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Abstract

We introduce a new measure of systemic risk, the change in the conditional
joint probability of default, which assesses the effects of the interdependence
in the financial system on the general default risk of sovereign debtors. We
apply our measure to examine the fragility of the European financial system
during the ongoing sovereign debt crisis. Our analysis documents an increase
in systemic risk contributions in the euro area during the post-Lehman global
recession and especially after the beginning of the euro area sovereign debt
crisis. We also find a considerable potential for cascade effects from small to
large euro area sovereigns. When we investigate the effect of sovereign default
on the European Union banking system, we find that bigger banks, banks with
riskier activities, with poor asset quality, and funding and liquidity constraints
tend to be more vulnerable to a sovereign default. Surprisingly, an increase in
leverage does not seem to influence systemic vulnerability.

Keywords: Sovereign debt, Sovereign default, Financial distress, Systemic risk, Conta-

gion, Banking stability, Tail risk

JEL-Classification: C16, C61, G01, G21.

∗I would like to thank Isabel Schnabel for valuable advice and support. This project was partially
conducted while I was a guest reseracher at the Financial Stability Surveillance Division of the European
Central Bank. I would like to thank Puriya Abbassi, Ivan Alves, Bernd Bartels, Andreas Barth, Frank
Betz, Michael Binder, Carsten Detken, Paola Donati, Paul Hiebert, Denis Gorea, Charles Goodhart,
Jan Pieter Krahnen, Melanie Krause, Silviu Oprica, David Schumacher, Ctirad Slawik and Constantin
Weiser for valuable discussions and recommendations. This paper also benefited from the suggestions
and comments of the ECB FSS staff and the participants of the 1st Workshop in Financial Economics,
the Brown Bag seminar at Johannes Gutenberg University Mainz, the 2012 GSEFM Summer Institute
and the 2012 Conferences of the German Economic Association and the German Finance Association.
All remaining errors are my own.



Electronic copy available at: http://ssrn.com/abstract=2048585

Contents

1 Introduction 1

2 Conditional Joint Probability of Default 3

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Comparison with Other Measures . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Marginal Probability of Default . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Multivariate Probability Density . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Euro Area Sovereign Default Risk 10

3.1 Data and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Marginal Probabilities of Default . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Conditional Joint Probabilities of Default . . . . . . . . . . . . . . . . . . . 12

3.4 Cascade Effects between Euro Area Sovereigns . . . . . . . . . . . . . . . . 14

4 Sovereign Default and the European Union Banking System 16

4.1 Bank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Spillover Effects from Sovereigns to Banks . . . . . . . . . . . . . . . . . . 18

5 Conclusion 20

A Solutions and Proofs 25

A.1 CDS Bootstrapping Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.2 Consistent Information Multivariate Density Optimizing Approach . . . . . 26

A.3 Solution of Minimum Cross Entropy . . . . . . . . . . . . . . . . . . . . . 28

A.4 Proof of Independence within the Default Region of the CIMDO Distribution 31

B Figures 34

C Tables 49



1 Introduction

One of the most pressing issues in current policy debates are the potential consequences

of a sovereign default in the euro area. The answer to this question requires an accurate

measurement of the feedback effects among sovereign debtors and between sovereigns and

the banking system. This paper attempts to contribute to this discussion by providing a

new measure of systemic risk that quantifies the effects of sovereign default risk on the

financial stability of the eurozone.

This new measure of systemic risk, the change in the conditional joint probability of

default (∆CoJPoD), represents the contribution of the interdependence of an entity (a

sovereign or a bank) with the financial system to the overall default risk of the system.1

We base our measure on probabilities of default, derived from CDS spreads. This allows

us to capture the market perceptions about future systemic events in the debt market and

to assess how they affect distress expectations in the financial system. In the subsequent

empirical analysis, we use our measure to assess the systemic importance of EA sovereigns,

cascade effects among the sovereigns, as well as spillover effect from EA sovereigns to the

European Union (EU) banking system.

Our procedure to estimate systemic risk includes three steps. First, we derive indi-

vidual probabilities of default from each entity’s credit default swap (CDS) spread series,

using a comprehensive procedure that follows Hull and White (2000). Second, since

joint default risk is not traded, we need to impose some flexible structure on the inter-

dependence between the individual entities under investigation. We apply the recently

developed Consistent Information Multivariate Density Optimizing (CIMDO) method-

ology (Segoviano, 2006; Segoviano and Goodhart, 2009) to recover the euro area (EA)

multivariate probability distribution. Third, we calculate the new systemic risk measure,

the change in the Conditional Joint Probability of Default (∆CoJPoD) using the derived

multivariate density and investigate its properties.

Conceptually, our approach is related to the CoVaR (Adrian and Brunnermeier, 2010)

and the Shapley value (Tarashev et al., 2010), which view systemic risk contributions as

the difference in the value at risk (VaR) of the system when an entity defaults, compared to

the case when no default occurs in the system. The main difference to those two concepts

is that while they focus on conditional value at risk (the CoVaR) and conditional expected

shortfall (the Shapley value), the objects of our analysis are conditional probabilities of

default.

In concentrating on probabilities of default, our approach has several important ad-

vantages to the CoVaR and its related measures. First, the CoVaR relies on a restrictive

definition of default: an institution is considered under distress if its returns drop in the

1Following Lehar (2005), Adrian and Brunnermeier (2010) and Tarashev et al. (2010), we assume
that the financial system is a portfolio of European institutions – governments and banks.
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5-percent or the 1-percent region of its return distribution. In contrast, our approach

does not take a stand on what a default actually means, but rather relies on the market

expectations about the likelihood of a default to occur, based on an unobservable latent

process. The main benefit of such an approach is that it allows us to derive systemic

risk measures in a sovereign context without explicitly defining what sovereign assets are.

Since the CoVaR relies exclusively on stock market data, and hence, on a very specific def-

inition of an institution’s asset distribution, it is not suitable to assess sovereign systemic

risk.

A second major drawback of the CoVaR is that it uses historical stock market data.

Giglio (2011) points out that reduced-form approaches, recovering return distributions

from historical data, as the CoVaR, suffer from the low number of extreme events in market

data. In contrast, our approach tries to circumvent this issue by recovering forward-

looking default probabilities from derivatives which are more sensitive to default risk,

such as CDS contracts.

With respect to the estimation of sovereign default risk, relying on market perceptions

about default, embedded in CDS premia, appears to be an attractive alternative to the

Sovereign Contingent Claims Analysis of Gray, Merton and Bodie (2008) and Gray (2011).

In these studies, the authors try to sort the capital structure of a sovereign in a particular

way, depending on its maturity, in order to fit it to a Merton model’s framework (Merton,

1974). This requires the assets and liabilities to be assigned to a category at every

given point in time, making the method relatively cumbersome. Applying the CIMDO

methodology, we avoid this procedure by focusing directly on probabilities of default

derived from market data and assuming a standardized distribution for our initial beliefs

about the individual entity’s assets. Notwithstanding, we still rely on the intuition of the

Merton model, that an entity (in our case – a bank or a sovereign) defaults on its debt,

once its assets process crosses a certain default threshold.

Our results show that joint sovereign distress risk has increased since the end of 2009,

parallel to a decoupling of investors’ perceptions about individual sovereign default risk.

We find that Germany and Netherlands have the highest individual contribution to the

systemic risk of the euro area in case of default, while the effect of Greece is marginal at

best.

With respect to the potential cascade effects among euro area, we concentrate on a

particular scenario: we investigate how perceptions about a default of a relatively small

EA sovereign (Portugal) affect default expectations of another small sovereign (Ireland),

and how the expectations about their joint default affect the default perceptions about a

larger sovereign (Spain). We find a high probability of distress spillover between the small

sovereigns and between the latter and the large sovereign. This effect rises substantially

after Lehman Brothers’ bankruptcy and during the sovereign debt crisis. Therefore, we

argue that possible default cascade effects of reasonable size should be taken into account

2



in political decision-making.

Analyzing the effect of sovereign default on the EU banking system, we find that

large banks are more vulnerable to sovereign risk, compared to medium-sized and small

ones. This might indicate that these banks are considered by investors to be “too big

to save” (Hellwig, 1998; Hüpkes, 2005; Demirgüç-Kunt and Huizinga, 2010; Völz and

Wedow, 2011; Barth and Schnabel, 2012). With respect to financial gearing, we could not

confirm a relationship between an increase in leverage and the default vulnerability. On

the other hand, we find that higher-performing banks are expected to be more vulnerable

to sovereign default, which might be explained with market perceptions that the higher

returns are an indication of riskier activities. We also find that banks with poorer asset

quality and banks that are funding- and liquidity-constrained tend to be considered as

more vulnerable to sovereign default.

Hence, we contribute to the existing literature in four ways. First, we introduce a

new and intuitive systemic risk measure that evaluates the contribution of the system’s

interdependence to systemic default risk. Second, we extend the relatively sparse literature

on sovereign default in a multivariate setting by investigating not only the contribution

of individual sovereigns to the systemic default risk, but also possible cascade effects

within the euro area. Third, our study contributes to the financial stability literature

that analyzes the feedback effects between sovereigns and the banking system (see, for

instance, Demirgüç-Kunt and Huizinga, 2010, Barth and Schnabel, 2012, and Gorea and

Radev, 2012). Fourth, at the methodological level, we are the first to analytically prove

and among the first to explicitly address some of the limitations of the original CIMDO

approach with regard to multivariate dependence. We also propose a procedure that

alleviates the “curse of dimensionality” inherent in multivariate distribution modeling,

based on sorting by banking financial characteristics.

