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Deutsche Zusammenfassung

Die konvexen Kegel der nichtnegativen Polynome und Summen von Quadraten
sind zentrale Objekte in der konvexen algebraischen Geometrie. Ihr Ursprung
liegt in der bedeutenden Arbeit von Hilbert ([Hil88]). Darin werden bezüglich
der Anzahl der Variablen n und dem Grad d der Polynome alle Fälle charak-
terisiert, in denen die Kegel übereinstimmen. Diese Übereinstimmung liegt
nur für binäre Formen, quadratische Formen und für ternäre Quartiken vor.
Seit dieser klassischen Arbeit ist die Frage nach der Di�erenz zwischen den
beiden Kegeln auch heute noch ein sehr wichtiges und aktuelles Problem. Sie
ist für viele Anwendungen von zentraler Bedeutung. Das sicherlich prominen-
teste Anwendungsgebiet liegt in polynomiellen Optimierungsproblemen, deren
Lösung äquivalent dazu ist, die Nichtnegativität von Polynomen zu entschei-
den. Diese Optimierungsprobleme lassen sich insbesondere dann e�zient lösen,
wenn sich spezielle nichtnegative Polynome in diesem Rahmen als Summe von
Quadraten schreiben lassen. Der Grund hierfür liegt in der Tatsache, dass
die Entscheidung, ob ein gegebenes Polynom nichtnegativ ist, im Allgemeinen
NP-schwer ist ([BCSS98]). Die Frage, ob ein Polynom aber eine Summe von
Quadraten ist, lässt sich mittels eines semide�niten Zugehörigkeitsproblems
lösen. Die Komplexität semide�niter Zugehörigkeitsprobleme ist zwar im All-
gemeinen ungeklärt, sie ist aber polynomiell für eine feste Anzahl an Vari-
ablen des Polynoms. Dementsprechend ist eine fundierte Kenntnis über die
Di�erenz des Kegels der nichtnegativen Polynome und des Kegels der Sum-
men von Quadraten sowohl auf der theoretischen als auch auf der praktischen
Seite sehr wünschenswert.

Das Ziel dieser Arbeit ist die Untersuchung dieser beiden Kegel und ihres
Zusammenspiels mit der reellen algebraischen und konvexen algebraischen Ge-
ometrie. Viele der erzielten Resultate gehen dabei explizit auf die Di�erenz
dieser Kegel ein und charakterisieren diese für reichhaltige Klassen von Poly-
nomen sogar explizit. Eine vollständige Beschreibung der Di�erenz dieser
beiden Kegel ist aber aufgrund der komplexen Struktur der Kegel äuÿerst
schwierig und unwahrscheinlich. Die Frage, ob und welche reichhaltigen Teil-
mengen oder Durchschnitte dieser Kegel vollständig beschrieben werden kön-
nen, ist ein zentraler Ausgangspunkt vieler vorangegangener Arbeiten. Die
neuen Resultate der vorliegenden Arbeit können in die folgenden Gebiete
eingegliedert werden:
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1. Die Untersuchung der Randstruktur der Kegel der nichtnegativen Poly-
nome und Summen von Quadraten, insbesondere die Konstruktion tren-
nender Hyperebenen und die Frage nach möglichen Dimensionen der
Seiten dieser Kegel.

2. Die Frage nach der Nichtnegativität von Polynomen unter Ausnutzung
von Symmetrien.

3. Die Untersuchung von dünnbesetzten Polynomen hinsichtlich der Nicht-
negativität und Summen von Quadraten.

4. Die Anwendung der Dünnbesetztheit zur Berechnung unterer Schranken
von Polynomen mittels geometrischer Programmierung.

Bevor die Resultate dieser Arbeit ausführlicher erläutert werden, wird im
Folgenden eine kurze Übersicht über eine Auswahl an Referenzen gegeben,
deren Inhalte unmittelbar in Zusammenhang zu dieser Arbeit stehen. In
[CL78, CLR87, CLR80, Rez78] werden konkrete Beispiele und Konstruktionen
nichtnegativer Polynome betrachtet, die sich nicht als Summe von Quadraten
zerlegen lassen. Ein wesentlicher Bestandteil der Untersuchungen in diesen
Arbeiten ist der Rand des Kegels der nichtnegativen Polynome sowie die ma-
ximale Anzahl an Nullstellen von nichtnegativen Polynomen. In [Ble06] liefert
Blekherman Schranken für das Volumenverhältnis eines kompakten Schnitts
des Kegels der nichtnegativen Polynome und des Kegels der Summen von
Quadraten. Diese Schranken zeigen, dass für einen festgehaltenen Grad der
Polynome, der mindestens vier ist, und wachsender Anzahl an Variablen, das
Volumenverhältnis beliebig groÿ wird. Folglich gibt es bedeutend mehr nicht-
negative Polynome als Summen von Quadraten. Hilberts klassische Konstruk-
tion für die Existenz nichtnegativer Polynome, die keine Summe von Quadraten
sind, wird in der Arbeit [Rez07] beschrieben und erweitert. Wesentliche Be-
standteile dieser Untersuchungen sind erneut die Randstrukturen der Kegel
sowie die möglichen Dimensionen ihrer zugehörigen Seiten. Die wichtigen
Verbindungen von nichtnegativen Polynomen und Summen von Quadraten
zu dem Gebiet der polynomiellen Optimierung sind in der Arbeit von Lasserre
([Las01]) sowie in der Arbeit von Parrilo und Sturmfels zu �nden ([PS03]).
Darüber hinaus gibt es mittlerweile reichlich Übersichtsartikel und Bücher zu
diesen Themen ([DP01, Lau09, Mar08, Rez00, BPT13]). Viele weitere Re-
sultate und Artikel �nden sich in den zuvor referenzierten Arbeiten oder im
weiteren Verlauf dieser Arbeit wieder. Die Resultate der vorliegenden Arbeit
werden nun im Detail beschrieben.

Separierende Ungleichungen für nichtnegative Polynome, die keine

Summe von Quadraten sind. Eines der wichtigsten Resultate in der kon-
vexen Geometrie ist das Separationstheorem. In seiner einfachsten Form be-
sagt es, dass es für eine abgeschlossene konvexe Menge C ⊂ Rn und einen
Punkt x /∈ C ein lineares Funktional l gibt mit der Eigenschaft l(x) < 0 und
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l(C) ≥ 0. Da die Menge der nichtnegativen Polynome und die Menge der
Summen von Quadraten abgeschlossene konvexe Kegel bilden, ist es ein in-
teressantes Problem, separierende Ungleichungen für nichtnegative Polynome
zu �nden, die keine Summe von Quadraten sind. Ein zentrales Hilfsmittel für
dieses Problem ist die Dualitätstheorie und die Untersuchung der zugehörigen
dualen Kegel. Es ist wohlbekannt, dass solche separierenden Ungleichungen
numerisch e�zient mittels semide�niter Programme (SDP) gefunden werden
können ([Las01]). Da die Frage, ob ein Polynom eine Summe von Quadraten
ist, über ein SDP entschieden werden kann, lässt sich eine separierende Unglei-
chung für ein nichtnegatives Polynom, das keine Summe von Quadraten ist,
wie folgt bestimmen: Durch Formulierung des Problems mittels eines SDP's
ist klar, dass dieses SDP unzulässig ist (da das Polynom per Annahme keine
Summe von Quadraten ist). Dann liefert aber eine zugehörige Lösung des
dualen SDP's ein (numerisches) lineares Funktional als Zerti�kat, dass das
Polynom keine Summe von Quadraten ist. Will man nun aber exakte (alge-
braische) Zerti�kate haben, wird dieses Problem deutlich schwieriger. In der
Tat ist kein allgemeines Verfahren hierfür soweit bekannt.

In den minimalen Fällen, in denen die Kegel der nichtnegativen Polynome
und Summen von Quadraten nicht übereinstimmen ((n, 2d) ∈ {(3, 6), (4, 4)}),
gibt Blekherman in seiner Arbeit [Ble12a] eine vollständige Charakterisierung
der Extremalstrahlen des dualen Kegels der Summen von Quadraten. Diese
sind nämlich über Summen von Punktevaluationsfunktionalen eines Polynoms
p gegeben und besitzen die folgende Struktur:

l(p) =
m∑
i=1

aip(vi), m ∈ {8, 9}, (0.0.1)

wobei ai ∈ C und die Punkte vi ∈ Cn der Schnitt von zwei ternären Kubiken
(m = 9) bzw. drei quaternären Quadriken (m = 8) sind. Ist nun p ein nicht-
negatives Polynom, das keine Summe von Quadraten ist, so ist man interessiert
an der Bestimmung von zwei ternären Kubiken (m = 9) bzw. drei quaternären
Quadriken (m = 8) (sowie deren Schnittpunkte vi), sodass l(p) < 0 ist. Für
alle Quadratsummen q gilt dann l(q) ≥ 0 nach Blekeherman's Resultaten in
[Ble12a]. Die exakte Bestimmung und das Finden von geeigneten Schnittpunk-
ten für ein festes Polynom p ist allerdings ein o�enes Problem.

Basierend auf den Resultaten von Blekherman werden hinreichende Bedin-
gungen für nichtnegative Polynome am Rand des Kegels geliefert, um solche
separierenden Ungleichungen der Form (0.0.1) e�zient zu konstruieren (Theo-
reme 3.3.1 und 3.3.3). Diese Kriterien können symbolisch und e�zient getestet
werden. Die Idee basiert darin, die Nullstellen dieser Polynome als Teil der
Schnittpunkte vi zu wählen. Dabei wird sich herausstellen, dass die vorgestell-
ten Verfahren insbesondere dann e�zient sind, wenn die Polynome hinreichend
viele Nullstellen besitzen. Dies wird auf groÿe Klassen von Polynomen zu-
tre�en. In vielen Fällen lassen sich sogar rationale Zerti�kate recht einfach
konstruieren. Als unmittelbare Folgerung lassen sich dann sofort strikt posi-
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tive Polynome konstruieren, die keine Summe von Quadraten sind. In seiner
Arbeit [Ble12a] vermutet Blekherman, dass die Extremalstrahlen in (0.0.1)
sogar rein reell beschrieben werden können, in der Hinsicht, dass man im-
mer Schnittpunkte vi �ndet, die reell sind. Diese Vermutung wird in der
vorliegenden Arbeit von einem berechnungsbasierten Aspekt behandelt, der
im wesentlichen äquivalent zu der Originalvermutung von Blekherman ist.
Basierend auf den erzielten Resultaten kann vom berechnungsbasierten Stand-
punkt diese Vermutung für reichhaltige Klassen von Polynomen am Rand des
Kegels der nichtnegativen Polynome bestätigt werden (Korollar 3.4.2). Durch
einige Experimente und Beispiele wird zusätzlich das Problem der Konstruk-
tion separierender Ungleichungen der Form (0.0.1) mit der Approximation
semialgebraischer Mengen in Verbindung gebracht.

Seitenstruktur der Kegel der nichtnegativen Polynome und Sum-

men von Quadraten. Die meisten wohlbekannten Beispiele nichtnegativer
Polynome, die keine Summe von Quadraten sind, liegen auf dem Rand des
Kegels der nichtnegativen Polynome, der aus all den nichtnegativen Polynomen
mit mindestens einer reellen Nullstelle besteht. Der Grund hierfür ist, dass die
meisten Konstruktionen solcher Polynome auf der klassischen Konstruktion
von Hilbert basieren oder eine Verallgemeinerung dieser sind. Diese Metho-
den beruhen jedoch alle darauf, dass aus einer vorgegebenen Nullstellenmenge,
nichtnegative Polynome konstruiert werden, die keine Summe von Quadraten
sind. Die Untersuchung der Randstruktur dieser beiden Kegel ist noch in
einem sehr frühen Stadium und sogar in den minimalen Ungleichheitsfällen
der Kegel weitgehend o�en. In den Gleichheitsfällen der Kegel ist wiederum
deutlich mehr bekannt und das Problem zum Teil vollständig gelöst ([Bar02]).
Aktuelle Resultate, die beispielsweise den algebraischen Rand dieser Kegel be-
tre�en, liefern bereits ein Indiz für die komplexe Randstruktur der Kegel, da
die Komponenten, die den Kegel der Summen von Quadraten von dem Kegel
der nichtnegativen Polynome trennen, sehr hohen Grad besitzen ([BHO+12]).

Motiviert durch diese Resultate und Techniken in [Rez07] werden folgende
Ergebnisse bezüglich der Randstruktur der Kegel präsentiert. Betrachtet wer-
den exponierte Seiten dieser Kegel, die gegeben sind durch eine Menge von
nichtnegativen Polynomen bzw. Summen von Quadraten, die alle auf einer
vorgegebenen, endlichen Punktmenge Γ ⊂ Rn verschwinden. Für ternäre
Formen (drei Variablen) und quaternäre Quartiken (vier Variablen und Grad
vier) wird als Hauptresultat die Frage nach Dimensionsdi�erenzen zwischen
den Seiten vollständig charakterisiert (Theoreme 4.2.1 und 4.3.1, Korollare
4.2.2 und 4.3.2). Präziser formuliert, wird in all diesen Fällen die minimale
Kardinalität von Γ bestimmt, die eine Dimensionsdi�erenz auf den zugehöri-
gen exponierten Seiten bewirkt. Die Resultate gelten dabei unter schwachen
Voraussetzungen an die Punkte (wie zum Beispiel die Forderung, dass die
Punkte in allgemeiner Lage sind). Diese Dimensionsdi�erenzen können dann
ausgenutzt werden, um nichtnegative Polynome zu konstruieren, die keine
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Summe von Quadraten sind. In den minimalen Ungleichheitsfällen der beiden
Kegel wird gezeigt, dass die maximale Dimensionsdi�erenz eins ist und diese 1-
dimensionale Di�erenz sogar explizit charakterisiert (Propositionen 4.4.1 und
4.4.5). Dies liefert gleichzeitig eine Konstruktionsmethode für nichtnegative
Polynome, die keine Summe von Quadraten sind.

Die Resultate nutzen dabei zum Teil stark kommutativ-algebraische Metho-
den aus. Wesentliche Bestandteile der Beweise für ternäre Formen basieren auf
der Gleichheit von symbolischen Potenzen und gewöhnlichen Potenzen von
Verschwindungsidealen. Da diese Potenzen im Allgemeinen über algebraisch
abgeschlossenen Körpern betrachtet werden, ist es nötig, einige dieser Aus-
sagen über den reellen Zahlen zu beweisen. Dies geschieht in den entsprechen-
den Abschnitten. Um die Dimensionen der Seiten explizit zu bestimmen, wird
eine Generizitätsbedingung für endliche Punktmengen Γ ⊂ Rn eingeführt, die
als d-unabhängig bezeichnet wird. Es stellt sich heraus, dass diese Bedingung
Zariski o�en ist. Durch die Konstruktion eines expliziten Beispiels einer d-
unabhängigen Menge Γ ⊂ Rn der Gröÿe |Γ| =

(
n+d−1

d

)
− n wird gezeigt, dass

fast jede endliche Menge Γ mit |Γ| ≤
(
n+d−1

d

)
− n ebenfalls d-unabhängig ist

(Proposition 4.1.7). In der Tat ist diese obere Schranke sogar optimal.

Das Problem, die Dimensionen der Seiten zu untersuchen, ist insbesondere
deshalb interessant, weil man die Existenz nichtnegativer Polynome, die keine
Summe von Quadraten sind, sofort aufgrund von einfachen Dimensionszählun-
gen beweisen kann. Die vorgestellten Methoden basieren auf Perturbations-
techniken, die in der Tat auf Hilberts klassische Konstruktion zurückgeführt
werden können. Als Abschluss wird eine mögliche Erweiterung dieser Tech-
niken für Polynome präsentiert, die nichtnegativ auf einer beliebigen, reellen
projektiven Varietät sind.

Nichtnegativität von geraden symmetrischen Polynomen. Die Frage
nach der Nichtnegativität von Polynomen ist besonders dann interessant, wenn
die Polynome eine spezielle Struktur besitzen. Ein wesentliches Problem des
allgemeinen Falls ist dadurch gegeben, dass die Dimension des Kegels der
nichtnegativen Polynome und des Kegels der Summen von Quadraten sehr
groÿ ist und sehr schnell anwächst, sobald der Grad oder die Anzahl der Vari-
ablen zunehmen. Für symmetrische Polynome sind diese Dimensionen deutlich
kleiner und vor allem konstant, sobald die Anzahl der Variablen den Grad
übersteigt. Die Untersuchung der Nichtnegativitätsfrage für symmetrische
Polynome begann mit der Arbeit von Choi, Lam und Reznick in [CLR87],
in welcher gerade symmetrische Sextiken untersucht werden. Das zentrale
Resultat besagt, dass solche Polynome im Rn genau dann nichtnegativ sind,
wenn sie auf allen Punkten x ∈ Rn mit maximal einer von Null verschiedenen
Komponente nichtnegativ sind. In seinen Arbeiten [Har92b, Har99] erweitert
Harris diese Resultate auf gerade symmetrische Oktiken (Grad acht Polynome)
und gerade symmetrische ternäre Deziken (drei Variablen und Grad zehn). In
diesen Fällen sind für die globale Nichtnegativität Punkte x ∈ Rn mit maxi-
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mal zwei von Null verschiedenen Komponenten entscheidend. Zusätzlich wird
gezeigt, dass es gerade symmetrische Polynome vom Grad zwölf gibt, deren
Nichtnegativität nicht durch Punkte mit maximal zwei von Null verschiede-
nen Komponenten entscheidbar ist ([Har92b, Har99]). In seiner Arbeit [Tim03]
lässt Timofte alle vorhergehenden Resultate als einfache Spezialfälle erscheinen
und beweist, dass ein symmetrisches Polynom vom Grad 2d im Rn genau dann
nichtnegativ ist, wenn es nichtnegativ auf allen Punkten x ∈ Rn mit maximal d
verschiedenen Komponenten ist. Zusätzlich wird gezeigt, dass ein gerade sym-
metrisches Polynom vom Grad 2d genau dann nichtnegativ im Rn ist, wenn es
nichtnegativ auf allen Punkten x ∈ Rn mit maximal bd

2
c verschiedenen Kompo-

nenten ist. Diese Resultate werden von Riener in den Arbeiten [Rie11, Rie12]
in deutlich vereinfachter Form bewiesen.

In der vorliegenden Arbeit werden Resultate von Harris verallgemeinert.
Dabei werden Polynome betrachtet, die in Unterräumen des Vektorraums der
symmetrischen Polynome liegen. Als Hauptresultat werden für die Nichtnega-
tivität solcher symmetrischen Polynome Schranken an die Anzahl der von Null
verschiedenen Komponenten eines Punktes x ∈ Rn entwickelt. Diese sind ei-
nerseits sehr oft besser als die Schranken von Timofte und andererseits gar
nicht vom Grad der Polynome, sondern nur von der Dimension der Unter-
räume abhängig und stehen demnach in starkem Kontrast zu Timoftes Resul-
tat (Theorem 5.2.5). Sie sind insbesondere dann interessant, wenn der Grad
der Polynome deutlich gröÿer ist als die Anzahl der Variablen. Unter dieser
Voraussetzung ist das Resultat von Timofte nämlich nutzlos und bringt keine
Vereinfachung der Nichtnegativitätsfrage eines symmetrischen Polynoms mit
sich. Ferner zeigen die vorgestellten Resultate, dass das bessere Maÿ für die
Anzahl der verschiedenen Komponenten eines Punktes x ∈ Rn nicht der Grad
der Polynome ist (wie in Timoftes Resultat), sondern die Dimension der Un-
terräume, in denen die Polynome liegen.

Dünnbesetzte nichtnegative Polynome, konvexe Polynome und

Summen von Quadraten. Eine Teilmenge A ⊂ Nn heiÿt ein Kreis (engl.
circuit), wenn A a�n abhängig, aber jede echte Teilmenge von A a�n unab-
hängig ist. Als ersten nichttrivialen Fall im Zusammenhang mit nichtnegativen
Polynomen und Summen von Quadraten werden Polynome betrachtet, deren
Newton Polytope Simplizes sind und deren Trägermengen genau aus den Ecken
und einem zusätzlichen inneren Gitterpunkt der Simplizes bestehen. Diese
Trägermengen sind dann ein Kreis im Sinne der obigen De�nition. In Kapitel
6 werden nichtnegative Polynome und Summen von Quadraten auf solchen
Trägermengen vollständig charakterisiert (Theoreme 6.2.6 und 6.3.2). Wie
sich herausstellt, hängt speziell die Frage nach der Quadratsummeneigenschaft
ausschlieÿlich von der Gitterpunktkon�guration im Simplex ab und nicht von
den Koe�zienten des Polynoms, was auf dem ersten Blick sehr überraschend
ist. Diese Bedingung stellt zudem interessante Verbindungen zu dem Gebiet
der torischen Geometrie und der Theorie der Gitterpolytope her. Durch Aus-
nutzung dieser Verbindungen werden groÿe Teilmengen im Vektorraum der
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Polynome in n Variablen vom Grad 2d gefunden, auf denen der Kegel der
nichtnegativen Polynome mit dem Kegel der Summen von Quadraten überein-
stimmt (Theorem 6.4.1, Korollare 6.4.2 und 6.4.4). Das vielleicht prominen-
teste Beispiel eines nichtnegativen Polynoms mit solch einer Trägermenge ist
die arithmetisch-geometrische Ungleichung, die sich als einfacher Spezialfall
eines nichtnegativen Polynoms auf dem Rand des Kegels der nichtnegativen
Polynome herausstellen wird. In dieser Hinsicht können die vorgestellten Re-
sultate über die Nichtnegativität solcher Polynome als Verallgemeinerung der
arithmetisch-geometrischen Ungleichung angesehen werden. Motiviert durch
das noch heute ungelöste Problem ein konvexes homogenes Polynom zu �nden,
das keine Summe von Quadraten ist, wird daher auch der Schnitt des Kegels
der konvexen Polynome auf solchen Trägermengen vollständig charakterisiert
(Theorem 6.5.4). Wie sich etwas überraschend herausstellt, gibt es bis auf
wenige Spezialfälle (univariate Polynome und deren Homogenisierung) keine
konvexen Polynome mit solchen Trägermengen. Da sich besonders die Un-
tersuchung des Kegels der konvexen Polynome noch in einem sehr frühen
Stadium be�ndet, können diese Resultate als Indiz dafür gedeutet werden,
dass die Dünnbesetztheit von Polynomen eine Struktur ist, welche die Kon-
vexität von Polynomen verhindert. Basierend auf den Resultaten bezüglich
der Nichtnegativität und Summen von Quadraten wird ein neuer konvexer
Kegel eingeführt, der Kegel der Summen von nichtnegativen Kreispolynomen.
Dieser liefert, ähnlich wie die Summen von Quadraten, ein Nichtnegativitäts-
zerti�kat, ist allerdings grundsätzlich verschieden von dem Kegel der Summen
von Quadraten. Dieser neue Kegel wird sich speziell in der polynomiellen
Optimierung im weiteren Verlauf der Arbeit als sehr wichtig erweisen. Es
werden viele neue Fragestellungen bezüglich dieses Kegels formuliert und an-
hand von Beispielen demonstriert. Abschlieÿend werden die Resultate auf
beliebige Newton Polytope erweitert und einige o�ene Probleme in [Rez89]
gelöst (Proposition 6.7.1 und Theorem 6.7.2). Hierbei entsteht ein interessan-
ter Zusammenhang zu Triangulierungsproblemen von Polytopen.

Untere Schranken von Polynomen mittels geometrischer Program-

mierung. Geometrische Programme für die Berechnung unterer Schranken
von Polynomen bilden eine Alternative zu unteren Schranken mittels semide-
�niter Programmierung. In aktuellen Arbeiten [GM12, GM13] wird dabei ein
wichtiger Trade-O� zwischen geometrischen Programmen (GP) und semide-
�niten Programmen (SDP) beobachtet: Einerseits können in den obigen Ar-
beiten GP-basierte untere Schranken nicht besser sein als SDP-basierte un-
tere Schranken. Andererseits können mit geometrischen Programmen weitaus
höherdimensionalere Beispiele in kurzer Zeit berechnet werden, während semi-
de�nite Programme aufgrund der schnell und stark anwachsenden Matrizen-
gröÿen in dem Programm keinerlei Ergebnisse liefern, oder sehr lange für die
Berechnung brauchen.

Motiviert durch die Resultate über dünnbesetzte Polynome in Kapitel 6 wer-
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den die in der Literatur bestehenden Klassen der geometrischen Programme
für die Bestimmung unterer Schranken von Polynomen signi�kant erweitert.
Dabei wird gefordert, dass die Newton Polytope der Polynome Simplizes sind,
was z.B. für allgemeine Polynome in n Variablen vom Grad d mit voller
Trägermenge immer der Fall ist. Diese Erweiterung basiert auf hinreichen-
den Bedingungen an die Koe�zienten eines Polynoms, damit sich das Poly-
nom als Summe von nichtnegativen Kreispolynomen schreiben lässt, die in
Kapitel 6 neu eingeführt werden (Theoreme 7.1.1 und 7.1.2). Ein fundamen-
tales Resultat wird dabei die Eigenschaft sein, dass die unteren Schranken
mittels geometrischer Programmierung in vielen Fällen sogar besser sind als
die semide�niten Schranken, obwohl sie sich speziell für höherdimensionalere
Beispiele deutlich schneller berechnen lassen (Korollar 7.1.4). Es liegt hier
also eine win-win Situation vor. Diese Situation lässt sich in den bestehenden
Arbeiten [GM12, GM13] nicht beobachten, weil die dort betrachteten Pro-
gramme sich als Spezialfälle der in dieser Arbeit betrachteten Programme her-
ausstellen. Der Grund für diese Beobachtungen liegt in der Tatsache, dass
die in der vorliegenden Arbeit vorgestellten geometrischen Programme nicht
auf Quadratsummenzerti�katen basieren, sondern auf der Darstellung nicht-
negativer Polynome als Summe von nichtnegativen Kreispolynomen. In vielen
Fällen folgt daraus aber auch bereits die Quadratsummeneigenschaft, auf der
die Programme in [GM12, GM13] basieren. Zusammengefasst ist daher o�en-
sichtlich, dass der neu eingeführte konvexe Kegel der Summen von nichtnega-
tiven Kreispolynomen einen völlig neuen Blickwinkel sowohl für die schwierige
Entscheidung der Nichtnegativität eines Polynoms als auch für das Optimieren
von Polynomen liefert.

Bereits verö�entlichte Inhalte. Die Inhalte dieser Dissertation sind in
den Arbeiten [BIK13, IdW13, IdW14a, IdW14b, IdW14c] verö�entlicht bzw.
zur Verö�entlichung eingereicht.
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Chapter 1

Introduction

The cones of nonnegative polynomials and sums of squares arise as central
objects in convex algebraic geometry and have their origin in the seminal work
of Hilbert ([Hil88]). Depending on the number of variables n and the degree
d of the polynomials, Hilbert famously characterizes all cases of equality be-
tween the cone of nonnegative polynomials and the cone of sums of squares.
This equality precisely holds for bivariate forms, quadratic forms and ternary
quartics ([Hil88]). Since then, a lot of work has been done in understand-
ing the di�erence between these two cones, which has major consequences
for many practical applications such as for polynomial optimization problems.
Roughly speaking, minimizing polynomial functions (constrained as well as un-
constrained) can be done e�ciently whenever certain nonnegative polynomials
can be written as sums of squares (see Section 2.3 for the precise relationship).
The underlying reason is the fundamental di�erence that checking nonnega-
tivity of polynomials is an NP-hard problem whenever the degree is greater
or equal than four ([BCSS98]), whereas checking whether a polynomial can be
written as a sum of squares is a semide�nite feasibility problem (see Section
2.2). Although the complexity status of the semide�nite feasibility problem is
still an open problem, it is polynomial for �xed number of variables. Hence,
understanding the di�erence between nonnegative polynomials and sums of
squares is highly desirable both from a theoretical and a practical viewpoint.

The aim of this thesis is the discussion of nonnegative polynomials and
sums of squares and their interplay with real algebraic and convex algebraic
geometry. We also describe applications in polynomial optimization. Many of
our results address the di�erence between these two cones and characterize it
explicitly for rich classes of polynomials. In general, a complete and explicit
description of the di�erence between these two cones is a highly complicated
problem, due to the complex structure of these cones. However, the problem
to �nd large subsets or intersections of these cones that can be described
explicitly, is the origin of many articles concerning nonnegative polynomials
and sums of squares. We add to these works and present several other results,
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2 CHAPTER 1. INTRODUCTION

which can be integrated in the following areas:

1. The investigation of the boundary structure of the cones of nonnegative
polynomials and sums of squares, especially concerning the question of
possible dimensions of the faces of these cones and the construction of
separating inequalities.

2. The question of nonnegativity of polynomials under the additional struc-
ture of symmetries.

3. The investigation of sparsity structures of polynomials concerning non-
negativity and sums of squares.

4. The application of sparsity structures in geometric programming for com-
puting lower bounds for polynomials.

Before describing the new results in this thesis in more detail, we brie�y give
an overview about some references, which are related to the contents of this
thesis. In [CL78, CLR87, CLR80, Rez78] the authors investigate some special
constructions of nonnegative polynomials that are not sums of squares. They
are mainly based on the boundary structure and the number of possible zeros a
nonnegative (resp. a sum of squares) polynomial can have. In [Ble06] Blekher-
man provides volume bounds for the volume ratio of some compact sections
of these cones. He proves that for �xed degree 2d ≥ 4, there are signi�cantly
more nonnegative polynomials than sums of squares as the number of vari-
ables runs o� to in�nity. The classical Hilbert construction to prove existence
of nonnegative polynomials that are not sums of squares is reviewed and signi-
�cantly extended in [Rez07] by providing more general perturbation methods
to construct such polynomials in low dimensions. These methods rely on study-
ing the boundary structure and dimensions of some faces of the cones. The
seminal relationship between nonnegative polynomials and sums of squares as
well as polynomial optimization is described in the work of Lasserre in [Las01]
and in the work of Parrilo and Sturmfels in [PS03]. For some surveys about
nonnegative polynomials and sums of squares as well as their interplay with
polynomial optimization we refer to [DP01, Lau09, Mar08, Rez00, BPT13].
There are many other results in this area concerning several special cases and
exploiting structures in the problems such as, e.g., symmetry and sparsity of
polynomials. Many of these results can be found in the references of the arti-
cles described above as well as in later sections of this thesis. We now describe
the results in this thesis in more detail.

Separating inequalities for nonnegative polynomials that are not

sums of squares. One of the most basic theorems in convex geometry is the
separation theorem for convex sets. In its easiest form it says that if C ⊂ Rn

is a closed convex set and x /∈ C, then there exists a linear functional l such
that l(x) < 0 and l(C) ≥ 0. Since both nonnegative polynomials and sums of
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squares are full dimensional closed convex cones, one basic problem is the de-
termination of such separating hyperplanes for nonnegative polynomials that
are not sums of squares. The major tool for studying questions of this type
is given by duality theory and the corresponding dual cones. It is well known
that such linear functionals can be obtained e�ciently in a numerical way via
semide�nite programming ([Las01]). Since testing for the property of being
a sum of squares is a semide�nite program (SDP), one of the most common
methods to obtain a separating functional for a nonnegative polynomial p that
is not a sum of squares is to formulate an SDP requiring the polynomial p to
be a sum of squares. Since this SDP is clearly infeasible, any feasible solution
of the corresponding dual SDP yields a separating functional. However, the
problem gets signi�cantly harder when these functionals (serving as certi�cates
for not being a sum of squares) have to be exact. In fact, no general symbolic
method for solving this problem is known so far.

In the smallest cases where there exist nonnegative polynomials that are
not sums of squares (i.e., (n, 2d) ∈ {(3, 6), (4, 4)}), in [Ble12a] Blekherman
completely describes the extreme rays of the dual sums of squares cones. These
extreme rays l are given by sums of certain point evaluations of a polynomial
p and are of the form

l(p) =
m∑
i=1

aip(vi), m ∈ {8, 9} (1.0.1)

where ai ∈ C and the points vi ∈ Cn come from the intersection of two ternary
cubics (m = 9) resp. three quaternary quadrics (m = 8). However, the deter-
mination of such intersection points in order to build separating inequalities
for a polynomial p is still an open problem from a symbolic viewpoint. Using
these results, we provide su�cient criteria to e�ciently obtain such separating
functionals for nonnegative polynomials on the boundary of the cones (Theo-
rems 3.3.1 and 3.3.3). These criteria can be checked in a completely symbolic
and e�cient way. The key idea of this approach is to use the zeros of the
polynomials to construct the cubics and quadrics leading to the separating in-
equalities of the Form (1.0.1). The more zeros the polynomials have, the more
e�cient this procedure works. Furthermore, for several important classes we
can provide exact functionals that are even rational whenever the zeros of the
polynomials involved are rational. As a direct consequence, in these cases we
can also construct strictly positive polynomials that are not sums of squares
with the same separating functional. In [Ble12a] Blekherman conjectures that
all the extreme rays of the dual sums of squares cones can be described in a
totally real manner, meaning, that all points vi in the representation (1.0.1) of
the extreme rays can be chosen to be real. We consider this conjecture from
a more computational viewpoint, which is basically equivalent to the original
conjecture. As a corollary, we obtain that our modi�ed conjecture holds (at
least) for all boundary polynomials with su�ciently many zeros (see Corollary
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3.4.2). We provide examples yielding connections between satis�ability of the
criteria in Theorems 3.3.1 and 3.3.3 and approximation of semialgebraic sets.

Facial structure of nonnegative polynomials and sums of squares.

Most of the known and prominent nonnegative polynomials that are not sums
of squares lie on the boundary of the cone of nonnegative polynomials, which
consists of all those polynomials that have at least one real zero. The reason
for this is that most of the methods used to construct explicit examples of
nonnegative polynomials that are not sums of squares are based on Hilbert's
construction or generalizations of it ([Rez07]). These methods yield polyno-
mials with many zeros. The problem of understanding the boundary and the
faces of the cones of nonnegative polynomials and sums of squares is widely
open, except in the cases of binary forms and quadratic forms ([Bar02]). But
already in the smallest cases where the two cones di�er, a complete character-
ization of possible dimensions of the faces is open. Recent results concerning
the algebraic boundary of the cone of sums of squares indicate the very com-
plicated structure, since the components discriminating sums of squares from
nonnegative polynomials have very large degree ([BHO+12]).

Motivated by results and techniques in [Rez07] we present the following
results concerning the facial structure of the cones of nonnegative polynomi-
als and sums of squares. In this thesis we consider exposed faces that are
given by polynomials vanishing on a �nite set of points Γ ⊂ Rn. For ternary
forms as well as for quaternary quartics (four variables and degree four) we
provide a complete characterization of the question whether and when there
exist dimensional di�erences between the faces of these cones and when they
occur for the �rst time (Theorems 4.2.1 and 4.3.1, Corollaries 4.2.2 and 4.3.2).
More precisely, we determine the smallest cardinality of Γ ⊂ Rn to observe
dimensional gaps between the faces that are given by nonnegative resp. sums
of squares polynomials vanishing on Γ. These results hold under some mild
conditions (such as, e.g., the condition for the points in Γ to be in general
position). For both ternary forms and quaternary quartics we explicitly de-
scribe a 1-dimensional di�erence between these faces yielding a systematic way
of constructing nonnegative polynomials on these faces that are not sums of
squares (Propositions 4.4.1 and 4.4.5). Indeed, this 1-dimensional di�erence is
actually optimal in the smallest cases where nonnegative polynomials are not
sums of squares (i.e., (n, 2d) ∈ {(3, 6), (4, 4)}).

Our results for ternary forms are strongly based on commutative algebraic
methods. In fact, major steps in some proofs follow by dimensional equality be-
tween symbolic powers and ordinary powers of vanishing ideals of certain point
sets. Since the theory about symbolic powers and ordinary powers of ideals is
mainly considered over algebraically closed �elds, we translate some results to
the case of real numbers. Furthermore, in order to determine the dimension of
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the exposed faces, we introduce a genericity condition called d-independence
for �nite sets of points in Rn. This condition will be shown to be Zariski
open. By constructing an explicit example of such a set of size

(
n+d−1

d

)
− n,

this yields that almost every �nite set of points Γ ⊂ Rn is d-independent for
|Γ| ≤

(
n+d−1

d

)
− n (Proposition 4.1.7). In fact, one can actually show that(

n+d−1
d

)
− n is an upper bound for the cardinality of a d-independent set and

hence it is optimal.

The problem of studying dimensions of the faces of the cones of nonnega-
tive polynomials and sums of squares is particularly interesting, since it allows
to prove existence of nonnegative polynomials that are not sums of squares
by simple dimension counting. In fact, our results rely on perturbation me-
thods, which can be traced back to Hilbert's classical construction. We end
the chapter with an outlook for generalizing these ideas to faces of nonnegative
polynomials and sums of squares on arbitrary real projective varieties.

Nonnegativity of even symmetric polynomials. The problem of de-
ciding nonnegativity of polynomials is particularly interesting whenever the
polynomials involved have some structure. One obstacle in considering the
full cones of nonnegative polynomials and sums of squares relies on the fact
that these cones have very large dimensions with growing number of variables
or degree. By considering symmetric polynomials, the dimensions of these
cones are much smaller and, more importantly, they are �xed once the number
of variables exceeds the degree of the polynomials. The problem of deciding
nonnegativity of symmetric polynomials began with the work of Choi, Lam
and Reznick in [CLR87], in which the authors consider even symmetric sex-
tics. They provide a complete semialgebraic description of nonnegative even
symmetric sextics and even symmetric sextics that are sums of squares. The
key result is that checking nonnegativity in this case can be reduced to checking
nonnegativity of univariate polynomials, since it su�ces to prove nonnegativi-
ty of even symmetric sextics at all points x ∈ Rn with at most one nonzero
component. In [Har92b, Har99] Harris adds to this work by establishing that
even symmetric octics (degree 2d = 8) and even symmetric ternary decics
(n = 3, 2d = 10) are nonnegative if and only if they are nonnegative at all
points x ∈ Rn with at most two distinct nonzero components. In the case
of even symmetric ternary octics it is actually shown that nonnegativity co-
incides with the property of being a sum of squares. However, he also proves
that nonnegativity of even symmetric ternary forms of degree 2d ≥ 12 cannot
be checked by considering points with at most two nonzero components.
In [Tim03] Timofte proves a very powerful result, namely, that a symmetric
polynomial of degree 2d is nonnegative if and only if it is nonnegative at all
points x ∈ Rn with at most d distinct components. Additionally, an even sym-
metric polynomial of degree 2d is nonnegative if and only if it is nonnegative
at all points x ∈ Rn with at most bd

2
c distinct components. Later, Riener was
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able to reprove these results in a much more elementary fashion than in the
original work, where most techniques are based on the theory of di�erential
equations (see [Rie11, Rie12]). Generalizing results in [Har99] we consider even
symmetric forms contained in subspaces of even symmetric forms of degree 4d
in n variables. Concerning the question of nonnegativity of these forms, we
develop a uniform bound on the number of distinct components of a point
x ∈ Rn. This bound is independent of the degree of the forms and is often
better than Timofte's bound (Theorem 5.2.5). This is in sharp contrast to
Timofte's theorem in [Tim03], which states that the number of distinct com-
ponents depends on the degree of the polynomials. Hence, our result serves
as an indication that it is not the degree that is essential for the number of
distinct components of points x ∈ Rn that have to be checked for nonnegativi-
ty. In fact, the proper measure for the number of distinct components seems
to be the dimension of the subspaces containing the forms. Our construction
is particularly interesting when the degree of the polynomials is signi�cantly
larger than the number of variables. In this case, Timofte's bound is useless,
since the number of distinct components that have to be checked is larger than
the number of variables of the forms.

Nonnegative, Convex, and Sums of Squares Polynomials Sup-

ported on Circuits. A subset A ⊂ Nn is called a circuit if A is a�nely
dependent but any proper subset of A is a�nely independent. We consider
polynomials f such that the Newton polytope of f is a simplex and the sup-
port of f consists of all the vertices of the simplex with an additional interior
lattice point in the simplex. Such polynomials can be regarded as polyno-
mials supported on a circuit. We completely characterize the question when
such polynomials are nonnegative resp. sums of squares (Theorems 6.2.6 and
6.3.2). As will be seen, the latter question heavily depends on the combina-
torial structure of the simplex and, surprisingly enough, it is independent of
the coe�cients of the polynomials. It yields a very interesting connection to
toric geometry and lattice polytopes. By using this connection in more detail,
we provide su�cient conditions for simplices to imply equality between non-
negative polynomials and sums of squares. In particular, this characterization
yields large subsets of the vector space of polynomials in n variables of even de-
gree 2d on which nonnegative polynomials are sums of squares (Theorem 6.4.1,
Corollaries 6.4.2 und 6.4.4). The most prominent example in this context is the
well known arithmetic-geometric mean inequality, which can be considered as a
special case of a polynomial supported on a circuit and lying on the boundary
of the cone of nonnegative polynomials. Motivated by the open problem to
�nd a convex homogeneous polynomial that is not a sum of squares, we inves-
tigate convexity of polynomials supported on circuits and prove the surprising
result that there are no convex polynomials supported on circuits, except in
the simple univariate case and its homogenization (Theorem 6.5.4). Based
on our results about nonnegativity and sums of squares, we introduce a new
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convex cone, the cone of sums of nonnegative circuit polynomials. This convex
cone serves as a nonnegativity certi�cate, which is very di�erent than sums of
squares certi�cates. It also plays a crucial role in polynomial optimization as
described in Chapter 7. As a �nal step, we extend our results to polynomi-
als with arbitrary Newton polytopes and supports given by the vertices of the
polytopes and one additional lattice point in the interior. This extension yields
interesting connections to triangulation problems of polytopes and solves some
open problems in [Rez89] (Proposition 6.7.1 and Theorem 6.7.2).

Lower Bounds for Polynomials with Simplex Newton Polytopes

Based on Geometric Programming. Besides the well known techniques
based on semide�nite programming, recently, there is much interest in �nding
lower bounds for polynomials using geometric programming. In recent works
[GM12, GM13] there is an interesting trade-o� that can be observed when com-
paring the bounds based on semide�nite programming (SDP) and geometric
programming (GP). On the one hand, bounds based on GP are not as good as
bounds based on SDP. On the other hand, even higher dimensional examples
(e.g., polynomials with large degree) can be solved quite fast with GP, whereas
SDP methods yield no output at all (or require a very long running time) due
to the growing size of the involved matrices.

Motivated by our results about sparse nonnegative polynomials in Chapter
6 we propose new geometric programs that signi�cantly extend the existing
ones in the literature in order to �nd lower bounds for polynomials. Therefore,
we require the Newton polytopes of the polynomials to be simplices, which is,
e.g., the case for general polynomials in n variables of degree d with full sup-
port. These geometric programs are based on conditions on the coe�cients of
a polynomial that are su�cient to imply that the polynomial is a sum of non-
negative circuit polynomials, which we introduce in Chapter 6 (Theorems 7.1.1
und 7.1.2). One fundamental result is the fact that for many instances the GP
based lower bounds are better than the SDP based lower bounds, in spite of the
fact that they can be computed much faster for higher dimensional examples
(Corollary 7.1.4). This is a win-win situation that cannot be observed in other
recent works in [GM12, GM13]. The underlying reason for this is the fact that
our results rely on the decomposition of nonnegative polynomials as sums of
nonnegative circuit polynomials rather than sums of squares, which are part
of the geometric programs in [GM12, GM13]. However, for the polynomials
considered in [GM12, GM13], these two properties coincide. In this case the
SDP based bounds are at least as good as the GP based bounds. Hence, it is
obvious that our introduced convex cone of sums of nonnegative circuit poly-
nomials yields a completely new viewpoint both for deciding nonnegativity of
polynomials and to optimize polynomials with geometric programming.

