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Fitting Parsimonious Household-Portfolio
Models to Data

Abstract

US data and new stockholding data from �fteen European countries and China exhibit

a common pattern: stockholding shares increase in household income and wealth. Yet,

there is a multitude of numbers to match through models. Using a single utility function

across households (parsimony), we suggest a strategy for �tting stockholding numbers, while

replicating that saving rates increase in wealth, too. The key is introducing subsistence con-

sumption to an Epstein-Zin-Weil utility function, creating endogenous risk-aversion di¤er-

ences across rich and poor. A closed-form solution for the model with insurable labor-income

risk serves as calibration guide for numerical simulations with uninsurable labor-income risk.

Keywords: Epstein-Zin-Weil recursive preferences, subsistence consumption,

household-portfolio shares, business equity, wealth inequality

JEL classi�cation: G11, D91, D81, D14, D11, E21



1. Introduction

1.1 Data facts: the need for calibration guidance

In Figure 1, Panels A, B, and C show household-portfolio shares of stocks, plotted per

household-income category. Across �fteen European-Union (EU) countries, China, and the

US, portfolio shares of stocks are increasing in income.1 This monotonic relationship between

stock-portfolio shares and household income seems to be a robust cross-country pattern. A

household-portfolio model should be able to generate such a pattern qualitatively. Yet,

given the cross-country quantitative di¤erences shown by Figure 1, models should be able to

quantitatively replicate stockholding portfolio shares, too. Here we propose, (i) a common-

across-households utility function that replicates the monotonic relationship between stock-

portfolio shares and household incomes (we introduce subsistence consumption to Epstein-

Zin-Weil (EZW) preferences),2 and (ii) a closed-form solution that serves as calibration

guide, by enabling minimum-distance data �tting at low computational cost.

1.2 The modeling and calibration challenge

In order to make a household-portfolio model replicate that stockholding shares are in-

creasing in income/wealth, a promising idea is to create a monotonic relationship between

income/wealth and risk aversion (RRA). One approach is to assume exogenously varying

RRA coe¢ cients, or varying rates of time preference, i.e., exogenous preference heterogene-

1 For the US we use data before the subprime crisis of 2008, whereas for EU countries and China we use
the only available databases from 2013, that also enable comparisons across EU countries. US household-
portfolio data include direct stockholding, mutual funds, and retirement accounts. EU data include only
direct stockholding and mutual funds, which is one reason that EU portfolio shares are lower compared to
the US. Chinese data include direct stockholding, mutual funds and some other indirect stockholding data,
such as Exchange Traded Funds (ETFs). In Online Data Appendices we provide details about our data
sources, and database structure and quality.
2 See Epstein and Zin (1989) and Weil (1989), and for the continuous-time version of recursive preferences
that we use in this paper see Du¢ e ant Epstein, (1992a,b).
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ity. Exogenous preference heterogeneity causes exogenous di¤erences in saving rates. Yet,

according to evidence, richer households have higher saving rates.3 So, assuming exogenous

preference heterogeneity creates another need: one should also connect exogenous prefer-

ence parameters with initial conditions, i.e., with who is rich/poor in the data.4 But models

should be able to explain such saving-rate/wealth monotonic relationships instead of as-

suming them. In addition, assuming that poorer households have higher RRA coe¢ cients

creates a tension: on the one hand, the higher risk aversion of the poor could explain the

low risky-asset-portfolio shares of the poor; on the other hand, saving rates may decline

in income/wealth; higher RRA coe¢ cients amplify precautionary motives that arise from

uninsurable labor-income risk, driving the poor to saving more. Household portfolio models

should deal with such challenging tensions.

1.3 One utility function for all households: dealing with hetero-
geneity parsimoniously

Using the same utility function with the same parameter values across all households serves

two purposes. First, a single utility function might explain why the poor save less, instead

of assuming it. Second, the parsimony of such an explanation can provide insights about the

engines of wealth-distribution dynamics. Speci�cally, parsimonious explanations of qualita-

tive and quantitative patterns in micro data can point at appropriate microfoundations for

models which may promote our understanding of taxation and regulation issues regarding

3 See, for example, Dynan et al. (2004).
4 For example, Gomes and Michaelides (2005), assume heterogeneity in relative-risk aversion coe¢ cients
using Epstein-Zin-Weil preferences, in the context of a life-cycle model, starting from the income/wealth
distribution of households with household heads aged 20, and using these initial conditions in order to
produce endogenous wealth distributions that may match wealth-distribution data. Carroll (2000) assumes
heterogeneous rates of time preference, which leads to di¤erences in saving rates, in a general-equilibrium
framework. These saving-rate di¤erences in Carroll (2000) determine who is rich and poor in the long-run,
because in the long run there is no dependence on initial conditions. Yet, for life-cycle models the same
problem of having to assign di¤erent preference parameters to households with di¤erent initial conditions
remains.
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�nancial markets or the macroeconomy.5

As we demonstrate, introducing subsistence consumption to EZW preferences is capable

of dealing with data challenges. Subsistence consumption is key to endogenously sorting out

rich and poor households according to risk aversion, with the poor being more risk averse.

So, the poor hold fewer risky-assets. At the same time, EZW preferences distinguish the

elasticity of intertemporal substitution (IES) from RRA. Parameters a¤ecting IES levels,

which are also endogenous at the presence of subsistence consumption, give one more degree

of freedom. This extra degree of freedom proves useful for replicating the lower saving rates

of the poor. In particular, this separation between IES and RRA is important for breaking

the tension between stockholding shares and saving rates that the higher risk aversion of

the poor creates. The poorer take less risk, but their higher risk aversion is endogenous in

our model, so their higher precautionary motives do not dominate and do not lead to higher

saving rates. The higher risk aversion of the poor is also shaped by all their future plans: as

the model shows, precautionary motives are dominated by optimal wealth-transition plans

that poorer households make; they exit their subsistence concerns smoothly in the future

through low, yet positively-valued, saving rates.

1.4 What numbers should one assign for subsistence consump-
tion?

Econometric studies such as these of Atkeson and Ogaki (1996) or Donaldson and Pen-

dakur (2006) do not reject the existence of subsistence consumption levels. Yet, issues of

econometric model speci�cation a¤ect the robustness of subsistence estimates, making them

rather unpopular among applied-theory researchers. Here we rely on estimates from surveys

regarding living-standards comparisons across households and we claim that an adult needs

5 For a review paper about doing quantitative macroeconomics with heterogeneous households see Heathcote,
Storesletten, and Violante (2009).
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an annual amount of about 3,000 US dollars in order to just survive.6 Cross-country survey

data in Koulovatianos et al. (2007, 2014) indicate annual subsistence costs per person in the

order between 1,300-3,600 US dollars.

1.5 Developing calibration tools

We identify a closed-form solution for a version of the model with insurable labor-income risk

and multiple risky assets in a continuous-time analysis with in�nitely-lived households. This

closed-form solution serves as a handy calibration tool, because it enables us to match data

using minimum-distance-�tting techniques at low computational cost. We demonstrate the

usefulness of this closed-form solution by simultaneously matching both the US stockholding

shares of Panel C in Figure 1, and the business-equity shares of Panel D in Figure 1. In

addition, using the closed-form solution as intuition guide, through sensitivity analysis, we

are able to identify what parameter-value combinations guarantee satisfactory data �tting.

The key ingredients for good data matching with two risky assets are: (i) returns of stocks

and business equity should be weakly correlated and, (ii) household resources are expected

to grow over time, so that poorer households can a¤ord exiting subsistence concerns slowly

by saving less and by taking less risk, while holding balanced portfolios.

The closed-form solution also serves as a guide for judging the computational e¢ ciency

of numerical algorithms in the absence of insurable labor-income risk. In addition, the

calibrating parameters identi�ed when labor-income risk is insurable are in the right ballpark

for calibrating the uninsurable-labor-income risk model through trial and error (without

using minimum-distance approaches). We also �nd that the parameters identi�ed by the

continuous-time model serve as a guide for calibrating the same model in discrete time. As

6 Our calibration in this paper refers to US dollars in year 2007. For the survey evidence see Koulovatianos
et al. (2007, 2014) who use data in six countries derived using the survey method �rst suggested by
Koulovatianos et al. (2005), and our discussion in the calibration section.
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discrete-time modeling is, perhaps, more popular to applied researchers, our study o¤ers

modeling pointers for applications and extensions to the research group that uses discrete-

time analyses.

1.6 Some literature

Before initiating this research we have been motivated and guided by recent advances in

the literature. A recent study by Wachter and Yogo (2010) has made a breakthrough, as

it provided reasonable �t of theoretical household-portfolio shares to data. The key idea in

Wachter and Yogo (2010) is that they distinguish between two categories of goods, basic

goods and luxuries, so the rich invest more in risky assets because they are risking losses

in mostly luxury consumption.7 Similarly, Achury et al. (2012) introduced subsistence con-

sumption into a simple Merton (1969, 1971) model with one type of goods, uncovering a

similar mechanism to this of Wachter and Yogo (2010): the poor do not invest in risky assets

because they are strongly averse to losing their subsistence consumption. Our study makes

use of such building blocks, but pays attention to putting together as many pieces as possible

analytically in order to study their interconnection. Speci�cally, our study provides analyt-

ical guidance on how a labor-income process a¤ects portfolio choice and savings, extending

Achury et al. (2012).

7 This idea has been implicit in Browning and Crossley (2000).
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2. Model

2.1 Observable budget-constraint characteristics

2.1.1 Income process

Time is continuous. At any instant t 2 [0;1) a household receives a labor income stream,

y (t), that evolves according to the geometric process

dy (t)

y (t)
= �ydt+ �ydzy (t) , (1)

with �y > 0, �y � 0, with zy (t) being a Brownian motion, and for a given y (0) = y0 > 0.8

2.1.2 Asset returns

The household also possesses an initial stock of �nancial wealth, a0 2 R, and has the potential

to invest this wealth in a risk-free asset with return rf , and also in a set of N � 1 risky

assets. The price of risky asset i 2 f1; :::; Ng, denoted by pi (t), is governed by the process

dpi (t)

pi (t)
= Ridt+ ei�dz

T (t) , (4)

in which z (t) � [z1 (t) z2 (t) � � � zN (t)] is a row vector of Brownian motions with zi (t)

being associated with asset i 2 f1; :::; Ng. The N � N matrix � is derived from the de-

8 Notice the equivalence between the continuous-time representation in (1) and its discrete-time permanent-
income hypothesis counterpart in Carroll (1992, 1997). In particular, Carroll (1992, p. 65) uses a discrete-
time stochastic framework in which income, Yt, following his notation, is governed by ln (Yt) = ln (Pt) +
ln (Vt), ln (Vt) � N

�
0; �2V

�
, i.i.d. over time, with Pt denoting the permanent-labor-income component which

obeys ln (Pt+1) = ln (G)+ ln (Pt)+ ln (Nt+1), and in which ln (Nt) � N
�
0; �2N

�
, i.i.d. over time. Combining

these two equations leads to,
ln (Yt+1)� ln (Yt) = ln (G) + ln ("t+1) , (2)

in which ln ("t+1) = ln (Nt+1) + ln (Vt+1) � ln (Vt). Given the assumption that ln (Nt) and ln (Vt) are
independent, which is stated in Carroll(1992, p. 70), it follows that ln ("t+1) � N

�
0; �2N + 2�

2
V

�
, i.i.d. over

time. After applying Itô�s Lemma on (1) and stochastically integrating over a time interval [t; t+�t] for all
t � 0 and any �t � 0, we obtain,

ln [y (t+�t)]� ln [y (t)] =
 
�y �

�2y
2

!
�t+ �y [zy (t+�t)� zy (t)] . (3)

Setting �t = 1, �y � �2y=2 = ln (G), and �2y = �2N + 2�2V , makes equations (3) and (2) to coincide.
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composition of the covariance matrix, �, which refers to risks of the N risky assets only.

In particular, � = ��T . Finally, ei is a 1 � N vector in which the value 1 is in position

i 2 f1; :::; Ng, while all other elements are zero.

2.1.3 Correlation between labor-income growth and asset returns

Labor income is correlated with risky asset i 2 f1; :::; Ng through the correlation coe¢ cient

�y;i. Speci�cally,

zy (t) =
q
1� �2y;1 � :::� �2y:Nz0 (t) + �y;1z1 (t) + :::+ �y;NzN (t) , (5)

in which z0 (t) is also a Brownian motion. If �2y;1 + ::: + �2y;N 6= 1, then labor-income risk is

uninsurable. If, instead, �2y;1 + ::: + �2y;N = 1, then labor risk can be eliminated by trading

�nancial assets. Numerical analysis of portfolio choice with multiple risky assets and labor-

income risk is a demanding task.9 In addition, solving complex models numerically may

mask some of its key mechanics. So, in order to facilitate the derivation of analytical results

for many risky assets without the need to resort to numerical analysis, we use the restriction

�2y;1 + :::+ �2y;N = 1.

The evolution of assets is governed by the budget constraint,

da (t) =
��
� (t)RT +

�
1� � (t)1T

�
rf
	
a (t) + y (t)� c (t)

	
dt+ a (t)� (t)�dzT (t) , (6)

in which R = [R1 � � � RN ] is a row vector containing all mean asset returns and � (t) =

[�1 (t) � � � �N (t)] is a row vector containing the chosen fraction of �nancial wealth invested

in risky asset i, for all i 2 f1; :::; Ng at any time t � 0 (AT denotes the transpose of any

matrix A). We do not impose any short-selling restrictions on � (t).

9 Yet, our available toolkit for solving discrete-time dynamic portfolio choice problems with many assets and
state variables has been recently advanced by Garlappi and Skoulakis (2010).
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2.2 Preferences

The problem faced by a household is to maximize its lifetime expected utility subject to

constraints (6) and (1). Our utility speci�cation involves a small, yet in�uential step away

from the continuous-time formulation and parameterization of recursive �Epstein-Zin�pref-

erences, suggested by Du¢ e and Epstein (1992a,b). In particular, we use a subsistence-

consumption level �, de�ning expected utility as,

J (t) = Et

�Z 1

t

f (c (�) ; J (�)) d�

�
, (7)

in which f (c; J) is a normalized aggregator of continuation utility, J , and current consump-

tion, c, with

f (c; J) � � (1� 
) � J �

�
c��

[(1�
)J ]
1

1�


�1� 1
�

� 1

1� 1
�

, (8)

and in which � � 0 and �; �; 
 > 0. In Appendix A we show an intuitive result for the

case with � > 0: if 
 = 1=�, then expected utility converges to the case of time-separable

preferences with hyperbolic-absolute-risk-aversion (HARA) momentary utility.10 If � = 0

(standard formulation), then � denotes the household�s elasticity of intertemporal substitu-

tion and 
 is the coe¢ cient of relative risk aversion. In Appendix A we show that the IES

is equal to � (1� �=c) no matter if 
 6= 1=� or not. So, in case � > 0, which is central to

our analysis, parameter � sets the upper bound of IES (recall that c � �) and plays the role

of the IES only asymptotically, as c!1.
10Speci�cally, in Appendix A we show that f (c; J) j
=1=� implies that continuation utility is

J (t) = �Et

(Z 1

t

e��(��t)
[c (�)� �]1�

1
� � 1

1� 1
�

d�

)
. (9)

Notice that Koo (1998) has provided theoretical analysis to a model that is similar to ours but he has
restricted his attention to the consant-relative-risk aversion utility function given by (9) after setting � = 0.
Other notable analyses with time0separable preferences are Du¢ e et al. (1997) and Henderson (2005).
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2.3 (Closed-form) Solution

In equilibrium, continuation utility, J� (t), is a value function depending on the household�s

assets and labor income, so J� (t) = V (a (t) ; y (t)) for all t � 0. With in�nitely-lived house-

holds and constraints with time-invariant state-space representation, the optimization prob-

lem of the households falls in the category of stationary discounted dynamic programming.

