
 Electronic copy available at: http://ssrn.com/abstract=2515703 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Max Groneck - Alexander Ludwig - Alexander Zimper 
 
 

A Life-Cycle Model with Ambiguous 
Survival Beliefs 
 
 
SAFE Working Paper No. 73 

 



 Electronic copy available at: http://ssrn.com/abstract=2515703 

 
 
 
 

Non-Technical Summary 

 
Optimal tax and transfer systems are key for the design of modern economics. One of the 
workhorse models used by economists to evaluate the welfare benefits of (reforms to) these 
systems is the life-cycle model of consumption and savings. The model can, e.g., be used to 
investigate the reactions of households to savings subsidies or any other kind of reform to old-age 
insurance, or, more general, any institutional feature of the tax-transfer system. 
 
Yet, from a quantitative perspective, it is well known that the standard model produces several 
“puzzles” in a sense that the standard model cannot match certain facts in the data. It is well 
established that, relative to an optimal saving rate according to the model, households save too 
little in the data. Furthermore, the decumulation speed of assets in old-age is much lower in the 
data than predicted by the standard model. Finally, households behave dynamically inconsistent, 
in a sense that they generally save less during working life for retirement than they originally 
planned. Such inconsistencies cannot be accommodated by the standard model. 
 
In order to generate correct quantitative predictions it is therefore important to modify the 
standard model in order to account for these three empirical regularities. This is the aim of the 
present paper.   
 
The specific model element under investigation is the life-expectancy of households which is one 
of the most important ingredients of the model. Obviously, survival beliefs are of high relevance 
for savings behavior. The standard model uses objective data on survival beliefs, traced out from 
population wide survival tables. However, in several datasets that explicitly ask for subjective 
survival beliefs, substantial biases in survival beliefs relative to such objective data can be 
observed. E.g., young people strongly underestimate whereas old people (after retirement) strongly 
overestimate their chances to survive into the future.  
 
This paper addresses the question how these biases in survival beliefs may alter model savings 
behavior, thereby bringing model predictions closer to the data on household savings. On the one 
hand, underestimation of survival beliefs may lead to lower savings than in the standard model. 
On the other hand, overestimation in old-age may lead to the fact that households hold on to their 
assets longer in life than predicted by the standard model. 
 
To test whether the observed biases in survival beliefs have quantitatively important implications 
for the household model, we proceed in two steps.  First, we develop a model of survival belief 
formation. We base our model on a decision theoretic framework which enables us to be explicit 
about psychological effects such as optimism, pessimism and doubt. A parsimonious 
representation of survival beliefs enables us to match pessimism with regard to survival for young 
and optimism for old households, as in the data on subjective survival beliefs. Furthermore, 



households continuously update their survival beliefs as they age in light of objective information 
towards which they express doubt. Second, we combine this model with an otherwise standard 
household life-cycle consumption-savings model. We analytically derive conditions under which 
this combination gives rise to less savings and a lower speed of asset accumulation, just as 
observed in the data. Furthermore, we show that the continuous updating of survival beliefs 
combined with our notion of doubt leads to dynamically inconsistent household behavior. We also 
show that a calibrated version of our model indeed matches well the key trends of asset 
accumulation and decumulation as observed in the data.  
 
Therefore, our model kills three birds (=undersaving, too little asset decumulation and dynamic 
inconsistency) with one stone (=a model of survival beliefs with psychological biases).  
 
Our results are of high relevance for future research because they show that biases in survival 
beliefs have strong implications for household savings. An immediate policy implication is that 
households must be provided with appropriate information about their survival prospects. 
Specifically, young households tend to underestimate the improvements to survival by medical 
progress. This may lead to too little old-age provision. 
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Abstract

On average, “young”people underestimate whereas “old”people overestimate

their chances to survive into the future. We adopt a Bayesian learning model

of ambiguous survival beliefs which replicates these patterns. The model is em-

bedded within a non-expected utility model of life-cycle consumption and saving.

Our analysis shows that agents with ambiguous survival beliefs (i) save less than

originally planned, (ii) exhibit undersaving at younger ages, and (iii) hold larger

amounts of assets in old age than their rational expectations counterparts who

correctly assess their survival probabilities. Our ambiguity-driven model therefore

simultaneously accounts for three important empirical findings on household sav-

ing behavior.
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1 Introduction

Expectations about future survival are important for numerous economic decisions.

Forming such expectations is a very diffi cult task. In fact, substantial biases of sub-

jective survival beliefs relative to objective data have been documented in the literature.

This paper investigates the implications of such biases for life-cycle saving behavior.

Our work builds on two empirical regularities. First, according to the Health and

Retirement Study (HRS), on average, “younger” people strongly underestimate their

(relatively high) probability to survive to some target age. At the same time, “older”

people strongly overestimate their lower survival probability.1 For example, women of

age 65 on average report a 53 percent chance to survive to age 80 while their correspond-

ing estimated cohort survival rate is 75 percent. In contrast, men of age 85 on average

overestimate their probability to become 100 by 19 percentage points.

Second, recent empirical findings on household saving behavior proved to be puzzling

for the standard “workhorse”-life-cycle model à la Modigliani and Brumberg (1954) and

Ando and Modigliani (1963). For example, Laibson et al. (1998) and Bernheim and

Rangel (2007) report large gaps between self-reported behavior and self-reported plans.

People save less for retirement than actually planned (Choi et al. 2006; Barsky et al.

1997; Lusardi and Mitchell 2011). They behave in a dynamically inconsistent manner.

Another well-known puzzle is that people hold large amounts of assets still late in life

and dissave less in old age than predicted by the standard model (see, e.g., De Nardi et

al. 2010; Hurd and Rohwedder 2010; Lockwood 2013).

We ask whether the observed biases in survival rates add to explanations for these

empirical findings on saving behavior. Our approach to this research question comprises

of two buildings blocks: We merge a model of learning of subjective survival beliefs with

an otherwise standard life-cycle consumption-saving model.

As to the first building block, our point of departure is that the observed biases in

survival beliefs cannot be reconciled with Muth (1961)’s rational expectations paradigm.

According to this paradigm an agent would always hold correct objective beliefs. These

biases are also inconsistent with standard models of Bayesian learning. According to

such models subjective additive beliefs converge to objective probabilities when people

gain more experience, i.e., grow older. We therefore follow Ludwig and Zimper (2013)

who argue that psychological factors such as ambiguity, relative pessimism when young

and relative optimism when old are drivers of survival belief formation.

Specifically, we adopt a simplified version of the Ludwig and Zimper (2013) Bayesian

learning model of ambiguous survival beliefs. The model is based on Choquet ex-

1Similar patterns have been documented in numerous other datasets, see Section 2 for a review.
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pected utility (CEU) theory (Schmeidler 1989; Gilboa 1987) or, equivalently, cumulative

prospect theory (CPT) (Tversky and Kahneman 1992; Wakker and Tversky 1993).2

Ludwig and Zimper (2013) characterize ambiguous survival beliefs as conditional neo-

additive capacities in the sense of Chateauneuf et al. (2007) giving rise to a very parsi-

monious parametrization. This model covers a whole family of not necessarily additive

probability measures. It nests the rational expectations paradigm as a special case.3

Out of this large family of neo-additive capacities, our subsequent quantitative analysis

employs the one capacity that gives the best fit to the data on survival beliefs reported

in the HRS. Furthermore, Bayesian updating of beliefs results in age-specific condi-

tional survival beliefs for all future ages. In contrast, for a static scenario– in which

agents do not learn over the life-cycle– our notion of ambiguous survival beliefs reduces

to an age-independent probability weighting function. While the special case of sta-

tic non-additive survival beliefs has already been studied in the literature (Bleichrodt

and Eeckhoudt 2006; Halevy 2008), the more general concept of Bayesian learning of

ambiguous survival beliefs over the life-cycle adds to the plausibility of our approach.