The paper is organized as follows. In Section 2, we introduce the ∆CoJPoD measure

and propose a procedure to derive it. Section 3 presents our results with regard to the

systemic importance of euro area sovereigns. We also discuss the possible cascade effects

among sovereigns. Section 4 explores how ∆CoJPoD could be applied to assess the

spillover effects between euro area sovereigns and the European Union banking system.

Section 5 concludes.

2 Conditional Joint Probability of Default

2.1 Definition

Our starting point in calculating our measure is to derive the joint probability of default

(JPoD) of the system, which can be interpreted as the system’s fragility to default events.

Let the system be described by a n-dimensional joint distribution, P (x1, x2, ..., xn), with
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density p(x1, x2, ..., xn), where x1, x2, ...,xn are the logarithmic assets of the respective

institution X1, X2, ..., Xn.

Following Segoviano and Goodhart (2009), we then introduce the Joint Probability of

Default (JPoD) as:

JPoDx1,x2,...,xn = JPoDsystem =

+∞∫
x1

+∞∫
x2

...

+∞∫
xn

p(x1, x2, ..., xn)dx1, dx2...dxn (1)

where x1, x2, ..., xn are the individual default thresholds2 of the respective entities.3

Then, applying Bayes rule, we derive the Conditional Joint Probability of Default of

the system of n entities, conditional on entity k defaulting:

CoJPoDsystem−k|xk>xk
= JPoDx1,x2,...,xk−1,xk+1,...,xn|xk>xk

=
JPoDx1,x2,...,xn

PoDk

=
JPoDsystem

PoDk
,

(2)

where PoDk is the individual default probability of entity k. Therefore, the conditional

probability of default is a ratio between the general vulnerability of the system and the

individual default vulnerability.

Note that, by definition, Bayes rule gives us the conditional probability of the re-

maining (non-defaulting) entities in the system. It does not, however, tell us what their

probability would have been without the shock due to entity k ’s default. What we would

like to compare the conditional probability of the surviving entities with, is their uncon-

ditional probability, which might also be considered as their general vulnerability during

“tranquil” times. Therefore, to calculate the contribution of entity k ’s default on sys-

tem’s default risk, we subtract from CoJPoDsystem−k|xk>xk
the unconditional JPoD of

the system constituents excluding the entity in question. Our ∆CoJPoD measure is then

∆CoJPoDsystem−k|xk>xk
= CoJPoDsystem−k|xk>xk

− JPoDsystem−k
. (3)

In essence, we compare the risk of the system when entity k is included and defaults,

to the situation where entity k is excluded, or otherwise said - independent from the

system. So defined, ∆CoJPoD is the probabilistic alternative to the CoVaR (Adrian and

Brunnermeier, 2010).

Next, we define JPoD′system as the joint probability of default of the system if entity

2The default thresholds are defined in the sense of the classical structural model by Merton (1974).
3Note that, as in Segoviano (2006) and Segoviano and Goodhart (2009), our default region is in the

right tail of the distribution. This does not affect our results, but simplifies our estimation procedure.
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k is independent of the rest of the system, other things equal. Therefore, the prime indi-

cates that the only difference between JPoDsystem and JPoD′system is that in JPoD′system

we assume independence between entity k and every other entity in the system. Both

probability measures are identical in any other aspect of their underlying dependence

structure. Applying Bayes rule, we can reformulate JPoD′system as

JPoD′system = JPoD′x1,x2,...,xk−1,xk,xk+1,...,xn

= JPoD′x1,x2,...,xk−1,xk+1,...,xn|xk>xk
· PoDk

= JPoD′x1,x2,...,xk−1,xk+1,...,xn
· PoDk

= JPoDsystem−k
· PoDk.

(4)

Then, JPoDsystem−k
can also be represented in the following way:

JPoDsystem−k
=
JPoD′x1,x2,...,xn

PoDk

= CoJPoD′system−k|xk>xk
,

(5)

where CoJPoD′system−k|xk>xk
is the conditional counterpart of JPoD′system with respect to

entity k. Thus, our systemic risk contribution from equation 3, ∆CoJPoDsystem−k|xk>xk
,

transforms to

∆CoJPoDsystem−k|xk>xk
= CoJPoDsystem−k|xk>xk

− CoJPoD′system−k|xk>xk
. (6)

The measure can be viewed hence as the difference between the effects of default on

systemic fragility when the system is dependent or independent of the respective entity.

Thus, ∆CoJPoDsystem−k|xk>xk
measures the contribution to the systemic default risk due

to the system’s interdependence with entity k.

We should note that in our approach interdependence does not mean interconnection.

Sovereigns with no or minor direct financial and trade linkages could still be interdepen-

dent if the markets perceive them to be similar in any way. This perceived similarity

causes a comovement of their individual CDS series, which reflects a comovement of the

market perceptions about the default of the individual sovereigns. Therefore, analogously

to the CoVaR, our measure does not reflect a causal relationship. Nevertheless, we could

witness a directionality in our conditional indicator: the CoJPoD of sovereign A default-

ing given that sovereign B defaults could be different from the CoJPoD of sovereign B

defaulting given sovereign A defaults.

There are numerous ways to calculate the individual and joint probabilities of default

to derive ∆CoJPoDsystem−k|xk . To calculate individual probabilities of default (PoD),
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we choose a bootstrapping procedure that incorporates all available CDS contracts of an

entity up to a 5-year horizon. Then we transform the individual PoDs into multivariate

PoDs using the CIMDO procedure introduced by Segoviano (2006).

2.2 Comparison with Other Measures

Since the ∆CoJPoD is a measure of default risk contributions, the first candidate for

a comparison is the CoVaR (Adrian and Brunnermeier, 2010). Gramlich and Oet (2011)

outline several properties that a successful systemic risk measure should possess: consis-

tency, flexibility, forward-looking focus, correspondence with empirical data, suitability

for the need of financial regulators. In that respect, as mentioned earlier, the CoVaR suf-

fers from the limited number of extreme returns in market data, which precludes it from

a consistent forward-looking estimation of systemic risk. As we base our measure on CDS

data, it is exclusively forward-looking and is consistent with the default expectations of

market participants within a 5-year horizon. Another limitation of the CoVaR is that it

is unable to tackle multivariate interactions, as it models either interactions between two

institutions, or between an institution and an aggregated index of the financial system.

Therefore, it neglects the underlying dependence between the institutions in the system’s

“portfolio”. In contrast, in our approach we employ a “true” multivariate setting for our

∆CoJPoD-measure by explicitly modeling the dependence structure among all entities

in the system. Furthermore, our empirical applications in the next subsections will show

how flexible the measure is in capturing not only individual default contributions, but

also cascade effects conditioning on a default of several countries, and sovereign default

spillover effects to the banking system.

With respect to multivariate default probability estimation, the financial stability lit-

erature puts an emphasis mainly on measuring banking distress risk (see, for example,

Lehar, 2005, Avesani et al., 2006, Segoviano and Goodhart, 2009, and Giglio, 2011). Of

particular interest to supervisors is the probability of at least two banks defaulting (see

Avesani et al., 2006, and Radev, 2012, for two approaches to derive this measure). Gorea

and Radev (2012), Radev (2012) and Zhang et al. (2012) propose procedures to calculate

these measures in a sovereign context. The latter application is rarely explored in the lit-

erature, due to the different nature of sovereign and corporate assets. The aforementioned

authors do not try to define what sovereign assets are (contrary to the approach of, for

instance, Gray, 2011), but rather rely on the judgement of market participants about the

probability of a latent sovereign assets process to cross a given sovereign default threshold.

The latter probability is derived from CDS spreads. Such a general view allows researchers

to extend the definition of sovereign assets to anything that would affect a government’s

decision to default, be it public revenues or willingness to pay. Furthermore, the focus on

market perceptions about sovereign default risk has important implications for regulators
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during the current sovereign debt crisis, as euro area governments rely predominantly on

the international financial markets to finance their liquidity needs.

Most of the proposed probability measures in the cited studies are unconditional by

definition and when authors derive conditional measures, they do not compare them to

counterfactual events. A notable exception is the “spillover component” or “contagion

effect” measure, derived by Zhang et al. (2012). In contrast to the approach underlying

the ∆CoJPoD, however, the authors choose to take the difference between the conditional

probability of default of a sovereign (Portugal in their case), given another sovereign

(Greece) defaults and the conditional probability given the latter does not default. The

latter term is the authors’ definition of the “tranquil” state of the world. The authors

keep the same dependence structure in both components of their measure, which precludes

them to interpret it as a contribution to systemic default risk due to interdependence.

2.3 Marginal Probability of Default

A common method for estimating probabilities of default from CDS spreads is to

use the most liquid contracts in the market, 5-year CDS spreads, to estimate one-year

probabilities of default, applying the simple formula

PoDt =
CDSt ∗ 0.0001

1−Recovery Rate
, (7)

where CDSt is the 5-year CDS spread at time t, PoDt is the resulting probability of

default estimate and Recovery Rate is an assumed recovery rate of the face value of the

underlying bond in case of default.

We use a refined way of estimating probabilities of default (PoD), the CDS boot-

strapping, outlined in Appendix A.1. The procedure follows Hull and White (2000) and

is based on a simple cumulative probability model, which incorporates recovery rates,

refinancing rates and cumulative compounding. The model uses CDS contracts of differ-

ent maturities to calibrate hazard rates of particular time horizons in order to estimate

cumulative probabilities of default. This method can be used for both sovereign and

corporate probability of default estimation. The resulting risk measures are risk-neutral

probabilities of default and satisfy the no-arbitrage condition in financial markets.

