
and commutative, and we write νX .G′ where νX represents the whole ν-prefix.
We will first consider GCtxt-contexts and later lift the result to all contexts of
CHFI .

Proposition 5.1. Let si, ti :: τi be PFMI -expressions with si ≤ob,PFMI ti, and
let G[·τ1 , . . . , ·τn ] ∈ GCtxt. Then G[s1, . . . , sn]↓CHFI =⇒ G[t1, . . . , tn]↓CHFI .

Proof. Let G[s1, . . . , sn]↓CHFI . We use induction on the number of reductions of
G[s1, . . . , sn] to a successful process. In the base case G[s1, . . . , sn] is successful.

Then either G[t1, . . . , tn] is also successful, or G = νX .x main⇐== [·] |G′, and w.l.o.g.
this is the hole with index 1, and s1 = return s′1. Since s1 ≤ob,PFMI t1, there is a

reduction t1
PFMI,∗−−−−→ return t′1. This reduction is also a CHFI -standard reduction

of G[t1, . . . , tn] to a successful process.

Now let G[s1, . . . , sn]
CHFI−−→ S1 be the first step of a reduction to a successful

process. We analyze the different reduction possibilities:
If the reduction is within some si, i.e. si → s′i by (beta), (case) or (seq), then

we can use induction, since the standard-reduction is deterministic within the
expression, and a standard reduction of G[s1, . . . , sn]; and since si ∼ob,PFMI s

′
i.

If the reduction is (lunit), i.e. G = νX .x⇐ [·] |G′, where s1 =
M1[return r1 >>= r2], and the reduction result of G[s1, . . . , sn] is G =
νX .x⇐M1[r2 r1] |G′[s2, . . . , sn]. We have s1 ≤ob,PFMI t1. Let M1 =
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M1,1 . . .M1,k, where M1,j = [·] >>= s′j . By induction on the depth, there

is a reduction sequence t1
CHFI,∗−−−−→ M2,1 . . .M2,k[t′1 >>= t′2], where M2,j =

[·] >>= r′j , s
′
j ≤ob,PFMI r

′
j , and return r1 ≤ob,PFMI t

′
1. Let M2 := M2,1 . . .M2,k.

This implies t′1
CHFI−−→ return t′′1 with r1 ≤ob,PFMI t′′1 . This reduction is

also a standard reduction of the whole process. The corresponding results

are r2 r1 and t′2 t′′1 . Thus there is a reduction sequence G[t1, . . . , tn]
CHFI,∗−−−−→

νX .x⇐M2[t′2 t
′′
1 ] |G′[s2, . . . , sn]. Since ≤ob,PFMI is a precongruence we have that

M1[r2 r1] ≤ob,PFMI M2[t′2 t
′′
1 ] satisfy the induction hypothesis.

For the reductions (tmvar), (pmvar), (nmvar), or (fork) the same arguments
as for (lunit) show that the first reduction steps permit to apply the induction
hypothesis with the following differences: For the reductions (tmvar) and (pmvar)
Proposition 4.15 is used to show that the reduction of G[t1, . . . , tn] also leads
to an MVar-variable in the case x ≤ob,PFMI t. Also the G-hole is transported
between the thread and the data-component of the MVar. In case of (fork), the
number of holes of the successor G′ of G may be increased.

For (unIOTr) as argued above, G[t1, . . . , tn] can be reduced such that also a
(unIOTr) reduction is applicable. Assume that the substitutions are σs = s′ // x
and σt = t′ // x for G[s1, . . . , sn] and the reduction-successor of G[t1, . . . , tn].
Lemma 4.10 shows that σs(s

′′) ≤ob,PFMI σt(t
′′) whenever s′′ ≤ob,PFMI t′′, and

thus the induction hypothesis can be applied. In this step, the number of holes
of G may increase, such that also expression components of MVars may be holes,
since the replaced variable x may occur in several places.

Example 5.2. Let s := Bot, t := takeMVar x, and G[·] := z
main⇐==

takeMVar x | y⇐ [·] |xm e. Then s ≤ob,PFMI t, G[s]⇓CHFI , but G[t]↑CHFI . Hence
s ≤ob,PFMI t and G[s]⇓CHFI do not imply G[t]⇓CHFI .