To investigate whether biases in survival beliefs can partially resolve saving puzzles we

combine the model of Bayesian learning of ambiguous survival beliefs with an otherwise

standard canonical stochastic life-cycle consumption and saving model developed as our

second building block. We compare consumption and saving behavior of CEU agents

with the nested special case of rational expectations (RE) agents. Whenever CEU agents

do not reduce to RE agents, life-cycle maximization gives rise to dynamically inconsistent

behavior. We study both ‘naive’and ‘sophisticated’CEU agents. While the former do

not anticipate that their future-selves deviate from ex ante optimal consumption plans,

the latter are fully aware of their dynamically inconsistent behavior.

Qualitative analysis for a simplified three-period model, presented in a Supplemen-

tary Appendix4, shows that naive as well as sophisticated CEU agents exhibit undersav-

ing relative to their RE counterparts if they suffi ciently underestimate objective survival

probabilities at young ages. Furthermore, naive CEU agents have to only moderately

overestimate their survival chances in order to save less in the intermediate model pe-

riod than originally planned (otherwise they would save more). At the same time, naive

CEU agents save more out of cash on hand in the intermediate model period than the

2Restricted to gains (as in our model), CPT is identical to CEU theory.
3The other extreme special case corresponds to the Hurwicz criterion according to which the agent

only cares about best and worst possible outcomes whereas she is insensitive with respect to the like-

lihood of any non-extreme outcome. In particular, a model of beliefs is nested that would describe a

likelihood insensitive agent who attaches a “50% chance”to the occurrence of any uncertain event.
4The Supplementary Appendix is available online at http://www.wiwi.uni-

frankfurt.de/fileadmin/user_upload/dateien_abteilungen/abt_ewf/LS_Ludwig/SubjBeliefs_SuppApp.pdf.
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corresponding RE agent. However, whether asset holdings in the final period are higher

for the CEU agent depends on the interplay between underestimation at young ages and

overestimation at older ages. Whether these conditions hold and how relevant the biases

in beliefs are for generating saving puzzles are quantitative questions.

To address these questions we calibrate the stochastic quantitative life-cycle model

to the data. The calibrated RE model gives rise to the aforementioned savings puzzles:

The average saving rate for prime age savers of age 25−54 is at 13.5%, compared to 9.5%

in the data. Average asset holdings at ages 75, 85 and 95 relative to asset holdings at

the average retirement age of 62 are 70.0%, 37.0% and 9.1%, compared to 72.4%, 53.0%

and 47.9% in the data. Hence, through the lens of the RE model, the data are puzzling:

the young save too little and the old decumulate assets too fast. The calibrated naive

CEU agents model partially resolves these puzzles. The average saving rate is at 9.2%

and relative asset holdings at ages 75, 85 and 95 at 77.9%, 57.1% and 34.9%. These

statistics are remarkably close to the data. In addition, the realized saving rate is 5.5

percentage points lower than the planned saving rate. Predictions on asset holdings

for the sophisticated agent CEU model are similar. They save a bit more than naive

CEU agents and hence feature slightly higher asset holdings in old age. Overall, the

fit to the data is better for naive than for sophisticated agents. Our analysis therefore

suggests that our notion of ambiguous survival beliefs combined with naivety provides

an accurate quantitative picture of saving behavior until about age 85.

The intuition for these quantitative findings is as follows: The calibrated model

gives rise to suffi cient underestimation at young age so that naive CEU agents save less

than their RE counterparts. At the same time, naive CEU households only moderately

overestimate their future survival chances so that they end up saving less in each period

than originally planned in the past. As agents get older, overestimation of future survival

beliefs eventually dominates so that the speed of asset decumulation is lower to the effect

that the level of old age asset holdings is eventually higher than for RE agents. Finally,

sophisticated agents correctly anticipate the more optimistic beliefs of their future selves.

For reasons of consumption smoothing they therefore save more which leads them to have

higher old-age asset holdings than their naive counterparts.

The standard model to explain dynamic inconsistency and undersaving is the hyper-

bolic time-discounting model. Building on the early work by Strotz (1955) and Pollak

(1968), Laibson et al. (1998) find that exponential consumers save more than hyper-

bolic consumers, cf. also Angeletos et al. (2001). This standard model cannot account

for high old-age asset holdings because long-run discounting is as in the rational expec-

tations model. In contrast, optimistic beliefs in our CEU model imply lower long-run

effective discount rates which leads to higher old-age asset holdings. In this respect our

4



work relates to Halevy (2008) as well as Epper et al. (2011) who argue that hyper-

bolic time discounting is actually generated by ambiguous survival beliefs. Motivated

by this insight, we show in our companion paper (Groneck et al. 2014) that quasi-

hyperbolic time-discounting over the life-cycle is formally equivalent to a static CEU

life-cycle model in which agents hold purely pessimistic neo-additive survival beliefs

that are not subject to Bayesian learning.5 The CEU model of the present paper is

thus formally different from any quasi-hyperbolic time-discounting model because, first,

it considers neo-additive survival beliefs that can express both, pessimistic as well as

optimistic, ambiguity attitudes (cf., the inverse S-shaped probability weighting function

of CPT) and, second, it allows for Bayesian learning over the life-cycle.

Similarly, standard explanations for insuffi cient old-age asset decumulation such as

a bequest motive (Hurd 1989; Lockwood 2013) and precautionary savings behavior

(Palumbo 1999; De Nardi et al. 2010) cannot generate undersaving at young ages. Our

model of ambiguous survival beliefs therefore adds to existing explanations for saving

behavior by simultaneously generating all three stylized findings: (i) time inconsistency,

(ii) undersaving at young and (iii) high asset holdings at old age.

The remainder of our paper is organized as follows. Section 2 motivates and presents

the parsimonious model of ambiguous survival beliefs. In Section 3 we combine it with a

multi-period stochastic life-cycle model. Calibration is outlined in Section 4 and results

of the quantitative analysis are presented in Section 5. Finally, Section 6 concludes. Ap-

pendix A recalls formal definitions from Choquet decision theory. Appendix B sketches

the construction of ambiguous survival beliefs through Bayesian learning under ambi-

guity. Appendix C lays out the proof to the Propositions. Appendix D describes the

construction of the asset data used for calibration.

2 Ambiguous Survival Beliefs

2.1 Biases in Survival Beliefs

As point of departure we consider subjective survival beliefs elicited in the Health and

Retirement study (HRS). Respondents are asked about their assessment of the probabil-

ity to survive from some interview age up to a specific target age. Target age is mostly

10 to 15 years in advance, see Table 1.

5On the one hand, the static model in Groneck et al. (2014) is more restrictive than the approach in

Halevy (2008) because it only considers neo-additive but not general non-additive probability measures.

On the other hand, Groneck et al. (2014) is more general than Halevy (2008) in that we consider

arbitrary and not only constant survival rates over the life-cycle.
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Table 1: Interview and Target Age

Age at Interview Target Age

≤ 69 80

70− 74 85

75− 79 90

80− 84 95

85− 89 100

Source: RAND HRS Data Documentation.

Figure 1 shows aggregated data from the HRS by plotting average age-specific bi-

ases in survival beliefs– the difference between the respective average subjective belief

and the average objective data– for three waves of the HRS between 2000 and 2004.6

We observe that relatively “young”– younger than age 70– respondents underestimate

whereas relatively “old”– above age 80– respondents overestimate their chances to sur-

vive into the future. Younger respondents between ages 50 and 70 underestimate their

survival chances by about 10 to 20 percentage points on average. Older respondents

around the age of 85 overestimate their survival chances by 15-20 percentage points.

Also notice that the overestimation is getting more pronounced with increasing age.

