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Non-Technical Summary 

 
Many countries operate large social security systems. Social security can increase economic 
efficiency and provide insurance against household risks for which no private markets exist. 
However, social security systems also impose costs by distorting prices and decisions. The 
question arises whether the benefits of social security outweigh the costs.  
 
To study the welfare consequences of introducing a social security system this paper develops 
an analytically tractable model with two overlapping generations where households face many 
different sources of risks over their life-cycle. Key risks for the analysis of social security are 
idiosyncratic risks – e.g., the risk of unemployment – and aggregate risks – i.e., the risk of 
aggregate productivity losses which leads to reductions of wages and asset returns. Our 
analysis on the welfare effects of social security in light of these risks differs from the previous 
literature in that, thus far, prior studies have only considered models with one type of risk in 
isolation. One strand of the literature has examined social security when only aggregate risk is 
present. The other strand has only considered idiosyncratic risk.  
 
In our model we find that the two risks interact in multiple ways and influence the welfare 
effects of introducing a social security system. As a result, we show that these effects are less 
strong on the welfare costs of crowding out than on the welfare gains from insurance. Hence, 
the interactions of risks increase the total welfare benefits of social security.   
 
The findings of this paper must be investigated in a more realistic quantitative model which is 
suitably calibrated. This is done in our companion paper, Harenberg and Ludwig (2014). There 
we document that indeed the interactions of risks overturn conventional findings on the 
welfare effects of social security and we conclude that the introduction of a minimum flat 
pension is welfare improving once all household risks are appropriately taken into account. 
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1 Introduction

Almost all industrialized countries have large public social security systems with sizeable
pay-as-you-go (PAYG) components. In such systems payments to current pensioners are
financed by taxing current workers. Social security can hence improve intergenerational
risk sharing by pooling aggregate risks across generations. In addition, most systems
have some form of redistributional component. Hence, social security can also insure
against idiosyncratic earnings risks for which private markets do not exist and for which
other government transfers only provide partial insurance. However, these systems are
financed by distortionary taxes. The question arises whether the benefits from insurance
outweigh the costs of distortionary taxation.

The present paper demonstrates that the benefits from insurance have been underesti-
mated in the previous literature because either aggregate or idiosyncratic risks have been
studied in isolation. Such a segregated view provides only an incomplete picture and,
crucially, misses important interactions between the risks. These interactions typically
arise in economic models even if the risks are orthogonal by construction. The reason is
that they multiply each other in the budget constraint, either explicitly or implicitly, as
explained below. Also, they often interact in the utility function, where one of the risks
can often be thought of as a background risk in the sense of Gollier and Pratt (1996) or
Franke, Schlesinger, and Stapleton (2006). It is unknown how such interactions affect
the benefits from insurance and the cost of distortionary taxation. This paper aims to
fill that gap.

The risks interact in the budget constraint whenever they multiply each other. For
example, both an idiosyncratic wage shock and an aggregate wage shock enter as a product
to the aggregate wage. From an ex-ante perspective, the variance of the aggregate wage
will be larger than the sum of the individual variances.1 As a consequence, the variance of
consumption will become larger from an ex-ante perspective, which in a life-cycle model
will increase the value of social security. There is a second multiplicative interaction,
which is more interesting, because it is implicit. A household’s asset position contains
the history of his past shocks, in particular of past idiosyncratic shocks. Part of the
assets are saved for next period, and are consequently multiplied with asset returns. If
asset returns are stochastic, then implicitly two stochastic variables multiply, the past
idiosyncratic shocks and the current return shock. Analogous to before, this increases

1See Goodman (1960) for an exact formula of the variance of the product of independent stochastic
variables.
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the variance of the final asset position from an ex-ante perspective by more than the
sum of the individual variances. We demonstrate this analytically and show how these
interactions increase the value of social security. It is important to stress that the effects
are non-negligible because retirement savings decisions take place over long horizons
and the interactions accumulate over the life-cycle. Accordingly, we call them life-cycle
interactions (LCI).

In addition to the interactions through the budget constraint, the risks interact
through the utility function. This idea was first formalized by Gollier and Pratt (1996)
who show that in the presence of an independent background risk, households will be-
have towards a market risk as if they were more more risk-averse than they are. The
original background risk was additive, e.g., labor income (the background risk) plus asset
income (the market risk). Franke, Schlesinger, and Stapleton (2011) extend this by a
multiplicative background risk, which means that the market risk is multiplied with an
independent risk. The present paper features a situation as in Franke, Schlesinger, and
Stapleton (2011), i.e., with both additive and multiplicative background risk. In contrast
to that literature, our model is fully dynamic. As a consequence, the background risks
will turn out to be increased by the LCI explained in the previous paragraph.

The model we develop is able isolate all these channels and show their effect on social
security analytically. The entire analysis is conducted in a standard overlapping gener-
ations (OLG) model with incomplete markets. To maintain analytical tractability, we
assume that a household lives for two periods, so that at each point in time, two gener-
ations are simultaneously alive. In the first period of life, households earn labor income,
which is subject to an aggregate and an idiosyncratic productivity shock. Out of this la-
bor income, they can consume and save. There is a single asset whose return is stochastic,
which represents a second aggregate risk. In the second period of life, households even-
tually retire and receive pension income. Social security is a pure pay-as-you-go (PAYG)
system with defined contributions and a lump-sum pension. Our thought experiment
considers the introduction of a marginal social security system. This is evaluated using
an ex-ante Utilitarian welfare criterion. A crucial assumption maintained throughout is
that all shocks are mutually orthogonal, i.e., they are statistically independent of each
other. So the interactions do not arise by construction.

Our first set of results looks at insurance provided by social security, and how it is
affected when two risks are present. We find that all channels outlined above increase
the value of social security in welfare terms. The reason has been already hinted at: LCI
increases the variance of retirement consumption, and social security reduces it, which
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from an ex-ante perspective is valuable. At the same time, the presence of background
risks, be they multiplicative or additive, effectively increases the risk aversion of house-
holds, which implies that they value insurance more. For this set of results we consider
only a partial equilibrium of the model, and we assume that households only consume
in the second period of life.2 For the result including the background risk, we need to
subdivide the second period of life into two sub-periods: during the first households work
and during the second households are retired.

Our second set of results characterizes the general equilibrium of the economy. In
general equilibrium, there is a representative firm with a standard neo-classical production
function. Households now have logarithmic utility and consume in both periods of life. We
keep the sub-period structure from before. This allows us to jointly evaluate the insurance
value of social security and the distortionary effects of the social security contribution
rate, maintaining closed form solutions. A higher contribution rate distorts the savings
decision and therefore leads to crowding out of aggregate capital with the corresponding
welfare consequences. The central result here is that this crowding out is determined by
two opposing forces. The interactions enter both of these forces so that it is ambiguous
whether they amplify or mitigate the crowding out. This is of importance because for the
insurance of social security, the interactions unambiguously increase it. Thus, interactions
will generally have a net positive marginal effect on the value of social security.

Essentially, the general equilibrium model can be seen as an extension of the stan-
dard Diamond (1965) model with aggregate and idiosyncratic risk. The setup shares
similarities with Huffman (1987) with three differences: First, we extend his work by
taking into account idiosyncratic risk. Second, we do not only consider positive labor (or
endowment) income in the first period of life but rather have two periods with positive
labor income. Third, we stick to a two period structure while Huffman (1987) has many
periods.

The insight that social security insures against aggregate risks goes back to Diamond
(1977) and Merton (1983). Building on this work, Shiller (1999) and Bohn (2001, 2009)
show that social security can reduce consumption risk of all generations by pooling labor
income and capital income risks across generations if labor income and capital returns
are imperfectly correlated.

There is a large quantitative literature building on these insights that aims at quanti-
fying the welfare effects of social security. E.g., Krüger and Kübler (2006), Ludwig and

2This assumption is also made in very similar contexts by Gordon and Varian (1988), Ball and
Mankiw (2007), Matsen and Thogersen (2004), Krüger and Kübler (2006), among others.
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Reiter (2010), Olovsson (2010) and Hasanhodzic and Kotlikoff (2013) and others have
quantitative models with only aggregate risk whereas Conesa and Krüger (1999), Imro-
horoglu, Imrohoroglu, and Joines (1995, 1998), Huggett and Ventura (1999) and Storeslet-
ten, Telmer, and Yaron (1999) and many others study insurance through social security
against idiosyncratic risk. Our companion paper (Harenberg and Ludwig 2014) combines
these two strands of the quantitative literature by developing a quantitative model featur-
ing both risks. There we show that all interactions taken together make up for roughly
two thirds of the overall welfare benefits of social security.

As mentioned before, our work also relates to the theoretical literature on background
risk, in particular, Gollier and Pratt (1996), Franke, Schlesinger, and Stapleton (2006),
and Franke, Schlesinger, and Stapleton (2011). This literature asks how households
react with their exposure to one risk when idiosyncratic risk is added, primarily studying
portfolio choice problems. As social security can be interpreted as an implicit asset, the
decision problem in this paper is similar. However, three differences stand out. First,
in our setup, a social planner chooses to implement social security. Hence, the implicit
portfolio choice is not made by the household. Second, in any period, social security
reduces exposure to wage risk, i.e., reducing jointly the exposure to background risk
(idiosyncratic wage risk) and aggregate risk (aggregate wage risk). Third, the literature on
background risk largely looks at stylized static examples (with some underlying dynamic
motivation). In our structure, the dynamics are made explicit which we emphasize by
referring to interactions as life-cycle interactions.

Finally, our work relates to the literature on the welfare costs of aggregate fluctuations
initiated by Lucas (1978). De Santis (2007) and Krebs (2007) argue that interactions
between idiosyncratic and aggregate risk can increase these costs substantially.

Our analysis proceeds as follows. Section 2 presents the model which is analyzed in
Section 3. Section 4 provides a numerical illustration. Section 5 concludes. All proofs are
relegated to a Appendix A. Supplementary Appendix ??—available on our webpages—
contains additional results.

2 The Model

2.1 Time and Population

Time is discrete. Periods in our model are denoted by t = −∞, . . . , 0, 1, . . . ,∞. In each
period, two generations—the young, indexed by j = 1, and the old, indexed by j = 2—are
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simultaneously alive. Each generation consists of a continuum of households. Without
loss of generality we consider a stationary population.

In our setup, a PAYG pension system would not provide insurance against the risk
of longevity even when annuity markets are missing as long as accidental bequests are
redistributed, as was shown by Caliendo, Guo, and Hosseini (2013). We therefore do not
model survival risk which would, in any case, lead us on a sidetrack. Denoting the period t
young population by N1,t and the old by N2,t we accordingly have that N2,t = N1,t.