We propose using all available maturities from 1 to 5 years of CDS spreads to derive

the PoD of an entity. The CDS contracts have quarterly premium payments as a general

rule, so we adjust the procedure accordingly. We also correct for accrual interest, as

suggested by Adelson et al. (2004). As refinancing rates, required as inputs, we use all

available maturities of AAA Euro Area bond yields from 1 to 5 years. The recovery rate is

uniformly set at 40 %, both for banks and sovereigns, as this is the prevailing assumption

in the literature and in practice.4 The resulting series are 5-year cumulative probabilities

4 Sturzenegger and Zettelmeyer (2005) find that the historical sovereign recovery rates are usually
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of default, which we annualize in order to accommodate the one-year horizon of interest

to policy makers, using the formula:

PoDannual
t = 1− (1− PoDcum

t )
1
T , (8)

where T is the respective time horizon (T=5 for 5-year PoD) and PoDannual
t is the annu-

alized version of the cumulative PoDcum
t .

Figure 1 presents the results from the näıve and the bootstrapping procedures for a

distressed sovereign, namely Greece, for the period 01.01.2008 to 31.12.2011. We notice

the main drawback of the simple calculation method. While the series generally overlap

in tranquil times, they diverge during the distress period starting from May 2010. The

margin increases rapidly with the rise of CDS spreads, leading to results higher than unity

at the end of the period, which we truncate at 1 to match the definition of probability. The

bootstrapped probabilities, on the other hand, have fairly reasonable annualized values in

the distress period, peaking in the region from 45 to 50%. The reason for this misalignment

is that the näıve Formula 7 can be seen as a linear approximation of the more elaborate

bootstrapping procedure, and does not account for all its caveats. The formula performs

well for entities with low levels of CDS spreads (Germany, France, Deutsche Bank), but

fails for distressed sovereigns or corporates (Greece, Dexia).

It can be argued that the risk neutral probabilities recovered from market CDS data are

downward-biased because of the euro area sovereign bailout packages and the government

guarantees for the banking sector. Therefore, we can interpret the individual probabilities

of default in our analysis (as well as the joint probabilities based on them) as lower bounds

for the risk neutral probabilities in case when no bailout guarantee is available.

2.4 Multivariate Probability Density

Since joint credit events are rarely traded in the default insurance market, we need to

impose a certain structure on the system’s joint probability density, in order to transform

individual to joint probabilities of default. Our structure of choice is the CIMDO distribu-

tion, a result of the CIMDO methodology introduced by Segoviano (2006). This method-

ology builds on the minimum cross-entropy procedure by Kullback (1959) and consists in

recovering an unknown multivariate asset distribution using empirical information about

its constituting marginal distributions. As Segoviano and Goodhart (2009) point out, the

between 30 and 70%. Zhang et al. (2012) use those results as motivation to choose 50% recovery rate
for their default estimations. We decide to be more conservative with regard to the loss given default
assumption, as the recent negotiations for the Private Sector Involvement (PSI) in the Greek bailout
packages suggest haircuts between 50 and 70%. As non-institutional investors are the main participants
in the CDS markets, we argue that their expectations of default risk are what the CDS spreads reflect,
thus we remain with the usual recovery rate convention in financial literature. For a discussion on how
different recovery rates affect the PoD estimates, please refer to the robustness checks section in Gorea
and Radev (2012).
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CIMDO approach is related to the structural credit model by Merton (1974), where an

entity defaults if its asset value crosses a predefined default threshold. The difference of

the CIMDO model to the structural model comes from the fact, that in the former the

threshold is fixed, while in the latter, it is allowed to vary. With the default threshold

fixed, the CIMDO approach changes the probability mass in the tails of an ex ante (or

prior) joint asset distribution according to the market expectations about the probabil-

ity of default of each individual entity. The subsequent posterior joint distribution, or

CIMDO distribution, has two main properties: first, it reflects the market consensus views

about the default region of the unobserved asset distribution of the system, and second,

it possesses fat tails, even if our starting assumption is joint normality. The latter prop-

erty reflects the well-documented fact that financial markets are characterized by a higher

number of crashes than predicted by the normal distribution. Furthermore, regardless of

the ex ante joint distribution assumption (a joint normal or a fatter-tailed distribution)

the posterior CIMDO distribution is consistent with the observed data.

Put in perspective, the CIMDO methodology has the advantage over many Merton-

based methods, most prominently the Contingent Claims Analysis (CCA) by Gray, Mer-

ton and Bodie (2008) and the approach of Lehar (2005), due to its departure from nor-

mality and the intrinsically dynamic dependence structure, represented by the CIMDO

copula. The CIMDO approach has also been shown to perform exceptionally well in

the default region of the system’s joint distribution, compared to standard and mixture

distributions that are usually used to model market comovement. 5

Segoviano (2006) and Gorea and Radev (2012) and Radev (2012) analyze the robust-

ness of the CIMDO approach with respect to some of its main underlying parameters:

prior distribution and dependence structure assumptions, turning special attention to the

performance in the default region of the posterior joint distribution. Their results show

that assuming a multivariate standard normal distribution as a prior provides very sim-

ilar results to employing a fatter-tail distribution. The resulting posterior distribution

is sufficient to explain the behavior in the default region of the distribution of sovereign

assets and assuming a more complex prior distribution does not provide a significant im-

provement. Therefore, we decide to use a multivariate joint normal distribution for our

prior, as in the original work by Segoviano (2006). We provide a formal definition of the

CIMDO approach in Appendix A.2, as well as a solution of the minimum cross entropy

procedure in Appendix A.3.

A commonly overlooked property of the CIMDO model is that if independence is

assumed for the prior distribution (e. g. by assuming a zero-correlation structure for the

prior distribution, as in Segoviano, 2006),6 this transfers to the posterior distribution

5See Segoviano (2006) and Segoviano and Goodhart (2009) for further information and discussions.
6In general, zero correlation does not imply independence and simple analytical examples are readily

available. However, if zero correlation is assumed for a joint normal asset distribution, the resulting joint
probabilities of default are a product of the individual entity probabilities of default. Hence, any systemic
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as well. Appendix A.4 provides a multivariate proof of this caveat when multivariate

joint normal distribution is assumed as a prior. In a recent study, Peña and Rodriguez-

Moreno (2010) compare the predictions of several systemic risk models, including the

CIMDO-derived Banking Stability Index (BSI), but assume zero-correlation structure for

the CIMDO’s initial distribution. If this assumption proves wrong, which most likely is the

case for the bank assets investigated in the mentioned study, that would lead to significant

underestimation of the joint default risk between the considered entities. Even more, due

to the independence of the posterior distribution, any conditional measures derived using

it will be identical to their unconditional counterparts. The latter fact has a huge effect

on our ∆CoJPoD measure, as it is exactly the difference between the conditional JPoD

and its unconditional alternative. It can be shown that this measure will be exactly 0 at

any point of time, despite any dynamics in the individual PoDs. Empirical evidence for

this analytical result is provided in Section 3.3.

Since the initial correlation structure assumption is crucial for the CIMDO approach,

we rely on market estimates to explicitly allow it to differ from the identity matrix. The

distress correlation structure is proxied by the empirical correlation between changes in

the 5-year CDS spreads of the sovereigns and banks in our sample.

3 Euro Area Sovereign Default Risk

Our empirical analysis is organized as follows. First, we investigate the default risk

contributions among 10 euro area sovereigns. With the sovereign debt crisis at its peak,

it is important to analyze the dynamics of our systemic risk measure and identify possible

trends, as well as major regulatory interventions and their effects. Second, we focus on

the influence of sovereign default risk on the European banking system. We select both

euro area and non-euro area EU banks for our analysis, as recent events have shown

that the high interconnectedness of the EU banking system facilitates spillover effects

from the distressed euro area sovereigns. The empirical financial stability literature that

concentrates on CDS markets usually incorporates a very limited number of European

banks. Therefore, our set of thirty six banks makes the current analysis a representative

study of the systemic fragility of the European Union banking system.

probability measure that conditions on particular entities defaulting, will be equal to the product of the
PoDs of the remaining entities. Otherwise said, the conditioning on some entity defaulting, we do not get
additional information about the default of the remaining entities, apart from the one already contained in
their individual probabilities of default. The latter fact exactly complies with the probabilistic definition
of independence.
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3.1 Data and Descriptive Statistics

We estimate marginal probabilities of default using CDS premia for contracts with

maturities from 1 to 5 years for the period 01.01.2008 and 31.12.2011. The employed

procedure (for details, see Hull and White, 2000, Gorea and Radev, 2012, and Appendix

A.1) requires as additional inputs refinancing interest rates, which we choose to be the

AAA euro area government bond yields for maturities from 1 to 5 years. The CDS spreads

and the government bond yields are at daily frequency, which is also the frequency of

the resulting probabilities of default. Our analysis covers 10 euro area (EA) sovereigns

(Austria, Belgium, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal and

Spain). For consistency, the CDS contracts are denominated in euro.7 The source for the

sovereign CDS spreads and the government bond yields is Datastream, while the exchange

rate quotes are downloaded from Bloomberg.

Table 1 presents the descriptive statistics of the 5-year CDS spreads of the ten countries

in our sample. The average 5-year CDS spread in the cross-section ranges from 29 basis

points for Germany to 774 basis points for Greece. We can also notice a substantial

increase of CDS premia even for the safest country, Germany, from 3 to 91 basis points.