This age-specific pattern of subjective survival beliefs is a well-established stylized

fact that has been confirmed by various other studies using different data sets. Ham-

mermesh (1985) documents that subjective survival rate functions are generally flatter

than their objective counterpart implying underestimation at younger ages and overes-

timation at older ages. Similar findings have been described by Elder (2013) for the US

and by Peracchi and Perotti (2010) for European countries using the Survey of Health,

Ageing and Retirement in Europe (SHARE). Wu et al. (2013) highlight a related fact

in the Australian “Retirement Plans and Retirement Incomes: Pilot Survey”: respon-

dents underestimate survival probabilities in the near future whereas they overestimate

survival rates for the distant future.

The biases of subjective survival perceptions from objective life-table data shown in

Figure 1 can be expected to have significant implications for household’s consumption

and saving decisions. A number of recent studies confirms this. For example, Salm

(2010) estimates that a 1 percent increase in the subjective probability of mortality

reduces annual future consumption of non-durable goods by around 1.8 percent. Bloom

6Objective data are based on cohort life-tables so that future trends in life expectancy are appropri-

ately taken into account.
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Figure 1: Difference of Subjective Survival Probabilities and Cohort Data
(a) Women (b) Men
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Notes: Deviations in percentage points of subjective survival probabilities from objective data. Ob-

jective survival rates are based on cohort life table data. Future objective data is predicted with the

Lee-Carter procedure (Lee and Carter 1992). Each bar depicts the difference of unconditional proba-

bilities to survive to a specific target age, cf. Table 1.

Source: Own calculations based on HRS, Human Mortality Database and Social Security Administra-

tion data.

et al. (2006) find that an increased subjective survival probability leads to higher wealth

accumulation thereby confirming results of Hurd et al. (1998).

Our contribution is to study the implications of these biases in a structural life-cycle

model of consumption and saving. Incorporating subjective survival beliefs in such a

model requires knowledge of the entire distribution of survival beliefs while, in general,

there are only few data points available. In the HRS, for example, only a specific

average subjective survival probability for each interview age is observed, cf. Table 1.

To overcome this, a number of recent studies therefore estimate subjective survival belief

functions by assuming specific hazard functions, cf., e.g., Gan et al. (2005), Bissonnette

et al. (2011), Khwaja et al. (2007) and Wu et al. (2013). We add to this literature

by adopting a decision theoretic model in order to interpret as well as to inter- and

extrapolate the data. The next subsection describes this approach.

2.2 Bayesian Learning of Ambiguous Survival Beliefs

Life-cycle models with rational expectations use objective survival probabilities, denoted

ψk,t, to model the representative agent’s beliefs to survive from age k to t, with k < t.
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These beliefs are independent of the agent’s age because there is no learning of survival

beliefs over the life-cycle: the rational expectations agent always already knows her true

survival chances. Figure 1 demonstrates that real people do not know their true survival

chances. In absence of such knowledge, it is plausible that some learning of survival

beliefs happens over the representative agent’s life-cycle. The agent receives more and

more information about her survival chances as she grows older.

Instead of a rational expectations agent therefore consider, for the moment, an agent

whose belief to survive from age k to t is given by the subjective additive probability

ϕhk,t 6= ψk,t. This belief is formed conditional on the information that the agent has

collected up to her current age h ≤ k. If this agent is a standard Bayesian decision

maker, there is a straightforward way to model her learning behavior. Namely, in the

absence of any information (i.e., at h = 0) the agent would hold a unique additive prior

over an index set of distributional parameters. This corresponds to possible probabilities

to survive from age k to t so that the (unconditional) subjective survival belief ϕk,t ≡ ϕ0
k,t

is given as her Bayesian estimate. That is, it is the expected value of all possible

survival probabilities with respect to this prior. In light of new information received

at age h > 0, the agent would then update her prior to a posterior by Bayes’ rule.

Her conditional subjective survival belief ϕhk,t is now the expected value of all possible

survival probabilities with respect to this posterior. Consistency results for standard

Bayesian estimates establish convergence of the subjective survival belief ϕhk,t in the age

h to the objective probability ψk,t. Convergence is due to the fact that posteriors will

(almost surely) concentrate at the agent’s true survival probability for a suffi ciently large

data sample.7 However, the age-specific pattern of the biases in Figure 1 suggests that

such converging learning behavior does, in reality, not happen over the life cycle; instead

of convergence to objective survival probabilities, strong underestimation of objective

survival probabilities is followed by strong overestimation as the representative agent

grows older. Under the assumption that the agents are Bayesian learners who receive an

increasing amount of statistical information over their life-cycle, the reported survival

beliefs of Figure 1 can thus not be plausibly modeled as subjective additive probabilities.

The situation is different for Bayesian learning under ambiguity. Ambiguous survival

beliefs do not necessarily converge to objective survival probabilities if the agent receives

more information. In a first step, we model ambiguous survival beliefs as neo-additive

capacities (Chateauneuf et al. 2007). Neo-additive capacities are an analytically very

7Convergence to the true parameter value only occurs if the prior is well-specified, i.e., has this

true value in its support; (the seminal contribution is Doob 1949). For a more general convergence

result—including misspecified priors—in terms of minimization of the Kullback-Leibler divergence, see

Berk (1966).
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tractable class of non-additive probability measures which are used in the literature8

to approximate inverse S-shaped probability weighting functions as typically elicited

for CPT (cf., e.g., Tversky and Kahneman 1992; Wu and Gonzalez 1996; 1999). For

the given (unconditional) subjective survival probability ϕk,t ∈ (0, 1), the corresponding

(unconditional) neo-additive probability to survive from k to t is formally defined as

νk,t = δ · λ+ (1− δ) · ϕk,t. (1)

The parameter δ ∈ [0, 1] is interpreted as a degree of ambiguity. If there is no ambiguity

(δ = 0), the (unconditional) ambiguous survival belief (1) reduces to the agent’s subjec-

tive survival probability. If there is ambiguity (δ > 0), the optimism parameter λ ∈ [0, 1]

measures in how far the agent resolves this ambiguity through over- (high values of λ)

versus under-estimation (low values of λ) of her subjective survival probability.

In a next step, we allow for the possibility that some notion of Bayesian learning

happens over the agent’s life-cycle. To this purpose we adopt a simplified version of the

Choquet Bayesian learning model of Ludwig and Zimper (2013). These authors describe

a conditional ambiguous survival belief, denoted νhk,t, as the Choquet expected value of

all possible survival probabilities with respect to a neo-additive posterior. The posterior

results from updating in accordance with the Generalized Bayesian update rule (Pires

2002; Eichberger et al. 2007) with respect to the survival chance information that the

agent has obtained up to age h. Relative to Ludwig and Zimper (2013) our simplification

here is that we ignore the initial bias in prior beliefs so that any bias between objective

survival probabilities and subjective beliefs is exclusively ambiguity-driven. Hence, we

set ϕk,t = ψk,t for all k, t. In Appendix A we present a mathematically rigorous review of

Choquet decision theory with neo-additive capacities. We derive our simplified version

of the Ludwig and Zimper (2013) learning model in Appendix B where we also prove

the following proposition:

Proposition 1. Denote the objective probability to survive from k to t by ψk,t ∈ (0, 1)

and fix age-independent parameters δ, λ ∈ [0, 1]. The h-old agent’s age-dependent

ambiguous belief to survive from age k to target age t is given by

νhk,t = δh · λ+ (1− δh) · ψk,t (2)

where

δh =
δ

δ + (1− δ) · 1
1+e(h)

(3)

for some non-decreasing experience function e(h).

8See, e.g., Wakker (2010), Abdellaoui et al. (2011), and Ludwig and Zimper (2013).
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To interpret our concept of age-conditional ambiguous survival beliefs (2) let us

consider three different scenarios: First, in absence of any initial ambiguity, i.e., δ = 0,

we have for all h that νhk,t = ψk,t so that all ambiguous survival beliefs (2) reduce

to objective survival probabilities. Consequently, the standard rational expectations

approach is nested as a (degenerate) special case within our notion of age-dependent

ambiguous survival beliefs.