As there is idiosyncratic risk to labor income, we further distinguish by types and
denote by Ni,j,t the number of households of type i of age j alive in period t. We
normalize the population of age j to unity, hence 1 = Nt,j =

∫
Ni,j,tdi.

2.2 Households

A household has preferences over consumption in two periods. In both periods of life,
households experience an idiosyncratic productivity shock.3 The expected utility function
of a household born of type i in period t is given by

Ut = (1 − β̃)u(ci,1,t) + β̃Et [u(ci,2,t+1)] ,

where the per period Bernoulli utility function u is (weakly) increasing and concave,
i.e., u′ ≥ 0, u′′ < 0. The factor β̃ ≤ 1 determines the relative weight on first versus second
period consumption, and for β̃ ̸= 1, β ≡ β̃

1−β̃ is the discount factor. In our notation, we
make explicit that households form expectations conditional on the information at their
date of birth and therefore denote the expectations operator E with subscript t. As these
expectations are formed at the beginning of period t, realizations of shocks in period t

are in the information set.
We assume that the per period utility function u is CRRA with coefficient of relative

risk aversion θ:

u(ci,j,t) =


c1−θ

i,j,t

1−θ for θ ̸= 1

ln(ci,j,t) for θ = 1.
(1)

Households work full time in the first period. For the second period of life, we fol-
low Auerbach and Hassett (2007), Ludwig and Vogel (2009), and others and consider

3Our analysis below considers restricted versions of the model in which the idiosyncratic shock to
productivity either hits in the first or in the second period of life.
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a subperiod structure. In the first subperiod—which is of relative length λ ∈ [0, 1)—
households work. We also refer to λ as labor productivity in the second period. In
the second subperiod—of length 1 − λ—households are retired and receive a pension in-
come bt ≥ 0. The subperiod structure is convenient for analytical reasons. Combined
with idiosyncratic income shocks in the second period it enables us to model precau-
tionary savings together with retirement without having to introduce a three-generations
structure. This preserves simple first-order difference equations in our characterization
of equilibrium dynamics of the economy.4

The budget constraints in the two periods are accordingly given by

ci,1,t + ai,2,t+1 = (1 − τ)ηi,1,twt (2a)

ci,2,t+1 ≤ ai,2,t+1(1 + rt+1) + ληi,2,t+1wt+1(1 − τ) + (1 − λ)bt+1 , (2b)

where ηi,j,t is the age-j, period-t idiosyncratic shock to wages, and ai,2,t+1 denotes savings
of a young household, which equal his asset position at the beginning of the following
period. Finally, τ is the (constant) social security contribution rate.

2.3 Government

The government organizes a PAYG financed social security system. Pension benefits are
lump-sum. Therefore, idiosyncratic wage risks are insured through social security. In
each period, the mass of workers who earn aggregate gross wages wt is L = 1 + λ. The
mass of pensioners is 1 − λ. The social security budget constraint therefore writes as

bt(1 − λ) = τwt (1 + λ) ⇔ bt = τwt
1 + λ

1 − λ
. (3)

2.4 Firms

To close the model in general equilibrium, we add a firm sector. We assume a rental
market setup up with a static optimization problem. Firms maximize profits operating
a neo-classical production function. Let profits of the firm be

Π = ζtF (Kt,ΥtL) − (δ̄ + rt)ϱ−1
t Kt − wtL

4In the Supplementary Appendix ??, we show that a three-generations model would yield very similar
results.
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where ζt is a technology shock and L is total labor which equals L = 1+λ. The technology
level, Υt, grows at an exogenous rate g, Υt = (1 + g)Υt−1, for a given Υ0. Throughout
we assume full depreciation, hence δ̄ = 1. The variable ϱt represents an exogenous shock
to the unit user costs of capital. We add this non-standard element in order to model
additional shocks to the rate of return to capital. These shocks are multiplicative in
the user costs to capital for analytical reasons. Production is Cobb-Douglas with capital
elasticity α,

F (Kt,ΥtL) = Kα
t (ΥtL)1−α .

Let kt = Kt

ΥtL
= Kt

Υt(1+λ) be the capital intensity, i.e., the capital stock per efficient unit of
labor. Then, the firm’s first-order conditions are

Rt = 1 + rt = αkα−1
t ζtϱt = R̄tζtϱt (4a)

wt = (1 − α)Υtk
α
t ζt = w̄tζt, (4b)

where R̄t denotes the non-stochastic component of the gross return and, likewise, w̄t the
non-stochastic component of the per capita wage. Equation (4a) reveals that ϱt is simply
a shock to the gross return on savings, since it does not affect wages.

2.5 Social Welfare

We take an ex-ante Rawlsian perspective and specify the social welfare function (SWF) of
a cohort born in period t as the unconditional expected utility of being born into period t:

SWFt ≡ EUt = E
[
(1 − β̃)u(ci,1,t) + β̃u(ci,2,t+1)

]
. (5)

When evaluating the consequences of a reform, we transform this SWFt to a con-
sumption equivalent variation. The consumption equivalent variation (CEV) is the per-
cent increase in consumption required in the pre-reform periods −∞, . . . , 0 to achieve the
same level of ex-ante utility as in the post reform period t ≥ 1. Denoting the CEV by gc,
it follows from the utility function (1) that

gct =


(
SWFt

SWF0

) 1
1−θ − 1 for θ ̸= 1

exp (SWFt − SWF0) − 1 for θ = 1.
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2.6 Thought Experiment

We consider a marginal introduction of social security and investigate how social welfare
as defined in Subsection 2.5 is affected by such a policy reform. The policy reform is
announced and implemented in period 1. All periods prior to period 1 are pre-reform
periods where the economy is in an initial stationary equilibrium.

Our analytical results focus on a comparison of social welfare and sources for wel-
fare gains and losses in two long-run equilibria. To assess the welfare consequences, we
accordingly compute gc∞. A cautionary note is in order here. By ignoring transitional
dynamics we exaggerate the welfare losses of crowding experienced by generations born
in period 0 and during the transition. This is so because the gains from insurance of a
reform materialize on impact whereas the complete losses from crowding out only occur
in the limit when the new steady state is reached.

2.7 Stochastic Processes

To simplify the analysis we assume that both ζt and ϱt are not serially correlated. Despite
the observed positive serial correlation of wages and asset returns in annual data, this
assumption can be justified on the grounds of the long factual periodicity of each period
in a two-period OLG model which is about 30 to 40 years. We also assume that ζt
and ϱt are statistically independent so that dependence of return and wage shocks is only
reflected through ζt. The idiosyncratic shocks ηi,j,t are not correlated with either of the
two aggregate shocks. Our key argument below will be to show that the welfare effects
of risks interact although they are orthogonal by construction.

Assumption 1. a) Support bounded from below: ζt > 0, ϱt > 0 and ηi,j,t > 0 for
all i, j, t.

b) Means: Eζt = Eϱt = Eηi,j,t = 1, for all i, j, t.

c) Statistical independence of (ζt+1, ζt) and (ϱt+1, ϱt). Therefore: E(ζt+1ζt) = Eζt+1Eζt
for all t and, correspondingly, E(ϱt+1ϱt) = Eϱt+1Eϱt for all t.

d) Statistical independence of (ζt, ϱt). Therefore: E(ζtϱt) = EζtEϱt for all t.

e) Statistical independence of (ζt, ηi,j,t). Therefore: E(ηi,j,tζt) = Eηi,j,tEζt for all i, j, t.

f) Statistical independence of (ϱt, ηi,j,t). Therefore: E(ηi,j,tϱt) = Eηi,j,tEϱt for all i, t.
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3 Analysis

3.1 Idiosyncratic Risk Early in the Life-Cycle

We start by looking at a degenerate version of our model in partial equilibrium in which
households only care for the second period (β̃ = 1) and labor productivity in this second
period is zero (λ = 0).

Assumption 2. Let β̃ = 1 and λ = 0.

Due to the partial equilibrium setting, wages and returns are completely exogenous.
This allows us to specify directly the stochastic processes driving them. In particular, it
allows us to model wages and returns as uncorrelated. We do this, because investigating
how such a correlation affects our conclusions would lead us on a sidetrack. Furthermore,
as argued by Harenberg, Ludwig, and Maus (2013), a two-generations model is inadequate
to fully address the impact of this correlation on the welfare of social security.5 Whereas
in general equilibrium, both shocks ζt and ρt affect returns, we now assume that there is
a separate return shock ϱ̃t which is independent of ζt. Thus, our partial equilibrium can
be summarized in the following assumption.

Assumption 3. Let kt = k̄ given, hence wt = w̄tζt = w̄t−1(1 + g)ζt and Rt = R̄ϱ̃t, where
ϱ̃t has the stochastic properties of ϱt from Assumption 1.

Since preferences display non-satiation, Assumption 2 implies ci,1,t = 0 and ai,2,t+1 =
(1 − τ)ηi,1,tw̄ζt. From equations (2a, 2b) and (3), we accordingly get that retirement
consumption is

ci,2,t+1 = w̄t
(
ηi,1,tζtR̄ϱ̃t+1 + τ

(
(1 + g)ζt+1 − ηi,1,tζtR̄ϱ̃t+1

))
. (6)

To interpret this, let’s first look at a situation where τ = 0 and, without loss of generality,
5Standard analyses, e.g., by Matsen and Thogersen (2004) and Krüger and Kübler (2006), focus on

the “hedge view” according to which the welfare benefits of a PAYG social security system are higher the
less aggregate wages and returns are correlated. However, this is only true in a two-generations model.
If a third generation is added, a counter-veiling force appears. This is emphasized in Harenberg, Ludwig,
and Maus (2013). They show that if households sufficiently discount the future, then a larger correlation
may increase the welfare benefits of social security. This happens, because now social security reduces
the variance of current consumption while increasing the variance of future consumption, which under
sufficient discounting increases household utility.
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normalize w̄t = 1.6 Retirement consumption can then be written as

ci,2,t+1 = ηi,1,tζtϱ̃t+1R̄

This is formally equivalent to a situation with multiplicative background risk studied
in Franke, Schlesinger, and Stapleton (2006).

With regard to a marginal introduction of social security we then have the following
result:

Proposition 1. Under Assumptions 1–3, a marginal introduction of social security in-
creases social welfare iff

Ape,mbr ≡ 1 + g

R̄

E
[

1
ϱ̃θ

t+1

]
E
[

1
ζθ

t

]
E
[

1
ηθ

i,1,t

]
E
[
ϱ̃1−θ
t+1

]
E
[
ζ1−θ
t

]
E
[
η1−θ
i,1,t

] − 1 > 0. (7)

Proof. See Appendix A.