So, the time index is dropped from the Hamilton-Jacobi-Bellman equation (HJB) which is

given by,

0 = max
c��;�

8><>:f (c; V (a; y)) + ���RT +
�
1� �1T

�
rf
�
a+ y � c

	
� Va (a; y)

+
1

2
a2���T�T � Vaa (a; y) + �yy � Vy (a; y)

+
1

2
(�yy)

2 � Vyy (a; y) + �yay���
T
y � Vay (a; y)

9>=>; , (10)

in which Vx denotes the �rst partial derivative with respect to variable x 2 fa; yg, Vxx is the

second partial derivative with respect to x, the notation for the cross-derivative is obvious,

and �y =
�
�y;1 � � � �y;N

�
is a row vector containing all correlation coe¢ cients between each

of asset returns and the income process. Finally, rf denotes the return of investment in the

risk-free asset.

The �rst-order conditions of the problem expressed by (10) are,

fc (c; V (a; y)) = Va (a; y) , (11)

�T =
�
��T

��1 �
RT � rf1

T
� Va (a; y)

�a � Vaa (a; y)
� �y

y

a

�
�y�

�1�T Vay (a; y)
Vaa (a; y)

. (12)

We make two technical assumptions that enable us to secure interiority of solutions and

analytical tractability. The rationale behind these assumptions becomes more obvious after

the statement of Proposition 1, so we provide intuition at a later point.
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Assumption 1 Initial conditions are restricted so that,

a0 +
y0
ry
>

�

rf
,

with

ry � rf � �y + �y (R� rf1)
�
�y�

�1�T
Assumption 2 The parameter restriction,

1

�
> 1� �

rf +
�
2


,

in which,

� � (R� rf1)
�
��T

��1 �
RT � rf1

T
�
,

holds.

Proposition 1 provides the formulas of the analytical solution to the model.

Proposition 1

If �2y;1+ :::+�
2
y;N = 1, short selling is allowed, and Assumptions 1 and 2 hold, the

solution to the problem expressed by the HJB equation given by (10) is a decision

rule for portfolio choice,

�� = � (a; y) =
1




�
R� rf1

� �
��T

��1 
1�

�
rf

a

!

+

�
1



(R� rf1)

�
��T

��1 � �y�y�
�1
� y
ry

a
, (13)

and a decision rule for consumption,

c� = C (a; y) = �

�
a+

y

ry
� �

rf

�
+ � , (14)
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in which

� = �� + (1� �) rf �
(� � 1)
2


� , (15)

while the value function is given by,

V (a; y) = ���
1�

1�� �

1�

1��

�
a+ y

ry
� �

rf

�1�

1� 


.

Proof See Appendix B. �

The term y (t) =ry is the present value of expected lifetime labor earnings at time t � 0.11

So, the sum (a+ y=ry) equals the present value of total expected lifetime resources. The

term �=rf is the present value of lifetime subsistence needs which uses the risk-free rate as

its discount factor.12 In light of these observations, the term (a+ y=ry � �=rf ) equals the

discretionary expected lifetime resources.

The decision rule of consumption, (14), is an a¢ ne function of discretionary resources,

(a+ y=ry � �=rf ), with its gradient, �, in�uenced by risk aversion, which is driven by para-

meter 
. In particular, if parameter � is lower than 1 (i.e., IES = � (1� �=c) < 1), then a

11Since labor income is insurable, the e¤ective discount factor, ry, which is used to calculate the present
value of expected lifetime labor earnings, involves three opportunity-cost ingredients. These ingredients
are the risk-free rate, rf , the trend of income, �y, and a term involving the excess returns and risks of

other assets, (R� rf1)
�
��1

�T
. In addition, ry = rf � �y + �y (R� rf1)

�
��1

�T
�Ty , takes into account

the correlations of income with the risky assets, �y, and income volatility, �y. In particular, notice that
y (t) = y0 � e�yt+�yzy(t) (see equation (1)) while equation (5) combined with the condition �y�Ty = 1 gives
zy (t) = �y � zT (t).
12To see why the discount factor of lifetime subsistence needs is the risk-free rate alone, consider the special
case of a household with minimum assets, a, such that a+y=ry = �=rf , i.e. total expected lifetime resources
equal subsistence needs (in slight violation of Assumption 1). In this special case, equation (13) implies that
the household holds a portfolio of risky assets, �� � a = ��yy=ry�y��1 which enables it to perfectly insure
against labor-income risk. In this way, the equilibrium consumption pro�le of such a household is c� (t) = �
for all t � 0. So, the ability to insure against labor-income risk enables the household to avoid consumption
�uctuations and to meet the condition c (t) � � with equality at all times. Since this special household does
not have any opportunity left for �uctuations in total income through its savings behavior (its total income
is equal to � for all t � 0), its intertemporal opportunity cost is determined solely by the risk-free rate rf .
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higher level of 
 reduces the propensity to consume, �, creating incentives for precautionary

savings. Yet, the impact of an increase in risk aversion on the saving rate is not unambigu-

ous. Risk aversion a¤ects the optimal portfolio composition and hence the expected asset

income of a household. In the following section we elaborate on the characteristics of the

saving rate.

2.4 Characterizing the saving rate

The saving rate is a function of (a; y), it is denoted by s (a; y), and is given by

s (a; y) = 1� C (a; y)

I (a; y)
,

in which C (a; y) is given by (14) and I (a; y) is a household�s total income, subject to its

optimal portfolio-choice vector dictated by the decision rule � (a; y) in (13). After some

algebra we obtain,

s (a; y) =

h
� (rf � �) + �+1

2
�



i �
a+ y

ry
� �

rf

�
� �y

y
ry�

�


+ rf

��
a+ y

ry
� �

rf

�
+ �� �y

y
ry

. (16)

Although equation (16) gives a closed form, it is still challenging to distinguish the depen-

dence of the saving rate on total asset holdings, a, or on current income, y. One of the

sources of complexity is the presence of subsistence consumption, �. Yet, the introduction

of � in our model is crucial for our quantitative exploration.

2.4.1 How subsistence consumption pushes the saving rate to-
wards being increasing in wealth

Households may save resources in order to be well above the level of lifetime subsistence

needs, �=rf . A previous study indicates that the optimal transition of poorer households

away from subsistence needs is slow, since the poor have lower saving rates (see Achury
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et al. (2012, Corollary 1, p. 113) which studies a model nested by our present framework

for �y = 0 and 
 = 1=�).13 With �y 6= 0 the implied income trend a¤ects incentives to

save, since income growth exogenously shifts the resource constraint over time (unlike a

which is endogenously determined). So, in order to examine how subsistence, �, a¤ects

the dependence of the saving rates on a and y, we distinguish between two cases, �y = 0

(nongrowing labor income) and �y 6= 0 (growing labor income).

No expected income growth (�y = 0) When �y = 0, in Appendix C we show that a

key parametric constraint in order to secure that the saving rate is strictly positive is,

s (a; y) j(��0;�y=0) > 0,
1

�
>
rf +

�
2

� �

rf +
�
2


>
1

�

� �
2


rf +
�
2


. (17)

In case rf + �= (2
) > �, Assumption 2 implies that the IES is smaller than an upper

threshold determined by the rest of the model�s parameters. This upper bound on the IES

blocks the willingness to substitute consumption over time, preventing the possibility that

households would seek corner solutions, and thus guaranteeing c� (t) > � for all t � 0.14 The

positive saving rate is also a result of a relatively low rate of time preference, �, which is

another aspect taken care of by condition (17).

Non-zero expected income growth (�y 6= 0) Focusing on the empirically plausible case

of �y > 0, after some algebra appearing in Appendix C, we identify a parametric restriction

which guarantees that the saving rate is always increasing in wealth (sa (a; y) > 0), even in

the case of � = 0, given by,

sa (a; y) > 0, �
� (rf � �) + �+1

2
�



�


+ rf

+ �y�

y
ry�

�


+ rf

�2 > 0 . (18)

13Achury et al. (2012) study a Merton (1969, 1971) model with additively-separable HARA preferences and
no labor income.
14In this case of rf + �= (2
) > �, condition (17) is also automatically guaranteed, and a positive saving rate
is guaranteed while �y = 0.
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The dependence of the saving rate on income, y, as initial condition (the sign of sy (a; y)), is

more cumbersome to understand. In Appendix C we provide some step-by-step qualitative

analysis of (16), under the parametric restriction given by (18). Table 1 summarizes all

results.

2.4.2 Key parametric constraints that make saving rates be in-
creasing in income/wealth

In a strictly mathematical sense, the conclusions summarized by Table 1 refer to the closed-

form solution case of insurable labor-income risk (�y�
T
y = 1). Yet, Table 1 may serve as a

calibration guide if labor-income risk is uninsurable (�y�
T
y 6= 1). Our numerical simulation

exercises below, indicate that Table 1 is helpful even if �y�
T
y 6= 1. Speci�cally, the parametric

restriction given by (18) enters our constraints in our minimum-distance search for best-

�tting parameters to data under �y�
T
y = 1 (insurability). When we introduce �y�

T
y 6= 1

(uninsurability), most previous parameters remain unchanged.

sign of sa (a; y)

�y = 0 �y > 0

� = 0 0 +

� > 0 + +

How the saving rate depends on wealth

sign of sy (a; y)

�y = 0 �y > 0

� = 0 0 � if a > 0 and + if a < 0

� > 0 + ambiguous

How the saving rate depends on income

Table 1 Dependence of the saving rate on wealth and income under restriction (18)
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The way parametric restriction (18) relates to the results summarized by Table 1 can be

verbally summarized as: if household resources are expected to grow over time, then poorer

households can a¤ord exiting subsistence concerns slowly by saving at a lower rate, and

they optimally choose to do so. Finally, the parametric restriction given by (18) reveals the

importance of the separation between parameters � and 
 in the context of EZW preferences:

the presence of � gives us enough degrees of freedom to meet parametric restrictions (17)

and (18) easily. Speci�cally, if calibrating parameters overemphasize precautionary motives

in a model, then the model may imply saving rates which are decreasing in wealth. Guided

by (17) and (18) so as to guarantee that s (a; y) ; sa (a; y) > 0, one can restore the empirically

plausible pattern of saving rates which are increasing in wealth.

2.5 Characterizing portfolio composition in the case of two risky
assets

The most complicated analytical aspect of determining the dependence of portfolio shares,

�, on total asset holdings, a, and income, y, is the role played by the covariance matrix of

risky assets. In the case of two risky assets (N = 2), the covariance matrix is,

� =

264 �2s �s;b�s�b

�s;b�s�b �2b

375 ,

in which �i is the standard deviation of asset i 2 fs; bg, with subscript �s�denoting �stocks�

and subscript �b�denoting �business equity�, while �i;j denotes the correlation coe¢ cient

between two risky assets i; j 2 fs; bg. The stochastic structure of the problem with N = 2

involves three volatility parameters, �s, �b, and �y, and two correlation coe¢ cients, �s;b

and �y;s, since correlation �y;b can be deduced from the labor-risk-insurability constraint

�2y;s + �2y;b = 1.
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In Appendix A we show that the solution based on (13) for N = 2 is,15

��s =
1



� 1

1� �2s;b
�
Rs�rf
�s

� �s;b
Rb�rf
�b

�s
�
 
1�

�
rf

a

!

+

241


� 1

1� �2s;b
�
Rs�rf
�s

� �s;b
Rb�rf
�b

�s
� �y

0@�y;s
�s

�
p
1� �2y;s � �s;b
�s
q
1� �2s;b

1A35 y
ry

a
, (20)

and

��b =
1



� 1

1� �2s;b
�
Rb�rf
�b

� �s;b
Rs�rf
�s

�b
�
 
1�

�
rf

a

!

+

241


� 1

1� �2s;b
�
Rb�rf
�b

� �s;b
Rs�rf
�s

�b
� �y �

p
1� �2y;s

�b
q
1� �2s;b

35 y
ry

a
. (21)

The �rst observation about equations (20) and (21) is that parameter �, which is tightly

linked with the IES does not a¤ect the composition of portfolios. On the contrary, an

increase in the relative-risk aversion coe¢ cient 
 in�uences the optimal portfolio share

of each risky asset. In particular, the comparison between the ratio of the two Sharpe

ratios with the correlation coe¢ cient between asset returns (i.e., how �s;b compares to

[(Ri � rf ) =�i] = [(Rj � rf ) =�j], i; j 2 fs; bg with i 6= j) determines whether an increase

in 
 leads to a decrease in both ��s and �
�
b , or in an increase in one of the two and in a

reduction for the other.16

The dependence of ��s and �
�
b , on assets, a, and income, y, hinges upon a number of

parameter combinations. If �s;b < [(Ri � rf ) =�i] = [(Rj � rf ) =�j], i; j 2 f1; 2g with i 6= j,

15In Appendix A we also show that the magnitude of the discount factor used to calculate the present value
of lifetime labor income equals,

ry = rf � �y + �y

24Rs � rf
�s

�

0@�y;s �
q
1� �2y;s � �s;bq
1� �2s;b

1A+ Rb � rf
�b

�
�y;bq
1� �2s;b

35 . (19)

Equation (19) reveals that apart from rf , �y, and �y, a linear relationship between the Sharpe ratios
weighted by expressions involving the correlation coe¢ cients �y;s and �s;b plays a key role in determining
the magnitude of ry which critically a¤ects the level of lifetime labor income y=ry.
16Notice that since �s;b < 1 it cannot be that an increase in 
 causes both �

�
s and �

�
b to rise.
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then the �rst term of (20) and (21) contributes to making ��s and �
�
b increasing in a, as long

as � > 0. So, the presence of subsistence consumption, � > 0 contributes to having portfolio

shares of risky assets that are increasing in wealth, in accordance with what the data say.

Nevertheless, the second term introduces a separate role for the income/wealth ratio y=a in

generating portfolio shares which are increasing in wealth. This role of y=a depends on a

more complicated relationship among parameters related to asset returns, their covariance

matrix, and the correlation of risky asset with labor income shocks. Yet, equations (20)

and (21) provide a useful pointer towards a successful calibration exercise for the N = 2

case: two key ingredients in order to match that portfolio-shares are increasing in wealth

or income in the data are, (a) a positive level of subsistence consumption, � > 0, and (b)

a low correlation coe¢ cient between the two risky assets, especially one that guarantees

�s;b < [(Ri � rf ) =�i] = [(Rj � rf ) =�j], i; j 2 fs; bg with i 6= j. The simulation exercise

demonstrates the quantitative importance of these two key ingredients.