Second, if there is initial ambiguity, i.e., δ > 0, but no learning over the agent’s

life-cycle, i.e., e(h) = 0 for all h, we speak of the “static” scenario. In this case, (2)

reduces to the age-independent ambiguous survival belief

νhk,t = δ · λ+ (1− δ) · ψk,t for all h, (4)

which can be interpreted as the transformation of the objective survival probability by a

neo-additive probability weighting function. Note that Bleichrodt and Eeckhoudt (2006)

as well as Halevy (2008) already consider non-additive survival beliefs such that some

age-independent probability weighting function is applied to an additive survival prob-

ability as in (4). Since the static scenario is nested within our general notion (2) as a

special case, it is straightforward to investigate the sensitivity of our results with regard

to this feature of the model.

Because the agents of the static scenario never revise their survival beliefs over the

life-cycle, the static model is equivalent to a Bayesian model in which agents do not

receive any new information as they grow older. This is in stark contrast to everyday

experience according to which real-life people increasingly receive news about the deaths

(or critical illnesses) of acquainted people thereby providing them with new information

about their own survival chances. The third and, in our opinion, most plausible scenario

is therefore a combination of initial ambiguity with Bayesian learning over the life-cycle

such that the agent’s experience function e(h) strictly increases in her age h, i.e., eh > 0.

We further assume decreasing marginal experience, i.e., ehh < 0.

If there is initial ambiguity, i.e., δ > 0, the age-dependent ambiguous survival beliefs

(2) do not converge through Bayesian learning over the life-cycle to the objective survival

probabilities. As a consequence, our notion of ambiguous survival beliefs can replicate

the pattern of Figure 1. We illustrate the model’s main properties by use of Figure 2.

Interior objective survival rates ψk,t ∈ (0, 1) are mapped into corresponding subjective

survival rates νh by a linear transform which is (i) flatter than the 45-degree line and

(ii) becomes flatter with increasing age h. Furthermore, the νh-line intersects with

the 45-degree line at the relative optimism parameter λ. Non-decreasing ambiguity

in the agent’s age together with lower objective survival rates for older agents– lower

than λ, which is consistent with our empirical estimates, cf. Subsection 4.3– implies an

increasing importance of overestimation of survival probabilities.
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Figure 2: Dynamics of the Subjective Survival Belief Model

Notes: Subjective survival belief ν compared to the objective counterpart ψ. Panel (a) shows the

case for low ambiguity δ (young agent). The deviation from the 45-degree line is only modest implying

that both underestimation of the high objective probability ψ̄ and overestimation of the low objective

probability ψ are small. Panel (b) shows high ambiguity δ̄ (older agent). The subjective survival line

is more horizontal implying that under- and overestimation is more pronounced.

Explanatory Discussion: Age-increasing Ambiguity

Whenever the experience function e (h) strictly increases in the agent’s age h, her am-

biguity parameter δh, given by (3), increases. In other words, the agent’s ambiguity

increases in the amount of statistical information she receives. This feature might seem

to be counter-intuitive because one possible interpretation of ambiguity is the lack of

suffi cient statistical information to form a unique additive belief. Although an in-depth

discussion of the ongoing (and fascinating) research on Bayesian learning under ambigu-

ity is beyond the scope of this paper, the following remarks briefly discuss this feature

within the context of the existing literature.

First, within the Choquet Bayesian learning model of Ludwig and Zimper (2013),

age-increasing ambiguity is not an ad hoc assumption. It is a formal implication which

turns out to be remarkably robust with respect to alternative Bayesian update rules for

Choquet decision makers (cf. Gilboa and Schmeidler 1993; Zimper 2011). One reason is

that ambiguity in the Ludwig and Zimper (2013) model applies to the joint probability

of the parameter and sample space so that the updating process itself– and not only the

distribution over parameters– is subject to ambiguity. As a consequence, the agent does

not perceive the data generating process as i.i.d. as in the standard (non-ambiguous)

Bayesian set-up. Furthermore, a large amount of statistical information refers to an

event which has an ex ante small likelihood to be ex post observed within this non-i.i.d.
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environment. Bayesian updating under ambiguity “punishes”small ex ante likelihoods

in the sense that the decision maker’s ambiguity increases if she observes information

which she considered ex ante as unlikely.

Second, while thus a rather mechanical consequence of the updating process, age-

increasing δh captures the intuitive notion that, as the objective risk of survival becomes

less likely, agents attach less and less weight to this objective probability. According

to our estimates of δ and λ, presented in Section 4, objective survival probabilities ψk,t
decrease with age to values lower than λ, cf. ψ in Figure 2. The model’s convergence

property hence implies that survival rates are overestimated eventually even when the

initial degree of ambiguity, δ, is low. Overestimation at old age may result from the fact

that people have survived the gamble against death several times before. Consequently,

one possible heuristic interpretation of age-increasing δh might be that people want to

avoid a realistic assessment of their encounter with death.9

Third, the concept of likelihood-insensitivity (cf., Wakker 2004; 2010; Abdellaoui et

al. 2011), may provide an alternative heuristic interpretation for the age-increasing δh
of our model. These authors interpret δh not as an ambiguity but rather as a cognitive

parameter which reflects the empirical observation that people do not suffi ciently distin-

guish between non-degenerate probabilities. For instance, an extreme example for like-

lihood insensitivity are “fifty-fifty”probability assessments for any uncertain event and

its complement. Under this cognitive interpretation, likelihood insensitivity– and not

necessarily ambiguity– would increase with age. Given that old people increasingly suf-

fer from cognitive impairments, this alternative interpretation has some intuitive appeal.

Despite this, we continue to interpret δh as age-dependent ambiguity in the remainder

of our analysis.

Fourth, Nicholls et al. (2014) investigate whether violations of Savage’s (1954) sure-

thing principle (STP), typically interpreted as the expression of ambiguity attitudes,

decrease or increase if the subjects receive an increasing amount of statistical informa-

tion. As their main finding, these authors conclude that “[...] statistical learning has, at

best, no impact on STP violations. At worst, it might even be causing STP violations

to increase.”(p. 14). This empirical finding suggests that conventional wisdom about

Bayesian learning might not be adequate for situations with ambiguity.

Finally, there exist alternative models of Bayesian learning under ambiguity such that

ambiguity might decrease in the amount of statistical information.10 Within a multiple-

9This interpretation is consistent with the observation of Kastenbaum (2000) who summarizes the

insights of psychological research on the reflection about personal death as follows: “There are divergent

theories and somewhat discordant findings, but general agreement that most of us prefer to minimize

even our cognitive encounters with death.”
10For a detailed discussion of these models we refer the interested reader to Zimper and Ma (2014).
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priors set-up, Marinacci (2002) restricts ambiguity to the parameter space whereas

Bayesian updating happens with respect to a standard (i.e., non-ambiguous) i.i.d. data-

generating process. The convergence behavior of the Bayesian learning process in the

Marinacci (2002) model crucially depends on the support of the priors held by the de-

cision maker. If not all priors have the same support, ambiguity does not necessarily

vanish when an unlimited amount of statistical information becomes available. Epstein

and Schneider (2007) consider two dimensions of ambiguity. First (as in Marinacci 2002),

ambiguity with respect to prior beliefs is expressed through multiple priors; second, am-

biguity with respect to the updating process is expressed through multiple likelihoods.

Furthermore, these authors impose a specific expected maximum likelihood criterion as

a prior-selection rule. This may reject initially plausible priors in the light of new infor-

mation. Ambiguity with respect to posterior beliefs vanishes in the original Epstein and

Schneider (2007) model if, and only if, there is no ambiguity with respect to the updating

process. However, even if there is no ambiguity with respect to the updating process,

ambiguity might not vanish in a modified– and ad hoc equally plausible– version of the

Epstein and Schneider (2007) model. This model would consider– instead of the ex-

pected maximum likelihood criterion– some alternative prior selection rule such as the

minimal Kullback-Leibler divergence criterion (cf. Zimper and Ma 2014). The analysis

in Marinacci (2002) and in Epstein and Schneider (2007) thus suggests that it requires

quite strong ad hoc assumptions on the priors’support, on the updating process as well

as on the prior-selection rule for ambiguity to vanish in alternative theoretical models

of Bayesian learning under ambiguity.