However, this cannot be compared with the dynamics of the price for protection against

the default of Greece, which starts from 15 basis points in the beginning of the period and

reaches 11034 basis points on December 16, 2011. We also see that the safest countries,

Germany and Netherlands, have the lowest volatility of the price for protection against

default.

3.2 Marginal Probabilities of Default

Figure 2 depicts the CDS-implied annualized probabilities of default for the 10 euro

area sovereigns in our analysis. We observe very similar values in the beginning of our

sample period, pointing towards investors’ confidence in the individual EA members’

ability to service their debt. We observe a peak in the individual PoDs during the global

recession after Lehman Brother’s collapse, but the individual default risk gradually falls

throughout 2009. A major decoupling occurs in November 2009, after the announcement

of the newly-elected Greek government that the previously reported data on the govern-

ment deficit was strongly misleading. The following divergence of market expectations

7In order to arrive at compareable CDS-derived probabilities of default, all components in the cal-
culation should be under a common currency measure. For many of the sovereigns both euro and
US-dollar-denominated CDS contracts are traded. In an unreported analysis, we came to the conclusion
that the difference in the absolute levels of the series cannot be explained solely by the exchange rate
dynamics. As CDS contracts are usually traded over the counter, it is difficult to find information on
the exact volumes traded of each type. After additional talks with professionals, we were assured that
in the case of sovereigns, the US-dollar-denominated contracts are more liquid. For this reason, when
available, those were chosen in our analysis and the data was transformed using euro-dollar exchange
rates, downloaded from Bloomberg.
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about individual sovereign default risk might be due not only to doubts in the individual

governments ability to service their debt, but also in the potential of the euro area as

a whole to support its members in need. We also notice that the PoD level of Greece

rises throughout the whole period, while the default risk perceptions with regard to the

remaining distressed countries - Ireland, Italy, Portugal and Spain - seem to stabilize in

the second half of 2011.

3.3 Conditional Joint Probabilities of Default

In this section, we present the ∆CoJPoD results for our set of euro area sovereigns.8

Let us first investigate the ingredients of the ∆CoJPoD measure. Figure 3 shows the re-

sults for the correction term JPoDsystem−k
in Equation 3. The general vulnerability of the

reduced system rises throughout the period and reaches 0.25% by the end of 2011. What

might seem surprising at first glance, is that excluding Greece apparently increases the

vulnerability of the rest of the system. This result can be explained after a closer examina-

tion of Table 2. Due to the already mentioned decoupling in investors’ perceptions about

individual sovereign risk, especially with regard to Greece, Greek assets seem to be less

correlated with the rest of the system. Hence, if Greece is included in JPoDsystem−k
(all

9 cases where Greece is not the entity k), and another, more highly correlated sovereign,

is excluded (that is – assumed to be independent from the rest of the system), this in-

tuitively reduces the JPoDsystem−k
. And conversely, if Greece is the particular entity k,

the correlation between the remaining entities in system−k is higher, leading to a higher

probability of them to jointly default (purple line).

Figure 4 provides the results for the conditional joint probability of default of the

system, given a particular sovereign defaults. We notice that the ordering is now inverted,

compared to the individual PoDs depiction. The highest CoJPoD is in the case of a

default of Germany, narrowly traced by that of Netherlands. This is intuitive, since those

countries are perceived to be the safest in the euro area system. Therefore, their default

should have a significant effect on the perceptions about the default risk of the remaining,

riskier countries.

In Figure 5, we present the ∆CoJPoD results for the 10 euro area sovereigns. As

expected from the analysis of CoJPoD, Germany and Netherlands have the highest per-

ceived contribution to the euro area default risk, given their own default. We observe

that before Lehman Brothers’ bankruptcy in September 2008 the perceptions of the sys-

temic risk contribution of a country’s default were practically non-existent. This derives

directly from the fact that a joint sovereign default within the euro area was perceived as

a highly unlikely event. The contribution rises during the turmoil period after Lehman’s

default, and peeks between January and April 2009, gradually subsiding afterwards. The

8In Table 2, we report the dependence structure that we employ in our euro area sovereign analysis.
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∆CoJPoD measure starts rising again after the announcement of the Greek government

budget problems in November 2009 and peeking at nearly 10 percentage points for Ger-

many at the end of November 2011.

A more elaborate interpretation of the ∆CoJPoD is that its first part, the CoJPoD,

reflects the relative dynamics of systemic fragility (JPoDsystem) and the individual default

risk of a sovereign (PoDk). For the case of Germany, although its individual risk has

been increasing slightly but steadily throughout the sample period, systemic fragility

obviously has risen with faster (or fallen with slower) pace. At the other end of the

spectrum is Greece, where the individual risk dynamics have outpaced those of the system,

both in terms of growth and in magnitude, resulting in a lower risk contribution due to

interdependence. A positive result for the risk contribution ∆CoJPoD means that, due

to the interconnectedness of the respective sovereign to the rest of the euro area, the

fragility of the system rises by more than if the country default is an independent event.

Overall, the results for ∆CoJPoD mean that for Germany this difference is much higher

than the respective effect of a default of any other country.

The reader should notice that there is a second effect contributing to the final results,

apart from pure dependence, namely the level effect of the systemic and individual default

risks. As the individual level of default risk of Greece is high compared to the systemic

default risk level, CoJPoD will be low, leading to low results for ∆CoJPoD, as well. The

benefit of our model is that it takes into account the interaction of both effects when

evaluating the effects of interdependence on systemic default risk.

Comparing the results for CoJPoD and ∆CoJPoD, we do not see large differences,

especially for Germany and Netherlands. This stems from the relatively low magnitude

of the unconditional adjustment term JPoDsystem−k
for those countries. The lower is

CoJPoD, the higher the relative contribution of the adjustment term to ∆CoJPoD. We

can see this in the results for Greece, where, after the adjustment, the relative contribution

to the systemic default risk is practically wiped out. We can relate this fact to our

observation that JPoDsystem−k
for Greece is higher than for any other country, due to its

low correlation with the rest of the system.

The effects of low correlation are taken to their extreme in Figure 6, where we present

the results for ∆CoJPoD if the countries are assumed to be independent. As argued in

Section 2.4, the default contribution of any of the sovereigns is not different from 0, due to

the fact that under independence, the conditional and unconditional JPoD are the same.

This analysis shows that if we assume that sovereigns are independent,9 this will lead to

misleadingly low contributions to systemic risk.

9An example for such an assumption in a CIMDO-related context can be seen in Peña and Rodriguez-
Moreno (2010).
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3.4 Cascade Effects between Euro Area Sovereigns

When analyzing contagion in the financial system, one has to take into account its

spacial dimension: a default event for a particular sovereign might affect perceptions

about the default of another one and their potential joint default might spread to others,

in many cases safer sovereign borrowers, and ultimately affect the default expectations

with regard to the whole sovereign financial system. In this section, we show how the

∆CoJPoD could be used to investigate such “cascade” effects by considering a particular

path through which a default of one sovereign might spread through the system.

We start by examining the change in the conditional probability of default of Ireland,

given Portugal defaults. With a minor abuse of notation for the sake of parsimony, the

general ∆CoJPoD definition in Equation 3 transforms to:

∆CoJPoDIr|Pt = CoJPoDIr|Pt − PoDIr, (9)

where CoJPoDIr|Pt is the conditional probability of default of Ireland (Ir) given the assets

of Portugal (Pt) cross its default threshold and PoDIr is the marginal (empirical) proba-

bility of default of Ireland. Compared to Equation 3, the counterfactual joint probability

of default of the surviving entities in the system narrows down to a single dimension.

In Figure 7, we present the results for each of the components on the right-hand

side of Equation 9. We witness a significant gap between the conditional probability of

Ireland defaulting given Portugal defaults (blue) and its unconditional counterpart (red).

Obviously, observing the individual probabilities of default, or even the raw individual

CDS data, does not provide a comprehensive perspective of the complex interactions

underlying investors’ perceptions about sovereign default.

Figure 8 displays the dynamics of ∆CoJPoDIr|Pt. We observe that the contribution

of a Portuguese default to the distress vulnerability of Ireland rises from relatively modest

10 percentage points to almost 60 percentage points at the peak of the global recession

after Lehman Brothers’ bankruptcy. Although our measure falls subsequently, it hardly

drops below 30 percentage points. We document a new rise from the beginning of 2010 on,

reaching 50 percentage points in early 2011. The contribution slowly declines thereafter

and stabilizes around 40 percentage points by the end of 2012. Overall, we find a strong

effect of a potential Portuguese default on the default expectations about Ireland.

The results from Figure 8 show that, as far as market perceptions are concerned, a

default of Portugal is expected to substantially affect the default likelihood of Ireland.

Yet, since both countries are relatively small, their difficulties could be fully addressed by

the financial stabilization facilities, organized to prevent the spread of the sovereign debt

crisis.10 A recurring theme in the debates between policymakers and regulators is whether

10The European Financial Stability Facility (EFSF) and the European Financial Stabilization Mech-
anism (EFSM) were introduced in May 2010 with an initial mandate to borrow up to 500 billion euro
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a default of these smaller sovereigns could spread to the bigger EA periphery economies,

that is, to Spain and Italy.11 The amount of public debt of these two countries exceeds the

size of the aforementioned funding facilities. Therefore, as a next step, we investigate how

the joint default of Ireland and Portugal could affect the default perceptions with regard

to Spain. To address this issue, we reformulate our Equation 3 to take the following form:

∆CoJPoDSp|Ir,P t = CoJPoDSp|Ir,P t − PoDSp, (10)

with CoJPoDSp|Ir,P t being the probability of Spain defaulting, given Ireland and Portugal

default.