3. A challenging calibration exercise: two risky assets

3.1 Benchmark calibration via minimum-distance �tting

Table 2 provides all calibrating parameters in the case of insurable labor-income risk (�y�
T
y =

1). Setting labor-income risk, �y, equal to 8:21%, is within the ballpark of a standard

parametrization motivated by micro data (see, for example, Gomes and Michaelides (2003

p. 736) for details). We also set the mean labor-income growth to 1:15%. Another standard

parametrization is setting stock returns and their volatility close to their long-term values

for Rs and �s of 7:56% and 21% (the corresponding values in Guvenen (2009) are 8% and

20%, while Gomes and Michaelides (2003) use 6% and 18%). Our calibration exercise worked

better by giving the risk-free rate, rf , the rather generous 3:56%, compared to the standard
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value close to 2% (see, for example, Gomes and Michaelides (2003) and Guvenen (2009)).

While our implied equity premium is rather low (4%), it is not uncommon in the household-

�nance literature to consider such values. For example, an equity premium of 2:5% is within

the range of values examined by Gomes and Michaelides (2003).

Preference Parameters

� � 
 �

2:5% 0:08 4:78 2940a

Mean Returns

rf �y Rs Rb

3:56% 1:15% 7:56% 18%

Standard Deviations of Returns and Correlations

�y �s �b �ys �yb �sb

8:21% 21% 42:07% 48:93% 87:21% 1:74%

Table 2 Calibrating Parameters. aAnnual subsistence cost per person in 2007 US Dollars.

Our preference parameters are close to the choices made by Achury et al. (2012), with

the sole di¤erence that the monthly subsistence consumption per person is USD 245 versus

USD 230 in Achury et al. (2012). Nevertheless, the monthly amount of USD 245 is within

the range of survey evidence about subsistence consumption reported by Koulovatianos et

al. (2007, 2014), i.e. between USD 111 and 302.

After �xing the values of all parameters above, we performed minimum-distance-�tting

of equations (20) and (21), using admissible ranges of all remaining parameter values, in

order to best �t the model to the data.17 The resulting �tted risky-asset shares of our
17We have also used the parametric restriction given by (18). Regarding the de�nition of after-tax incomes,
income-tax calculations are based on data taken from the Federation of Tax Administrators at 444 N. Capital
Street, Washington DC, projected from year 2003. See the Online Data Appendix for details on the tax
rates and also Grant et al. (2010, Table 2).
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benchmark calibration is given by Panels A and B in Figure 2. While the share of business

equity seems imperfectly matched, simulated patterns of portfolio shares are both increasing

in income/wealth. The span of simulated business-equity shares for all income/wealth cat-

egories is satisfactorily close to the span indicated by the data, showing promise for future

work. Notably, we have excellent data �t for the stockholding portfolio data. The minimum-

distance exercise implied a number of parameters for business equity that best match the

data. Most interesting and robust are the implications that the mean and standard deviation

of business-equity returns, Rb and �b, are 18% and 42:07%. The value Rb = 18% is not far

from the average estimates in Moskowitz and Vissing-Jorgensen (2002, Table 4, p. 756). Re-

garding our model�s implication that �b = 42:07%, Moskowitz and Vissing-Jorgensen (2002,

p. 765) mention: �[...] the annual standard deviation of the smallest decile of public �rm

returns is 41.1 percent. A portfolio of even smaller private �rms is likely to be as volatile.�

It can be di¢ cult to estimate idiosyncratic risks borne by a household. Unobservable lim-

itations in outside options, such as frictions in relocating business if other family incomes

could increase by relocating, imperfect insurance from theft, etc., may justify that a value

for �b in the order of 40% may still be low.

Regarding the correlation between labor income shocks and stock returns, �ys, Gomes

and Michaelides (2003 p. 736) suggest an educated value of 30%, but try higher values, too.

Our implied value for �ys is 48:93%, which immediately implies that �yb =
q
1� (48:93%)2 =

87:21%, due to the parametric restriction �2y;s+�
2
y;b = 1, a key condition for obtaining closed-

form solutions. The high correlation between business equity and family income may be

plausible as a large fraction of households have family businesses and tend to employ family

members or the owners themselves. Given equations (20) and (21) that we have derived

above, we paid attention to the implied Sharpe ratios and concluded that an admissible
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and appropriate value for the crucial correlation between stock returns and business-equity

returns, �sb, is 1:74%.

In brief, our analysis suggests that data can be matched satisfactorily provided that

business-equity returns are highly volatile and weakly correlated with stock returns. As

idiosyncratic components of business-equity risk can be substantial, these implications seem

plausible. Importantly, Panel C of Figure 2 shows that the model replicates saving rates

across the rich and the poor within the ranges suggested by Dynan et al. (2004).

3.2 Sensitivity Analysis

Panels A and B of Figure 3 and Panel A of Figure 4 show the impact of changing the values

of the subsistence parameter, �, on risky-asset shares and the saving rate. A 12 � 18%

deviation above or below the benchmark value of USD 245 per month does not change �tted

values of portfolio shares and saving rates substantially. Yet, a crucial exercise is to see

the impact of discarding subsistence consumption from the model, through setting � = 0.

Panels A and B of Figure 3 and Panel A of Figure 4 show that portfolio shares and saving

rates become almost �at across the rich and the poor. The U-shaped part of the saving rate

that arises in Panel A of Figure 4 is due to the cross-sectional pattern of the income-to-asset

ratio, y=a, across the rich and the poor in the data, that is presented by Panel B of Figure

4. That y=a has an impact on the saving rate and portfolio shares is obvious from equations

(16), (20), and (21).18

Another sensitivity-analysis exercise we preform focuses on changing the magnitude of

the correlation coe¢ cient between stock and business-equity returns, �sb. Panels C and D

of Figure 3 and Panel C of Figure 4 show that slight changes in this correlation coe¢ cient

18In Appendix C, an algebraic manipulation of (16) makes the dependence of the saving rate on a=y more
obvious (see equation (57) in Appendix C).
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can have substantial impact on the portfolio shares and the saving rates. In other words,

the benchmark value �sb = 1:74% seems to be a sharp implication of the model: returns

of stocks and business equity should be weakly correlated, so as to ensure balanced portfolios

across the rich and the poor.

Finally, in Panel D of Figure 4 we vary the elasticity of intertemporal substitution, �,

and observe the impact of these changes on the saving rate. We remind that � a¤ects the

saving rate alone and not the household portfolio shares at all, as (57), (20), and (21) reveal.

Unsurprisingly, small changes in � a¤ect the saving rates substantially. In our calibration, the

shifts in the saving-rate pattern seem almost parallel, and also the implied saving-rate pattern

under the constraint � = 1=
 (time-separable preferences) is not quantitatively implausible.

As the value of � leaves portfolio-shares una¤ected (see equations (20) and (21)), it is notable

that the assumption of Epstein-Zin-Weil recursive preferences is not crucial for the goodness

of �t of our portfolio shares. Nevertheless, Epstein-Zin-Weil recursive preferences provide a

valuable degree of freedom that may prove crucial for key extensions such as the introduction

of tight liquidity constraints in a more descriptive and complicated version of the model.

4. Breaking the assumption that labor-income risk is insurable

The key assumption behind the uninsurability of labor-income risk is setting parameters so

that,

�2y;1 + :::+ �2y;N = 1 . (22)

If there is only one risky asset (N = 1), then (22) becomes �2y;1 = 1, i.e. labor-income

risk is insurable if �y;1 2 f�1; 1g. So, in the case of one risky asset, letting �y;1 depart

from values �1 or 1, increases the degree of labor-income-risk uninsurability. Due to this

one-dimensional representation/quanti�cation of uninsurability, in this section we solve a
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single-risky-asset version of the model numerically, in order to clearly investigate whether

uninsurability prevents our closed-form solution from providing calibration guidance.

4.1 Single-asset continuous-time model with uninsurable labor-
income risk

In Online Appendix A we explain how we numerically solve the problem expressed by (10),

under uninsurable labor-income risk (�y�
T
y 6= 1), using Chebyshev-polynomial approxima-

tion and value-function iteration using the HJB equation. We have used our closed-form

solution in order to check the validity and accuracy of our numerical approximations in the

case of �ys = 1, and we also tried two values for �ys, namely 0:75, and 0:5.

parameter �ys = 1 �ys = 0:75 �ys = 0:5

� 3:67% same same

� 1:58 same same


 3:78 4:85 5:5

� 1829 2250 2700

rf 3:85% same same

�y 2:06% same same

Rs 8:67% same same

�y 6:64% same 8:5%

�s 21:2% same same

Table 3 Calibration for continuous-time model (Chebyshev approx.)

Our results are shown in Figure 5. In Panel A of Figure 5, we show the minimum-distance

�t of the model to the data. Another hardly distinguishable curve in Panel A of Figure 5 is the

�tted curve that has been obtained recursively, using Chebyshev-polynomial approximation.
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The closed-form solution con�rms the accuracy of our numerical method. The �rst column

of Table 3 shows all calibrating parameters that have been obtained through minimum-

distance �tting. Breaking the labor-income-risk insurability assumption, we pursue solutions

for other values of �ys, namely �ys 2 f0:5; 0:75g. In Online Appendix C, we present evidence,

using Panel-Study-of-Income-Dynamics (PSID) income data and Standard and Poors (S&P)

stock-index data, showing that empirical estimates of �ys vary between 32-51%.

Panel B of Figure 5 shows portfolio shares, �, for calibrating parameters �ys 2 f0:5; 0:75g,

if we use our best-�tting calibrating values in the case of �ys = 1, presented in the �rst column

of Table 3. These values for �, are rather high compared to the data. So, we try di¤erent

calibrating parameters, using a trial-and-error approach. The second and third columns of

Table 3 show our calibration strategy. We gradually increase parameter 
, which is tightly

linked with household risk-aversion, and we also increase subsistence consumption, �, in

order to achieve lower values for �. In the case of �ys = 0:5, which requires us to �nd ways

to bring � even further down (see Panel B of Figure 5), we also increase �y within bounds

that are consistent with empirical evidence, in order to increase the background risk borne

by households. The goodness of �t of these two calibration exercises is depicted by Panels

C and D of Figure 5.

In brief, the closed-form solution has served as a useful calibration guide, allowing us

to understand which parameter combinations can achieve satisfactory data �tting. Inter-

estingly, trying the closed-form solution formula for �ys 2 f0:5; 0:75g, leads to the hardly

distinguishable curves of Panels C and D in Figure 5. Although for �ys < 1 the closed-form

solution is mathematically incorrect, it seems that the closed-form formula is directly useful

even under uninsurable labor-income risk. This numerical proximity between stockholding

shares derived by the closed-form solution and the numerical solution in the case of unin-
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surable labor-income risk, may be sensitive to changes in parameter values. Yet, such an

investigation is beyond the scope of the present study.

4.1.1 Borrowing constraints and risk of failing to meet subsistence
needs

In all simulations we have imposed the constraints c � �, and a � 0, i.e., we have placed

a borrowing limit. The borrowing limit is less relevant to the target group of stockholders

that we are calibrating, since these households already have some �nancial assets, and the

probability of a binding borrowing constraint is negligible in the calibration. The constraint

c � � is more likely to bind. The calibrating parameters indicated by the closed-form solution

in the case of �ys = 1, keep this likelihood low, with negligible impact on our simulations, even

in the case of �ys = 0:5, in which labor-uninsurability concerns are substantial. An intuitive

explanation for the state described by c < � is homelessness or failure to meet daily calorie-

intake needs. Perhaps our target group of stockholders, conditional on their stockholding

status, has initial conditions, a and y, that already give these households the opportunity

to choose savings and risk-taking strategies that keep them well within an interior solution.

Including non-stockholders with lower initial wealth is beyond the scope of our analysis, but

an interesting future extension to pursue.

4.2 Extension to a Discrete-time analysis

For the discrete-time analogue to the continuous-time version of the model with one risky

asset, the Bellman equation is,

V (at; yt) = max
(ct;�t)

�
(1� �) (ct � �)1�

1
� + � f(1� 
)Et [V (Rp;t+1at + yt � ct ; yt+1)]g

1� 1
�

1�


� 1�

1� 1

�

1� 

,

(23)
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in which,

Rp;t+1 �
�
Rt+1 � rf

�
�t + rf , (24)

and with,

ln (yt+1)� ln (yt) = �y + "y;t+1 , "y;t+1 � N
�
0; �2y

�
, (25)

ln (Ps;t+1)� ln (Ps;t) = Rs + "s;t+1 , "s;t+1 � N
�
0; �2s

�
, (26)

where Ps;t denotes the stock price in period t, while,

Cov ("s;t+1; "y;t+1)

�s�y
= �ys , (27)

Rt in equation (24) is given by,

Rt = eRs+"s;t , (28)

yt is given by,

yt = e�y+"y;t , (29)

and (a0; y0; �0) are given.

The computational algorithm is fully explained in Online Appendix B. In Panel A of

Figure 6 we can see that, trying the best-�tting parameters of the continuous-time model

presented in the �rst column of Tables 3 and 4, does not lead to a good match of the discrete-

time model to the data.19 In the second column of Table 4, we report the calibrating values

that match the discrete-time model to the stockholding data in Panel A of Figure 6.20 We

have achieved this goodness of �t through a trial-and-error approach, and Panel B of Figure

6 shows that the parameter values used in the second column of Table 4 cannot match the

data in the cases of �ys 2 f0:5; 0:75g.
19We have repeated these calibrating parameters in Table 4 in order to facilitate parameter comparisons with
other calibration exercises, except for � = 0:8 instead of � = 1:58 in the continuous-time case. Parameter �
is crucial for determining the level of the saving rate, and throughout we want to maintain strictly positive
saving rates.
20The term �same�in Table 4 means �same parameter value as in the column on the left�.
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parameter �ys = 1 (cont. time) �ys = 1 (disc. time) �ys = 0:75 �ys = 0:5

� 3:67% 4:67% same same

� 0:8 same same same


 3:78 5 5:75 7:95

� 1829 3000 3200 3600

rf 3:85% 3:5% same same

�y 2:06% 1:25% same same

Rs 8:67% 6:37% same 7%

�y 6:64% same 7% 7:4%

�s 21:2% same same same

Table 4 Calibration for discrete-time model (�cont. time�refers to the calibration of the

continuous-time model in Panel A of Figure 5, and �disc. time�refers to the calibration of

the discrete-time model in Panel A of Figure 6)

The third and fourth column of Table 4 show the parameter values that lead to the

�tted curves of Panels C and D of Figure 6. As in the case of the continuous-time model

calibration appearing in Figure 5, the key ingredients of a good match of the model to the

data as �ys decreases, is an increase in 
 (making households more risk-averse), an increase

in � (increasing the subsistence needs of households), and also increasing �y (introducing

more background risk to the model). An important message of Table 4 and Figure 6 is that

the guidance we have had from the continuous-time model allows us to get in the ballpark

of best-matching parameters to data, so that we can achieve our calibration goals through

a trial-and-error calibration approach.
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5. Conclusion

New stockholding data from �fteen European countries and China recon�rm what we have

already known from US data (SCF): stockholding shares increase in income and wealth. On

the one hand, we should be able to robustly replicate this monotonic pattern qualitatively,

using one utility function for all households (parsimony). On the other hand, we should

be able to match stockholding numbers across the rich and the poor. At the same time,

we should also be able to replicate that saving rates also increase with income/wealth,

because saving rates are a major determinant of wealth-distribution dynamics. Here we

have introduced subsistence consumption to an Epstein-Zin-Weil (EZW) utility function.