Observe that term 1+g
R̄

in equation (7) reflects the well-known trade-off between an
implicit investment in social security and an explicit investment in a risk-free asset. It is
the standard Aaron condition (Aaron 1966), which in our context says that in a risk-free
environment, an introduction of social security is welfare increasing if and only if 1+g

R̄
> 1.

The other term in equation (7) is a risk adjustment which scales up the implicit return
of social security, 1 + g. The proposition states that, if there is sufficient risk, then the
introduction of social security may be welfare improving even when the deterministic
version of the economy has R̄ > 1 + g. We denote the entire expression as term Ape,mbr,
where subscript pe stands in for “partial equilibrium”—to distinguish it from the general
equilibrium results below— and subscript mbr for multiplicative background risk.

To further interpret the risk adjustment in term Ape,mbr, we next assume that all
stochastic variables are jointly distributed as log-normal.

Assumption 4. Joint log-normality: ηi,1,t, ζt, ζt+1, ϱ̃t+1 are jointly distributed as log-
normal with parameters µln η, µln ζ, µln ϱ̃, σ2

ln(η), σ2
ln(ζ), σ2

ln(ϱ̃) for means and variances,
respectively.

We then have
6In utility terms this normalization is innocuous because multiplication by w̄t constitutes a monotone

transformation of a homothetic utility function.
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Proposition 2. Under Assumptions 1–4, a marginal introduction of social security in-
creases social welfare iff

Ape,mbr ≡ (1 + g)
R̄

· (1 + TV )θ − 1 > 0, (8)

where the total variance TV is given as

TV ≡ var(ηi,1,tζtϱ̃t+1) = σ2
η︸︷︷︸

IR

+σ2
ζ + σ2

ϱ̃ + σ2
ζσ

2
ϱ̃︸ ︷︷ ︸

AR

+σ2
η

(
σ2
ζ + σ2

ϱ̃ + σ2
ζσ

2
ϱ̃

)
︸ ︷︷ ︸

LCI=IR·AR

. (9)

Moreover, the consumption equivalent variation associated with the introduction of a social
security system with a contribution rate dτ is

gc =


(
1 + (1 − θ)

(
1+g
R̄

(1 + TV )θ − 1
)
dτ
) 1

1−θ − 1 for θ ̸= 1

exp
((

1+g
R̄

(1 + TV ) − 1
)
dτ
)

− 1 for θ = 1.
(10)

Proof. See Appendix A.

Observe that, according to equation (9), the term TV—abbreviating “total variance”—
consists of three components, reflecting the effect of idiosyncratic risk in term IR, total
aggregate risk in term AR, and the interaction between idiosyncratic and aggregate risk
in term LCI. To see why they appear, notice that in the absence of social security,
savings cum interest is given by ai,2,t+1Rt+1 = w̄tR̄ηi,1,tζtϱ̃t+1. Hence, from the ex-ante
perspective, the product of the three shocks is relevant. This product results from the
economic structure of the model, which is completely standard: the aggregate wage is
multiplied with the realization of aggregate wage risk, ζt, and idiosyncratic wage risk,
ηi,2,t, and then savings are multiplied with the realization of aggregate return risk, ϱ̃t+1.
The term TV is the variance of the product of these stochastic elements, cf. the product
formula of variances derived in Goodman (1960).

For standard random variables, an interaction term involving products of variances—
such as LCI in our context—would be small and is usually ignored. However, we here
deal with long horizons so that the single variance terms may well be large. To see this,
let us make a rough back of the envelope calculation. Despite the simplicity of our model
this gives a rough idea of the magnitudes being involved. Suppose a household works
for 40 years, which in the model corresponds to the first period of a household’s life.
Assume further that each year the household receives a permanent idiosyncratic income
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shock with a log variance of 1 percent (σ2
ln η = 0.01), corresponding to standard empirical

estimates. Based on this example LCI adds about (exp(40·0.01)−1)% ≈ 50% times AR.7

Whatever the exact size of AR is, this interaction is clearly a non-negligible increase in
overall income risk. Furthermore, observe from equation (10) that the CEV—which, as
in Lucas (1978), is a convex function of risk—is equally affected. For the special case of
logarithmic utility, the CEV is approximately equal to (1+g

R̄
(1+TV )−1)dτ so that the 50

percent increase of aggregate risk translates directly into a corresponding increase of the
consumption equivalent variation. For risk aversion above one, 50 percent constitutes a
lower bound of the contribution of LCI to the CEV .

3.2 Idiosyncratic Risk Late in the Life-Cycle

Preparing our general equilibrium analysis of the next subsection, we now investigate a
version of the model where we consider a subperiod structure for the second period.8 The
household works in the first subperiod and is retired in the second. To focus the analysis,
we rule out idiosyncratic risk in the first period. This implies that we disregard the effect
studied in the previous section, i.e., we do not account for the fact that asset positions in
the second period inherit components of idiosyncratic and aggregate risk from the first
period. Later, when we extend the analysis to general equilibrium, this assumption will
be crucial because it allows us to characterize general equilibrium dynamics in closed
form. However, idiosyncratic risk hits in the first subperiod of the second period when
the household is working. Once we extend the analysis to general equilibrium where
consumption and savings decisions also take place in the first period, idiosyncratic risk in
the second period will induce (additional) precautionary savings which is an important
model element. The following assumption summarizes the simplifications that apply to
the current subsection.

Assumption 5. Let β̃ = 1, ηi,1,t = Eηi,1,t = 1 for all i, t and 0 ≤ λ < 1.

We can now rewrite consumption in the second period of a household’s life as

ci,2,t+1 = w̄t
(
ζtR̄ϱ̃t+1 + (1 + g)ζt+1ηi,2,t+1λ

+ τ
(
(1 + g)ζt+1 (1 + λ(1 − ηi,2,t+1)) − ζtR̄ϱt+1

))
. (11)

7By the random walk property of the income process, we have σln η = 40 · 0.01. Under log-normality,
we have σ2

η = exp(σln η) − 1.
8In the Supplementary Appendix ??, we argue that this is equivalent to a three-period setting. In

that three-period setting the results of this subsection go through.
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Let’s start again by looking at a situation where τ = 0 and, without loss of general-
ity, w̄t = 1. Then, old age consumption becomes

ci,2,t+1 = ζtϱ̃t+1︸ ︷︷ ︸
≡ϕ

R̄ + (1 + g)λ+ (1 + g)λ(ζt+1ηi,2,t+1︸ ︷︷ ︸
≡ψ

−1). (12)

We now have additive and multiplicative background risk, similar to Franke, Schlesinger,
and Stapleton (2011).9 A major difference is that they look at a static model where the
background risk is additive and multiplicative by construction. By contrast, in our dy-
namic setting the multiplicative background risk arises endogenously due to the economic
structure.

For our purpose, note that both ψ and ϕ will have an interaction term, e.g.,var(ψ) =
var(ζt+1ηi,2,t+1) = σ2

ζ + σ2
η + σ2

ζσ
2
η. Just like in Proposition 2, the interaction terms will

increase the value of a marginal introduction of social security. We can shut down the
interaction in both ψ and ϕ by assuming σζ = 0, i.e., ζt = Eζt = 1 for all t. Coincidentally,
we then have the more well-known situation with only additive background risk that was
originally considered by Gollier and Pratt (1996).

With respect to our thought experiment, we get the following result:

Proposition 3. Under Assumptions 1, 3, and 5, a marginal introduction of social security
increases social welfare iff

Ape,ambr = E

 1+g
R̄

(1 + λ) ζt+1
ζtϱt+1

− 1+g
R̄
λ ζt+1ηi,2,t+1

ζtϱt+1
− 1(

1
R̄ζtϱt+1

)1−θ (
1 + 1+g

R̄
λ ζt+1ηi,2,t+1

ζtϱt+1

)θ
 > 0 (13)

Proof. See Appendix A.

Subscript ambr stands in for “additive and multiplicative background risk”. In order
to simplify the following analysis, we concentrate on the case where θ = 1 to the effect
that equation (13) becomes

Ape,ambr|θ=1 = E

 1+g
R̄

(1 + λ) ζt+1
ζtϱt+1

− 1+g
R̄
λ ζt+1ηi,2,t+1

ζtϱt+1
− 1

1 + 1+g
R̄
λ ζt+1ηi,2,t+1

ζtϱt+1

 > 0. (14)

As we generally assume that θ ≥ 1, this constitutes a lower bound for Ape,ambr because
welfare benefits associated with social security increase in θ.

9The independent, mean-zero shock ζt is the multiplicative background risk, because it multiplies
the market risk ϱ̃t+1R̄. The independent, mean-zero shock ζt+1ηi,2,t+1 is the additive background risk.
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To investigate how interactions of risks affect the term Ape,ambr, we analyze the deriva-
tive ∂ Ape,ambr|

θ=1
∂σ2

η
. If either σ2

ζ or σ2
ρ or both show up positively in this derivative, then

idiosyncratic and aggregate risks interact. To derive expressions in closed form we again
assume joint log-normality and consider a Taylor-series approximation.

Proposition 4. Consider θ = 1. Under Assumptions 1 and 3–5, a second-order Taylor
series expansion yields

∂ Ape,ambr|θ=1
∂σ2

η

≈ ab2

(1 + b)3

(
1 + σ2

ζ

)9
(1 + σ2

ϱ)6, (15)

where a ≡ (1 + λ)1+g
R̄

, b ≡ λ1+g
R̄

.

Proof. See Appendix A.

Hence, we find that in the two period model with a subperiod structure, idiosyncratic
and aggregate risks interact, even when there is no idiosyncratic risk in the first period.

3.3 General Equilibrium

The previous analyses are restricted to the special case with zero consumption in the
first period. In that setting, the value of social security stems from insurance against
the risk of income fluctuations. The costs stem from the fact that in a dynamically
efficient economy, gross market returns are higher than the implicit return of a PAYG
social security system. Two channels are missing in that setting. First, to the extent that
social security reduces consumption risk, households need to save less for precautionary
motives. This may increase welfare. Second, by crowding out savings, the aggregate
capital stock is reduced which suppresses wages and increases returns. This reduces
welfare in a dynamically efficient economy. As we will see, the interactions of risks can
amplify or mitigate the welfare costs of crowding out.

In order to illustrate these additional channels—and how the interactions of risks
affect those—, we consider a setting where consumption decisions are also made in the
first period and embed the analysis into a general equilibrium model. For analytical
reasons we have to incorporate both steps at once.10 We also have to restrict attention

10In a partial equilibrium model with pension income in the second period—and/or with positive
second period labor income in case λ > 0—, the human capital wealth effect inhibits closed form solutions
for the saving rate. Our proof of equilibrium dynamics uses the fact that both the interest rate and the
wage rate, on which pension payments are based, are functions of the capital stock in general equilibrium.