Proposition 5.3. Let si, ti be PFMI -expressions with si ∼ob,PFMI ti, and let
G ∈ GCtxt. Then G[s1, . . . , sn]⇓CHFI =⇒ G[t1, . . . , tn]⇓CHFI .

Proof. We prove the converse implication: G[t1, . . . , tn]↑CHFI =⇒
G[s1, . . . , sn]↑CHFI . Let G[t1, . . . , tn]↑CHFI . We use induction on the number
of reductions of G[t1, . . . , tn] to a must-divergent process. In the base case
G[t1, . . . , tn]⇑CHFI . Proposition 5.1 shows G[s1, . . . , sn]⇑CHFI .

Now let G[t1, . . . , tn]
CHFI−−→ S1 be the first reduction of a reduction sequence

R to a must-divergent process. We analyze the different reduction possibilities:
If the reduction is within some ti, i.e. ti → t′i and hence ti ∼ob,PFMI t

′
i, then

we use induction, since the reduction is a standard-reduction of G[t1, . . . , tn].
Now assume that the first reduction step of R is (lunit). I.e., G =

νX .x⇐ [·] |G′, where t1 = M[return r1 >>= r2], and the reduction result of
G[t1, . . . , tn] is G = νX .x⇐M[r2 r1] |G′[t2, . . . , tn]. We have s1 ∼ob,PFMI t1.

By induction on the reductions and the length of the path to the hole of
M[·], we see that s1

∗−→M1[return r′1 >>= r′2]. Then we can perform the (lunit)-
reduction and obtain M1[r′2 r

′
1]. Since r′2 r

′
1 ∼ob,PFMI r2 r1, we obtain a reduction

result that satisfies the induction hypothesis.
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The other reductions can be proved similarly, using techniques as in the
previous case and the proof of Proposition 5.1. For (unIOTr), Lemma 4.10 shows
that for the substitutions σ := s // x and σ′ := s′ // x with s ∼ob,PFMI s

′, we have
σ(r) ∼ob,PFMI σ(r′) for expressions r, r′ with r ∼ob,PFMI r

′, hence the induction
can also be used in this case. ut

Theorem 5.4. Let s, t ∈ IExprPFMI with s ∼ob,PFMI t. Then s ∼c,CHFI t.

Proof. Let s, t ∈ IExprPFMI with s ∼ob,PFMI t. We only show s ≤c,CHFI t since
the other direction follows by symmetry. We first consider may-convergence: Let
C be a process context of CHFI with an expression hole such that C[s]↓CHFI . Let
C = C1[C2] such that C2 is the maximal expression context. Then C2[s] ∼b,PFMI

C2[t] since ∼b,PFMI is a congruence. Since C1 is a GCtxt-context, Proposition 5.1
implies C1[C2[t]]↓CHFI , i.e. C[t]↓CHFI . Showing C[s]⇓CHFI =⇒ C[t]⇓CHFI

follows by the same reasoning using Proposition 5.3.

5.2 The Main Theorem: Conservativity of PF in CHF

We now prove that contextual equality in PF implies contextual equality in
CHF , i.e. CHF is a conservative extension of PF w.r.t. contextual equivalence.

Main Theorem 5.5 Let e1, e2 ∈ ExprPF . Then e1 ∼c,PF e2 iff e1 ∼c,CHF e2.

Proof. One direction is trivial. For the other direction the reasoning is as follows:
Let e1, e2 be PF -expressions. Then Proposition 3.5 shows that e1 ∼c,PF e2 is
equivalent to IT (e1) ∼c,PFI IT (e2). Now Theorem 4.9 and Proposition 4.14 show
that IT (e1) ∼b,PFMI IT (e2). Then Theorem 5.4 shows that IT (e1) ∼c,CHFI

IT (e2). Finally, from Theorem 3.4 it easily follows that e1 ∼c,CHF e2. ut

6 Lazy Futures Break Conservativity

Having proved our main result, we now show that there are innocent looking
extensions of CHF that break the conservativity result. One of those are so-
called lazy futures. The equivalence seq e1 e2 and seq e2 (seq e1 e2) used by
Kiselyov’s counterexample [Kis09], holds in the pure calculus and in CHF (see
Appendix C). This implies that Kiselyov’s counterexample cannot be transferred
to CHF.