Our approach has created endogenous risk-aversion di¤erences across the rich and the poor,

which explains that the poor take less household-portfolio risk. The ability of the EZWutility

function to separate risk-aversion parameters from intertemporal-elasticity-of-substitution

parameters, has allowed us to replicate that saving rates increase in income/wealth, too.

In order to quantitatively match stockholding-share data, we have identi�ed a closed-

form solution that is handy for minimum-distance data-�tting calibration. The closed-form

solution is possible only if labor-income risk is insurable. Yet, we have demonstrated that

calibrating parameters for this special case of insurable labor-income risk serve as a useful

guide for numerical simulations with uninsurable labor-income risk as well. Our study points

at a key takeout: introducing subsistence consumption to household-portfolio models seems

promising for cracking central household-�nance puzzles. Using the same utility function, it

is worth investigating whether analytical results are possible for households with �nite lives,

in future work. Such an extension could shed light on whether life-cycle models can explain

longitudinal-data facts.
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6. Appendix A - Proofs regarding the structure of Epstein-Zin-
Weil preferences with subsistence consumption

Proof that setting 
 = 1=� in equation (8) leads to time-separable preferences

with HARA momentary utility

One can make a conjecture beforehand: we can use the transformation ~c = c � �; then

f (c; J) = ~f
�
~c; ~J
�
, in which ~f

�
c; ~J
�
is the normalized aggregator function in the Epstein

and Du¢ e (1992a,b) original formulation, with ~J being its associated continuation utility

(notice that ~f
�
c; ~J
�
= f (c; J) j�=0); based on the identity f (c; J) = ~f

�
~c; ~J
�
, one can use

the well-known result that if 
 = 1=�, then ~f
�
c; ~J
�
j
=1=� implies that continuation utility is

~J (t) = �
R1
t
e��(s�t)c (s)1�
 = (1� 
) ds; the conjecture to make is that ~f

�
~c; ~J
�
j
=1=� implies

~J (t) = �
R1
t
e��(s�t)~c (s)1�
 = (1� 
) ds, which is the desired result. Here we go through all

steps of a formal proof in order to cross check whether the intuition and conjecture discussed

above fail. In addition, throughout the proof, we use the expectations operator in order to

cross check whether the result holds in the presence of parameter � > 0, when consumption

is stochastic.

Equation (8) implies,

f (c; J) j
= 1
�
= �

(c� �)1�


1� 

� �J . (30)

Let�s use J 0 (t) in order to denote the total derivative of J with respect to time evaluated at

time t. Equation (7) implies that Et [J 0 (t)] = �Et [f (c (t) ; J (t))], and after using equation

(30) we obtain,

�Et [J 0 (t)] = �Et

(
[c (t)� �]1�


1� 


)
� �Et [J (t)] .

After multiplying both sides by (1=�) e��t and after integrating the above equation with
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respect to time we obtain,

�1
�
E0

�Z T

0

e��tJ 0 (t) dt

�
= E0

(Z T

0

e��t
[c (t)� �]1�


1� 

dt

)
� E0

�Z T

0

e��tJ (t) dt

�
, (31)

for some T � 0. After applying integration by parts we obtain,Z T

0

e��tJ (t) dt = �1
�

�
e��TJ (T )� J (0)

�
+
1

�

Z T

0

e��tJ 0 (t) dt ,

and substituting this last expression into (31) results in,

J (0) = E0

(
�

Z T

0

e��t
[c (t)� �]1�


1� 

dt

)
+ e��TET [J (T )] . (32)

Since the choice of T was arbitrary, equation (32) should hold for all T � 0. The requirement

of having a well-de�ned expected-utility function for all T � 0, i.e.,

�1 < ET [J (T )] <1 for all T � 0 ,

implies that limT!1 e
��tET [J (T )] = 0. So, equation (32) implies,

J (T ) = ET

(
�

Z 1

T

e��(t�T )
[c (t)� �]1�


1� 

dt

)
, for all T � 0 , (33)

which proves the statement that setting 
 = 1=� in equation (8) leads to time-separable

preferences with HARA momentary utility. �

Proof that the IES is equal to � (1� �=c)

We can consider two distinct time instants, t and t + �t, for any t � 0, and �t > 0.

Based on the de�nition of J (t) given by (7), the IES at time t is,

IES (t) = � lim
�t!0

d ln
h
c(t+�t)
c(t)

i
d ln

�
@J(t)

@c(t+�t)

fc(c(t);J(t))

� . (34)
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With �t > 0 it is,

J (t) = Et

�Z t+�t�

t

f (c (�) ; J (�)) d�

�
+ Et+�t

�Z 1

t+�t

f (c (�) ; J (�)) d�

�
,

in which �t� is approaching �t from below. Given the above equation and the de�nition of

(7),

lim
�t!0

@J (t)

@c (t+�t)
= lim

�t!0

�
Et

�Z t+�t�

t

fJ (c (�) ; J (�)) d�

�
+ 1

�
� fc (c (t+�t) ; J (t+�t)) ,

(35)

in which the integral in the term lim�t!0

n
Et

hR t+�t�
t

fJ (c (�) ; J (�)) d�
i
+ 1
o
is an accept-

able approximation derived from Et

hR t+�t�
t

fJ (c (�) ; J (�)) � @J (�) =@c (t+�t) d�
i
, given

that �t! 0.

Combining (35) with (34) leads to,

IES (t) =
� lim
�t!0

d ln
h
c(t+�t)
c(t)

i
d
n
lim
�t!0

ln
n
Et

hR t+�t�
t

fJ (c (�) ; J (�)) d�
i
+ 1
o
+ lim
�t!0

ln
h
fc(c(t+�t);J(t+�t))

fc(c(t);J(t))

io .
(36)

Since lim�t!0 fln [x (t+�t)]� ln [x (t)]g = [ _x (t) =x (t)] dt (in which _x (t) � dx (t) =dt), equa-

tion (36) can be expressed as,

IES (t) =
�d
h
_c(t)
c(t)

i
d

�
lim
�t!0

ln
n
Et
hR t+�t�
t fJ (c(�);J(�))d�

i
+1
o

�t
+ d ln[fc(c(t);J(t))]

dt

� . (37)

The relationship between a discrete-time growth rate, gd, with its continuous-time counter-

part, gc, is given by gc = ln (1 + gd). Since�t! 0 implies transition from a discrete-time ap-

proximation to continuous time, the term ln
n
Et

hR t+�t�
t

fJ (c (�) ; J (�)) d�
i
+ 1
o
=�t con-

verges to fJ (c (t) ; J (t)), and can be substituted into (37) to give,

IES (t) = �

8<:d
n
fJ (c (t) ; J (t)) +

d ln[fc(c(t);J(t))]
dt

o
d
h
_c(t)
c(t)

i
9=;
�1

. (38)
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From (8) we obtain fc = � [(1� 
) J ](1=��
)=(1�
)�(c� �)�1=�, which implies d ln (fc) =dt =

(1=� � 
) = (1� 
) �
�
_J=J
�
� (1=�) [c= (c� �)] � ( _c=c) and becomes

d ln [fc (c (t) ; J (t))]

dt
= �

1
�
� 


1� 

� f (c (t) ; J (t))

J (t)
� 1
�
� 1

1� �
c(t)

� _c (t)
c (t)

, (39)

after noticing that (7) gives _J (t) = � f (c (t) ; J (t)). After some algebra we obtain

fJ (c (t) ; J (t)) =

1
�
� 


1� 

� f (c (t) ; J (t))

J (t)
. (40)

After substituting (39) and (40) into (38) we arrive at,

IES (t) = �

8><>:
d
h

1
1� �

c(t)
� _c(t)
c(t)

i
d
h
_c(t)
c(t)

i
9>=>;
�1

. (41)

Assuming that the current consumption level, c (t), is constant, and focusing only on the

impact of the change in the growth rate of consumption on the change in the growth rate of

the marginal utility of consumption, equation (41) implies IES (t) = � [1� �=c (t)] which

proves the statement. �

7. Appendix B - Derivation of the closed-form solution

Proof of Proposition 1

We make a guess on the functional form of the value function, namely,

V (a; y) = b
(a+  y � !)1�


1� 

, (42)

which implies,

Va (a; y) = b (a+  y � !)�
 , (43)
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and also

fc (c; V (a; y)) = �b1�
1� 1

�
1�
 (a+  y � !)

1
�
�
 (c� �)�

1
� . (44)

From (43), (44) and (11) it is,

c = ��b��
1� 1

�
1�
 (a+  y � !) + � . (45)

Similarly, calculating the appropriate partial derivatives and substituting them in (12), gives,

�T =
1




�
��T

��1 �
RT � rf1

T
� �
1 +  

y

a
� !

a

�
� �y 

y

a

�
�y�

�1�T . (46)

Substituting (45), (42), (8), (46), and all derivatives stemming from (42) into the HJB given

by (10) results in,

�b
(a+  y � !)1�


1� 1
�

=
��b1��

1� 1
�

1�


1� 1
�

(a+  y � !)1�
+

+b (a+  y � !)�

�
1



(R� rf1)

�
��T

��1 �
RT � rf1

T
�
(a+  y � !)�

��y y�y��1
�
RT � rf1

T
�
+ rfa+ y � �� ��b��

1� 1
�

1�
 (a+  y � !)

�
�

�

2
a2b (a+  y � !)�
�1

�
1



(R� rf1)

�
��T

��1 �
1 +  

y

a
� !

a

�
� �y

 y

a
�y�

�1
�
�

���T
�
1




�
��T

��1 �
RT � rf1

T
� �
1 +  

y

a
� !

a

�
� �y

 y

a

�
�y�

�1�T�+
+ b (a+  y � !)�
 �yy�




2
b 2 (�yy)

2 (a+  y � !)�
�1�
�yayb (a+  y � !)�
�1�

�
�
1



(R� rf1)

�
��T

��1 �
1 +  

y

a
� !

a

�
� �y

 y

a
�y�

�1
�
��Ty . (47)

After some algebra, (47) leads to,

�� 1
�
��b��

1� 1
�

1�


1� 1
�

� 1

2

(R� rf1)

�
��T

��1 �
RT � rf1

T
�
= rf

a+
1+ 

h
�y��y(R�rf1)(���1)

T
i

rf
y � �

rf

a+  y � !

+
1

2



�
�y y

a+  y � !

�2 �
�y�

T
y � 1

�
. (48)
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Since we have assumed that �2y;1+:::+�
2
y;N = 1, �y�

T
y = 1, and the last term of the right-hand

side in (48) vanishes. Moreover, we set

! = �=rf (49)

and

 =
1 +  

h
�y � �y (R� rf1)

�
�y�

�1�Ti
rf

, (50)

which gives

 = 1=ry . (51)

After substituting (50) into (48) we obtain

�� 1
�
��b��

1� 1
�

1�


1� 1
�

� 1

2

(R� rf1)

�
��T

��1 �
RT � rf1

T
�
= rf . (52)

Solving (52) for ��b��(1�1=�)=(1�
) gives,

��b��
1� 1

�
1�
 = � , (53)

in which � is given by equation (15). Moreover, substituting (51) and (49) into (46) leads

to (13). Substituting formulas (51) and (49) in (42) reveals that Assumption 1 is both

necessary and su¢ cient in order that V (a; y) be well-de�ned. From (15) the requirement

that � > 0 is equivalent to the condition given by Assumption 2 in order to guarantee that,

under Assumption 1 and equation (14), c � � for all (a; y), completing the proof. �
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8. Appendix C - Characterization of the saving rate

Proofs of all relationships appearing in Table 1

Equation (16) implies,

s (a; y) j(�>0;�y=0) =
� (rf � �) + �+1

2
�



�


+ rf +

�
a+ y

ry
� �
rf

, (54)

which, in turn, implies a positive dependence of the saving rate on both wealth and income

(sa (a; y) j(�>0;�y=0) ; sy (a; y) j(�>0;�y=0) > 0, if and only if s (a; y) j(�>0;�y=0) > 0).
21 On the

contrary, setting � = 0, equation (16) implies,

s (a; y) j(�=0;�y=0) =
� (rf � �) + �+1

2
�



�


+ rf

, (55)

i.e., saving rates are the same across the rich and the poor. In order that the saving rate

in both (54) and (55) be strictly positive, parameters should be such that the numerator in

both formulas is strictly positive. After some algebra, we �nd that s (a; y) j(��0;�y=0) > 0 if

and only if,

1� �

rf +
�
2


>
1

�

� �
2


rf +
�
2


. (56)

Combining (56) with Assumption 2 leads to (17).

Focusing on the empirically plausible case of �y > 0, equation (16) implies, after some

algebra,

s (a; y) = 1�
� + �

rf

�(rf��)+(��1) �2

a+ y

ry

�


+ rf � �

rf

�



1
a+ y

ry

� �y
1

1+ry
a
y

. (57)

21This monotonicity result is in accordance with �ndings in Achury et al. (2012, Proposition 3 and Corollary
1). The Achury et al. (2012) model can be nested in our analysis if we set �y = 0. If �y = 0, our assumption
of full labor-income insurability (�y�

T
y = 1) makes labor income a trendless noise which can be fully absorbed

by a and fully incorporated into future household asset holdings, a, which are endogenously accumulated.
Yet, even within the special case of �y = 0, Achury et al. (2012) study a more special case for us here, this
with 
 = 1=�. Equation (54) shows that, for �y = 0, the monotonicity of the saving rate in Achury et al.
(2012, Proposition 3 and Corollary 1) can be generalized for 
 6= 1=�.
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Equation (57) is indicative of the importance of setting parameter � > 0. By setting � = 0,

(57) implies,

s (a; y) j�=0 = 1�
�

�


+ rf � �y

1
1+ry

a
y

,

In this case of homothetic preferences it is easy to verify the monotonicity of sa (a; y) with

respect to income, namely,

sy (a; y) j(�=0;�y>0) < 0 if a > 0 , sy (a; y) j(�=0;�y>0) > 0 if a < 0 . (58)

The negative dependence of the saving rate on income when a > 0 in (58) re�ects a dominant

wealth e¤ect on consumption. Since income grows exogenously at rate �y > 0, higher

future-consumption levels can be achieved without further sacri�ces, i.e. without a higher

saving rate. That both current and future consumption are normal goods corroborates this

intuition. For indebted households (a < 0), an increase in labor income reduces the relative

cost of servicing the current debt.