15



to log-utility11 in both periods and assume absence of idiosyncratic shocks in the first
period.12

Assumption 6. Let β̃ ∈
(
0, 1

2

]
⇔ β = β̃

1−β̃ ∈ (0, 1]; u(·) = ln(·); ηi,1,t = Eηi,1,t = 1 for
all i, t; 0 ≤ λ < 1.

General Equilibrium Dynamics

We begin by characterizing the equilibrium dynamics of the economy.

Proposition 5. Under Assumptions 1 and 6, equilibrium dynamics are given by

kt+1 = 1
(1 + g)(1 + λ)

s(τ)(1 − τ)(1 − α)ζtkαt (16)

=
(

1
(1 + g)(1 + λ)

s(τ)(1 − τ)(1 − α)
) 1−αq+1

1−α
( q∏
i=0

ζα
i

t−i

)
kα

1+q

t−q (17)

for some initial capital stock kt−q in period t − q. The saving rate, here expressed as a
function of τ , s(τ), is given by

s(τ) ≡ βĒ(τ)
1 + βĒ(τ)

≤ β

1 + β
≡ s(τ, λ = 0), (18)

where

Ē(τ) ≡ Et

 1
1 + 1−α

α(1+λ)ϱt+1
(ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1)))

 ≤ 1. (19)

Proof. See Appendix A.

Notice from (18) that an increase of Ē increases the saving rate. Turning to equa-
tion (19) first consider a risk-free situation (ηi,2,t+1 = ϱt+1 = 1) without a pension sys-
tem (τ = 0). We then have Ē = 1

1+ 1−α
α

1
1+ 1

λ

. An increase of λ leads to higher wage income

This enables us to conveniently rewrite the discounted value of second period labor income (=human
capital) so that we can derive closed form solutions for the saving rate and the equilibrium dynamics.

11It is crucial that income and substitution effects of changing interest rates offset each other.
12In our proof of equilibrium dynamics, we require a homothetic structure. We do not get that with

idiosyncratic risk in the first period and a lump-sum pension payment in the second, because the first-
period wage poor save less than the first-period wage rich. This could be made homothetic by assuming
that pension payments do not redistribute across types but then social security no longer insures against
idiosyncratic risk.
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in the second period (and a shorter retirement subperiod) which decreases the saving rate
by decreasing Ē . For λ = 0 we get Ē = 1.

Next, let’s introduce risk while keeping τ = 0. Then Ē = Et
[

1
1+ 1−α

α
λ

1+λ

ηi,2,t+1
ϱt+1

]
. Now

a mean preserving spread of idiosyncratic shocks, ηi,2,t+1, increases Ē thereby increasing
the saving rate, s, as long as λ > 0. This is precautionary savings. By contrast, an
increase in the variance of return shocks, ϱt, reduces Ē thereby decreasing the saving
rate, s. The reason is simply that the asset becomes less attractive, since its risk goes up
while the return remains the same.

Finally, let’s consider τ > 0. Increasing τ decreases Ē and therefore decreases the
saving rate, s. This is the crowding-out of private capital formation. Moreover, the larger
τ , the smaller the effect of a mean preserving spread of ηi,2,t+1 on precautionary savings,
because of the insurance provided through social security. In the limit case where τ = 1,
ηi,2,t+1 has no effect on the saving rate.

Welfare Analysis

We now turn to a central section of the paper, the welfare analysis in general equilibrium.
We look at the same experiment as before, a marginal introduction of a PAYG social
security system. In general equilibrium, we can oppose the welfare gains from insurance
that we analyzed in the previous sections with the potential welfare losses due to the
crowding out of capital.

Proposition 6. Under Assumptions 1 and 6, a marginal introduction of social security
increases social welfare in the stationary equilibrium iff

A+B + C > 0

where

A ≡ βE

 (1−α)
α

1
ϱt+1

− (1−α)λ
α(1+λ)

ηi,2,t+1
ϱt+1

− 1

1 + (1−α)λ
α(1+λ)

ηi,2,t+1
ϱt+1

− 1 (20)

B ≡ ∂s(τ)
∂τ

(
β

1
s(τ = 0)

Ē
∣∣∣
τ=0

− 1
1 − s(τ = 0)

)
= 0 (21)

C ≡ −
(
α(1 + β) − β(1 − α) Ē

∣∣∣
τ=0

) 1
1 − α

(
1 − ϵs,τ |τ=0

)
︸ ︷︷ ︸

>0

(22)
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where

ϵs,τ |τ=0 ≡ ∂s/s

∂τ
= −

¯̄E
∣∣∣
τ=0(

1 + β Ē
∣∣∣
τ=0

)
Ē
∣∣∣
τ=0

< 0

is the semi-elasticity of the saving rate s with respect to the contribution rate evaluated
at τ = 0 and terms Ē and ¯̄E are given by

Ē
∣∣∣
τ=0

≡ E

 1
1 + (1−α)λ

α(1+λ)
ηi,2,t+1
ϱt+1

 > 0,

¯̄E
∣∣∣
τ=0

≡ −∂Ē

∂τ

∣∣∣∣∣
τ=0

= E

 1−α
α(1+λ)

1+λ(1−ηi,2,t+1)
ϱt+1(

1 + (1−α)λ
α(1+λ)

ηi,2,t+1
ϱt+1

)2

 > 0.

Proof. See Appendix A.

In the above, term A reflects the rate of return condition of social security and thus
is the general equilibrium analogue to the partial equilibrium term Ape,ambr from equa-
tion (14). There are two differences between the two. First, in general equilibrium, the
interest rate is determined endogenously. Second, in general equilibrium the aggregate
productivity shocks, ζt and ζt+1, drop out. Intuitively, this happens because that shock
affects all sources of income, namely wages, returns, and social security pensions. As
shown in the Supplementary Appendix ??, the aggregate productivity shocks can be sep-
arated from the contribution rate, τ , and all endogenous variables, so that it drops out
in the analysis of marginal effects.

Similar to the analysis of Subsection 3.2 term A depicts the trade off between the
insurance gains due to social security and the welfare losses due to the fact that the im-
plicit return of social security is less than the expected return on savings in a dynamically
efficient economy. This will become more clear below. We make two more observations
regarding term A. First, term A does not capture any behavioral responses to the policy
reform. Second, it increases in β, because households care more about consumption risk
in the second period when β is higher.

Term B represents the utility effects of the precautionary savings reaction. There
are two opposing forces which exactly offset each other in utility terms. On the one
hand, households need less precautionary savings, because they have more insurance,
and as a consequence can consume more in the first period of life. On the other hand,
the reduction of precautionary savings leads to a reduction of aggregate capital. As a
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direct consequence, wages and returns change, and this reduces utility in such a way that
the net effect is zero. We give more details on this somewhat surprising finding in the
Supplementary Appendix ??.

Term C represents the welfare effects due to crowding out of capital formation. It
thus captures the response of households to a reduction in their income. It increases
in β, which means that the more households value future consumption, the less they will
reduce their savings in response to lower income. Whether term C is positive or negative
depends on whether the economy is dynamically efficient. This is formalized in the next
proposition.

Lemma 1. Consider a deterministic economy with λ = 0. This economy is dynamically
efficient in the sense of Cass (1972) iff

s(τ = 0, λ = 0) = β

1 + β
<

α

1 − α
. (23)

Proposition 7. If condition (23) holds in the deterministic economy with λ = 0, then
term C < 0 in the corresponding stochastic economy with 0 ≤ λ < 1.

Proof. See Appendix A. The lemma is proved as part of the proposition.

The proposition connects the classic notion of dynamic efficiency due to Cass (1972)
to the welfare effect of crowding out in our stochastic economy. If the deterministic
version of the economy is dynamically efficient, then the crowding out of capital leads to
a welfare loss, i.e., term C < 0.

To sum up the discussion on the three terms, in a dynamically efficient economy, the
introduction of social security will increase welfare due to insurance, reflected by term A,
but it will reduce welfare due to the crowding out of capital, reflected by term C. In the
following, we discuss how the interactions between risks affect the two terms. To this
end, we analyze the derivatives ∂A

∂σ2
η

and ∂C
∂σ2

η
. If σ2

ρ shows up positively in the respective
derivatives, then idiosyncratic and aggregate risks interact, just as in our previous partial
equilibrium analysis of Subsection 3.2. In order to derive analytical expressions we modify
Assumption 4 and again consider a Taylor series expansions of the random variables
around their respective means.13

Assumption 7. Joint log-normality: ηi,2,t, ϱt+1 are jointly distributed as log-normal with
parameters µln η, µln ϱ, σ2

ln(η), σ2
ln(ϱ) for means and variances, respectively.

13In the Supplementary Appendix ??, we examine the special case of λ = 0, which yields concise
equations without the need for an additional assumption.
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Proposition 8. Under Assumptions 1, 6, and 7, a second-order Taylor series expansion
yields

∂A

∂σ2
η

≈ β
a2 b

(
1 + σ2

ϱ

)6

(1 + a)3 > 0

∂C

∂σ2
η

≈
(
α(1 + β) − β(1 − α) Ē

∣∣∣
τ=0

)
︸ ︷︷ ︸

>0

1
1 − α

∂ ϵs,τ |τ=0
∂σ2

η︸ ︷︷ ︸
<0

+β (1 − ϵs,τ |τ=0)︸ ︷︷ ︸
>0

∂ Ē
∣∣∣
τ=0

∂σ2
η︸ ︷︷ ︸

>0

≷ 0

where

a ≡ (1 − α)λ
α(1 + λ)

, b ≡ (1 − α)
α

∂ Ē
∣∣∣
τ=0

∂σ2
η

=
a2
(
σ2
ϱ + 1

)3

(1 + a)3 > 0 (24)

∂ ϵs,τ |τ=0
∂σ2

η

≈ −β (1 − s)2

s
·

·

(σ2
ϱ + 1

)3 3 a2 b
(
σ2
ϱ + 1

)3
− a3 + 2 a2

(a+ 1)4 +
a2
(
σ2
ϱ + 1

)3

(1 + a)3

 < 0 (25)

Proof. See Appendix A.

To interpret the previous proposition, first observe that our findings with regard to
term A are analogous to our partial equilibrium results from Subsection 3.2: Welfare
benefits from introducing social security interact positively with aggregate risk. This is
reflected by the variance σ2

ϱ in the partial derivative ∂A
∂σ2

η
.