3 Quantitative Life-Cycle Model

This section merges our notion of ambiguous survival beliefs with a life-cycle model.

One model period corresponds to one age year. We model a realistic life-cycle income

profile including stochastic and age-specific labor productivity. In addition, a PAYG

pension system is modeled with a fixed date of retirement. We assume no annuity

markets and a self-imposed borrowing constraint (because there is always a small positive

probability of drawing zero income). These elements are included only in order to

generate realistic endogenous life-cycle consumption profiles. (Self-imposed) borrowing

constraints, stochastic labor income in combination with impatience give a hump-shaped

consumption profile, as in the data. Positive pension income implies that savings for

retirement are not too large.
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3.1 Demographics

We consider a large number of ex-ante identical agents (=households). Households be-

come economically active at age (or period) 0 and live at most until age T . The number

of households of age t is denoted by Nt. Population is stationary and we normalize

total population to unity, i.e.,
∑T

t=0Nt = 1. Households work full time during peri-

ods 1, . . . , tr− 1 and are retired thereafter. The working population is
∑tr−1

t=0 Nt and the

retired population is
∑T

t=tr
Nt.

We refer to age h ≤ t as the planning age of the household, i.e., the age when house-

holds make their consumption and saving plans for the future. At ages h = 1, . . . , T ,

households face objective risk to survive to some future period t. We denote corre-

sponding objective survival probabilities for all in-between periods k, h ≤ k < t, by ψk,t
where ψk,t ∈ (0, 1) for all t ≤ T and ψk,t = 0 for t = T+1. We think of survival risk as an

idiosyncratic risk that washes out at the aggregate level. Total population is therefore

constant and dynamics of the population are correspondingly given by Nt+1 = ψt,t+1Nt,

for N0 given.

3.2 Endowments

There are discrete shocks to labor productivity in every period t = 0, 1, ..., , tr−1 denoted

by ηt ∈ E, E finite, which are i.i.d. across households of the same age. The reason

for modelling stochastic labor productivity is to impose discipline on calibration. For

sake of comparability, our fully rational model features standard elements as used in

numerous structural empirical studies on life-cycle models, cf., e.g., Laibson et al. (1998),

Gourinchas and Parker (2002) and references therein. By ηt = (η1, . . . , ηt) we denote

a history of shocks and ηt | ηh with h ≤ t is the history (η1, . . . , ηh, ..., ηt). Let E be

the powerset of the finite set E. Etr−1 are σ-algebras generated by E,E, .... We assume

that there is an objective probability space
(
×tr−1
t=0 E

tr−1, π
)
such that πt(ηt | ηh) denotes

the probability of ηt conditional on ηh.

We follow Carroll (1992) and assume that one element in E is zero (zero income).11

Accordingly, πt(ηt | ηh) reflects a (small) probability to receive zero income in period t.
This feature gives rise to a self-imposed borrowing constraint and thereby to continu-

ously differentiable policy functions. (Self-imposed) borrowing constraints are required

to generate realistic paths of life-time consumption, saving and asset accumulation. Con-

tinuous differentiability is convenient when we model a sophisticated agent. By thereby

avoiding technicalities as addressed in Harris and Laibson (2001) we keep our analysis

11This is standard practice within the life-cycle literature. It is also applied by, e.g., Gourinchas and

Parker (2002).
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focused. Since the zero income probability is small, results are virtually unaffected by

this assumption, relative to a model with a fixed zero borrowing limit which would result

in a kink in each policy function. In fact, we obtain almost identical numerical results

for such a model. In addition, we assume productivity to vary by age. Accordingly,

φt denotes age-specific productivity which is estimated from the data and results in a

hump-shaped life-cycle earnings profile.

After retirement at age tr households receive a lump-sum pension income, b. Retire-

ment income is modeled in order to achieve a realistic calibration. Pension contributions

are levied at contribution rate, τ . To achieve a self-imposed borrowing constraint and

continuous policy functions also during the retirement period, we assume that there is

a small i.i.d. probability of default of the government on its pension obligations. Ac-

cordingly, ηt ∈ Er = [1, 0] during retirement. Correspondingly, let Er be the powerset

of the finite set Er. ErT−tr+1 are σ-algebras generated by Er,Er, ... and
(
×Tt=trEr, πr

)
is

the objective probability space in the retirement period.

Collecting elements, income of a household of age t is given by

yt =

{
ηtφtw (1− τ) for t < tr

ηtb for t ≥ tr.

We abstract from private annuity markets.12 The interest rate, r, is assumed to be

fixed. With cash-on-hand given as xt ≡ at (1 + r) + yt the budget constraint writes as

xt+1 = (xt − ct) (1 + r) + yt+1. (5)

Finally, define total income as ytott ≡ yt+rat, and gross savings as assets tomorrow, at+1.

3.3 Government

We assume a pure PAYG public social security system. Denote by χ the net pension

benefit level, i.e., the ratio of pensions to net wages. The government budget is assumed

to be balanced each period and is given by

τw

tr−1∑
t=0

φtNt = b

T∑
t=tr

Nt = χ (1− τ)w

T∑
t=tr

Nt. (6)

12Hence, we do not address the annuity puzzle in this paper, i.e., the observed small size of private

annuity markets, see Friedman and Warshawsky (1990) for an overview. On the one hand, underesti-

mation of survival beliefs extenuates the annuity puzzle. On the other hand, overestimation at old age

reinforces the puzzle. However, overestimation of survival rates only sets in after the age of 70 and the

average underestimation in our total sample is around 27 percentage points.
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In addition, accidental bequests– arising because of missing annuity markets– are

taxed away at a confiscatory rate of 100%. Revenue from this source is used for gov-

ernment consumption which is otherwise neutral. Also, in the unlikely event of default

of the government on its pension obligations, the government uses contributions to the

pension system for otherwise neutral government consumption.

3.4 CEU Preferences

Households face two dimensions of uncertainty, respectively risk, about period t con-

sumption. First, due to our assumption of productivity shocks, agents face a risky labor

income. Second, agents are uncertain with respect to their life expectancy. While we

model income risk in the standard objective EU way, we model uncertainty about life-

expectancy in terms of a CEU agent who holds ambiguous survival beliefs as stated in

Proposition 1.

Given the productivity shock history ηh, denote by c ≡ (ch, ch+1, ch+2...) a shock-

contingent consumption plan such that the functions ct, for t = h, h + 1, ..., assign

to every history of shocks ηt|ηh some non-negative amount of period t consumption.
Denote by u (ct) the agent’s strictly increasing utility from consumption at age t, i.e.,

u′ (ct) > 0. We normalize u (0) = 0. We assume that the agent is strictly risk-averse,

i.e., u′′ (ct) < 0. Expected utility of an h-old agent from consumption in period t > h

contingent on the observed history of productivity shocks ηh is then given as Eh [u (ct)] ≡
E
[
u (ct) , π

(
ηt|ηh

)]
=
∑
ηt|ηh

u (ct) π
(
ηt|ηh

)
.

We assume additive time-separability and add a raw time discount factor β = 1
1+ρ
.13

Fix some s ∈ {h, h+ 1, ..., T} with the interpretation that the agent survives until pe-
riod s and dies afterwards. Zero consumption in periods of death implies that u (ct) = 0

for all t > s. Given s, the agent’s von Neumann Morgenstern utility from a consumption

plan c is then defined as

U (c (s)) = u(ch) +
s∑

t=h+1

βt−hEh [u (ct)] . (7)

To model survival uncertainty of an agent of age h with respect to ambiguous survival

beliefs, we use the sequence of conditional neo-additive probability spaces (Ω,F , ν (· | h)),

h = 1, ..., T , which is mathematically rigorously constructed in Appendix B.3. Denote

13In line with Halevy (2008) and Andreoni and Sprenger (2012), we assume that time-preferences

cannot be reduced to preferences under uncertainty. To keep the formalism as transparent as possible,

we simply consider standard exponential time-discounting.
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by νh ≡ ν (· | h) the agent’s age-conditional neo-additive capacity and by ψs = ψ (·) the
objective probability to survive until age s.