Let the calculus CHFL be an extension of CHF by a lazy future construct,
which implements the idea of implementing futures that can be generated as non-
evaluating, and which have to be activated by an (implicit) call from another
future. We show that this construct would destroy conservativity.

We add a process component x
lazy⇐== e which is a lazy future, i.e. a thread

which can not be reduced unless its evaluation is forced by another thread. On
the expression level we add a construct lfuture of type IO τ → IO τ . The
operational semantics is extended by two additional reduction rules:

(lfork) y⇐M[lfuture e]→ y⇐M[return x] |x
lazy⇐== e

(force) y⇐M[F[x]] |x
lazy⇐== e→ y⇐M[F[x]] |x⇐ e
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The rule (lfork) creates a lazy future. Evaluation can turn a lazy future into a
concurrent future if its value is demanded by rule (force).

In CHF the equation (seq e2 (seq e1 e2)) ∼Bool (seq e1 e2) for e1, e2 :: Bool
holds (see above) The equation does not hold in CHFL. Consider the following
context C that uses lazy futures and distinguishes the two expressions:

C = x
lazy⇐== takeMVar v >>=λw.C1[v]

| y
lazy⇐== takeMVar v >>=λw.C1[v] | vm True

| z
main⇐== case [·] of (True→ ⊥) (False→ return True)

C1 = (putMVar [·] False >>=λ → return w)

Then C[seq y (seq x y)] must-diverges, since its evaluation (deterministi-

cally) results in z
main⇐== ⊥ |x = False | y = True | vm False. On the other hand

C[seq x y]⇓CHFL, since it evaluates to z
main⇐== return True |x = True | y =

False | vm False where again the evaluation is deterministic. Thus context C
distinguishes seq x y and seq y (seq x y) w.r.t. ∼c.

Hence adding an unsafeInterleaveIO-operator to CHF results in the loss
of conservativity, since lazy futures can be implemented in CHF (or even in
Concurrent Haskell) using unsafeInterleaveIO to delay the thread creation:

lfuture act = unsafeInterleaveIO (
do ack ← newEmptyMVar

thread← forkIO(act >>= putMVar ack)
takeMVar ack)

7 Conclusion

We have shown that the calculus CHF modelling most features of Concurrent
Haskell with unsafeInterleaveIO is a conservative extension of the pure lan-
guage, and exhibited a counterexample showing that adding the unrestricted use
of unsafeInterleaveIO is not. This complements our results in [SSS11]. Future
work is to rigorously show that our results can be extended to polymorphic typ-
ing. We also will analyze further extensions like killing threads, and synchronous
and asynchronous exceptions (as in [MJMR01,Pey01]), where our working hy-
pothesis is that killing threads and (at least) synchronous exceptions retain our
conservativity result.
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A Typing Rules for CHF

Γ (x) = τ

Γ ` x :: τ

Γ (x) = τ, Γ ` e :: IO τ

Γ ` x⇐ e :: wt

Γ (x) = τ, Γ ` e :: τ

Γ ` x = e :: wt

Γ ` P1 :: wt, Γ ` P2 :: wt

Γ ` P1 |P2 :: wt

Γ (x) = MVar τ, Γ ` e :: τ

Γ ` xm e :: wt

Γ (x) = MVar τ

Γ ` xm− :: wt

Γ ` P :: wt

Γ ` νx.P :: wt

Γ ` e :: τ

Γ ` return e :: IO τ

Γ ` e :: MVar τ

Γ ` takeMVar e :: IO τ

Γ ` e1 :: MVar τ, Γ ` e2 :: τ

Γ ` putMVar e1 e2 :: IO ()

Γ ` e :: τ

Γ ` newMVar e :: IO (MVar τ)

∀i : Γ ` ei :: τi, τ1 → . . .→ τn+1 ∈ types(c)