Second, notice that the effect of idiosyncratic risk on the welfare losses from crowding
out is ambiguous. The ambiguity comes from the fact that (24) is positive whereas (25)
is negative. Both terms are positively interacting with aggregate risk. This can be seen
by the presence of term σ2

ϱ in the respective expressions. Term (25) is the derivative of
the semi-elasticity of the saving rate with respect to idiosyncratic risk. It is negative
because the reduction of savings in response to an introduction of the pension system
is stronger when both risks are present. The underlying reason is that social security
can partially insure both risks, which means that precautionary savings decrease more
strongly than if only one risk was insured. The interaction terms reinforce this channel.
The opposing force is given in equation (24) which displays the partial derivative of Ē

∣∣∣
τ=0
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with respect to σ2
η, which has a positive sign. Recall from equation (18) that an increase

of Ē
∣∣∣
τ=0

is equivalent to an increase of the saving rate. Equation (24) hence captures
a level effect, i.e., that savings itself is higher when both risks are present. Since this
equation increases in σ2

ϱ, the risk interactions mitigate this channel and thereby mitigate
the losses from crowding out.

4 Numerical Illustration

This section presents a numerical illustration of the results of the previous section. Specif-
ically, it illustrates the interactions of risks as documented in Proposition 2 for the partial
and in Proposition 6 for the general equilibrium. The aim is to gain qualitative insights,
not to perform a rigorous quantitative exercise.

We focus on results for the terms Ape,mbr, A, and C. To underscore that our analysis
is qualitative in nature, we don’t report the associated (contributions to) consumption
equivalent variations because these have a stronger quantitative connotation. However,
recall from Proposition 2 that our findings on these terms translate one for one into
corresponding findings for consumption equivalent variations.

We parameterize the model such that each period covers J = 40 actual years. We
set α = 0.3 and β = 0.99J . With these parameters, the sufficient condition of dynamic
efficiency in Proposition 7 is satisfied. We set the log variance of innovations of the
idiosyncratic income process to an annual value of 0.01, corresponding to conventional
estimates. Given the periodicity of J = 40 years, this means that σ2

η = exp(40 · 0.01) −
1 ≈ 0.5. The variance of total aggregate risk (AR) is assumed to be ∈ [0, 1] with
details described below. Furthermore, we set λ = 0.1 which assigns a relatively big
role to social security—i.e., the pension period with weight 1 − λ is relatively long—
and a small role to idiosyncratic risk—i.e., the working phase with weight λ is relatively
short. Furthermore, 1 + g = (1 + 0.015)J , which is a standard value for the long run
real productivity growth rate. For the partial equilibrium the coefficient of relative risk
aversion can take two values, θ ∈ {1, 3}, whereas for the general equilibrium we keep in
line with the proposition and let θ = 1.

4.1 Partial Equilibrium

The partial equilibrium version of the model was presented in Subsection 3.2. To keep
the results comparable to the general equilibrium, we set the gross interest rate R̄ to a
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value that would result from a general equilibrium where all realizations of shocks equal
their respective means in a λ = 0 economy. Details are relegated to the Supplementary
Appendix ??, see in particular Definition ?? and equation (??). This yields R̄ = (1 +
g) α

1−α
1+β
β

= 1.9396 for the parameterization explained above. For this value, R̄
1+g =

1.0692 > 1, i.e., the capital market return exceeds the implicit return of social security.
Figure 1 displays the term Ape,mbr of Proposition 2 for θ = 1 in Panel (a) and for θ = 2

in Panel (b) as a function of the standard deviation of aggregate risk,
√
AR. Each point

in the graph has σζ = σϱ.14

The solid black line in the figure is for the case with only aggregate risk, Ape,mbr(AR),
whereas the red dash-dotted line is for both risks, Ape,mbr(AR, IR). The blue dashed
line shows Ape,mbr(AR + IR), which can be interpreted as a scenario with a single risk
that has the size of the two separate risks. Crucially, in this scenario LCI = 0. We
can get an analytical expression for Ape,mbr(AR + IR) from equation 8: for θ = 1 we
have Ape,mbr(AR + IR) = 1+g

R̄
+ 1+g

R̄
AR + 1+g

R̄
IR − 1. This is displayed in Panel (a).

Since we hold IR constant, the shift by 1+g
R̄
IR remains unchanged as

√
AR is increased,

to that the curves move closer together. By contrast, for θ = 3 in Panel (b), we
get Ape,mbr(AR+ IR) = 1+g

R̄
(1 +AR+ IR)3 − 1 which means that the degree of convexity

increases. Importantly, observe that in both graphs the gap between the red dash-dotted
line, Ape,mbr(AR, IR), and the blue dashed line, Ape,mbr(AR+IR), is increasing. This am-
plification is caused by the interaction of risks through LCI. The amplification increases
in risk aversion, cf. equation (8).

Finally, notice that Ape,mbr(AR) turns from negative—because R̄
1+g > 1—to positive

for sufficiently high aggregate risk. Ape,mbr(AR, IR) is positive throughout because the
insurance against idiosyncratic risk dominates the welfare losses in this dynamically effi-
cient economy already for AR = 0.

14We therefore have AR = σ2
ζ + σ2

ϱ + σ2
ζ σ2

ϱ = 2σ2
ζ + σ4

ζ , cf. Proposition 2. This gives σ2
ζ = σ2

ϱ =
−1 +

√
1 + AR. As we assume that AR ∈ [0, 1] this implies that that σ2

ζ and σ2
ϱ are ∈ [0, 0.41].
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Figure 1: Welfare Effects in Partial Equilibrium
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Notes: Ape,mbr is defined in equation (7). We set the variance of aggregate return shocks σϱ = σζ .
Aggregate risk, AR is then AR = σ2

ζ + σ2
ζ + σ4

ζ , cf. Proposition 2. Ape,mbr(AR) is for an economy with
only aggregate risk, Ape,mbr(AR+IR) is for an economy with a single risk that has the size of both risks,
and Ape,mbr(AR, IR) is the economy with two separate risks. θ is the coefficient of relative risk aversion.
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4.2 General Equilibrium: Comparative Statics

We now turn to the analysis in general equilibrium where we compare two long-run
equilibria like in Proposition 6. Recall that in general equilibrium, we have λ ≥ 0 and
we here set λ = 0.1 (see above).

We here present numerical computations of the expressions in Proposition 6, not
using the approximations of Proposition 8. To this end we compute the expected values
of all non-linear expressions by Gaussian Quadrature methods. We evaluate the integrals
using np = 5 nodes. We know from Proposition 6 that no aggregate productivity shocks
are present. Therefore, in contrast to the previous subsection, aggregate risk is simply
given by AR = σ2

ϱ. To keep AR ∈ [0, 1] as previously we accordingly now set σ2
ϱ ∈ [0, 1].15

Figure 2 displays the terms A and C, as well as the total effect A + C as a function
of

√
AR = σϱ. With regard to term A, shown in panel (a) of the figure, we see a similar

qualitative pattern as in our partial equilibrium model. Concretely, the solid black line
A(AR) corresponds to the solid black line Ape,mbr(AR) in panel (a) of Figure 1. Both
lines are strictly increasing and convex, start below zero, and become positive as we
increase aggregate risk. The two lines are not the same because Ape,mbr corresponds
to λ = 0, whereas A is plotted for λ = 0.1, cf. Footnote 15. Also the red dash-dotted
lines, A(AR, IR) and Ape,mbr(AR, IR), which represent economies with both risks, behave
the same. But the crucial feature is that we see again that the gap between the two
lines increases, which is due to the presence of interactions between risks, since we keep
idiosyncratic risk constant.

With regard to term C, the presence of idiosyncratic risk turns out to reduce the
welfare costs from crowding out, i.e., the red dash-dotted line is above the black solid
line. However, this is ambiguous. As aggregate risk increases, the gap becomes smaller,
which means that the interactions increase the welfare costs from crowding out. This
corresponds to our finding in Proposition 8, where we discussed the two opposing forces
and concluded that the interactions could increase or decrease the welfare losses in C.

Finally, we see that the total effect, A + C, displayed in Panel (c) is increasing in
aggregate risk. This is so because the marginal welfare benefits from insurance (term A)
dominate the marginal welfare losses from crowing out (term C) for every unit of ad-
ditional aggregate risk. More importantly, the gap between the two lines in Panel (c)
increases, which means that the interactions in term A dominate those in term C. While

15Also notice that in the λ = 0 economy we have Ape,mbr = A
1+β , with details relegated to Supplemen-

tary Appendix ??. The following results therefore show terms A and C times 1
1+β .
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we are looking only at a specific calibration, this is still an important finding (and, in
fact, a very robust finding across different calibrations which we do not show for sake of
brevity). Interactions between the risks seem to amplify the welfare gains more strongly
than the welfare losses. The reason are the two opposing forces in term C shown and
discussed in Proposition 8. Because of them, the effect of the interactions on the welfare
costs is mild, and the effect on the welfare gains dominates.

Figure 2: Welfare Effects in General Equilibrium
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0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

s.d. of aggregate risk

A

Gains from Insurance: A

 

 

A(AR)
A(AR,IR)

(b) Term C
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(c) Total Effect
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Notes: A and C are defined in proposition (6). Aggregate risk is AR = σ2
ϱ, because σζ doesn’t enter in

(6). A(AR), C(AR) are for an economy with only aggregate risk, and A(AR, IR), C(AR, IR) are for the
economy with two separate risks.
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5 Conclusion

This paper develops an analytically tractable model with two overlapping generations
where households are subject to aggregate and idiosyncratic risk. We use this model to
study the welfare consequences of introducing a marginal pay-as-you-go social security
system. We highlight important interactions between aggregate and idiosyncratic risks
which are present although these risks are orthogonal by construction. It is the standard
life-cycle structure of the economy that causes these interactions. They increase the
variance of retirement consumption and therefore increase the insurance value of social
security. We first demonstrate this insurance channel in a partial equilibrium. There, we
show that the two risks interact in multiple ways which all drive up the value of social
security. Then, in general equilibrium, we oppose this same insurance channel with the
welfare loss from the crowding out of capital which arises due to distortionary taxation.
The crucial finding here is that when two risks are present, the crowding out is the result
of two opposing forces. As a consequence, the interactions act less strong on the welfare
costs of crowding out than they do on the welfare gains from insurance. This is confirmed
in our numerical illustrations, where the net effect of the interactions on welfare in general
equilibrium is positive.

The model makes contact with the literature on background risk and extends it to a
dynamic setting. First, by construction we have additive background risk like in Gollier
and Pratt (1996). However, due to our dynamic setting, we can show that the additive
background risk increases because the independent idiosyncratic and aggregate produc-
tivity risks interact. Second, we also show that the model has multiplicative background
risk like in Franke, Schlesinger, and Stapleton (2006). However, in that paper it is present
by direct construction, whereas in our model it arises due to the economic structure. Also
for this multiplicative background risk, we show that there is an interaction term.