A ceteris-paribus increase in a implies an increase in the ratio a=y, which further implies

a comparative disadvantage for the resource that grows without making sacri�ces (i.e., y

if �y > 0). This comparative disadvantage is captured by the role of the ratio a=y in

equation (57). From (16), after some algebra, we can verify (18).Noticing that � (rf � �) +

(� + 1) �= (2
) > 0 is implied by condition (17), the equivalence given by (18) implies,

sa (a; y) j(��0;�y>0) > 0 . (59)

So, our conclusions regarding a saving rate which is increasing in a if � > 0, drawn by

equation (54) above for the case of �y = 0 are recon�rmed and strengthened. The posi-

tive dependence of the saving rate on a implied by (59) is a key takeout of our analytical

investigation. Equation (57) makes clear that the sign of sy (a; y) j(�>0;�y>0) is ambiguous,

necessitating calibration and numerical investigation. Finally, the less empirically plausible
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case of �y < 0 implies ambiguous monotonicity of the saving rate with respect to a and y in

most cases, which would require numerical veri�cation.

9. Appendix D - Characterization of portfolio shares in the case
of two risky assets

Proof of equations (20), (21), and (19)

The decomposition of matrix � is

� = ��T =

264 �s 0

�s;b�b �b
q
1� �2s;b

375 �
264 �s �s;b�b

0 �b
q
1� �2s;b

375 , (60)

with

��1 =
1

�s�b
q
1� �2s;b

264 �b
q
1� �2s;b 0

��s;b�b �s

375 =
264 1

�s
0

��s;b
�s
p
1��2s;b

1

�b
p
1��2s;b

375 , (61)

so,

�y�
�1 =

�
�y;s �y;b

�
�

264 1
�s

0

��s;b
�s
p
1��2s;b

1

�b
p
1��2s;b

375
or,

�y�
�1 =

�
�y;s
�s
� �y;b�s;b

�s
p
1��2s;b

�y;b

�b
p
1��2s;b

�
. (62)

Notice that since,

��1 =
�
��T

��1
=

1

�2s�
2
b

�
1� �2s;b

�
264 �2b ��s;b�s�b

��s;b�s�b �2s

375 , (63)

after some algebra, the term (1=
)
�
R� rf1

� �
��T

��1
in (13) is,

1




�
R� rf1

� �
��T

��1
=
1



� 1

1� �2s;b

�
Rs�rf
�s

��s;b
Rb�rf
�b

�s

Rb�rf
�b

��s;b
Rs�rf
�s

�b

�
. (64)
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After combining (64) and (62) with (13), and after imposing the constraint �2y;s + �2y;b = 1,

we obtain equations (20) and (21). Finally, since ry = rf��y+�y (R� rf1)
�
�y�

�1�T , after
combining equation (62) with the constraint �2y;s+�

2
y;b = 1, we obtain equation (19). �
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Panel A - EU

Panel B - China

Panel C - US

Panel D - US

Figure 1 Sources: for the EU data, European Central Bank (ECB) Household Finance and Consumption Survey, 1st Wave-2013; for China, China Household 
Finance Survey, 1st Wave-2013; for the US, Survey of Consumer Finances (SCF-2007). In EU and China, Portfolio share = Total Stock Holding /  Total Financial 
Assets), in the US, (Portfolio share = Total Stock Holding /  Total Assets). 'AT' = Austria, 'BE' = Belgium, 'CY' = Cyprus,  'DE' = Germany, 'ES' = Spain, 'FI' = 
Finland, 'FR' = France, 'GR' = Greece, 'IT' = Italy, 'LU' = Luxembourg, 'MT' = Malta, 'NL' = Netherlands, 'PT' = Portugal, 'SI' = Slovenia, 'SK' = Slovakia.
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Figure 2 Benchmark calibration of the model, using the closed-form solution. Income is in 2007 USD. 
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Figure 3 Sensitivity analysis of Φ ( )ya,  by varying subsistence consumption (χ), and the correlation between stock and business-equity returns (ρsb) 
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Figure 4 Sensitivity analysis of the saving rate, s ( )ya, , by varying subsistence consumption (χ), the correlation between stock and business-equity 
returns (ρsb), and parameter η. 



 

Figure 5 Sensitivity analysis of stockholding shares by varying the correlation between stock returns and income growth (ρys) in the continuous-
time simulated version of the model with a single risky asset. 

0-20% 20-40% 40-60% 60-80% 80-90% 90-100%
0

5

10

15

20

25
A. Portfolio Share of stocks φ (%)

 

 

0-20% 20-40% 40-60% 60-80% 80-90% 90-100%
0

10

20

30

40

50

60

70

80
B. Portfolio Share of stocks φ (%) - Benchmark Calibration

 

 

0-20% 20-40% 40-60% 60-80% 80-90% 90-100%
0

5

10

15

20

25
C. Portfolio Share of stocks φ (%) - Alternative Calibration ρys =0.75

After-tax Income Categories per Equivalent Adult

 

 

0-20% 20-40% 40-60% 60-80% 80-90% 90-100%
0

5

10

15

20

25
D. Portfolio Share of stocks φ (%) - Alternative Calibration ρys =0.5

After-tax Income Categories per Equivalent Adult

 

 

Data
φ closed form (ρys =1, Exact)

φ Chebyshev approx. (ρys =1)

Data
ρys =0.75

ρys =0.5

Data
Chebyshev approximation
Closed-form approximation

Data
Chebyshev approximation
Closed-form approximation



 

Figure 6   Discrete-time numerical simulations, using exponential projection on the model with a single risky asset. Sensitivity analysis of 
stockholding shares by varying the correlation between stock returns and income growth (ρys). 
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1. Appendix A �Simulating the continuous-time model

1.1 Algebraic manipulations

The �rst-order conditions of the problem expressed by equation (10) in the main body of

the paper are,

fc (c; V (a; y)) = Va (a; y) , (1)

�T =
�
��T

��1 �
RT � rf1T

� Va (a; y)

�a � Vaa (a; y)
� �y

y

a

�
�y�

�1�T Vay (a; y)
Vaa (a; y)

. (2)

Based on equation (8) in the paper,

fc (c; V ) = � [(1� 
)V ]1�
1� 1

�
1�
 (c� �)�

1
� . (3)

In order to make notation somewhat easier to follow, set,

� �
1� 1

�

1� 
 . (4)

Combining (4) with (3) we obtain,

fc (c; V ) = � [(1� 
)V ]1�� (c� �)�(1�
)�1 . (5)

Combining (5) with (1) gives,

c� = C (a; y) = �+
n
��1V �a � [(1� 
)V �]

��1
o 1

�(1�
)�1
, (6)

in which V � is the �xed point of the Hamilton-Jacobi-Bellman (HJB) equation given by

equation (10) in the paper. From equation (8) in the paper,

f (c�; V �) =
�

� (1� 
) (c
� � �)�(1�
) [(1� 
)V �]1�� � �

�
V � . (7)

Finally, (2) implies,

(��)T =
�
��T

��1 �
RT � rf1T

� V �a
�a � V �aa

� �y
y

a

�
�y�

�1�T V �ay
V �aa

. (8)
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The max operator on the right-hand side of the HJB equation which is given by (10) in the

paper, can be discarded at the �xed point, V �. Using equations (6), (8), and (7), we can

incorporate the optimizers ��and c� in the HJB equation, in order to obtain,

1 =

8><>: �

� (1� 
) (c
� � �)�(1�
) [(1� 
)V �]1�� +

��
��RT +

�
1� ��1T

�
rf
�
a+ y � c�

	
� V �a

+
1

2
a2����T (��)T � V �aa + �yy � V �y

+
1

2
(�yy)

2 � V �yy + �yay���Ty � V �ay

9>=>; =
��
�
V �
�
. (9)

Equation (9) is a second-order (bivariate) partial di¤erential equation, which we solve nu-

merically. Yet, the numerical solution of partial di¤erential equations can be challenging

in terms of numerical accuracy, rounding problems, or error-accumulation problems. For

example, in a slightly alternative version of equation (9), the term (�=�)V � would be on

the left-hand side of (9); in the present version of (9) we have divided both sides of that

alternative version by the term (�=�)V �; we have done so, because, for successful calibrating

parameter values of the model, the numerical values of V � are often small numbers in the

order of 10�15; such small-valued functions V � usually neglect convergence criteria, and a

resolution of this problem is to normalize the HJB equation, as we did in (9).

1.2 Chebyshev-polynomial approximation

The Chebyshev-approximated function we use has the form,

V (a; y) '
�1�1X
i=0

�1�1X
j=0

�ijTi (X (a))Tj (X (y)) , (10)

in which Tj (x) is the Chebyshev polynomial of degree j 2 f0; 1; :::g, given by,

Tj (x) = cos (j � arccos (x)) , (11)
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with,

T 0j (x) =
@ cos (j � arccos (x))

@x
= j

sin (j arccos (x))p
1� x2

, (12)

T 00j (x) =
@2 cos (j � arccos (x))

@x2
=

1

1� x2

�
x � j � sin (j arccos (x))p

1� x2
� j2 � cos (j � arccos (x))

�
,

and based on formulas (11) and (12) we have the concise formula for the second derivative,

T 00j (x) =
1

1� x2
�
x � T 0j (x)� j2 � Tj (x)

�
. (13)

Regarding functions X (a) and X (y) in (10), notice that the domain of Tj (x) is [�1; 1].

Thanks to linearity properties of vector spaces it is straightforward to implement the Cheby-

shev projection method to values a 2 [a; �a] and y 2
�
y; �y
�
through the linear transformation,

X (z) =
2

�z � z � z �
�z + z

�z � z , z 2 fa; yg , (14)

in which a and y are the smallest values of the grids for a and y, while �a and �y are the largest

values of a and y.

1.2.1 Forming the endogenous Chebyshev grids

Chebyshev polynomials can avoid accumulating rounding errors as the polynomial degree of

the approximating function increases. While using state-space grids, this ability stems from

the �discrete-orthogonality properties�of Chebyshev polynomials. These properties hold at

speci�c gridpoints on the interval [�1; 1], at values �xk, such that Tn (xk) = 0, k 2 f1; :::; ng,

with,1

�xk = cos

�
2k � 1
2n

�

�
, k 2 f1; :::; ng . (15)

Using m gridpoints for each dimension, a and y, the m�1 vector which is computed by (15)

is denoted by �x, and it is called the �Chebyshev nodes�. In order to project the gridpoints
1 This error-minimizing property of gridpoints fxkgnk=1 with Tn (xk) = 0 can be proved formally. See, for
example, Judd (1992) and further references therein.
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given by �x back onto variables a and y, use the inverse transformation of (14), in order to

create the corresponding m� 1 vectors, agrid = �a, and ygrid = �y, namely,

�a = A (�x) =
(�x+ 1) (�a� a)

2
+ a , (16)

and

�y = Y (�x) =
(�x+ 1)

�
�y � y

�
2

+ y . (17)

1.2.2 Best-�tting the two-dimensional Chebyshev polynomial to
a known function

Let�s assume that we have an ma� 1 grid for a, �a, calculated using (16), and an my� 1 grid

for y, �y, calculated using (17). Any known function, V (a; y), can map the grid of Chebyshev

nodes (discretized domain) to an ma �my matrix, �V, de�ned as,

�V = [�vk;`] = [V (�ak; �y`)] = [V (A (�xa;k) ; Y (�xy;`))] , k 2 f1; :::;mag , ` 2 f1; :::;myg , (18)

in which A (�) and Y (�) are given by (16) and (17). Let�s also assume that the Chebyshev

polynomial degree for dimension a is �a, and �y for dimension y. In order to achieve a

best Chebyshev polynomial �tting of the functional form given by (10) on the elements of

matrix �V, we minimize least-squares residuals. The formulas for the optimal Chebyshev-

approximation estimator �̂i;j are given by (see, for example, Heer and Maußner, 2005, Ch.

8, p. 441),

�̂0;0 =
1

mamy

maX
k=1

myX
`=1

�vk;` (19)

�̂i;0 =
2

mamy

maX
k=1

myX
`=1

�vk;`Ti (�xa;k) (20)

�̂0;j =
2

mamy

maX
k=1

myX
`=1

�vk;`Tj (�xy;`) (21)

�̂i;j =
4

mamy

maX
k=1

myX
`=1

�vk;`Ti (�xa;k)Tj (�xy;`) , (22)
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for i 2 f1; :::; �a � 1g and j 2 f1; :::; �y � 1g. For convenience, we can summarize the

optimal-�tting conditions given by equations (19) through (22) using some particular matrix

arrays.

Consider the matrices,

Ta (X (�a)) = Ta (�xa) =

2666666664

T0 (�xa;1) T1 (�xa;1) � � � T�a�1 (�xa;1)

T0 (�xa;2) T1 (�xa;2) � � � T�a�1 (�xa;2)

...
...

. . .
...

T0 (�xa;ma) T1 (�xa;ma) � � � T�a�1 (�xa;ma)

3777777775
,

and

Ty (X (�y)) = Ty (�xy) =

2666666664

T0 (�xy;1) T1 (�xy;1) � � � T�y�1 (�xy;1)

T0 (�xy;2) T1 (�xy;2) � � � T�y�1 (�xy;2)

...
...

. . .
...

T0
�
�xy;my

�
T1
�
�xy;my

�
� � � T�y�1

�
�xy;my

�

3777777775
.

Notice that Ta (�xa) is of size ma� �a, while Ty (�xy) is an my� �y matrix. Consider also the

two matrices,

Ima =

2666666664

1
ma

0 � � � 0

0 2
ma

� � � 0

...
...

. . .
...

0 0 � � � 2
ma

3777777775
,

and

Imy =

2666666664

1
my

0 � � � 0

0 2
my

� � � 0

...
...

. . .
...

0 0 � � � 2
my

3777777775
,

with Ima being of size �a � �a, and with Imy being of size �y � �y.
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The �a � �y matrix �̂ that contains all Chebyshev coe¢ cients �̂i;j for i 2 f0; :::; �a � 1g

and j 2 f0; :::; �y � 1g, as these are given by the optimal-�tting conditions (19) through

(22), are summarized by,

�̂ � argmin
�

maX
k=1

myX
`=1

h
Ta (�xa;k) ���Ty (�xy;`)T � �Vk;`

i2
= Ima �Ta (�xa)

T � �V �Ty (�xy) �Imy ,

(23)

in which Ta (�xa;k) and Ty (�xy;l) are the k-th and `-th row of matrices Ta (�xa) and Ty (�xy).

Finally, notice the matrix array,

�V = Ta (�xa) � �̂ �Ty (�xy)T , (24)

which is easy to verify from the expression given by (23) and the Chebyshev discrete-

orthogonality conditions, which imply,

Ta (�xa) � Ima �Ta (�xa)
T = I(ma�ma) and Ty (�xy) � Imy �Ty (�xy)

T = I(my�my) ,

and in which I(ma�ma) and I(my�my) are identiy matrices of size ma �ma and my �my.

1.2.3 Computing all partial derivatives e¢ ciently, and dealing with
the small values of the indirect utility function

Let

A � Ta (X (�a)) , and Y � Ty (X (�y)) . (25)

Let also,

A1 �
@Ta (X (�a))

@a
=

2

�a� aT
0
a (X (�a)) , (26)

with,
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T0a (X (�a)) = T
0
a (�xa) =

2666666664

T 00 (�xa;1) T 01 (�xa;1) � � � T 0�a�1 (�xa;1)

T 00 (�xa;2) T 01 (�xa;2) � � � T 0�a�1 (�xa;2)

...
...