Thesis Overview. This thesis is organized as follows. In Chapter 2 we
introduce the basic concepts of this thesis. It contains basic facts about non-
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negative polynomials and sums of squares, connections to semide�nite pro-
gramming, duality theory based on the problem of moments and some facts
and de�nitions about the quantitative relationship between nonnegative poly-
nomials and sums of squares as well as about the facial structure of these
cones.

In Chapter 3 we state and prove su�cient conditions and construction meth-
ods for separating inequalities for nonnegative polynomials that are not sums
of squares and that lie on the boundary of the cone of nonnegative polynomi-
als. In this case, it is (relatively) easy to generate strictly positive polynomials
that are not sums of squares. We provide some examples and conjectures,
which connect the satis�ability problem of the su�cient conditions to the ap-
proximation of semialgebraic sets.

Chapter 4 is dedicated to the boundary structure of the cone of nonnegative
polynomials and sums of squares. We describe exposed faces of both cones and
establish dimensional di�erences between their faces yielding a procedure to
construct nonnegative polynomials that are not sums of squares. In particu-
lar, we investigate the question when these dimensional di�erences occur for
the �rst time and provide bounds that are actually optimal in many cases.
By characterizing some dimensional di�erences explicitly, we provide exact
methods in order to construct nonnegative polynomials that are not sums of
squares.

In Chapter 5 we investigate nonnegativity of even symmetric forms of degree
4d in subspaces of arbitrary dimension in the vector space of even symmet-
ric forms of degree 4d. We provide subspaces on which nonnegativity can be
certi�ed at points x ∈ Rn, whose number of distinct components is less than
in Timofte's theorem and is independent of the degree of the involved poly-
nomials. Furthermore, we introduce a new invariant relating the maximum
dimension of a subspace to the property of certifying nonnegativity of polyno-
mials in that subspace at points with a �xed number of distinct components.

In Chapter 6 we discuss polynomials supported on circuits. More precisely,
we consider polynomials p such that the Newton polytope of p is a simplex and
the support of p consists of all the vertices of the simplex and an additional
interior lattice point. For these polynomials we provide a complete solution to
the question when these polynomials are nonnegative resp. sums of squares.
This will result in many new subsets on which nonnegative polynomials are
sums of squares. Additionally, using techniques from toric geometry, we pro-
vide conditions on the simplex Newton polytopes to force equality between
nonnegative polynomials and sums of squares. Furthermore, we completely
characterize convex polynomials in this setting and extend all our results to
arbitrary Newton polytopes.

Finally, using results in Chapter 6, in Chapter 7 we introduce a new geomet-
ric program in order to produce lower bounds for polynomials. This approach
is based on conditions on the coe�cients of a polynomial that are su�cient to
imply that the polynomial is a sum of nonnegative circuit polynomials.
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Chapter 2

Preliminaries

This chapter gives a short introduction to the basic concepts of this thesis. We
start by introducing the main objects of our thesis, namely the cone of non-
negative polynomials and the cone of sums of squares. We present some key
relationships between them and their connection to the widely used technique
of semide�nite programming. Furthermore, we introduce some basic concepts
of polynomial optimization using sums of squares techniques. Finally, the
reader is familiarized with some results concerning the quantitative and quali-
tative relationship between nonnegative polynomials and sums of squares when
taking a convex geometric viewpoint.

2.1 The Cone of Nonnegative Polynomials and

Sums of Squares

We consider the vector space of polynomials in n variables of degree at most d
and denote it by R[x]d := R[x1, . . . , xn]d. It is easy to check that dimR[x]d =(
n+d
d

)
. We will always use the standard multi-index notation: For a polynomial

p ∈ R[x]d and α ∈ Nn
d := {α ∈ Nn : |α| = α1+· · ·+αn ≤ d} we use the notation

p =
∑

α∈Nnd
pαx

α with pα ∈ R.

De�nition 2.1.1. A polynomial p ∈ R[x]2d is called nonnegative if p(x) ≥ 0
for all x ∈ Rn. A nonnegative polynomial p ∈ R[x]2d of even degree 2d is a
sum of squares, if p =

∑k
i=1 q

2
i for some polynomials qi ∈ R[x]d and 1 ≤ i ≤ k.

Clearly, every sum of squares polynomial is nonnegative. To every polyno-
mial p ∈ R[x]d we can associate a polytope, the so called Newton polytope of p,
by considering the exponent vectors of p as lattice points in Rn. Let therefore
A ⊂ Nn

d .

De�nition 2.1.2. Given p =
∑

α∈A pαx
α ∈ R[x]d, the Newton polytope of p

is de�ned as
New(p) := conv{α ∈ A : pα 6= 0}.

11
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A necessary condition for a polynomial p ∈ R[x]2d to be nonnegative is
that every vertex α of New(p) has even coordinates and comes with a positive
coe�cient pα ([Rez78]). For p ∈ R[x]d the homogenization of p is given by

p̄(x0, x1, . . . , xn) = xd0p

(
x1

x0

, . . . ,
xn
x0

)
.

The property of being nonnegative resp. a sum of squares is preserved un-
der homogenizing polynomials, i.e., p is nonnegative resp. a sum of squares
if and only if the homogenization p̄ is nonnegative resp. a sum of squares
([Mar08]). In this thesis we will mostly work with homogeneous polynomials
(also called forms) except when dealing with polynomial optimization or when
stated otherwise. Therefore, we �x notation and introduce the convex cone of
nonnegative forms and the convex cone of sums of squares forms as follows.
Let Hn,d be the vector space of real homogeneous polynomials in n variables
of degree d. Then we de�ne

Pn,2d := {p ∈ Hn,2d : p(x) ≥ 0 for all x ∈ Rn} ,

Σn,2d :=
{
p ∈ Pn,2d : p =

∑
i
q2
i for some qi ∈ Hn,d

}
.

The investigation of the relationship between the cone of nonnegative forms
and the cone of sums of squares has its origin the seminal work of Hilbert when
he showed the following remarkable relationship between Pn,2d and Σn,2d.

Theorem 2.1.3 (Hilbert [Hil88]). The equality Pn,2d = Σn,2d exactly holds
for binary forms (n = 2), quadratic forms (2d = 2) and ternary quartics
(n, 2d) = (3, 4).

The �rst case states that every univariate (non-homogeneous) nonnegative
polynomial is a sum of squares, which follows from the fundamental theorem
of Algebra. In fact, every univariate nonnegative polynomial can be written as
a sum of two squares by grouping the real and complex roots. For quadratic
forms, the proof follows easily by writing the nonnegative quadratic form p
as p(x) = xTAx with a symmetric positive semide�nite matrix A and using
Cholesky factorization. The minimum number of squares needed to represent
p as a sum of squares is equal to the rank of A. For a proof of P3,4 = Σ3,4 we
refer to [CL78]. In this case, every nonnegative ternary quartic can be written
as a sum of three squares.

Even though not every nonnegative polynomial can be written as a sum
of squares, Hilbert's 17th problem asks for representability of nonnegative
polynomials as sums of squares of rational functions. In fact, in 1927, Artin
provided a solution to this problem.

Theorem 2.1.4 (Artin [Art27]). Let p ∈ Pn,2d. Then there is a sum of squares
multiplier h ∈ Σn,2k such that h · p is a sum of squares.
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If p is a strictly positive form, then there exists a uniform denominator h
given by h = (x2

1 + · · · + x2
n)k for some k ∈ N ([Rez00]). However, a main

important problem remains to provide e�cient degree bounds for the sum of
squares multiplier h in this representation. In general, except for ternary forms,
even in small dimensions no e�cient degree bounds are yet known. For partial
recent results about the degree behaviour of such multipliers, see [BGP14].

In order to construct nonnegative polynomials that are not sums of squares
in all other cases than in Hilbert's theorem, one can use nonnegative polyno-
mials that are not sums of squares in the smallest cases where the two cones
di�er, i.e., for (n, 2d) = (3, 6) and (n, 2d) = (4, 4). Using homogenization and
the fact that both nonnegativity and the property of being a sum of squares
are preserved, one can construct nonnegative polynomials that are not sums
of squares easily for an arbitrary number of variables and arbitrary degree. In
order to make use of the sparsity of some polynomials, the Newton polytope
plays a key role, since it allows to reduce the number of possible monomials
that can occur in sums of squares representations.

Theorem 2.1.5 (Reznick [Rez78]). Let p =
∑

i q
2
i be a sum of squares. Then

New(qi) ⊂ 1
2

New(f).

Example 2.1.6. One of the �rst explicitly known nonnegative forms that is
not a sum of squares is the famous Motzkin form

M(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 \ Σ3,6.

Nonnegativity of M follows immediately from the arithmetic-geometric mean
inequality. In the other smallest case (n, 2d) = (4, 4), it is proved in [Rez78]
that

N(w, x, y, z) = w4 + x2y2 + y2z2 + z2x2 − 4wxyz ∈ P4,4 \ Σ4,4.

Again, nonnegativity follows from the arithmetic-geometric mean inequality.
To prove that both M and N are not sums of squares, one can invoke Theorem
2.1.5. Considering the Motzkin form again, one has

1

2
New(M) = conv{(0, 0, 3)T , (2, 1, 0)T , (0, 1, 2)T}

and the only additional interior lattice point is (1, 1, 1)T . So, the only mono-
mials that can occur in a sum of squares representation are the four mono-
mials z3, x2y, xy2, xyz. But then the coe�cient of the monomial x2y2z2 has
to be nonnegative, in contradiction to the coe�cient −3 in M . A similar ar-
gument shows that the form N cannot be a sum of squares, since the mixed
monomial xyzw cannot be constructed with the monomials corresponding to
1
2

New(N). However, one can verify that (x2 + y2 + z2) · M ∈ Σ3,8 and
(x2 + y2 + z2 + w2) ·N ∈ Σ4,6.
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Even in the smallest cases (n, 2d) = (3, 6) and (n, 2d) = (4, 4) the question
about the precise quantitative relationship between Pn,2d and Σn,2d remains an
important open problem. There are some special subsets of Hn,2d, for which
precise answers exist. In [CLR87], the authors give a complete description
in the case of even symmetric sextics, which form a 3-dimensional subcone of
sextic forms for n ≥ 3. In this case, there are explicit semialgebraic descriptions
for the cones of nonnegative even symmetric sextics and of even symmetric
sextics that are sums of squares.

2.2 Semide�nite Programming

In this section we provide a brief introduction to semide�nite programming,
which is a generalization of linear programming. After presenting some classi-
cal results such as weak and strong duality, we look at the relationship between
sums of squares and semide�nite programming in more detail. Our presenta-
tion follows [Las10, Mar08] unless referenced otherwise. Let Rk×k denote the
algebra of k × k matrices and Sk be the subspace of real symmetric k × k
matrices. By S+

k we denote the convex cone of k × k positive semide�nite
matrices. In semide�nite programming, a linear functional is minimized over
the intersection of the cone of positive semide�nite (PSD) matrices with an
a�ne subspace. Before formulating a semide�nite program, we recall some
basic conditions for a matrix to be PSD.

Theorem 2.2.1. Let A ∈ Sk. Then the following are equivalent.

1. A ∈ S+
k .

2. xTAx ≥ 0 for all x ∈ Rk.

3. All eigenvalues of A are nonnegative.

4. A = V TV for some V ∈ Rk×k.

5. All 2k − 1 principal minors of A are nonnegative.

In the following, we use the notation A � 0 for A ∈ S+
k and A � 0 for

A being positive de�nite. Given c ∈ Rn and A0, . . . , An ∈ Sk, a semide�nite
program (SDP) has the following form:

p∗ := inf{cTx : A(x) � 0}

where A(x) = A0 + x1A1 + · · ·+ xnAn is a so called linear pencil. The feasible
region of an SDP

S := {x ∈ Rn : A(x) � 0}
is called a spectrahedron. Recently, there is much interest in studying the ge-
ometry of semide�nite programming (see, e.g., [BPT13]). Linear programming
problems are just semide�nite programs with diagonal matrices. We note that
p∗ may not be attained as can be seen by the following example.
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Example 2.2.2. Consider the SDP

p∗ := inf
x∈R2

{
x1 :

(
x1 1
1 x2

)
� 0

}
.

Clearly, p∗ = 0 but there is no feasible point at which p∗ = 0 is attained.

In order to formulate the corresponding dual semide�nite program, we use
the standard scalar product on Rk×k de�ned by

〈A,B〉 := Tr(ATB) =
k∑

i,j=1

AijBij,

where Tr(A) is the trace of A. The dual SDP has the form

d∗ := sup
Z
{−〈A0, Z〉 : 〈Ai, Z〉 = ci, 1 ≤ i ≤ n, Z � 0}.

Here, the variable is Z ∈ Sk. A �rst connection between p∗ and d∗ is the weak
duality theorem (see, e.g., [Mar08]).

Theorem 2.2.3. Let x be a feasible point of the primal SDP and Z be a
feasible matrix for the dual SDP. Then

−〈A0, Z〉 ≤ cTx.

The quantity p∗ − d∗ is called the duality gap and one of the most funda-
mental di�erences between linear programming and semide�nite programming
is the fact that this gap does not always vanish. In other words, strong duality
does not necessarily hold.

Example 2.2.4. Consider the SDP

p∗ := inf
x∈R2

x1 :

 0 x1 0
x1 x2 0
0 0 x1 + 1

 � 0

 .

Looking at all principal minors, one can check immediately that p∗ = 0. The
corresponding dual SDP is given by

d∗ := sup{−Z33 : Z22 = 0, 2Z12 + Z33 = 1, Z � 0}.

Again, checking the principal minors of the matrix Z, we can conclude that
d∗ = −1. Hence, the duality gap is p∗ − d∗ = 1.

However, strong duality holds under special conditions on the existence of
strictly feasible points in the corresponding semide�nite programs. The strong
duality theorem makes this more precise and is one of the most important
results in semide�nite programming (see, e.g., [Mar08]).



16 CHAPTER 2. PRELIMINARIES

Theorem 2.2.5. One has p∗ = d∗ if

1. the primal SDP is strictly feasible, i.e., there exists x ∈ Rn such that
A(x) � 0, or,

2. the dual SDP is strictly feasible, i.e., there exists Z � 0 such that
〈Ai, Z〉 = ci, 1 ≤ i ≤ n.

Furthermore, if both conditions hold, then the optimal values p∗ and d∗ are
attained.

Considering the previous example again, one can see that neither the primal
nor the dual problem have a strictly feasible solution. The main reason why
semide�nite programming is a very important tool relies on the fact that the
optimal value of an SDP can be computed in time polynomial up to an additive
error using interior point methods (see, e.g., [dK02]). Connecting this to sums
of squares, the main reason why sums of squares techniques are widely used
in tackling polynomial optimization problems is the fact that the problem
of deciding whether a polynomial is a sum of squares can be reduced to a
semide�nite feasibility problem, which, for �xed number of variables, is in P .
Let therefore p ∈ R[x]2d be a polynomial of degree 2d and vd(x) := (xα)|α|≤d
be the vector of monomials up to degree at most d, which has length s(d) :=(
n+d
d

)
. The fundamental relationship between sums of squares and semide�nite

programming is given by the following result (see, e.g., [Las10]).

Theorem 2.2.6. A polynomial p ∈ R[x]2d is a sum of squares if and only if
there exists Q ∈ S+

s(d) such that

p(x) = vd(x)TQvd(x).

If Q ∈ S+
s(d), then its Cholesky decomposition Q = V TV yields the repre-

sentation of p as a sum of squares:

p(x) = vd(x)TQvd(x) = vd(x)TV TV vd(x) = (V vd(x))T (V vd(x)).

Note that the identity p(x) = vd(x)TQvd(x) yields linear equations that the
entries of the matrix Q must satisfy (comparing coe�cients). Additionally,
since, in general, the monomials in vd(x) are not algebraically independent,
the matrix Q will not be unique. So, there will be free parameters in the
representation vd(x)TQvd(x), which have to be chosen such that Q ∈ S+

s(d).
Therefore, Σn,2d is the projection of a spectrahedron. The size of the resulting
SDP is polynomial whenever the number of variables or the degree are �xed.
However, it is not jointly polynomial. Note furthermore that the size of the
SDP often can be reduced signi�cantly by invoking Theorem 2.1.5. Therefore,
it su�ces to consider monomials contained in 1

2
New(p) in order to obtain a

sum of squares representation.
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Example 2.2.7. Consider the bivariate polynomial

p = 1− 2xy + 3x2y2 + 4x4y2 + x2y + x2.

Instead of using all
(

2+3
3

)
= 10 monomials of degree at most 3, we can reduce

this number to four, since the reduced Newton polytope 1
2
New(p) contains the

four monomials 1, x, xy, x2y. Hence, p is a sum of squares if and only if

p = (1, x, xy, x2y)T ·Q · (1, x, xy, x2y)

for some Q ∈ S+
4 . Expanding the right hand side and comparing coe�cients,

the matrix Q is given by

Q =


1 0 −1 λ
0 1 1−2λ

2
0

−1 1−2λ
2

3 0
λ 0 0 4

 .

There is one free parameter λ. Choosing λ = 1
2
, one can check that Q ∈ S+

4 .
In fact, for λ = 1

2
the matrix Q is even positive de�nite. Computing a Cholesky

decomposition, we �nd that

p =

(
1− xy +

1

2
x2y

)2

+ x2 +

(
√

2xy +

√
2

4
x2y

)2

+

(√
29

8
x2y

)2

.

One can show that the number of squares needed in such a representation
can always be taken to be equal to the rank of Q ([PW98]). In practice, poly-
nomials often come with certain structures, such as sparsity and symmetry.
There are some other techniques that make use of the sparsity and symmetry
of polynomials to reduce the number of monomials in sums of squares represen-
tations or to handle questions about nonnegativity (see, e.g., [GP04, KKW05]
and Chapters 5 and 6).

Since semide�nite programs are solved e�ciently in a numerical way, we
remark that existence of rational sums of squares representations cannot always
be guaranteed. In fact, not every polynomial with rational coe�cients that is a
sum of squares of real polynomials also admits a sum of squares representation
with rational coe�cients only ([Sch13]). For example, the form

p = x4 + y4 + z4 + xy3 − 3x2yz − 4xy2z + 2x2z2 + xz3 + yz3 ∈ Σ3,4

cannot be written as a sum of squares of forms with rational coe�cients only.
This is in sharp contrast to the univariate case as the following theorem shows
(see, e.g., [Lan06]).

Theorem 2.2.8. Let p ∈ Q[x] be a sum of squares. Then p is a sum of squares
of polynomials with rational coe�cients and at most �ve squares are needed.
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Example 2.2.9. The polynomial p(x) = 1 + x + x2 + x3 + x4 + x5 + x6 has
four representations as a sum of two squares. Exactly one of them is a rational
one:

p(x) =

(
1 +

1

2
x− 1

2
x2 − x3

)2

+ 7

(
1

2
x+

1

2
x2

)2

.

This can be checked by using Theorem 2.2.6. The matrix Q ∈ R4×4 has three
parameters and the spectrahedron de�ning all possible sums of squares repre-
sentations of p is 3-dimensional (see Figure 2.1). In order to write p as a sum
of two squares, one has to choose the three parameters such that the rank of Q
is two. Therefore, all 3 × 3 and higher order minors must vanish. There are
four possible solutions (corresponding to the corners of the spectrahedron) of
which exactly one is rational, yielding the above representation.

Figure 2.1: On the left: The 3-dimensional spectrahedron describing the pos-
sible sums of squares representations. On the right: The projected spectrahe-
dron.

2.3 Polynomial Optimization

One of the most important applications of nonnegative polynomials and sums
of squares is in the area of polynomial optimization. We want to sketch the
basic ideas of the question why sums of squares techniques play an outstanding
role in the optimization of polynomial functions. All presented results are
contained in [Las10, Mar08] unless referenced otherwise. We start with the
problem of minimizing a polynomial function p ∈ R[x]2d on Rn:

p∗ := inf{p(x) : x ∈ Rn}.

Computing p∗ is an NP-hard problem in general ([BCSS98]). One natural idea
to solve this problem is to compute all critical points of p. However, in general,
computing critical points by solving systems of polynomial equations is a hard
problem as well. Another obstacle in computing p∗ is the fact that p∗ may not
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be attained as the bivariate polynomial p(x, y) = (1− xy)2 + x2 shows. Here,
p∗ = 0 but there is no point (x, y) ∈ R2 such that p(x, y) = 0. Looking at the
problem of computing p∗ from a dual viewpoint, we note that minimizing p is
equivalent to maximizing the best lower bound:

p∗ = sup{λ ∈ R : p− λ ≥ 0}.

So, minimizing polynomial functions is equivalent to deciding nonnegativity of
polynomials, which is NP-hard in general. It lies on the heart of polynomial
optimization to relax nonnegativity conditions to conditions requiring polyno-
mials to be sums of squares. In the above case we consider the following sums
of squares relaxation for minimizing a polynomial function:

p∗sos := sup

{
λ ∈ R : p− λ =

k∑
i=1

q2
i for some qi ∈ R[x]d

}
.

Since every sum of squares polynomial is nonnegative, one has the inequality
p∗sos ≤ p∗. An obvious question is when and how often equality holds.

Theorem 2.3.1. For p ∈ R[x]2d one has p∗sos = p∗ if and only if p − p∗ is a
sum of squares.

The quantity p∗sos is just the optimal value of a semide�nite program and
can be computed e�ciently. In fact, using duality theory, sometimes one can
even verify whether the relaxation p∗sos is exact, i.e., whether p

∗
sos = p∗. Before

de�ning the dual semide�nite problem we present some known results about
the quantities p∗sos and p

∗. Let p ∈ R[x]2d be a polynomial with homogeneous
decomposition as

p = p0 + · · ·+ p2d

where pk is homogeneous of degree k. Of course, one obvious necessary condi-
tion for p∗ 6= −∞ is that p2d is nonnegative.

De�nition 2.3.2. Let p ∈ R[x]2d be a polynomial with homogeneous decom-
position p = p0 + · · · + p2d. The polynomial p is called stably bounded from
below on Rn if p2d is strictly positive on Rn (or, equivalently, if p2d has no
zeros on the unit sphere Sn−1).

Based on the stable boundedness condition there is also a su�cient condition
for p∗ 6= −∞.

Theorem 2.3.3. Let p ∈ R[x]2d.

1. If p is stably bounded from below, then p∗ 6= −∞ and p achieves a mini-
mum.

2. If p∗sos 6= −∞, then p2d is a sum of squares.

3. If p2d is an interior point of Σn,2d, then p∗sos 6= −∞.
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Two examples of forms in the interior of Σn,2d are f1 = (x2
1 + · · · + x2

n)d

and f2 = x2d
1 + · · ·+ x2d

n . The reverse directions in the last two statements in
Theorem 2.3.3 do not hold as the following examples show.

Example 2.3.4. The Motzkin polynomial m(x, y) = x4y2 + x2y4 − 3x2y2 + 1
satis�es m∗ = 0, m∗sos = −∞ but m6 = x4y2 + x2y4 is a sum of squares. The
polynomial p = (x− y)2 satis�es p∗ = p∗sos = 0 but p2 = (x− y)2 ∈ ∂Σ2,2, i.e.,
p2 is on the boundary of Σ2,2, since p2 has zeros.

Having collected many interesting connections between the quantities p∗

and p∗sos, we now introduce results from the theory of moments in order to
formulate a dual problem for p∗sos and to check exactness of sums of squares
relaxations.

2.4 The Moment Problem

We introduce the moment problem in its real form and only in a manner that is
essential to understand the key relationship between nonnegative polynomials
and moments. We mainly follow [Las10] in our presentation unless referenced
otherwise. Let therefore y = (yα) ⊂ R be an in�nite sequence of real numbers
with α ∈ Nn. The moment problem asks for the existence of a measure µ
supported on Rn such that

yα =

∫
Rn

xαdµ.

Analougously, one can consider the truncated moment problem where α ∈
∆ ⊂ Nn for a �nite set ∆ and y = (yα)α∈∆ is a �nite sequence. The measure µ
is called a representing measure of the sequence y. Given an in�nite sequence
y = (yα) ⊂ R consider the linear functional Ly : R[x]→ R with

p(x) =
∑
α∈Nn

pαx
α 7→ Ly(p) =

∑
α∈Nn

pαyα.

The following fundamental result relates the moment problem to the prob-
lem of deciding nonnegativity of polynomials.

Theorem 2.4.1 (Haviland [Hav36]). Let y = (yα)α∈Nn ⊂ R. There exists a
�nite Borel measure µ on Rn such that

yα =

∫
Rn

xαdµ for all α ∈ Nn

if and only if Ly(p) ≥ 0 for all nonnegative polynomials p on Rn.

Since every univariate nonnegative polynomial is a sum of squares, the 1-
dimensional moment problem is well understood. However, since there is no
explicit characterization of nonnegative polynomials in the multivariate case,
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the multidimensional moment problem is much harder to solve and remains
widely open.

Let p =
∑

α pαx
α ∈ R[x]d. Recall that

vd(x) = (1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, . . . , x

d
1, . . . x

d
n)T

is a basis of the real vector space R[x]d, which is of dimension s(d) =
(
n+d
d

)
.

Then p can be written as

p(x) =
∑
α

pαx
α = 〈p, vd(x)〉

where p ∈ Rs(d) is the vector of coe�cients of p (ordered lexicographically).
Given a truncated s(2d)-sequence y = (yα), let Md(y) be the moment matrix
of dimension s(2d) with rows and columns labeled by vd(x) and constructed
as follows:

Md(α, β) = Ly(x
αxβ) = yα+β for α, β ∈ Nn

d .

Equivalently, Md(y) = Ly(vd(x)vd(x)T ). The moment matrix Md(y) de�nes a
bilinear form on R[x]d as follows:

〈p, q〉y := Ly(pq) = pTMd(y)q for p,q ∈ Rs(d).

If the linear functional Ly comes from a measure µ, then, for every q ∈ R[x],
it holds that

〈q, q〉y = Ly(q
2) =

∫
Rn
q2dµ ≥ 0

implying that Md(y) � 0. However, note that not every sequence y with
Md(y) � 0 has a representing measure (in contrast to the 1-dimensional case).
By M(Rn)+ we denote the space of �nite Borel measures on Rn. Consider the
following problem:

p∗mom := inf
µ∈M(Rn)+

∫
Rn
p dµ

s.t. µ(Rn) = 1.

Now, we can reformulate the problem of computing p∗ as follows.

Theorem 2.4.2. Let p ∈ R[x]2d. Then p∗ = p∗mom.

The semide�nite relaxation of p∗mom is based on the non-equivalence between
existence of representing measures and positive semide�niteness of the moment
matrix. The relaxation is given by the following program:

σ∗d := inf{Ly(p) : Md(y) � 0, y0 = 1}.

Using duality theory of semide�nite programming one can show that σ∗d is in
fact the dual program of p∗sos with the nice property that there is no duality
gap.
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Theorem 2.4.3. Let p ∈ R[x]2d. Then p∗sos = σ∗d. Additionally, if σ
∗
d > −∞,

then p∗sos has an optimal solution.

One of the most interesting questions in polynomial optimization concerns
exactness of sums of squares relaxations. Suppose p∗sos is computed e�ciently
via semide�nite programming. Is there a certi�cate for concluding p∗sos = p∗?
Using duality theory there are some important results.

Theorem 2.4.4. Suppose that the optimal solution of the dual problem of
p∗sos has rank one, that is, there exists y∗ such that rank(Md(y

∗)) = 1. Then
p∗sos = p∗. In this case, factoring Md(y

∗) = vd(x
∗)vd(x

∗)T for some x ∈ Rn

yields one global minimizer x∗ that can be read from the subvector of �rst
moments y∗α with |α| = 1.

Another stopping criterion is based on a so called �at extension of moment
matrices.

Theorem 2.4.5 (Curto-Fialkow [CF96]). If y∗ is the optimal solution of the
semide�nite program σ∗d and rank(Md−1(y∗)) = rank(Md(y

∗)), then σ∗d =
p∗sos = p∗ and there are at least rank(Md(y

∗)) global minimizers.

By Hilbert's theorem, it is clear that p∗sos = p∗ whenever p is a univariate
polynomial, quadratic polynomial or bivariate polynomial of degree four.

Example 2.4.6. The global minimum of the univariate polynomial p(x) =
3x4 + 4x3 − 12x2 is p∗ = p∗sos = −32. The dual program σ∗d is given by

inf

3y4 + 4y3 − 12y2 : M2(y) =

 1 y1 y2

y1 y2 y3

y2 y3 y4

 � 0

 .

It turns out that the optimal matrix has rank one:

M2(y∗) =

 1 −2 4
−2 4 −8
4 −8 16

 .

Hence, we �nd that x∗ = −2 is the unique minimizer of p.

We note that all presented ideas and results can be extended to global min-
imization of polynomials over compact semialgebraic sets. In fact, since there
are nice characterizations of nonnegative polynomials over compact semialge-
braic sets, there exist some important results concerning the moment problem
and hence for constrained sums of squares relaxations (see, e.g., [Las10]).
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2.5 Quantitative Aspects

In this subsection we present some key relationships between the cones Pn,2d
and Σn,2d by taking a convex geometric viewpoint. Considering experimental
results in small dimensions, Σn,2d seems to yield a very good approximation
of Pn,2d in spite of Hilbert's theorem. We present results from [Ble06] about
the quantitative relationship between Pn,2d and Σn,2d stating that there are, in
fact, signi�cantly more nonnegative polynomials than sums of squares.

In order to compare Pn,2d and Σn,2d, in [Ble06] the idea is to take compact
sections of these cones and compare their volume ratio. Let therefore M be
the hyperplane of all forms in Hn,2d with mean zero on the unit sphere:

M =

{
p ∈ Hn,2d :

∫
Sn−1

p dσ = 0

}
where σ is the rotation invariant probability measure on Sn−1. The dimension
of M is DM =

(
n+2d−1

2d

)
− 1. De�ne the compact sections of Pn,2d and Σn,2d

with the hyperplane M as

P̄n,2d := Pn,2d ∩M and Σ̄n,2d = Σn,2d ∩M.

For an m-dimensional compact set K ⊂ Rm, the Euclidean volume has the
property that

vol((1 + ε) ·K) = (1 + ε)m · volK.

We would like to think of K and (1 + ε)K as similar in size, but if the ambient
dimension m grows, then (1+ε)K is signi�cantly larger in volume. In order to
take this e�ect into account, the proper measure of the volume here is vol(K)

1
m .

Then there is the following asymptotic result.

Theorem 2.5.1 ([Ble06]). There exist constants c1(d) and c2(d) dependent on
d only such that

c1(d)n(d−1)/2 ≤
(

vol P̄n,2d
vol Σ̄n,2d

) 1
DM

≤ c2(d)n(d−1)/2.

Hence, if the degree is �xed to be 2d ≥ 4, then, asymptotically, there
are signi�cantly more nonnegative polynomials than sums of squares. Taking
the optimization viewpoint, for su�ciently large n, almost always it holds
that p∗sos < p∗. However, in spite of this asymptotic result, the picture in
small dimensions is still an open research problem as the bounds provided in
Theorem 2.5.1 are far from being optimal in these cases. In the following table
we demonstrate the values of these bounds for some small dimensions. Here,
n∗ is the minimal number of variables such that c1(d)n(d−1)/2 ≥ 1.

n 2d c1(d)n(d−1)/2 c2(d)n(d−1)/2 n∗

3 6 1.7 · 10−7 7.2 · 108 1.8 · 107

3 8 1.1 · 10−9 1.9 · 1012 2.8 · 106

4 4 2 · 10−5 442368 9059696640
4 6 2.2 · 10−7 5.6 · 108 1.8 · 107
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On the positive side, it is shown that nonnegative polynomials can be ap-
proximated arbitrarily well by sums of squares.

Theorem 2.5.2 (Lasserre [Las06b]). Let p ∈ R[x] be nonnegative.

1. There exist some r∗ ∈ N and λ∗ such that for all r ≥ r∗ and λ ≥ λ∗ ≥ 0
the polynomial

p+ λ

r∑
k=0

n∑
j=1

x2k
j

k!
is a sum of squares.

2. For every ε > 0 there exists some r(p, ε) ∈ N such that

pε := p+ ε

r(p,ε)∑
k=0

n∑
j=1

x2k
j

k!
is a sum of squares

and ||p− pε||1 → 0 as ε→ 0, where ||p||1 =
∑

α∈Nn |pα|.

This density result comes with the problem that no explicit bounds for r∗, λ∗

and r(p, ε) are known so far.

2.6 Boundary Structure

A widely open problem in analyzing the convex cones Pn,2d and Σn,2d is the
study of their facial structure and the possible dimensions of their faces. When-
ever these two cones coincide, the facial structure is much better understood
([Bar02]). However, even in the smallest cases where they di�er, a complete
description of the faces is an open problem. In Chapter 4 we analyze the fa-
cial structure of these cones in more detail. In the following, we present some
basic results about the boundary structure of Pn,2d and Σn,2d as well as their
dual cones. All presented results can be found in [BPT13] unless referenced
otherwise. We start by recalling some basic de�nitions and properties from
convexity theory.

De�nition 2.6.1. Let C ⊂ Rn be a convex cone.

1. A subcone F ⊂ C is called a face of C, if for any x, y ∈ C, whenever
x + y ∈ F , it holds that x, y ∈ F . The dimension of a face F is de�ned
as

dimF := dim span(F ).

2. An element p 6= 0 contained in a 1-dimensional face is called an extremal
element. Equivalently, if p = y1 + y2, y1, y2 ∈ C, then p = λiyi for some
λi > 0 and i ∈ {1, 2}.
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3. A face F is called an exposed face of C, if F = C ∩ H where H is a
nontrivial supporting hyperplane to C.

Every element in a closed convex cone can be written as a �nite sum of
extremal elements (see, e.g., [Bar02]). Note that we can identify the cones

Pn,2d and Σn,2d as cones lying in RdimHn,2d = R(n+2d−1
2d ). The description of

extremal elements of the cones Pn,2d and Σn,2d is a very hard problem. For
Σn,2d there is an easy necessary condition, namely, that all extremal elements
of Σn,2d are perfect squares ([CLR82]) but this is not su�cient as the example
(x2 + y2)2 = (x2 − y2)2 + (2xy)2 shows.

Example 2.6.2 ([CL78]). The Motzkin form M(x, y, z) = z6 + x4y2 + x2y4 −
3x2y2z2 ∈ P3,6 \ Σ3,6 is extremal in P3,6 and the form N(w, x, y, z) = w4 +
x2y2 + y2z2 + z2x2 − 4wxyz ∈ P4,4 \ Σ4,4 is extremal in P4,4.

Let EPn,2d and EΣn,2d denote the set of extremal forms of the cones Pn,2d
and Σn,2d.

Theorem 2.6.3 ([CLR82]). Let Σn,2d ( Pn,2d. The inclusion EΣn,2d ⊂ EPn,2d
precisely holds in the following cases:

1. 2d ≤ 6,

2. (n, 2d) = (3, 8),

3. (n, 2d) = (3, 10).

The dual cone C∗ of a convex cone C in a real vector space V is de�ned as
the set of all linear functionals that are nonnegative on C, i.e.,

C∗ := {l ∈ V ∗ : l(x) ≥ 0 for allx ∈ C}.

For closed convex cones the biduality theorem states that (C∗)∗ = C ([Bar02]).
One of the most important linear functionals when studying faces of Pn,2d is
the evaluation functional: For v ∈ Sn−1 let lv ∈ H∗n,2d be the linear functional
given by evaluation at v:

lv(p) = p(v) for p ∈ Hn,2d.

Proposition 2.6.4. P ∗n,2d is the conical hull of functionals lv for all v ∈ Sn−1:

P ∗n,2d = cone{lv : v ∈ Sn−1}.

In particular, a form f is nonnegative on Rn if and only if it is nonnegative
on the unit sphere Sn−1.
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Note that testing membership l ∈ P ∗n,2d is just the truncated moment prob-
lem, which we introduced earlier by considering duality theory for polynomial
optimization problems. In order to give a description of the dual cone of Σn,2d,
we �rst note that the dual space H∗n,2d can be identi�ed as a subspace Sn,d
of the vector space of real quadratic forms in Hn,d. For a linear functional
l ∈ H∗n,2d, the corresponding quadratic form Ql is de�ned by Ql(f) = l(f 2).
The cone of positive semide�nite forms in Sn,d is then de�ned as

S+
n,d := {Q ∈ Sn,d : Q(f) ≥ 0 for all f ∈ Hn,d}.

Proposition 2.6.5 ([Ble12a]). It holds that

Σ∗n,2d = S+
n,d ∩H

∗
n,2d.

In particular, Proposition 2.6.5 implies that Σ∗n,2d is a spectrahedron (re-
member that Σn,2d is a projected spectrahedron, see Section 2.2).

The set of extreme rays of a closed convex cone is very important, since every
element in the cone can be written as a sum of �nitely many extremal elements.
Exposed extreme rays of Pn,2d are easy to describe, since their varieties are
maximal.

Proposition 2.6.6. A form p ∈ Pn,2d is an exposed extreme ray of Pn,2d if
and only if for all q ∈ Pn,2d with V (p) ⊆ V (q) it holds that q = λp for some
λ ∈ R.

Example 2.6.7. The Motzkin form M(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2

spans an extreme ray of P3,6 but it is not exposed. The zeros of M are given
by

V (M) = {(1, 0, 0), (0, 1, 0), (1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)}.

In [CL78], it is proved that S(x, y, z) = x4y2+y4z2+z4x2−3x2y2z2 ∈ P3,6\Σ3,6,
where nonnegativity of S is given by the arithmetic-geometric mean inequality.
One can check easily (since it is known when the arithmetic mean equals the
geometric mean) that V (S) = V (M)∪ {(0, 0, 1)}. But, obviously, S 6= λM for
all λ ∈ R. Hence, the Motzkin form does not span an exposed extreme ray of
P3,6.

Since, by Proposition 2.6.4, every exposed face of Pn,2d is given by a set of
forms vanishing on a �nite set of points, an obvious problem is to determine the
maximum number of zeros a nonnegative form p ∈ Pn,2d can have. Following
the notation in [CLR80] we de�ne

Bn,2d := sup
p∈Pn,2d
|V (p)|<∞

|V (p)| and B′n,2d := sup
p∈Σn,2d
|V (p)|<∞

|V (p)|.

An exact determination of these numbers seems to be a rather di�cult task.
For special cases, these numbers are determined or estimated, as the following
theorem shows.
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Theorem 2.6.8 ([BHO+12, CLR80, Sha77]). The numbers Bn,2d and B′n,2d
satisfy the following relations.

1. B3,6 = B4,4 = 10,

2. (2d)2

4
≤ B3,2d ≤ 6d(2d−2)

8
+ 1 for 2d ≥ 6,

3. B3,6k ≥ 10k2 , B3,6k+2 ≥ 10k2 + 1 , B3,6k+4 ≥ 10k2 + 4,

4. B′n,2d ≥ dn−1,

5. B′3,2d = (2d)2

4
.

Note that the number B3,8 satisfying 16 ≤ B3,8 ≤ 19 is still not exactly
determined. In the smallest cases where Pn,2d 6= Σn,2d, the results are actually
more delicate as the following theorem shows.

Theorem 2.6.9 ([BHO+12, CLR80]). If p ∈ P3,6 and |V (p)| > 10, then p ∈
Σ3,6 and p is a sum of three squares of cubics. If p ∈ P4,4 and |V (p)| > 10,
then p ∈ Σ4,4 and p is a sum of six squares of quadratics.

We will strongly make use of this theorem in Chapter 3 when studying
separating inequalities for polynomials p ∈ ∂P3,6 and p ∈ ∂P4,4. Forms in P3,6

with exactly 10 zeros are in fact extremal.

Theorem 2.6.10 ([Rez07]). Let p ∈ P3,6 and |V (p)| = 10. Then p is extremal,
i.e., p ∈ EP3,6.

Example 2.6.11. The Robinson form

R(x, y, z) = x6 + y6 + z6− (x4y2 + x2y4 + x4z2 + x2z4 + y4z2 + y2z4) + 3x2y2z2

satis�es R ∈ P3,6 \ Σ3,6 ([CL78]) and has exactly ten zeros:

V (R) = (0,±1, 1), (1, 0, ,±1), (±1, 1, 0), (1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1).

Hence, by Theorem 2.6.10, R ∈ EP3,6.

Known forms in P3,6 with exactly ten zeros are rare (see [Rez07] for some
other examples) and it would be a major breakthrough to characterize all
possible 10-point con�gurations S ⊂ R3 that arise as varieties of forms p ∈
P3,6. However, in [BHO+12] it is shown that the algebraic boundary of the
semialgebraic set EP3,6\Σ3,6 is the Severi variety of plane rational sextic curves,
which has dimension 17 and degree 26312976 in the set of all plane sextic
curves.





Chapter 3

Separating Inequalities for

Nonnegative Polynomials that are

not Sums of Squares

In this chapter, we tackle the problem of constructing separating inequalities
for nonnegative polynomials that are not sums of squares. In the smallest cases
where Pn,2d 6= Σn,2d, i.e., for (n, 2d) ∈ {(3, 6), (4, 4)}, Blekherman showed that
it is precisely the Cayley-Bacharach relation that prevents sums of squares from
�lling out the cone of nonnegative polynomials. More precisely, in [Ble12a] it
is shown that every separating extreme ray in the dual sums of squares cone
for a given nonnegative polynomial that is not a sum of squares depends on
an 9-point con�guration for (n, 2d) = (3, 6) resp. an 8-point con�guration for
(n, 2d) = (4, 4) coming from the intersection of two cubic resp. three quadratic
forms. Furthermore, given an appropriate 9-point (resp. 8-point) con�gura-
tion, one can write down an extreme ray of the dual sums of squares cone (see
Theorems 3.2.2 and 3.2.1) corresponding to a face of maximal dimension in
the sums of squares cone.

A central problem in this area is how to determine the separating inequalities
e�ciently. This can always be done in a numerical way (see Section 3.2), but is
widely open for exact methods currently. Hence, �nding constructive methods
for computing these inequalities is one main research issue. Blekherman's
results do not provide an e�cient symbolic way to obtain a proper 9-point
(resp. 8-point) con�guration to solve this problem (see Section 3.2 for further
details).

Our approach to this problem is to construct a proper 9-point (resp. 8-point)
con�guration out of a given initial set of points. Speci�cally, we investigate
nonnegative polynomials p, which lie on the boundary of the cones P3,6 and
P4,4. Our main result, Theorem 3.3.1, provides a su�cient condition for using
some real zeros of p as a subset of a 9-point (resp. 8-point) con�guration. The
idea is to �ll up the set of k zeros with 9− k (resp. 8− k) points such that a
genericity and a quadratic condition based on the Cayley-Bacharach relation

29
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hold (note that k ≤ 10 for p ∈ P3,6 \ Σ3,6 and p ∈ P4,4 \ Σ4,4; see Theorem
2.6.8). Given these conditions, which are computationally easy to check, we
can construct a separating extreme ray immediately. This method reduces
the complexity of constructing separating extreme rays via symbolic computa-
tion signi�cantly. Furthermore, it yields rational certi�cates for rational point
con�gurations and even for rational varieties V(p) ⊂ Q3 resp. V(p) ⊂ Q4.