The results for ∆CoJPoDSp|Ir,P t are presented in Figure 9. Although the time series is

less volatile, we observe similar level and time paths of default risk contribution to those in

Figure 8. The peak is in mid-2010 (55 percentage points), followed by a gradual reduction

of the perceived default risk contribution up until July 2011 when the contribution rises

again, stabilizing at the relatively high level of 40 percentage points. Therefore, we find

that a joint default of Ireland and Portugal substantially increases the perceived default

risk of Spain.

The final step of our cascade effects analysis is an examination of how a default of all

three entities affects the perceived default vulnerability of the EA system. This leads to

the following ∆CoJPoD definition:

∆CoJPoDsystem−Sp,Ir,P t|Sp,Ir,P t = CoJPoDsystem−Sp,Ir,P t|Sp,Ir,P t − JPoDsystem−Sp,Ir,P t,

(11)

where CoJPoDsystem−Sp,Ir,P t|Sp,Ir,P t is the perceived probability of default of the surviving

EA sovereigns, given a joint default of Spain, Ireland and Portugal.

In Figure 10, we present the results for ∆CoJPoDsystem−Sp,Ir,P t|Sp,Ir,P t in the sample

period (blue), compared to the respective ∆CoJPoD results when only Spain defaults in

the EA system taken from Figure 5 (red). We notice that the systemic default risk con-

tribution triples during the post-Lehman global recession and doubles during the current

sovereign debt crisis, compared to the case of a standalone default of Spain. Therefore, we

argue that possible default cascade effects of reasonable size should be taken into account

in policy decision-making.

to maintain the financial stability of the eurozone. Additional 250 billion euro could be borrowed by the
International Monetary Fund within this initial agreement. As of December 2011, the sizes of public debt
of Ireland and Portugal are 169 billion euro and 184 billion euro, respectively (Eurostat, 2012).

11Digressing to the general financial stability literature, Zhou (2010) points out that when assessing
the systemic role of a financial institution, we should consider whether its distress co-occurs with distress
of other institutions - the so called “too-many-to-fail” problem, investigated by Acharya and Yorulmazer
(2007). Zhou (2010) argues that this effect is more relevant for financial crises than the popular “too-
big-to-fail” argument.
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4 Sovereign Default and the European Union Bank-

ing System

In this section, we shift the focus of our investigation from the pure sovereign debt

perspective and study the perceived effects of sovereign default on the EU banking system.

The topic of whether and how a sovereign default could affect the EU financial system

is of major concern for regulators, as EU banks hold most of the debt generated by euro

area countries and this debt is a sizable part of the banks’ assets portfolios.

4.1 Bank Data

In the analysis of spillover effects of sovereign default to the banking system, we use 36

European Union (EU) banks, out of which 28 are euro area banks. The lists of banks in

our analysis are presented in Tables 3 and 4. The sources of the CDS data are Datastream

and Bloomberg.

To reduce the effect of the curse of dimensionality, we choose to form equal-size port-

folios within our banking sample. The latter construction choice makes our results com-

parable across portfolios. The allocation of each bank in a portfolio is governed by the

position of the bank in the distribution of a set of financial characteristics. We select ten

financial statement indicators, singled out in the financial literature as important systemic

risk factors.12 Those factors form five broad groups: size, financial gearing, asset quality,

performance, and liquidity and funding.

Size. We measure the bank’s size by the amount of its total assets (TA). Brunner-

meier and Pedersen (2009) identify size as a major driver of systemic risk, according to

their theory of the “margin spiral.” The authors provide evidence that banks adjust their

assets, such that leverage is high in upturns and low in downturns of the economic cycle,

making leverage a procyclical characteristic. Sorting by size should provide us with in-

sights whether bigger banks were exposed to higher default risk stemming from sovereign

difficulties in the indicated period.

Leverage. Adrian and Brunnermeier (2010) propose the assets-to-equity (AE) ratio as

a measure of financial gearing. The intuition behind this sorting is that banks with higher

leverage should be more susceptible to adverse credit events in the financial markets.

Moreover, many large European Union banks invested heavily in EA sovereign bonds

before and during the sovereign debt crisis (EBA, 2011; IMF, 2011) and could become

insolvent in case of a sudden drop in the value of their assets.

Asset quality. We use two measures for asset quality. The first one is the ratio of

loan loss provisions to net interest income. This indicator reflects whether the lending

12The raw data for the individual bank characteristics for the analyzed period are provided by
Bloomberg and Bankscope.

16



risk undertaken by the banks is appropriately remunerated by higher interest margins.

Hence, this measure should be as low as possible. Our second measure for the quality

of a bank’s portfolio of assets is the ratio of non performing loans to total loans and is

sometimes referred to in practice as the “doubtful loans” (DL) ratio. An increase in this

measure should make banks more vulnerable to credit events that further impair their

loan quality.

Performance. We use four indicators to measure a bank’s performance. The first

indicators is the return on equity (ROE), which is a standard measure of corporate effi-

ciency. The main benefit of this measure is that it shows the profitability of the funds

invested or reinvested in the company’s equity. The main drawback comes from the fact

that high-leverage companies could have artificially high ROE ratios, which might reflect

the company’s excessive risk-taking, rather than its growth potential. The second indica-

tor is the return on assets (ROA), which is the profit from every euro of assets that the

bank controls. A potential weakness of this accounting measure is that the balance sheet

value of assets may differ from the market value of assets, making it difficult to draw

comparisons across industries. Within the banking industry this is less of an issue, due to

the relatively regular marking to market of assets. Our third measure is the net interest

margin (NIM). The NIM is calculated as interest income minus interest expenses over av-

erage earning assets. It indicates how successful the bank’s investment decisions were in

comparison to the interest-bearing assets. A negative value could indicate a non-optimal

banking credit policy or a fast deterioration in the quality of assets. Our last measure is

the bank’s efficiency ratio (ER). This ratio compares the overhead costs of running the

bank to the revenues from the bank’s business. The higher the ratio, the less efficient the

bank’s operations are.

Liquidity and Funding. Our last category includes two indicators. The first one is

the deposits-to-funding (DF) ratio, which is calculated by dividing total deposits by total

funding (sum of total deposits, short- and long-term borrowing and repurchase agree-

ments). This measure reflects the share of stable funding (deposits) to the total amount

of a bank’s funding. The less a bank relies on wholesale funding, the less exposed it is to

global volatility and credit crunches during global crises. The higher this ratio, the better

protected is a bank against global market fluctuations.13 The second liquidity measure is

net loans to total assets. This liquidity indicator reflects the share of loans less loan loss

provisions to total assets. An increase in that ratio may signal liquidity shortages, as the

company has an increasing proportion of illiquid assets (loans).

The frequency of the financial characteristics is quarterly for Bloomberg and annual

for Bankscope data. In Table 5, we present the ranking of banks according to the ten

13Of course, this measure is only meaningful when there are no bank runs. Since bank runs will affect
not only the deposits, but also the general funding availability, the information content of this liquidity
measure is reduced during such periods.
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factors.

4.2 Empirical Strategy

We choose a particular sovereign, Spain, to be the trigger of default risk in the banking

system. As previously argued, due to their small relative size, it is safe to assume that

Greece, Ireland and Portugal could be bailed out if needed and hence the resulting default

risk within the EU banking system could be relatively easily defused. That leaves Spain

and Italy as the main concern among the GIIPS (Greece, Ireland, Italy, Portugal and

Spain). The debt level of these two countries might make it infeasible to prevent a default

event if they meet difficulties to service their payments (e. g. due to short-term illiquidity

issues). For that reason, the ECB has continuously intervened on the debt market once

Spain and Italy announced that they would issue new debt to cover their short-term

funding needs.

Our set of banks is sorted by the time average of each of the financial characteristics in

the previous section. We then divide the 36 banks in 9 subsets, resulting in four banks per

portfolio. To each bank portfolio, we add Spain as a trigger for default risk considerations.

Thus, we reduce the joint density modeling to a 5-dimensional problem. For each portfolio

within each characteristic, we consider the ∆CoJPoD in case of Spain’s default, resulting

in 90 time series for further analysis. For the ease of exposition, we present averages of

the results for three subgroups: portfolios 1 to 3, 4 to 6 and 7 to 9.

The main hypothesis in the analysis in this section is that if some financial charac-

teristic is important for international investors, we should notice a particular ordering of

∆CoJPoD across the portfolios. For example, if leverage is an important characteristic

for international investors in forming their perceptions about banking susceptibility to

sovereign default, we would expect that higher-leveraged banks react more strongly to

such an event. This is, of course, by no means a ceteris paribus analysis, but nonetheless,

it could provide useful policy implications and important insights for further research.