. . .
...

T 00 (�xa;ma) T 01 (�xa;ma) � � � T 0�a�1 (�xa;ma)

3777777775
, (27)

in which T 0j (x) is computed using (12). Notice that the term 2= (�a� a) is the result of

applying the chain rule of di¤erentiation on Ta (X (a)), in which X (a) is given by (14).

Similarly,

A2 �
@2Ta (X (�a))

@a2
=

�
2

�a� a

�2
T00a (X (�a)) , (28)

with,

T00a (X (�a)) = T
00
a (�xa) =

2666666664

T 000 (�xa;1) T 001 (�xa;1) � � � T 00�a�1 (�xa;1)

T 000 (�xa;2) T 001 (�xa;2) � � � T 00�a�1 (�xa;2)

...
...

. . .
...

T 000 (�xa;ma) T 001 (�xa;ma) � � � T 00�a�1 (�xa;ma)

3777777775
, (29)

in which T 00j (x) is computed using (13). We also produce matrices Y1 and Y2, in accordance

with formulas (26), (27), (28), and (29).

For reasonable calibrating parameters, the numerical values of V (a; y) are often small

numbers in the order of 10�15. The problem is that such small-valued functions circumvent

loops with tight convergence criteria. In order to deal with this problem, we normalize

V (a; y), through the transformation,

V (a; y) �

h
~V (a; y)

i1�

1� 
 . (30)

Using (24), for any estimator �̂(n), during the n-th iteration of a recursive process, we

8



approximate the value of ~V (a; y) by,

~V (n) (a; y) ' A�̂(n)
YT . (31)

According to (30) and (31),

V (n) (a; y) '

h
A�̂

(n)
YT
i1�


1� 
 . (32)

The transformation given by (32) allows us to achieve Chebyshev-polynomial coe¢ cients

(contained in in matrix �̂(n)) with values large enough for implementing a recursive numerical

method that searches for a �xed point for matrix �̂(n).

Using (32), the partial derivatives V (n)a and V (n)y are given by,

V (n)a (a; y) '
�
A�̂

(n)
YT
��


A1�̂
(n)YT , (33)

and

V (n)y (a; y) '
�
A�̂

(n)
YT
��


A�̂
(n)
YT
1 . (34)

Using (33) and (34), we obtain,

V (n)aa (a; y) '
�
A�̂

(n)
YT
��
 �

�

�
A�̂

(n)
YT
��1 �

A1�̂
(n)YT

�2
+A2�̂

(n)YT

�
, (35)

V (n)yy (a; y) '
�
A�̂

(n)
YT
��
 �

�

�
A�̂

(n)
YT
��1 �

A�̂
(n)
YT
1

�2
+A�̂

(n)
YT
2

�
, (36)

and

V (n)ay (a; y) '
�
A�̂

(n)
YT
��
 �

�

�
A�̂

(n)
YT
��1 �

A1�̂
(n)YT

��
A�̂

(n)
YT
1

�
+A1�̂

(n)YT
1

�
.

(37)
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1.2.4 Matrix array for computing all functions of the HJB equa-
tion using nonlinear regression techniques

Matrices described by equations (30) through (37) use the matrix array,

V (a; y) ' Vmatrix| {z }
ma�my

�

2666666664

V (a1; y1) V (a1; y2) � � � V
�
a1; ymy

�
V (a2; y1) V (a2; y2) � � � V

�
a2; ymy

�
...

...
. . .

...

V (ama ; y1) V (ama ; y2) � � � V
�
ama ; ymy

�

3777777775
. (38)

For Vmatrix in (38) we use the (ma �my)� 1 vector array,

Vvector_array = (ma �my)� 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2666666666666666666666666666666666666666666666666664

V (a1; y1)

V (a2; y1)

...

V (ama ; y1)

����

V (a1; y2)

V (a2; y2)

...

V (ama ; y2)

����
...

����

V
�
a1; ymy

�
V
�
a2; ymy

�
...

V
�
ama ; ymy

�

3777777777777777777777777777777777777777777777777775

(39)
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The array in (39) can be achieved by matching two (ma �my)� 1 vectors,

�agrid_long = 1(my�1) 
 �a , (40)

which corresponds to my stacked vectors �a, and

�ygrid_long = �y 
 1(ma�1) , (41)

which is my stacked vectors of size ma � 1, with each ma � 1 vector having ma identical

elements, ma times each element of �y, stacked in the order of elements of �y.

Using the vector array in (39), we express all matrices described by equations (30) through

(37), using the Matlab command �reshape�, and we use all partial derivatives in the same

(ma �my)� 1 vector array in order to express c� and �� according to equations (6) and (8).

1.3 Ensuring that consumption is above subsistence and treat-
ment of borrowing constraints

The functional form of utility that we use satis�es an Inada condition as c ! �, which is

obvious from (3). This is the reason that equation (6) holds. The RHS of (6) has a simple

interpretation: as long as V � is well-de�ned, it is guaranteed that c > �. Notice that the

�rst-order condition given by (1) holds even if there is a borrowing constraint a � b. The

presence of a borrowing constraint, a � b, does not a¤ect (2) either. In order to implement

a � b, all we need to do is to ensure that the deterministic part of the budget constraint is

nonnegative when a = b, i.e.

�
��RT +

�
1� ��1T

�
rf
�
b+ y � c� � 0 . (42)

Inserting (42) into (9) is achieved by the modi�ed version of (9),

1 =

8><>: �

� (1� 
) (c
� � �)�(1�
) [(1� 
)V �]1��+
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+ max
��
��RT +

�
1� ��1T

�
rf
�
a+ y � c� ; 0

	��
a=b
� V �a

+
1

2
a2����T (��)T � V �aa + �yy � V �y

+
1

2
(�yy)

2 � V �yy + �yay���Ty � V �ay

9>=>; =
��
�
V �
�
, (43)

using an indicator function in order to implement the conditionality operator (�)ja=b. The

presence of the term max
��
��RT +

�
1� ��1T

�
rf
�
a+ y � c� ; 0

	��
a=b

� V �a in (43) has not

a¤ected our results, as we had strictly positive saving rates in all our calibration exercises.

Notably, our borrowing constraint is b = a. As we have averaged across income groups of

stockholders, a is well above 0, it amounts to USD 85; 520, which is a rather tight borrowing

constraint. Yet, at this level of wealth (a), and for all gridpoints for y, households chose

interior solutions.

1.4 The recursive algorithm

Using the HJB equation (equation (9)), we perform iterations on �, using the Matlab

command �nlinfit�which is designed in order to solve nonlinear minimum least-squares

econometric models. The inputs of �nlinfit�are a (nonlinear econometric) model, a matrix

of regressors, and a vector of model parameters that need to be estimated. In order to

match the input structure of the �nlinfit�Matlab procedure, we compute all the above

(ma �my)� 1 vectors corresponding to equations (30) through (37) and also to (6) and (8),

and we use equation (9) in order to produce a Matlab m-�le �HJB.m�with inputs �agrid_long,

�ygrid_long and �vector �reshape(�; �a � �y; 1), which is an (�a � �y)� 1 vector resulting from

stacking all columns of �. This �HJB.m�function de�nes the model to be estimated, and we

also create an (mamy)�2 matrix with columns consisting of vectors �agrid_long and �ygrid_long,

which is the regressor matrix.

12



1.5 The importance of a good �rst guess

The initial guess is the �̂(0)
vector which corresponds to the closed-form solution given by Propo-

sition 1 in the paper, for the special case �y�
T
y = 1. When �y�

T
y = 1 holds, the performance

of the algorithm is satisfactory, since �̂(0)
vector = �̂

�
vector in one iteration.

We perform iterations for the version of the model with a single risky asset, for cases in

which �ys = 1, and also for cases in which �ys < 1. We compute the decision rules of the

model for �ys 2 f0:5; 0:75g, taking gradual steps down from �ys = 1 to �ys = 0:75, and then

from �ys = 0:75 to �ys = 0:5. In each case, we use the solution found in the previous step

as a �rst guess in the �nlinfit�Matlab procedure, �nding that this strategy is stable and

e¢ cient. Typically, setting �a = �y = 5, and ma = my = 20, performs satisfactorily well,

producing all results plotted in Figure 5 of the paper in about 13:5 seconds on a state-of-the

art laptop.

1.6 Dealing with the nonlinear relationship between assets and
income across income categories in the data

Panel C of Figure 4 shows that, after ranking households according to their after-tax adult-

equivalent income, a and y are linked through a nonlinear relationship in the data. This

nonlinear relationship is not re�ected by the two grids, �a and �y. This failure of re�ecting the

nonlinear relationship occurs because grids �a and �y should be consistent with Chebyshev

nodes, in order to ensure that discrete-orthogonality conditions hold accurately. Discrete-

orthogonality conditions are a necessary requirement for good performance of the Chebyshev

approximation. The fact that grids �a and �y do not re�ect the nonlinear relationship in the

data means that we cannot directly select matrix elements from the resulting matrix

�� =
�
��
�
k;`

�
= [� (�ak; �y`)] = [� (A (�xa;k) ; Y (�xy;`))] , k 2 f1; :::;mag , ` 2 f1; :::;myg ,

13



of the code in order to report them in Figure 5. In order to deal with this issue, we �rst

interpolate the adata and ydata data observations that correspond to the six income categories

in panel C of Figure 4 in order to capture the nonlinear relationship in that �gure, say

ydata = g (adata) ,

using the �spline�-interpolation option of Matlab�s �interp1�routine; speci�cally, we pro-

duce an ma � 1 vector, called ynl, that uses �a as the interpolation domain, so,

ynl = g (�a) . (44)

In order to produce Figure 5, the goal is to report portfolio shares which are consistent with

�� = �(�a; g (�a)) .

So, for all k 2 f1; :::;mag, �x an �ak gridpoint and de�ne the function,

~�k (y) � � (�ak; y) ,

using the �spline�-interpolation option of Matlab�s �interp1�routine, using gridpoints �y

that correspond to the k-th row of matrix �� as the domain, and themy�1 vector [� (�ak; �y)]T

as the image of function ~�k (y). So,

��k � � (�ak; g (�ak)) =
n
� (�ak; y) j ~�

�1
k (y) = ynlk

o
,

in which ynlk corresponds to the k-th element of vector y
nl, de�ned by (44), �lls in a newma�1

vector, ��. Vector �� contains the values that we report in Figure 5, after interpolating the

pair
�
ynl;��

�
and projecting this interpolation on the 6�1 vector ydata, using the �spline�-

interpolation option of Matlab�s �interp1�routine.
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2. Appendix B �Simulating the discrete-time model

2.1 Statement of the Problem

The household solves,

V (at; yt) = max
(ct;�t)

�
(1� �) (ct � �)1�

1
� + � f(1� 
)Et [V (Rp;t+1at + yt � ct ; yt+1)]g

1� 1
�

1�


� 1�

1� 1

�

1� 
 ,

(45)

in which,

Rp;t+1 �
�
Rt+1 � rf

�
�t + r

f , (46)

and with,

ln (yt+1)� ln (yt) = �y + "y;t+1 , "y;t+1 � N
�
0; �2y

�
, (47)

ln (Ps;t+1)� ln (Ps;t) = Rs + "s;t+1 , "s;t+1 � N
�
0; �2s

�
, (48)

where Ps;t denotes the stock price in period t, while,

Cov ("s;t+1; "y;t+1)

�s�y
= �ys , (49)

Rt in equation (46) is given by,

Rt = e
Rs+"s;t , (50)

yt is given by,

yt = e
�y+"y;t , (51)

and (a0; y0; �0) are given.

The problem stated by (45) is the discrete-time analogue to the continuous-time version

of the model with one risky asset (here we focus on stock-market portfolio holdings). Notice

that in this case of a single risky asset, the condition for insurability (diversi�ability) of
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labor-income risk becomes �2ys = 1, so labor-income risk is uninsurable if �ys =2 f�1; 1g. Let,

� �
1� 1

�

1� 
 ,

which transforms (45) into,

V (at; yt) = max
(ct;�t+1)

n
(1� �) (ct � �)(1�
)� + � f(1� 
)Et [V (Rp;t+1at + yt � ct ; yt+1)]g�

o 1
�

1� 
 .

(52)

2.2 Necessary conditions

Applying the envelope theorem on (52),

Va (at; yt) =
@ [RHS of eq. (52)]

@at
, (53)

while the �rst-order conditions of (52) with respect to ct give,

(1� �) (ct � �)(1�
)��1
n
(1� �) (ct � �)(1�
)� + � f(1� 
)Et [V (at+1; yt+1)]g�

o 1
�
�1
=

=
@ [RHS of eq. (52)]

@at
. (54)

In equilibrium, the optimal sequence
��
c�t ; �

�
t+1; x

�
t+1

�	1
t=0

satis�es the Bellman equation

given by (52), so, after discarding the max operator, (52) gives,

n
(1� �) (c�t � �)

(1�
)� + �
�
(1� 
)Et

�
V
�
a�t+1; yt+1

��	�o
= [(1� 
)V (at; yt)]� . (55)

Combining equations (55) and (54) we obtain,

(1� �) (c�t � �)
(1�
)��1 [(1� 
)V (at; yt)]1�� =

@ [RHS of eq. (52)]
@at

. (56)

So, combining (53) with (56) we obtain,

c�t = C (at; yt) = �+

�
1

1� �Va (at; yt) [(1� 
)V (at; yt)]
��1
� 1

(1�
)��1

. (57)

16



Equation (57) is crucial for solving the model numerically using value-function iteration.

Equation (57) states that, once we have a guess for the value function, V (a; y), we imme-

diately have a closed-form solution for the decision rule, C (a; y), which depends only on

V (a; y)and Va (a; y). So, if we use a projection method for approximating V (a; y), then we

can immediately incorporate the formula given by (57) into the RHS of the Bellman equa-

tion. Most importantly, equation (57) helps in the direct computation of portfolio shares,

directly from the �rst-order condition with respect to �.

The �rst-order condition with respect to � implies,

Et
�
Va (Rp;t+1at + yt � ct ; yt+1)

�
Rt+1 � rf

��
= 0 ,

the detailed version of which is,

Et
�
Va
���
Rt+1 � rf

�
�t + r

f
�
at + yt � C (at; yt) ; yt+1

� �
Rt+1 � rf

�	| {z }
q

h(�t;at;yt)

= 0 . (58)

So, based on (58), the decision rule for the portfolio share ��t = �(at; yt), is the implicit

function that solves,

h (� (a; y) ; a; y) = 0 . (59)

2.3 Algorithm: Value-Function Iteration

2.3.1 Overview

We use an initial guess on the value function V de�ned by (52), V (0). Then we utilize the

contraction-mapping property of the Bellman equation described by the recursion,

V (j+1) (at; yt) = max
(ct;�t+1)

n
(1� �) (ct � �)(1�
)� + �

�
(1� 
)Et

�
V (j) (Rp;t+1at + yt � ct ; yt+1)

�	�o 1
�

1� 
 .