Γ ` (c e1 . . . en) :: τn+1

Γ ` e1 :: IO τ1, Γ ` e2 :: τ1 → IO τ2

Γ ` e1 >>= e2 :: IO τ2

Γ ` e1 :: τ1 → τ2, Γ ` e2 :: τ1

Γ ` (e1 e2) :: τ2

∀i : Γ (xi) = τi, ∀i : Γ ` ei :: τi, Γ ` e :: τ

Γ ` (letrec x1 = e1, . . . xn = en in e) :: τ

Γ (x) = τ1, Γ ` e :: τ2

Γ ` (λx.e) :: τ1 → τ2

Γ ` e :: IO τ

Γ ` future e :: IO τ

Γ ` e1 :: τ1, Γ ` e2 :: τ2,
where τ1 = τ3 → τ4 or τ1 = (T . . .)

Γ ` (seq e1 e2) :: τ2

Γ ` e :: τ1 and τ1 = (T . . .), ∀i : Γ ` (cT,i xi,1 . . . xi,ni) :: τ1, ∀i : Γ ` ei :: τ2

Γ ` (caseT e of(cT,1 x1,1 . . . x1,n1 → e1) . . . (cT,|T | x|T |,1 . . . x|T |,n|T | → e|T |)) :: τ2

Fig. 10. Monomorphic typing rules for CHF

The typing rules of CHF are in Fig. A.

B The Congruence Proof

In this section we show that ≤b,PFMI and ≤b,PFI are precongruences. We omit
the proof for the calculus PFI and only consider PFMI , since the proofs for
PFI are completely analogous. The proof method used below for showing that
similarity is a precongruence is derived from Howe [How89], though extended
to infinite expressions. For a developed proof for may-convergence in a non-
deterministic setting with finite expressions, see [MSS10].
The fixpoint property of ≤b,PFMI implies:

Lemma B.1. For closed values θ(s1 . . . sn), θ(t1 . . . tn), we have
θ(s1 . . . sn) ≤b,PFMI θ(t1 . . . tn) iff si ≤ob,PFMI ti.
In the concrete syntax, if θ is a constructor or a monadic operator, then
θ(s1 . . . sn) ≤b,PFMI θ(t1 . . . tn) iff si ≤b,PFMI ti, and λx.s ≤b,PFMI λx.t iff
s ≤ob,PFMI t.

Lemma B.2. The relations ≤b,PFMI and ≤ob,PFMI are reflexive and transitive.
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Proof. Reflexivity is obvious. Transitivity follows by showing that η := ≤b,PFMI

∪ (≤b,PFMI ◦ ≤b,PFMI ) satisfies η ⊆ FPFMI (η) and then using the coinduction
principle.

The goal in the following is to show that ≤b,PFMI is a precongruence.
A relation µ is operator-respecting, iff si µ ti for i = 1, . . . , n implies
ξ(s1, . . . , sn) µ ξ(t1, . . . , tn). This proof proceeds by defining a congruence can-
didate ≤cand as a closure of ≤b,PFMI within contexts, which obviously is oper-
ator respecting: This relation is not known to be transitive. Then we show that
≤b,PFMI and ≤cand coincide.

Definition B.3. The precongruence candidate ≤cand is a binary relation on
open expressions and is defined as the greatest fixpoint of the operator Fcand on
relations on all expressions:

1. x Fcand(η) s iff x ≤ob,PFMI s.
2. ξ(s1, . . . , sn) Fcand(η) s iff there is some expression ξ(s′1, . . . , s

′
n) ≤ob,PFMI s

with si η s
′
i for i = 1, . . . , n.

The operator Fcand is monotone, hence the definition makes sense. Presumably
it is not continuous, hence usual induction over an IN-indexed intersection does
not work and we have to stick to coinduction for the proofs:

Lemma B.4. If some relation η satisfies η ⊆ Fcand(η), then η ⊆ ≤cand .

Since ≤cand is a fixpoint of Fcand , we have:

Lemma B.5.

1. x ≤cand s iff x ≤ob,PFMI s.
2. ξ(s1, . . . , sn) ≤cand s iff there is some expression ξ(s′1, . . . , s

′
n) ≤ob,PFMI s

with si ≤cand s′i for i = 1, . . . , n.

Some technical facts about the precongruence candidate are now proved:

Lemma B.6.