4.3 Spillover Effects from Sovereigns to Banks

Figure 11 depicts the ∆CoJPoD results14 given a default of Spain for 9 portfolios

sorted by size. The results show a clear ordering – we notice a split of our portfolios in

two groups, with the biggest banks in our sample reacting much stronger to increases in

Spanish default risk. Several spikes occur throughout 2008 up to the end of the global

recession in mid-2009. After relatively stable 9 months, the conditional sovereign default

contribution to the fragility of the biggest banks rises again in March-April 2010, and

in mid-2011 it surpasses the levels during Lehman Brothers’ turmoil. The higher level

14We present and interpret the results for several financial characteristics only. The rest of the results
are available upon request.
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after July 2011 could be attributed to increased attention of markets to the problems of

Italy and Spain. Our results could be explained not only by the sizeable EA sovereign

debt holdings on the balance sheets of the biggest banks, but also by the uncertainty

about the economic conditions in the European Union during the sample period. The

high susceptibility of big banks to sovereign default risk might be related to “too-big-

to-save” (Hellwig, 1998) considerations by international investors. The recent experience

with the prolonged political process of bailout-packages ratification might explain why

investors could be skeptical about multilateral governments’ cooperation to support these

international conglomerates.

With regard to leverage, Figure 12 provides a rather mixed picture. There are signifi-

cant peaks during the sample period, especially in the second half of 2011, but the most

vulnerable bank groups turn out to be those with relatively modest levels of leverage. This

indicates that financial gearing might not be a good indicator for the reaction of banks

to sovereign debt problems. An argument why leverage can provide misleading results is

the fact that during crises financial institutions tend to procyclically reduce their leverage

level, sometimes at a high cost, which makes them highly vulnerable to financial markets

volatility.

Interestingly enough, the sorting by the return on equity (Figure 13) reveals that the

market perceptions of the default risk of the highest-performing banks tend to react more

intensively to sovereign default risk. The top three portfolios appear to have four to

six times higher ∆CoJPoD than the second subgroup, especially in the periods around

the Bear Stearns episode, the bankruptcy of Lehman Brothers and the following global

recession, as well as during the more recent events, related to the sovereign debt crisis. A

possible explanation might be that in international investors’ view the higher performance

might signal that the banks in question are involved in too risky activities.

We now turn our attention to the sorting by asset quality, measured by the doubtful

loans ratio. Figure 14 provides some evidence that international investors do take asset

quality into account when assessing default risk. The middle set of portfolios is consis-

tently above the top and bottom set, but since April 2010 the banks with the highest

doubtful loans ratio gradually reduce the differential. Therefore, it could be the case

that in the second half of our sample period this factor might be increasingly gaining

importance for international investors.

The ordering by total deposits to total funding (Figure 15) seems to follow our expec-

tations that banks with lower values for this indicator (hence more reliant on funding from

financial markets) are more vulnerable to sovereign default risk. The “correct” ordering

of the portfolios is especially evident after the outbreak of the sovereign debt crisis.
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5 Conclusion

We introduce a new systemic risk measure, the ∆CoJPoD, which assesses the effects

of interdependence within the financial system on the general default risk of the financial

system. The measure is related to the CoVaR and the Shapley value and captures the

relationship between overall systemic fragility and individual default risk. We apply our

measure to three cases: first, we estimate individual default contributions of euro area

sovereigns to the systemic default risk in the euro area. Second, we investigate cascade

effects among euro area sovereigns. Last, we analyze sovereign default spillover effects to

the European Union banking system.

Our analysis documents an increase in systemic risk contributions due to interde-

pendence in the EA during the post-Lehman global recession and especially after the

beginning of the EA sovereign debt crisis. We also find a considerable potential for cas-

cade effects from small to large EA sovereigns. When we investigate the effect of sovereign

default on the EU banking system, we find that bigger banks, banks with riskier activities,

poor asset quality, and funding and liquidity constraints tend to be more vulnerable to

sovereign default.

Our results suggest that interdependence plays a major role in investors’ perceptions

about systemic risk in the European financial system. We find that countries with a

relatively small size, like Netherlands, might have a significant systemic risk contribution

if investors perceive it to be interdependent with others in the euro area. Another im-

portant conclusion from our analysis is that investors expect that it is difficult to prevent

a sovereign default from spreading, once it has been triggered. The joint default of two

relatively small sovereigns, like Ireland and Portugal, increases the probability of default

of Spain by up to 55 percentage points and this effect has been persistent since Lehman’s

collapse. Therefore, our results provide support for the determined and often costly ef-

forts of the European regulators and policy-makers to prevent a sovereign default. With

regard to the analysis of spillover effects from EA sovereigns to the EU banking system,

investors seem to perceive bank size, balance sheet composition and risk, and asset qual-

ity as important systemic vulnerability indicators. Therefore, regulators should allocate

more resources to supervising the operations of the largest EU banks, in order to prevent

the collapse of the European banking system. Surprisingly, financial gearing seems to be

less informative in that respect. This might indicate that international investors consider

the European banking system to be already highly leveraged and is an interesting issue

for further research.

With regard to policy decision-making, there are heated debates whether euro area

sovereigns should be allowed to default. The proponents of this view claim that the

economic costs of a sovereign default would be lower than the size of the bailout pack-

ages to keep the sovereign solvent. The CoJPoD could be used to estimate the market
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expectations about the size of those alternative regulatory measures. To come up with

meaningful regulatory suggestions pro and con a bailout package, the CoJPoD should

be coupled with an estimate of the losses to the system given the respective sovereign

defaults. The resulting expected loss estimate should be used to determine the size of the

considered bailout package. This expected size should be then compared to the welfare

costs of alternative instruments in the regulatory toolkit. Note that even if a sovereign

bailout package turns out to be optimal in order to minimize social costs, it might not be

feasible even with the broadest possible international cooperation. Policy makers should

then resort to their remaining tools to address the consequences of a sovereign default.

In either case, we hope that CoJPoD becomes a useful ingredient in the decision-making

process of regulators and policy makers.
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A Solutions and Proofs

A.1 CDS Bootstrapping Procedure

If τ is the time to default, one can express the probability of default at market date t,

PoD(t) as

PoD(t) = P [τ ≤ t] = 1− P [τ ≥ t] = 1−Q(t), (12)

where [τ ≤ t] and P [τ ≥ t] = Q(t) are the probability of the time to default to be less

than t and the survival probability, respectively.

We apply a standard survival probability model by expressing Q(t) via a piecewise

constant hazard rate h(t). For instance, given that

h(t) =


γ1 for 0 ≤ t ≤ t1,

γ2 for t1 < t ≤ t2,

γ3 for t2 < t,

(13)

the survival function is

Q(t) =


eγ1·t for 0 ≤ t ≤ t1,

eγ1·t−γ2·(t−t1) for t1 < t ≤ t2,

eγ1·t1−γ2·(t22−t1)−γ3·(t−t2) for t2 < t,

(14)

The CDS bootstrapping procedure then calibrates γ1, γ2 and γ3 to the market CDS

premia data S1, S2 and S3, such that the present value of the payment in case of default

(100% – recovery rate), called also the “protection leg”, equals the discounted premia

flows in the CDS contract, or the “premium leg” at the given market dates t1, t3 and t3.

This equality relies on the no-arbitrage condition on financial markets. In practice this

is an iterative procedure that starts with the shortest maturity contract to calculate the

first hazard rate, γ1, and works its way through to the longest maturity, making sure that

the no-arbitrage condition holds at each step. In our calculation, we also account for the

quarterly structure of the CDS contract and the accrued premium that should be paid,

given the default is anywhere in between any two market dates. We then use Equation

survpod to calculate our cumulative PoD(t), with t = 1, ..., T denoting the default horizon

(T=5 years in our case). Effectively, we use PoD(T ) and annualize it using Formula 8.15

15Note the innocuous abuse of notation: in the text we use index t to denote each date in our sample,
while here, we use it to denote a particular time horizon.
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A.2 Consistent Information Multivariate Density Optimizing

Approach

We proceed by defining the financial system as a portfolio of debt issuers.16 We observe

n issuers, namely the X1, X2 to Xn entities defined in Section 2.1, with corresponding

assets x1, x2, to xn. We define our objective function as:

χ(p, q) =

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn) ln

[
p(x1, x2, ..., xn)

q(x1, x2, ..., xn)

]
dx1 · · · dxn−1dxn. (15)

The function q(x1, x2, ..., xn) ∈ Rn stands for the multivariate prior density function,17

while p(x1, x2, ..., xn) ∈ Rn is the corresponding posterior density. The primary objective

of the minimum cross-entropy approach is to minimize the difference χ(p, q) between the

ex ante joint distribution q(·) and the ex post joint distribution p(·), given that the latter

fulfills a set of constraints on the tail mass of the underlying marginal distributions. This

set of constraints should relate the posterior distribution to empirical data:

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[x1,∞)dx1 · · · dxn−1dxn = PoD1
t (16)

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[xx2 ,∞)dx1 · · · dxn−1dxn = PoD2
t (17)

· · ·

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[xxn ,∞)dx1 · · · dxn−1dxn = PoDn
t , (18)

where PoD1
t , PoD

2
t to PoDn

t stand for the CDS-derived expected probabilities of de-

fault of X1, X2, ..., Xn. The indicator functions I[x1,∞), I[x2,∞) to I[xn,∞) incorporate

the default thresholds x1, x2 to xn
18 of the respective institutions. The functions take

the value of unity if the assets of the respective entities exceed their individual thresh-

olds and zero when they are below it. As explained above, the moment consistency

16In this section, we present the multivariate version of the CIMDO approach. For the bivariate and
trivariate models, please refer to Gorea and Radev (2012) and Segoviano (2006).

17As in Segoviano and Goodhart (2009), we assume a standard multivariate normal distribution for

our prior. The prior density q is then 1

(2π)
n
2 |Σ|

1
2
e(

1
2x
′Σ−1x), where x is an n-dimensional random vector,

while Σ is an n×n variance-covariance matrix of standard-normally-distributed variables (mean zero and
standard deviation equal to one). In contrast to Segoviano and Goodhart (2009), we assume an arbitrary
correlation structure, instead of the identity matrix.