In order to formalize utility maximization over life-time consumption with respect

to neo-additive probability measures, we henceforth describe an h-old agent as a CEU

decision maker who maximizes her Choquet expected utility from life-time consump-

tion with respect to νh. By Observation 1 in Appendix A.1, this agent’s CEU from

consumption plan c with respect to νh is given as

E
[
U (c) , νh

]
= δh

[
λ sup
s∈{h,h+1,...}

U (c (s)) + (1− λ) inf
s∈{h,h+1,...}

U (c (s))

]
(8)

+ (1− δh) ·
T∑
s=h

[U (c (s)) , ψs] .

The Choquet expected value of lifetime utility U (c) with respect to a neo-additive

capacity νh is a convex combination of the expected value of U with respect to some

additive probability measure ψs and an ambiguity part. In case there is some ambiguity,

i.e., δ > 0, parameter λ measures how much weight the decision maker puts on the least

upper bound of the range of U. Conversely, (1− λ) is the weight she puts on the greatest

lower bound. For these bounds we have for any c that

sup
s∈{h,h+1,...}

U (c (s)) = u(ch) +
T∑

t=h+1

βt−hEh [u (ct)] ,

inf
s∈{h,h+1,...}

U (c (s)) = u(ch), (9)

i.e., the least upper bound consists of the discounted sum of utilities if survival prob-

abilities were equal to one in every period. The greatest lower bound is the utility if

the agent does not survive to the following period. The following technically convenient

characterization of (8) is derived in the appendix.

Proposition 2. Consider an agent of age h. The agent’s Choquet expected utility from
consumption plan c is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · βt−h · Eh [u (ct)] (10)

where the subjective belief to survive from age h to t ≥ h is given by

νhh,t =

{
δh · λ+ (1− δh) · ψh,t for t > h

1 for t = h
(11)

with δh given by (3).
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3.5 Recursive Problem and Dynamic Inconsistency

In contrast to a sequence of conditional additive probability spaces (Ω,F , ψ (· | h)),

h = 1, ..., T , the age-dependent sequence of conditional neo-additive probability spaces

(Ω,F , ν (· | h)), h = 1, ..., T , (generically) violates dynamic consistency of the agents’life-

cycle utility maximization problem whenever δ > 0.14 To characterize actual behavior in

the presence of dynamic inconsistency, we analyze both naive and sophisticated agents,

cf. Strotz (1955) or inter alia O’Donoghue and Rabin (1999) for procrastination models.

Naifs are not aware of their time inconsistency and have the optimistic belief that

their future “selves”will be acting in their interest. Naive agents construct consumption

and saving plans that maximize lifetime utility at age h. Self h then implements the

first action of that sequence expecting future selves to implement the remaining plan.

Coming to the next period, self h + 1 conducts her own maximization problem and

implements actions that do not necessarily coincide with the plan of self h. In contrast,

sophisticates are fully aware of their time inconsistent behavior, cf., e.g., Angeletos et

al. (2001). Sophisticates correctly predict that their own future selves will not be acting

according to the preference of the current self. Thus, they take actions that seek to

constrain the behavior of their future selves.

Although there exists some empirical evidence which suggests that naive rather than

sophisticated decision making might be more relevant (cf. O’Donoghue and Rabin (1999)

and the literature cited therein), there also exists evidence according to which several

investment and contractual arrangements (e.g., investment in rather illiquid assets such

as real estate financed by long-term loans) serve as commitment devices through which

sophisticated agents restrain the consumption behavior of their future selves (cf., e.g,.

Ludwig and Zimper (2006) and references therein). In the present paper, we take the

pragmatic stand to consider both types of behavior.

We further assume that income risk is first-order Markov such that π(ηt | ηt−1) =

π(ηt | ηt−1). It is then straightforward to set up the recursive formulation of lifetime

utility (10). The value function of age t ≥ h viewed from planning age h is given by

V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
.

Maximization of the above is subject to (5).

14We refer the interested reader to the axiomatic treatment of the relationship between violations of

dynamic consistency and violations of Savage’s (1954) sure-thing principle (as in CEU theory) to Epstein

and Le Breton (1993), Ghirardato (2002), Siniscalchi (2011) and the Appendix in Zimper (2012).
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Naive Agents

The naive CEU agent’s first order condition is given by the standard Euler equations.

Proposition 3. The consumption plan c = (ch, ch+1, ...) of a naive CEU agent must

satisfy, for all t ≥ h,

du

dct
= β (1 + r) ·

νhh,t+1

νhh,t
· Et

[
du

dct+1

]
, (12)

where
νhh,t+1

νhh,t
=

νhh,h+1 = δhψh,h+1 + (1− δh)λ for t = h
δhψh,t+1+(1−δh)λ

δhψh,t+(1−δh)λ
for t > h.

By (12), the expected growth of marginal utility from h to h+1 is higher than under

rational expectations if the household underestimates the probability of survival to the

next period, i.e., if νhh,h+1 < ψh,h+1, and vice versa for overestimation. From (12) we

can also directly verify that the CEU life-cycle maximization problem is dynamically

inconsistent if and only if the ambiguous survival beliefs do not reduce to additive

probabilities. To see this formally let us compare the optimal consumption choice of

an h + 1 old agent, first, from the perspective of an h old and, second, from her actual

perspective when she turns h + 1. By Proposition 3, the optimal consumption plan for

age h+ 1 from the perspective of age h requires that

du

dch+1

= β (1 + r) ·
νhh,h+2

νhh,h+1

· Eh+1

[
du

dch+2

]
, (13)

whereas the optimal consumption choice at age h+ 1 from the perspective of age h+ 1

requires that
du

dch+1

= β (1 + r) ·
νh+1
h+1,h+2

νh+1
h+1,h+1

· Eh+1

[
du

dch+2

]
. (14)

Dynamic consistency with respect to the optimal consumption choice at age h + 1

thus holds if and only if the two first order conditions (13) and (14) coincide. Because

of νh+1
h+1,h+1 = 1, this is the case if and only if

νhh,h+2

νhh,h+1

= νh+1
h+1,h+2,

which holds for δ = 0, implying

νhh,h+2

νhh,h+1

=
ψh,h+2

ψh,h+1

= ψh+1,h+2 = νh+1
h+1,h+2,
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but which is violated for δ > 0 since (generically)

νhh,h+2

νhh,h+1

=
δhλ+ (1− δh)ψh,h+2

δhλ+ (1− δh)ψh,h+1

6= δh+1λ+ (1− δh+1)ψh+1,h+2 = νh+1
h+1,h+2.

As in the static CPT model of Halevy (2008), the life-cycle maximization problem

of naive CEU agents is thus dynamically inconsistent. While dynamic inconsistency in

Halevy (2008) results from a fixed non-additive probability weighting function, dynamic

inconsistency in our model comes with a sequence of non-additive probability weighting

functions.

Sophisticated Agents

Sophisticated agents are fully aware of their dynamic inconsistency which is reflected

in their first order conditions. These agents try to influence future selves’ behavior

via the choice of xt+1. Hence, the usual Envelope conditions which are standard in

rational expectations problems no longer apply. As a result, the marginal propensities

to consume out of cash-on-hand (MPC), mh+1 ≡ ∂ch+1
∂xh+1

, show up explicitly in the first-

order conditions. This reflects how self h influences future self’s h + 1 choices with her

choice of savings, xh+1.

Combining first order conditions of optimality for the CEU agent results in a “gen-

eralized Euler equation with adjustment factor”.