1. ≤cand is reflexive.

2. ≤cand and (≤cand)c are operator-respecting.

3. ≤ob,PFMI ⊆ ≤cand and ≤b,PFMI ⊆ (≤cand)c.

4. ≤cand ◦ ≤ob,PFMI ⊆ ≤cand .

5. (s ≤cand s′ ∧ t ≤cand t′) =⇒ t[s/x] ≤cand t′[s′/x].

6. s ≤cand t implies that σ(s) ≤cand σ(t) for every substitution σ.

7. ≤cand ⊆ ((≤cand)c)o

Proof. 1. This follows from Lemma B.5, since ≤ob is reflexive, using coinduction:
Show that η := ≤cand ∪ {(s, s) | s ∈ IExprPFMI } satisfies η ⊆ Fcand(η).
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2. Let η be the operator-respecting closure of ≤cand . I.e., the least fix-
point of adding relations ξ(s1, . . . , sn) η ξ(t1, . . . , tn) if si η ti for all i,
starting with ≤cand . We will show that η ⊆ Fcand(η). So assume that
ξ(s1, . . . , sn) η ξ(t1, . . . , tn) holds. If ξ(s1, . . . , sn) ≤cand ξ(t1, . . . , tn), then
ξ(s1, . . . , sn) Fcand(η) ξ(t1, . . . , tn), since ≤cand ⊆ η, and ≤cand is the
greatest fixpoint of Fcand . Otherwise ξ(s1, . . . , sn) η ξ(t1, . . . , tn) since si η ti
for all i. Then ξ(s1, . . . , sn) Fcand(η) ξ(t1, . . . , tn) since ≤ob,PFMI is reflexive.
By coinduction we obtain η ⊆ ≤cand . Since also ≤cand ⊆ η, we have
η = ≤cand .

3. This follows from Lemma B.5, since ≤cand is reflexive.
4. This follows from the definition, Lemma B.5 and transitivity of ≤ob,PFMI .
5. Let η := ≤cand ∪ {(r[s/x], r′[s′/x]) | r ≤cand r

′}. We show that η ⊆
Fcand(η): In the case x ≤cand r

′, we obtain x ≤ob,PFMI r′ from the
definition, and s′ ≤ob,PFMI r′[s′/x] and thus x[s/x] ≤cand r

′[s′/x]. In
the case y ≤cand r, we obtain y ≤ob,PFMI r′ from the definition, and
y[s/x] = y ≤ob,PFMI r′[s′/x] and thus y = y[s/x] ≤cand r

′[s′/x]. If r =
ξ(r1, . . . , rn) and r ≤cand r

′ and r[s/x] η r′[s′/x]. Then there is some
ξ(r′1, . . . , r

′
n) ≤ob,PFMI r

′ with ri ≤cand r
′
i. W.l.o.g. bound variables have fresh

names. We have ri[s/x] η r′i[s
′/x] and ξ(r′1, . . . , r

′
n)[s′/x] ≤ob,PFMI r

′[s′/x].
Thus r[s/x] Fcand(η) r′[s′/x]. By coinduction we see that ≤cand = η.

6. This follows from item 5.
7. This follows from item 6 and Lemma 4.2.

Lemma B.7. The middle expression in the definition of ≤cand can be chosen
as closed, if s, t are closed: Let s = ξ(s1, . . . , sar(ξ)), such that s ≤cand t holds.
Then there are operands s′i, such that ξ(s′1, . . . , s

′
ar(ξ)) is closed, ∀i : si ≤cand s′i

and ξ(s′1, . . . , s
′
ar(ξ)) ≤

o
b,PFMI s.

Proof. The definition of ≤cand implies that there is an expression
ξ(s′′1 , . . . , s

′′
ar(ξ)) such that si ≤cand s′′i for all i and ξ(s′′1 , . . . , s

′′
ar(ξ)) ≤

o
b,PFMI t.