18Each default threshold is derived by inverting a univariate standard normal cumulative distribution
function at the sample average value of the individual entity’s probabilities of default.
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constraints should ensure that the region of default of the “posterior” distribution is con-

sistent with the market consensus default expectations for each sovereign or bank. In

addition, in order to qualify as a density, p(·) should conform to the additivity constraint
+∞∫
−∞

+∞∫
−∞
· · ·

+∞∫
−∞

p(x1, x2, ..., xn)dx1 · · · dxn−1dxn = 1.

We then minimize the Lagrangian function:

L(p, q) =

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn) ln

[
p(x1, x2, ..., xn)

q(x1, x2, ..., xn)

]
dx1 · · · dxn−1dxn

+ λ1

 +∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[x1,∞)dx1 · · · dxn−1dxn − PoD1
t


+ λ2

 +∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[x2,∞)dx1 · · · dxn−1dxn − PoD2
t


+ · · ·

+ λn

 +∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[xn,∞)dx1 · · · dxn−1dxn − PoDn
t


+ µ

 +∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)dx1 · · · dxn−1dxn − 1

 ,

(19)

with µ, λ1, λ2 to λn being the Lagrange multipliers of the corresponding constraints. The

optimal ex post distribution reads:19

p∗(x1, x2, ..., xn) = q(x1, x2, ..., xn)exp

{
−

[
1 + µ+

n∑
i=1

λiI[xi,∞)

]}
. (20)

The posterior distribution has two important properties: first, regardless of the prior

assumption, the ex post distribution allows for fat tails and second, due to the dynamic

updating through the individual empirical information, the posterior joint distribution is

time-varying by construction.

19Appendix A.3 contains a detailed solution of the minimum cross-entropy optimization problem in a
CIMDO context.
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A.3 Solution of Minimum Cross Entropy

The minimum cross entropy procedure can be viewed as a part of an iterative al-

gorithm to approximate a target probability density f , using empirical data describing

its underlying unknown process.20 In this procedure, an a-priori (or prior) density q is

updated to a posterior density p, given the following Cross Entropy Postulate:

1. Conditional on a prior density q of a set X ⊂ <d,

2. we minimize the Csiszár Cross Entropy measure 21

D(p→ q) =

∫
X

q(x) · ψ
(
p(x)

q(x)

)
dx (21)

with respect to p(x), where x is a column vector and x ∈ <d,

3. given the moment constraints

EpKi(X) =

∫
X

p(x) ·Ki(x)dx = κ̂i, i = 0, ..., n, (22)

where {Ki(x)}ni=1 is a set of suitably chosen functions and κ̂i is empirical information

describing the behaviour of the system, EfKi(X).

The Minimum Cross Entropy Problem is then defined as

min
p
D(p→ q) (23)

subject to the constraints ∫
X

p(x) ·Ki(x)dx = κ̂i, i = 0, ..., n (24)

and ∫
p(x)dx = 1. (25)

The corresponding Lagrangian is then

20For further details on the cross-entropy method and its generalizations, please consult with e. g. Botev
and Kroese (2011).

21The Csiszár Cross Entropy measure is a measure of directed divergence between probability densities
(Botev and Kroese, 2011).
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L(p;λ, λ0) =

=

∫
q(x) · ψ

(
p(x)

q(x)

)
dx + λ0

(
1−

∫
p(x)dx

)
+

n∑
i=1

λi

(
κ̂i −

∫
p(x) ·Ki(x)dx

)

=

n∑
i=0

λi · κ̂i +

∫ (
q(x) · ψ

(
p(x)

q(x)

)
+ p(x) ·

n∑
i=0

λi ·Ki(x)

)
dx,

(26)

where λ = [λ1, λ2, ..., λn]T , κ̂0 = 1, and K0(·) = 1.

Let us assume that {Ki(x)}ni=0 = {Ii(x)}ni=0, where Ii, i = 1, 2, ..., n are binary func-

tions taking values of unity when the respective xi satisfies some condition, and zero

otherwise, and I0 = 1. The first order condition with respect to p(x) is then

∂

(
q(x) · ψ

(
p(x)
q(x)

)
+ p(x) ·

n∑
i=0

λi · Ii
)

∂p(x)
!

= 0. (27)

The latter can be further simplified as follows:

q(x) · (q(x))−1 · ψ′
(
p(x)

q(x)

)
+

n∑
i=0

λi · Ii = 0 (28)

ψ′
(
p(x)

q(x)

)
= −

n∑
i=0

λi · Ii. (29)

Assume ψ(x) = x · ln(x), which is referred to in the literature as the Kullback-Leibler

distance22. The Csiszár Cross Entropy measure can then me transformed as

∫
q(x) · ψ

(
p(x)

q(x)

)
=

∫
q(x) · p(x)

q(x)
· ln
(
p(x)

q(x)

)
=

∫
p(x) · ln

(
p(x)

q(x)

)
,

(30)

while our ψ′
(
p(x)
q(x)

)
takes the form

ψ′
(
p(x)

q(x)

)
=

(
p(x)

q(x)
· ln
(
p(x)

q(x)

))′
= ln

(
p(x)

q(x)

)
+
p(x)

q(x)
·
(
p(x)

q(x)

)−1
= ln

(
p(x)

q(x)

)
+ 1.

(31)

22The Kullback-Leibler distance is a usual assumption that allows us to avoid setting additional con-
straints to secure the non-negativity of p(x).
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Substituting in our first order condition Equation (29) and simplifying further yields

ln

(
p(x)

q(x)

)
+ 1 = −

n∑
i=0

λi · Ii (32)

ln

(
p(x)

q(x)

)
= −1−

n∑
i=0

λi · Ii. (33)

The solution to the Minimum Cross Entropy problem is then

p(x) = q(x) · exp

{
−

[
1 +

n∑
i=0

λiIi

]}
. (34)

Changing the notation of the Lagrange multiplier of the additivity constraint to µ, we

arrive at

p(x) = q(x) · exp

{
−

[
1 + µ+

n∑
i=1

λiIi

]}
, (35)

which is the general form of the solution to the CIMDO minimization problem.
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A.4 Proof of Independence within the Default Region of the

CIMDO Distribution

To prove independence, we want to show that using standard normal distribution as

a prior, the following holds for the posterior CIMDO distribution and its marginals:

P (x1 > x1, x2 > x2, ..., xn > xn) = P (x1 > x1) · P (x2 > x2) · · ·P (xn > xn)

=
n∏
i=1

P (xi > xi),
(36)

where P (x1 > x1), P (x2 > x2),..., P (xn > xn) and P (x1 > x1, x2 > x2, ..., xn > xn) are

the cumulative marginal and joint CIMDO probabilities.

Proof:

We present a direct proof of the statement above. We start by expressing P (xn > xn),

P (x1 > x1, x2 > x2, ..., xn−1 > xn−1) and P (x1 > x1, x2 > x2, ..., xn > xn) in terms of the

prior (multivariate standard normal) distribution and the thresholds x1, x2 to xn:

P (xn > xn) = PoDn

=

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[xn,∞)dx1 · · · dxn−1dxn

=

+∞∫
xn

+∞∫
−∞

· · ·
+∞∫
−∞

(2π)
n
2 e

−
n∑

i=1
x2i

2


e
(−(1+µ+

n−1∑
i=1

λiI[xi,∞)+λn))
dx1 · · · dxn−1dxn,

(37)

P (x1 > x1, x2 > x2, ..., xn−1 > xn−1) =

=

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[x1,∞) · I[x2,∞) · · · I[xn−1,∞)dx1 · · · dxn−1dxn

=

+∞∫
−∞

+∞∫
xn−1

· · ·
+∞∫
x1

(2π)
n
2 e

−
n∑

i=1
x2i

2


e
(−(1+µ+

n−1∑
i=1

λi+λnI[xn,∞)))
dx1 · · · dxn−1dxn,

(38)

where I[x1,∞), I[x2,∞) to I[xn,∞) are indicator functions that take the value of one in the

cases where the assets of X1, X2 to Xn are beyond their individual thresholds, respectively.

Then, the joint probability of distress is as follows:
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P (x1 > x1, x2 > x2, ..., xn > xn) =

=

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

p(x1, x2, ..., xn)I[x1,∞) · I[x2,∞) · · · I[xn,∞)dx1 · · · dxn−1dxn

=

+∞∫
xn

+∞∫
xn−1

· · ·
+∞∫
x1

(2π)
n
2 e

−
n∑

i=1
x2i

2


e
(−(1+µ+

n∑
i=1

λi))
dx1 · · · dxn−1dxn.

(39)

Rearranging P (xn > xn), we get

P (xn > xn) =

=

+∞∫
xn

(2π)−
1
2 e−

x2
n
2 e−λndxn

+∞∫
−∞

· · ·
+∞∫
−∞

(2π)
n−1
2 e

−
n−1∑
i=1

x2
i

2


e

(−(1+µ+
n−1∑
i=1

λiI[xi,∞)))
dx1 · · · dxn−1.