We show that for p ∈ P3,6 \Σ3,6 and k ≥ 7 (resp. p ∈ P4,4 \Σ4,4 and k ≥ 6)
almost every 9-point (resp. 8-point) con�guration containing seven (resp. six)
zeros leads to a certi�cate for a nonnegative polynomial p to be not a sum of
squares. This proves a slightly modi�ed version of Blekherman's Conjecture
3.3.6 for many instances.

We begin with reviewing some curve theoretical issues as, e.g., the Cayley-
Bacharach relation and present Blekherman's results on the dual cones Σ∗3,6 and
Σ∗4,4. In Section 3.3 we state and prove our main Theorems 3.3.1 and 3.3.3 for
ternary sextics and quaternary quartics and discuss exactness and rationality
of our methods. Section 3.4 deals with the special case of polynomials with
exactly seven (resp. six) zeros. We show that in these cases our method
generically yields a separating extreme ray (Theorem 3.4.1), which also proves
the special instances in Blekherman's Conjecture 3.3.6. Finally, in Section 3.5
we discuss the di�culties of dropping zeros in our method by applying it to
the Motzkin polynomial and investigate some geometric aspects of the set of
appropriate point con�gurations in our method (see Figure 3.1).

3.1 Curve Theoretical Background

We recall some classical results from algebraic geometry. We start with the
Cayley-Bacharach relation. It exists in various formulations (see [EGH96]); we
use the one given in [Ble12a].

Lemma 3.1.1. Let (n, 2d) ∈ {(3, 6), (4, 4)} and f1, . . . , fn−1 ∈ Hn,d be forms
intersecting transversely in s = dn−1 complex projective points γ1, . . . , γs. Let
v1, . . . , vs be a�ne representatives of the projective points γi. Then there is a
unique linear relation on the values of any f ∈ Hn,d on vj:

s∑
j=1

ujf(vj) = 0 for all f ∈ Hn,d (3.1.1)

with nonzero uj ∈ C. Furthermore, if (3.1.1) is satis�ed, then the following
genericity conditions hold for the cases (n, 2d) = (3, 6) resp. (n, 2d) = (4, 4).

no four of the vi lie on a line and no seven on a quadric, (3.1.2)

no �ve of the vi lie on a plane (i.e., a projective linear 2-space). (3.1.3)
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For the genericity condition (3.1.3), see, e.g., [Hil88]. Note that if all points
vj are real, then all Cayley-Bacharach coe�cients uj are real, too (see [Ble12a,
Lemma 4.1]) and can be computed by solving a system of linear equations with
the coe�cients of forms in H3,3 resp. H4,2 as variables.

Each of the conditions (3.1.2) and (3.1.3) can be checked easily by investi-
gating the minors of the matrix given by the vectors vj.

For the description of the extreme rays of Σ∗3,6 one needs to investigate
9-point con�gurations given as the intersection of two coprime ternary cu-
bics. The following lemma shows that coprimality is the case generically (see
[Rez07]).

Lemma 3.1.2. Suppose A := {v1, . . . , v8} is a set of eight distinct points in
R3, no four on a line and no seven on a quadric and let f1, f2 be a basis
of the vector space of all homogeneous cubics with projective variety a�nely
represented by A. Then f1 and f2 are relatively prime.

This lemma yields that one can apply Bezout's theorem in order to compute
a ninth intersection point v9 of f1 and f2. However, v9 might not be di�erent
from v1, . . . , v8 (i.e., the intersection multiplicity might be greater than 1).
But, again, generically this will not be the case as the following lemma shows
(see [Nie12]).

Lemma 3.1.3. Let f1, f2 be two homogeneous polynomials in n variables (with
n ≥ 2) of degree d and generic coe�cients. The discriminant ∆(f1, f2) van-
ishes if and only if f1 = f2 = 0 has a singular solution. The set of polynomials
for which this is the case is a hypersurface.

In Section 3.4 we investigate the special case of polynomials p ∈ P3,6 \ Σ3,6

with exactly seven zeros. In this context we use the following lemma (see
[Rez07]).

Lemma 3.1.4. Suppose A is a set of seven distinct points in R3, no four on
a line and no seven on a quadric with basis f1, f2, f3 for the vector space of
homogeneous cubics with projective variety a�nely represented by A. Then
f1, f2, f3 have no common zeros outside of A.

3.2 Blekherman's Results

In [Ble12a] Blekherman fully characterizes the extreme rays of the dual cones
Σ∗3,6 and Σ∗4,4 via the Cayley-Bacharach relation. We recall his main results.

Theorem 3.2.1. Let (n, 2d) ∈ {(3, 6), (4, 4)} and p ∈ Pn,2d \Σn,2d. Then there
exists forms q1, . . . , qn−1 ∈ Hn,d intersecting transversely in s = dn−1 projective
points γ1, . . . , γs, which yield a certi�cate for p ∈ Pn,2d \Σn,2d. More precisely,
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let v1, . . . , vs be a�ne representatives of γ1, . . . , γs. Then there exists a linear
functional l : Hn,2d → R given by

l(f) =
s∑
i=1

aif(vi)

for some ai ∈ C such that l(p) < 0 and l(Σn,2d) ≥ 0. Furthermore, at most
two of the points γi are complex.

Recall that for every l ∈ Σ∗n,2d there is a corresponding quadratic form Ql

de�ned by Ql : Hn,d → R, f 7→ l(f 2) (see, e.g., [Ble12a, Lau09]). One de�nes
the rank of a linear functional l ∈ Σ∗n,2d by rank(l) := rank(Ql). In [Ble12a] it is
shown that for (n, 2d) ∈ {(3, 6), (4, 4)} every extreme ray of Σ∗n,2d, which does
not correspond to a point evaluation (i.e., a rank 1 quadratic form), is given by
a rank (dimHn,d − n) quadratic form, which comes from a 9-point evaluation
(resp. 8-point evaluation) in the case (n, 2d) = (3, 6) (resp. (n, 2d) = (4, 4)).
In particular, dim Ker(Ql) = n.

The linear functional l in Theorem 3.2.1 can be described in more detail by
the following result.

Theorem 3.2.2 ([Ble12a]). Let (n, 2d) ∈ {(3, 6), (4, 4)}. Suppose l spans an
extreme ray of Σ∗n,2d, which does not correspond to a point evaluation. Let Wl

be the kernel of the corresponding quadratic form Ql and suppose q1, . . . , qn−1 ∈
Wl intersect transversely in s = dn−1 real projective points γ1, . . . , γs with a�ne
representatives v1, . . . , vs such that the unique Cayley-Bacharach relation is
given by

u1f(v1) + · · ·+ u9f(vs) = 0 for f ∈ Hn,d.

Then Ql can be uniquely written as

Ql(f) = a1f(v1)2 + · · ·+ asf(vs)
2

with exactly one single negative coe�cient

ak =
−u2

k

u21
a1

+ · · ·+ u2s
as
− u2k

ak

(3.2.1)

and the rest of the ai being strictly positive. Furthermore, any such form is
extreme in Σ∗n,2d.

Suppose p ∈ P3,6 \Σ3,6 and we want to construct a separating extreme ray l
for p using Theorems 3.2.1 and 3.2.2. Therefore, we need to �nd two coprime
ternary cubics q1, q2 intersecting in 9 points. But q1, q2 need to be contained in
the kernel Wl of the quadratic form Ql corresponding to l. Hence, one already
needs to know l in advance to determine q1, q2.
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This problem can be avoided by choosing a 9-point con�guration A =
{v1, . . . , v9} coming from an intersection of two real ternary cubics q1, q2. So, a
separating extreme ray l is obtained by �nding an appropriate a = (a1, . . . , a9)
satisfying (3.2.1) with respect to A such that la(p) < 0. Whether such an a
exists or not is unclear a priori though it can be answered by quanti�er elimina-
tion methods (see, e.g., [BPR06, BCR98]). But, to the best of our knowledge,
no methods are known to compute an appropriate a in a symbolic and exact
way e�ciently.

However, one can solve this problem numerically. Let p ∈ P3,6 \ Σ3,6 be a
ternary sextic and r ∈ int

(
Σ3,6

)
(e.g., r = x6 + y6 + z6 or r = (x2 + y2 + z2)3).

Consider the following semide�nite optimization problem:

min
λ∈R

λ such that p+ λr ∈ Σ3,6.

For λ minimal, the polynomial p + λr is strictly positive and lies on the
boundary of Σ3,6. Hence, p+ λr is a sum of exactly three squares s2

1 + s2
2 + s2

3

(see [Ble12a]).
The polynomials s1, s2, s3 have no common zeros and an appropriate linear

combination of two of these polynomials can be used as q1 and q2 in Blekher-
man's theorem. Of course, the computation of the corresponding nine inter-
section points will be di�cult and not exact, too. Furthermore, getting �nice�
values (e.g., a rational minimal λ) depends also highly on the choice of the
polynomial r ∈ int

(
Σ3,6

)
. It is not clear how to choose r in dependence of p.

In the case p ∈ P4,4\Σ4,4, this approach works the same way. For λ minimal
the polynomial p+λr is a sum of exactly four squares p+λr = s2

1 +s2
2 +s2

3 +s2
4.

Three of these four sj have a common zero (see [Ble12a]).

3.3 A Certi�cate for Boundary Polynomials

Our approach to construct a separating extreme ray for a given boundary
polynomial p ∈ ∂P3,6\Σ3,6 is to investigate certain point sets A := {v1, . . . , v9}
containing the variety V(p), satisfying the genericity condition (3.1.2) and for
which we can certify that there are coprime polynomials q1, q2 ∈ H3,3 with
V(q1) ∩ V(q2) = A.

Note that if we talk about zeros of homogeneous polynomials in this and
the following sections, then we always consider their a�ne representatives with
slight abuse of notation.

The easiest case is when p has at least eight zeros v1, . . . , v8 (satisfying
(3.1.2)). Lemma 3.1.2 provides the existence of coprime q1, q2 vanishing on
v1, . . . , v8 and thus a ninth point v9 is given by Bezout's theorem. For a
generic set of zeros v1, . . . , v8 the corresponding coprime polynomials q1, q2 have
generic coe�cients and hence, due to Lemma 3.1.3, we have v9 /∈ {v1, . . . , v8}
generically. Thus, A := {v1, . . . , v9} satis�es (3.1.2) generically. This yields a
certi�cate l immediately, since for any choice of a1, . . . , a8 we obtain an a9 < 0
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by (3.2.1) such that

l(p) =
9∑
j=1

ajp(vj) = a9p(v9) < 0.

In the following, we generalize this idea to any number of zeros between
one and seven. We choose the zeros v1, . . . , vk of a polynomial p ∈ ∂P3,6 \Σ3,6

as a subset of the nine intersection points A := {v1, . . . , v9} of two coprime
ternary cubics. We provide a symbolic method based on genericity conditions,
which yields a separating extreme ray if one �nds a (9−k)-point con�guration
satisfying some quadratic relation. Speci�cally, the following theorem holds.

Theorem 3.3.1. Let p ∈ ∂P3,6 \ Σ3,6. Let A := {v1, . . . , v9} ⊂ R3 be the
intersection of two coprime polynomials q1, q2 ∈ H3,3 such that the genericity
condition (3.1.2) holds and V(p) = {v1, . . . , vk} with 1 ≤ k ≤ 7. Then one can
compute a certi�cate la : H3,6 → R, f 7→

∑9
j=1 ajf(vj), a := (a1, . . . , a9) ∈ R9

with respect to A for p /∈ Σ3,6, if the following inequality holds:

(u2
k+1 + · · ·+ u2

8)(p(vk+1) + · · ·+ p(v8)) < u2
9p(v9). (3.3.1)

Here, the uj are given by the unique Cayley-Bacharach relation on A and la is
an extreme ray of Σ∗3,6.

Note that the Cayley-Bacharach coe�cients uj can be computed by solving
a system of linear equations (see Section 3.5 for an example). Additionally, all
uj are rational, if every point in A is rational. Note furthermore that, for an
arbitrary p, it is not clear whether an A with V(p) ⊂ A satisfying (3.3.1) does
always exist. We discuss certain special cases in the two following sections.

Proof. Let p ∈ ∂P3,6 with V(p) = {v1, . . . , vk}, 1 ≤ k ≤ 7, such that the
genericity condition (3.1.2) holds for V(p). We choose points vk+1, . . . , v8 such
that (3.1.2) is still satis�ed. We obtain v9 as the intersection of two relatively
prime, cubic polynomials spanning the vector space of all ternary cubics van-
ishing on v1, . . . , v8 (see Lemma 3.1.2). Notice that, generically, we obtain
v9 /∈ {v1, . . . , v8} due to Lemma 3.1.3 and v9 has to be real, since v1, . . . , v9 is
the intersection of two real polynomials (see e.g., [Rez07]). Let u1, . . . , u9 be
the unique Cayley-Bacharach coe�cients for v1, . . . , v9 in the sense of (3.1.1).
Since v1, . . . , v9 ∈ R3, we have u1, . . . , u9 ∈ R (see [Ble12a, Lemma 4.1]).

By Theorem 3.2.2, every vector a := (a1, . . . , a9) ∈ R9 satisfying (3.2.1) with
a1, . . . , a8 > 0, a9 < 0 yields an extreme ray la : H3,6 → R, f 7→

∑9
j=1 ajf(vj)

of the dual cone Σ∗3,6. The linear functional la is the dual of a separating
hyperplane for p if la(p) < 0, i.e., if ak+1p(vk+1) + · · · + a9p(v9) < 0, since
V(p) = {v1, . . . , vk}. By (3.2.1), this is equivalent to

ak+1p(vk+1) + · · · − u2
9

u21
a1

+ · · ·+ u28
a8

p(v9) < 0

⇔ (ak+1p(vk+1) + · · ·+ a8p(v8)) ·
(
u2

1

a1

+ · · ·+ u2
8

a8

)
< u2

9p(v9).
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Let λa1,...,ak :=
∑k

j=1

u2j
aj
· (ak+1p(vk+1) + · · ·+ a8p(v8)) > 0. Thus, la(p) < 0, if

λa1,...,ak +
8∑

j=k+1

p(vj)

u2
j +

∑
i∈{k+1,...,8}\{j}

aju
2
i

ai

 < u2
9p(v9).

We choose ak+1 := 1, . . . , a8 := 1 and obtain

λa1,...,ak + (u2
k+1 + · · ·+ u2

8)(p(vk+1) + · · ·+ p(v8)) < u2
9p(v9).

Since lima1,...,ak→∞ λa1,...,ak ↘ 0, the relaxation (3.3.1) yields an extreme ray la
on A separating p from Σ3,6.

If, on the other hand, any polynomial g ∈ Σ3,6 with V(g) = V(p) would
satisfy (3.3.1), then it follows from the above construction that la(g) < 0 for
a1, . . . , ak su�ciently large, ak+1, . . . , a8 = 1 and a9 given by (3.2.1). This is a
contradiction to Theorems 3.2.2 and 3.2.1. Thus, (3.3.1) is indeed a certi�cate
for p /∈ Σ3,6. �

In order to prove an analogon of Theorem 3.3.1 for P4,4 \ Σ4,4, we need to
show that Lemma 3.1.2 also holds for a seven point set A := {v1, . . . , v7} ⊂ R4.
Generically, the vector space of all quadrics vanishing on A has dimension three
(see [Eis05]).

Lemma 3.3.2. Suppose A := {v1, . . . , v7} is a set of seven distinct points in
R4, no four on a plane such that q1, q2, q3 is a basis for the vector space of all
homogeneous quadrics with projective variety a�nely represented by A. Then
q1, q2, q3 are relatively prime.

Proof. Suppose q1, q2, q3 have a common factor g. Then qj = g · q′j for j ∈
{1, 2, 3} and g, q′j have to be linear in R[x1, . . . , x4]. Due to the genericity
condition at most three zeros (w.l.o.g. v1, v2, v3) are located on V(g) since
otherwise there would exist at least �ve points contained in a plane. Hence,
V(q′1),V(q′2) and V(q′3) share four points, which is a contradiction, since for
each j all points in V(q′j) are contained in a line. �

Theorem 3.3.3. Let p ∈ ∂P4,4 \Σ4,4. Let A := {v1, . . . , v8} ⊂ R4 be the inter-
section of three coprime polynomials q1, q2, q3 ∈ H4,2 such that the genericity
condition (3.1.3) holds and V(p) = {v1, . . . , vk} with 1 ≤ k ≤ 6. Then there
exists a certi�cate la : H4,4 → R, f 7→

∑8
j=1 ajf(vj), a := (a1, . . . , a8) ∈ R8

with respect to A for p /∈ Σ4,4, if the following inequality holds

(u2
k+1 + · · ·+ u2

7)(p(vk+1) + · · ·+ p(v7)) < u2
8p(v8). (3.3.2)

Here the uj are given by the unique Cayley-Bacharach relation on A and la is
an extreme ray of Σ∗4,4.
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The proof works the same way as for Theorem 3.3.1 with the obvious mod-
i�cations.

In fact, the proof of Theorem 3.3.1 already shows one possible way how to
choose a = (a1, . . . , a9) ∈ R9 to obtain a separating extreme ray la.

Corollary 3.3.4. For p ∈ ∂P3,6 \ Σ3,6 and A = {v1, . . . , v9} ⊃ V(p) with
(3.3.1) satis�ed, one valid certi�cate is given by a1 = · · · = ak = N ∈ R
(for N su�ciently large), ak+1 = · · · = a8 = 1 and a9 given by (3.2.1). For
p ∈ ∂P4,4 \ Σ4,4 and A = {v1, . . . , v8} ⊃ V(p) with (3.3.2) satis�ed, one valid
certi�cate is given by a1 = · · · = ak = N ∈ R (for N su�ciently large),
ak+1 = · · · = a7 = 1 and a8 given by the analogon of (3.2.1) for Σ∗4,4 (see
[Ble12a]). In particular, la is a rational certi�cate, i.e., every aj is rational, if
every point vj ∈ A is rational.

If one is interested in computing rational certi�cates, then, from an ap-
plication viewpoint, there is the following problem. Suppose, we have a ra-
tional variety V(p) = {v1, . . . , vk} and we choose vk+1, . . . , v8 ∈ Q3 (resp.
vk+1, . . . , v7 ∈ Q4) such that the genericity condition (3.1.2) (resp. (3.1.3))
holds (which is always possible). Then it is not clear a priori that the ninth
intersection point v9 ∈ R3 (resp. eighth intersection point v8 ∈ R4) given by
Bezout is rational, too.

By results in [PSV11] and [Ren11], for p ∈ P3,6 \ Σ3,6 (resp. p ∈ P4,4 \
Σ4,4), the ninth (resp. eighth) intersection point can always be computed
exactly. In particular, it can be deduced that this last point will always be
rational whenever the remaining points are rational and hence whenever V(p)
is rational.

Corollary 3.3.5. Let p ∈ ∂P3,6 \ Σ3,6 with V(p) = {v1, . . . , vk} ⊂ Q3 and
{vk+1, . . . , v8} ⊂ Q3 such that (3.1.2) holds. Then there is a rational certi�cate
la on A = {v1, . . . , v9} with v9 given by Bezout, whenever (3.3.1) holds.

Obviously, an analogous result also holds in the case (n, 2d) = (4, 4).

Note that in our Theorems 3.3.1 and 3.3.3 we only consider real points
v1, . . . , v9 whereas in Blekherman's Theorem 3.2.1 (at most) one pair of com-
plex conjugated points is allowed. However, in [Ble12a] Blekherman states the
following conjecture.

Conjecture 3.3.6. Every extreme ray l ∈ Σ∗3,6, which is not a point evaluation,
is given by two ternary cubics intersecting in only real points. Analogously, for
l ∈ Σ∗4,4.

Based on our results we formulate a slightly modi�ed conjecture here.

Conjecture 3.3.7. For p ∈ P3,6 \ Σ3,6 there exist v1, . . . , v9 ∈ R3 yielding a
separating extreme ray for p in the sense of Theorem 3.2.1. Analogously, for
p ∈ P4,4 \ Σ4,4.
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Clearly, Conjecture 3.3.6 implies Conjecture 3.3.7, since if every extreme
ray is real representable, then every nonnegative polynomial that is not a sum
of squares can be separated by a real intersection. It is unclear whether the
two conjectures are indeed equivalent, however, we strongly suspect this.

3.4 The Seven Point Case

Let p ∈ P3,6\Σ3,6 and assume we are interested in �nding a separating extreme
ray la in Σ∗3,6 for p. That means we need to �nd a generic 9-point set A
being the intersection of two coprime polynomials q1, q2 ∈ H3,3 such that the
conditions in Theorem 3.2.1 hold. If p is located on the boundary of P3,6,
i.e., V(p) = {v1, . . . , vk} 6= ∅, then Theorem 3.3.1 and Corollary 3.3.4 yield a
certi�cate la whenever one can �ll up V(p) with points vk+1, . . . , v9 such that
condition (3.3.1) is satis�ed.

However, it is not obvious a priori if and how points vk+1, . . . , v9 can be
chosen such that the su�cient condition (3.3.1) of Theorem 3.3.1 holds (note
that v9 is always given by Bezout in this approach). It turns out that for k = 7,
i.e., the easiest non-trivial case, the problem of choosing an appropriate v8 is
easy, since almost every v8 yields an v9 such that (3.3.1) is satis�ed. Note that
for p ∈ ∂P3,6 \ Σ3,6 the variety V(p) always satis�es the genericity condition
(3.1.2) (see [Rez07]).

One reason why this case is of special interest is that k = 7 with v1, . . . , v7

satisfying the genericity condition (3.1.2) is the smallest number of zeros of a
nonnegative polynomial such that the dimensional di�erence between exposed
faces of P3,6 and Σ3,6 given by vanishing of forms on these zeros is strictly
positive (see Chapter 4). In particular, by results in the upcoming Chapter 4,
this implies that for every generic con�guration of seven points one can always
construct nonnegative polynomials that are not sums of squares vanishing at
these points.

Theorem 3.4.1. Let p ∈ ∂P3,6 \ Σ3,6 and A := {v1, . . . , v9} ⊂ R3 be the
intersection of two coprime polynomials q1, q2 ∈ H3,3 such that the genericity
condition (3.1.2) holds and V(p) = {v1, . . . , v7}. Then there exists a certi�cate
la : H3,6 → R, f 7→

∑9
j=1 ajf(vj), aj ∈ R with respect to A for p /∈ Σ3,6 if

u2
8p(v8) 6= u2

9p(v9). (3.4.1)

Furthermore, la is an extreme ray of Σ∗3,6.

Theorem 3.4.1 holds analogously in the case of p ∈ P4,4 \ Σ4,4 and k = 6
with the obvious modi�cations. We omit to formulate the result for this case
separately.

Proof. We choose v8 such that the genericity condition (3.1.2) still holds for
{v1, . . . , v8} and obtain a real v9 /∈ {v1, . . . , v8} such that (3.1.2) and Cayley-
Bacharach hold for A generically (see proof of Theorem 3.3.1). Since all
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conditions of Theorem 3.3.1 are satis�ed, there is a certi�cate l ∈ Σ∗3,6 if
u2

8p(v8) < u2
9p(v9). But since {v1, . . . , v7, v9} also yields A with Bezout's theo-

rem, this condition holds w.l.o.g. as long as u2
8p(v8) 6= u2

9p(v9). �

A nice consequence of this theorem is that it immediately veri�es Conjecture
3.3.7 for special instances.

Corollary 3.4.2. Conjecture 3.3.7 holds for p ∈ ∂P3,6 \ Σ3,6 with #V(p) ≥ 7
and p ∈ ∂P4,4 \Σ4,4 with #V(p) ≥ 6. Furthermore, Conjecture 3.3.7 holds also
for every exposed extremal form in P3,6 \ Σ3,6.

Proof. The �rst part immediately follows from Theorem 3.4.1. Furthermore,
in [BHO+12] it is shown that every exposed extremal form in P3,6 \ Σ3,6 has
exactly ten zeros. By choosing seven of them, the results follow. �

3.5 An Application: The Motzkin Polynomial

In this section, we demonstrate applications of our method. It turns out that
�nding a separating extreme ray becomes more di�cult for polynomials in
p ∈ ∂P3,6 \ Σ3,6 with six or less zeros. The condition (3.3.1) provides more
degrees of freedom and, in particular, the left hand side of this inequality
has more than one term. This fact yields that the set of point con�gurations
A := {v1, . . . , v9} ⊂ R3 with V(p) ⊂ A, which do not satisfy (3.3.1), will
not be a lower dimensional subset in general, in contrast to the seven point
case (independent from which point corresponds to the negative entry a9 in an
extreme ray). The same di�culties arise for p ∈ P4,4\Σ4,4 with �ve or less zeros.

As an example, we investigate the Motzkin polynomial

m(x, y, z) = x4y2 + x2y4 − 3x2y2z2 + z6.

The Motzkin polynomial has six zeros.

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (1, 1, 1),
v4 := (−1, 1, 1), v5 := (1,−1, 1), v6 := (1, 1,−1).

As a �rst instance we choose v7 := (0, 4, 1) and v8 := (4, 0, 1). These eight
points satisfy the genericity condition (3.1.2). This can be checked by looking
at the (3 × 3)-minors of the (8 × 3)-matrix given by the coordinates (x, y, z)
of the points v1, . . . , v8 and looking at the (6× 6)-minors of the (8× 6)-matrix
given by the coordinates (x2, y2, z2, xy, xz, yz) of the points v1, . . . , v8. Hence
we can compute two coprime ternary cubics

q1 = −16z3 + 15x2z + y2z + 56y2x− 56z2x

q2 = −4z3 − x2y + 4x2z + 15y2x− 15z2x+ z2y
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vanishing on v1, . . . , v8 by solving the system of linear equations

h(v1) = 0, . . . , h(v8) = 0

on the coe�cients of h. Here,

h := b1x
3 + b2y

3 + b3z
3 + b4x

2y + b5x
2z

+ b6y
2z + b7y

2x+ b8z
2x+ b9z

2y + b10xyz.

We compute the Gröbner basis

{7z − 26z2 − 15z3 + 26z4 + 8z5,−2z + 8z2 + 2z3 − 105y − 8z4 + 105z2y,

8z4 − 422z3 + 1575y2 − 1583z2 + 422z, x− 1}

of q1, q2 and x − 1 with respect to lexicographic ordering. We obtain v9 =
(1, 1,−7/2) and compute the Cayley-Bacharach coe�cients uj by solving the
system of linear equations

u1h(v1) + · · ·+ u9h(v9) = 0

in u1, . . . , u9. The solution is (up to scalar multiplication)

u =

(
−64,−64,−40

9
,−4,−4,

24

5
, 1, 1,

118098

5

)T
.

We have

(u2
7 + u2

8) · (m(v7) +m(v8)) = 4,

u2
9m(v9) = 228.

Hence, condition (3.3.1) of Theorem 3.3.1 is satis�ed and we �nd a separating
hyperplane for m on A. According to Corollary 3.3.4, we choose a1, . . . , a6 :=
100 and a7, a8 := 1. By (3.2.1), we obtain

a9 =
−u2

9

u21
a1

+ · · ·+ u28
a8

=
−14121476824050

2143157
.

We check the correctness of our result by

la(m) = a1m(v1) + · · ·+ a9m(v9)

= m(0, 4, 1) +m(4, 0, 1)− 14121476824050

2143157
·m
(

1, 1,−7

2

)
= −1484936

2143157
< 0.

Thus, by Blekherman's Theorem 3.2.2 ([Ble12a]), la is a (rational) extreme ray
of Σ∗3,6 separating the Motzkin polynomial m from Σ3,6.
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In contrast to the seven point case, not every generic point con�guration
yields a separating certi�cate. For example, with the same approach it is easy
to show that the instance v7 := (2/7, 2/3, 1) and v8 := (2/3, 2/7, 1) does not
satisfy the condition (3.3.1). We show that for a symmetric choice of v7, v8,
i.e., v7 = (q, s, 1), v8 = (s, q, 1) with q, s ∈ R, the set

S := {(q, s) ∈ R2 : (u2
7 + u2

8) · (m(v7) +m(v8)) < u2
9m(v9)}

yieding a 9-point con�guration, which satis�es (3.3.1) is full dimensional with
some nice geometric structure (see Figure (3.1)).

With the formula in [Ren11] we obtain the ninth Cayley-Bacharach point

v9 =
1

n(q, s)
·

 q3s+ 2q2s2 − q2 + s3q − 2sq − s2

q3s+ 2q2s2 − q2 + s3q − 2sq − s2

q3 + q2s− 2q + s2q − 2s+ s3

 ,

where

n(q, s) = 12 · (q3s2 − 2q3s+ q3 + s3q2 − 2q2s2

+ q2s− 3q + 4sq − 2s3q + s2q + 2− 3s+ s3).

Note that n(q, s) vanishes at q = −2− s, q = 1, s = 1. Furthermore, we obtain
a non-generic point set for q = s, q = −s, q = −1, s = −1 and q = 2 − s. We
compute the Cayley-Bacharach coe�cients in dependence of q, s and obtain

(u2
7 + u2

8) · (m(v7) +m(v8)) =
64(1 + s4q2 + q4s2 − 3q2s2)

(q − s)4

u2
9m(v9) =

16(2q4s2 + q4 + 4s3q3 − 4q3s+ 2s4q2

(q − s)4

+
−6q2s2 − 2q2 − 4s3q + 4sq + s4 − 2s2 + 4)

(q − s)4
.

Note that the numerator of (u2
7 +u2

8) · (m(v7) +m(v8)) is exactly the dehomog-
enized Motzkin polynomial in s, q for z = 1. We set

K(q, s)/L(q, s) := (u2
7 + u2

8) · (m(v7) +m(v8))− u2
9m(v9)

= 16(2q2s2 − q2 + 2sq − s2 + 2)/(q − s)2.

Since q 6= s by assumption, we just need to investigate K(q, s). Thus, by
(3.3.1) we have (q, s) ∈ S if and only if K(q, s) < 0 and q /∈ {±s,±1,±2− s}.
Equivalently, S = ∅ if and only if K(q, s) is nonnegative and q /∈ {±s,±1,±2−
s}. Since K(q, s) is a bivariate polynomial of degree 4, K(q, s) is nonnegative
if only if it is a sum of squares. It can be checked easily that this is not the
case.

We provide a plot of the set S := {(q, s) : K(q, s) < 0} \ {(q, s) : q =
2− s or q = −2− s} in Figure 3.1 (note that the other non-generic cases are
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Figure 3.1: The set S := {(q, s) : K(q, s) < 0}\{(q, s) : q = 2−s or q = −2−s}
is given by the red area without the blue lines.

not part of S although they are relevant for the computation). Obviously, this
set is symmetric in q = s and q = −s, semialgebraic and for every q there is
an s such that (q, s) ∈ S.

Due to the rich geometric structure of S it would be interesting to inves-
tigate the geometric structure of the set of appropriate point con�gurations
satisfying (3.3.1) for general nonnegative polynomials with k zeros.

In contrast, we brie�y demonstrate the numerical method for �nding a 9-
point certi�cate given in Section 3.2 and the corresponding problems. Let r =
(x2 +y2 + z2)3 ∈ int(Σ3,6) and consider the following semide�nite optimization
problem:

min
λ∈R

λ such that m+ λ(x2 + y2 + z2)3 ∈ Σ3,6.

The optimal λ is given numerically by λ ≈ 0.004596411406567 and the cor-
responding sum of squares decomposition of m + λr ≈ s2

1 + s2
2 + s2

3 is given
by

m+ λ(x2 + y2 + z2)3 ≈ (−0.8586xz2 + 0.9414xy2 + 0.0678x3)2+

(−0.8586yz2 + 0.0678y3 + 0.9414x2y)2 + (−1.002z3 + 0.3608y2z + 0.3608x2z)2.

Now, one has to choose an appropriate linear combination of two of the poly-
nomials si to obtain the nine intersection points. But it seems unclear how
to do this. Since the coe�cients of the si are given numerically, computing
the Gröbner basis of two of the si and, say, x− 1 cannot be expected to work
properly.

Finally, we remark that our method allows to generate strictly positive
polynomials that are not sums of squares. It also comes with a certi�cate
without optimization, if (3.3.1) is satis�ed for a polynomial p ∈ ∂P3,6 \ Σ3,6

(resp. for (n, 2d) = (4, 4)). Let la be a separating extreme ray for p and de�ne
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n := p + λ · r with λ ∈ R>0 and r ∈ int(Σ3,6) (resp. r ∈ int(Σ4,4)). Then n is
strictly positive and evaluating n on la yields

la(n) = la(p) + λ · la(r)

with la(p) < 0 and la(r) > 0. Hence, we can immediately solve for λ such that
la(n) < 0.



Chapter 4

Dimensional Di�erences Between

Faces of the Cones of Nonnegative

Polynomials and Sums of Squares

In this chapter, we discuss the facial structure of the cones of nonnegative poly-
nomials and sums of squares. Investigating the boundary structure of these
cones is a very important and famous tool in analyzing the di�erence between
the cones. This is, because many explicit examples of nonnegative polyno-
mials that are not sums of squares are based on Hilbert's original method,
which, roughly speaking, is based on prescribing points and comparing non-
negative polynomials and sums of squares vanishing at these points. In the
following, we generalize Hilbert's method by comparing possible dimensions
of the faces of these cones. Recently, in small dimensions, several aspects
of the di�erence between these cones, such as the boundary structure of the
dual cones and the algebraic boundaries of these cones, are investigated (see
[Ble12a, Ble12b, BHO+12]). But it is worth to note that, in spite of these
results, we still lack a clear understanding of the quantitative relationship of
these cones in small dimensions. In the following, let RPn−1 resp. CPn−1 de-
note the (n− 1)-dimensional real resp. complex projective space.

We focus on the study of exposed faces of the cones Pn,2d and Σn,2d, in par-
ticular on the investigation of their possible dimensions. It is easy to describe
exposed faces of Pn,2d. Indeed, the boundary of the cone Pn,2d consists of all
the forms with at least one real zero, whereas its interior consists of all strictly
positive forms. In particular, a maximal proper face of Pn,2d consists of all
forms with exactly one prescribed zero (see Proposition 2.6.4).

Let Γ be a �nite set of points in RPn−1. The forms in Pn,2d vanishing at all
points of Γ form an exposed face of Pn,2d, which we call Pn,2d(Γ):

Pn,2d(Γ) = {p ∈ Pn,2d : p(s) = 0 for all s ∈ Γ}.

Similarly, we let Σn,2d(Γ) be the exposed face of Σn,2d consisting of forms that

43
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vanish at all points of Γ:

Σn,2d(Γ) = {p ∈ Σn,2d : p(s) = 0 for all s ∈ Γ}.
Moreover, any exposed face of Pn,2d has a description of the above form

and the set Γ can be chosen to be �nite [BPT13, Chapter 4]. We note that,
despite this simple description of exposed faces, the full facial structure of Pn,2d
should be very di�cult to fully describe, since � as already mentioned � the
problem of testing for nonnegativity is known to be NP-hard. Furthermore,
even for the exposed faces Pn,2d(Γ) and Σn,2d(Γ), except for the simple cases
of n = 2 and 2d = 2, the possible dimensions of these faces have not been
investigated yet. We close this gap by deriving estimates for the dimensions
of the faces Pn,2d(Γ) and Σn,2d(Γ) and by establishing dimensional di�erences
between those faces in many cases. It is worth remarking that also Hilbert's
original proof in [Hil88] of existence of nonnegative polynomials that are not
sums of squares can be viewed as establishing a dimensional gap of this type.
This dimensional point of view was �rst made explicit in [Rez07].

For a generic set Γ we reduce the question of dimensions of Pn,2d(Γ) and
Σn,2d(Γ) to the question of dimensions of the degree 2d components of certain
ideals associated with Γ. For an ideal I ⊂ R[x], let I2 denote the second ordi-
nary power of I, and let I(2) denote the second symbolic power of I. Moreover,
let Id denote the homogeneous degree d part of I.

If I(Γ) ⊂ R[x] is the vanishing ideal of a �nite set of points Γ ⊂ RPn−1,
then the second symbolic power I(2)(Γ) of I(Γ) is the ideal of all forms in R[x]
vanishing at every point of Γ to order at least two:

I(2)(Γ) = {p ∈ R[x] : ∇p(s) = 0 for all s ∈ Γ}.
Since every nonnegative form that is zero on s ∈ Γ must vanish to order

two on s, it follows that the face Pn,2d(Γ) is contained in the degree 2d part of
I(2)(Γ):

Pn,2d(Γ) ⊂ I
(2)
2d (Γ).

On the other hand, we know that the face Σn,2d(Γ) is contained in the
following set:

Σn,2d(Γ) ⊂ (Id(Γ))2 =

{∑
i

αifigi : fi, gi ∈ Id(Γ), αi ∈ R

}

=

{∑
i

αiq
2
i : qi ∈ Id(Γ), αi ∈ R

}
.

It is easy to see that this inclusion is actually full dimensional, since we can
pick a basis of (Id(Γ))2 consisting of squares and nonnegative linear combina-
tions of these squares will lie in Σn,2d(Γ).

Proposition 4.0.1. Let Γ ⊂ RPn−1 be a �nite set. Then Σn,2d(Γ) is a full di-
mensional convex cone in the vector space of all forms of degree 2d in (Id(Γ))2:

dim Σn,2d(Γ) = dim(Id(Γ))2.
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4.1 Dimensions of Faces of Pn,2d

In this section, as for sums of squares, we pose the question under which
assumptions Pn,2d(Γ) is a full dimensional subcone of I(2)

2d (Γ). In order to
answer this question, the following crucial de�nition is required.

De�nition 4.1.1. Let Γ ⊂ RPn−1 be a �nite set of points and I = I(Γ) ⊂ R[x]
be the vanishing ideal of Γ. We call Γ ⊂ RPn−1 d-independent if Γ satis�es
the following two conditions:

1. The forms in Id share no common zeros in CPn−1 outside of Γ. In other
words, the conditions of vanishing on Γ force no additional zeros on forms
of degree d in Hn,d,

2. For any s ∈ Γ the forms that vanish to order two on s and vanish at the
rest of Γ to order one form a vector space of codimension |Γ|+ n− 1 in
Hn,d.

The second condition in the above de�nition simply states that the con-
straints of vanishing on Γ and additionally double vanishing at any point s ∈ Γ
are all linearly independent. We provide the following equivalent characteri-
zation of d-independence based on Hilbert functions.

Proposition 4.1.2. Let Γ ⊂ RPn−1 be a �nite set of points and let J ⊂ R[x]
be the ideal generated by Id(Γ). Then Γ is d-independent if and only if the
Hilbert polynomial of R[x]/J is equal to |Γ|.

Proof. Let J be the ideal generated by Id(Γ). Let IC,d(Γ) be the set of all degree
d complex forms vanishing on Γ. We �rst observe that linear combinations of
forms in Id(Γ) taken with complex coe�cients generate IC,d(Γ). Therefore, if
we let JC be the complex ideal generated IC,d(Γ), then it su�ces to show that
the Hilbert polynomial of C[x]/JC is |Γ|.

We now apply Bertini's theorem (see, e.g., [Har92a, Theorem 17.16]) to the
linear system of divisors IC,d(Γ). Since Γ is d-independent, it follows that a
general element of IC,d(Γ) is non-singular at every point of Γ and thus we may
�nd a smooth hypersurface f1 ∈ IC,d(Γ). Now, d-independence guarantees
that a general form in IC,d(Γ) intersects f1 smoothly and therefore we apply
Bertini's theorem again to �nd f2 ∈ IC,d(Γ) such that f1 ∩ f2 is smooth. We
proceed in this way repeatedly applying Bertini's theorem until we end up with
a transverse zero-dimensional intersection V = f1∩· · ·∩fn−1. By construction,
we have Γ ⊆ V .

Since JC de�nes a zero-dimensional ideal and all forms in JC vanish on Γ, it
follows that the Hilbert polynomial of C[x]/JC is a constant and it is greater or
equal than |Γ|. Since we have 〈f1, . . . , fn−1〉 ⊂ JC and the ideal generated by
f1, . . . , fn−1 is radical, it follows that we just need to show that for all s ∈ V \Γ
there exists g ∈ JC such that g(s) 6= 0 and g(z) = 0 for all z ∈ V \{s}. Since Γ
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is d-independent, it su�ces to show that for all s ∈ V \Γ there exists h ∈ Id(Γ)
such that h(s) 6= 0. Also there exists h′ ∈ C[x1, . . . , xn] such that h′(s) = 1
and h′(z) = 0 for all z ∈ V \ {s}. Therefore hh′ ∈ JC and one direction of the
proposition follows.

Now suppose that Γ is not d-independent. First, if all forms in Id(Γ) vanish
at a point not in Γ, then all forms in J vanish on at least |Γ| + 1 points and
therefore the Hilbert function of R[x]/J is at least |Γ|+ 1 for all large enough
degrees. Therefore, the Hilbert polynomial of R[x]/J is not |Γ|. Now suppose
that for some s ∈ Γ and for some w ∈ Rn \ span{s} we have 〈∇p(s), w〉 = 0
for all p ∈ Id(Γ). Then again we �nd that the Hilbert function of R[x]/J is at
least |Γ|+ 1 for all high enough degrees. �

We remark that in the above proof h′ may be chosen such that deg h′ ≤
(n − 1)(d − 1). Therefore, we have deg hh′ ≤ (n − 1)(d − 1) + d and for all
degrees k ≥ (n− 1)(d− 1) + d the Hilbert function of C[x]/JC (and of R[x]/J)
evaluated at k must be equal to |Γ|. Thus, using standard methods (vanishing
determinants) we can express the set of all con�gurations of k points in RPn−1

that are d-independent as a complement of a closed algebraic set. Hence, the
set of con�gurations Γ of k points in RPn−1 that are d-independent is Zariski
open, which proves the following corollary:

Corollary 4.1.3. The set of d-independent con�gurations of k points in RPn−1

is a Zariski open subset of (RPn−1)k.

4.1.1 Sum of Squares Certi�cate.

In this subsection, we provide the proof of the following proposition, which
ensures full dimensionality of Pn,2d(Γ) in I(2)

2d (Γ).

Proposition 4.1.4. Let Γ ⊂ RPn−1 be a d-independent set. Then Pn,2d(Γ) is
a full dimensional convex cone in I(2)

2d (Γ):

dimPn,2d(Γ) = dim I
(2)
2d (Γ).

Let Γ be a �nite set of points in RPn−1 and consider I(2)
2d (Γ), the vector

space of forms of degree 2d vanishing on Γ with multiplicity at least two.
Every double zero forces n linear conditions on forms vanishing on Γ. Since
not all of these conditions are necessarily independent, the following inequality
always holds:

dim I
(2)
2d (Γ) ≥ dimHn,2d − n|Γ|. (4.1.1)

However, generically � with a small list of exceptions concerning n, d � the
Alexander-Hirschowitz Theorem [Mir99] tells us that equality holds in (4.1.1).