Let σ be the substitution with σ(x) := vx for all x ∈ FV (ξ(s′′1 , . . . , s
′′
ar(ξ))), where

vx is any closed expression. Note that for every type τ there exists a closed ex-
pression, namely Bot :: τ . Lemma B.6 now shows that si = σ(si) ≤cand σ(s′′i )
holds for all i. The relation σ(ξ(s′′1 , . . . , s

′′
ar(ξ))) ≤

o
b,PFMI t holds, since t is closed

and due to the definition of an open extension. The requested expression is
ξ(σ(s′′1), . . . , σ(s′′ar(ξ))).

Lemmas 4.5 and B.6 imply that ≤cand is right-stable w.r.t. reduction:

Lemma B.8. If s ≤cand t and t
PFMI−−−→ t′, then s ≤cand t

′.

We show that ≤cand is left-stable w.r.t. reduction:

Lemma B.9. Let s, t be closed expressions such that s = θ(s1, . . . , sn) is a value

and s ≤cand t. Then there is some closed value t′ = θ(t1, . . . , tn) with t
PFMI,∗−−−−→ t′

and for all i : si ≤cand ti.
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Proof. The definition of ≤cand implies that there is a closed expression
θ(t′1, . . . , t

′
n) with si ≤cand t

′
i for all i and θ(t′1, . . . , t

′
n) ≤b,PFMI t. Consider the

case s = λx.s′. Then there is some closed λx.t′ ≤b,PFMI t with s′ ≤cand t
′. The

relation λx.t′ ≤b,PFMI t implies that t
PFMI,∗−−−−→ λx.t′′. Lemma 4.5 now implies

λx.s′ ≤cand λx.t
′′. Definition of ≤cand and Lemma B.7 now show that there

is some closed λx.t(3) with s′ ≤cand t
(3) and λx.t(3) ≤b,PFMI λx.t

′′. The latter
relation implies t(3)≤ob,PFMI t

′′, which shows s′ ≤cand t
′′ by Lemma B.6 (4).

If θ is a constructor, then there is a closed expression θ(t′1, . . . , t
′
n) with

si ≤cand t
′
i for all i and θ(t′1, . . . , t

′
n) ≤b,PFMI t. The definition of ≤b,PFMI im-

plies that t
PFMI,∗−−−−→ θ(t′′1 , . . . , t

′′
n) with t′i ≤b,PFMI t′′i for all i. By definition of

≤cand , we obtain si ≤cand t
′′
i for all i.

Proposition B.10. Let s, t be closed expressions, s ≤cand t and s
PFMI−−−→ s′ where

s is the redex. Then s′ ≤cand t.

Proof. The relation s ≤cand t implies that s = ξ(s1, . . . , sn) and that there is
some closed t′ = ξ(t′1, . . . , t

′
n) with si ≤cand t

′
i for all i and t′ ≤ob,PFMI t.

– For the (beta)-reduction, s = s1 s2, where s1 = (λx.s′1), s2 is a closed term,

and t′ = t′1 t
′
2. Lemma B.9 and s1 ≤cand t

′
1 show that t′1

PFMI,∗−−−−→ λx.t′′1 with

λx.s′1 ≤cand λx.t
′′
1 and also s′1 ≤cand t

′′
1 . From t′

PFMI,∗−−−−→ t′′1 [t′2/x] we obtain
t′′1 [t′2/x] ≤b,PFMI t. Lemma B.6 now shows s′1[s2/x] ≤cand t

′′
1 [t′2/x]. Hence

s′1[s2/x] ≤cand t, again using Lemma B.6.
– Similar arguments apply to the case-reduction.
– Suppose, the reduction is a seq-reduction. Then s ≤cand t and s =

(seq s1 s2). Lemma B.7 implies that there is some closed (seq t′1 t
′
2) ≤ob,PFMI

t with si ≤cand t
′
i. Since s1 is a value, Lemma B.9 shows that there is a reduc-

tion t′1
PFMI,∗−−−−→ t′′1 , where t′′1 is a value. There are the reductions s

PFMI−−−→ s2 and

(seq t′1 t
′
2)

PFMI,∗−−−−→ (seq t′′1 t
′
2)

PFMI−−−→ t′2. Since t′2 ≤ob,PFMI (seq t′1 t
′
2) ≤ob,PFMI

t, and s2 ≤cand t
′
2, we obtain s2 ≤cand t. ut

Proposition B.11. Let s, t be closed expressions, s ≤cand t and s
PFMI−−−→ s′.