The findings in this paper suggest that welfare effects stemming from these interactions
of risks may in fact be quite be large. When aggregate risk in the economy is sufficiently
strong, this may lead to welfare gains from the introduction of social security also in the
long-run despite losses from crowding out of capital formation. Whether this is the case
must be investigated in a more realistic quantitative model which is suitably calibrated.
This is done in our companion paper, Harenberg and Ludwig (2014). There we document
that indeed the interactions of risks overturn conventional findings on the welfare effects
of social security and we conclude that the introduction of a minimum flat pension is
welfare improving once all household risks are appropriately taken into account.
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A Appendix: Proofs

Proof of proposition 1. Maximize

Eu(ci,2,t+1) = 1
1 − θ

E
(
w̄t
(
R̄ηi,1,tζtϱ̃t+1 + τ

(
(1 + g)ζt+1 − R̄ηi,1,tζtϱ̃t+1

)))1−θ
.

This is equivalent to maximizing

1
1 − θ

maxER1−θ
p,t,t+1

where Rp,t,t+1 ≡ ηi,1,tζtR̄ϱ̃t+1 + τ
(
(1 + g)ζt+1 − R̄ηi,1,tζtϱ̃t+1

)
is a consumption (or port-

folio) return. Increasing ex-ante utility for a marginal introduction of social security
requires the first-order condition w.r.t. τ , evaluated at τ = 0, to exceed zero, hence:

E
[
R−θ
p,t,t+1

∂Rp,t,t+1

∂τ

]∣∣∣∣∣
τ=0

> 0. (26)

We have R−θ
p,t,t+1

∣∣∣
τ=0

=
(
ηi,1,tζtR̄ϱt+1

)−θ
and ∂Rp,t,t+1

∂τ

∣∣∣
τ=0

= (1 + g)ζt+1 − ηi,1,tζtR̄ϱt+1.
Equation (26) therefore rewrites as

(1 + g)E
[
(ηi,1,tζtϱt+1)−θ

]
> R̄E

[
(ηi,1,tζtϱt+1)1−θ

]
. (27)

Rewriting the above and imposing Assumption 1 we get equation (7).

Proof of proposition 2. Define Z1 ≡ (ηi,1,tζtϱ̃t+1)−θ and Z2 ≡ (ηi,1,tζtϱ̃t+1)1−θ. By log-
normality we have that EZi = exp

(
E lnZi + 1

2σ
2
lnZi

)
, i = 1, 2. Observe that E lnZ1 =

−θ (E ln ηi,1,t + E ln ϱ̃+ E ln ζ) and σ2
lnZ1 = θ2

(
σ2

ln η + σ2
ln ϱ̃ + σ2

ln ζ

)
. Therefore:

E[Z1] = exp
(1

2
θ(1 + θ)

(
σ2

ln η + σ2
ln ϱ̃ + σ2

ln ζ

))

where we make use of Assumption 1b. Next, observe that log-normality implies that σ2
η =(

exp
(
σ2

ln η

)
− 1

)
, again using Assumption 1b. Hence σ2

ln η = ln
(
1 + σ2

η

)
with correspond-

ing expressions for σ2
ln ζ and σ2

ln ϱ̃. Therefore:

exp
(1

2
θ(1 + θ)

(
σ2

ln η + σ2
ln ϱ̃ + σ2

ln ζ

))
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
) 1

2 θ(1+θ)

We consequently have E[Z1] =
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
) 1

2 θ(1+θ)
.
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As to E[Z2] observe that E lnZ2 = (1 − θ) (E ln ηi,1,t + E ln ζ + E ln ϱ̃) and σ2
lnZ2 =

(1 − θ)2
(
σ2

ln η + σ2
ln ζ + σ2

ln ϱ̃

)
. Therefore E[Z2] =

(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
) 1

2 θ(θ−1)
and

hence E[Z1]
E[Z2] =

(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
)θ
.

To evaluate the CEV between two scenarios we compare Eu(ci,2,t+1τ>0) with Eu(ci,2,t+1τ=0)
using that Eu(ci,2,t+1τ>0) ≈ Eu(ci,2,t+1τ=0) + ∂Eu(ci,2,t+1τ=0)

∂τ
dτ . We evaluate this expression

at τ = 0. We start by looking at general CRRA utility, proceeding with the log case.

1. Case θ ̸= 1. We have that, evaluated at τ = 0,

∂Eu(ci,2,t+1τ=0)
∂τ

= w̄1−θ
t R̄1−θ

(1 + g

R̄
EZ1 − EZ2

)

where Z1 and Z2 are defined in our proof of Proposition 2. We also have that
Eu(ci,2,t+1τ=0) = 1

1−θ w̄
1−θ
t R̄1−θEZ2. Therefore:

Eu(ci,2,t+1τ>0) ≈ 1
1 − θ

w̄1−θ
t R̄1−θEZ2 + w̄1−θ

t R̄1−θ
(1 + g

R̄
EZ1 − EZ2

)
dτ.

The CEV, denoted by gc, is defined by the relationship:

Eu(ci,2,t+1τ=0(1 + gc)) = Eu(ci,2,t+1τ>0),

from which, using the above formulae, we get

(1 + gc)1−θ 1
1 − θ

w̄1−θ
t R̄1−θEZ2 = 1

1 − θ
w̄1−θ
t R̄1−θEZ2

+ w̄1−θ
t R̄1−θ

(1 + g

R̄
EZ1 − EZ2

)
dτ.

Using the respective expressions for Z1 and Z2 from the proof of Proposition 2, the
expression for gc follows.

2. Case θ = 1. We have that, evaluated at τ = 0, ∂Eu(cτ=0
i,2,t+1)
∂τ

= 1+λ
R̄

EZ1 − 1. We also
have that Eu(cτ=0

i,2,t+1) = ln
(
w̄tR̄

)
+ E ln (ηi,1,tζtϱt+1). Therefore:

Eu(cτ>0
i,2,t+1) = ln

(
w̄tR̄

)
+ E ln (ηi,1,tζtϱt+1) +

(
1 + λ

R̄
EZ1 − 1

)
dτ.

For gc we accordingly get 1 + gc = exp
((

1+λ
R̄
EZ1 − 1

)
dτ
)
. Using the expression

for Z1 from the proof of Proposition 2, the expression for gc follows.
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Proof of Proposition 3. As in the proof of Proposition 1, define

Rp
t+1 = ζtR̄ϱ̃t+1 + (1 + g)ζt+1ηi,2,t+1λ+ τ

(
(1 + g)ζt+1 (1 + λ(1 − ηi,2,t+1)) − ζtR̄ϱt+1

)
and compute

R−θ
p,t,t+1

∣∣∣
τ=0

=
(
ζtR̄ϱt+1 + (1 + g)λζt+1ηi,2,t+1

)−θ

∂Rp,t,t+1

∂τ

∣∣∣∣∣
τ=0

= (1 + g)ζt+1 (1 + λ (1 − ηi,2,t+1)) − ζtR̄ϱt+1.

From the analogue to condition (26) we then get E
[

(1+g)ζt+1(1+λ(1−ηi,2,t+1))−ζtR̄ϱt+1

(ζtR̄ϱt+1+(1+g)λζt+1ηi,2,t+1)θ

]
> 0,

which gives equation (13).

Proof of Proposition 4. First, rewrite (14) as Ape,ambr = E
[
aZ1−bZ2−1

1+bZ2

]
, where a ≡ (1 +

λ)1+g
R̄

, b ≡ λ1+g
R̄

, and Z1 ≡ ζt+1
ζtϱt+1

, Z2 ≡ ζt+1ηi,2,t+1
ζtϱt+1

. Take a second-order Taylor series
approximation of the above, around Z2 = Z1 = 1:

Ape,ambr ≈ 1
(1 + b)3

(
ab2E[Z1Z

2
2 ] − 3ab2E[Z1Z2] − abE[Z1Z2] + 3ab2E[Z1]+

3abE[Z1] + aE[Z1] − (1 + b)3
)

Observe that, no interactions are present in term EZ1 and, by Assumption 1, there are
also no interactions in term E [Z1Z2]. However, observe that

E
[
Z1Z

2
2

]
= E

[
ζt+1

ζtϱt+1

(ζt+1η2,i,t+1)2

(ζtϱt+1)2

]
= E

[
ζ3
t+1

]
E
[

1
ζ3
t

]
E
[
η2

2,i,t+1

]
E
[

1
ϱ3
t+1

]

to the effect that an interaction between idiosyncratic and aggregate risk is only present
through term E [Z1Z

2
2 ]. We have E [η2

2] = 1+σ2
η, E

[
1

(ϱ)3

]
=
(
1 + σ2

ϱ

)6
and Eζ3 =

(
1 + σ2

ζ

)3
.

Therefore E [Z1Z
2
2 ] =

(
1 + σ2

ζ

)9
(1 + σ2

ϱ)6(1 + σ2
η) and equation (15) immediately follows.

Proof of proposition 5. The proof is by guessing and verifying. As all households are
ex-ante identical, we guess for all households i that

si,2,t+1 = a2,t+1 = s(1 − τ)wt = s(1 − τ)(1 − α)Υtζtk
α
t .
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If this is correct, then the equilibrium dynamics are given by

Kt+1 = a2,t+1 = s(1 − τ)(1 − α)Υtζtk
α
t .

As kt+1 = Kt+1
Υt+1(1+λ) we get

kt+1 = s(1 − τ)(1 − α)Υtζtk
α
t

Υt+1(1 + λ)
= 1

(1 + g)(1 + λ)
s(1 − τ)(1 − α)ζtkαt .

Recursive substitution gives (17), for any initial capital stock kt−q.
To verify (16), notice that our assumptions on savings imply that

ci,1,t = c1,t = (1 − s)(1 − τ)(1 − α)Υtζtk
α
t (28)

and, by the budget constraint, we have

ci,2,t+1 = s(1 − τ)(1 − α)Υtζtk
α
t αζt+1ϱt+1k

α−1
t+1 +

+ (1 − α)Υt+1ζt+1k
α
t+1 (ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1))) (29)

Using (16) in (29) we get

ci,2,t+1 = (αϱt+1(1 + λ) + (1 − α) (ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1)))) Υt+1ζt+1k
α
t+1. (30)

Next, notice that the first-order-condition of household maximization gives

1 = βEt
[
c1,t(1 + rt+1)

ci,2,t+1

]
. (31)

Using the above equations for consumption in the two periods, we can rewrite (31) as

1 = βEt
[

c1,tαζt+1ϱt+1k
α−1
t+1

(αϱt+1(1 + λ) + (1 − α) (ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1)))) Υt+1ζt+1kαt+1

]

= β(1 − s)
s

Ē,

where the last line follows after some transformations and where Ē is defined in equa-
tion (19). Equation (18) immediately follows.