(60)
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in order to generate a Cauchy sequence
�
V (j)

	1
j=0

with V (j) ! V �, which is a typical value-

function iteration approach. The key issue in value-function iteration approaches is how

one numerically implements the max operator on the right-hand side (RHS) of the Bellman

equation. In order to perform maximization on the RHS of (60), we solve the �rst-order

conditions given by (57) and (58), in each step of the recursive procedure, which relies on

(the typically incorrect) value function V (j). For deriving the decision rule for consumption,

C(j) (a; y) which is conditional upon the value function V (j) (a; y), equation (57) provides an

explicit formula,

C(j) (at; yt) = �+

�
1

1� �V
(j)
a (at; yt)

�
(1� 
)V (j) (at; yt)

���1� 1
(1�
)��1

. (61)

The formula C(j) (at; yt) can be substituted directly into the RHS of (60), but we do have

an analytical expression for the decision rule �(j) (at; yt). In order to compute �(j) (at; yt) ��
� j h(j) (�; a; y) = 0

	
, we need to numerically solve,

h(j) (�; a; y) = 0 , (62)

in which,

h(j) (�t; at; yt) � Et
�
V (j)a

���
Rt+1 � rf

�
�t + r

f
�
at + yt � C(j) (at; yt) ; yt+1

� �
Rt+1 � rf

�	
.

(63)

Both in (63), and in RHS of (60), there is an expectations operator, Et (�), that needs to

be computed. This computation of the expectations operator is discussed in a separate

subsection below.

Another technical necessity in (63) is how to compute V (j)a (a; y), the partial derivative

of the value function. In order to achieve this derivative computation, we employ a simple

exponential-projection method which approximates functions using,

f (a; y) ' f̂ (a; y) � e
P�

i=0

P�

j=0
�ij [ln(a)]

i[ln(y)]j . (64)
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An advantage of this f̂ (x) approximation given by (64), is that we can take explicit deriva-

tives, namely,

fa (a; y) ' f̂a (a; y) = f̂ (a; y)
�P
i=0

�P
j=0

i � �ij
[ln (a)]i�1

a
[ln (y)]j . (65)

For values of parameter 
 > 1, the mapping m (�) = (�)(1�
) = (1� 
), which is applied on

the RHS of (60), is known to give negative values. This property, of having negative values

for the the RHS of (60), is inherited by the value function on the LHS of (60) as well. Yet,

the exponential-projection technique we suggest in (64), can only match positive values. In

order to tackle this problem, we use the transformation,

V (a; y) =

h
~V (a; y)

i1�

1� 
 , ~V (a; y) = [(1� 
)V (a; y)]

1
1�
 . (66)

A consequence of the transformation given by (66) is,

Va (a; y) =
h
~V (a; y)

i�

~Va (a; y) . (67)

So, we create a Matlab m-�le, named �Vtilde.m�, which implements the exponential ap-

proximation

~V (a; y) ' e
P�

i=0

P�

j=0
�ij [ln(a)]

i[ln(y)]j , (68)

on any grid for the state variables, a and y.

Using this projection approach, we take a �rst guess on the value function, ~V (0), and we

obtain an estimate of the vector
nn
�
(0)
i;k

o�
i=0

o�
k=0

through the �nlinfit�command in Matlab.

Our �rst guess, ~V (0), uses the calibrating parameters that we have found in continuous time,

and the continuous-time functional form for the value function, V (a; y) for the special case

in which �ys = 1.

Using the recursive procedure described above, through (60) we generate a sequence of
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coe¢ cients
nnn

�
(j)
i;k

o�
i=0

o�
k=0

o1
j=0
, with limj!1

nn
�
(j)
i;k

o�
i=0

o�
k=0

=
n�
��i;k
	�
i=0

o�
k=0
, in which

V � (a; y) ' e(1�
)
P�

i=0

P�

j=0
��ij [ln(a)]

i[ln(y)]j

1� 
 ,

in which V � (a; y) solves (52).

2.3.2 Approximating the joint density for the stochastic process
for the interest rate and the labor-income growth

In equations (47), (48), and (49) above, we have mentioned that the model�s two shocks "s

and "y are distributed so that,

"s � N
�
0; �2s

�
, "y � N

�
0; �2y

�
, and

Cov ("s; "y)

�s�y
= �ys . (69)

We want to compute a joint-probability matrix in order to describe the joint density of

shocks,

sshock � Rs + "s, and yshock � �y + "y , (70)

based on the stochastic structure given by (69). The joint density of (sshock; yshock) is this of

a bivariate normal with,

� (sshock; yshock) =
1

2��s�y
p
1� �2

�

� exp
�
� 1

2(1� �2ys)

�
(sshock �Rs)2

�2s
+
(yshock � �y)2

�2y
�
2�ys(sshock �Rs)(yshock � �y)

�s�y

��
.

(71)

After some algebraic manipulations, it can be proved that, sshock conditional upon yshock is

also normally distributed with,

sshockjyshock � N
�
Rs +

�s
�y
�ys(yshock � �y); (1� �2ys)�2s

�
,
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so,

� (sshock ; yshock) = � (sshock j yshock) � � (yshock) , (72)

in which

� (yshock) =
1

�y
p
2�
exp

�
�
(yshock � �y)2

2�2y

�
,

since yshock � N
�
�y; �

2
y

�
. In order to calculate � (sshock j yshock) and � (yshock), we use the

fact that,

sshockjyshock �
h
Rs +

�s
�y
�ys(yshock � �y)

i
�s
p
1� �2ys

� N (0; 1) , and
yshock � �y

�y
� N (0; 1) ,

and we then use (72) in order to compute � (sshock ; yshock) in matrix form. So, if the grid

for sshock is an ms � 1 vector and the grid for yshock is an my � 1 vector, then let the

joint-probability matrix

Msy|{z}
ms�my

� [Msy;k`] = [� (sshock;k ; yshock;`)] , k 2 f1; :::;msg , ` 2 f1; :::;myg . (73)

For specifying the grids for sshock and yshock, we split the continuum into equispaced

intervals, and then we proceed to calculating the probabilities associated with the midpoint

of each interval, using Matlab�s built-in calculator for the normal density (the command

�normcdf�, which calculates cumulative probabilities for a standard normal).

Because the support of normally distributed variables is (�1;1), we need to choose an

upper and lower level of the support for sshock and yshock. For a standard normal notice that,

in Matlab, �normcdf(-3)=0.0013�, �normcdf(-10)=7.6199e-24�, �normcdf(-12)=1.7765e-33�,

with the latter being a negligible number. In order to avoid accumulating errors (numbers

such as 10�33 tend to create this error-accumulation problem), for the lowest gridpoint of

sshock (same for yshock) called �rmin�, we use

sshock_min = Rs + �s � (�10) ,
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and for the largest gridpoint we use

sshock_max = Rs + �s � (+10) ,

in which �10 is a calibrating parameter related to the standard normal, ensuring that the

suppport of sshock does not have probability kinks at its endpoints, or that there is no error-

accumulation problem (after plotting both the joint density function of (sshock ; yshock), and

individual density functions, we have concluded that the value �normcdf(-10)=7.6199e-24�

works best. The Matlab m-�le �mkprobmatrix2normals.m� produces matrix Msy, after

inserting the vector
�
sshock; yshock; Rs; �y; �s; �y; �ys

�
as this m-�le�s input.

2.4 Computing the portfolio share that satis�es the �rst-order
conditions: applying the expectations operator

First, we choose grids for a and y calculated in accordance with the nonlinear relationship

between a and y in the data (see Panel C in Figure 4 and the expression ydata = g (adata)

given by (44)). So, we generate two n�1 vectors, agrid and ygrid, that satisfy ygrid = g (agrid).

Consider that we are at the j-th iteration of the value-function iteration method, using V (j)

for all calculations. At this stage we want to compute the function h(j) (�t; at; yt) based on

(58), and a concern is how to apply the expectations operator in that function. Using a

loop, for each i 2 f1; :::; ng, we express function h(j) (�t; at; yt) in equation (58) as,

msX
k=1

myX
`=1

Msy;k`

8>><>>:V (j)a

0BB@
2664
0BB@esshock;k| {z }

q
Rt+1

� rf

1CCA�t + rf
3775 agrid;i| {z }

q
at

+ ygrid;i| {z }
q
yt

� C

0BB@agrid;i| {z }
q
at

; ygrid;i| {z }
q
yt

1CCA ; ygrid;i � eyshock;`| {z }
q

yt+1

1CCCA
0BB@esshock;k| {z }

q
Rt+1

� rf

1CCA
9>>>=>>>; = 0 , (74)
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in which V (j)a (�) is given by (67) for a given vector of coe¢ cients
nn
�
(j)
i;k

o�
i=0

o�
k=0
. The

expression given by (74) de�nes a function h(j) (�; agrid;i; ygrid;i), for each i 2 f1; :::; ng. We

use Matlab�s �fsolve�routine in order to solve the nonlinear equation h(j) (�; agrid;i; ygrid;i) =

0, so,

�(j) (agrid;i; ygrid;i) =
�
� j h(j) (�; agrid;i; ygrid;i) = 0

	
for all i 2 f1; :::; ng . (75)

2.5 Performing value-function iteration

Here we use the Bellman equation given by (60) in order to perform value function iteration.

We use (75) and (61) in order to incorporate �(j) (at; yt) and C(j) (at; yt) into the RHS of

(60). One di¢ culty is the computation of the expectations term on the RHS of (60). We

use,

Et
�
V (j) (Rp;t+1at + yt � ct ; yt+1)

�
=

msX
k=1

myX
`=1

Msy;k`

8>><>>:V (j)
0BB@
2664
0BB@esshock;k| {z }

q
Rt+1

� rf

1CCA�t + rf
3775 agrid;i| {z }

q
at

+ygrid;i| {z }
q
yt

� C

0BB@agrid;i| {z }
q
at

; ygrid;i| {z }
q
yt

1CCA ; ygrid;i � eyshock;`| {z }
q

yt+1

1CCCA
0BB@esshock;k| {z }

q
Rt+1

� rf

1CCA
9>>>=>>>; . (76)

Because the curvature of the value function is more profound at low income/wealth

levels, we adjust the grids for a and y so that they are more dense at low income/wealth

levels. This strategy allows us to obtain e¢ cient approximations even with 35 gridpoints

for agrid and ygrid in total (e.g., raising the number of gridpoints to 150 does not make an

essential di¤erence). Convergence in value function and/or coe¢ cients
��
�i;k
	�
i=0

	�
k=0
, is

usually achieved in about 2 minutes for each model parameterization in Figure 6. Producing

all graphs in Figure 6 takes about 12 minutes on a state-of-the art laptop.
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2.6 Ensuring that consumption is above subsistence and treat-
ment of borrowing constraints

The utility function we use satis�es an Inada condition as c ! �, which is obvious from

(54). The RHS of (57) has the interpretation that, as long as V � is well-de�ned, c > � is

guaranteed. In order to implement a borrowing constraint of the form at+1 � b we modify

(60) as,

V (j+1) (at; yt) =

max
(ct;�t+1)

n
(1� �) (ct � �)(1�
)� + �

�
(1� 
)Et

�
V (j)

�
max fRp;t+1at + yt � ct; bgjat=b ; yt+1

��	�o 1
�

1� 
 .

(77)

using an indicator function in order to implement the conditionality operator (�)jat=b. As in

our continuous-time analysis, the presence of the borrowing constraint has not a¤ected our

results. For our borrowing constraint b = a, at this level of wealth (a), and for all gridpoints

for y, households chose interior solutions.
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3. Calculating the correlation coe¢ cient between risky-asset re-
turns and labor-income growth

3.1 Labor-income dynamics: PSID 1970-2009

We use data from the Panel Study of Income Dynamics (PSID) between 1970 - 2009 in order

to estimate the labor-income growth component that cannot be explained by household-

demographic characteristics such as age, marital status, household composition, and some

other (perhaps unobservable) family characteristics, such as cultural background, peer ef-

fects, etc. This labor-income growth component is our data proxy for variable yshock, as

de�ned by (47) and (70). The main estimation procedure follows Cocco, Gomes and Maen-

hout (2005). Cocco, Gomes and Maenhout (2005) restrict their sample to households headed

by males. Unlike them, we keep households with both males and females as a household

head, since we focus on explaining stockholding data from the Survey of Consumer Finances

(SCF), in which we have not distinguished the gender of household heads. To single out

the retirement behavior, which is abstract away from our model, we keep a subsample by

eliminating retirees, nonrespondents and students.

Our de�nition of labor income is relatively inclusive in terms of �scal transfers and

government bene�ts, in order to focus on the pure absence of self-insuring potential against

labor-income risk. We de�ne labor income as total reported labor income plus unemployment

compensation, workers compensation, social security, supplemental social security, other

welfare, child support, and total transfers (mainly help from relatives). These calculations

have been made for both the head of household and if a spouse is present we drop zero-

income observations. We also de�ate labor income using the Consumer Price Index, with

1992 as the base year.

We regress the logarithm of labor income on dummies for age, family �xed e¤ects, marital
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status, and household composition. Using �xed-e¤ect estimation, the econometric-model

speci�cation is,

yi;t = �+ �i +Xi;t� + "i;t , yi;t � ln(Yi;t) , (78)

in which Xi;t is the set of control variables. In order to explore the error structure further,

we generate the residual from the above �tted model (78),

c"i;t = yi;t � cyi;t . (79)

Combining (78) and (79), we formulate the cross-sectional mean of the unexplained part of

the labor-income growth rate �byt, as

yshock � �byt =
NP
i=1

�cyi;t
N

=

NP
i=1

c"i;t � NP
i=1

["i;t�1

N
, (80)

which yshock is the labor-income-shock concept that we use in the theoretical model.

3.2 Risky-asset returns

For generating the time series of risky-asset returns, we use the Standard and Poor�s (S&P)

stock-market index from 1970 to 2009, and calculate S&P-index returns as annual averages.

The formula of the variable proxying sshock in our theoretical model is,

sshock �
S&P Indext
S&P Indext�1

� 1 . (81)
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3.3 Correlation coe¢ cient between risky-asset returns and labor-
income growth

Table A.1 gives the correlation coe¢ cient between yshock and sshock.

Full Sample College Graduates

Sample Period 1970 - 2009 1970 - 2009

corr(yshock; sshock) 31:89% 50:78%

Table A.1

For the full sample, the correlation coe¢ cient is about 32%. Because stockholders tend

to have higher educational level, we also focus on college graduates by restricting the PSID-

sample to college graduates, �nding a higher number, which is about 51%.
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1. Data

The Eurosystem Household Finance and Consumption Survey (HFCS) is a joint project

of all central banks of the Eurosystem. HFCS includes detailed household-level data on

various aspects of household balance sheets and related economic and demographic variables,

including income, pensions, employment, gifts and measures of consumption.

HFCS provides country-representative data, which have been collected in 15 euro area

members for a sample of more than 62,000 households. These 15 countries are Belgium,

Germany, Greece, Spain, France, Italy, Cyprus, Luxembourg, Malta, Netherlands, Austria,

Portugal, Slovenia, Slovakia, and Finland.

For each country we consider only household heads between age 25 and 65 years old,

which retained 42,553 households from the original sample. In addition, we also dropped

households with zero income (215 observations).