Then s′ ≤cand t.

Proof. We use induction on the length of the path to the hole. The base
case is proved in Proposition B.10. Let E[s], t be closed, E[s] ≤cand t and

E[s]
PFMI−−−→ E[s′], where we assume that the redex s is not at the top level

and that E is an IECtxt-context. The relation E[s] ≤cand t implies that E[s] =
ξ(s1, . . . , sn) and that there is some closed t′ = ξ(t′1, . . . , t

′
n) ≤ob,PFMI t

with si ≤cand t
′
i for all i. If sj

PFMI−−−→ s′j , then by induction hypothesis,
s′j ≤cand t

′
j . Since ≤cand is operator-respecting, we obtain also E[s′] =

ξ(s1, . . . , sj−1, s
′
j , sj+1, . . . , sn) ≤cand ξ(t′1, . . . , t

′
j−1, t

′
j , t
′
j+1, . . . , t

′
n), and from

ξ(t′1, . . . , t
′
n) ≤ob,PFMI t, also E[s′] = ξ(s1, . . . , sj−1, s

′
j , sj+1, . . . , sn) ≤cand t.

Now we are ready to prove that the precongruence candidate and similarity
coincide. First we prove this for the relations on closed expressions and then
consider (possibly) open expressions.
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Theorem B.12. (≤cand)c = ≤b,PFMI .

Proof. Since ≤b,PFMI ⊆ (≤cand)c by Lemma B.6, we have to show that
(≤cand)c ⊆ ≤b,PFMI . Therefore it is sufficient to show that (≤cand)c

satisfies the fixpoint equation for ≤b,PFMI . We show that (≤cand)c ⊆
FPFMI ((≤cand)c). Let s (≤cand)c t for closed terms s, t. We show that
s FPFMI ((≤cand)c) t: If ¬(s↓PFMI ), then s FPFMI ((≤cand)c) t holds by Lemma
B.6. If s↓PFMI θ(s1, . . . , sn), then θ(s1, . . . , sn) (≤cand)c t by Lemma B.11.

Lemma B.9 shows that t
PFMI,∗−−−−→ θ(t1, . . . , tn) and for all i : si ≤cand ti. This

implies s FPFMI ((≤cand)c) t, since θ(t1, . . . , tn) ≤ob,PFMI t. We have proved the
fixpoint property of (≤cand)c w.r.t. FPFMI , and hence (≤cand)c = ≤b,PFMI .

Theorem B.13. ≤cand = ≤ob,PFMI .

Proof. Theorem B.12 shows (≤cand)c ⊆ ≤b,PFMI . Hence
((≤cand)c)o ⊆ ≤ob,PFMI by monotonicity. Lemma B.6 (7) implies
≤cand ⊆ ((≤cand)c)o ⊆ ≤ob,PFMI .

This immediately implies:

Corollary B.14. ≤ob,PFMI is a precongruence on infinite expressions
IExprPFMI . If σ is a substitution, then s ≤ob,PFMI t implies σ(s) ≤ob,PFMI σ(t).

The same reasoning can also be performed for ≤b,PFI :

Corollary B.15. ≤ob,PFI is a precongruence on infinite expressions IExprPFI .
If σ is a substitution, then s ≤ob,PFI t implies σ(s) ≤ob,PFI σ(t).

The last two corollaries show

Theorem B.16. ≤ob,PFMI is a precongruence on infinite expressions
IExprPFMI . If σ is a substitution, then s ≤ob,PFMI t implies σ(s) ≤ob,PFMI σ(t).
≤ob,PFI is a precongruence on infinite expressions IExprPFI . If σ is a substi-

tution, then s ≤ob,PFI t implies σ(s) ≤ob,PFI σ(t).

B.1 Recursive Replacements

Lemma B.17. Let x, y be a variables and t1, t2 be PFMI -expressions with
x ≤ob,PFMI t2 and y ≤ob,PFMI t1. Then x[y // x] ≤ob,PFMI t2[t1 // x].

Proof. The relation y ≤ob,PFMI t1 implies y ≤ob,PFMI σ(t1) for all substitutions
with σ(y) = y, hence y ≤ob,PFMI t1[t2 // x].