(40)

Analogously, for P (x1 > x1, x2 > x2, ..., xn−1 > xn−1), we come at:

P (x1 > x1, x2 > x2, ..., xn−1 > xn−1) =

=

+∞∫
xn−1

· · ·
+∞∫
x1

(2π)
n−1
2 e

−
n−1∑
i=1

x2
i

2


e

(−
n−1∑
i=1

λi)
dx1 · · · dxn−1

+∞∫
−∞

(2π)−
1
2 e−

x2
n
2 e(−(1+µ+λnI[xn,∞)))dxn,

(41)

Hence, for the product of the latter probabilities, we have:

P (x1 > x1, x2 > x2, ..., xn−1 > xn−1) · P (xn > xn) =

=


+∞∫

xn−1

· · ·
+∞∫
x1

(2π)
n−1
2 e

−
n−1∑
i=1

x2
i

2


e

(−
n−1∑
i=1

λi)
dx1 · · · dxn−1

+∞∫
−∞

(2π)−
1
2 e−

x2
n
2 e(−(1+µ+λnI[xn,∞)))dxn



·


+∞∫
xn

(2π)−
1
2 e−

x2
n
2 e−λndxn

+∞∫
−∞

· · ·
+∞∫
−∞

(2π)
n−1
2 e

−
n−1∑
i=1

x2
i

2


e

(−(1+µ+
n−1∑
i=1

λiI[xi,∞)))
dx1 · · · dxn−1



=


+∞∫
xn

+∞∫
xn−1

· · ·
+∞∫
x1

(2π)
n
2 e

−
n∑

i=1
x2
i

2


e

(−(1+µ+
n∑

i=1
λi))

dx1 · · · dxn−1dxn



·


+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

(2π)
n
2 e

−
n∑

i=1
x2
i

2


e

(−(1+µ+
n∑

i=1
λiI[xi,∞)))

dx1 · · · dxn−1dxn

 .

(42)
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As the integral in the last square brackets is in fact the additivity constraint in our

optimization problem, it equals 1 by definition. The remaining term equals our definition

for the joint probability P (x1 > x1, x2 > x2, ..., xn > xn). If we repeat the procedure

iteratively for the joint distributions P (x1 > x1, x2 > x2, ..., xi > xi), for i = n− 1, ..., 2,

we arrive at the following decomposition:

P (x1 > x1, x2 > x2, ..., xn > xn) = P (x1 > x1) · P (x2 > x2) · · ·P (xn > xn)

=
n∏
i=1

P (xi > xi).
(43)

Hence, the product of the marginal probabilities of distress P (x1 > x1), P (x2 > x2) , ...,

and P (xn > xn) equals the joint probability of distress, meaning that within the joint

distress region, the entities X1, X2 and Xn are independent. �
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B Figures

Figure 1: 5-year annualized CDS-implied probabilities of default of Greece, using the sim-
ple formula 7 (GR(simple)) and the bootstrapping procedure (GR). The 5-year annualized
CDS-implied bootstrapped probabilities of default are derived from the respective cumu-
lative ones using formula 8. Euro-denominated CDS spreads are used. Period: 01.01.2008
- 31.12.2011. Source: own calculations.
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C Tables

Table 1: Descriptive statistics of the 5-year CDS spreads series of Austria (AT), Belgium
(BE), France (FR), Germany (GE), Greece (GR), Ireland (IE), Italy (IT), Netherlands
(NL), Portugal (PT), Spain (ES). The data are in basis points. Period: 01.01.2008 -
31.12.2011. Number of observations: 1044.

AT BE FR GE GR
Minimum 4.08 7.25 4.33 2.92 15.08
Mean 60.69 77.16 47.53 29.10 773.93
Maximum 215.77 303.72 186.21 90.82 11033.74
Standard deviation 40.73 61.26 38.36 18.95 1444.67
Number of observations 1044 1044 1044 1044 1044

IE IT NL PT ES
Minimum 9.10 13.88 4.31 12.11 11.61
Mean 234.99 116.18 34.81 231.00 121.61
Maximum 917.55 445.26 103.63 961.47 367.64
Standard deviation 199.37 91.20 23.39 259.73 87.88
Number of observations 1044 1044 1044 1044 1044
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Table 2: Correlation structure between 10 sovereigns: Austria (AT), Belgium (BE), France
(FR), Germany (GE), Greece (GR), Ireland (IE), Italy (IT), Netherlands (NL), Portugal
(PT), Spain (ES). Period: 01.01.2008 - 31.12.2011. The correlations are calculated be-
tween changes in the 5-year CDS spreads of the sovereigns in the respective column and
row.

AT BE FR GE GR IE IT NL PT ES
AT 1.00 0.70 0.73 0.75 0.13 0.54 0.66 0.79 0.46 0.62
BE 1.00 0.82 0.74 0.16 0.69 0.83 0.72 0.65 0.81
FR 1.00 0.82 0.22 0.63 0.81 0.73 0.60 0.76
GE 1.00 0.19 0.59 0.72 0.75 0.56 0.69
GR 1.00 0.19 0.21 0.16 0.17 0.17
IE 1.00 0.71 0.55 0.77 0.74
IT 1.00 0.68 0.71 0.90
NL 1.00 0.49 0.63
PT 1.00 0.73
ES 1.00
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Table 3: List of euro area banks used in our analysis.

Euro Area Banks
Country code Name

1 AT Erste Group Bank AG
2 AT Raiffeisen Bank International Austria
3 BE Dexia SA
4 BE KBC Groep NV
5 DE Bayerische Landesbank
6 DE Commerzbank AG
7 DE Deutsche Bank AG
8 DE Landesbank Berlin Holding AG
9 ES Banco Bilbao Vizcaya Argentaria

10 ES Banco de Sabadell SA
11 ES Banco Santander SA
12 FR BNP Paribas
13 FR Credit Agricole SA
14 FR Natixis
15 FR Societe Generale
16 IE Allied Irish Banks PLC
17 IE Governor & Co of the Bank of Ireland
18 IE Irish Life and Permanent
19 IT Banca Monte dei Paschi di Siena
20 IT Banca Popolare di Milano
21 IT Banco Popolare SC
22 IT Intesa Sanpaolo SpA
23 IT UniCredit SpA
24 NL ING Groep NV
25 NL Rabobank
26 NL SNS Bank Netherlands
27 PT Banco Comercial Portugues SA
28 PT Espirito Santo Financial Group

Table 4: List of additional non-euro area European Union banks used in our analysis.

Other European Union Banks
Country code Name

1 DK Danske Bank A/S
2 GB Barclays PLC
3 GB HSBC Holdings PLC
4 GB Lloyds Banking Group PLC
5 GB Royal Bank of Scotland Group
6 GB Standard Chartered PLC
7 SE Nordea Bank AB
8 SE Skandinaviska Enskilda Banken
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Table 5: Ranking assignment in descending order of the 36 banks used in our analysis
with respect to 10 financial characteristics. The numbers in the columns for the financial
characteristics come from the ordering in Tables 3 and 4. The values from 29 to 36
are given to the non-euro area European Union banks in the same order as in Table 4.
PF 1 to PF 9 list the 4 banks that are included in the final 5-entity portfolios for each
financial characteristic. The abbreviations stand for, as follows: total assets (TA), return
on equity (ROE), return on assets (ROA), net interest margin (NIM), efficiency ratio
(ER), deposits-to-funding (DF) ratio, assets-to-equity (AE) ratio, loan-loss-provisions-
to-net-interest-income (LLP-to-NII) ratio, non-performing-loans-to-total-loans (“doubtful
loans”, DL) ratio, net-loans-to-total-assets (NL-to-TA) ratio.

Financial Characteristics
Ranking Portfolios TA ROE ROA NIM ER DF AE LLP-to-NII DL NL-to-TA

1 33 11 2 2 4 31 3 16 16 26
2 PF 1 12 23 8 1 16 34 8 17 21 27
3 7 33 11 9 14 18 7 18 19 10
4 31 31 10 11 29 24 18 32 23 25
5 30 7 9 34 8 1 26 3 17 20
6 PF 2 13 9 35 20 6 7 24 26 22 17
7 24 34 22 19 20 23 6 33 1 21
8 11 30 19 31 32 19 13 5 32 19
9 15 32 1 22 21 4 29 27 2 16
10 PF 3 23 22 36 10 19 2 30 31 8 28
11 32 12 30 23 33 25 5 14 6 2
12 6 25 20 21 13 32 12 30 15 9
13 22 15 31 16 1 27 32 24 33 32
14 PF 4 25 6 34 4 22 11 17 21 30 1
15 3 4 27 27 24 9 14 6 12 11
16 9 1 12 28 18 20 36 15 13 23
17 35 35 24 32 15 10 35 1 10 22
18 PF 5 14 29 15 17 25 16 15 23 4 29
19 29 19 28 25 27 17 16 2 26 3
20 5 2 23 30 26 33 33 10 9 35
21 4 3 6 33 23 36 4 12 14 18
22 PF 6 34 13 21 35 28 21 31 11 29 24
23 36 24 7 29 12 26 9 9 27 36
24 19 21 25 26 36 35 25 28 11 5
25 1 36 29 12 30 6 10 19 31 34
26 PF 7 17 27 13 24 2 22 11 13 5 6
27 16 10 32 13 34 30 34 22 7 4
28 8 28 14 15 31 13 23 20 20 31
29 21 20 18 36 35 28 27 29 18 33
30 PF 8 2 8 5 6 10 29 1 36 34 15
31 27 14 26 7 5 15 19 4 25 8
32 10 18 17 3 9 8 28 35 24 12
33 26 26 4 8 11 5 20 25 28 13
34 PF 9 28 17 3 5 17 12 2 34 36 30
35 18 5 33 14 7 3 22 8 35 14
36 20 16 16 18 3 14 21 7 3 7
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