We establish full dimensionality of Pn,2d(Γ) in I
(2)
2d (Γ) by �nding a form

p ∈ Pn,2d(Γ) to which we can add a suitably small multiple of any double
vanishing form such that it will remain nonnegative:

p+ εqq ∈ Pn,2d(Γ) for any q ∈ I(2)
2d (Γ) and for some su�ciently small εq.
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The form p can be viewed as a certi�cate of full dimensionality of Pn,2d(Γ)

in I(2)
2d (Γ). The important point is that p can be any form, in particular, we

will focus on �nding such p that is a sum of squares. This approach follows
that of [Rez07] and, indeed, it can be traced to the original proof of Hilbert in
[Hil88].

For a form p, let the Hessian Hp of p be the matrix of second derivatives of
p:

Hp = (hij), where hij =
∂2p

∂xi∂xj
.

We note that if a form p vanishes at a point s ∈ Rn, then, by homogeneity,
p needs to vanish at a line through s. Therefore, s lies in the kernel of the
Hessian of p at s: Hp(s)s = 0.

If a form p is nonnegative, then its Hessian at any zero s is positive semidef-
inite, since zero is a minimum for p. We call a nonnegative form p round at a
zero s ∈ RPn−1 if the Hessian of p at s is positive de�nite on the subspace s⊥

of vectors perpendicular to s, i. e.,

p is round at a zero s ⇔ yTHp(s)y > 0 for all y ∈ s⊥ \ {0} .

For a form p, we let V (p) denote the real projective variety of p. We need the
following �extension lemma�, which follows from [Rez07, Lemma 3.1].

Lemma 4.1.5. Let p ∈ Pn,2d be a nonnegative form with a �nite zero set V (p)
and suppose that p is round at every point in V (p). Furthermore, let q be a
form such that q vanishes to order two on V (p). Then, for a su�ciently small
ε, the form p+ εq is nonnegative.

From this, we infer the following immediate corollary, which will be crucial
for the proof of Proposition 4.1.4.

Corollary 4.1.6. Let Γ be a �nite set in RPn−1. Suppose that there exists a
nonnegative form p in Pn,2d(Γ) such that V (p) = Γ and p is round at every
point s ∈ Γ. Then the face Pn,2d(Γ) is full dimensional in the vector space
I

(2)
2d (Γ).

Proof. Let p ∈ Pn,2d(Γ) be as in the assumptions. Then, by Lemma 4.1.5, for
any q ∈ I(2)

2d (Γ) we have p+εq ∈ Pn,2d(Γ) for su�ciently small ε. Since Pn,2d(Γ)

is a convex set, it follows that it is full dimensional in I(2)
2d (Γ). �

We can �nally provide the proof of Proposition 4.1.4.

Proof of Proposition 4.1.4. Let q1, . . . , qk be a basis of Id(Γ). We claim that
p =

∑k
i=1 q

2
i has the properties of Corollary 4.1.6 and therefore, the convex

cone Pn,2d(Γ) is full dimensional in I(2)
2d (Γ).

Since Γ forces no additional zeros and since q1, . . . , qk is a basis of Id(Γ), it
follows that the forms qi have no common zeros outside of Γ and thus V (p) = Γ.



48 CHAPTER 4. DIMENSIONAL DIFFERENCES

Now, choose s ∈ Γ. It remains to show that p is round at s, i. e., Hp(s) is
positive de�nite on s⊥. Since the forms in Id(Γ) that double vanish at s form
a vector space of codimension n − 1 in Id(Γ), we see that for 1 ≤ i ≤ k the
gradients of qi at s must span a vector space of dimension n − 1. Since, by
Euler's identity (see, e. g., [Has07, Lemma 11.4]), 〈∇qi, s〉 = 0 for all i, this
implies that the gradients actually span s⊥.

Note that the Hessian of p is the sum of the Hessians of q2
i , i. e.,

Hp =
k∑
i=1

Hq2i
.

Since qi(s) = 0 for all i and s ∈ Γ, we conclude that

∂2q2
i

∂xl∂xj
(s) = 2

∂qi
∂xl

(s)
∂qi
∂xj

(s).

Therefore, we see that the Hessian of q2
i at any s ∈ Γ is actually double the

tensor of the gradient of qi at s with itself:

Hq2i
(s) = 2∇qi ⊗∇qi(s).

It is now straightforward to verify that

∇qi(s)THq2i
(s)∇qi(s) > 0

for all 1 ≤ i ≤ k and s ∈ Γ, which shows the claim. �

From now on, we will focus on the study of the degree 2d part of the second
symbolic power I(2)

2d (Γ) since, by Proposition 4.1.4, we have the equality

dimPn,2d(Γ) = dim I
(2)
2d (Γ),

whenever Γ is a �nite d-independent set. However, note that, though Corollary
4.1.3 ensures that d-independence is a Zariski open condition, we still have to
construct an explicit example of a d-independent set to make the previous
results more powerful. We close this gap in the following subsection.

4.1.2 A d-independent Set of Size
(
n+d−1

d

)
− n

The aim of this section is to prove the following result.

Proposition 4.1.7. Let Γ be a generic collection of points in RPn−1 such that
|Γ| ≤

(
n+d−1

d

)
− n. Then Γ is d-independent.

For this goal, we will construct an example of a d-independent set of cardi-
nality

(
n+d−1

d

)
− n. Since, by Corollary 4.1.3, being d-independent is a Zariski

open condition, this will already show the claim. In our upcoming article
[BIKV14] we prove that

(
n+d−1

d

)
− n is an upper bound for the cardinality of
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a d-independent set. Hence, the bound from Proposition 4.1.7 is optimal.

De�ne S̄n,d to be the set of points in RPn−1 that correspond to nonnegative
integer partitions of d:

S̄n,d =

{
[α1 : . . . : αn] ∈ RPn−1 : αi ∈ Z, αi ≥ 0,

n∑
i=1

αi = d

}
.

We can think of the points in S̄n,d as all the possible exponent choices for
monomials in n variables of degree d. Therefore, S̄n,d contains

(
n+d−1

d

)
points.

Now let Sn,d be the set of points in RPn−1 that correspond to partitions
of d with at least two nonzero parts. The points in Sn,d again correspond to
monomials of degree d but we exclude the monomials of the form xdi . Therefore,
Sn,d contains

(
n+d−1

d

)
− n points.

Proposition 4.1.8. The set Sn,d is d-independent.

The proof of the above proposition requires some additional results. The
following proposition is taken from [Rez92, p. 31] and has been known for at
least a hundred years. We reproduce the proof below.

Proposition 4.1.9. There are no nontrivial forms in Hn,d that vanish on S̄n,d.
In other words, Id(S̄n,d) = 0.

Proof. For every point s = [s1 : . . . : sn] ∈ S̄n,d we will construct a form
ps ∈ Hn,d that vanishes at all points in S̄n,d except for s. This shows that the
conditions of vanishing at any point in S̄n,d are linearly independent and since
|S̄n,d| = dimHn,d, we see that dim Id(S̄n,d) = 0.

Let M = x1 + . . . + xn. For i = 1, . . . , n, let hi be the form de�ned as
follows:

hi =

si−1∏
k=0

(dxi − kM).

It is clear that the degree of hi is si and hi vanishes at all partitions in S̄n,d
with i-th part less than si. Now, let ps be de�ned as

ps =
n∏
i=1

hi.

The form ps has degree
∑n

i=1 si = d, and it does not vanish at s. However, for
any other partition of d, there exists i such that the i-th part is less than si.
Then hi will vanish for that i and, thus, ps will vanish at any partition of d
except for s. �

As in the proof of Proposition 4.1.9, let M = x1 + . . .+xn. For i = 1, . . . , n
de�ne a form Qi as follows:

Qi =
d−1∏
k=0

(dxi − kM). (4.1.2)
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We observe that each Qi vanishes on Sn,d. Indeed, let s = [s1 : . . . : sn] ∈ Sn,d
and consider Qi(s). We know that M(s) = d, because points in Sn,d are
partitions of d, and, therefore, the factor of Qi that corresponds to k = si will
vanish at s, forcing Qi(s) = 0. Hence, Qi ∈ Id(Sn,d) for all i = 1, . . . , n.

We will now show that the forms Qi actually form a basis of Id(Sn,d). The
fact that we have such a nicely factoring basis is what, eventually, allows us
to prove that Sn,d is d-independent.

Proposition 4.1.10. The forms Qi form a basis of Id(Sn,d).

Proof. We �rst show that the forms Qi are linearly independent. Let e1, . . . , en
be the standard basis vectors of RPn−1. It is easy to see that Qi(ej) = 0 for
i 6= j, since xi divides Qi. On the other hand, Qi(ei) = d!. Therefore, if there
exists αi ∈ R such that α1Q1 + . . .+αnQn = 0, then, by evaluating this linear
combination at ei, we see that αi = 0 and this works for all i. Thus, the forms
Qi are linearly independent.

We now show that the forms Qi span Id(Sn,d). Let p ∈ Id(Sn,d) and let
βi = p(ei). Consider the form

p̄ = p−
n∑
i=1

βi
d!
Qi.

It is clear that p̄ vanishes at the standard basis vectors ei. Therefore, p̄ vanishes
not only on Sn,d but also on S̄n,d. By Proposition 4.1.9, it follows that p̄ = 0
and, therefore, p is in the span of Qi.

�

We now show that the set Sn,d satis�es the two conditions of d-independence
from De�nition 4.1.1.

Lemma 4.1.11. The set Sn,d forces no additional zeros for forms of degree d.

Proof. Since, by Proposition 4.1.10, the forms Qi form a basis of Id(Sn,d), the
statement of the lemma is equivalent to showing that Sn,d is projectively equal
to ∩ni=1V (Qi).

Let v = [v1 : . . . : vn] ∈ ∩ni=1V (Qi) be a nonzero point and �rst suppose
that v1 + . . .+ vn = 0, i. e., M(v) = 0. Therefore, by Equation (4.1.2), we see
that Qi(v) = ddvdi . Since, by assumption, Qi(v) = 0 for all i, it follows that
v = 0, which is a contradiction.

Now suppose that v1 + . . . + vn 6= 0. By homogeneity, we can assume
that v1 + . . . + vn = d. In this case, from Equation (4.1.2), it follows that
Qi(v) = ddvi(vi − 1) · · · (vi − d + 1). Since Qi(v) = 0 for all i, we infer that
each vi is a nonnegative integer between 0 and d− 1 and v1 + . . .+ vn = d. In
other words, v ∈ Sn,d. �

We know that |Sn,d| =
(
n+d−1

d

)
− n. For the second condition of the d-

independence property we need to show that for any s ∈ Sn,d the vector space
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of forms double vanishing at s and vanishing at the rest of Sn,d with multiplicity
one has codimension |Sn,d| + n − 1 =

(
n+d−1

d

)
− 1 in Hn,d. Since dimHn,d =(

n+d−1
d

)
, we thus need to show that the vector space of forms double vanishing

at any s ∈ Sn,d and vanishing at the rest of Sn,d with multiplicity one is
1-dimensional. This will follow from the next lemma.

Lemma 4.1.12. For every point s ∈ Sn,d there is a unique (up to a constant
multiple) form in Id(Sn,d) being singular at s.

Proof. Let s = [s1 : . . . : sn] ∈ Sn,d and let p ∈ Id(Sn,d) be a form singular at
s.

Since, by Proposition 4.1.10, the forms Qi form a basis of Id(Sn,d), we may
assume that p = α1Q1 + . . .+ αnQn for certain αi ∈ R. Now, let A = (aij) be
the (n× n)-matrix with entries

aij =
∂Qi

∂xj
(s).

The statement of the lemma is equivalent to showing that rank A = n− 1.
Recall from Equation (4.1.2) the de�nition of Qi:

Qi =
d−1∏
k=0

(dxi − kM).

The form Qi vanishes at s, because the term dxi − siM corresponding to

k = si vanishes at s. Therefore, the only nonzero term in
∂Qi

∂xj
evaluated at s

will come from di�erentiating out dxi − siM . Now, for 1 ≤ i ≤ n let

Psi =
Qi

dxi − siM
.

We observe that Psi(s) 6= 0, since we removed from Qi the only factor that
vanishes at s.

Recall thatM = x1+. . .+xn and, therefore, if we di�erentiate out dxi−siM
from Qi with respect to xj and evaluate it at s, we see that

∂Qi

∂xj
(s) =

{
Psi(s) (d− sj) if i = j
−Psi(s)sj if i 6= j.

Since Psi(s) 6= 0, we can divide the i-th row of A by Psi(s) to obtain a
matrix B = (bij), where

bij =

{
d− sj if i = j
−sj if i 6= j.

By construction, rank B = rank A. Since s is a partition of d, it is clear
that the all ones vector 1 is in the kernel of B. Now, let C = (cij) be the
matrix with j-th column having the same entry sj, i. e., cij = sj. We observe
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that the rank of C is one and B = dI − C, where I is the identity matrix.
Therefore, we know that rankB ≥ rankI − rankC = n− 1. Since we already
found a vector in the kernel of B, it follows that the rank of B is n− 1. �

We have now shown that the set Sn,d is d-independent and together with
Corollary 4.1.3 this shows that d-independence is a generic condition for sets of
k points in RPn−1 with k ≤

(
n+d−1

d

)
−n. In particular, this proves Proposition

4.1.7.
In view of Propositions 4.0.1, 4.1.4, and 4.1.7, our original question of �nding

a dimensional di�erence between the faces Pn,2d(Γ) and Σn,2d(Γ) can be reduced
to the following:

Question 4.1.13. Let Γ ⊂ RPn−1 (or equivalently CPn−1) be a generic set of
points such that |Γ| ≤

(
n+d−1

d

)
− n, and let I(Γ) be the vanishing ideal of Γ.

For what values of |Γ| does equality

dim I
(2)
2d (Γ) = dim(Id(Γ))2

hold?

4.2 Dimensional Di�erences for Ternary Forms

In this section, we study the case of ternary forms and provide a complete
characterization for the occurence of dimensional di�erences between exposed
faces of the cones P3,2d and Σ3,2d. Again, we �rst state our main results of this
section.

Theorem 4.2.1. Let d ≥ 3 and Γ be a d-independent set of points in RP2

such that |Γ| ≤
(
d+1

2

)
. Then

dim I
(2)
2d (Γ) = dim(Id(Γ))2.

Moreover, if
(
d+1

2

)
+ 1 ≤ |Γ| ≤

(
d+1

2

)
+ (d− 2), then dim I

(2)
2d (Γ) > dim(Id(Γ))2.

Based on our previous results, the next corollary is an immediate conse-
quence of Theorem 4.2.1.

Corollary 4.2.2. Let d ≥ 3 and Γ ⊂ RP2 be d-independent with |Γ| ≤
(
d+1

2

)
.

Then
dimP3,2d(Γ) = dim Σ3,2d(Γ).

Furthermore, for
(
d+1

2

)
+ 1 ≤ |Γ| ≤

(
d+1

2

)
+ (d− 2) we have

dimP3,2d(Γ) > dim Σ3,2d(Γ).
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We remark that we often prove the stronger result that I(2)
2d (Γ) = (Id(Γ))2,

which implies that, in degree 2d, the symbolic square of I is equal to the
ordinary square of I, since we have

(Id(Γ))2 ⊂ (I2(Γ))2d ⊂ I
(2)
2d (Γ).

In order to prove the main results, we need some preparatory lemmas using
techniques from commutative algebra and always assuming d ≥ 3.

Lemma 4.2.3. Let Γ ⊂ RPn−1 be a �nite set and I = I(Γ) ⊂ R[x] be the
vanishing ideal. Let Im be the saturation of the ordinary m-th power of I.
Then

Im = I(m).

Proof. Consider the primary decomposition I =
⋂
s∈Γ I(s), where I(s) = {f ∈

R[x] : f(s) = 0}. Then, by de�nition of symbolic powers, we have I(m) =⋂
s∈Γ I(s)m. Moreover, the primary decomposition of Im contains I(s)m for all

s ∈ Γ and an additional component Q associated to the maximal homogeneous
ideal m = (x1, . . . , xn). By de�nition, Im =

⋃
j≥0 I

m : mj. From the previous
discussion we obtain

Im : mj =

(⋂
s∈Γ

I(s)m ∩Q

)
: mj

=

(⋂
s∈Γ

I(s)m : mj

)
∩Q : mj

= (I(m) : mj) ∩ (Q : mj).

Since Q is m-primary, for su�ciently large j, it follows that Q : mj = R[x].
Moreover, I(m) : mj = I(m), thus, Im : mj = I(m) for su�ciently large j. �

Note that, as a consequence of the above lemma, we clearly have that
(I2)2d = (I(2))2d.

Given an ideal I ⊂ R[x], let α(I) be the minimum degree of a generator of
I. We make the following simple observation.

Lemma 4.2.4. Let I ⊂ R[x] be a homogeneous ideal and let m = α(I). Then
(I2)2m = (Im)2.

Proof. Since Im ⊂ I, we always have the inclusion (Im)2 ⊂ (I2)2m. On the
other hand, if f ∈ (I2)2m, then we can write f =

∑
a∈J ga · ha for certain

polynomials ga, ha ∈ I and J ⊂ N being �nite. Moreover, since 2m = deg(f) =
deg(ga) + deg(ha) and α(I) = m, we conclude deg(fa) = deg(ga) = m for all
a ∈ J . Hence, ga, ha ∈ Im for all a ∈ J . �

Recall that for an ideal I ⊂ R[x] the saturation degree of I is de�ned as

satdeg(I) = min{t : I t = It}

(see, e. g., [Eis95]). Moreover, we use reg(I) to denote the (Castelnuovo-
Mumford) regularity of I.
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Lemma 4.2.5. Let Γ ⊂ RPn−1 be a �nite set and let I = I(Γ) ⊂ R[x] be the
vanishing ideal. If α(I) = reg(I), then satdeg(I2) ≤ α(I2) = 2α(I).

Proof. As we have seen in the proof of Lemma 4.2.3, it holds that I2 = I(2)∩Q,
where Q is m-primary. More precisely, one has Q = m2α(I). So, for j ∈ N,
one has (I2)j = (I(2) ∩ m2α(I))j. For j ≥ 2α(I) the ideal m2α(I) contains all
monomials of degree j. Therefore, (I2)j = I

(2)
j in this case and, by Lemma

4.2.3, it follows that (I2)j = (I2)j, i. e., satdeg(I2) ≤ 2α(I). The equality
α(I2) = 2α(I) is true in general. �

We need the following de�nition of a set Γ ⊂ Rn being in general linear
position, which naturally extends to RPn−1.

De�nition 4.2.6. Let Γ ⊂ Rn be a �nite set. Γ is in general linear position
if one of the following conditions holds

(i) |Γ| ≤ n and dim Aff(Γ) = |Γ| − 1

(ii) |Γ| ≥ n+ 1 and no n of the points in Γ lie on a common hyperplane.

Note that any set Γ with |Γ| ≤ n that is in general linear position can be
extended to a set in general linear position of greater cardinality.

Lemma 4.2.7. Let Γ ⊂ RP2 be in general linear position with |Γ| =
(
d+1

2

)
.

Then reg(I(Γ)) = d.

Proof. Due to the minimal resolution conjecture for RP2 (see, e. g., [BG86,
Wal95]), for Γ ⊂ RP2 it holds that reg(I(Γ)) ∈ {d, d+ 1}. For |Γ| =

(
d+1

2

)
it is

shown in [Lor90, Section 3] that, indeed, reg(I(Γ)) = d. �

We can now prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Let Γ ⊂ RP2 be such that |Γ| =
(
d+1

2

)
− k for 0 ≤

k ≤
(
d+1

2

)
− 1. We �rst prove that dim(Id(Γ))2 = dim I

(2)
2d (Γ). We show

the claim by induction on k. First assume k = 0, i. e., |Γ| =
(
d+1

2

)
. By

Lemma 4.2.7, we have α(I(Γ)) = reg(I(Γ)) = d and, from Lemma 4.2.4, we
infer that (I2(Γ))2d = (Id(Γ))2. Hence, by Lemma 4.2.3 and 4.2.5, we obtain
I

(2)
2d (Γ) = (Id(Γ))2.
Now suppose that the claim holds for �xed k and we have dim(Id(Γ))2 =

dim I
(2)
2d (Γ) =

(
d+2

2

)
+3k for any d-independent set Γ ⊂ RP2 with |Γ| =

(
d+1

2

)
−

k. For the induction step k 7→ k + 1, let Γ ⊂ RP2 be d-independent with
|Γ| =

(
d+1

2

)
− (k + 1). Let s ∈ RP2 be such that the set T = Γ ∪ {s} is

d-independent and in general linear position. Note that |T | =
(
d+1

2

)
− k. Since

Γ and T are d-independent, we have

dim Id(T ) = d+ 1 + k and dim Id(Γ) = d+ 2 + k.
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Furthermore, we know that dim I
(2)
2d (T ) =

(
d+2

2

)
+ 3k by hypothesis. Now,

let Q1 ∈ Id(T ) with the additional property that one of its partial derivatives
vanishes at s. Without loss of generality, assume ∂Q1

∂x1
(s) = 0. We can extend

Q1 to a basis B = {Q1, Q2, . . . , Qd+1+k} of Id(T ). Note that there must be
at least one basis element Qj, j 6= 1, such that ∂Qj

∂x1
(s) 6= 0. Otherwise, we

arrive at a contradiction in regard to d-independence of T . By assumption,
there exist

(
d+2

2

)
+ 3k pairwise products of elements of B forming a basis of

(Id(T ))2. Let B̃ denote this basis of (Id(T ))2. Furthermore, extend B to a
basis of Id(Γ) by adding a suitable form Q ∈ H3,d. Observe that Q(s) 6= 0,
since Γ is d-independent. We claim that there exist two forms Ql, Qm ∈ B
such that the set

L = B̃ ∪ {QlQ,QmQ,Q
2}

forms a basis of (Id(Γ))2. Suppose that this set L is linearly dependent for any
choice of Ql, Qm ∈ B. Hence, we have∑

QiQj∈B̃

αijQiQj + α
(l)
l,mQlQ+ α

(m)
l,mQmQ+ αQ2 = 0

for a nontrivial set of coe�cients (αij, α
(l)
l,m, α

(m)
l,m , α). To simplify notation we

use Pl,m to denote the above linear combination. Clearly, we have Pl,m(s) =
αQ2(s). Since Q(s) 6= 0, it follows that α = 0. We remark that the forms in
B̃ vanish to order two at s, whereas the forms QlQ and QmQ vanish to order
one at s. Therefore, by taking partial derivatives, we get

0 =
∂Pl,m
∂xi

(s) = α
(l)
l,m

∂QlQ

∂xi
(s) + α

(m)
l,m

∂QmQ

∂xi
(s)

for 1 ≤ i ≤ 3. Assume that there exists i such that ∂QlQ
∂xi

(s) = 0 and ∂QmQ
∂xi

(s) 6=
0. This implies α(m)

l,m = 0. On the other hand, since QlQ only vanishes to order

one at s, there exists j 6= i such that ∂QlQ
∂xj

(s) 6= 0. This forces α(l)
l,m = 0. Since,

we assumed that L is linearly dependent for all pairs (Ql, Qm) ∈ B, the just
conducted reasoning shows that the following relation holds:

∂QlQ

∂xi
(s) = 0⇔ ∂QmQ

∂xi
(s) = 0 for all i, l,m

and, hence,
∂Ql

∂xi
(s) = 0⇔ ∂Qm

∂xi
(s) = 0 for all i, l,m. (4.2.1)

Recall that the basis B was constructed in the way that ∂Q1

∂x1
(s) = 0. Further-

more, as already remarked, due to d-independence of T , there must exist j 6= 1
such that ∂Qj

∂x1
(s) 6= 0. Setting l = 1, m = j and i = 1, this yields a contradic-

tion to (4.2.1). Hence, there must exist two forms Ql, Qm ∈ B such that L is
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a linearly independent set. We have |L| =
(
d+2

2

)
+ 3(k + 1) = dim I

(2)
2d (Γ).

It remains to consider the case
(
d+1

2

)
+ 1 ≤ |Γ| ≤

(
d+1

2

)
+ (d − 2). It is

routine to check that in this case

dim I
(2)
2d (Γ)− dim(Id(Γ))2 =

((
d+ 2

2

)
− 3|Γ|

)
−

(((d+2
2

)
− |Γ|+ 1

2

))
> 0.

�

In particular, for d-independent sets Γ with |Γ| ≤
(
d+1

2

)
the theorem also

implies that dim(I2(Γ))2d = dim I
(2)
2d (Γ).

From Theorem 4.2.1 we can immediately infer Corollary 4.2.2. Observe
that the maximal size of a d-independent set Γ ⊂ RP2 is equal to

(
d+2

2

)
− 3 =(

d+1
2

)
+(d−2). Hence, Theorem 4.2.1 covers all d-independent sets concerning

the occurence of dimensional di�erences.

4.3 The Case (n, 2d) = (4, 4)

We now fully describe the situation with respect to Pn,2d(Γ) and Σn,2d(Γ) in
the case (n, 2d) = (4, 4) for sets Γ in R4 with |Γ| ≤ 6. In the following, we will
work with a�ne representatives in R4 rather than projective points in RP3. Let
Γ = {s1, . . . , s6} be a set of six points in R4 in general linear position so that
any four of them span R4. We will show that Γ is 2-independent. In particular,
this implies that the conditions of vanishing at si ∈ Γ are linearly independent
and therefore dim I2(Γ) =

(
5
2

)
− 6 = 4. It follows that the dimension of the

vector space (I2(Γ))2 spanned by squares from I2(Γ) is at most
(

5
2

)
= 10. We

will show that it is equal to 10.
On the other hand, the Alexander-Hirschowitz Theorem tells us that, gener-

ically, the dimension of I(2)
4 (Γ) is

(
7
4

)
− 6 · 4 = 11. It is not hard to show that

for six points in R4 in general linear position this dimension count is actually
correct. Therefore, we should have a gap of one dimension between P4,4(Γ)
and Σ4,4(Γ).

We now state the main result of this section.

Theorem 4.3.1. Let Γ ⊂ RP3 be a �nite set in general linear position. Then
the following hold.

(i) If |Γ| = 6, then

dim(I2(Γ))2 = 10 < 11 = dim I
(2)
4 (Γ).

(ii) If |Γ| ≤ 5, then
dim(I2(Γ))2 = dim I

(2)
4 (Γ).
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Again, as a direct consequence, we obtain the following corollary.

Corollary 4.3.2. Let Γ ⊂ RP3 be a �nite set in general linear position. Then
the following hold:

(i) If |Γ| = 6, then

dim Σ4,4(Γ) = 10 < 11 = dimP4,4(Γ).

(ii) If |Γ| ≤ 5, then
dim Σ4,4(Γ) = dimP4,4(Γ).

The proof of the above theorem will require several preparatory results. We
start with a special construction for (i). Let Γ = {s1, . . . , s6}. To every three
element subset T = {t1, t2, t3} of {1, . . . , 6} we can associate the hyperplane LT
spanned by the vectors st1 , st2 and st3 . We want to construct a double covering
of s1, . . . , s6 by four hyperplanes of the form LT with some nice combinatorial
properties. We select four triples Ti such that any two of them intersect in
exactly one element of {1, . . . , 6} and each element is contained in precisely
two triples. Here is an example of such a covering, which is not unique:

T1 = {1, 2, 3}, T2 = {1, 4, 5}, T3 = {2, 4, 6}, T4 = {3, 5, 6}.

To every such covering we can associate the complementary covering, where
we replace the triple Ti with its complement T i. So, in the given example,
T 1 = {4, 5, 6}, T 2 = {2, 3, 6}, T 3 = {1, 3, 5} and T 4 = {1, 2, 4}. We observe
that the complementary covering also shares the property that any two triples
intersect in exactly one element and that every element is contained in exactly
two triples.

To each triple T we associate the linear functional with kernel LT . We can
think of this functional as the inner product with the unit normal vector to LT ,
which is unique up to a sign. The choice of sign will not make any di�erence
to us. We let ui and vi be a unit normal vector to LTi and LT i , respectively.

The vectors ui and vi form a pair of bases of R4. The key is to work with
the dual con�gurations. We de�ne u∗i to be vectors such that

〈u∗i , uj〉 =

{
1 if i = j
0 if i 6= j.

One way to think about u∗i is that if we form the matrix U with rows ui, then
u∗i form the columns of U−1. We de�ne vectors v∗i in the same way for vi.

We will show that the four forms

Q1(x) = 〈x, u1〉〈x, v1〉, Q2(x) = 〈x, u2〉〈x, v2〉,
Q3(x) = 〈x, u3〉〈x, v3〉, Q4(x) = 〈x, u4〉〈x, v4〉
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form a basis of I2(Γ). This factoring basis will allow us to prove 2-independence
of Γ, and pairwise products QiQj with 1 ≤ i ≤ j ≤ 4 will form a basis of
(I2(Γ))2.

The vectors ui and vi are not just two arbitrary sets of bases of R4. Since
they come from a con�guration of six points in general linear position, they
carry some structure. The following simple lemma will be crucial to our proofs.

Lemma 4.3.3. For all 1 ≤ i, j ≤ 4 the following hold:

〈ui, v∗j 〉 6= 0 and 〈vi, u∗j〉 6= 0.

Proof. By symmetry, it su�ces to prove only one of the two assertions. Again,
by symmetry, it will be enough to show that 〈u∗1, v1〉 6= 0 and 〈u∗1, v2〉 6= 0.

Suppose that 〈u∗1, v1〉 = 0. Then, it follows that v1 is in the span of u2, u3, u4.
Let

v1 = α2u2 + α3u3 + α4u4.

Now consider the inner product 〈v1, s4〉. Recall that v1 came from the triple
{4, 5, 6}, u2 from {1, 4, 5}, u3 from {2, 4, 6} and u4 from {3, 5, 6}. It follows
that

〈v1, s4〉 = 0 = α4〈s4, u4〉.

The points si being in general linear position implies that 〈s4, u4〉 6= 0 and,
therefore, α4 = 0. By considering inner products of v1 with s5 and s6, we can
also show that α2 = α3 = 0, which yields a contradiction.

Similarly, if 〈u∗1, v2〉 = 0, then v2 is in the span of u2, u3, u4. Let

v2 = α2u2 + α3u3 + α4u4.

Recall that v2 came from the triple {2, 3, 6}, u2 from {1, 4, 5}, u3 from {2, 4, 6}
and u4 from {3, 5, 6}. By an analogous argument as before, we can establish
that α2 = 0 by taking inner products with s6. Then, we use the inner product
with s2 to show that α4 = 0 and we will arrive at a contradiction. �

Lemma 4.3.4. The forms Qi, 1 ≤ i ≤ 4 form a basis of I2(Γ). Furthermore,
the pairwise products QiQj with 1 ≤ i ≤ j ≤ 4 form a basis of (I2(Γ))2 and
dim(I2(Γ))2 = 10.

Proof. It is not hard to show that I2(Γ) has dimension 4. To show this claim,
it su�ces to prove that the polynomials Qi are linearly independent. Consider
the values of Qi at the points u∗i .

From the de�nition of the dual points u∗i and Lemma 4.3.3, it follows that
Qi(u

∗
i ) = 〈u∗i , vi〉 6= 0 and Qi(u

∗
j) = 0 if i 6= j. Therefore, if P = α1Q1 +

α2Q2 + α3Q3 + α4Q4 = 0 for αi ∈ R, then, by considering P (u∗i ), we can see
that αi = 0 for each i and, therefore, the Qi are linearly independent.

Now consider pairwise products QiQj for 1 ≤ i ≤ j ≤ 4. These forms
clearly belong to (I2(Γ))2, and we need to show their linear independence. Of
all the pairwise products only Q2

i does not vanish at u
∗
i . Therefore, the squares
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Q2
i are linearly independent from all other pairwise products and it remains to

show linear independence of QiQj for 1 ≤ i < j ≤ 4.
By Lemma 4.3.3, only the products QiQj vanish at u∗i to order one. If both

indices are distinct from i, then the product vanishes to order two. Suppose
that these products are linearly dependent, i. e., there exists a linear combina-
tion such that ∑

1≤i<j≤4

αijQiQj = 0,

where not all αij are zero. Di�erentiating and subsequently evaluating this
equation at u∗1, we obtain∑

1<j≤4

α1j
∂Q1Qj

∂xk
(u∗1) = 0, 1 ≤ k ≤ 4,

which is equivalent to∑
1<j≤4

α1j
∂Qj

∂xk
(u∗1) = 0, 1 ≤ k ≤ 4.

This is a (4×3)-system of linear equations in the variables α12, α13, α14. Denote
the corresponding coe�cient matrix by A. Assume that this system has a non-
trivial solution, meaning that all (3×3)-minors of A must vanish. Considering
the cross product of the three vectors u2, u3, u4 ∈ R4 (see, e. g., [Mas83]), we
can see that the entries of the cross product are exactly equal to an alternat-
ing (3× 3)-minor of A. Hence, we conclude that the cross product is the zero
vector, implying that the three vectors u2, u3, u4 are linearly dependent, which
is a contradiction, since u1, u2, u3, u4 form a basis of R4. Hence, we conclude
that α12 = α13 = α14 = 0. Analogously, by following this procedure with u∗2, u

∗
3

and u∗4, we can infer that α23 = α24 = α34 = 0 and hence all pairwise products
are linearly independent. Since pairwise products QiQj span (I2(Γ))2 and are
linearly independent, it �nally follows that dim(I2(Γ))2 = 10. �

We are now ready to show 2-independence of Γ.

Proposition 4.3.5. Let Γ be a set of 6 points in R4 in general linear position.
Then Γ is 2-independent.

Proof. We �rst show that Γ forces no additional zeros on quadratic forms.
Recall that Qi = 〈x, ui〉〈x, vi〉 and the forms Qi form a basis of I2(Γ). It
su�ces to show that the forms Qi have no common zeros outside of Γ.

Let VC(Qi) denote the complex zero set of the forms Qi, 1 ≤ i ≤ 4 and
let z be a nonzero point in the intersection ∩4

i=1VC(Qi). First assume that
z ∈ ∩4

i=1VR(Qi). It follows that, for each i, we either have 〈z, ui〉 = 0 or
〈z, vi〉 = 0. Since ui and vi form a basis of R4, the vector z cannot be orthogonal
to all four ui or vi. If 〈z, ui〉 = 0 for three indices i, which we may assume,
without loss of generality, to be 1, 2 and 3, then it follows that z is a multiple
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of u∗4. But then 〈z, u4〉 6= 0 and, from Lemma 4.3.3, we know that 〈z, v4〉 6= 0.
Therefore, Q4(z) 6= 0, which is a contradiction.

It thus must happen that z is orthogonal to at most two of the vectors ui and
to two of the vectors vi. Again, without loss of generality, we may assume that
z is orthogonal to u1, u2, v3 and v4. Since u1 comes from the triple {1, 2, 3},
u2 comes from {1, 4, 5}, v3 comes from {1, 3, 5} and v4 comes from {1, 2, 4},
it follows that z lies in the intersection of the spans of {s1, s2, s3}, {s1, s4, s5},
{s1, s3, s5} and {s1, s2, s4}. Since the points si are in general linear position,
we infer that s1 spans this intersection. The other points si arise in the same
manner from choosing di�erent pairs of ui's and vi's. If z is complex, then the
same arguments as before applied to the real and imaginary part of z imply
the claim.

For the second condition of 2-independence, we need to show that for any
si ∈ S there exists a unique (up to a constant multiple) form in I2(Γ) that
is singular at si. Again, by symmetry, we only need to prove this for s1.
By construction, s1 is orthogonal to u1, u2, v3 and v4. Therefore, it follows
that ∇Q1(s1) = 〈v1, s1〉u1, ∇Q2(s1) = 〈v2, s1〉u2, ∇Q3(s) = 〈u3, s1〉v3 and
∇Q4(s) = 〈u4, s1〉v4. The coe�cients of the vectors u1, u2, v3 and v4 are
nonzero, and since the points si are in general linear position, it follows that
u1,u2, v3 and v4 span the vector space s⊥1 . Therefore, there is only one (up
to a constant multiple) linear combination of gradients of Qi that vanishes at
s1. �

Note that from the above proofs, it follows that dim Σ4,4(Γ) = 10. On
the other hand, the Alexander-Hirschowitz Theorem implies dimP4,4(Γ) = 11.
We have thus shown part (i) of Theorem 4.3.1. In the remaining part of this
section, we will provide the proof of Theorem 4.3.1 (ii).

Proposition 4.3.6. Let Γ ⊂ R4 be in general linear position with |Γ| ≤ 6.
Then Γ is 2-independent.

Proof. For |Γ| = 6, the statement is already proven in Proposition 4.3.5. Let
now |Γ| ≤ 5. It is easy to see that the �rst condition of 2-independence is still
satis�ed whenever points are in general linear position. Indeed, we already
know that the forms Q1, . . . , Q4 do not have any zeros outside of {s1, . . . , s6}.
We de�ne Q5(x) = 〈x, u1〉〈x, u2〉, which extends Q1, . . . , Q4 to a basis of I2(Γ).
Since the points are in general linear position, we have Q5(s6) 6= 0. Hence, we
see that the �rst condition of 2-independence is satis�ed for |Γ| = 5. If Γ is of
smaller cardinality, we can always extend Γ to a set Γ̃ of cardinality �ve that is
in general linear position. In the next step, one can extend a basis Q1, . . . , Q5

for I2(Γ̃) to a basis of I2(Γ). Using that those new polynomials do not vanish
at all of Γ̃ and using that Γ̃ satis�es the �rst condition of 2-independence, one
can infer that also Γ satis�es this condition.
It remains to verify the second condition of 2-independence, i. e., we need to
show that the vector space of quadratic forms vanishing on Γ and that are
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singular at exactly one point of Γ is of dimension 7 − |Γ|. We proceed by
induction on |Γ|. For |Γ| = 6, the claim follows from Proposition 4.3.5. For
|Γ| < 6, we extend Γ to a set Γ̃ with |Γ̃| = 6 in general linear position. By
induction, we know that the vector space of quadratic forms vanishing on Γ̃
and that are singular at one point of Γ is of dimension one. This already
implies that the dimension of the vector space of quadratic forms vanishing
only on Γ and that are singular at exactly one point of Γ is of dimension at
most 1 + |Γ̃ \ Γ|. Hence, it su�ces to show that, when decreasing the number
of points in Γ, we gain one new linearly independent relation per point. We
demonstrate this explicitly only for |Γ| = 5, since all the other cases follow the
same line of arguments. Let P =

∑5
i=1 αiQi be singular at s1, where αi ∈ R.

Then ∇P (s1) =
∑4

i=1 αi∇Qi(s1). As in the proof of Proposition 4.3.5 (up to
multiples), there is only one possible solution of this equation. Moreover, Q5

is clearly double vanishing at s1 and linearly independent of the former linear
combination, which shows that the dimension of the vector space of quadratic
forms vanishing at s1, . . . , s5 and being singular at s1 is two. For s2, . . . , s5, the
situation is a bit di�erent, since ∇Q5(si) 6= 0 for 2 ≤ i ≤ 5. If P is singular at
s2, then

∇P (s2) = (α1〈s2, v1〉+α5〈s2, u2〉)u1 +α2〈s2, u2〉v2 +α3〈s2, v3〉u3 +α4〈s2, u4〉v4.

The same arguments as before show that α1〈s2, v1〉+ α5〈s2, u2〉, α2, α3, α4 are
uniquely determined (up to multiples). This gives one additional degree of
freedom for choosing α1 and α5. Hence, again, the required dimension is two.
For the other cases, one proceeds in an analogous way. �

We remark that for (n, 2d) = (4, 4) the above proposition is stronger than
the consequence of Proposition 4.1.7, since it explicitly classi�es which generic
point con�gurations in R4 are 2-independent.

Consider the following forms

Q5(x) = 〈x, u1〉〈x, u2〉, Q6(x) = 〈x, u1〉〈x, u3〉,
Q7(x) = 〈x, u2〉〈x, u4〉, Q8(x) = 〈x, u1〉〈x, u4〉.

Finally, we can provide the proof of Theorem 4.3.1 (ii).

Proof of Theorem 4.3.1 (ii). First, consider the case |Γ| = 5. Then, by 2-
independence of Γ, we have dim I2(Γ) = 5 and the forms Q1, . . . , Q5 form a
basis of I2(Γ) (to see this, evaluate at u∗1, . . . , u

∗
4 and s6). We claim that all(

5+1
2

)
= 15 pairwise products QiQj, 1 ≤ i, j ≤ 5 are linearly independent,

which is the right dimension count, since dim I
(2)
4 (Γ) = 35 − 20 = 15. Again,

by evaluating at the points u∗1, . . . , u
∗
4 and s6, we see that the pairwise products

Q2
i , 1 ≤ i ≤ 5 are linearly independent from the pairwise products QiQj with

1 ≤ i < j ≤ 5. Hence, it remains to prove linear independence of the latter
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ones. For this aim, we use similar techniques as before. Suppose that those
forms are linearly dependent, i. e., there exists a linear combination∑

1≤i<j≤5

αijQiQj = 0, (4.3.1)

where not all αij are zero. Consider the evaluation of (4.3.1) at the point u∗4.
The only forms that vanish to order one at u∗4 are Q1Q4, Q2Q4 and Q3Q4. The
remaining ones vanish to higher order. Hence, di�erentiating P and subse-
quently evaluating at u∗4 yields the following (4× 3)-system of linear equations
(note that Qi(u

∗
i ) 6= 0):

α14
∂Q1

∂xk
(u∗4) + α24

∂Q2

∂xk
(u∗4) + α34

∂Q3

∂xk
(u∗4) = 0, 1 ≤ k ≤ 4.

By the same arguments as in the proof of Lemma 4.3.4, we can conclude that
α14 = α24 = α34 = 0. Now evaluate (4.3.1) at u∗3. This time, the forms
Q1Q3, Q2Q3 are the only pairwise products vanishing to order one. This yields
a (4 × 2)-system of linear equations, from which we infer α13 = α23 = 0,
since, in this case, vanishing of all (2× 2)-minors implies linear dependence of
u1, u2 contradicting the fact that u1, . . . , u4 form a basis of R4. Analogously,
evaluating (4.3.1) at u∗1 yields α12 = α15 = 0 by exactly the same arguments as
before. So, we are left with the pairwise products Q2Q5, Q3Q5, Q4Q5. These
forms are clearly linearly independent, since the forms Qi, 2 ≤ i ≤ 4 are
linearly independent. Hence, the claim follows.

Now, assume |Γ| < 5. In this case, note that there is always an overcount in
the pairwise products. For example, in the case |Γ| = 4, there are

(
6+1

2

)
= 21

pairwise products. Since dim I
(2)
4 (Γ) = 35 − 16 = 19, we need to prove that,

out of these 21 pairwise products, there exist 19 pairwise products that are
linearly independent. Since the proof uses exactly the same strategy as in
the case |Γ| = 5 and does not contain new arguments, in the next table,
we only provide a basis for (I2(Γ))2 for |Γ| < 5. For |Γ| = m, the forms
Qi, 1 ≤ i ≤ 10−m form a basis of I2(Γ). We set L = {QiQj : i ≤ j} and use
B(Γ) ⊂ L to denote a basis of (I2(Γ))2.

|Γ| dim(I2(Γ))2 dim I
(2)
4 (Γ) B(Γ)

4 19 19 L \ {Q2Q6, Q3Q5}
3 23 23 L \ {Q1Q7, Q2Q6, Q3Q5, Q4Q5, Q5Q6}
2 27 27 L \M

where

M = {Q1Q7, Q2Q6, Q2Q8, Q3Q8, Q4Q6, Q5Q7, Q6Q7, Q6Q8, Q7Q8}.