Lemma B.18. Let x be a variable and s1, s2, t1, t2 be PFMI -expressions with
si ≤ob,PFMI ti for i = 1, 2. Then s2[s1 // x] ≤ob,PFMI t2[t1 // x].

Proof. In the proof we use Theorem B.13 and also the knowledge about ≤ob,PFMI

and Fcand . If s1 is the variable x, then the substitution [s1 // x] is x 7→ Bot,
and the claim follows easily. Otherwise, we have s1 6= x. Let ρ be the relation
defined by all pairs s2[s1 // x] ρ t2[t1 // x] for all s1, s2, t1, t2 with si ≤ob,PFMI ti
for i = 1, 2. In order to use coinduction, we show that ρ ⊆ Fcand(ρ):
Note that ≤ob,PFMI ⊆ ρ. Assume s2[s1 // x] ρ t2[t1 // x].
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– s2[s1 // x] is a variable. Then it cannot be x. If s2 = x, and s1 = y, then
s2[s1 // x] = y and then Lemma B.17 shows s2[s1 // x] ≤ob,PFMI t2[t1 // x].
If s2 = y 6= x, then s2[s1 // x] = y = s2[t1 // x]. Since ≤ob,PFMI is invariant
under substitutions, we also obtain s2[s1 // x] ≤ob,PFMI t2[t1 // x].

– s2[s1 // x] is not a variable. If s2 = x, then s2[s1 // x] = s1 ≤ob,PFMI

s2[t1 // x] ≤ob,PFMI t2[t1 // x]. If s2 = ξ(s′1, . . . , s
′
n), then there is some expres-

sion ξ(t′1, . . . , t
′
n) ≤ob,PFMI t2 with s′i ≤ob,PFMI t

′
i. Hence s′i[s1 // x] ρ t′i[t1 // x]

by the definition of ρ. This means s2[s1 // x] Fcand(ρ) t2[t1 // x].

Hence coinduction allows us to conclude ρ ⊆ ≤ob,PFMI . Obviously, the other
direction also holds, hence ρ = ≤ob,PFMI .

C An Equivalence for seq-Expressions

Before proving Proposition C.2 we show a helpful proposition:

Proposition C.1. Let s, t be closed infinite PFI -expressions such that s↓v =⇒
t↓v where v is a closed value. Then s ≤b,PFI t.

Proof. It easy to verify that the relation Rv := {(s, t) | s, t ∈ IExprc, s↓v =⇒
t↓v} ∪ {(s, s) | s ∈ IExprc} satisfies Rv ⊆ FPFI (Rv). Hence Proposition 4.4
shows Rv ⊆ ≤b.

Now we prove Proposition C.2. The claim is:

Proposition C.2. For any (also open) expressions e1, e2 ∈ ExprPF the equal-
ity seq e1 e2 ∼c,PF seq e2 (seq e1 e2) as well as seq e1 e2 ∼c,CHF

seq e2 (seq e1 e2) holds.

Proof. First we show seq s t ≤b,PFI seq t (seq s t) and seq s t ≥b,PFI

seq t (seq s t) for infinite expressions s, t ∈ ExprPFI , where it is sufficient to
consider closed terms s, t. If seq s t↓PFIw, then clearly there exists a value v such

that seq s t
PFI ,∗−−−−→ seq v t

PFI ,seq−−−−−→ t
PFI ,∗−−−−→ w. Thus we can construct the reduc-

tion sequence seq t (seq s t)
PFI ,∗−−−−→ seq w (seq s t)

PFI ,seq−−−−−→ seq s t
PFI ,∗−−−−→ w.

If seq t (seq s t)↓PFIw, then obviously also seq s t
PFI ,∗−−−−→ w. This shows

seq s t↓PFIw if, and only if seq t (seq s t)↓PFIw. Now Proposition C.1 shows
that seq s t ∼b,PFI seq t (seq s t). Proposition 3.5 implies that seq e1 e2 ∼c,PF

seq e2 (seq e1 e2), which is the first claim. Theorem 5.4 shows seq e1 e2 ∼c,CHF

seq e2 (seq e1 e2).
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