Uniqueness is established by convexity of the problem. Given that the solution is
unique and given that we have characterized one solution, this is the solution of the
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problem.
As to the upper bound of Ē observe that Ē = 1 for λ = 0. For λ > 0, Ē = Et

[
1

1+x

]
for x ≡ 1−α

α(1+λ)ϱt+1
(ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1))). The assumptions of our model imply

that x ≥ 0, hence Ē = Et
[

1
1+x

]
≤ 1. Finally, observe that the upper bound Ē ≤ 1 implies

the upper bound on the saving rate s ≤ β
1+β .

Proof of Proposition 6. 1. Notice from equation (17) that in the ergodic set, i.e., for q →
∞ we get

kt+1 =
(

1
(1 + g)(1 + λ)

s(1 − τ)(1 − α)
) 1

1−α
( ∞∏
i=0

ζα
i

t−i

)
= kms

( ∞∏
i=0

ζα
i

t−i

)
(32)

where kms ≡
(

1
(1+g)(1+λ)s(1 − τ)(1 − α)

) 1
1−α is the mean shock equilibrium capital

stock, i.e., it is the capital stock that would obtain in equilibrium if nature would
draw ζt = 1 in all periods t− q, . . . , t, for q → ∞.

2. Rewrite (2b) using (3) to make explicit the excess return formulation as in equa-
tion (6) to get

c2,t+1 =
(
sζtϱt+1R̄t+1 + ληi,2,t+1

w̄t+1

w̄t
+

+τ
(

(1 + λ(1 − ηi,2,t+1))
w̄t+1

w̄t
− sζtϱt+1R̄t+1

))
w̄tζt+1.

Next, observe that w̄t = Υt(1 − α)kαt and R̄t+1 = αkα−1
t+1 and from step 1 of the

proof we have in the ergodic set that

kt+1 = kms

( ∞∏
i=0

ζα
i

t−i

)
= kmsd(ζ, t) for d(ζ, t) ≡

∞∏
i=0

ζα
i

t−i

kt = kms

( ∞∏
i=0

ζα
i

t−1−i

)
= kmsd(ζ, t− 1) for d(ζ, t− 1) ≡

∞∏
i=0

ζα
i

t−1−i

Therefore w̄t = Υt(1 − α)kαmsd(ζ, t − 1)α, R̄t+1 = αkα−1
ms d(ζ, t)α−1 and w̄t+1

w̄t
= (1 +
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g)
(

d(ζ,t)
d(ζ,t−1)

)α
. We accordingly get for consumption in j = 1, 2:

c1,t = (1 − s)(1 − τ)Υtζt(1 − α)kαmsd(ζ, t− 1)α (33)

c2,t+1 =
(
sζtϱt+1αk

α−1
ms + ληi,2,t+1(1 + g) d(ζ, t)

d(ζ, t− 1)α
+

+τ
(

(1 + g)(1 + λ(1 − ηi,2,t+1))
d(ζ, t)

d(ζ, t− 1)α
− sζtϱt+1αk

α−1
ms

))
· Υtζt+1(1 − α)kαmsd(ζ, t− 1)αd(ζ, t)α−1.

To simplify further, notice that d(ζ,t)
d(ζ,t−1)α = ζt. Therefore, second period consumption

rewrites as

c2,t+1 =
(
sϱt+1αk

α−1
ms + ληi,2,t+1(1 + g) + τ

(
(1 + g)(1 + λ(1 − ηi,2,t+1)) − sϱt+1αk

α−1
ms

))
· Υt(1 − α)kαmsζtζt+1d(ζ, t− 1)αd(ζ, t)α−1. (34)

3. Using (33) and (34) in (5), ex-ante utility is accordingly given by

Eut = c + E [ln(1 − s) + ln(1 − τ)] + α(1 + β) ln kms+

βE
[
ln
(
sϱt+1αk

α−1
ms + ληi,2,t+1(1 + g)+

+τ
(
(1 + g)(1 + λ(1 − ηi,2,t+1)) − sϱt+1αk

α−1
ms

))]
, (35)

where c encompasses all elements that are not affected by τ .

4. Define

B1 ≡ E
∂ ln(1 − s)

∂τ
= −E

1
1 − s

∂s

∂τ
> 0. (36)

The sign is due to the fact that the partial derivative ∂s
∂τ
< 0 as savings are reduced

upon introduction of social security (see below). Further define

A1 ≡ E
∂ ln(1 − τ)

∂τ
= − 1

1 − τ

∣∣∣∣
τ=0

= −1. (37)

As to the implicit return equation for social security, we get, evaluated at τ = 0,
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that:

∂ ln (sϱt+1αk
α−1
ms + ληi,2,t+1(1 + g) + τ ((1 + g)(1 + λ(1 − ηi,2,t+1)) − sϱt+1αk

α−1
ms ))

∂τ

= 1
sϱt+1αkα−1

ms + ληi,2,t+1(1 + g)
·(1 + g)(1 + λ(1 − ηi,2,t+1)) − sϱt+1αk

α−1
ms︸ ︷︷ ︸

≡Ã2

+αϱt+1

∂s∂τ kα−1
ms︸ ︷︷ ︸

≡B̃2

+ s(α− 1)kα−2
ms

∂kms
∂τ︸ ︷︷ ︸

≡C̃


 .

First, look at

1
sϱt+1αkα−1

ms + ληi,2,t+1(1 + g)
Ã2 =

1−α
α(1+λ)

1+λ(1−ηi,2,t+1)
ϱt+1

− 1

1 + (1−α)λ
α(1+λ)

ηi,2,t+1
ϱt+1

.

Multiplying the above term by β—cf. equation (35)—, taking expectations and
subtracting −1 in order to acknowledge the effects of taxation on income (from
equation (37)), gives term A.

Next, look at

αϱt+1

sϱt+1αkα−1
ms + ληi,2,t+1(1 + g)

B̃2 = ∂s

∂τ

1
s

1
1 + (1−α)λ

α(1+λ)
ηi,2,t+1
ϱt+1

< 0.

Multiplying the above by β—cf. equation (35)—, taking expectations and combin-
ing the resulting term with equation (36), we get

B ≡ E

∂s
∂τ

β 1
s

1
1 + (1−α)λ

α(1+λ)
ηi,2,t+1
ϱt+1

− 1
1 − s


= β ϵs,τ |τ=0

(
Ē
∣∣∣
τ=0

− Ē
∣∣∣
τ=0

)
= 0

where ϵs,τ |τ=0 = ∂s
∂τ

1
s
< 0 is the semi-elasticity of the saving rate in τ , evaluated

at τ = 0. It is given by

ϵs,τ |τ=0 ≡ ∂s

∂τ

1
s

∣∣∣∣∣
τ=0

= − β(1 − s)2 1
s

¯̄E
∣∣∣∣
τ=0

= −
¯̄E
∣∣∣
τ=0

(1 + β Ē
∣∣∣
τ=0

) Ē
∣∣∣
τ=0

, (38)
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where ¯̄E
∣∣∣
τ=0

≡ − ∂Ē
∂τ

∣∣∣
τ=0

= Et

 1−α
α(1+λ)

1+λ(1−ηi,2,t+1)
ϱt+1(

1+ (1−α)λ
α(1+λ)

ηi,2,t+1
ϱt+1

)2

 > 0.

Finally, look at

αϱt+1

sϱt+1αkα−1
ms + ληi,2,t+1(1 + g)

C̃ = −(1 − α) 1
1 + (1−α)λ

α(1+λ)
ηi,2,t+1
ϱt+1

∂ ln kms
∂τ

.

Multiplying the above by β, taking expectations and combining it with equa-
tion (35), all terms incorporating ∂ ln kms

∂τ
are given by

C =
(
α(1 + β) − β(1 − α) Ē

∣∣∣
τ=0

)
E
[
∂ ln kms
∂τ

]
.

Turning to ∂ ln kms

∂τ
we find that, at τ = 0, we have

∂ ln kms
∂τ

= 1
1 − α

(
∂ ln s
∂τ

+ ∂ ln(1 − τ)
∂τ

)
= − 1

1 − α

(
1 − ϵs,τ |τ=0

)
< 0,

where the sign follows from the fact that ϵs,τ |τ=0 ∈ (0, 1). The expression for term C

given in the proposition then follows.

Proof of Proposition 7 and Lemma 1. From the aggregate resource constraint in our model
with δ = 1, Nj,t = 1, j = 1, 2, we get c1,t + c2,t +Kt+1 = F (Kt,ΥtLt) and by homogeneity
of F (·, ·) maximizing per capita consumption c̄ = c1,t+c2,t

2 is equivalent to maximizing

max
{
F (Kt,ΥtLt)

Nt

− Kt+1

Nt

}
(39)

As Nt = Nt+1 = 2, N1,t = N2,t = 1, Lt = 1 + λ and recalling that kt = Kt

ΥtLt
we have

that Kt+1
Nt+1

= kt+1Υt+1(1 + λ)1
2 and Lt

Nt
= (1 + λ)1

2 . Maximizing (39) in steady state
where kt+1 = kt = k is equivalent to max {f(k) − (1 + g)k}. Using that f(k)) = kα we
get the golden rule capital stock kGR =

(
α

1+g

) 1
1−α .

From equation (16) we get that the steady state capital stock in the deterministic
λ = 0 economy is k =

(
β(1−α)

(1+β)(1+g)

) 1
1−α . Hence the deterministic λ = 0 economy is

dynamically efficient iff β
1+β <

α
1−α .

Finally, observe that C < iff α(1 + β) − β(1 − α) Ē
∣∣∣
τ=0

> 0 which we can rewrite
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to β Ē|
τ=0

1+β < α
1−α . Dynamic efficiency of the mean shock economy is a sufficient condition

because from 0 < Ē
∣∣∣
τ=0

≤ 1, we obviously have that β Ē|
τ=0

1+β ≤ β
1+β , and therefore

β Ē|
τ=0

1+β < α
1−α .

Proof of proposition 8. 1. The partial derivative of term A immediately follows by
setting to zero σ2

ζ in term ∂ Ape,ambr|
θ=1

∂σ2
η

, cf. the (proof of) Proposition 4.

2. The partial derivative of term C is given by

∂C

∂σ2
η

=
(
α(1 + β) − β(1 − α) ¯̄E

∣∣∣
τ=0

)
︸ ︷︷ ︸

>0

1
1 − α

∂ ϵs,τ |τ=0
∂σ2

η︸ ︷︷ ︸
<0

+β (1 − ϵs,τ |τ=0)︸ ︷︷ ︸
>0

∂ ¯̄E
∣∣∣
τ=0

∂σ2
η︸ ︷︷ ︸

>0

where it remains to establish that, indeed, ∂ ¯̄E|
τ=0

∂σ2
η

> 0 and ∂ ϵs,τ |τ=0
∂σ2

η
< 0:

(a) To evaluate ∂ Ē|
τ=0

∂σ2
η

, approximate Ē
∣∣∣
τ=0

to get

Ē
∣∣∣
τ=0

≈
[
a2 EZ2

3 − (3 a2 + a) EZ3 + 3 a2 + 3 a+ 1
a3 + 3 a2 + 3 a+ 1

]
.