Note that for |Γ| = 1 it always holds that dim(I2(Γ))2 = dim I
(2)
4 (Γ) and hence

the proof is �nished. �

From Theorem 4.3.1 we can immediately infer Corollary 4.3.2.
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4.4 Explicit Characterization of 1-dimensional

Di�erences

The aim of this section is to explicitly characterize a dimensional di�erence
between Pn,2d(Γ) and Σn,2d(Γ) for (n, 2d) = (4, 4) and (n, 2d) = (3, 6). By
Theorems 4.3.1 and 4.2.1, the �rst time those di�erences occur is exactly for
|Γ| = 6, respectively, |Γ| = 7, and it follows by dimension counting that the
dimensional di�erence in these cases is exactly one. Hence, constructing forms
in I(2)

2d (Γ) \ (Id(Γ))2 already yields a complete characterization of the occuring
dimensional di�erences in the two smallest cases, in which nonnegative forms
that are not sums of squares exist.

4.4.1 The case (n, 2d) = (4, 4)

In order to describe the dimensional di�erence, we need to construct a form R
of degree four such that R ∈ I(2)

4 (Γ) \ (I2(Γ))2.

Proposition 4.4.1. Let Γ ⊂ R4 be in general linear position with |Γ| = 6.
Set R = 〈x, u1〉〈x, u2〉〈x, u3〉〈x, u4〉. Then R ∈ I(2)

4 (Γ) \ (I2(Γ))2.

Proof. We know that products QiQj with 1 ≤ i ≤ j ≤ 4 form a basis of
(I2(Γ))2. We observe that R(u∗i ) = 0 for all i, and the only form from the
spanning set that does not vanish at u∗i is Q

2
i . Therefore, if we assume that R

is spanned by QiQj, then R needs to be spanned by products QiQj with i 6= j.
Now consider R(v∗k). By Lemma 4.3.3, we know that R(v∗k) 6= 0. How-

ever, QiQj(v
∗
k) = 0, since 〈v∗i , vk〉 = 0 for i 6= k. Therefore, we arrive at a

contradiction. �

Corollary 4.4.2. Let Γ ⊂ R4 be in general linear position with |Γ| = 6. There
exists p ∈ P4,4(Γ) \Σ4,4(Γ) with Γ ⊂ V (p). These forms can be constructed via
Q2

1 +Q2
2 +Q2

3 +Q2
4 + εR for su�ciently small ε > 0.

We now provide an explicit example for a form as described in the above
corollary.

Example 4.4.3. Let s1 = (0, 0, 1, 1), s2 = (0, 1, 0, 1), s3 = (0, 1, 1, 0), s4 =
(1, 0, 0, 1), s5 = (1, 0, 1, 0) and s6 = (1, 1, 0, 0) and Γ = {s1, . . . , s6}. The
following polynomials form a basis of I2(Γ):

Q1(x) = x1(x1 − x2 − x3 − x4), Q2(x) = x2(x2 − x1 − x3 − x4),

Q3(x) = x3(x3 − x1 − x2 − x4), Q4(x) = x4(x4 − x1 − x2 − x3).

The form R = 〈x, u1〉〈x, u2〉〈x, u3〉〈x, u4〉 from Proposition 4.4.1 becomes

R = 〈x, e1〉〈x, e2〉〈x, e3〉〈x, e4〉 = x1x2x3x4.

One can verify that Q2
1 +Q2

2 +Q2
3 +Q2

4 +R ∈ P4,4(Γ) \ Σ4,4(Γ).
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4.4.2 The case (n, 2d) = (3, 6)

We consider the case (n, 2d) = (3, 6) and Γ ⊂ R3 with |Γ| = 7. Compared
to the case (n, 2d) = (4, 4) from the previous section, the situation becomes
more involved. Let Γ = {s1, . . . , s7}. Let u1, u2, u3 be the normal vectors to
the hyperplanes passing through s1, s2, respectively, s3, s4, respectively, s5, s6.
Note that, generically, u1, u2, u3 form a basis of R3. Let u∗1, u

∗
2, u
∗
3 be the dual

basis to u1, u2, u3. Furthermore, we de�ne K1, K2, K3 to be the conics passing
through the points si with i ∈ {3, 4, 5, 6, 7}, respectively i ∈ {1, 2, 5, 6, 7},
respectively i ∈ {1, 2, 3, 4, 7}. Generically, we can assume that Ki(u

∗
j) 6= 0 for

1 ≤ i 6= j ≤ 3.

Lemma 4.4.4. Let Q1(x) = 〈x, u1〉K1, Q2(x) = 〈x, u2〉K2 and Q3(x) =
〈x, u3〉K3. Then {Q1(x), Q2(x), Q3(x)} is a basis of I3(Γ).

Proof. Assume that Q1(x), Q2(x) and Q3(x) are linearly dependent, i. e., there
exist (α1, α2, α3) ∈ R3 \ {(0, 0, 0)} such that

0 = α1Q1(x) + α2Q2(x) + α3Q3(x). (4.4.1)

Evaluating (4.4.1) at u∗i and using that 〈u∗i , uj〉 = 0, for i 6= j, and Ki(u
∗
j) 6= 0,

for all 1 ≤ i, j ≤ 3, we infer (α1, α2, α3) = (0, 0, 0). �

We now construct an explicit form R ∈ I(2)
6 (Γ) \ (I3(Γ))2.

Proposition 4.4.5. Let R = K〈x, u1〉〈x, u2〉〈x, u3〉, where K is the unique cu-
bic double vanishing at the point s7 and vanishing at s1, . . . , s6 with multiplicity
one such that K(u∗i ) 6= 0 for 1 ≤ i ≤ 3. Then R ∈ I(2)

6 (Γ) \ (I3(Γ))2.

Proof. By construction, it is clear that R ∈ I
(2)
6 (Γ). We have to prove that

R together with all pairwise products QiQj, 1 ≤ i ≤ j ≤ 3 form a linearly
independent set of polynomials. Suppose these forms were linearly dependent,
i. e., there exists a nontrivial linear combination αRR+

∑
1≤i≤j≤3 αijQiQj = 0.

By evaluating this relation at u∗i , we get that αii = 0 for 1 ≤ i ≤ 3. It remains
to prove linear independence of the forms QiQj and R with 1 ≤ i < j ≤ 3.
Suppose that these forms are linearly dependent. The forms Q1Q2 and Q1Q3

vanish to order one at u∗1, whereas the forms Q2Q3 and R vanish to order two.
Hence, by taking the partial derivatives and subsequently evaluating them at
u∗1, we get for k ∈ {2, 3} and 1 ≤ j ≤ 3

α1k
∂Q1Qk

∂xj
(u∗1) = α1k

(
∂Q1

∂xj
·Qk +Q1 ·

∂Qk

∂xj

)
(u∗1) = α1kQ1(u∗1) · ∂Qk

∂xj
(u∗1) = 0

and hereby the following (3× 2)-system of linear equations:

α12Q1(u∗1) · ∂Q2

∂xj
(u∗1) + α13Q1(u∗1) · ∂Q3

∂xj
(u∗1) = 0 , 1 ≤ j ≤ 3.
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Suppose that this system has a nontrivial solution. This is the case if and only
if the rank of the corresponding coe�cient matrix is one. Hence, all (2 × 2)-
minors must vanish. One can check (by taking the partial derivatives and
considering Ki(u

∗
j) 6= 0) that the rank is one if and only if the cross product

of the two vectors u2 and u3 is zero, implying that u2 and u3 are linearly
dependent. But this is a contradiction, since u1, u2 and u3 form a basis of R3.
Hence, the above system can only have the trivial solution α12 = α13 = 0,
and we are now left with the equation α23Q2Q3 + αRR = 0. However, since
the form Q2Q3 vanishes to order one at u∗2 and the form R with order two at
u∗2, we get α23 = 0 by taking the partial derivatives and hence αR = 0, which
�nishes the proof. �

Corollary 4.4.6. Let Γ ⊂ R3 be 3-independent and |Γ| = 7. Under the
assumptions of the previous lemma there exists p ∈ P3,6(Γ) \ Σ3,6(Γ) with Γ ⊂
V (p). These forms can be constructed via Q2

1 + Q2
2 + Q2

3 + εR for su�ciently
small ε > 0.

Example 4.4.7. Note that the condition Ki(u
∗
j) 6= 0 is essential. Let Γ =

{s1, . . . , s7} with

s1 = (1, 0, 0), s2 = (0, 1, 0), s3 = (0, 0, 1), s4 = (1, 1, 0), s5 = (1, 0, 1),

s6 = (0, 1, 1), s7 = (1, 1, 1).

It can be checked that this set of points is 3-independent. However, one can
verify that u∗3 =

(
1
2
, 1

2
, 0
)
and hence it represents the same projective point as

s4. In particular, we always have K1(u∗3) = 0 by construction. However, we
can perturb the point s4 to s̃4 = (1,−2, 2). The new set of points remains
3-independent, and we have Ki(u

∗
j) 6= 0 for 1 ≤ i ≤ j ≤ 3. The three basis

polynomials are then given by

Q1(x1, x2, x3) = (3x1x2 − x1x3 − 2x2x3)(−x3 + x2 + x1),

Q2(x1, x2, x3) = (x2 − x3)(x1 − x3)(2x1 + x2),

Q3(x1, x2, x3) = x3(8x2
1 + x2

2 − 8x1x3 − x2x3).

Furthermore, we have

R = −x3(2x1 + x2)2(x1 + x2 − x3)(x2 − x3)(−x3 + x1).

One can check that

Q2
1 +Q2

2 +Q2
3 +R ∈ P3,6(Γ) \ Σ3,6(Γ).

4.5 General (Naive) Bounds for Dimensional Dif-

ferences

We now want to derive some naive dimension counts for the dimensions of
Pn,2d(Γ) and Σn,2d(Γ), which help to understand when, theoretically, dimen-
sional gaps between these faces can occur. Moreover, these counts yield some
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a priori bounds on the minimal size of Γ such that dimensional gaps between
these faces can be observed. A �rst step in this direction is the following
lemma.

Lemma 4.5.1. Let Γ be a d-independent set of k points in RPn−1. Then

dimPn,2d(Γ) ≥
(
n+2d−1

2d

)
− kn and dim Σn,2d(Γ) ≤

((n+d−1
d )−k+1

2

)
.

Proof. The dimension of I(2)
2d (Γ) is at least

(
n+2d−1

2d

)
−kn, since we are imposing

at most kn linearly independent conditions by forcing forms to double vanish at
all points of Γ. From Proposition 4.1.4 we know that Pn,2d(Γ) is full dimensional
in I(2)

2d (Γ) and, thus, the bound for the dimension of Pn,2d(Γ) follows.
Since Γ is d-independent, we know that the dimension of Id(Γ) is

(
n+d−1

d

)
−

k. We can have at most
(

dim Id(Γ)+1
2

)
linearly independent pairwise prod-

ucts coming from Id(Γ) and, therefore, the dimension of (Id(Γ))2 is at most(
(n+d−1

d )−k+1

2

)
. Since, by Proposition 4.0.1, Σn,2d(Γ) ⊂ (Id(Γ))2 is a full di-

mensional containment, the bound for Σn,2d(Γ) follows. �

For a d-independent set Γ of size k let Gn,2d(k) be the size of the minimal
gap between the dimensions of Pn,2d(Γ) and Σn,2d(Γ) over all d-independent
sets of size k, which, by Lemma 4.5.1, is given by

Gn,2d(k) =

(
n+ 2d− 1

2d

)
− kn−

((
n+d−1

d

)
− k + 1

2

)
. (4.5.1)

From Section 4.1.2 we know that there exist d-independent sets of any car-
dinality k ≤

(
n+d−1

d

)
− n. We want to determine the smallest positive integer

k for which Gn,2d(k) > 0 and we want to �nd the maximum of Gn,2d(k).

Proposition 4.5.2. The function Gn,2d(k) is maximized at k =
(
n+d−1

d

)
− n.

Its value and the largest gap are(
n+ 2d− 1

2d

)
− n

(
n+ d− 1

d

)
+

(
n

2

)
. (4.5.2)

The smallest value of k such that Gn,2d(k) > 0 is the smallest integer strictly
greater than:(

n+ d− 1

d

)
− n+

1

2
−

√(
n− 1

2

)2

+ 2

(
n+ 2d− 1

2d

)
− 2n

(
n+ d− 1

d

)
.

(4.5.3)

Proof. We observe that Gn,d(k) is a quadratic function of k with a negative
leading coe�cient. It is easy to show that Gn,d(k) attains its maximum value

at k =

(
n+ d− 1

d

)
−n+

1

2
. Therefore, the maximum value of Gn,2d(k) for an
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integer k will occur with k =
(
n+d−1

d

)
−n and it is a matter of easy manipulation

to obtain equation (4.5.2).
The bound in equation (4.5.3) comes from simply calculating the smallest

root of Gn,2d(k). We skip the routine application of the quadratic formula. �

We make several remarks. First we observe that the largest gap from Propo-
sition 4.5.2 (

n+ 2d− 1

2d

)
− n

(
n+ d− 1

d

)
+

(
n

2

)
is zero in all cases, where the cones Pn,2d and Σn,2d coincide. However, this
number is strictly positive in the cases, where there are nonnegative forms that
are not sums of squares. In the smallest cases (n, 2d) = (4, 4) and (n, 2d) =
(3, 6), in which Pn,2d is strictly larger than Σn,2d, the gap is one.

However, as either n or d grows, we can see that the dimensional gap between
exposed faces of Pn,2d and Σn,2d grows and, asymptotically, it approaches the
full dimension of the vector space Pn,2d.

We note that the bound from Equation 4.5.3 simpli�es remarkably for n = 3.
In this case, we get the bound of

(
d+2

2

)
−d−1, and we need to take the smallest

integer above that, which leads to

k =

(
d+ 2

2

)
− d =

(
d+ 1

2

)
+ 1.

This is actually the correct bound for the case of n = 3 as we proved in
Theorem 4.2.1.

Though, in general, for n ≥ 4 the formula does not appear to simplify and
the bound given is not going to be optimal, Theorem 4.3.1 implies optimality of
the naive dimension count also in the case (n, 2d) = (4, 4). The non-optimality
in the general case is caused by an overcount for the dimension of the vector
space (Id(Γ))2.

We note that for k =
(
n+d−1

d

)
− n, which leads to the largest gap, the

bound on the dimension of (Id(Γ))2 is also optimal, generically. We can see
this from the example of the d-independent set Sn,d from Section 4.1.2, which
has exactly this cardinality. Indeed, for Sn,d, it is not hard to show that all
pairwise products of the forms Qi, which form a basis of Id(Sn,d), are linearly
independent in Hn,2d. This shows that the dimension of (Id(Sn,d))

2 is
(
n+1

2

)
,

which is exactly equal to the bound we use.

Question 4.5.3. From the above discussion it is natural to ask the following
questions.

(i) In addition to the known cases ((n, 2d) ∈ {(3, 2d), (4, 4)}), are there other
cases, in which the naive bound from Proposition 4.5.2 for the smallest
cardinality of a set Γ forcing a dimensional gap between the corresponding
faces is correct?
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(ii) Given n, d, is it possible to characterize the set of integers S such that
dimPn,2d(Γ) > dim Σn,2d(Γ) if and only if |Γ| ∈ S?

(iii) Can the naive bounds from Proposition 4.5.2 be further improved?

(iv) Is it possible to characterize more cases for which

dimPn,2d(Γ)− dim Σn,2d(Γ) = 1?

4.6 Extension to Arbitrary Real Projective Va-

rieties

Motivated by the question whether there exist more cases for which the gap
dimPn,2d(Γ)−dim Σn,2d(Γ) is equal to one, we consider the following question:
Given a form that is nonnegative on a real projective variety X ⊂ Pn−1,
when is every such nonnegative form a sum of squares on X? By PX,2d resp.
ΣX,2d we denote the set of nonnegative resp. sums of squares forms of degree
2d on X. In this setting, Hilbert's theorem is just the case X = Pn−1. In
[BSV13] it is proved that PX,2d and ΣX,2d are, indeed, closed convex cones. We
call a projective variety X ⊂ Pn−1 nondegenerate, if it is not contained in a
hyperplane. The main result in [BSV13] is given by the following theorem.

Theorem 4.6.1 (Blekherman, Smith, Velasco [BSV13]). Let X ⊂ Pn−1 be a
real irreducible nondegenerate projective subvariety such that the set X(R) of
real points is Zariski dense. Then PX,2 = ΣX,2 if and only if X is a variety of
minimal degree.

Remember that X is a variety of minimal degree, if deg(X) = 1+codim(X).
Varieties of minimal degree are completely charaterized (see, e.g., [EH87]).
There are exactly three families:

1. totally-real irreducible quadratic hypersurfaces,

2. cones over the Veronese surface,

3. rational normal scrolls.

In order to extend the result to forms of arbitrary even degree 2d, the
Veronese embedding vd : Pn → P(n+dn )−1, mapping a point to all monomials of
degree d, plays a key role. Then every nonnegative form of degree 2d on X is
a sum of squares if and only if the d-th Veronese embedding of X ⊂ Pn is a
variety of minimal degree.

Example 4.6.2 ([BSV13]). The rational quartic curve C ⊂ P3 de�ned by
[y0 : y1] 7→ [y4

0 : y3
0y1 : y0y

3
1 : y4

1] is not a variety of minimal degree but
v2(C) ⊂ P8 is the rational normal curve of degree eight, which is a variety
of minimal degree. Hence, every nonnegative quartic form on C is a sum of
squares.
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We are interested in the exposed faces of the convex cones PX,2d and ΣX,2d.
For this, let Γ ⊂ X be a �nite set of points in X. For any positive integer d
we de�ne the cones

PX,2d(Γ) := {p ∈ PX,2d : p(s) = 0 for all s ∈ Γ},
ΣX,2d(Γ) := {p ∈ ΣX,2d : p(s) = 0 for all s ∈ Γ}.

It is immediate that these cones are exposed faces of PX,2d and of ΣX,2d and that
ΣX,2d(Γ) ⊂ PX,2d(Γ). In the previous section, we analyzed the case X = Pn−1

and proved some powerful results using the Alexander-Hirschowitz Theorem,
especially for n = 3. In our upcoming article [BIKV14], we generalize concepts
in the previous section to the above setting of arbitrary projective varieties.
Again, in order to determine the dimension of PX,2d(Γ), one can look at the
dimension of the vector space of double vanishing forms on X and introduce
a concept of d-independence in this setting. Even more, one can prove that
d-independence is a su�cient condition for full dimensionality of PX,2d(Γ) in
the set of double vanishing forms. However, a major drawback is that there is
no Alexander-Hirschowitz type result for arbitrary real projective varieties X.
For some concrete results, we refer to [LP13, Theorem 2.1].

Rather than completely describing the results in [BIKV14] we look at a
speci�c case in more detail in order to shed light on these general extensions.
Let X = P1×P1 be the product of two projective spaces. The coordinate ring
of X is just the set of multihomogeneous polynomials in two sets of variables
x = (x1, x2) and y = (y1, y2). As an example, we consider the degree vector
2d = (4, 4), hence, the considered polynomials are quartics in x and y. Forms
of this type form a vector space of dimension

(
2+4−1

4

)(
2+4−1

4

)
= 25. Now, let

Γ = {s1, . . . , s6} ⊂ P1 × P1 with |Γ| = 6 and

s1 = (1, 0; 1, 0), s2 = (0, 1; 0, 1), s3 = (1, 1; 1, 1), s4 = (1, 1; 1, 0),

s5 = (1,−1; 0, 1), s6 = (0, 1; 1, 1).

It can be proved (with analagous methods as before) that

dimPX,(4,4) = 25− 6 · 3 = 7 > 6 = dim ΣX,(4,4).

Using similar techniques as in the previous sections, we can compute three
forms f1, f2, f3 vanishing on Γ and a double vanishing form q on Γ that is not
in the span of the pairwise products fifj for 1 ≤ i ≤ j ≤ 3. Note that the
forms f1, f2, f3 are quadratic in x and y. Then, for a su�ciently small ε > 0,
the form f 2

1 + f 2
2 + f 2

3 + εq is nonnegative but not a sum of squares. We used
the package SyNRAC for Maple (see [AY03]) to verify that the following
form lies in PX,(4,4) \ ΣX,(4,4):



70 CHAPTER 4. DIMENSIONAL DIFFERENCES

p = f 2
1 + f 2

2 + f 2
3 +

1

2
q

=

(x1y1y2(−x2 +x1))2 +(x2y1(y1−y2)(−x2 +x1))2 +(x1y2(x1y2 +x2y2−2x2y1))2+

1

2
[(9y2

1y
2
2 + y4

2 − 5y1y
3
2)x4

1 + (y3
1y2 − 5y1y

3
2 + 2y4

2 − 8y2
1y

2
2)x2x

3
1+

(y2
1y

2
2+y3

1y2+y4
2+y1y

3
2+y4

1)x2
2x

2
1+(y1y

3
2−2y4

1+y2
1y

2
2)x3

2x1+(−2y3
1y2+y2

1y
2
2+y4

1)x4
2)]

∈ PX,(4,4) \ ΣX,(4,4).



Chapter 5

Low Dimensional Test Sets for

Nonnegativity of Even Symmetric

Forms

Since checking nonnegativity of polynomials is an NP-hard problem in gen-
eral, one might ask whether additional structure on polynomials reduces the
complexity of checking nonnegativity. Therefore, an alternative approach in
order to simplify the question whether a real polynomial p of even degree 2d is
nonnegative, is to look for test sets Ω ⊂ Rn for nonnegativity of polynomials.
Here, we call Ω ⊂ Rn a test set for a polynomial p if p(x) ≥ 0 for all x ∈ Rn if
and only if p(x) ≥ 0 for all x ∈ Ω. For example, if p is a homogeneous poly-
nomial, then Ω = Sn−1 is a test set for p. Classifying polynomials, for which
there exist test sets simplifying the question of nonnegativity, is seemingly a
di�cult problem. However, for symmetric polynomials such test sets exist.
Symmetric polynomials play an outstanding role in practice as many problems
come with symmetric structure.

In [Tim03], Timofte proves a very powerful result, namely that a symmet-
ric polynomial in n variables of degree 2d is nonnegative if and only if it is
nonnegative at all points x ∈ Rn with at most d distinct components. Addi-
tionally, an even symmetric polynomial of degree 2d is nonnegative if and only
if it is nonnegative at all points x ∈ Rn with at most bd

2
c distinct components.

Later, Riener was able to reprove this result in a much more elementary fash-
ion than in the original work, where most techniques are based on the theory
of di�erential equations (see [Rie12]; see also [Rie11]).

In this chapter, we are interested in even symmetric forms. We consider
the question of how to identify test sets for such forms and investigate their
properties. In particular, we analyze under which additional conditions on
even symmetric forms the bound of at most bd

2
c distinct components given by

Timofte can be further improved. Polynomials with such interesting structures
are those lying in certain subspaces. We analyze the question of whether it

71



72 CHAPTER 5. LOW DIMENSIONAL TEST SETS

is even possible that there exist uniform bounds better than Timofte's one
and independent of the degree of the polynomials. In fact, our results imply
that very often it is not the degree of the polynomials that is essential for the
number of components to be checked, but the dimension of the corresponding
subspaces. This is in sharp contrast to Timofte's theorem.

This chapter is organized as follows: In Section 5.1 we provide some basic
tools and de�nitions from the theory of symmetric polynomials. In Section 5.2
we introduce test sets and present core problems on them we are interested
in. Furthermore, we recall some previous work, such as Timofte's theorem
and summarize our main results (Theorem 5.2.5). In Section 5.3 we consider
4-dimensional subspaces of even symmetric forms of degree 4d and prove our
�rst main result. We end this section by applying our results on some ex-
amples and provide some conjectures based on these experiments. In Section
5.4 we consider subspaces of arbitrary dimension. We prove our second main
result (Theorem 5.4.2) by adjusting the number of variables and generalizing
techniques from Section 5.3. In Section 5.5 we tackle problems concerning the
maximum dimension of such subspaces resp. the geometrical and topological
structure of the set of all forms, whose nonnegativity can be decided at all
points with a �xed number of distinct components. Here, we prove our re-
maining main results, which are Theorem 5.5.2 and Corollary 5.5.4. Finally,
we discuss some open problems.

5.1 Preliminaries

In this section, we introduce some notations and facts that are essential for
upcoming results. We begin with some classical facts about symmetric poly-
nomials. Let R[x]Sd be the vector space of symmetric polynomials of degree
d ∈ N. A homogeneous symmetric polynomial is called an even symmetric
form if all exponents are even. A vector λ = (λ1, . . . , λn) ∈ Nn is called a
partition of d if λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and λ1 + · · · + λn = d. The vec-
tor space dimension of R[x]Sd is given by the number of partitions of d with
length at most n. Note that the dimension of R[x]Sd is �xed, i.e., independent
of n, whenever n ≥ d. A fundamental theorem in the theory of symmetric
polynomials states that every symmetric polynomial p ∈ R[x]Sd can be written
as a polynomial in the power sums Mr(x) =

∑n
i=1 x

r
i for 0 ≤ r ≤ n. For an

overview and introduction see, e.g., [Sag01].

We now introduce Schur polynomials that also form a basis of R[x]S. Let
d 6= 0 be a natural number with a partition d =

∑l
j=1 dj, d1 ≥ · · · ≥ dl

where all dj are positive integers. For a �xed partition (d1, . . . , dl) the l-variate
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monomial symmetric function m(d1,...,dl) is given by

m(d1,...,dl) :=
∑
σ∈Sl

xd1σ(1) · · · x
dl
σ(l),

where Sl is the symmetric group in l elements and σ denotes a permutation in
Sl. We de�ne

D(d1,...,dl) := det

 xd1+l−1
1 xd2+l−2

1 · · · xdl1
...

...
. . .

...
xd1+l−1
l xd2+l−2

l · · · xdll

 . (5.1.1)

Furthermore, we denote the determinant
∏

1≤i,j≤l(xi − xj) of the (l × l)-
Vandermonde Matrix by ∆l, i.e.,

∆l := det

 xl−1
1 xl−2

1 · · · 1
...

...
. . .

...
xl−1
l xl−2

l · · · 1

 . (5.1.2)

The Schur function S(d1,...,dl) is de�ned as

S(d1,...,dl) :=
D(d1,...,dl)

∆l

. (5.1.3)

It is a well known fact that Schur functions are, indeed, symmetric poly-
nomials, which have an amazing combinatorial structure. For example, the
monomials of the Schur polynomial S(d1,...,dl) are in one to one correspondence
to all semistandard (d1, . . . , dl)-tableaux. For our needs, the following propo-
sition is crucial (see, e.g., [Sag01]).

Proposition 5.1.1. Let d1 ≥ · · · ≥ dl ∈ N. The Schur polynomial S(d1,...,dl)

can be expressed as

S(d1,...,dl) =
∑

{(c1,...,cl)∈Nl :
∑r
j=1 cj≤

∑r
j=1 dj for all 1≤r≤l}

κ(c1,...,cl),(d1,...,dl)m(c1,...,cl),

where all κ(c1,...,cl),(d1,...,dl) are nonnegative integers and all m(c1,...,cl) are mono-
mial symmetric functions.

The coe�cients κ(c1,...,cl),(d1,...,dl) are called Kostka numbers. They count
the cardinality of the set of all semistandard (c1, . . . , cl)-tableaux of type
(d1, . . . , dl) and are thus nonnegative integers.

5.2 The Structure of Test Sets

In the following, we provide a brief discussion of the structure of test sets. We
de�ne test sets and k-points, state Timofte's theorem, and set up the major
notations and problems for the remainder of this chapter.
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De�nition 5.2.1. We say that a set Ω ⊂ Rn is a test set for p ∈ R[x] if the
following does hold: p ≥ 0 if and only if p(x) ≥ 0 for all x ∈ Ω.

Based on existing results about nonnegativity of symmetric polynomials,
natural test sets to consider are given by k-points. In the following de�nition,
we make this more precise.

De�nition 5.2.2.

1. Let Ωk denote the set of all points (x1, . . . , xn) ∈ Rn such that there exist
a1 < . . . < ak ∈ R with xi ∈ {a1, . . . , ak} for every 1 ≤ i ≤ n.

2. Let Ω+
k denote the set of all points (x1, . . . , xn) ∈ Rn

≥0 such that there
exist a1 < . . . < ak ∈ R>0 with xi ∈ {0, a1, . . . , ak} for every 1 ≤ i ≤ n.
In this case, we call a point x ∈ Rn a k-point.

The problem of constructing test sets for symmetric forms began with the
work of Choi, Lam and Reznick in [CLR87], and was followed in [Har99].
We summarize the main results in these articles, remarking that the authors
dealed with forms. However, the results are obviously true also in the non-
homogeneous case.

Theorem 5.2.3 ([CLR87, Har99]). For even symmetric forms the following
hold.

1. Ω+
1 is a test set for even symmetric sextics (2d = 6).

2. Ω+
2 is a test set for even symmetric octics (2d = 8) and ternary even

symmetric decics (n = 3, 2d = 10)

3. Nonnegative even symmetric ternary octics are sums of squares.

All these results are completely generalized in the work of Timofte. His
main theorem can be stated as follows.

Theorem 5.2.4 (Timofte [Tim03]). Let p ∈ R[x]S2d with d ≥ 2. Then

1. Ωd is a test set for p.

2. If p is even symmetric, then Ω+

b d
2
c is a test set for p.

As an example, since we are dealing with even symmetric forms, the fol-
lowing does hold: Nonnegativity of even symmetric octics (2d = 8) and even
symmetric decics (2d = 10) can be reduced to semide�nite feasibility prob-
lems, since, by Timofte's theorem, one has to check whether these forms are
nonnegative at all 2-points. Hence, the problem reduces to check whether a
�nite number of binary forms are nonnegative. By Hilbert's theorem ([Hil88]),
this can be decided by checking whether these forms are sums of squares.
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Our main goal is to characterize symmetric forms for which there exist test
sets based on k-points that are independent of the degree of the investigated
forms. Let R[x]S,e4d be the vector space of even symmetric forms in n variables
of degree 4d and

B :=
{
M

k(i,1)
j(i,1)
· · ·Mk(i,ri)

j(i,ri)
: ri ∈ N, j(i,1), . . . , j(i,ri) ∈ 2N, (5.2.1)

k(i,1), . . . , k(i,ri) ∈ N,
ri∑
l=1

j(i,l)k(i,l) = 4d
}
⊂ R[x]S,e4d .

Recall thatMj = (xj1+. . .+xjn). In the following, we always assume that n ≥ 3,
since the question of nonnegativity of binary forms is obvious by Hilbert's
theorem. The key idea is to restrict to subspaces of R[x]S,e4d given by forms

p :=
m∑
i=1

αifi(x) + βM2d
2 + γM2

2d + δM2dM
d
2 , (5.2.2)

where αi, β, γ, δ ∈ R∗ and fi(x) ∈ B \ {M2d
2 ,M2

2d,M2dM
d
2 } for 1 ≤ i ≤ m. In

particular, we are interested in the constant

M
(k)
n,4d := max{m : p ≥ 0⇔ p ≥ 0 at all k-points, for all p with

{f1, . . . , fm} ⊆ B \ {M2d
2 ,M2

2d,M2dM
d
2 } and αi, β, γ, δ ∈ R∗}.

To the best of our knowledge, nothing is known about these numbers so far.
Note that M (k)

n,4d can be interpreted as a measure for the maximum dimension
m+3 such that at all (m+3)-subspaces of forms given as in (5.2.2) (for arbitrary
{f1, . . . , fm} ⊆ B \ {M2d

2 ,M2
2d,M2dM

d
2 }) nonnegativity can be decided at all

k-points. Furthermore, we are interested in the set

A
(k)
n,4d := {p ∈ R[x]S,e4d : p ≥ 0⇔ p ≥ 0 at all k-points},

i.e., the set of all forms in R[x]S,e4d for which nonnegativity can be decided at all
k-points. Less is known about geometrical and topological properties of these
sets. For example, a priori it is unclear whether these sets are connected or
even convex.

We summarize our upcoming results (Theorems 5.3.1, 5.4.2, 5.5.2, Corollary
5.5.4) in the following theorem.

Theorem 5.2.5. Let p :=
∑m

i=1 αifi(x) + βM2d
2 + γM2

2d + δM2dM
d
2 with

αi, β, γ, δ ∈ R∗ and n ≥ 3. Furthermore, let fi(x) ∈ B \ {M2d
2 ,M2

2d,M2dM
d
2 }

for 1 ≤ i ≤ m.

1. For m + 2 ≤ n and p satisfying some extra conditions (see (5.4.2)) the
set of (m+ 1)-points is a test set for p,

2. For 4d ≥ 12, n ∈ {d− 1, d} we have M (2)
n,4d = 1,
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3. For 4d ≥ 12, n ∈ {d− 1, d} the set A(2)
n,4d is not convex.

Note that the statement can be extended to the case of forms p with
αi, β, γ, δ ∈ R. One can construct a sequence of forms as in (5.2.2) and con-
verging to p coe�cient-wise. Since nonnegativity of all elements is decidable
at k-points, this will also hold for p due to continuity of polynomials in their
coe�cients.

An important motivation to restrict attention to subspaces of even sym-
metric forms is given by the fact that they contain sparse even symmetric
forms. Since every symmetric form can be written as a polynomial in the
power sum polynomials, an interesting class to look at is given by symmetric
forms with sparsity structure in this representation, i.e., where only a small
number of power sums are present. Hence, considering subspaces of even sym-
metric forms also correspond to sparsity aspects of even symmetric forms.

5.3 Subspaces of Even Symmetric Forms of Di-

mension Four

We start with the study of some 4-dimensional subspaces. The main result in
this section is the following theorem.

Theorem 5.3.1. Let n ≥ 3. The set of 2-points is a test set for real even
symmetric forms of the form

p := αMk1
j1
· · ·Mkr

jr
+ βM2d

2 + γM2
2d + δM2dM

d
2 , (5.3.1)

where α, β, γ, δ ∈ R∗ and the following conditions are satis�ed:

j1, . . . , jr ∈ 2N, k1, . . . , kr ∈ N,
r∑
i=1

jiki = 4d, j1 /∈ {2, 2d}, (5.3.2)

and either j1, . . . , jr ≤ 2d or j2, . . . , jr ∈ {2, 2d}.

Hence, we can conclude the following corollary.

Corollary 5.3.2. Let p be of the form (5.3.1) satisfying (5.3.2). Then non-
negativity of p can be reduced to a �nite number of semide�nite feasibility
problems.

Proof. By Theorem 5.3.1, p is nonnegative if and only if it is nonnegative at
all 2-points. Hence, p is nonnegative if and only if a �nite number of binary
forms are nonnegative. By Hilbert's theorem, this is the case if and only if
these binary forms are sums of squares, which can be decided by semide�nite
programs (see [Las10]). �
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Note that the special case of (n, 2d) = (3, 8) in the main Theorem 5.3.1
is considered by Harris in [Har99]. In order to prove Theorem 5.3.1, we
need some further results that follow a similar line as the results in [Har99].
For given p of the form (5.3.1) satisfying (5.3.2) let J(y) be the Jacobian of
{Mk1

j1
· · ·Mkr

jr
,M2d

2 ,M2
2d,M2dM

d
2 } at the point y, i.e.,

J(y) : R4 → Rn, (α, β, γ, δ) 7→
(
∂p

∂x1

(y), . . . ,
∂p

∂xn
(y)

)T
.

J(y) is an (n × 4)-matrix, where every column is given by the gradient of an
element in {Mk1

j1
· · ·Mkr

jr
,M2d

2 ,M2
2d,M2dM

d
2 }. The following proposition is very

crucial for the proofs in the remainder of this chapter, but is also interesting
itself, since it connects rank de�ciency with k-points.

Proposition 5.3.3. The following does hold for y ∈ Rn
≥0: rank J(y) < 3 if

and only if y is a k-point with k ≤ 2.

Proof. First, we prove the proposition for the case that r = 1, i.e., the �rst
column of J is given by the partial derivatives of Mk1

j1
with j1k1 = 4d, j1 ∈ 2N

and j1 /∈ {2, 2d} (see (5.3.2)). Thus, the Jacobian J is given by the following
matrix

J =


k1j1M

k1−1
j1

xj1−1
1 4 dx1M

2d−1
2 4 dx2d−1

1 M2d 2 dx1M
d−1
2

(
M2d + x2d−2

1 M2

)
...

...
...

...

k1j1M
k1−1
j1

xj1−1
n 4 dxnM

2d−1
2 4 dx2d−1

n M2d 2 dxnM
d−1
2

(
M2d + x2d−2

n M2

)
 .

We investigate all (3 × 3)-minors of J . Due to the symmetry of p (and
therefore also J) in the variables x1, . . . , xn it su�ces to restrict to x1, x2, x3.
Note that every (3× 3)-minor containing the fourth column of J is irrelevant,
since the fourth column is in the span of the second and the third column.
Hence, if there exists a nonzero (3 × 3)-minor containing the fourth column,
then there also exists a nonzero (3×3)-minor containing the �rst three columns.
Thus, it only remains to investigate the leading principal (3 × 3)-minor of J ,
which is due to calculation rules of determinants given by

(4d)3Mk1−1
j1

M2dM
2d−1
2 q(x1, x2, x3)

with

q(x1, x2, x3) := det

 xj1−1
1 x1 x2d−1

1

xj1−1
2 x2 x2d−1

2

xj1−1
3 x3 x2d−1

3

 . (5.3.3)

Note that q does not equal the zero polynomial, since j1 /∈ {2, 2d} by as-
sumption. Obviously, q(x1, x2, x3) vanishes if one entry is zero and, by (5.1.1),
(5.1.2), and (5.1.3), we have

q(x1, x2, x3) = ∆3 · (±1) · S(d1,d2,d3)
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with (d1, d2, d3) = (j1−3, 2d−2, 1) for j1 > 2d and (d1, d2, d3) = (2d−3, j1−2, 1)
for j1 < 2d. Since ∆3 = (x1 − x2)(x1 − x3)(x2 − x3), q(x1, x2, x3) vanishes if
two entries are equal or if any entry is zero (since in this case the matrix in
(5.3.3) is singular). By Proposition 5.1.1, q(x1, x2, x3) has no further zeros
on R3

>0, because S(d1,d2,d3) is a sum of monomial symmetric functions with
nonnegative coe�cients (the Kostka-numbers) and therefore S(d1,d2,d3)(y) > 0
for every y ∈ R3

>0.
Since �nally Mk1−1

j1
, M2d, and M

2d−1
2 are sums of squares, the leading prin-

cipal (3 × 3)-minor of J does not vanish for a 3-point y ∈ R3
>0. Hence, the

minor vanishes if and only if one of {y1, y2, y3} is zero or at least two of them
are equal, which is exactly the case if and only if (y1, y2, y3) is a 2-point.

But this already implies that the rank of J is less than three if and only if
y = (y1, . . . , yn) is a 2-point. Assume that J(y) has rank three. Then there
exists a non-vanishing (3 × 3)-minor of J(y) given by the �rst three columns
and three rows i1, i2 and i3. Hence, by the previous argumentation, we have
yi1 > yi2 > yi3 > 0, i.e., y is not a 2-point. On the other hand, assume that
J(y) has rank two. Then every (3 × 3)-minor of J(y) given by the �rst three
columns and three arbitrary rows i1, i2, and i3 vanishes, i.e., by the previous
argumentation, (yi1 , yi2 , yi3) is a 2-point. Since {i1, i2, i3} is an arbitrary subset
of cardinality three of {1, . . . , n}, we can conclude that y is a 2-point in total.

Now, we step over to the general case. Here, the �rst column of J is given by
the partial derivatives of Mk1

j1
· · ·Mkr

jr
satisfying (5.3.2), i.e., the �rst column

is given by r∑
i=1

kijix
ji−1
1 Mki−1

ji

∏
l∈{1,...,r}\{i}

Mkl
jl
, . . . ,

r∑
i=1

kijix
ji−1
n Mki−1

ji

∏
l∈{1,...,r}\{i}

Mkl
jl

T

.

With the same argument as in the case r = 1, it su�ces to investigate the
leading principal (3 × 3)-minor. By the calculation rules of the determinant
this minor is given by

(4d)2M2dM
2d−1
2

 r∑
i=1

kijiqi(x1, x2, x3)Mki−1
ji

∏
l∈{1,...,r}\{i}

Mkl
jl

 , (5.3.4)

where

qi(x1, x2, x3) := det

 xji−1
1 x1 x2d−1

1

xji−1
2 x2 x2d−1

2

xji−1
3 x3 x2d−1

3

 = ∆3 · (±1) · S(d1,d2,d3) (5.3.5)

with (d1, d2, d3) = (ji−3, 2d−2, 1) for ji > 2d and (d1, d2, d3) = (2d−3, ji−2, 1)
for ji < 2d. Since all ji are even numbers (see (5.3.2)), all Mji are sums of
squares, which due to symmetry in the variables only vanish at the origin.
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Hence, the zero set of (5.3.4) only depends on the polynomials qi. Note that qi
is the zero polynomial if and only if ji ∈ {2, 2d}. With the same argument as in
the case r = 1, we know furthermore that all qi 6= 0 vanish at (y1, y2, y3) ∈ R3

≥0

if and only if (y1, y2, y3) is a 2-point. Hence, we are done if we can show that
there exists an qi 6= 0 and all qi have the same sign. But this follows from
the conditions (5.3.2). They guarantee that q1 6= 0 and either all other qi = 0
(and thus the sign of q1 does not matter) or all ji ≤ 2d, which implies that the
number of column changes needed to transform the de�ning matrix of each
qi to the standard form (5.1.1) is equal for all i and thus the signs of all qi
coincides.

Thus, the principal (3×3)-minor indeed vanishes if and only if (y1, y2, y3) ∈
R3
≥0 is a 2-point and, analogously as in the case r = 1, this implies that the

rank of J is less than three if and only if (y1, . . . , yn) is a 2-point. �

If y is not a 2-point, Proposition 5.3.3 says that the solution space of J(y) ·
v = 0 where v := (α, β, γ, δ) is 1-dimensional and, in fact, is obviously spanned
by the following form that is clearly singular at y:

Ty(x) := (M2
d
M2d(x)−M2dM2(x)d)2, (5.3.6)

where Mr := Mr(y).
As a next step, we prove that for any sum of 2k-th powers the image on the

unit sphere is already given by the image of the set of all 2-points on the unit
sphere. This generalizes Lemma 2.6 in [Har99] where this is shown to be true
for 2k = 4. However, the proof follows the same line.

Lemma 5.3.4. Let x ∈ Rn
+ be such that M2(x) = 1 and M2k(x) = r. Then

there exists a 2-point z = (a, . . . , a, b) ∈ Rn
+ such that M2(z) = 1 and M2k(z) =

r.

Proof. We �rst note that the inequality 1
nk−1 ≤ M2k(x) ≤ 1 is true, since we

are dealing with points x ∈ Rn
+ such that M2(x) = 1 and by the equivalence

of norms. Let

zα :=

(
cosα√
n− 1

, . . . ,
cosα√
n− 1

, sinα

)
.

Then f(α) := M2k(zα) = cos2k α
(n−1)k−1 + sin2k α. In particular, M2(zα) = 1 for all

α as well as f(π
2
) = 1 and, since cos(arcsin(x)) =

√
1− x2, it follows that

f

(
arcsin

(
1√
n

))
=

(1− 1/n)k

(n− 1)k−1
+

1

nk
=

1

nk−1
.