Proposition 4. The generalized Euler equation with adjustment factor for the sophis-
ticated CEU agent is given by

du

dch
= β (1 + r) νhh,h+1 · Eh

[
Θh+1 ·

du

dch+1

+ Λh+1

]
(15)

where

Θh+1 ≡ mh+1 +
νhh,h+2

νhh,h+1 · νh+1
h+1,h+2

(1−mh+1) (16)

and

Λh+1 ≡ β(1 + r)
νhh,h+2

νhh,h+1

(1−mh+1)

(
∂V h

h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

)
. (17)

Proof: See Appendix C.

Relative to the naive agent, the FOC of the sophisticated agent (15) hence fea-

tures two additional terms, Θh+1 and Λh+1. To interpret this condition, first assume

that Λh+1 = 0. Then (15)-(16) are analogous to the generalized Euler equation de-

rived in the (quasi-)hyperbolic time discounting literature, cf., e.g., Harris and Laibson
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(2001). The latter refer to (the analogue of) expression βνhh,h+1Θh+1 as the “effec-

tive discount factor”. The condition is easiest to interpret by noticing that Θh+1 > 1

iff ωh ≡
νhh,h+2

νhh,h+1·ν
h+1
h+1,h+2

> 1, which holds in our calibration of the CEU model. In this

case the marginal propensity to save (MPS) next period, 1 − mh+1, receives a higher

value than the MPC, mh+1, and self h correspondingly expresses higher patience than

according to the pure short-run discount factor βνhh,h+1. To gain further intuition ob-

serve that, as long as ωh > 1, the effective discount factor varies inversely with next

period’s MPC, just as in the hyperbolic time discounting model. If self h+ 1 values con-

sumption more– by consuming more out of cash on hand– then self h compensates this

overconsumption of her own future self by increasing impatience, hence by consuming

more today and saving less.

Next, turn to the general case where Λh+1 6= 0. For sophisticated CEU agents the

value functions of selves h and h + 1 in periods h + 2 are age-dependent. A positive

difference
∂V hh+2
∂xh+2

− ∂V h+1h+2

∂xh+2
means that self h’s marginal valuation of cash-on-hand in pe-

riod h+ 2 is higher than self h+ 1’s. Under such a positive difference self h accordingly

values savings from h+ 1 to h+ 2 more than self h+ 1. This increases the RHS of (15)

thereby increasing savings already at age h.

3.6 Aggregation over Households

Wealth dispersion within each age bin is only driven by productivity shocks. We denote

the cross-sectional measure of agents with characteristics (at, ηt) by Φt(at, ηt). Denote

by A = [0,∞] the set of all possible asset holdings and let E be the set of all possible
income realizations (encompassing both, the working and the retirement period). De-

fine by P (E) the power set of E and by B (A) the Borel σ-algebra of A. Let Y be the
Cartesian product Y = A× E and M = (B (A)) . The measures Φt(·) are elements of
M. We denote the Markov transition function– telling us how people with character-

istics (t, at, ηt) move to period t + 1 with characteristics t + 1, at+1, ηt+1– by Qt(at, ηt).

The cross-sectional measure evolves according to

Φt+1 (A× E) =

∫
Qt ((at, ηt) ,A× E) · Φt (dat×dηt)

and for newborns

Φ1 (A× E) = N1 ·

Π(E) if 0 ∈ A
0 else.

The Markov transition function Qt(·) is given by

Qt ((at, ηt) ,A× E) =


∑

ηt+1∈E π
(
ηt+1|ηt

)
· ψt,t+1 if at+1 (at, ηt) ∈ A

0 else,
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for all (at, ηt) ∈ Y and all (A× E) ∈ Y.
Aggregation gives average (or aggregate)

consumption: c̄t =
∫
ct(at, ηt)Φt(dat × dηt),

assets: āt =
∫
atΦt(dat × dηt),

income: ȳt =
∫
yt(ηt)Φtdηt,

total income: ȳtott = ȳt + rāt,

saving rate: s̄t =
∫
st(at, ηt)Φt(dat × dηt), where st(at, ηt) = 1− ct(at,ηt)

yt(ηt)+r·at
.

In the quantitative section we also study average saving plans of naive CEU agents.

By dynamic inconsistency, these agents update their plans in each period. As a way to

compare any gap between plans made at age h and realizations at t ≥ h for CEU agents

we denote the planned average saving rate with superscripts and compute

s̃ht =

∫
sht (at, ηt)Φ

h
t (dat × dηt), (18)

for all t. This gives hypothetical average profiles of the saving rate in the population

if households would stick to their respective period-h plans in all periods t = h, . . . , T .

Observe that Φh
t (·) is an artificial distribution generated by respective plans of house-

holds. We refer to (18) as the (average) “planned”saving rate. By dynamic consistency,

we have for both RE and sophisticated CEU agents that

sht (at, ηt) = s1
t (at, ηt) hence s̃ht = s̃t,

for all h = 1, . . . , T . These equalities hold for naive CEU agents only for t = h and,

independent of current age h, for t = T .

4 Calibration

With the exception of the discount rate, all parameters are calibrated without using the

life-cycle model. We refer to these parameters, summarized in Table 2, as (exogenous)

first-stage parameters. The discount rate is accordingly referred to as (endogenous)

second-stage parameter, cf. Table 3. The remainder of the section provides the details

of our approach.

4.1 Household Age

Households enter the model at age 20 (model age 0). The retirement age is 62, hence tr =

42, according to the average retirement age reported in the Survey of Consumer Finance

(SCF).15 We set the horizon to some maximum biological human lifespan at age 125,
15We compute the average retirement age by pooling the SCF waves 1992-2007 and exclude respon-

dents younger than 45.
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hence T = 105. This choice is motivated by estimates based on Swedish female life-table

data by Weon and Je (2009).

4.2 Objective Cohort Data

For objective survival rates we use average cross-sectional survival rates for the US be-

tween 2000-2010 taken from the Human Mortality Database (HMD). Data on survival

rates becomes unreliable for ages past 100 as age-specific sample-size is low. Bebbing-

ton et al. (2011) argue, that a standard Gompertz-Makeham law, cf., e.g., Preston et

al. (2001), is ill-suited for estimating human survival rates at high ages. This is due

to the fact that human mortality, while first increasing exponentially with age, finally

decelerates for high ages past 95. To account for this mortality deceleration we fol-

low Bebbington et al. (2011) by applying the logistic frailty model. Accordingly, the

mortality rate µt at age t obeys

µt =
A exp (α · t)

1 + s2 (exp (α · t)− 1) A
α

+ εt, εt ∼ N (0, σ2), (19)

where the term in the denominator corresponds to the standard Gompertz-Makeham

law. We estimate parameters to get an out of sample prediction for ages past 100. The

resulting predicted mortality rate function fits actual data very well, cf. Figure 3. We

use it as objective cohort data in the simulation.

Figure 3: Mortality Rates: Data vs. Estimation
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Notes: Average mortality rates from 2000-2010 using HMD data (red solid line) and predicted mortality

rates (black dashed line) using the logistic frailty model given in (19). Parameter estimates are provided

in Table 2.

According to our parameter estimates reported in Table 2, the implied average mor-

tality rate converges to a value of 0.57 at ages around 110 (t = 90). This is well in line
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with Gampe (2010) who reports an annual mortality rate of around 0.5 for persons past

age 110 using data for a series of OECD countries on mortality rates of supercentenari-

ans.