The HFCS survey uses a multiple stochastic imputation strategy to recover the missing

value or the non-responding households. It provides �ve imputed values (replicates) for every

missing value corresponding to a variable.1 We calculate the multiple imputed mean and

standard deviation of our targeted variables (gross income and portfolio share on stocks) in

Table 1. In Table 2, we calculate the mean of portfolio share on stocks for all Eurosystem

countries, classifying by income category across the income distribution.

2. De�nition of Variables

1. Stock Equity (direct and indirect stockholding excluding any pension accounts.)

� Publicly Traded Stocks.
1 A detailed description of the imputation procedure applied in the HFCS is given in chapter 6 of
the Eurosystem Household Finance and Consumption Survey methodological report for the �rst wave.
(https://www.ecb.europa.eu/pub/pdf/other)
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� Mutual Funds: it includes funds predominately in equity, bonds, money market

instruments, real estate, hedge funds and other fund types. The share of stock

holding is adjusted conditional on fund types.2

2. Total Financial Assets: it includes deposits (sight accounts, saving accounts), invest-

ments in mutual funds, bonds, investments held in non-self-employment private busi-

nesses, publicly traded shares, managed investment accounts, money owed to house-

holds as private loans, other �nancial assets (options, futures, index certi�cates, pre-

cious metals, oil and gas leases, future proceeds from a lawsuit or estate that is being

settled, royalties or any other), private pension plans and whole life insurance policies.

However, current value of public and occupational pension plans is not included.

3. Total Income: it is measured as gross income and is de�ned as the sum of labor and non-

labor income for all household members. Labor income is collected for all household

members aged 16 and older, other income sources are collected at the household level.

In some countries, as gross income is not well known by respondents it is computed

from the net income given by the respondent. Speci�cally, the measure for gross

income includes the following components: employee income, self-employment income,

income from pensions, regular social transfers, regular private transfers, income from

real estate property (income received from renting a property or land after deducting

costs such as mortgage interest repayments, minor repairs, maintenance, insurance

and other charges), income from �nancial investments (interest and dividends received

from publicly traded companies and the amount of interest from assets such as bank

accounts, certi�cates of deposit, bonds, publicly traded shares etc. received during

2 Note: stockholding from any public and occupational pension plans or individual retirement accounts are
not included in our calculation.

3



the income reference period less expenses incurred), income from private business and

partnerships and other non-speci�ed sources of income.3

4. Weight: weights are assigned in order to normalize the sample to representative-

sampling standards. 4

5. Income Percentiles: they are generated from the variable �total income�.

3. Portfolio Share of Stockholding

We de�ne the portfolio share of stockholding for income group j of country k as,

�kj =

Nk
jP

n=1

Stocki;j;k
Total Financial Assetsi;j;k

Nk
j

where Nk
j is the amount of households within income group j of country k.
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Country 
Code

Income 
Percentiles

 Gross Income 
(EUR) 

Gross 
Income(s.e.)

Portfolio Share 
on Stocks

Portfolio Share 
on Stocks(s.e.)

AT 20 12,976.54      256 1.02% 0.0022
AT 40 24,967.37      404 1.08% 0.0028
AT 60 37,117.68      632 1.96% 0.0071
AT 80 53,357.09      1874 2.41% 0.0045
AT 100 109,326.63    15025 3.22% 0.0047
BE 20 9,281.07        54 2.06% 0.0003
BE 40 24,812.93      253 2.27% 0.0011
BE 60 40,320.70      354 2.96% 0.0020
BE 80 62,584.55      277 4.06% 0.0021
BE 100 138,496.66    3590 7.22% 0.0041
CY 20 12,187.64      152 5.55% 0.0081
CY 40 26,616.23      237 5.92% 0.0124
CY 60 37,687.29      372 6.93% 0.0077
CY 80 54,505.03      739 8.38% 0.0113
CY 100 115,287.60    3738 10.89% 0.0152
DE 20 11,943.90      226 0.53% 0.0013
DE 40 26,100.98      215 1.01% 0.0016
DE 60 39,488.18      192 1.81% 0.0012
DE 80 56,594.20      123 2.27% 0.0011
DE 100 115,300.16    632 4.02% 0.0011
ES 20 10,789.32      40 1.56% 0.0005
ES 40 20,483.62      25 2.14% 0.0011
ES 60 28,516.08      61 2.19% 0.0023
ES 80 39,324.07      176 2.55% 0.0011
ES 100 79,661.73      367 5.96% 0.0021
FI 20 15,486.37      0 2.63% 0.0000
FI 40 30,490.31      0 6.19% 0.0000
FI 60 44,594.16      0 6.47% 0.0000
FI 80 61,658.27      0 8.06% 0.0000
FI 100 105,894.09    0 16.87% 0.0000
FR 20 13,363.59      0 1.30% 0.0002
FR 40 23,818.85      0 2.45% 0.0003
FR 60 33,383.88      0 3.13% 0.0011
FR 80 45,058.05      0 4.24% 0.0004
FR 100 87,867.95      0 8.78% 0.0008
GR 20 9,343.90        53 0.62% 0.0009
GR 40 18,067.57      56 0.28% 0.0028
GR 60 25,897.98      68 0.84% 0.0043
GR 80 36,438.48      67 2.67% 0.0058
GR 100 68,567.06      758 1.75% 0.0040
IT 20 10,963.57      0 0.18% 0.0000
IT 40 21,951.38      0 0.99% 0.0000
IT 60 31,572.36      0 2.03% 0.0000
IT 80 44,861.28      0 1.29% 0.0000
IT 100 84,829.13      0 4.81% 0.0000
LU 20 23,090.13      330 1.50% 0.0071
LU 40 45,705.58      529 1.39% 0.0070
LU 60 68,371.82      227 2.36% 0.0036

Table 1: Portfolio Share on Stocks by Income Percentile



LU 80 99,800.81      633 3.91% 0.0067
LU 100 210,510.78    1895 10.32% 0.0055
MT 20 7,749.43        70 2.81% 0.0040
MT 40 14,410.10      32 4.03% 0.0027
MT 60 21,843.21      96 3.55% 0.0029
MT 80 32,611.60      91 3.13% 0.0025
MT 100 55,681.82      329 6.91% 0.0012
NL 20 15,827.96      638 0.69% 0.0024
NL 40 32,431.63      698 0.72% 0.0061
NL 60 43,275.19      617 1.51% 0.0080
NL 80 57,456.25      604 1.21% 0.0040
NL 100 91,322.43      1316 1.35% 0.0008
PT 20 5,634.04        93 0.01% 0.0001
PT 40 11,801.17      66 0.28% 0.0003
PT 60 16,916.69      92 0.50% 0.0005
PT 80 24,892.49      142 1.03% 0.0004
PT 100 55,466.72      233 4.17% 0.0014
SI 20 2,976.53        121 6.20% 0.0009
SI 40 12,617.03      175 5.82% 0.0042
SI 60 22,103.94      146 5.93% 0.0063
SI 80 31,954.13      573 5.86% 0.0263
SI 100 60,898.29      957 7.27% 0.0187
SK 20 5,215.67        69 0.05% 0.0002
SK 40 9,139.51        77 0.05% 0.0003
SK 60 12,591.09      26 0.23% 0.0004
SK 80 16,646.84      56 0.25% 0.0009
SK 100 30,152.51     256 0.32% 0.0002

Note: s.e. stands for the multiple imputed standard errors.

Source: European Household Finance and Consumption Survey 2013



Region Income Percentiles Portfolio Share on Stocks 
Euro System Countries 20 1.779%

40 2.308%
60 2.828%
80 3.422%

100 6.258%

Table 2: Portfolio Share on Stocks by Income Percentile (EU mean)

Source: European Household Finance and Consumption Survey 2013
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1. Data

The China Household Finance Survey (CHFS) is conducted by the survey and research

center for China Household Finance, which is based at Southwestern University of Finance

and Economics. This survey is the only nationally representative survey in China that has

detailed information about household �nance and assets, including housing, business assets,

�nancial assets, and other household assets. In addition, the survey also provides information

about income and expenditures, social and commercial insurance, and more.

We use the 1st survey that was conducted in summer 2011 with a sample size of 8,438

households and 29,500 individuals,which covers 21 provinces (including the autonomous

regions) and 4 Municipalities (Beijing, Shanghai, Tianjin and Chongqing). This survey

employs a strati�ed 3-stage probability proportion to size (PPS) random sample design,

which is necessary to ensure that the survey is nationally representative1 .

We consider only household heads between age 25 years old and 65 years old, which

retained 6,952 households. In addition, we have dropped households with zero income (226

observations).

2. De�nition of Variables

1. Stock Equity (direct and indirect stockholding excluding any pension account)

� Publicly Traded Stocks.

� Non Publicly Traded Stocks.

� Mutual Funds: it includes funds predominatly in equity, bonds, money market

instruments, also includes mixed stratergy funds and other types.

1 Details about the sampling design could refer http://www.chfsdata.org/detail-14,15.html.
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� Financial Products (categorized as Wealth Management Products)

2. Total Financial Assets: it comprises total balance of demand deposits, total balance

of time deposits, stocks (public traded and non-public traded), bonds, mutual funds,

derivatives, warrants, other �nancial derivatives, �nancial products, foreign currency

assets, gold, cash at home and other type of liquid assets.

3. Total Income: it includes income from all sources (salary, interest, dividend, compen-

sations, transfers etc).

4. Weight: weights are assigned in order to normalize the sample to representative-

sampling standards, the weight variable in the data is �swgt�.

5. Income Percentiles: they are generated from variable �total income�.

3. Portfolio Share of Stockholding

We de�ne the portfolio share of stockholding for income group j as,

�j =

NjP
n=1

Stocki;j
Total Financial Assetsi;j

Nj

where Nj is the amount of households within income group j. Table 1 shows the detailed

information of portfolio share on stocks across the income distribution, together with in-

foramtion on total asset holding and total �nancial-asset holding.
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Country 
Code

Income 
Percentiles

Portfolio 
Share on 

Stocks (%)

 Gross Income 
(CNY) 

Total Assets   
(CNY) 

Total Financial 
Assets        
(CNY)

China 20 1.443 4,220.57      396,191.75     23,482.43    
40 1.273 16,367.13    275,096.63     16,263.76    
60 3.150 30,631.76    440,228.28     27,103.34    
80 5.414 52,124.18    594,769.38     37,879.68    

100 11.860 208,030.73 1,810,124.50  167,894.25

Table 1: Portfolio Share on Stocks by Income Percentile

Source: Chinese Household Finance Survey 1st Wave 2013
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1 Description of Variables (Source: Survey of Con-
sumer Finances (SCF) 2007)

1. Stock Equity (Direct and Indirect Stockholding):

(a) Direct stockholding

� Publicly Traded Stocks.
(b) Stockholding through mutual funds

� Saving and Money Market Accounts.
� Mutual Funds.
� Annuities, Trusts and Managed Investment Accounts.

(c) Stockholding through Retirement Accounts

� IRA/KEOGH Accounts.
� Past Pension Accounts.
� Current Bene�ts and Future Bene�ts from Pensions.

2. Business Equity:

� Actively Managed Business.
� Non-Actively Managed Business.

3. Total Assets: Assets of all categories covered in the SCF 2007 data-
base (stocks, business equity, bonds, saving and checking accounts,
retirement accounts, life insurance, primary residence, and other resi-
dential real estate, nonresidential real estate, vehicles, artwork, jewelry,
etc.).

4. Total Income: Income from all sources (salary, interest, dividend,
compensations, transfers etc).

5. Weight: Weights are assigned in order to normalize the sample to
representative-sampling standards (see the section �Analysis Weights�
in the �Codebook for the 2007 Survey of Consumer Finances�).1

6. Income Percentiles: Benchmark value from Bucks et al. (2009a,
Table A.2, p. A53).

1The �Codebook for the 2007 Survey of Consumer Finances� is downloadable from
http://federalreserve.gov/econresdata/scf/scf_2007documentation.htm
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7. Equivalence Scales: The equivalence scale is
p
n in which n is the

number of household members. This equivalence-scale measure ap-
proximates the standard OECD equivalance scales.

Table 1: Income Percentiles

Percentile Total Labor Income

20 20,600
40 36,500
60 59,600
80 98,200
90 140,900

Notes: Full sample in 2007 USD. Data in the survey is in 2006 USD, which is
adjusted according to the CPI-U table (U.S. Department of Labor Bureau of
Labor Statistics, Consumer Price Index). The 2006-2007 average to average

change is 2.84%.
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2 Matching Data with Descriptive Statistics in the
SCF 2007 Chartbook

To show that our database is constructed in a reliable way, we compare key
statistics with those reported in the SCF2007 Chartbook. Our robustness
checks are:

� Matching median values of key variables in the SCF 2007
chartbook:
The reason for choosing medians instead of means in order to perform
a robustness check is that median values capture more information
regarding a variable�s distribution. In addition, mean values can be
substantially a¤ected by outliers. Indeed, our database matches me-
dian values in the SCF2007 chartbook.

� Matching median values of each income group in the SCF
2007 chartbook:
Our database generated should match the income benchmark in small
di¤erences by income quintile or decile, which is a more demanding
task. Our results are listed in the following tables demonstrate that
the matching is satisfactory.

Table 2: Median Values of Key Variables

Variables SCF2007 Chartbook Our Data

Total Asset 221.5 221.9
Total Income 47.3 46.5
Stock Equity 35.0 34.8
Business Equity 100.5 80.6

Notes: Full sample. Values in thousands of 2007 US dollars.
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Table 3: Median Values of Pre-Tax Family Income for All Families,
Classi�ed by Income Percentile

Income Percentile SCF2007 Chartbook Our Data

Less than 20% 12.3 12.3
20%-39.9% 28.8 28.8
40%-59.9% 47.3 47.1
60%-79.9% 75.1 74.9
80%-89.9% 114.0 114.8
90%-100% 206.9 209.0

Notes: Full sample, in thousands of 2007 US dollars. Data in the survey are in
2006 US dollars. We adjusted them according to the CPI-U table (U.S.
Department of Labor Bureau of Labor Statistics, Consumer Price Index).

2006-2007 Average to Average change is 2.84% .

Table 4: Median Values of Total Assets for Families with Positive
Asset Holdings, Classi�ed by Income Percentile

Income Percentile SCF2007 Chartbook Our Data

Less than 20% 23.5 26.1
20%-39.9% 84.9 90.1
40%-59.9% 183.5 182.2
60%-79.9% 343.1 345.6
80%-89.9% 567.5 561.2
90%-100% 1358.4 1355.5

Notes: Full sample, in thousands of 2007 US dollars.
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3 Portfolio Shares of Risky Assets

Portfolio shares of risky assets are calculated by income groups. For each
income group we have the formula,

SHAREi =

P
k

P
n SHAREobs(n)

N

K
,

in which n is the observation number, k is the imputation number and i is
the risky-asset type. Final results are shown in the following tables. SCF
weights are not shown in the above formula but have been included in the
calculation. The comparison between Tables 6 and 7 justi�es why we did
not restrict the full sample into a particular age range such as household
heads aged between 25-59 years old. Demographic or life-cycle biases seem
to play a rather mild role, so we have chosen to utilize the entirety of the
infomation provided by the SCF 2007 database in our calibration exercises.
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