Hence, by the intermediate value theorem, for all r with 1
nk−1 ≤ r ≤ 1 there

exists α∗ ∈ [arcsin( 1√
n
), π

2
] such that f(α∗) = r and zα∗ = (a, . . . , a, b). �

Now we can prove our main theorem.
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Proof. (Theorem 5.3.1) We need to prove that if αMk1
j1
· · ·Mkr

jr
+βM2d

2 +γM2
2d+

δM2dM
d
2 is nonnegative at all 2-points, then it is also nonnegative globally.

Suppose p is nonnegative at all 2-points but not nonnegative. Let −λ :=
minx∈Sn−1 p < 0 denote the minimum value of p over the unit sphere and let
y = (y1, . . . , yn) ∈ Sn−1 be a minimizer such that p(y) = −λ (note that it
su�ces to restrict to the unit sphere due to homogeneity). Since the degree
of every variable in every monomial of p is even, we can assume w.l.o.g. that
y ∈ Sn−1

+ . Then q(x) := p(x) + λM2d
2 (x) ≥ 0 and q(y) = 0. By assumption,

y is not a k-point with k ≤ 2 (because p is nonnegative at these points). By
Proposition 5.3.3, we have rank J(y) = 3 and hence q = k ·Ty(x), k > 0 with Ty
as in (5.3.6), since q is in the kernel of J(y). Thus, q(x) = 0 whenever M2d =
M2d, i.e., x2d

1 +· · ·+x2d
n = y2d

1 +· · ·+y2d
n . By Lemma 5.3.4, there exists a 2-point

z = (a, a, . . . , a, b) such that (n − 1)a2 + b2 = 1 and (n − 1)a2d + b2d = M2d.
But this implies p(z) = −λ, which is a contradiction, since p is nonnegative at
all 2-points. �

5.3.1 Applications

In this subsection we brie�y want to demonstrate how our Theorem 5.3.1 can
be applied to test nonnegativity of an example class and even how to derive a
semialgebraic description of a certain subcone of the cone of nonnegative even
symmetric forms.

The key fact from an application side is that checking whether forms are
nonnegative at 2-points can be reduced to checking nonnegativity of univariate
polynomials, which can be done e�ciently by checking numerically (i.e., under
usage of SDP-methods) whether these polynomials are sums of squares (due
to Hilbert's theorem). Alternatively, this can also be done by using quanti�er
elimination methods, which happen to work quite e�ciently for univariate
polynomials of su�ciently low degree.

Our �rst two examples show that the same set of coe�cients yields di�erent
results concerning nonnegativity when the number of variables increases.

Example 5.3.5. Consider the form

p(x1, x2, x3) := M3
4 −

1

10
M6

2 +M2
6 +M6M

3
2 .

By Theorem 5.3.1, p ≥ 0 if and only if the two binary forms p(x1, x2, 0) and
p(x1, x1, x2) are nonnegative. By dehomogenizing the binary forms, this is the
case if and only if the following two univariate polynomials are nonnegative:

f1 =
29

10
x12 +

12

5
x10 +

9

2
x8 + 2x6 +

9

2
x4 +

12

5
x2 +

29

10
, (5.3.7)

f2 =
108

5
x12 +

24

5
x10 − 2x6 + 12x4 +

24

5
x2 +

29

10
.

Since these polynomials are obviously nonnegative, we conclude p ≥ 0.
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Example 5.3.6. Now, we consider the same form in four variables, i.e.,

p(x1, x2, x3, x4) := M3
4 −

1

10
M6

2 +M2
6 +M6M

3
2 .

By Theorem 5.3.1, p ≥ 0 if and only if the four binary forms p(x1, x2, 0, 0),
p(x1, x1, x2, 0), p(x1, x1, x1, x2) and p(x1, x1, x2, x2) are nonnegative. By de-
homogenizing, the �rst two binary forms are exactly the polynomials f1, f2 in
(5.3.7) from which we already know that they are nonnegative. Hence, p is
nonnegative if and only if the following two univariate polynomials are non-
negative:

f3 =
441

10
x12 − 324

5
x10 − 135

2
x8 − 18x6 +

45

2
x4 +

36

5
x2 +

29

10
,

f4 =
108

5
x12 +

48

5
x10 − 24x8 − 88x6 − 24x4 +

48

5
x2 +

108

5
.

It is easy to check that these polynomials are inde�nite. Hence, p is not a
nonnegative form.

Example 5.3.7. Now, we investigate the 4-variate dodecics given by

p(x1, x2, x3, x4) := αM3
4 + βM6

2 + γM2
6 +M6M

3
2 . (5.3.8)

It turns out that quanti�er elimination methods are not suitable to decide for
which (α, β, γ) ∈ R3 the form p is nonnegative, since the problem is too com-
plex. Here, we used the quanti�er elimination package SyNRAC for Maple
(see [AY03]), which terminated without a solution after round about 18 min-
utes.

But application of Theorem 5.3.1 allows to quickly derive a description of the
desired semialgebraic set. We successively apply Theorem 5.3.1 on polynomials
p given by the parameter sets {(α, β, γ) : α ∈ {1, 2}, (β, γ) ∈ [−10, 10]2 ∩Z2}
and {(α, β, γ) ∈ [−4, 4] ∩ Z3}. The nonnegativity regions of the corresponding
polynomials in the parameter sets are depicted in the three pictures of Figure
5.1.

The computed region of nonnegativity obviously is polyhedral. In fact, the
approximated set of parameters, which yield nonnegative polynomials p, can
easily be identi�ed as

{(α, β, γ) ∈ R3 : β ≥ 0, α + β + γ + 1 ≥ 0}.

We furthermore checked with SOSTools (see [PPSP05]) for various examples
(e.g., α = 1, β = 0, γ ∈ {−1,−2}) located on the boundary of the polyhedra
described by the upper set, whether the corresponding polynomials p are sums
of squares. Indeed, this was always the case. Hence, by convexity, one would
expect that every nonnegative form is a sum of squares in this particular sub-
cone.

These examples demonstrate that our results allow computer based ap-
proximations of the nonnegativity cone of even symmetric forms, for which
nonnegativity is equivalent to nonnegativity at all 2-points.
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Figure 5.1: The nonnegativity region of polynomials of the form (5.3.8) in
the parameter sets {(α, β, γ) : α ∈ {1, 2}, (β, γ) ∈ [−10, 10]2 ∩ Z2} and
{(α, β, γ) ∈ [−4, 4] ∩ Z3}.

5.4 Subspaces of Arbitrary Dimension

A natural question is how far the constructions in Section 5.3 can be gener-
alized to higher dimensional subspaces in the vector space of even symmetric
forms of degree 4d in n variables. We show that with some obvious modi�-
cations such generalizations are indeed possible. However, the price to pay
is an adjustment of the number of variables to the ambient dimension of the
investigated subspaces of forms of degree 4d.

Before we can introduce the formal setting for this section, we need to give
one more de�nition. Let V ⊂ Nk. For every vector (v1, . . . , vk) ∈ V , which is
not a (k − 1)-point, we denote by σv the permutation, which maps v to the
unique vector σv(v) with σv(v1) > · · · > σv(vk). For every v, w ∈ V with v, w
not being (k−1)-points, we say that v and w are identically oriented ordered, if
sign(σv) · sign(σw) = 1. We say that V is identically oriented ordered (abbrev.
ioo), if every pair v, w ∈ V with v, w not being (k − 1)-points, is identically
oriented ordered. In order to generalize our approach from the 4-dimensional
case to arbitrary dimensions, we need an analagous statement about rank
de�ciency of the Jacobian matrix of an even symmetric form. Based on the
property of a set being identically oriented ordered, we �rst provide some
technical conditions for the polynomials in the investigated subspaces. The
unique motivation for these very technical conditions is to guarantee that a
certain minor of a Jacobian J(y) does not vanish. Thus, in the proof of Lemma
5.4.1, it will become clear why they have to be chosen in this way (and we
suggest the reader not to worry too much about them up to this proof).

So, we consider the following class of even symmetric forms: Let for m ≤ n

p(x) :=
m−2∑
i=1

αifi(x) + βM2d
2 + γM2

2d + δM2dM
d
2 , (5.4.1)

where α1, . . . , αm−2, β, γ, δ ∈ R∗ and fi(x) ∈ B \ {M2d
2 ,M2

2d,M2dM
d
2 } be such
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that the following conditions (which are a natural generalization of (5.3.2))
hold:

j(i,1), . . . , j(i,ri) ∈ 2N, k(i,1), . . . , k(i,ri) ∈ N,
ri∑
l=1

j(i,l)k(i,l) = 4d,

j(i,1) /∈ {2, 2d} ∪
i−1⋃
l=1

{j(l,1), . . . , j(l,rl)} for every 1 ≤ i ≤ m− 2, (5.4.2)

Ψ ioo := {(j(1,l1), j(2,l2), . . . , j(m−2,lm−2), 2, 2d) : 1 ≤ li ≤ ri, 1 ≤ i ≤ m− 2}.

Here, Ψ ioo is a set that is identically oriented ordered. Again, as in Section 5.3,
we denote the Jacobian of p at the point y by J(y), which is an n× (m + 1)-
matrix. Note that for m = 3 the fact that Ψ is identically oriented ordered
is equivalent to the conditions (5.3.2). The extension of the conditions (5.4.2)
w.r.t. the conditions (5.3.2) become necessary for a generalization to arbitrary
dimensions of the subspace for two reasons: Firstly, we need to guarantee that
speci�c (m×m)-minors of interest in J(y) do not equal the zero polynomial.
Recall that we similarly had to guarantee that the investigated leading prin-
cipal (3 × 3)-minor in the proof of Proposition 5.3.3 did not equal the zero
polynomial. Secondly, in the case that our investigated minor can (by calcula-
tion rules of the determinant) be rewritten as a sum of simpler determinants,
we need to guarantee that all these determinants have the same sign. Recall
that we also had to do this in the 4-dimensional case when the �rst term was
a product of di�erent power sums (see proof of Proposition 5.3.3).

Lemma 5.4.1. The following does hold for y ∈ Rn
≥0: rank J(y) < m if and

only if y is a k-point with k ≤ m− 1.

Proof. Basically, the proof works analogously to the one in Proposition 5.3.3
up to the fact that we investigate (m×m)-minors instead of (3× 3)-minors.

The last three columns of J agree with those in the dimension four case (see
proof of Proposition 5.3.3). For 1 ≤ i ≤ m − 2 the i-th column of J is given
by 

∑ri
l=1 k(i,l)j(i,l)x

j(i,l)−1

1 M
k(i,l)−1

j(i,l)

∏
s∈{1,...,ri}\{l}M

k(i,s)
j(i,s)

...∑ri
l=1 k(i,l)j(i,l)x

j(i,l)−1
n M

k(i,l)−1

j(i,l)

∏
s∈{1,...,ri}\{l}M

k(i,s)
j(i,s)

 .

Our goal is to �nd an (m × m)-minor, which vanishes only on k-points
with k ≤ m − 1. With the same arguments on the last column of J and the
symmetry of the variables, we can restrict to the leading principal (m ×m)-
minor of J , as in the proof of Proposition 5.3.3. By calculation rules of the
determinant this minor is given by (4d)2M2dM

2d−1
2 times∑

1≤l1≤r1,··· ,1≤lm≤rm

q(l1,...,lm−2)(x) ·
m−2∑
i=1

k(i,li)j(i,li)M
k(i,li)−1

j(i,li)

∏
s∈Ki

M
k(i,s)
j(i,s)

, (5.4.3)
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where Ki := {1, . . . , ri} \ {li} and

q(l1,...,lm−2)(x)

:= det

 x
j(1,l1)−1

1 · · · x
j(m−2,lm−2)

−1

1 x1 x2d−1
1

...
. . .

...
...

...

x
j(1,l1)−1
m · · · x

j(m−2,lm−2)
−1

m xm x2d−1
m

 (5.4.4)

= ∆m · (±1) · S(d1,...,dm),

for appropriate choices of di, which we discuss in more detail later. First, notice
that all power sums involved in (5.4.3) are sums of squares, since all j(i,li) are
even by condition (5.4.2). Hence, the zero set of (5.4.3) only depends on the
polynomials q(l1,...,lm−2), as in the dimension four case. Note that q(l1,...,lm−2) is
the zero polynomial if and only if two columns of the matrix (5.4.4) coincide,
which is the case precisely if and only if (j(1,l1), . . . , j(m−2,lm−2), 2, 2d) is an
(m − 1)-point. In particular, the minor (5.4.3) is not the zero polynomial,
since the condition j(i,1) /∈ {2, 2d} ∪

⋃i−1
l=1{j(l,1), . . . , j(l,rl)} guarantees that at

least q(1,...,1) is not the zero polynomial.
Note that for all nonzero polynomials q(l1,...,lm−2) the factor ±1 is given by

sign(σ(j(1,l1),...,j(m−2,lm−2)
,2,2d)(j(1,l1), . . . , j(m−2,lm−2), 2, 2d))

and each di equals the i-th entry of the image vector of this permutation minus
(m− i) (see (5.1.1)). Since we assumed in (5.4.2) that Ψ is identically oriented
ordered, we know in particular that all signs of permutations corresponding
to (j(1,l1), . . . , j(m−2,lm−2), 2, 2d) coincide. Thus, we are done if we can show
that every nonzero q(l1,...,lm−2) vanishes exactly at all (m− 1)-points. But this
is obviously the case, since ∆m vanishes if and only if two entries xi and xj
coincide and the whole matrix given in (5.4.4) vanishes for xj = 0, since it has
a zero-column in this case. By Proposition 5.1.1, we can write S(d1,...,dm) as
a sum of monomial symmetric functions times a nonnegative Kostka-number,
which guarantees that q(l1,...,lm−2) does not vanish on a non-(m − 1)-point in
the strictly positive orthant. The rest of the argumentation is analogously to
the proof of Proposition 5.3.3. �

With this lemma, we can prove an analogous version of Theorem 5.3.1

Theorem 5.4.2. Let m ≤ n. The set of (m−1)-points is a test set for all even
symmetric forms of the form p :=

∑m−2
i=1 αifi(x) +βM2d

2 + γM2
2d + δM2dM

d
2 as

in (5.4.1) such that the conditions (5.4.2) are satis�ed.

Proof. We need to prove that if p =
∑m−2

i=1 αifi(x) + βM2d
2 + γM2

2d + δM2dM
d
2

is nonnegative at all (m − 1)-points, it is also nonnegative globally. Suppose
this is not the case. Let −λ := minx∈Sn−1 p < 0 denote the minimum value
of p over the unit sphere and let y = (y1, . . . , yn) ∈ Sn−1 be a minimizer such
that p(y) = −λ. Since the degree of every variable in every monomial of p is
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even, we can assume w.l.o.g. that y ∈ Sn−1
+ . Then q(x) := p(x)+λM2d

2 (x) ≥ 0
and q(y) = 0. Since, by assumption, y is not a k-point with k ≤ (m − 1)
(because p is nonnegative at these points), y must have at least m distinct
entries. By Lemma 5.4.1, we have rank J(y) = m and hence q = k · Ty(x)
with Ty as in (5.3.6) and k > 0. Thus q(x) = 0 whenever x2d

1 + · · · + x2d
n =

y2d
1 + · · · + y2d

n . By Lemma 5.3.4, there exists a 2-point z = (a, . . . , a, b) such
that (n−1)a2 +b2 = 1 and (n−1)a2d+b2d = M2d. But this implies p(z) = −λ,
which is a contradiction, since p is nonnegative at all 2-points. �

Example 5.4.3. Consider even symmetric forms in n = 6 variables of degree
4d = 32. By Timofte's theorem, these forms are nonnegative if and only if they
are nonnegative at all 8-points, which obviously is a useless information in this
case. However, considering appropriate subspaces of dimension m + 1 ≤ 7,
Theorem 5.4.2 states that nonnegativity on these subspaces can be checked at
(m− 1)-points.

5.5 k-point Certi�cates at Maximal Subspaces

We have seen that the number of components to check for nonnegativity of
even symmetric forms can be reduced by considering appropriate subspaces
containing the three power sums

M2d
2 ,M2

2d,M2dM
d
2 .

Recall that R[x]S,e4d is the vector space of even symmetric forms in n variables
of degree 4d and let B be as in (5.2.1). In this section, we analyze the problem
to determine for �xed k ∈ N the maximum dimension of all subspaces of forms
given as

p :=
m∑
i=1

αifi(x) + βM2d
2 + γM2

2d + δM2dM
d
2

where fi(x) ∈ B \ {M2d
2 ,M2

2d,M2dM
d
2 } for 1 ≤ i ≤ m and where nonnegativity

can be checked at all k-points. Recall that

M
(k)
n,4d := max{m : p ≥ 0⇔ p ≥ 0 at all k-points, for all p with

{f1, . . . , fm} ⊆ B \ {M2d
2 ,M2

2d,M2dM
d
2 } and αi, β, γ, δ ∈ R∗}.

Note that M (k)
s,4d = M

(k)
L(n,4d),4d for s > L(n, 4d), where

L(n, 4d) := dimR[x]S,e4d .

As an illustrative example, consider the quantity M (2)
3,12. In this case, we have

dimR[x1, x2, x3]S,e12 = 7. An element p ∈ R[x1, x2, x3]S,e12 can be represented as

p = α1M6M4M2 + α2M
3
4 + α3M

2
4M

2
2 + α4M4M

4
2 + βM6

2 + γM2
6 + δM6M

3
2 .
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Fixing the last three terms, the question is, how many of the �rst four terms can
be used in the representation of p to decide nonnegativity of p via nonnegativity
at all 2-points for any choice of the remaining four power sums. For example,
if M (2)

3,12 = 1, then the forms

p = α1q + βM6
2 + γM2

6 + δM6M
3
2 with q ∈ {M6M4M2,M

3
4 ,M

2
4M

2
2 ,M4M

4
2}

would be nonnegative if and only if they are nonnegative at all 2-points, and
there exist f1, f2 ∈ {M6M4M2,M

3
4 ,M

2
4M

2
2 ,M4M

4
2} such that

p = α1f1 + α2f2 + βM6
2 + γM2

6 + δM6M
3
2

is nonnegative at all 2-points but not globally nonnegative. In fact, we prove
thatM (2)

3,12 = 1 by a much stronger result, which partially follows from Theorem
5.3.1. The next Lemma is a generalization of Lemma 3.3 in [Har99].

Lemma 5.5.1. Let d ≥ 3, y ∈ Rn
≥0 and ϕ : Rn → R3 de�ned by

ϕ : (x1, . . . , xn) 7→ (M2,M2d−2,M2d).

Then y ∈ ∂ϕ(R3) if and only if y is a 2-point.

Proof. The Jacobian Jac(y) of ϕ at a point y is a (3 × n)-matrix. Then y ∈
∂ϕ(R3) if and only if rank Jac(y) < 3. By symmetry, it su�ces to investigate
the leading principal (3 × 3)-minor corresponding to the �rst three rows and
columns. By (5.1.1), (5.1.2), and (5.1.3), this minor is given by 2 · (2d − 2) ·
2d ·∆3 · S2d−2,2d−3,2. As in the proof of Proposition 5.3.3, this minor vanishes
if and only if y is a 2-point. �

Theorem 5.5.2. Let p :=
∑m

i=1 αifi(x) + βM2d
2 + γM2

2d + δM2dM
d
2 ∈ R[x]S,e4d

with α1, . . . , αm, β, γ, δ ∈ R∗ and fi(x) ∈ B \ {M2d
2 ,M2

2d,M2dM
d
2 }. Then for

4d ≥ 12 we have
M

(2)
n,4d = 1 for n ∈ {d− 1, d}.

Proof. Let 4d ≥ 12. Furthermore, since n ∈ {d − 1, d}, the additional power
sums fj(x) = Mk1

j1
· · ·Mkr

jr
∈ B have the property that jk ≤ 2d for 1 ≤ k ≤ r.

This is because every even symmetric form in n variables can uniquely be
represented in the �rst n power sums of even power (see Section 5.1). Hence,
by Theorem 5.3.1, we haveM (2)

n,4d ≥ 1. It remains to show that there is a choice
of two power sums f1, f2 ∈ B \ {M2d

2 ,M2
2d,M2dM

d
2 } such that

p = α1f1 + α2f2 + βM2d
2 + γM2

2d + δM2dM
d
2

is nonnegative at all 2-points but not nonnegative globally. For this we general-
ize the construction in [Har99] where the author proves this for even symmetric
ternary forms of degree 12. For y ∈ Rn de�ne

py(x) := (M2
d
M2d −M2dM

d
2 )2 + (M2

d
M2d−2M2 −M2d−2M2M

d
2 )2.
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The form py is precisely of our desired form p = α1f1 +α2f2 +βM2d
2 + γM2

2d +
δM2dM

d
2 with f1 = M2

2d−2M
2
2 and f2 = M2d−2M2M

d
2 . Note that f1, f2 ∈ B if

n ∈ {d − 1, d}. By construction, for x ∈ Sn−1 we have M2(x) = 1 and hence
py(x) = 0 if and only if M2d = M2d and M2d−2 = M2d−2. Note that 1

nd−2 ≤
M2d−2 ≤ 1 and 1

nd−1 ≤ M2d ≤ 1 (see proof of Lemma 5.3.4). Fix Θ ∈ ( 1
nd−2 , 1)

and de�ne YΘ := {x ∈ Sn−1 : M2d−2(x) = Θ}. We then have ε2(Θ) ≤M2d(t) ≤
ε1(Θ) for some ε1, ε2 as t ranges over YΘ. Note that 1

nd−1 < ε2 < ε1 < 1, since
for x ∈ Sn−1 1

nd−2 < M2d−2(x) < 1 implies 1
nd−1 < M2d(x) < 1. Now, choose

some v ∈ YΘ such that ε2(Θ) < M2d(v) < ε1(Θ). Since we are dealing with
even symmetric forms, we can additionally assume w.l.o.g. that v ∈ Sn−1

+ . By
Lemma 5.5.1, v is not a k-point for k ≤ 2. Hence, if z ∈ Sn−1

+ is a 2-point,
then we claim (due to v ∈ YΘ ⊂ Sn−1) that

pv(z) = (M2d(z)−M2d(v))2 + (M2d−2(z)−Θ)2 ≥ κ > 0.

For M2d−2(z) 6= Θ this is obvious. If M2d−2(z) = Θ, then we use Lemma 5.5.1.
On the one hand, ϕ(z) and ϕ(v) can only di�er in the last component. On the
other hand, z ∈ ∂ϕ(R3) and v /∈ ∂ϕ(R3). Thus, M2d(z) 6= M2d(v). Note that
also pv(z) ≥ κ > 0 at all 2-points z ∈ Sn−1 \ Sn−1

+ , since p is even symmetric.
Choosing 0 < λ < κ, we conclude that pv,λ := pv − λM2d

2 is nonnegative
at all 2-points but not nonnegative globally, since pv,λ(v) = −λ < 0. So, we
have constructed a form p = α1f1 + α2f2 + βM2d

2 + γM2
2d + δM2dM

d
2 that is

nonnegative at all 2-points but not nonnegative globally and hence M (2)
n,4d = 1

for n ∈ {d− 1, d}. �

Note that we have M (2)
n,4 = 0 and M (2)

n,8 = 2 by Timofte's theorem. We con-
clude the following corollary generalizing [Har99, Theorem 3.3], which covers
n = 3.

Corollary 5.5.3. Let 4d ≥ 12. The set of 2-points is not a test set for R[x]S,e4d

for n ≤ d.

Proof. Theorem 5.5.2 proves the corollary for n ∈ {d− 1, d}. For the general
case, we can multiply the form p in Theorem 5.5.2 by an appropriate power
sum in order to increase the degree. �

Another consequence of Theorem 5.5.2 is that for n ∈ {d− 1, d} the set of
all n-forms of degree 4d for which the set of 2-points is a test set is not convex.
For this, we recall that

A
(k)
n,4d = {p ∈ R[x]S,e4d : p ≥ 0⇔ p ≥ 0 at all k-points}.

Note that A(k)
n,4d ⊆ A

(k+1)
n,4d and A(k)

n+1,4d ⊆ A
(k)
n,4d for all n, d, k ∈ N. Furthermore,

by Timofte's theorem, we always have A(d)
n,4d = R[x]S,e4d for n ≥ d.

Corollary 5.5.4. Let 4d ≥ 12 and n ∈ {d−1, d}. The set A(2)
n,4d is not convex.
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Proof. By Theorem 5.5.2, there exists a form

p = α1f1 + α2f2 + βM2d
2 + γM2

2d + δM2dM
d
2 /∈ A

(2)
n,4d

for some f1, f2 ∈ B \{M2d
2 ,M2

2d,M2dM
d
2 }. Obviously, p = 1

2
p1 + 1

2
p2 with p1 :=

2α1f1 + βM2d
2 + γM2

2d + δM2dM
d
2 and p2 := 2α2f2 + βM2d

2 + γM2
2d + δM2dM

d
2 .

By Theorem 5.3.1, we have p1, p2 ∈ A(2)
n,4d. �

Note that due to the inclusion A
(k)
n+1,4d ⊆ A

(k)
n,4d it is not obvious that for

n < d−1 the above corollary still holds. We note furthermore that the number
M

(2)
n,4d for n > d seems to be more challenging to determine than for n ≤ d.

For example, for n = 4 and 4d = 12 we have dimR[x1, x2, x3, x4]S,e12 = 9. The
Jacobian of the form p := α1M8M4 + βM6

2 + γM2
6 + δM6M

3
2 does not satisfy

Proposition 5.3.3 and therefore it seems unclear whether p is nonnegative if
and only if it is nonnegative at all 2-points. However, we conjecture that this
is true as well as M (2)

n,4d = 1 for n > d.

5.6 Outlook

Since it seems a very di�cult problem to determine conditions for forms in our
investigated subspaces to be sums of squares, it would be an interesting task to
analyze the di�erence between nonnegative forms and sums of squares in these
cases. Experimentally, we were not able to construct nonnegative forms that
are not sums of squares. Furthermore, we note that in the setting of Theorem
5.4.2 the bound of (m − 1) is not optimal in general. Consider the case of
nonnegative even symmetric octics in at least four variables, which is a 5-
dimensional convex cone. Following Theorem 5.2.4, such forms are nonnegative
if and only if they are nonnegative at all 3-points. But using Timofte's theorem,
we know that nonnegativity can be decided at 2-points in this case. However,
if the degree 4d is su�ciently larger than the number of variables, our bound
of (m−1) components is signi�cantly more useful than the bound in Timofte's
theorem. An interesting future prospect would be to analyze these bounds in
an asymptotic sense.

Additionally, from a computational viewpoint it would be interesting to
extend the experimental approach used in Section 5.3 in order to achieve more
understanding of the semialgebraic structure of the cone of nonnegative even
symmetric forms of degree 4d and its subcones.

Maybe the most interesting follow-up task is to shed light on the numbers
M

(k)
n,4d for k ≥ 3 as well as a deeper understanding of the geometrical and

topological structure of the sets A(k)
n,4d.



Chapter 6

Nonnegative Polynomials and

Sums of Squares Supported on

Circuits

Forcing additional structure on polynomials often simpli�es certain problems
in theory and practice. One of the most prominent examples is given by
sparse polynomials, which arise in di�erent areas in mathematics. Exploiting
sparsity of problems often reduces the complexity of solving hard problems. An
important example is, e.g., given by sparse polynomial optimization problems
(see, e.g., [Las06a]). In this chapter, we consider sparse polynomials having
a special structure in terms of their Newton polytopes and supports. More
precisely, we consider polynomials f ∈ R[x], whose Newton polytopes are
simplices and the supports are given by all the vertices of the simplices and
one additional interior lattice point in the simplices. Such polynomials have
exactly n+ 2 monomials and can be regarded as supported on a circuit. Note
that A ⊂ Nn is called a circuit, if A is a�nely dependent, but any proper subset
of A is a�nely independent (see, e.g., [GKZ08]). We write these polynomials
as

f =
n∑
j=0

bjx
α(j) + cxy (6.0.1)

where the Newton polytope ∆ := New(f) = conv{α(0), . . . , α(n)} ⊂ Rn is a
lattice simplex, y ∈ int(∆), bj ∈ R>0 and c ∈ R∗. We denote this class of
polynomials as P y

∆.
For nonnegative polynomials and sums of squares, work has been done for

special con�gurations in the above setting, namely, in [FK11, Rez89] the au-
thors tackle these problems for very special coe�cients and simplices in the
above sparse setting. We aim to extend results in all of these papers and es-
tablish connections between them for polynomials f ∈ P y

∆.

89
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For f ∈ P y
∆ we de�ne the circuit number Θf as

Θf :=
n∏
j=0

(
bj
λj

)λj
,

where the λj are uniquely given by the convex combination
∑n

j=0 λjα(j) =
y, λj ≥ 0,

∑n
j=0 λj = 1.

This chapter is organized as follows. In Section 6.1 we introduce some nota-
tions and recall some results that are essential for the upcoming sections and
proofs of the main theorems. Section 6.2 deals with invariants and properties
of polynomials f ∈ P y

∆. It is shown that for every polynomial f ∈ P y
∆ there

is an associated standard form g, which is supported on a scaled standard
simplex and one interior lattice point such that all invariants are preserved.
Furthermore, we completely characterize nonnegativity of polynomials in P y

∆.
Section 6.3 is devoted to the section of the cone of sums of squares with P y

∆.
This section will also be completely characterized and extended to the case of
multiple interior lattice points in the support of f ∈ P y

∆. In Section 6.4 we
derive interesting connections between our results and some classical/recent
problems in toric geometry and lattice polytopes. Using these connections in
more detail, we provide su�cient conditions for equality between nonnegative
polynomials and sums of squares supported on circuits. Additionally, in Sec-
tion 6.5 we completely characterize convex polynomials in P y

∆. Based on our
main theorems, in Section 6.6 we introduce a new certi�cate for nonnegativity
of polynomials, namely, the cone of sums of nonnegative circuit polynomials.
Finally, in Section 6.7 we consider extensions to arbitrary Newton polytopes
and sparse support sets, thereby providing some counterexamples and solu-
tions to open questions in [Rez89]. An outlook for future possibilities is given
in Section 6.8.

6.1 Preliminaries and Known Results

Let R[x]d be the vector space of polynomials in n variables of degree d. For the
remainder of this chapter we work with non-homogeneous polynomials. With
slight abuse of notation, we denote the convex cone of nonnegative polynomials
resp. sums of squares again as

Pn,2d := {p ∈ R[x]2d : p(x) ≥ 0 for all x ∈ Rn},

Σn,2d :=

{
p ∈ Pn,2d : p =

k∑
i=1

q2
i for qi ∈ R[x]d

}
.

Since we are interested in nonnegative polynomials and sums of squares in the
class P y

∆, we consider the sections

P y
n,2d := Pn,2d ∩ P y

∆ and Σy
n,2d := Σn,2d ∩ P y

∆.
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When asking for nonnegativity of polynomials with a simplex Newton poly-
tope and an additional interior lattice point in the support, this is closely
related to what is called an agiform in [Rez89]. Given a simplex ∆ ⊂ Rn and
an interior lattice point y ∈ int(∆), the corresponding agiform to ∆ and y is
given by

f(∆, λ, y) =
n∑
i=0

λix
α(i) − xy

where y =
∑n

i=0 λiα(i),
∑n

i=0 λi = 1, λi ≥ 0. The term agiform is implied by
the fact that the form f(∆, λ, y) =

∑n
i=0 λix

α(i) − xy is nonnegative by the
arithmetic-geometric mean inequality. Note that an agiform has a zero at the
all ones vector 1, implying that agiforms lie on the boundary of the cone of
nonnegative polynomials. A natural question is to characterize those agiforms
that can be written as sums of squares. In [Rez89] it is shown that this depends
heavily on the combinatorial structure of the simplex ∆ and the location of y
in the interior. We need some de�nitions and results adapted from [Rez89].

De�nition 6.1.1. Let ∆̂ := {0, α(1), . . . , α(n)} ⊂ (2N)n be such that conv(∆̂)
is a simplex and let L ⊂ conv(∆̂) ∩ Zn.

1. De�ne A(L) := {1
2
(s+t) ∈ Zn : s, t ∈ L∩(2Z)n} and A(L) := {1

2
(s+t) ∈

Zn : s 6= t, s, t ∈ L ∩ (2Z)} as the set of averages of even resp. distinct
even points in L.

2. We say that L is ∆̂-mediated, if

∆̂ ⊂ L ⊂ A(L) ∪ ∆̂,

i.e., every β ∈ L \ ∆̂ is an average of two distinct even points in L.

Theorem 6.1.2 (Reznick [Rez89]). There is a ∆̂-mediated set ∆∗ satisfying
A(∆̂) ⊆ ∆∗ ⊆ (∆ ∩ Zn), which contains every ∆̂-mediated set.

If A(∆̂) = ∆∗ resp. ∆∗ = (∆ ∩ Zn), we say that ∆ is an M-simplex resp.
H-simplex.

Example 6.1.3. The standard simplex given by conv{0, 2d · e1, . . . , 2d · en} ⊂
Rn for d ∈ N is an H-simplex. The Newton polytope conv{(0, 0), (2, 4), (4, 2)} ⊂
R2 of the Motzkin polynomial f = 1 + x4y2 + x2y4 − 3x2y2 is an M-simplex
(see Figure 6.1).

The main result in [Rez89] concerning the question when agiforms are sums
of squares is given by the following theorem.

Theorem 6.1.4 (Reznick [Rez89]). Let f(∆, λ, y) be an agiform. Then it
holds that f(∆, λ, y) ∈ Σy

n,2d if and only if y ∈ ∆∗.
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Figure 6.1: On the left: The H-simplex conv{(0, 0), (6, 0), (0, 6)} ⊂ R2. On
the right: The M -simplex conv{(0, 0), (2, 4), (4, 2)} ⊂ R2. The red points are
the lattice points contained in the corresponding sets ∆∗.

6.2 Invariants and Nonnegativity of Polynomi-

als Supported on Circuits

The main contribution of this section is to introduce a norm relaxation strat-
egy and use it to characterize P y

n,2d, i.e., the set of nonnegative polynomials
supported on a circuit (Theorem 6.2.6). Along the way we provide standard
forms and invariants, which re�ect the nice structural properties of the class
P y

∆.
In Section 6.2.1 we outline the norm relaxation strategy. In Section 6.2.2

we introduce standard forms for polynomials in P y
∆ and prove the existence

of a particular norm minimizer for polynomials, where the coe�cient c equals
the negative circuit number Θf (Proposition 6.2.4). In Section 6.2.3 we put
all pieces together and characterize nonnegativity for polynomials in P y

∆ (The-
orem 6.2.6). In Section 6.2.4 we discuss connections to Gale duals and A-
discriminants.

6.2.1 The Norm Relaxation Strategy

We start with a short outline of the new strategy, which we introduce and
apply here in order to tackle the problem of nonnegativity of polynomials. Let
f =

∑
α∈A bαx

α ∈ R[x] be a polynomial with A ⊂ Nn being �nite, 0 ∈ A
and α ∈ (2N)n as well as bα > 0 if α is contained in the vertex set vert(A) of
conv(A). Instead of trying to answer the question whether f(x) ≥ 0 for all
x ∈ Rn, we investigate the relaxed problem

Is f(|x|) =
∑

α∈vert(A)

bα · |xα| −
∑

α∈A\vert(A)

|bα| · |xα| ≥ 0 for all x ∈ Rn
≥0 ?

Since the strictly positive orthant Rn
>0 is an open dense set in Rn

≥0 and the
componentwise exponential function

Exp : Rn → Rn
>0, (x1, . . . , xn) 7→ (exp(x1), . . . , exp(xn))
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is a bijection, the previos problem is equivalent to the question

Is f(ew) =
∑

α∈vert(A)

bα · e〈w,α〉 −
∑

α∈A\vert(A)

|bα| · e〈w,α〉 ≥ 0 for all w ∈ Rn ?

Clearly, an a�rmative answer of this question implies nonnegativity of f . The
philosophy behind the relaxation is that, on the one hand, the question of
f(ew) ≥ 0 is eventually easier to answer, since we have linear operations
on the exponents and, on the other hand, the gap between f(ew) ≥ 0 and
nonnegativity hopefully is not too big, in particular for sparse polynomials.
We show that for polynomials supported on a circuit (and some more general
classes of sparse polynomials) both is true: In fact, for circuit polynomials
it holds that f(ew) ≥ 0 if and only if f(x) ≥ 0 and this equivalence can be
characterized exactly, explicitly and easily in terms of the coe�cients of f and
the combinatorial structure of A.

6.2.2 Standard Forms and Norm Minimizers of Polyno-

mials Supported on Circuits

Let f ∈ R[x] be of the Form (6.0.1) de�ned on a circuit A = {α(0), . . . , α(n), y}
⊂ Zn. Observe that there exists a unique convex combination

∑n
j=0 λjα(j) =

y. In the following, we assume w.l.o.g. that α(0) = 0, which is always possible,
since otherwise we can factor out a monomial xα(0) with α(0) ∈ (2N)n. We
de�ne the support matrix MA by

MA =


1 1 · · · 1 1
0 α(1)1 · · · α(n)1 y1
...

...
. . .

...
...

0 α(1)n · · · α(n)n yn

 ∈ Z(n+1)×(n+2)

and MA
j as the matrix obtained by deleting the j-th column of MA, where we

start to count at 0. Furthermore, we always assume that b0 = λ0, which is
always possible, since multiplication with a scalar does not change the variety.
We denote the canonical basis of Rn with e1, . . . , en.

Proposition 6.2.1. Let f be a polynomial of the Form (6.0.1) supported on a
circuit A = {α(0), . . . , α(n), y} ⊂ Zn and y =

∑n
j=0 λjα(j) with

∑n
j=0 λj = 1,

0 < λj < 1 for all j. Let µ ∈ N>0 denote the least common multiple of
the denominators of the λj. Then there exists a unique polynomial g of the
Form (6.0.1) with supp(g) = A′ = {0, α(1)′, . . . , α(n)′, y′} ⊂ Zn such that the
following properties hold.

(1) MA =

(
1 0
0 T

)
MA′ for some T ∈ GLn(Q),

(2) f and g have the same coe�cients,
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(3) α(j)′ = µ · ej for every 1 ≤ j ≤ n,

(4) y′ =
∑n

j=1 λjα(j)′,

(5) f(ew) = g(eT
tw) for all w ∈ Rn.

For every f of the Form (6.0.1) we call the polynomial g, which satis�es
all the conditions of the proposition, the standard form of f . Note that the
support matrix MA′ of the standard form of f is of the shape

MA′ =


1 1 · · · · · · 1 1
0 µ 0 · · · 0 µλ1
... 0

. . .
...

...
...

...
. . . 0

...
0 0 · · · 0 µ µλn

 ∈ Z(n+1)×(n+2). (6.2.1)

Proof. We assume w.l.o.g. that α(0) = 0. Let M
A

n+1 be the submatrix of

MA
n+1 obtained by deleting the �rst row and column; analogously for M

A′

n+1.

By de�nition, we have α(j) = M
A

n+1ej and α(j)′ = M
A′

n+1ej for 1 ≤ j ≤ n.
We construct the polynomial g. We choose the same coe�cients for g as
for f . Since {0, α(1), . . . , α(n)} form a simplex, there exists a unique matrix
T ∈ GLn(Q) such that

MA
n+1 =

(
1 0
0 T

)
MA′

n+1

with MA′ being of the form (6.2.1) and given by µT = (M
A

n+1)−1. Thus, (1)
� (3) holds. Since y =

∑n
j=0 λjα(j), it follows that, in a�ne coordinates, we

have y′j = T−1λj(M
A

n+1ej), i.e., y
′ = µ(λ0, . . . , λn). This is (4).

We show that f(ew) = g(eT
tw) for every w ∈ Rn. We investigate the

monomial xα(j):

bje
〈α(j),w〉 = bje

〈MA
n+1ej ,w〉 = bje

〈TMA′
n+1ej ,w〉 = bje

〈α(j)′,T tw〉

For the inner monomials y and y′ we know that y = Ty′ and thus for y′ =∑n
j=0 λjα(j)′ we have y = T (

∑n
j=0 λjα(j)′) =

∑n
j=0 λjTα(j)′ =

∑n
j=0 λjα(j).

Therefore,

ce〈y,w〉 = ce〈
∑n
j=0 λjα(j),w〉 = ce

∑n
j=0 λj〈α(j),w〉 = ce

∑n
j=0 λj〈α(j)′,T tw〉

= ce〈y
′,T tw〉.

This is (5). �
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Proposition 6.2.1 can easily be generalized to polynomials

f = b0 +
n∑
j=1

bjx
α(j) +

∑
y(i)∈I

aix
y(i) ∈ R[x], (6.2.2)

with New(f) = ∆ = conv{0, α(1), . . . , α(n)} being a simplex and I ⊂ (int(∆)∩
Zn). Every y(i) has a unique convex combination y(i) = λ

(i)
0 +

∑n
j=1 λ

(i)
j α(j)

with λ(i)
j > 0 for all i, j.

Corollary 6.2.2. Let f be de�ned as in (6.2.2). Then Proposition 6.2.1 holds
literally if we apply (4) for every y(i) and de�ne µ as the least common multiple
of the denominators of all λ(i)

j .

Proof. By de�nition of µ, the support matrix MA′ is integral again. Since
in the proof of Proposition 6.2.1 neither uniqueness of y is used nor special
assumptions about y are made, the statement follows. �

Proposition 6.2.3. Let f = λ0 +
∑n

j=1 bjx
α(j) + cxy ∈ P y

∆ be such that c < 0
and y =

∑n
j=1 λjα(j) with

∑n
j=0 λj = 1, λj ≥ 0. Then f(ew) with w ∈ Rn has

a unique extremal point, which is always a minimum.

This proposition was used in [TdW13] (see Lemma 4.2 and Theorem 5.4).
For convenience, we provide an own and easier proof here.

Proof. We investigate the standard form g of f . For the partial derivative
xj∂g/∂xj (we can multiply with xj, since ew ≥ 0) we have

xj
∂g

∂xj
= bjµx

µ
j + cλjµx

λjµ
j

n∏
k=2

xλkµk .

Hence, the partial derivative vanishes for some ew if and only if

exp

(
wjµ−

n∑
k=1

λkµwk

)
= −cλj

bj
.

Since the right hand side is strictly positive, we can apply log | · | on both sides
for every partial derivative and obtain the following linear system of equations:En −

 λ1 · · · λn
...

. . .
...

λ1 · · · λn


 ·

 w1
...

wn

 =

 1/µ(log(λ1) + log(−c)− log(b1))
...

1/µ(log(λn) + log(−c)− log(bn))


Since the matrix on the left hand side has full rank, we have a unique solution.

For arbitrary f , we have f(ew) = g(eT
tw) by Proposition 6.2.1 and, hence,

if w∗ is the unique extremal point for g(ew), then (T t)−1w∗ is the unique
extremal point for f(ew).
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For every w ∈ Rn with ||w|| → ∞ the polynomial f converges against the
terms, which are contained in a particular proper face of New(f). Since all
these terms are strictly positive, f(ew) converges against a number in R>0 ∪
{∞}. Thus, the unique extremal point has to be a global minimum. �

For f ∈ P y
∆ we de�ne s∗f ∈ Rn as the unique vector satisfying
n∏
k=1

(es
∗
k,f )α(j)k = e〈s

∗
f ,α(j)〉 =

λj
bj

for all 1 ≤ j ≤ n.

s∗f indeed is well de�ned, since application of log | · | on both sides yields a
linear system of equations with variables s∗k,f and the rank of this system has
to be n, since conv(A) is a simplex. If the context is clear, then we simply
write s∗ instead of s∗f resp. e

s∗ instead of es
∗
f . We recall that the circuit number

associated to a polynomial f ∈ P y
∆ is given by

Θf =
n∏
j=0

(
bj
λj

)λj
=

n∏
j=1

(
bj
λj

)λj
.