With E [Z3] = (1 + σ2
ϱ) and E [Z2

3 ] = (1 + σ2
η)(1 + σ2

ϱ)3 equation (24) follows.

(b) As to the partial derivative of ϵs,τ |τ=0 with respect to σ2
η, recall equation (38).

To determine how ϵs,τ |τ=0 reacts to changes in σ2
η it remains to determine ∂ ¯̄E|

τ=0
∂σ2

η
.

Take a second-order Taylor series expansion of ¯̄E
∣∣∣
τ=0

to get

¯̄E
∣∣∣
τ=0

≈ 1
(1 + a)4

[(
3 a2 bEZ2

3 −
(
8 a2 + 2 a

)
bEZ3 +

(
6 a2 + 4 a+ 1

)
b
)
EZ4+(

2 a2 − a3
)
EZ2

3 +
(
3 a3 − 4 a2 − a

)
EZ3 − 3 a3

]
.

To evaluate this expression under log-normality observe that E [Z4] = E
[

1
(ϱt+1)

]
=

1 + σ2
ϱ. Furthermore we have that

E
[
Z2

3Z4
]

= E
[
η2
t+1

(ϱt+1)3

]
= Eη2

t+1E
[

1
(ϱt+1)3

]
.

We have that Eη2
2 = 1 + σ2

η and E
[

1
(ϱt+1)3

]
= (1 + σ2

ϱ)6. Therefore E [Z2
3Z4] =
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(1 + σ2
η)(1 + σ2

ϱ)6. The next term is E [Z3Z4] = E
[

ηt+1
(ϱt+1)2

]
= (1 + σ2

ϱ)3. Fi-
nally E [Z4] = E

[
1

(ϱt+1)

]
= 1 + σ2

ϱ. Consequently,

−
∂ ¯̄E

∣∣∣
τ=0

∂σ2
η

= −
(
σ2
ϱ + 1

)3 3 a2 b
(
σ2
ϱ + 1

)3
− a3 + 2 a2

(a+ 1)4 < 0.

The negative sign follows from the fact that

3 a2 b
(
σ2
ϱ + 1

)3
− a3 + 2 a2 > 3 a2 b− a3 + 2 a2 > 0

because

3 a2 b− a3 + 2 a2 > 0

⇔ (3 − α)(1 + λ) > (1 − α)λ

and the latter holds for any α ∈ (0, 1) and λ ∈ (0, 1) because (3−α)(1+λ) > 1
and (1 −α)λ < 1. Therefore, as ∂ Ē|

τ=0
∂σ2

η
> 0 and ∂ ¯̄E|

τ=0
∂σ2

η
< 0 we have ∂ ϵs,τ |τ=0

∂σ2
η

<

0.
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B Supplementary Appendix: Additional Material

B.1 Comparison to Three-Generations Model

The purpose of this subsection is to illustrate the quasi-formal equivalence of the two-
period model with a subperiod structure to a three-period model. To this aim, consider
a setting like in Subsection 3.2. Households work in the first two periods of life and are
retired in the third. There is no idiosyncratic risk in the first period. We again assume
that households only care about consumption in retirement (third period). Third period
consumption is then

ci,3,t+2 = wt(1 − τ)Rt+1Rt+2 + wt+1ηi,2,t+1(1 − τ)Rt+2 + 2τwt+1

= w̄t
(
ζtR̄

2ϱt+1ϱt+2 + (1 + g)ζt+1ηi,2,t+1R̄ϱt+2+

+ τ
(
2(1 + g)2ζt+2 −

(
ζtR̄

2ϱt+1ϱt+2 + (1 + g)ζt+1ηi,2,t+1R̄ϱt+2
)))

.

To interpret this in light of the analysis in subsection 3.2, again consider the case
where τ = 0 and w̄t = 1. Then

ci,3,t+2 = R̄2 ζtϱt+1ϱt+2︸ ︷︷ ︸
≡ψ

+(1 + g)R̄ + (1 + g)R̄

ζt+1ηi,2,t+1ϱt+2︸ ︷︷ ︸
≡ϕ

−1

 .
Observe that this is not a situation with mean zero independent “background” risk be-
cause of aggregate return risk in the second period: Term ρt+2 shows up in both random
variables ψ and ϕ to the effect that ψ and ϕ are not independent.

Therefore, we additionally assume, somewhat artificially, that households only have
access to a risk-free saving technology in the second period of life. We then get

ci,3,t+2 = R̄2 ζtϱt+1︸ ︷︷ ︸
≡ψ̃

+(1 + g)R̄ + (1 + g)R̄

ζt+1ηi,2,t+1︸ ︷︷ ︸
≡ϕ̃

−1

 .

This is formally equivalent to equation (12), i.e., we are back at a situation with indepen-
dent additive “background” risk, again with the multiplicative interaction of risks via ζt+1

in term ϕ̃.

Remark 1. In fact, we can develop this further to a multi-period model. Suppose a
household born in period t works for jr years, saves his labor income in each of these
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years and is retired in period jr + 1, consuming all these resources. We now allow for
an idiosyncratic wage shock in each period (also in the first). Consumption at age jr + 1,
period t+ jr, then reads as

ci,jr+1,t+jr = (1−τ)

wtηi,1,t t+jr∏
s=t+1

Rs + wt+1ηi,2,t+1

t+jr∏
s=t+2

Rs + . . .+ wt+jr−1ηi,jr,t+jr−1Rt+jr


+ jrτwt+jr

Now let η obey a random walk in logs as we assumed in our illustrative back of the envelope
calculation of Section 3, i.e.,

ηi,j,t = ηi,j−1,t−1ϵj,t, ηi,1,t = ϵ1,t

and assume that the log of ζt is an auto-correlated process with correlation coefficient ρ.
This is roughly consistent with our earlier approximation of zero dependence over long
horizons. I.e., assume that

ζt = ζρt−1νt.

We then get

ci,jr+1,t+jr = w(1− τ) ·

 jr∑
j=1

R̄jr−j+1 · ζρ
j

t−1

 j∏
ℓ=1

νρ
ℓ−1

t+j−ℓ

 ·

 j∏
ℓ=1

ϵj−ℓ+1,t+j−ℓ

 ·

 t+jr∏
s=t+j

ϱs


+ jrτwt+jr .

This establishes that, in a more realistic (yet of course still stylized) example, numerous
multiplicative and additive interactions are present.

B.2 Supplementary Appendix: Intuition Behind Proposition 6

This subsection explains why in Proposition 6, term B = 0, and why the aggregate
productivity shock, ζt, drops out. Observe that the consumption equations in general
equilibrium, as derived in the proof of Proposition 5 are given by

c1,t = (1 − s(τ))(1 − τ)(1 − α)Υtζtk
α
t (40a)

c2,t = (αϱt+1(1 + λ) + (1 − α) (ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1)))) Υt+1ζt+1k
α
t+1 (40b)
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Combining the above with (17) and using the resulting term in the expected utility
function we get

Ut−1 = Γ + ln (1 − s(τ)) + β ln (s(τ)) + α(1 + αβ) ln(kt)+

+ ln(1 − τ)(1 +β) +β Et−1 [ln (αϱt+1(1 + λ) + (1 − α) (ληi,2,t+1 + τ (1 + λ(1 − ηi,2,t+1))))]︸ ︷︷ ︸
=Ψ(τ)

+ Et−1 [ln (ζt) (1 + β) + β ln(ζt+1)]︸ ︷︷ ︸
=Φ

(41)

where Γ collects exogenous parameters that do not depend on τ and do not contain any
risk terms. The equation allows us to establish three important insights, which will help
understand proposition 6. First, welfare costs from aggregate technology fluctuations as
reflected in term Φ are purely additive and neither affected by policy nor by precautionary
savings behavior. Second, interactions between idiosyncratic and aggregate risk are re-
flected in term Ψ(τ). Note that only aggregate return risk shows up. This term captures
the welfare losses from fluctuations of the idiosyncratic labor income component and the
aggregate return. While these welfare losses can be affected by policy—to make this
explicit, Ψ is written as a function of τ—, the saving rate does not enter this term. From
these observations we can conclude that general equilibrium price reactions—through the
adjustment of the aggregate capital stock—fully offset any utility enhancing effects of
precautionary savings. This is true not only in the long-run equilibrium but in each pe-
riod. While households experience utility gains from self-insurance against fluctuations
in partial equilibrium, these utility gains from self-insurance vanish to exist in general
equilibrium. The reason is the well-known capital externality typical to Aiyagari (1995)
models: In response to the increase of precautionary savings the capital stock increases
with adverse welfare consequences. In the specific model considered here, these general
equilibrium reactions exactly offset utility gains from precautionary savings. As a conse-
quence, when social security is introduced and provides insurance, there will not be any
utility gains from reductions of precautionary savings.

B.3 Welfare in General Equilibrium for λ = 0

This subsection derives the welfare effects in general equilibrium for the special case
where λ = 0, because in this case, a very intuitive condition obtains. That is, we start
from Proposition 6 and shut down all effects of idiosyncratic risk. To interpret term A,
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notice that for λ = 0 we can write

A

1 + β
= (1 − α)β
α(1 + β)

E
[

1
ϱt+1

]
− 1. (42)

To further interpret this term, consider an artificial economy, namely the steady state
of the mean-shock equilibrium (MSE) of the economy.

Definition 1. In the mean-shock equilibrium, equilibrium dynamics are characterized by
equation (16) but nature always draws the mean of aggregate shocks, i.e., ζt = ϱt = 1 for
all t.

From this definition the steady state mean shock equilibrium capital stock in the λ = 0,
τ = 0 economy, denoted by kms, is given by

kms =
(

(1 − α)β
(1 + β)(1 + g)

) 1
1−α

. (43)

Consequently, the mean shock expected gross return is Rms = αkα−1
ms = (1 + g) α

1−α
1+β
β

.
Hence, in this mean shock equilibrium, term A > 0 iff

1 + g

Rms

E
[

1
ϱt+1

]
− 1 > 0.

This means that the risk adjusted return of social security has to exceed the rental rate
in the mean shock equilibrium. A mean preserving spread of ϱt+1 increases A because in-
surance becomes more valuable. This establishes the analogy to our earlier interpretation
of term Ape,abr in Subsection 3.2 for an economy without any idiosyncratic risk.
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