Note that we scaled such that b0 = λ0.

Proposition 6.2.4. For f ∈ P y
∆ and c = −Θf the point s∗ ∈ Rn is a root and

the unique global minimizer of f(ew).

Due to this proposition, we call the point s∗ the norm minimizer of f .
We remark that this proposition was already shown for polynomials in P y

∆ in
standard form in [FK11] and for arbitrary simplices but in a more complicated
way in [TdW13].

Proof. For f(es
∗
) we have

f
(
es
∗)

= λ0 +
n∑
j=1

bje
〈s∗,α(j)〉 −Θfe

〈s∗,y〉 =
n∑
j=0

λj −Θf ·
n∏
j=1

(
λj
bj

)λj
= 1− 1 = 0.

For the minimizer statement we investigate the partial derivatives xj∂f/∂xj
(we can multiply with xj, since ew ≥ 0). Since yj =

∑n
k=1 λjαj(k), we obtain

xj
∂f

∂xj
=

n∑
k=1

bkαj(k)xα(k) −Θf ·

(
n∑
k=1

λjαj(k)

)
xy.

Evaluation of the partial derivative at es
∗
yields

xj
∂f

∂xj
(es
∗
) =

n∑
k=1

bkαj(k)

(
λk
bk

)
−Θf

(
n∑
k=1

λjαj(k)

)
·
n∏
j=1

(
λj
bj

)λj
=

n∑
k=1

λjαj(k)−
n∑
k=1

λjαj(k) = 0.

Finally, by Proposition 6.2.3, es
∗
is the unique global minimizer of f(ew). �
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6.2.3 Nonnegativity of Polynomials Supported on a Cir-

cuit

In this section, we characterize nonnegativity of polynomials in P y
∆. The fol-

lowing lemma allows us to reduce the case of y ∈ ∂∆ to the case y ∈ int(∆).

Lemma 6.2.5. Let f = b0 +
∑n

j=1 bjx
α(j) + c · xy be such that ∆ = New(f) =

conv{0, α(1), . . . , α(n)} is a simplex and y ∈ ∂∆. Let furthermore F be the
face of ∆ containing y. Then f is nonnegative if and only if the restriction of
f to the face F is nonnegative.

Proof. For the necessity of nonnegativity of the restricted polynomial, see
[Rez89]. Otherwise, the restriction to the face F contains the monomial xy and
this restriction is nonnegative. Since all other terms in f correspond to the
(even) vertices of ∆ and have nonnegative coe�cients, the claim follows. �

Now, we can completely characterize the section P y
n,2d. Note that the follow-

ing theorem covers the known special cases of agiforms in [Rez89] and circuit
polynomials in standard form in [FK11].

Theorem 6.2.6. Let f = λ0 +
∑n

j=1 bjx
α(j) +c ·xy ∈ P y

∆ be of the Form (6.0.1)
with α(j) ∈ (2N)n. Then the following are equivalent.

1. f ∈ P y
n,2d, i.e., f is nonnegative.

2. |c| ≤ Θf and y /∈ (2N)n or c ≥ −Θf and y ∈ (2N)n.

Proof. First, observe that f ≥ 0 is trivial for c ≥ 0 and y ∈ (2N)n, since f is
a sum of monomial squares in this case.

We apply the norm relaxation strategy introduced in Section 6.2.1. Ini-
tially, we show that f(x) ≥ 0 if and only if f(ew) ≥ 0 for all f ∈ P y

∆. Let
w.l.o.g. y1, . . . , yk be the odd entries of the exponent vector y. Thus, for
every 1 ≤ j ≤ k, replacing xj by −xj changes the sign of the term c · xy.
Since all other terms of f are nonnegative for every choice of x ∈ Rn, we
have f(x) ≥ 0 if sgn(c) · sgn(x1) · · · sgn(xk) = 1. Since furthermore, for
sgn(c)·sgn(x1) · · · sgn(xk) = −1 we have c·xy = −|c|·|x1|y1 · · · |xn|yn , we can as-
sume c ≤ 0 and x ≥ 0 without loss of generality. Then λ0+

∑n
j=0 bjx

α(j)−|c||x|y
is nonnegative for all x ∈ Rn if and only if this is the case for all x ∈ Rn

≥0.
And since Rn

>0 is an open dense set in Rn
≥0, we can restrict ourselves to the

strictly positive orthant. With the componentwise bijection between Rn
>0 and

Rn given by the Exp-map, it follows that f(x) ≥ 0 for all x ∈ Rn if and only
if f(ew) ≥ 0 for all w ∈ Rn. Hence, the theorem is shown if we prove that this
is the case if and only if c ∈ [−Θf , 0].

Let b1, . . . , bn ∈ R>0 be �xed arbitrarily and (fc)c∈R be the corresponding
family of polynomials in P y

∆. By Proposition 6.2.4, fc(ew) has a unique global
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minimum for c = −Θf attained at s∗ ∈ Rn satisfying f−Θf (e
s∗) = 0. Since es

∗

is a global (norm) minimum, this implies in particular that fc(ew) ≥ 0 for all
w ∈ Rn if c = −Θf .

But this fact also completes the proof for general c < 0: Since c · e〈w,y〉 is
the unique negative term in fc(ew) for all w ∈ Rn, a term by term inspection
yields that fc(ew) < f−Θf (e

w) if and only if c < −Θf . Hence, fc(ew) < 0 for
some w ∈ Rn if and only if c < −Θf . �

An immediate consequence of the theorem is an upper bound for the number
of zeros of polynomials f ∈ P y

n,2d.

Corollary 6.2.7. Let f ∈ P y
n,2d. Then f has at most 2n a�ne real zeros

x ∈ Rn, all of which satisfy |xj| = es
∗
j for 1 ≤ j ≤ n.

Proof. Assume f ∈ ∂P y
n,2d and f(x) = 0 for some x ∈ Rn. Then we know by

the proof of Theorem 6.2.6 that |xj| = es
∗
j . Thus, x = (±es∗1 , . . . ,±es∗n). �

The bound in Corollary 6.2.7 is sharp as demonstrated by the well known
Motzkin polynomial f = 1 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2 ∈ P

y
2,6. The zeros are given

by x = (±1,±1). Furthermore, it is important to note that the maximum
number of zeros does not depend on the degree of the polynomials, which is in
sharp contrast to previously known results concerning the maximum number
of zeros of nonnegative polynomials and sums of squares (see [CLR80]).

In order to illustrate the achievements of this section, we give some exam-
ples. Let f = 1 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2 be the Motzkin polynomial, which

is supported on a circuit A with y =
∑2

j=0
1
3
α(j). We apply Proposition

6.2.1 and compute the standard form g of 1/3 · f . Then g is the polyno-
mial, which is supported on a circuit A′ = {0, α(1)′, α(2)′} satisfying MA =(

1 0
0 T

)
MA′ for some T ∈ GLn(Q) with α(1)′ = (µ, 0)t, α(2)′ = (0, µ)t and

y′ = 1/3α(1)′ + 1/3α(2)′, where µ = lcm{1/λ0, 1/λ1, 1/λ2} = lcm{3, 3, 3} = 3.
Additionally, g has the same coe�cients as f . It is easy to see that

T =

(
4/3 2/3
2/3 4/3

)
and thus

g = 1/3 + 1/3x3
1 + 1/3x3

2 − x1x2.

By Proposition 6.2.1, we have f(ew) = g(eT
tw). The circuit number Θf is

invariant w.r.t. transformation to the standard form, since it only depends on
the coe�cients of f and the convex combination of y. Thus, we have

Θf = Θg =
2∏
j=0

(
λj
bj

)λj
=

(
1/3

1/3

)1/3

·
(

1/3

1/3

)1/3

·
(

1/3

1/3

)1/3

= 1.
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Since y = (2, 2) ∈ (2N)2, by Theorem 6.2.6, f ≥ 0 if and only if the
inner coe�cient c of f satis�es c ≥ −Θf = −1. But the inner coe�cient
c of the Motzkin polynomial equals its negative circuit number. Hence, the
Motzkin polynomial is contained in the boundary of the cone of nonnegative
polynomials.

If c = −Θf , then we know by Proposition 6.2.4 that f(ew) = 0 at the unique
point s∗ with

1/3 · e4s∗1+2s∗2 = 1/3 and 1/3 · e2s∗1+4s∗2 = 1/3.

Thus, s∗ = (0, 0). Since, by the proof of Theorem 6.2.6, f(x) = 0 only if
f(|x1|, |x2|) = 0, we can conclude that every a�ne root v ∈ Rn of the Motzkin
polynomial satis�es |vj| = 1.

We give a second example where nonnegativity is not already known. Let
f = 1/4 + 2 · x2

1x
4
2 + x4

1x
4
2 − 2.5 · x2

1x
3
2. Again, it is easy to see that λ1 = 1/2

and λ2 = 1/4. Hence,

Θf =

(
b1

λ1

)λ1
·
(
b2

λ2

)λ2
= (2 · 2)1/2 · (1 · 4)1/4 = 2 ·

√
2 ≈ 2.828.

Since |c| < Θf , we can conclude that f is a strictly positive polynomial.

6.2.4 A-Discriminants and Gale Duals

For a given (n+1)×m support matrixMA with A ⊂ Zn and conv(A) being full
dimensional, a Gale dual or Gale transformation is an integral m× (m−n−1)
matrix MB such that its rows span the Z-kernel of MA, i.e., for every integral
vector v ∈ Zm with MAv = 0 it holds that v is an integral linear combination
of the rows of MB (see, e.g., [GKZ08, PT]).

If A is a circuit, then MB is a vector with n + 2 entries. It turns out that
this vector is closely related to the global minimum es

∗ ∈ Rn and the circuit
number Θf .

Corollary 6.2.8. Let f =
∑n

j=0 bjx
α(j) + cxy be a polynomial supported on a

circuit A of the Form (6.0.1). Let es
∗ ∈ Rn be the global minimizer and Θf be

the circuit number. Then the Gale dual MB of the support matrix MA is an
integral multiple of the vector(

b0e
〈s∗,α(0)〉, . . . , bne

〈s∗,α(n)〉,−Θfe
〈s∗,y〉) ∈ Rn+2.

Proof. The Gale dualMB needs to satisfyMA(MB)t = 0. Since A is a circuit,
MB spans a 1-dimensional vector space. From y =

∑n
j=0 λjα(j) it follows by

construction of es
∗
and Θf (see proof of Proposition 6.2.4) that(

b0e
〈s∗,α(0)〉, . . . , bne

〈s∗,α(n)〉,−Θfe
〈s∗,y〉) = (λ0, . . . , λn,−1)

and the statement follows by de�nition of MA and y. �
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We furthermore want to point out that the circuit number Θf and the
question of nonnegativity is closely related to A-discriminants. Let A =
{α(1), . . . , α(d)} ⊂ Zn and denote by CA the space of all polynomials of the
form

∑d
j=1 bjz

α(j) with bj ∈ C∗. Since every polynomial in CA is uniquely de-
termined by its coe�cients, CA can be identi�ed with a (C∗)d space. Let ∇A

be the closure of the subset of all polynomials f in CA for which there exists
a point z ∈ (C∗)n such that

f(z) = 0 and
∂f

∂zj
(z) = 0 for all 1 ≤ j ≤ n.

It is well known that ∇A is an irreducible Q-variety. If ∇A is of codimen-
sion 1, then the A-discriminant ∆A is the integral irreducible polynomial in
C[b1, . . . , bd], which has variety ∇A (see, e.g., [GKZ08]).

The discriminant of a polynomial is a very important tool, since it describes
the algebraic boundary of the cone of nonnegative polynomials ([Nie12]). The
following statement is an immediate consequence of Proposition 6.2.4 and The-
orem 6.2.6. Without the nonnegativity aspect, it was already known before
and can also be derived from [GKZ08], [TdW13].

Corollary 6.2.9. A polynomial f ∈ P y
∆ vanishes under the A-discriminant if

and only if f ∈ ∂P y
n,2d if and only if |c| = Θf and y /∈ (2N)n or c = −Θf and

y ∈ (2N)n.

6.3 Sums of Squares Supported on a Circuit

In this section, we completely characterize the section Σy
n,2d. It is particularly

interesting that this section depends heavily on the lattice point con�guration
in ∆, thereby yielding a connection to the theory of lattice polytopes and
toric geometry. By investigating this connection in more detail, we will prove
that the sections P y

2,2d and Σy
2,2d almost always coincide and encounter large

sections, on which nonnegative polynomials are equal to sums of squares (see
Corollaries 6.4.2 and 6.4.4).

Surprisingly, the sums of squares condition is exactly the same as for the
corresponding agiforms in [Rez89]. For this, we brie�y review the Gram matrix
method for sums of squares polynomials. Let Nn

d = {α ∈ Nn : α1+· · ·+αn ≤ d}
and p =

∑r
k=1 h

2
k where p(x) =

∑
α∈Nn2d

a(α)xα and hk(x) =
∑

β∈Nnd
bk(β)xβ.

Let B(β) := (b1(β), . . . , br(β)) and G(β, β′) = B(β) · B(β′) =
∑

k bk(β)bk(β
′).

Comparing coe�cients one has

a(α) =
∑

β+β′=α

G(β, β′) =
∑
β

G(β, α− β).

In this case [B(β)·B(β′)]β,β′∈Nnd is a positive semide�nite matrix. Furthermore,
we need the following well known lemma (see, e.g., [BPT13]).
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Lemma 6.3.1. Let f ∈ Σn,2d be a sum of squares and T ∈ GLn be a matrix
yielding a variable transformation x 7→ Tx. Then f(Tx) also is a sum of
squares.

Theorem 6.3.2. Let f := λ0 +
∑n

j=1 bjx
α(j) + c · xy ∈ P y

n,2d. Then

f ∈ Σy
n,2d if and only if y ∈ ∆∗ or c > 0 as well as y ∈ (2N)n.

Furthermore, if f ∈ Σy
n,2d, then f is a sum of binomial squares.

Proof. First, assume that f ∈ Σy
n,2d. We can assume that c < 0 by the follow-

ing argument: If y ∈ (2N)n then f is obviously a sum of (monomial) squares
for c > 0. If y /∈ (2N)n and c > 0, then, by Lemma 6.3.1, and a suitable
variable transformation as in the proof of Theorem 6.2.6, we can reduce to
the case c < 0. Let f =

∑
h2
k and de�ne M := {β : bk(β) 6= 0 for some k}.

Following [Rez89, Theorem 3.3], we claim that the set L := 2M ∪∆̂∪{y} is ∆̂-
mediated and hence y ∈ ∆∗. For this we write every β ∈ L\ ∆̂ as a sum of two
distinct points in M , which implies that β is an average of two distinct points
in 2M ⊂ L. Note that if G(α, α′) < 0 then bk(α)bk(α

′) < 0 for some k and
hence α 6= α′ and α′ ∈ M . Hence, it su�ces to show that for β ∈ L \ ∆̂ there
exists α with G(α, β − α) < 0. We have a(y) = c < 0, so G(α0, y − α0) < 0
for some α0. If β 6= y then β ∈ L \ (∆̂ ∪ {y}) and a(β) = 0 =

∑
G(α, β − α).

But β ∈ 2M , so G(1
2
β, 1

2
β) > 0 and there must exist α with G(α, β − α) < 0

to make the sum vanish.

Let now y ∈ ∆∗. We investigate two cases. Firstly, y /∈ (2N)n. Then it
su�ces to prove the statement for c = ±Θf by the following argument: Let
f1 = λ0 +

∑n
j=1 bjx

α(j)−c ·xy ∈ P y
n,2d and f2 = λ0 +

∑n
j=1 bjx

α(j) +c ·xy ∈ P y
n,2d.

Let c∗ be such that −c < c∗ < c and f3 = λ0 +
∑n

j=1 bjx
αj + c∗ · xy ∈ P y

n,2d.
Then we have f3 = λ1f1 + λ2f2 with λ1 = c+c∗

2c
, λ2 = c−c∗

2c
and λ1, λ2 > 0,

λ1 + λ2 = 1. By the same argument about the variable transformation as
above (proof of Theorem 6.2.6, Lemma 6.3.1) it su�ces to investigate the
case c = −Θf . Consider the following linear transformation of the variables
x1, . . . , xn.

T : (x1, . . . , xn) 7→
(
(es
∗
)1x1, . . . , (e

s∗)nxn
)
,

where (es
∗
)j denotes the j-th coordinate of the global minimizer es

∗
of f . By

construction, f ∈ Σy
n,2d if and only if f(T (x)) ∈ Σy

n,2d, where

f(T (x)) = λ0 +
n∑
j=1

λjx
α(j) − xy. (6.3.1)

But f(T (x)) is the dehomogenization of an agiform and, therefore, by Theo-
rem 6.1.4, f ∈ Σy

n,2d if and only if y ∈ ∆∗.
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If y ∈ (2N)n, we use the same argument to prove that f is a sum of squares
for c = −Θf . For c > −Θf , the polynomial f is obviously a sum of squares,
since the inner monomial can be written as −Θfx

y plus a sum of squares term
(c+ Θf )x

y.
In [Rez89, Theorem 4.4] it is shown that the agiforms in (6.3.1) are sums

of binomial squares. Thus, for y ∈ ∆∗, the nonnegative polynomials f ∈ P y
n,2d

are also sums of binomial squares, since the binomial structure is preserved
under the variable transformation T . �

Agiforms can be recovered by setting bj = λj and hence Theorems 6.2.6
and 6.3.2 generalize results for agiforms in [Rez89]. Furthermore, by setting
α(j) = 2d · ej for 1 ≤ j ≤ n, we recover what is called an elementary diagonal
minus tail form in [FK11], and, again, Theorems 6.2.6 and 6.3.2 generalize one
of the main results in [FK11] to arbitrary simplices.

We remark that in [Rez89] an algorithm is given to compute such a sum of
squares representation for agiforms in Theorem 6.3.2, which can be generalized
to arbitrary circuit polynomials using the variable transformation T . Theorem
6.3.2 also comes with two immediate corollaries.

Corollary 6.3.3. Let ∆ be an H-simplex and f ∈ P y
∆. Then f ∈ P

y
n,2d if and

only if f ∈ Σy
n,2d.

Proof. Since ∆ is an H-simplex, it holds that ∆∗ = (∆ ∩ Zn) and we always
have y ∈ ∆∗. �

The second corollary concerns sums of squares relaxations for minimizing
polynomial functions. For this, remember that f ∗sos = sup{λ : f − λ ∈ Σn,2d}
is a lower bound for f ∗ = inf{f : x ∈ Rn} (see Chapter 2).

Corollary 6.3.4. Let f ∈ P y
∆. Then f

∗
sos = f ∗ if and only if y ∈ ∆∗.

Proof. We have f ∗sos = f ∗ if and only if f − f ∗ ∈ Σy
n,2d. However, subtracting

the minimum of the polynomial f does not a�ect the question whether y ∈ ∆∗

or not. Hence, if y ∈ ∆∗, this will also hold for the nonnegative polynomial
f − f ∗ and vice versa. �

Now, we consider the case of multiple interior lattice points in the simplex ∆.
In the case that all interior monomials come with a negative coe�cient, we can
write the polynomial as a sum of nonnegative circuit polynomials if and only if
it is nonnegative. Furthermore, we get equivalence between nonnegativity and
sums of squares if the whole support is contained in ∆∗. In the following, let
{λ(i)

0 , . . . , λ
(i)
n } be the (unique) convex combination of y(i) ∈ I ⊂ (int(∆)∩Nn)

and scale such that b0 =
∑|I|

j=1 λ
(j)
0 .

Theorem 6.3.5. Let f =
∑|I|

j=1 λ
(j)
0 +

∑n
j=1 bjx

α(j) −
∑

y(i)∈I aix
y(i) be such

that New(f) = ∆ = conv{0, α(1), . . . , α(n)} is a simplex with α(j) ∈ (2N)n,
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all ai, bj > 0 and I ⊂ (int(∆) ∩ Nn). Then

f ∈ Pn,2d if and only if f =

|I|∑
i=1

Ey(i),

where all Ey(i) ∈ P
y(i)
∆ are nonnegative circuit polynomials with support sets

{0, α(1), . . . , α(n), y(i)}.
If furthermore I ⊆ ∆∗, then we have

f ∈ Pn,2d if and only if f ∈ Σn,2d (6.3.2)

if and only if f is a sum of binomial squares.

In particular, (6.3.2) always holds, if ∆ is an H-simplex.

Again, we get an immediate corollary.

Corollary 6.3.6. Let f be as above and I ⊂ ∆∗. Then f ∗sos = f ∗.

In order to prove Theorem 6.3.5, we need the following lemma.

Lemma 6.3.7. Let f = b0 +
∑n

j=1 bjx
α(j)−

∑
y(i)∈I aix

y(i) be nonnegative with
simplex Newton polytope New(f) = ∆ = conv{0, α(1), . . . , α(n)} for some
α(j) ∈ (2N)n. Furthermore, let I ⊂ (int(∆) ∩ Nn) and ai, bj > 0. Then f has
a global minimizer v∗ ∈ Rn

>0.

Proof. Since all bj > 0 and α(j) ∈ (2N)n, clearly f has a global minimizer
on Rn. Assume that all global minimizers are not contained in Rn

≥0. We
make a term by term inspection for a minimizer v in comparison with |v| =
(|v1|, . . . , |vn|): For every vertex of ∆ we have bjvα(j) = bj|vα(j)|; for every
interior point we have −ai|v|y(i) ≤ −aivy(i) and hence f(v) ≥ f(|v|). This is
a contradiction and therefore at least one global minimizer v∗ is contained in
Rn
≥0.
Assume for at least one component v∗j = 0. We de�ne g = b0+

∑n
j=1 bjx

α(j)−
aix

y(i) for one y(i) ∈ I. By Proposition 6.2.3, g(ew) has a unique global
minimizer on Rn and hence g has a unique global minimizer on Rn

>0. But, by
construction of f and g, we have f(x) < g(x) for all x ∈ Rn

>0 and f(x) = g(x)
for x ∈ Rn

≥0 \ Rn
>0. Thus, v

∗
j 6= 0 for all 1 ≤ j ≤ n. �

Proof. (Proof of Theorem 6.3.5) Let

f =

|I|∑
j=1

λ
(j)
0 +

n∑
j=1

bjx
α(j) −

∑
y(i)∈I

aix
y(i)

be nonnegative and, by Lemma 6.3.7, let v ∈ Rn
>0 be a global minimizer of f .

First, we investigate the case α(j) = αjej for some αj ∈ 2N and ej denoting
the j-th standard vector. For any 1 ≤ k ≤ n we have(

xk
∂f

∂xk

)
(v) = bk · α(k)k · vαkk −

∑
y(i)∈I

ai · y(i)k · vy(i) = 0. (6.3.3)
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Let {λ(i)
0 , . . . , λ

(i)
n } be the coe�cients of the (unique) convex combination of

y(i) ∈ I and λ(i) = (λ
(i)
1 , . . . , λ

(i)
n ) ∈ Rn

>0. For y(i) ∈ I we de�ne

by(i),k =
ai · λ(i)

k · vy(i)

vα(k)
(6.3.4)

Since for all i, k it holds that
∑n

j=1 λ
(i)
k α(j)k = y(i)k and all α(j)k = 0 unless

j = k, we get with (6.3.3) that

bk =
∑
y(i)∈I

by(i),k.

By Proposition 6.2.4 and Theorem 6.2.6, we conclude that

Ey(i)(x) = λ
(i)
0 +

n∑
k=1

by(i),kx
αk
k − aix

y(i)

is a nonnegative circuit polynomial and has its minimum value at v. This
yields the desired decomposition:

f(x) =

|I|∑
j=1

λ
(j)
0 +

n∑
k=1

bkx
αk
k −

∑
y(i)∈I

aix
y(i)

=

|I|∑
j=1

λ
(j)
0 +

n∑
k=1

∑
y(i)∈I

by(i),k

xαkk −
∑
y(i)∈I

aix
y(i) (6.3.5)

=
∑
y(i)∈I

Ey(i)(x).

Now, we head over to the case of arbitrary α(j) ∈ (2N)n. Let v ∈ Rn
>0 be a

global minimizer of f . By Corollary 6.2.2 (and Proposition 6.2.1), there exists
a unique polynomial g satisfying

f(ew) = g(eT
tw) for all w ∈ Rn (6.3.6)

such that T ∈ GLn(R) and g has a support matrix

MA′ =


1 1 · · · · · · 1 1 · · · 1

0 µ 0 · · · 0 µλ
(1)
1 · · · µλ

(|I|)
1

... 0
. . .

...
... · · · ...

...
...

. . . 0
... · · · ...

0 0 · · · 0 µ µλ
(1)
n · · · µλ

(|I|)
n

 ∈ Z(n+1)×(n+|I|)

where µ is the least common multiple of the denominators of all λ(i)
j and 2

(since vertices of New(g) shall be in (2N)n).
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Since v ∈ Rn
>0, we can de�ne Log |v′| = T t Log |v|. By (6.3.5) and (6.3.6),

it follows that v′ is a global minimizer for g and thus in particular

f(v) = f(eLog |v|) = g(eT
t Log |v|) =

|I|∑
i=1

Eµλ(i)(e
Log |v′|)

for some nonnegative circuit polynomials Eµλ(i) with global minimizer v′ ∈ Rn
>0.

Since supp(Eµλ(i)) ⊆ supp(g) and New(Eµλ(i)) = New(g), we have, by
Proposition 6.2.4,

Eµλ(i)(e
Log |v′|) = Ey(i)(e

Log |v|)

such that each Ey(i)(e
Log |v|) is a nonnegative circuit polynomial with global

minimizer v and support set {0, α(1), . . . , α(n), y(i)} satisfying f =
∑|I|

i=1 Ey(i).

If, additionally, every y(i) ∈ ∆∗ (e.g., when ∆ is an H-simplex), we know,
by Theorem 6.3.2, that all Ey(i)(x) are sums of (binomial) squares and hence
f is a sum of (binomial) squares. �

Note that Theorem 6.3.5 generalizes [FK11, Theorem 2.7], where this is
shown for so called diagonal minus tail forms f with α(j) = 2d for 1 ≤ j ≤ n.

We remark that the correct decomposition of the bj in Theorem 6.3.5 for
the case of a general simplex Newton polytope is also given by (6.3.4), since
due to

e〈Log |v|,y(i)−α(j)〉 = e〈(T
t)−1 Log |v′|,T t(µ(λ(i)−ej))〉 = e〈Log |v′|,µ(λ(i)−ej)〉

these scalars remain invariant under the transformation T from resp. to the
standard form.

Example 6.3.8. The polynomial f = 1+ 1
2
x6+ 1

32
y4− 1

2
xy− 1

2
x2y is nonnegative

and has a zero at v = (1, 2). By using the constructions in Theorem 6.3.5, we
can decompose f as sum of two polynomials in P y

n,2d with y ∈ {(1, 1), (2, 1)}
and vanishing at v. More precisely,

f =

(
7

12
+

1

6
x6 +

1

64
y4 − 1

2
xy

)
+

(
5

12
+

1

3
x6 +

1

64
y4 − 1

2
x2y

)
.

Since ∆ is an H-simplex, we have f ∈ Σ2,6. Using the algorithm in [Rez89]
and a suitable variable transformation (see proof of Theorem 6.3.2), we get the
following representation for f as a sum of binomial squares:

f =
1

2
(x− x3)2 +

1

2
(1− x2)2 +

(
x− 1

2
y

)2

+
1

2
(1− y2)2.



106 CHAPTER 6. PSD AND SOS SUPPORTED ON CIRCUITS

6.4 A Su�cient Condition for H -simplices

By Theorem 6.3.2, all nonnegative polynomials in P y
∆ supported on an H-

simplex are sums of squares. Here, we provide a su�cient condition for a
lattice simplex ∆ to be an H-simplex, meaning, that all lattice points in ∆
except the vertices are midpoints of two even distinct lattice points in ∆. In
the following, we call a full dimensional lattice polytope P ⊂ Rn normal, if
every lattice point in kP is a sum of exactly k lattice points in P , i.e.,

k ∈ N,m ∈ kP ∩ Zn ⇒ m = m1 + . . .+mk, m1, . . . ,mk ∈ P ∩ Zn.

The following theorem uses toric ideals. For an introduction of toric ideals,
see, e.g., [Stu97].

Theorem 6.4.1. Let ∆̂ := {α(0), α(1), . . . , α(n)} ⊂ (2N)n and ∆ = conv(∆̂)
be a lattice simplex. Furthermore, let B := 1

2
∆∩Nn and IB be the corresponding

toric ideal of B. If

1. IB is generated in degree two, i.e., IB = 〈IB,2〉 and

2. the simplex 1
2
∆ is normal,

then ∆ is an H-simplex.

Proof. Let L := (∆ ∩ Nn) \ ∆̂. Note that for u ∈ L \ (2N)n the statement
follows from normality of 1

2
∆, since we have u = s+ t with s, t ∈ B. Therefore,

u = 2s+2t
2

. Now, let{
1

2
α(0), . . . ,

1

2
α(n)

}
= {α(0)′, . . . , α(n)′}

be the vertices of 1
2
∆̂ and consider u ∈ B \ 1

2
∆̂. By clearing denominators in

the unique convex combination of u we get a relation

N · u = λ0α(0)′ + · · ·+ λnα(n)′, N =
n∑
i=0

λi, λi ≥ 0.

For the corresponding toric ideal IB, this yields that xNu −
∏n

i=0 x
λi
α(i)′ ∈ IB.

Since IB is generated in degree two, we have the following representation:

xNu −
n∏
i=0

xλiα(i)′ =
∑

m,n∈NB
|m|=|n|=2

fm,n(xm − xn)

for some polynomials fm,n. Matching monomials, it follows that there exists
m such that xm = x2

u (note that fm,n contains xN−2
u ). Since |m| = 2, we have

x2
u − xvxv′ ∈ IB with v, v′ ∈ B, yielding the relation 2u = 2v+2v′

2
. �
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Corollary 6.4.2. Let ∆ ⊂ R2 be a lattice simplex as in Theorem 6.4.1 such
that 1

2
∆ has at least four boundary lattice points. Then ∆ is an H-simplex.

Proof. Since every 2-polytope is normal, we only need to prove that the corre-
sponding toric ideals are generated in degree two. But this is [Koe93, Theorem
2.10]. �

Hence, in R2, almost every simplex ∆ with even vertices is an H-simplex, a
fact that was claimed in [Rez89] without proof. This yields that the sections
P y

2,2d and Σy
2,2d almost always coincide.

Example 6.4.3. We demonstrate Theorem 6.4.1 by two interesting examples.

1. The Newton polytope of the Motzkin polynomial

m = 1 + x4y2 + x2y4 − 3x2y2 ∈ P2,6 \ Σ2,6

is an M-simplex ∆ = conv{(0, 0), (4, 2), (2, 4)} such that 1
2
∆ has exactly

three boundary lattice points. One can check that the corresponding toric
ideal IB is generated by cubics.

2. Note that the conditions in Theorem 6.4.1 are not equivalent. The sim-
plex ∆ = conv{(0, 0), (2, 4), (10, 6)} is easily checked to be an H-simplex,
but ∂ 1

2
∆ contains exactly three lattice points.

In higher dimensions things get more involved both in checking the condi-
tions in Theorem 6.4.1 and in determining the maximal ∆̂-mediated set ∆∗.
Note that ∆∗ can lie strictly between A(∆̂) and (∆ ∩ Zn), which correspond
to M -simplices resp. H-simplices. In [Rez89] an algorithm for computing ∆∗

is proposed. However, one expects to do better, but to our best knowledge,
there is no algorithm known being more e�cient. On the other hand, checking
normality of polytopes and quadratic generation of toric ideals is an active
area of research. It is an open problem to decide whether every smooth lattice
polytope is normal and the corresponding toric ideal is generated by quadrics
(see, e.g., [Gub12, Stu97]). However, for an arbitrary lattice polytope P , the
multiples kP are normal for k ≥ dimP −1 and their toric ideals are generated
by quadrics for k ≥ dimP ([BGT97]). In light of these results, we can draw
another interesting corollary from Theorem 6.4.1.

Corollary 6.4.4. Let ∆ ⊂ Rn be a lattice simplex as in Theorem 6.4.1 such
that 1

2
∆ = M∆′ for a lattice simplex ∆′ ⊂ Rn and M ≥ n. Then ∆ is an

H-simplex.

Proof. The result follows from the previously quoted results together with
Theorem 6.4.1. �

Note that Corollaries 6.4.2 and 6.4.4 yield large sections on which nonneg-
ative polynomials and sums of squares coincide.
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6.5 Convex Polynomials Supported on Circuits

In this section, we investigate convex polynomials/forms supported on a cir-
cuit. Recently, there is much interest in understanding the convex cone of con-
vex polynomials/forms. Since deciding convexity of polynomials is NP-hard in
general [AOPT13], but very important in di�erent areas in mathematics, such
as, e.g., in convex optimization, it is natural to investigate properties of the
cone of convex polynomials/forms.

De�nition 6.5.1. Let f ∈ R[x]. Then f is convex if the Hessian Hf of f
is positive semide�nite for all x ∈ Rn, or, equivalently, vtHf (x)v ≥ 0 for all
x,v ∈ Rn.

Unlike the property of nonnegativity and sums of squares, convexity of
polynomials is not preserved under homogenization. Therefore, we need to
distinguish between convex polynomials and convex forms. The relationship
between convexity and nonnegativity resp. sums of squares arises when con-
sidering homogeneous polynomials, since every convex form is nonnegative.
However, the relation between convex forms and sums of squares is not well
understood except the fact that these cones are not included in each other.
The problem to �nd a convex form that is not a sum of squares is still open.
For an overview and proofs of the previous facts see, e.g., [BPT13, Rez11].
Here, we look for convex polynomials/forms in the class P y

∆. We start with
the univariate (nonhomogeneous) case.

Proposition 6.5.2. Let f = 1+axy + bx2d ∈ P y
∆ and b > 0. Then f is convex

exactly in the following cases.

1. y = 1,

2. a > 0 and y = 2l for y > 1 and l ∈ N.

Proof. Let f = 1 + axy + bx2d. Note that the degree is necessarily even and
b > 0. Then f is convex if and only if D2(f) ≥ 0 where D2(f) = ay(y −
1)xy−2 + 2db(2d − 1)x2d−2. For y = 1 the polynomial D2(f) is a square and
hence f is convex. Now, consider the case y > 1. First, suppose that a < 0.
Then D2(f) is always inde�nite, since the monomial xy−2 in D2(f) corresponds
to a vertex of the corresponding Newton polytope of D2(f) and has a negative
coe�cient. Otherwise, if a > 0 and y = 2l for l ∈ N, then D2(f) ≥ 0 and
f is convex. If y = 2l + 1 then xy−2 has an odd power and hence D2(f) is
inde�nite, implying that f is not convex. �

The homogeneous version is much more di�cult than the a�ne version. We
just prove the following claims instead of giving a full characterization.

Proposition 6.5.3. Let f = z2d + axyz2d−y + bx2d ∈ P y
∆ be a form and b > 0.

Then the following hold.
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1. For y = 2l − 1, l ∈ N, or a < 0, the form f is not convex.

2. For y = 2l and 0 < a ≤ (y−1)(2d−y−1)
y(2d−y)

the form f is convex.

Proof. We have

∂2f

∂z2
= 2d(2d− 1)z2d−2 + (2d− y)(2d− y − 1)axyz2d−y−2.

Evaluating this partial derivative at z = 1, in order to be nonnegative, it is
obvious that y must be even and a ≥ 0, proving the �rst claim. For the second
claim, we investigate the principal minors of Hf . We have that ∂2f

∂x2
≥ 0 if and

only if D2(f) ≥ 0 where D2(f) is the dehomogenized polynomial ∂2f
∂x2

(x, 1).

This yields y = 1 or a ≥ 0 and y = 2l. From ∂2f
∂z2

we get again that y
must be even and a ≥ 0. Finally, one can check that all exponents of the
dehomogenized determinant detHf (x, 1) are even and have positive coe�cients
for 0 < a ≤ (y−1)(2d−y−1)

y(2d−y)
. Hence, for y = 2l and 0 < a ≤ (y−1)(2d−y−1)

y(2d−y)
the form

f is convex. �

Note that for y = 1 the form f = z2d+axyz2d−y+bx2d ∈ P y
∆ is never convex,

whereas, by Proposition 6.5.2, the dehomogenized polynomial is always convex.
As a sharp contrast, we prove the surprising result that for n ≥ 2 there are no
convex polynomials in the class P y

∆, implying that there are no convex forms
in P y

∆ for n ≥ 3.

Theorem 6.5.4. Let n ≥ 2 and f ∈ P y
∆. Then f is not convex.

Proof. Let

f = 1 +
n∑
j=1

Ajx
α(j)1
1 · . . . · xα(j)n

n +Bxy11 · . . . · xynn

with Aj > 0 for 1 ≤ j ≤ n and B ∈ R∗. We will prove that the principal
minor [1, 2]× [1, 2] (deleting all rows and columns except the �rst and second
one) of the Hessian of f is inde�nite, implying that the Hessian of f is not
positive semide�nite and hence the polynomial f is not convex. We have

∂2f

∂x2
1

∂2f

∂x2
2

−
(

∂2f

∂x1x2

)2

=
n∑
j=1

n∑
i=1

(
cjx

α(j)1−2
1 x

α(j)2
2 · . . . · xα(j)n

n + d1x
y1−2
1 xy22 · . . . · xynn

)
·
(
cix

α(i)1
1 x

α(i)2−2
2 · . . . · xα(n)i

n + d2x
y1
1 x

y2−2
2 xy33 · . . . · xynn

)
−

(
n∑
k=1

ckx
α(k)1−1
1 x

α(k)2−1
2 x

α(k)3
3 · . . . · xα(k)n

n + d3x
y1−1
1 xy2−1

2 xy33 · . . . · xynn

)2
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where

cj := Ajα(j)1α(j)1 − 1,

ci := Aiα(i)1α(i)1 − 1,

ck := Akα(k)1α(k)2,

d1 := By1(y1 − 1),

d2 := By2(y2 − 1),

d3 := By1y2.

We claim that there is a point x ∈ Rn at which this minor is negative. For

this, note that all exponents in
(

∂2f
∂x1x2

)2

also appear in ∂2f
∂x21

∂2f
∂x22

. Hence, we can

restrict to the latter ones. The
(
n+2

2

)
di�erent exponents are of the following

type:

(1) (2α(j)1 − 2, 2α(j)2 − 2, 2α(j)3, . . . , 2α(j)n) for 1 ≤ j ≤ n

(2) (α(i)1 +α(j)1− 2, α(i)2 +α(j)2− 2, α(i)3 +α(j)3, . . . , α(i)n +α(j)n) for
1 ≤ i < j ≤ n.

(3) (α(j)1 + y1 − 2, α(j)2 + y2 − 2, α(j)3 + y3, . . . , α(j)n + yn) for 1 ≤ j ≤ n

(4) (2y1 − 2, 2y2 − 2, 2y3, . . . , 2yn)

We claim that the point (2y1−2, 2y2−2, 2y3, . . . , 2yn) is always a vertex in the
convex hull of the points (1)-(4), i.e., in the Newton polytope of the investigated
minor. The points in (2) are obviously convex combinations from appropriate
points in (1) and the points in (3) are convex combinations from points in (1)
and (4). Hence, it remains to show that (4) is not a convex combination of the
points in (1). Therefore, denote the points in (1) by Pj and the point in (4)
by Q. Let

Q =
n∑
j=1

µjPj with
n∑
j=1

µj = 1 and µj ≥ 0 for all 1 ≤ j ≤ n.

But since
∑n

j=1 µj(−2) = −2, this equation is equivalent to

y =
n∑
j=1

µjα(j) with
n∑
j=1

µj = 1 and µj =
1

2
for all 1 ≤ j ≤ n.

But this means that y lies on the boundary of ∆, the Newton polytope of
f . This is a contradiction, since f ∈ P y

∆, in particular, y ∈ int(∆). Hence,
(4) is a vertex of the Newton polytope of the investigated minor. Extracting
the coe�cient of its corresponding monomial in the minor, we get that this
coe�cient equals −B2y1y2(y1 + y2 − 1) < 0. Therefore, the Newton polytope
of the minor of the Hessian of f has a vertex coming with a negative coe�cient
and hence it is inde�nite, proving the claim. �
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Note that this already implies that there is also no convex form in P y
∆

whenever n ≥ 3, since non-convexity is preserved under homogenization. Since
it is mostly unclear which structures prevent polynomials from being convex,
Theorem 6.5.4 is an indication that sparsity is among these structures.

6.6 Sums of Nonnegative Circuit Polynomials

Motivated by results in previous sections, we introduce a new family of non-
negativity certi�cates.

De�nition 6.6.1. We de�ne the set of sums of nonnegative circuits polyno-
mials (SONC) as

Cn,2d :=

{
f ∈ R[x]2d : f =

k∑
i=1

µigi, µi ≥ 0, gi ∈ P y
∆i
∩ Pn,2d

}

for some simplices ∆i ⊂ Rn.

Remember that membership in P y
n,2d can be easily checked and is completely

characterized by the circuit number Θf (Theorem 6.2.6). Obviously, for α, β ∈
R>0 and f, g ∈ Cn,2d, it holds that αf +βg ∈ Cn,2d and hence Cn,2d is a convex
cone. Then we have the following relations.

Proposition 6.6.2. The following relationships hold between the correspond-
ing cones.

1. Cn,2d ⊂ Pn,2d,

2. Cn,2d * Σn,2d and Σn,2d * Cn,2d,

3. Cn,2d ∩Kn,2d = {0} for n ≥ 2, where Kn,2d is the cone of convex polyno-
mials.

Proof. Since µigi ∈ Pn,2d, the �rst inclusion is obvious. Considering sums of
squares, the Motzkin polynomial is a sum of nonnegative circuit polynomials
but not a sum of squares, proving the �rst non-inclusion. For the second
one, we use the following argument. Let f ∈ Σ2,6 be such that f has nine
zeros. Concretely, let f = f 2

1 + f 2
2 , where the two cubics f1, f2 intersect in

nine distinct real points. If f =
∑k

i=1 µigi, µi ≥ 0, gi ∈ P y
∆i
∩ Pn,2d for some

simplices ∆i, then all gi ∈ P y
∆i
∩ Pn,2d must vanish at the nine intersection

points, in contradiction to Corollary 6.2.7, yielding at most 22 = 4 zeros for
gi. The property Cn,2d * Kn,2d for n ≥ 2 immediately follows from Theorem
6.5.4. �

Hence, the convex cone Cn,2d serves as a nonnegativity certi�cate, which,
by Proposition 6.6.2, is very di�erent than sums of squares certi�cates.
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Example 6.6.3. Let f = 3 + 4x6 + 4y6 + x8 + x4y4 − 3xy + 5x3y + 2x4y2.
The Newton polytope New(f) = conv{(0, 0)T , (0, 4)T , (4, 4)T , (8, 0)T )} is not a
simplex and f ∈ C2,8. An explicit representation is given by

f = (1 + x6 + 2y4 − 3xy) + (1 + 3x6 + 2y4 + 5x3y) + (1 + x8 + x4y4 + 2x4y2).

Of course, it is a priori completely unclear, which type of nonnegative poly-
nomials have a SONC decomposition resp. how big the gap between Cn,2d and
Pn,2d is. Furthermore, it is not obvious how to compute such a decomposition,
if it exists. But, as a promising and fruitful �rst step, we can deduce the
following corollary from Theorem 6.3.5.

Corollary 6.6.4. Let f = b0 +
∑n

j=1 bjx
α(j) +

∑k
i=1 aix

y(i) be nonnegative with
bj ∈ R>0 and ai ∈ R∗ such that New(f) = ∆ = conv{0, α(1), . . . , α(n)} is a
simplex and all y(i) ∈ (int(∆) ∩ Nn). If there exists a vector v ∈ (R∗)n such
that aivy(i) < 0 for all 1 ≤ i ≤ k, then f is SONC.

Proof. Every monomial square is a strictly positive term as well as a 0-simplex
circuit polynomial. Thus, we can ignore these terms. If a particular vector
v ∈ (R∗)n with the desired properties exists, then Theorem 6.3.5 immediately
yields a SONC decomposition after a variable transformation xj 7→ −xj for all
j with vj < 0. �

6.7 Extension to Arbitrary Polytopes

In Section 6.3, for f ∈ P y
∆, we proved that f ∈ Σy

n,2d if and only if y ∈ ∆∗. One
might wonder whether this equivalence does also hold for arbitrary polytopes.
More precisely, let Q ⊂ Rn be an arbitrary lattice polytope with even vertices
and denote by AP y

Q the set of all polynomials of the form
∑

α∈vert(Q) bαx
α+cxy

that are supported on the vertices vert(Q) of Q and an additional interior
lattice point y ∈ int(Q). As a generalization of our previous notation, we call
f ∈ AP y

Q an agiform if
∑

α∈vert(Q) bαα = y and
∑

α∈vert(Q) bα = 1, all bα > 0
and c = −1.

In [Rez89] it is asked whether the lattice point criterion y ∈ Q∗ is again an
equivalent condition for a polynomial in AP y

Q to be a sum of squares. Here,
we provide a solution to this question. Let P y

Q resp. Σy
Q denote the set of non-

negative resp. sums of squares polynomials in AP y
Q. As for a simplex ∆, for

an arbitrary lattice polytope Q we use the same de�nition of an M -polytope
resp. an H-polytope as for anM -simplex resp. an H-simplex (see Section 6.1).

The implication f ∈ Σy
Q ⇒ y ∈ Q∗ does always hold. For agiforms, this

is proved already in [Rez89]. The proof in the case of arbitrary coe�cients
follows exactly the same line as the proof of Theorem 6.3.2, since it mainly
uses negativity of the interior monomial, which we can assume by suitable
variable transformations as before. However, the reverse direction fails to be
true in general as we now prove.
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Proposition 6.7.1. There exists f ∈ P y
Q \ Σy

Q and y ∈ Q∗.

Proof. We provide an explicit example. Let

Q = conv{v0, v1, v2, v3} = conv{(0, 0), (4, 0), (4, 2), (2, 4)}, y = (2, 2).

It is easy to check that Q is anH-polytope (indeed, it can actually be proved
that Theorem 6.4.1 is true for arbitrary polytopes). Since Q is not a simplex,
there are many convex combinations of y:

y = λ0v1 + λ1v1 + λ2v2 + λ3v3,
3∑
i=0

λi = 1, λi ≥ 0.

The set of convex combinations of y is given by{
(λ0, λ1, λ2, λ3) =

(
1

2
− 1

2
λ3,−

1

2
+

3

2
λ3, 1− 2λ3, λ3

)
:

1

3
≤ λ3 ≤

1

2

}
.

The corresponding agiform f(Q, λ, y) is then given by

f(Q, λ, y) =

(
1

2
− 1

2
λ3

)
+

(
−1

2
+

3

2
λ3

)
x4 + (1− 2λ3)x4y2 + λ3x

2y4 − x2y2.

For λ3 = 2
5
, the nonnegative polynomial

f =
3

10
+

1

10
x4 +

1

5
x4y2 +

2

5
x2y4 − x2y2

can easily be checked to be not a sum of squares (in spite of the fact that
y ∈ Q∗.) �

Actually, one can prove that the polynomial f(Q, λ, y) in the above proof
is a sum of squares if and only if λ3 = 1

2
. In [Rez89] the author suspects that

the condition y ∈ Q∗ is not su�cient by looking at similar examples. However,
in all of these examples the constructed polynomials that are nonnegative but
not a sum of squares are not supported on the vertices of Q and an additional
interior lattice point y ∈ int(Q). We conclude that in the non-simplex case the
problem of deciding the sums of squares property depends on the coe�cients
of the polynomials, a sharp contrast to the simplex case. However, motivated
by a question in [Rez89] for agiforms we are interested in the following sets:
Let C(y) denote the set of convex combinations of the interior lattice point
y ∈ int(Q), i.e.,

C(y) =

{
λ = (λ0, . . . , λs) : y =

s∑
i=0

λivi,

s∑
i=0

λi = 1, λi ≥ 0

}
where vi are the s vertices of Q. Note that C(y) is a polytope. Fixing f and
y, we de�ne

SOS(f, y) = {λ ∈ C(y) : f(Q, λ, y) is a sum of squares}



114 CHAPTER 6. PSD AND SOS SUPPORTED ON CIRCUITS

where Q = New(f). We have already seen in the proof of Proposition 6.7.1
that the structure of SOS(f, y) is unclear and highly depends on the convex
combinations of y. It is formulated as an open question in [Rez89], whether
one can say something about SOS(f, y) for �xed f and y. For this, let

Q = Q
(i)
1 ∪ · · · ∪Q

(i)
r(i)

be a triangulation of Q for 1 ≤ i ≤ t, where t is the number of triangulations
of Q without using new vertices. We are interested in those simplices Q(i)

j

that contain the point y ∈ int(Q) and their maximal mediated sets (Q
(i)
j )∗.

Recall that for every lattice simplex ∆ with vertex set ∆̂ we denote ∆∗ as the
maximal ∆̂-mediated set (see Section 6.1).

Theorem 6.7.2. Let Q ⊂ Rn be a lattice n-polytope, y ∈ (int(Q) ∩ Nn), and
f ∈ AP y

Q be an agiform. Then SOS(f, y) = C(y), i.e., every agiform is a sum

of squares, if and only if y ∈ Q(i)
j implies y ∈ (Q

(i)
j )∗ for every 1 ≤ i ≤ t and

1 ≤ j ≤ r(i).

Proof. Assume y ∈ Q
(i)
j ⇒ y ∈ (Q

(i)
j )∗ for every 1 ≤ i ≤ t and 1 ≤ j ≤

r(i). Let λ ∈ C(y) with f(Q, λ, y) being the corresponding agiform. By
[Rez89, Theorem 7.1], every agiform can be written as a convex combination
of simplicial agiforms. In fact, following the proof in [Rez89, Theorem 7.1], it
can be veri�ed that the vertices of the corresponding simplicial agiforms form
a subset of the vertices of Q, since the set C(y) of convex combinations of y is
a polytope with vertices being a subset of vert(Q). Hence, these agiforms come
from triangulating the polytope Q into simplices without using new vertices.
Since y ∈ (Q

(i)
y )∗, by Theorem 6.1.4, the corresponding simplicial agiforms are

always sums of squares and since f(Q, λ, y) is a sum of them, the claim follows.
For the reverse direction, we prove that y ∈ Q(i)

y,k and y /∈ (Q
(i)
y,k)
∗ for some

i, k implies that SOS(f, y) 6= C(y). Therefore, let Q(i) be a triangulation
of Q and k ∈ {1, . . . , r(i)} be such that y ∈ Q

(i)
y,k and y /∈ (Q

(i)
y,k)
∗. Suppose

vert(Q) = {v1, . . . , vm}. Then C(y) is a polytope of dimensionm−(n+1) =: d.
Let

f(Q, λ, y) =
m∑
i=1

λi(µ1, . . . , µd)x
vi − xy

be the corresponding agiform. Note that the coe�cients λi depend on d param-
eters µ1, . . . , µd, since dimC(y) = d. By assumption, there exist a1, . . . , ad ∈
R>0 such that f(Q, λ, y)|(µ1,...,µd)=(a1,...,ad) = g is a simplicial agiform with re-

spect to the simplex Q(i)
y,k. Since y /∈ (Q

(i)
y,k)
∗, the agiform g is not a sum of

squares. By continuity, we can construct a sequence (µ1, . . . , µd) converging
against (a1, . . . , ad) with the properties that f(Q, λ, y)|(µ1,...,µd)=(a1+ε,...,ad+ε) is
an agiform for some ε > 0 with its support equal to {v1, . . . , vm, y} and not
being a sum of squares, since, otherwise, if every sequence member is a sum of
squares, this will also hold for the limit agiform g corresponding to (a1, . . . , ad)
by closedness of the cone of sums of squares. Hence, SOS(f, y) 6= C(y). �



6.8. OUTLOOK 115

Example 6.7.3. Let again

Q = conv{v0, v1, v2, v3} = conv{(0, 0), (4, 0), (4, 2), (2, 4)}

be as in the proof of Proposition 6.7.1. There are six interior lattice points in
Q given by

int(Q) ∩ Nn = {(1, 1), (2, 1), (3, 1), (2, 2), (2, 3), (3, 2)}.

Since Q has four vertices, C(y) for y ∈ (int(Q) ∩Nn) has a free parameter λ3

(see proof of Proposition 6.7.1). In the following table, for all y ∈ (int(Q)∩Nn),
we provide the range of the free parameter λ3 yielding valid convex combina-
tions for y as well as the set SOS(f, y).

y λ3 SOS(f, y)

(1, 1) 1
6
≤ λ3 ≤ 1

4
λ3 ∈ [0.191; 1

4
]

(2, 1) 0 ≤ λ3 ≤ 1
4

λ3 ∈ [0; 1
4
]

(3, 1) 0 ≤ λ3 ≤ 1
4

λ3 ∈ [0; 1
4
]

(2, 2) 1
3
≤ λ3 ≤ 1

2
λ3 ∈ {1

2
}

(2, 3) 2
3
≤ λ3 ≤ 3

4
λ3 ∈ [0.683; 3

4
]

(3, 2) 1
6
≤ λ3 ≤ 1

2
λ3 ∈ [1

4
; 1

2
]

The sets SOS(f, y) are computed with SOSTOOLS ([PPSP05]). Note that
Q has two di�erent triangulations (see Figure 6.7). The lattice points (2, 1)

and (3, 1) are the only lattice points that satisfy y ∈ Q(i)
j ⇒ y ∈ (Q

(i)
j )∗ for all

i ∈ {1, 2} and j ∈ {1, . . . , r(i)}. Hence, exactly for y ∈ {(2, 1), (3, 1)}, every
agiform is a sum of squares.

6.8 Outlook

We want to give an outlook for possible future directions of research. Starting
with the section Σy

n,2d, we renew some open questions in [Rez89]. Is there
an algorithm to compute ∆∗ that is more e�cient as the one in [Rez89]?
What can be said about the asymptotics of ∆∗, in particular, what is the
�probability� that a simplex is an H-simplex? This is settled in R2 in Corollary
6.4.2, but seems widely open for n > 2. However, every su�ciently large
simplex is an H-simplex (see Corollary 6.4.4). Tackling this problem from the
viewpoint of toric geometry (see Theorem 6.4.1), it would be a breakthrough
to characterize simplices that are normal and their corresponding toric ideals
are generated by quadrics. In Section 6.6 we introduced the convex cone
Cn,2d of sums of nonnegative circuit polynomials, which is di�erent from the
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Figure 6.2: The two di�erent triangulations of Q.

convex cone of sums of squares. From a practical point of view, the major
problem is to determine the complexity of checking membership in Cn,2d. In
particular, when is every nonnegative polynomial a sum of nonnegative circuit
polynomials? In Corollary 6.6.4, we already proved this for a rich class of
nonnegative polynomials, but we suspect that the relationship between Pn,2d
and Cn,2d should be more delicate. Another very interesting problem is to look
for more classes of polynomials, for which nonnegativity can be derived by the
norm relaxation method introduced in subsection 6.2.1.



Chapter 7

Lower Bounds for Polynomials

with Simplex Newton Polytopes

Based on Geometric Programming

Finding lower bounds for real polynomials is a central problem in polyno-
mial optimization. Several well known approaches to this problem work well
in small dimension or with additional structure enforced on the polynomi-
als. The best known lower bounds are provided by Lasserre relaxations using
semide�nite programming (see Sections 2.3 and 2.4). In spite of the fact that
the optimal value of a semide�nite program can be computed in time polyno-
mial up to an additive error, the size of these programs grows rapidly with the
number of variables or degree of the polynomials. Therefore, recently, there is
much interest in �nding lower bounds for polynomials using the alternative ap-
proach of geometric programming (see (7.2.1) for a formal de�nition). In recent
works [GM12, GM13] several important observations are made for polynomial
optimization via geometric programming. The two key observations are the
following ones:

1. Lower bounds based on geometric programming are not as good as
bounds obtained by semide�nite programming.

2. Even higher dimensional examples can be solved quite fast with geomet-
ric programming whereas semide�nite programs do not yield an output
at all due to the too high dimension resp. degree of polynomials.

For f ∈ R[x]2d of degree 2d we consider again the polynomial optimization
problem

f ∗ := inf{f(x) : x ∈ Rn} = sup{λ ∈ R : f − λ ≥ 0}

with the lower bound f ∗sos given by the semide�nite relaxation of f ∗ as

f ∗sos = sup

{
λ ∈ R : f − λ =

k∑
i=1

q2
i for some qi ∈ R[x]

}
.

117
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Based on our results in Chapter 6, in this chapter we extend results in
[GM12] in order to provide lower bounds for polynomials using geometric pro-
grams, which can be solved in time polynomial in the input using interior point
methods ([NN94]). We denote these lower bounds by f ∗gp.

In fact, this extension relies on the key observation that nonnegativity can
not only be certi�ed via sums of squares, but also via sums of nonnegative
circuit polynomials (abbrev. SONC), which we introduced in Chapter 6, Sec-
tion 6.6. In [FK11] Fidalgo and Kovacec provide nonnegativity resp. sums of
squares certi�cates for a class of polynomials, which have the scaled standard
simplex conv{0, 2d · e1, . . . , 2d · en} as Newton polytopes. In [GM12] Ghasemi
and Marshall show that these certi�cates can be translated into geometric pro-
grams in order to �nd lower bounds for polynomials. But since the certi�cates
in [FK11] are special instances of the ones in Chapter 6, it is self-evident to
ask, whether the translation into geometric programs can also be generalized.
The purpose of this chapter is to show that this is indeed the case.

As main theoretical results we contribute in this chapter some easily check-
able criteria on the coe�cients of a polynomial, which imply that the polyno-
mial is a sum of nonnegative circuit polynomials (Theorems 7.1.1 and 7.1.2). In
many cases this implies that the polynomial is also a sum of binomial squares.
The key observation is that, as in [GM12], these criteria can be translated into
geometric optimization problems (Corollary 7.2.2), which are naturally con-
nected to SONC certi�cates (Theorem 7.1.3). As a surprising fact we show in
Corollary 7.1.4 that for very rich classes of polynomials with simplex Newton
polytope, the optimal value f ∗gp satis�es f

∗
gp ≥ f ∗sos, in contrast to the general

observation by Ghasemi and Marshall in [GM12, GM13], which we outlined in
the beginning. Additionally, the computation of f ∗gp is much faster than in the
corresponding semide�nite optimization problem. This is a win-win situation
and establishes a very interesting connection between sums of nonnegative cir-
cuits and geometric programming.

Let f ∈ R[x]2d be of the form f =
∑

α∈Nn2d
fαx

α. Throughout this chapter we
assume that New(f) = ∆ is a simplex with even vertex set {0, α(1), . . . , α(n)} ⊂
Nn

2d and corresponding coe�cients f0, fα(j) > 0 for 1 ≤ j ≤ n. Following exist-
ing literature [FK11, GM12, Las07], we de�ne

Ω(f) = {α ∈ Nn
2d : fα 6= 0} \ {0, α(1), . . . , α(n)}.

Hence, we have a decomposition

f = f0 +
∑

α∈Ω(f)

fαx
α +

n∑
j=1

fα(j)x
α(j)

where f0 is the constant term in f . Let

∆(f) = {α ∈ Ω(f) : fαx
α is not a square}

= {α ∈ Ω(f) : fα < 0 or αi is odd for some 1 ≤ i ≤ n}.
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The degree of our extension of the work [GM12] is strongly based on our results
in Chapter 6. It relies on decompositions of nonnegative polynomials as sums
of nonnegative circuit polynomials. When considering the scaled standard
simplex 2d∆n−1 as the Newton polytope of a polynomial, our results coincide
with the results in [GM12]. Therefore, considering arbitrary simplices yields
a signi�cant extension of [GM12] and contains the scaled standard simplex
2d∆n−1 as one special instance.

7.1 A Su�cient Condition on the Coe�cients of

a Polynomial for the SONC Property

In this section, we provide su�cient criteria on the coe�cients of a polynomial
that imply the SONC property of a polynomial (see De�nition 6.6.1), thereby
generalizing many existing results in the literature along the way. For the re-
mainder of this chapter we make the following assumption.

Asssumption: Let f ∈ R[x]2d be a polynomial such that its Newton poly-
tope New(f) = ∆ with vertices {0, α(1), . . . , α(n)} ⊂ (2N)n is a simplex.

Note that every α ∈ Ω(f) can be written as a unique convex combination
of the vertex set {0, α(1), . . . , α(n)}:

α =
n∑
i=0

λ
(α)
i α(i) with

n∑
i=0

λ
(α)
i = 1 and λ

(α)
i ≥ 0 (7.1.1)

where λ(α)
0 , . . . , λ

(α)
n ∈ R≥0 denote the scalars in the convex combination of

α ∈ Ω(f) in terms of the vertices of New(f). Thus, we can write the polynomial
f as

f =
∑

α∈Ω(f)

λ
(α)
0 +

n∑
j=1

fα(j)x
α(j) +

∑
α∈Ω(f)

fαx
α (7.1.2)

with fα(j) > 0 for 1 ≤ j ≤ n and fα ∈ R. Scaling the polynomial by a new

constant positive term f0 =
∑

α∈Ω(f) λ
(α)
0 is obviously irrelevant for nonnega-

tivity of f and for polynomial optimization. The chosen scaling will turn out
to be very suitable for our statements. In order to further simplify connections
to the results in [FK11, GM12] we consider the homogenized polynomial

F =
n∑
j=0

fα(j)x
α(j)x

2d−|α(j)|
0 +

∑
α∈Ω(f)

fαx
αx

2d−|α|
0

with α(0) = 0 ∈ Nn, fα(0) =
∑

α∈Ω(f) λ
(α)
0 and |α| =

∑n
j=1 |αj| ∈ [0, 2d] ∩ N for

all α ∈ New(f) ∩ Nn.
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Theorem 7.1.1. Let F be a homogeneous polynomial as above and suppose
there exist aα,j ≥ 0 for all α ∈ ∆(F ) and 0 ≤ j ≤ n such that

(1) |fα| =
∏n

j=0

(
aα,j

λ
(α)
j

)λ(α)j

for all α ∈ ∆(F ).

(2) fα(j) ≥
∑

α∈∆(F ) aα,j for all 0 ≤ j ≤ n.

Then F −
∑

α∈Ω(f)\∆(f) fα · xα · x
2d−|α|
0 and hence also F is a SONC. If, addi-

tionally, ∆(F ) ⊆ ∆∗, then F is a sum of binomial squares.

Proof. Using Theorems 6.2.6 and (1) we conclude that

n∑
j=0

aα,jx
α(j)x

2d−|α(j)|
0 + fαx

αx
2d−|α|
0

is a SONC for every α ∈ ∆(F ). By summing over all α ∈ ∆(F ) it holds that

n∑
j=0

 ∑
α∈∆(F )

aα,j

xα(j)x
2d−|α(j)|
0 +

∑
α∈∆(F )

fαx
αx

2d−|α|
0 (7.1.3)

is a SONC. Then condition (2) yields that

n∑
j=0

fα(j)x
α(j)x

2d−|α(j)|
0 +

∑
α∈∆(F )

fαx
αx

2d−|α|
0

is a SONC. Since for every α ∈ Ω(F ) \ ∆(F ) the term fαx
α is a monomial

square, F is a SONC. The sum of binomial square property follows from The-
orem 6.3.2. �

Setting α(j) = 2d for 0 ≤ j ≤ n the sum of binomial squares statement
recovers [GM12, Theorem 2.3]. Additionally, e.g., by [GM12, Remark 2.4],
we can assume that aα,j = 0 if and only if λ(α)

j = 0. Theorem 7.1.1 yields a
new su�cient criterion on the coe�cients of a polynomial to imply the SONC
property as well as the sum of (binomial) squares property and signi�cantly
extends previous sums of squares criteria given in [FK11, GM12, Las07]. This
extension relies on the fact that the cited results assume the Newton polytope
of the polynomial being the scaled standard simplex with degree 2d, whereas
Theorem 7.1.1 is, in particular, valid for all H-simplices containing the scaled
standard simplex as a special instance.

We now describe the application of Theorem 7.1.1 in global optimization.
To provide new lower bounds for polynomials, we prove our second main result.
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Theorem 7.1.2. Let f ∈ R[x]2d be of the Form (7.1.2) with constant term
f0 =

∑
α∈Ω(f) λ

(α)
0 > 0 and let r ∈ R. Suppose that for every α ∈ ∆(f) there

exist aα,1, . . . , aα,n ≥ 0 with aα,j = 0 if and only if λ(α)
j = 0 (with λ(α)

j in the
sense of (7.1.1)) such that the following conditions hold.

(1) |fα| =
∏n

j=1

(
aα,j

λ
(α)
j

)λ(α)j

for all α ∈ ∆(f) with |α| = 2d,

(2) fα(j) ≥
∑

α∈∆(f) aα,j for all 1 ≤ j ≤ n,

(3) f0 − r ≥
∑

α∈∆<2d(f) λ
(α)
0 · |fα|

1

λ
(α)
0 ·

∏n
j=1

(
λ
(α)
j

aα,j

)λ
(α)
j

λ
(α)
0 ,

where ∆<2d(f) = {α ∈ ∆(f) : |α| < 2d}. Then f − r −
∑

α∈Ω(f)\∆(f) fαx
α and

hence also f − r is a SONC. If, additionally, Ω(f) ⊆ ∆∗, then f − r is a sum
of binomial squares.

Proof. We apply Theorem 7.1.1 to the homogenization of the polynomial f−r,
which is given by

f − r = (f0 − r)x2d
0 +

n∑
j=1

fα(j)x
α(j)x

2d−|α(j)|
0 +

∑
α∈Ω(f)

fαx
αx

2d−|α|
0 .

Then f − r is a SONC resp. a sum of binomial squares if only only if f −r is a
SONC resp. a sum of binomial squares (see [GM12]). Our su�cient conditions
in Theorem 7.1.1 now read as follows.

(1') |fα| =
∏n

j=0

(
aα,j

λ
(α)
j

)λ(α)j

=

(
aα,0

λ
(α)
0

)λ(α)0 ∏n
j=1

(
aα,j

λ
(α)
j

)λ(α)j

for α ∈ ∆(f),

(2') fα(j) ≥
∑

α∈∆(f) aα,j for all 1 ≤ j ≤ n and f0 − r ≥
∑

α∈∆(f) aα,0.

Solving (1') for aα,0 yields

aα,0 = λ
(α)
0 · |fα|

1

λ
(α)
0 ·

n∏
j=1

(
λ

(α)
j

aα,j

)λ
(α)
j

λ
(α)
0

if |α| < 2d. Set aα,0 = 0 for |α| = 2d. Conversely, de�ning aα,0 in this way, for
every α ∈ ∆, one can verify that conditions (1)− (3) imply conditions (1'),(2')
as follows: (2') follows immediately from (2) and (3) and de�nition of aα,0.
Condition (1') follows from (1) again by homogenization and using de�nition
of aα,0. �
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Again, setting α(j) = 2d for 1 ≤ j ≤ n, the sum of binomial squares
statement recovers [GM12, Theorem 3.1]. Now, we can de�ne

f ∗gp = sup

r ∈ R :

∀α ∈ ∆(f) ∀j ∈ {1, . . . , n} ∃aα,j ≥ 0 with
aα,j = 0⇔ λ

(α)
j = 0

s.t. conditions (1)-(3) of Theorem 7.1.2 hold

 .

Indeed, f ∗gp is naturally connected to SONC certi�cates of nonnegativity as
the following theorem shows.

Theorem 7.1.3. Let f ∈ R[x]2d be of the Form (7.1.2). Then

f ∗gp = sup

r ∈ R :

∃g1, . . . , gs ∈ R[x]2d with New(f) = New(gj)
for 1 ≤ j ≤ s and
f − r −

∑
α∈Ω(f)\∆(f) fαx

α =
∑s

j=1 gj is a SONC


Note in this context again that

∑
α∈Ω(f)\∆(f) fαx

α is a sum of monomial
squares, which is irrelevant for the computation of f ∗gp by Theorem 7.1.2.

Proof. By de�nition of f ∗gp and by Theorem 7.1.2, we already know that for
every r ≤ f ∗gp it holds that f − r −

∑
α∈Ω(f)\∆(f) fαx

α is a SONC. And, by
the construction (7.1.3) in the proof of Theorem 7.1.1, we know that every
polynomial gj in the SONC decomposition satis�es New(gj) = New(f).

Hence, assume that there exist nonnegative circuit polynomials g1, . . . , gs ∈
R[x]2d with New(gj) = New(f) for every j satisfying

f − r −
∑

α∈Ω(f)\∆(f)

fαx
α =

s∑
j=1

gj.

W.l.o.g., we can assume that every α ∈ ∆(f) is contained in the support of a
unique gj � otherwise we can replace some gi + gj by g′j. By Theorem 6.2.6,

every gj satis�es gj = λ
α(gj)
0 +

∑n
i=1 gj,ix

α(i) + cjx
α(gj) with λα(gj)

0 ∈ R>0, gi,j ∈
R>0 for all 1 ≤ i ≤ n, α(gj) ∈ ∆(f) and |cj| ≤

∏n
i=1(gj,i/λ

(α(gj))
i )λ

(α(gj))

i . Hence,
we have

f − r −
∑

α∈Ω(f)\∆(f)

fαx
α =

s∑
j=1

gj

=
s∑
j=1

λ
(α(gj))
0 +

n∑
i=1

(
s∑
j=1

gj,i

)
xα(i) +

s∑
j=1

cjx
α(gj)

satisfying conditions (1') and (2') in the proof of Theorem 7.1.2 and hence also
conditions (1) � (3) of Theorem 7.1.2. �
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In the beginning of this chapter, we denoted that the observation of Ghasemi
and Marshall was a trade-o� between fast solvability of the corresponding
geometric programs in comparison with semide�nite programs and the fact
that f ∗gp ≤ f ∗sos. Here, we conclude the surprising fact that geometric programs
do not have this lack in case of polynomials with simplex Newton polytope
satisfying the conditions of Theorem 6.3.5. Quite the contrary, the bound f ∗gp
will be at least as good as the bound f ∗sos. Note that the special instance
#Ω(f) = 1 and New(f) being the standard simplex with edge length 2d was
already observed by Ghasemi and Marshall (see [GM12, Corollary 3.4]).

Corollary 7.1.4. Let f be a polynomial of the Form (7.1.2) with New(f) =
conv{0, α(1), . . . , α(n)} being a simplex, all α(j) ∈ (2N)n, and such that Ω(f) ⊆
(int(∆)∩Nn). Suppose that there exists a vector v ∈ (R∗)n such that fαvα < 0
for all α ∈ Ω(f). Then the following statements hold.

1. f ∗sos ≤ f ∗gp = f ∗,

2. if ∆(f) ⊂ ∆∗, then f ∗sos ≥ f ∗gp and hence f ∗gp = f ∗sos = f ∗,

Proof. The statement follows immediately from Theorems 6.3.5 and 7.1.3. �

If ∆(f) ⊂ ∆∗, then it always holds that f ∗gp ≤ f ∗sos, since the SONC property
coincides with the property of being a sum of binomial squares, regardless of
the existence of a vector v ∈ (R∗)n such that fαvα < 0 for all α ∈ Ω(f).
However, note that the condition Ω(f) ⊆ (int(∆) ∩ Nn) is essential as the
following example shows.

Example 7.1.5 ([GM12]). Let

f = 2 + x6 + y6 + z6 + x2yz2 − x4 − y4 − z4 − yz3 − xy2.

Here, Ω(f) contains boundary points of the simplex

New(f) = conv{(0, 0, 0)T , (6, 0, 0)T , (0, 6, 0)T , (0, 0, 6)T}

and there exists v ∈ R3\{0} at which all non-vertex monomials have a negative
sign (e.g., v = (1,−1,−1)). One can check (e.g., with the method described in
the next section) that f ∗gp = f ∗sos ≈ −1.6728 < f ∗ = 0.667

7.2 Geometric Programming

In this section we prove that the number f ∗gp can be obtained by a geometric
program, which we introduce �rst.

De�nition 7.2.1. A function f : Rn
>0 → R of the form f(x) = cxa11 · · ·xann with

c > 0, ai ∈ R and x = (x1, . . . , xn) is called a monomial. A sum of monomial
functions

∑k
i=0 cix

a1i
1 · · ·xanin with ci > 0 is called a posynomial function.
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A geometric program has the following form.

inf{f0(x) : x ∈ Rn} such that (7.2.1)

fi(x) ≤ 1 for all 1 ≤ i ≤ m and gj(x) = 1 for all 1 ≤ j ≤ p,

where f0, . . . , fm are posynomials and g1, . . . , gp are monomial functions.

Geometric programs can be solved with an interior point method. In [NN94]
the authors prove worst-case polynomial-time complexity of these programs.
For an introduction and practical ability of geometric programs, see, e.g.,
[BKVH07, BV04]. Based on our main results Theorem 7.1.1 and 7.1.2, we
can draw the following corollary.

Corollary 7.2.2. Let f ∈ R[x] be a non-constant polynomial of degree 2d with
f0 =

∑
α∈Ω(f) λ

(α)
0 and fα(j) > 0 for 1 ≤ j ≤ n. Then f ∗gp = f0−m∗, where m∗

is given by the following geometric program.

inf


∑

α∈∆<2d(f)

λ
(α)
0 · |fα|

1

λ
(α)
0 ·

n∏
j=1

(
λ

(α)
j

aα,j

)λ
(α)
j

λ
(α)
0

:
(aα,1, . . . , aα,n) ∈ Rn

≥0

for all α ∈ ∆<2d(f)


s.t.

∑
α∈∆(f)

(
aα,j
fα(j)

)
≤ 1 for all 1 ≤ j ≤ n and

1/|fα| ·
n∏
j=1

(
aα,j

λ
(α)
j

)λ
(α)
j

= 1 for all α ∈ ∆(f) with |α| = 2d.

Proof. We have f ∗gp = f0 −m∗ by de�nition of f ∗gp. Since

∑
α∈∆<2d(f)

λ
(α)
0 · |fα|

1

λ
(α)
0 ·

n∏
j=1

(
λ

(α)
j

aα,j

)λ
(α)
j

λ
(α)
0

and
∑

α∈∆(f)

(
aα,j
fα(j)

)
for all 1 ≤ j ≤ n

are posynomials in the variables aα,j and for all α ∈ ∆(f) with |α| = 2d

1/|fα| ·
n∏
j=1

(
aα,j

λ
(α)
j

)λ
(α)
j

is a monomial in the variables aα,j, m∗ is indeed the output of a geometric
program. �

Corollary 7.2.3. Let {(aα,1, . . . , aα,n) : α ∈ ∆(f)<2d} be the global minimizer
of a geometric program as in Corollary 7.2.2. If ∆(f) = ∆(f)<2d, then we have∑

α∈∆(f) aα,j = fα(j) for every 1 ≤ j ≤ n.

Proof. Follows immediately from Theorem 7.1.3 and Corollary 7.2.2. �
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7.3 Examples

We demonstrate our method and re�ect our results by various examples. All
geometric programs are solved via the Matlab solver gpposy1.

1. First, consider the polynomial f = 1
4

+ x8 + x2y6 + 4x3y3. The geomet-
ric program proposed in [GM12] is infeasible, since the pure power y8 is
missing in the polynomial to make the Newton polytope a standard sim-
plex of edge length 8. However, New(f) is an H-simplex and we can use
our results to compute f ∗gp. Here, we have ∆ = {α} = {(3, 3)}. Hence,
we introduce the variables aα,j for j ∈ {1, 2}. Therefore, by Corollary
7.2.2, we have to solve the following geometric program.

inf

{
1

4
· 44 ·

(
1

4

) 4
4

·
(

1

2

) 4
2

· a−1
α,1a

−2
α,2 : aα,1, aα,2 ≤ 1

}
.

The optimal solution is given by aα,1 = aα,2 = 1 (as expected due to
Corollary 7.2.3) yielding m∗ = 4 and hence f ∗gp = 1

4
−4 = −3.75 = f ∗sos =

f ∗ by Corollary 7.1.4.

2. Let f = 187
208

+x80+y78−8x5y3. Again, the geometric program proposed in

[GM12] is infeasible. But New(f) is an H-simplex and with λ(5,3)
1 = 1/16

and λ(5,3)
2 = 1/26 our corresponding geometric program is given by

inf

{
187

208
· 8

208
187 ·

(
1

16

) 13
187

·
(

1

26

) 8
187

· a−
13
187

α,1 · a
− 8

187
α,2 : aα,1, aα,2 ≤ 1

}
.

Using the software Gloptipoly (see [HLJL09]), f ∗ ≈ −5.6179 was
computed in 4327, 2 seconds, i.e., approximately 1.2 hours. However,
using the above geometric program, we get a global minimizer aα,1 =
aα,2 = 1 (again, as we would expect due to Corollary 7.2.3) and the

optimal solution m∗ = 187
208
·
(

8208

1613·268

) 1
187

and hence f ∗ = λ0 − m∗ =

187
208
·
(

1−
(

8208

1613·268

) 1
187

)
≈ −5.6179 in 0.5 seconds.

3. Let now f = 17
20

+ 3x8y4 + 2x6y8 − 10x3y3 + x5y4. Again, the geomet-
ric program in [GM12] cannot be used but the geometric program in
Corollary 7.2.2 with ∆ = {α, α} = {(3, 3), (5, 4)} now reads as follows:

inf

{
9 · 2 1

3 · 5 2
3

1250
· a−

4
3

α,1 · a−1
α,2 +

11 · 10
3
11 · 3 9

11 · 20
8
11

40
· aα,1−

3
11aα,2

− 6
11

}
such that

aα,1 + aα,1
3

≤ 1 and
aα,2 + aα,2

2
≤ 1.

1The Matlab version used was R2011a, running on a desktop computer with Intel(R)
Core(TM)2 @ 2.33 GHz and 2 GB of RAM.
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Here, the variables aα,j come from α = (5, 4) and aα,j come from α =
(3, 3). Again, we use theMatlab solver gpposy to solve this geometric
program with the following code:

>> A0=[-4/3,-1,0,0;0,0,-3/11,-6/11]

>> A1=[1,0,0,0;0,0,1,0]

>> A2=[0,1,0,0;0,0,0,1]

>> A=[A0;A1;A2]

>> coeff1 = 9/1250*2^(1/3)*5^(2/3)

>> coeff2 = 11/40*10^(3/11)*3^(9/11)*20^(8/11))

>> b0=[coeff1;coeff2]

>> b1=[1/3;1/3]

>> b2=[1/2;1/2]

>> b=[b0;b1;b2]

>> szs=[size(A0,1);size(A1,1);size(A2,1)]

>> [x,status,lambda,nu]=gpposy(A,b,szs)

The optimal solution is given by

(aα,1, aα,2, aα,1, aα,2) = (0.5910, 0.1685, 2.4090, 1.8315)

(Corollary 7.2.3 holds again) yielding m∗ ≈ −6.644 and hence

f ∗gp =
17

20
− 6.644 ≈ −5.794.

By Corollary 7.1.4, we have f ∗gp = f ∗sos = f ∗ ≈ −5.794.

4. The Motzkin polynomial f = 1
3

+ 1
3
x4y2 + 1

3
x2y4 − x2y2 satis�es f ∗gp =

f ∗ = 0 by Corollary 7.1.4. However, f ∗sos = −∞.

5. Let f = 5
12

+ 5
24
x6 + 5

24
x2y4 + 5

24
x2y2 − 5

8
xy. Then one can check that

f ∗gp ≈ −0.41 < f ∗sos = f ∗ ≈ 0.196.

7.4 Conclusion and Outlook

We have proposed a new geometric program for producing lower bounds for
polynomials that extends the existing one in [GM12]. This extension sheds
light on the crucial structure of the Newton polytope of polynomials. In par-
ticular, our results serve as a next step in optimization of polynomials with
simplex Newton polytopes and connect this problem to

1. the SONC nonnegativity certi�cates, and
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2. the construction of simplices with an interesting lattice point structure,
namely, what we have called H-simplices in this thesis.

We proved that f ∗gp and f
∗
sos are not comparable, which cannot be observed in

the precursor works about geometric programming. Interestingly, for very rich
classes there is a win-win situation in the sense that f ∗sos ≤ f ∗gp = f ∗ though
f ∗gp can be computed much faster than f ∗sos. It would be interesting to classify
more classes for which the bounds are comparable. Hence, an analysis of
the gap f ∗sos−f ∗gp is an interesting task having major impact on computational
complexity of solving polynomial optimization problems. Equivalently, looking
from a convex geometric viewpoint, it would be interesting to analyze the gap
between the cone of sums of squares and the cone of sums of binomial squares
as well as the gap between the cone of sums of squares and the cone of sums
of nonnegative circuit polynomials.





Chapter 8

Open Problems

In the following we present some open problems that arose during the prepara-
tion of this thesis and that are more general than the open problems formulated
at the end of the chapters.

Boundary Structure

The boundary structure of the cones Pn,2d and Σn,2d is very important to
understand the di�erence between these two cones. In spite of the progress
made, many interesting questions/problems remain widely open. In particular,
the following ones can be considered as an interesting future work.

1. The study of the algebraic boundary of Pn,2d and Σn,2d as well as of
their dual cones. This has been established in [BHO+12] for (n, 2d) ∈
{(3, 6), (4, 4)} but remains open in all other cases.

2. A description of the extreme rays of Pn,2d and Σn,2d as well as of their
dual cones. This also has been established for special instances ([Ble12a,
Ble12b]) but is widely open in all other cases.

3. Closely related to the question of the extreme rays of these cones is the
problem of determining the maximum number of zeros a nonnegative
polynomial (resp. a sum of squares polynomial) can have (see Theorem
2.6.8 for partial results). This would have a major impact on the study
of the boundary structure of Pn,2d and Σn,2d.

Symmetric Polynomials

In Chapter 5 we considered the problem of deciding nonnegativity of symmet-
ric polynomials and added to some earlier results. Considering previous results
on symmetric polynomials ([BR12, CLR87]), the di�erence between Pn,2d and
Σn,2d is conjectured to be much more delicate than in the general case. There-
fore, the following questions are very interesting for possible future directions
of research.
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1. What is the quantitative relationship between nonnegative symmetric
polynomials and symmetric sums of squares polynomials?

2. Is it possible to derive explicit semialgebraic descriptions for rich classes
of nonnegative symmetric polynomials and sums of squares?

Sparse Polynomials

In Chapter 6 we studied sparse polynomials with simplex Newton polytope
supported on a circuit and completely characterized nonnegative polynomials
and sums of squares. Furthermore, we extended this approach partially to
arbitrary Newton polytopes. We consider the following questions/problems to
be very interesting in this setting.

1. Let f ∈ R[x]2d be such that supp(f) = vert(New(f)) ∪ {y} with y ∈
int(New(f)). We characterized nonnegativity in the case of New(f) being
a simplex. It would be very interesting to explicitly characterize the
nonnegativity region of f in the non-simplex case.

2. Similar as in the simplex case, is it possible to determine a global min-
imizer for such polynomials explicitly? We suspect that this can be
established via clever triangulations of New(f) and using results from
the simplex case.

3. In Theorem 6.4.1 we established a very interesting connection between
sums of squares polynomials supported on circuits and properties from
toric geometry as well as from lattice polytopes. Is it possible to gain
more insight to this connection for more general polynomials?

4. In Chapter 6 we introduced the convex cone of sums of nonnegative cir-
cuit polynomials, which plays a major role in polynomial optimization
via geometric programming. It would be interesting to analyze convex
geometric properties of this cone, such as, e.g., the structure of the ex-
treme rays and of the faces as well as intersections with the cones of
nonnegative polynomials and sums of squares.

Convex Polynomials

When restricting to homogeneous polynomials, a very interesting convex cone
is given by the cone of convex forms, since it is contained in the cone of non-
negative forms. But still, the cone of convex forms seems to be mysterious,
as almost nothing is known about structures that characterize/prevent con-
vexity of polynomials. Many polynomial optimization problems can be solved
more e�ciently with additional convexity structure in the problems. However,
deciding convexity is NP-hard in general ([AOPT13]). Therefore, it is very
interesting to understand the cone of convex forms in more detail. Speci�cally,
we consider the following questions/problems to be very delicate.
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1. There are many sums of squares forms that are not convex ([Rez11]).
However, there are also many convex forms that are not sums of squares
([Ble09]). As for now, it is still an open problem to provide an explicit
convex form that is not a sum of squares.

2. What can be said about the (algebraic) boundary structure of the cone
of convex forms?

3. Which structures prevent polynomials from being convex? In Theorem
6.5.4 we proved that sparsity should be among these structures.

4. Which matrix polynomials are valid Hessian matrices? In our opinion,
this is a key problem in analyzing the cone of convex forms in more detail.

In [Tim03] Timofte proves that a symmetric polynomial p ∈ R[x]d is non-
negative if and only if p is nonnegative at all points x ∈ Rn with at most
bd

2
c distinct components. We conjecture that an analagous version holds for

convexity of symmetric polynomials. More precisely, we provide the following
conjecture.

Conjecture 8.0.1. Let p ∈ R[x]d be a symmetric polynomial and let Hp(x) be
the Hessian of p.

1. There exists a function f : N→ N such that the following does hold: p is
convex if and only if Hp(x) is positive semide�nite at all points x ∈ Rn

with at most f(d) distinct components. Note that f is independent of n.

2. Every convex symmetric nonnegative polynomial is a sum of squares.

3. Every convex symmetric form is a sum of squares.

Note that we have to distinguish between forms and polynomials in this case,
since convexity is not preserved under homogenization.

Some More General Open Problems

In polynomial optimization, one is interested in the quality of sums of squares
relaxations. This is equivalent to understand the quantitative relationship be-
tween Pn,2d and Σn,2d. The asymptotic result in [Ble06] based on the volume
ratio of a compact section of Pn,2d and Σn,2d is very poor in small dimen-
sions. Hence, the following questions are very important both theoretically
and practically.

1. What is the precise quantitative relationship between Pn,2d and Σn,2d in
small dimensions?

2. Is it possible to provide better bounds for the volume ratio of a compact
section of Pn,2d and Σn,2d than in [Ble06]?
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