4.3 Estimated Subjective Survival Beliefs

We follow Ludwig and Zimper (2013) and estimate parameters δ and λ, cf. equations (2)

and (3), to match the HRS data. Subjective survival rates are obtained by pooling a

sample of HRS waves {2000, 2002, 2004}. Except for heterogeneity in sex and age, we
ignore all other heterogeneity across individuals. Before proceeding with the estimation,

the experience function e(h) remains to be specified. It would be desirable to do so with

a flexible functional form. Unfortunately, as Ludwig and Zimper (2013) demonstrate in

their online appendix, identifying e(h) is not straightforward because of the interplay

with the other model parameters δ and λ. That said, setting e(h) ≡
√
h seems to

be a good choice because the corresponding model calibration gives rise to parameter

values of δ and λ that are in line with experimental evidence (see, e.g., Wakker 2010;

Abdellaoui et al. 2011). Specifically, the estimation yields δ = 0.135 and λ = 0.418.16

As documented in Ludwig and Zimper (2013), these parameters are estimated with very

high precision.

The predicted subjective survival rates resulting from our model of ambiguous sur-

vival beliefs fit their empirical counterparts, i.e., the average subjective survival beliefs

for each interview age h, from the HRS quite well, cf. Figure 4 in Section 5. The R2 of

the regression is around 0.8− 0.95.17

4.4 Prices and Endowments

Wages are normalized to w = 1. We take a three-state first-order Markov chain for the

income process in periods t = 0, . . . , tr − 1 with state vector Ew = [1 + ε, 1− ε, 0]. The

last entry reflects the state with zero income. Following the estimates of Carroll (1992)

we set the probability of receiving zero labor income to ζ = 0.005. Then the transition

16Estimation results are calculated separately for men and women. We take an equally weighted

average of the estimated parameters to get an approximation for λ and δ in the population. Differences

in point estimates from those reported in Ludwig and Zimper (2013) are due to the fact that we use a

simplified version of their model, cf. Subsection 2.2.
17The fit is slightly better for women than for men, cf. Ludwig and Zimper (2013). They further

perform sensitivity analyses with regard to the choice of the initial age, the specific form of the experience

function and focal point answers. This shows that results do not hinge on these aspects. Finally, they

document that biases in beliefs are neither due to cohort effects nor selection biases.
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matrix during the working period writes as

Πw =

 (1− ζ)κ (1− ζ)(1− κ) ζ

(1− ζ)(1− κ) (1− ζ)κ ζ

0.5 · (1− ζ) 0.5 · (1− ζ) ζ


for t = 0, . . . , tr. We take as initial probability vector of the Markov chain π0 =

[0.5, 0.5, 0]′, i.e., households do not draw zero income in their first period of life.

Values of persistence and conditional variance of the income shock process are based

on the estimates of Storesletten et al. (2004) yielding κ = 0.97 and ε = 0.68. Age

specific productivity {φt} of wages is estimated based on PSID data applying the method
developed in Hugget et al. (2007).

In retirement, for t = tr, . . . , T , we take as state vector Er = [1, 0]. We assume an

even smaller probability to receive zero retirement income of ζr = 0.001 which reflects

default of the government on its pension obligations. We accordingly have

Πr =

[
1− ζr ζr

1− ζr ζr

]

for t = tr, . . . , T and we take as initial probability vector πtr+1 = [1− ζr, ζr]′.
The interest rate is set to r = 0.042 based on Siegel (2002). For the social security

contribution rate we take the US contribution rate of τ = 0.124. The pension benefit

level then follows from the social security budget constraint (6).

4.5 Preferences

Recall that we normalize utility from death to zero, i.e., if the household dies at the end

of period t− 1 we let u(ct) = u(0) = 0. As to utility from survival we take a CRRA per

period utility function with coeffi cient of relative risk aversion θ. For the intertemporal

elasticity of substitution (IES), 1/θ, we take a standard value chosen in the literature

of 1/3, i.e., θ = 3. This choice implies that a standard CRRA utility function of the

form u(ct) =
c1−θt

1−θ is negative for all ct > 0. This would violate our assumption that

utility from survival is positive thereby exceeding utility from death. We cure this by

two additional modifications of the utility function. First, we add an additive preference

shifter to the per period utility function, denoted by Υ > 0. With this monotone

transformation we can ensure (via calibration) that the utility from survival is always

positive. Of course, this does not affect optimal choices. Second, we take a Stone-Geary

specification of the utility function and accordingly let ct − c be its argument for some
very small c > 0. To understand this second modification observe that our specification

of the income process with a positive zero income probability achieves differentiability
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Table 2: First-Stage Parameters

Parameter Source

Technology and Prices

w = 1 Gross wage normalized

r = 0.042 Interest rate Siegel (2002)

τ = 0.124 Social security contribution rate irs.gov

χ = 0.322 Net pension benefit level model outcome

Income Process

κ = 0.97 Persistence of income Storesletten et al. (2004)

ε = 0.68 Variance of income Storesletten et al. (2004)

{φt} Age specific productivity PSID

ζ = 0.005 Probability of zero labor income Carroll (1992)

ζr = 0.001 Probability of zero retirement income

Preferences

θ = 3 Coeffi cient of relative risk aversion

c = 1.0e− 08 Minimum consumption level

Subjective Survival Beliefs

δ = 0.135 Initial degree of ambiguity HRS

λ = 0.418 Degree of relative optimism HRS

Age Limits and Survival Data

0 Initial model age (age 20)

tr = 42 Retirement (age 62) SCF

T = 105 Maximum human lifespan (age 125) Weon and Je (2009){
ψk,t
}

Cohort survival rates Predictions based on HMD

s = 0.41 Logistic frailty model

α = 0.13 Logistic frailty model

A = 2.9e− 06 Logistic frailty model

Notes: First-stage parameters that are calibratied outside the life-cycle model.

Table 3: Second-Stage Preference Parameter: The Subjective Discount Rate

Target (Source) Asset profile (SCF)

RE ρRE = 0.0344

naive CEU ρCEU,n = 0.0340

sophisticated CEU ρCEU,s = 0.0427

Notes: Second-stage parameters are calibratied such that asset moments from the model best match

corresponding data moments.
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of policy functions and positive asset holdings (and hence consumption) throughout but

very low consumption levels have positive probability. This makes it very hard to assign

values to Υ such that utility from survival is always positive. With a Stone-Geary-CRRA

utility function we have that optimal consumption choices satisfy ct > c because of the

lower Inada condition. Accordingly, setting Υ = −u(c) achieves strictly positive utility

in case of survival. Of course, for very small c, the effect of this modification on optimal

choices as well as on the IES is negligibly small. Collecting elements, the per-period

utility function reads as

u (ct) = Υ +
(ct − c)1−θ

1− θ
for Υ = − c1−θ

1−θ .

A key preference parameter of the model is the discount rate which we take as the

only second stage parameter of our model. We calibrate it such that the average asset-

to-permanent-income ratio from the model best matches the empirical counterpart. This

approach is in the spirit of Gourinchas and Parker (2002) and De Nardi et al. (2010).

Data on assets and permanent income is taken from the SCF. Appendix D describes in

more detail how the data is constructed.

Denote by ādatat average age-specific net-worth and by ȳpdatat average permanent-

income constructed by pooling SCF data from 1992 to 2007. As defined in Section 3.6,

āt is the model counterpart. Correspondingly, we denote model permanent income by ȳ
p
t

which is calculated as the constant annuity payment from the net present value of average

(labor, respectively retirement) income ȳt over the life-cycle discounted with the riskfree

interest rate r = 0.042.

We target the life-cycle profile between ages 30 (t0 = 10) and 90 (T0 = 70). A starting

age of 30 is motivated by the fact that we do not explicitly model education decisions

so that our model does not match the data well at very young ages. Our choice of the

terminal age at 90 is due to data limitations at very high ages. Beyond age 90 there

are too few observations on assets in the data so that (smoothed) asset age profiles get

rather wiggly. Accordingly we search for ρ to solve

min
ρ

1

2

T0∑
t=t0

(
ādatat

(ȳpt )
data
− āt (ρ)

ȳpt (ρ)

)2

. (20)

For our baseline results, we calibrate a different subjective time discount rate ρ for

each of the three models, the RE, the naive and the sophisticated CEUmodel. Parameter

estimates in Table 3 document that the difference between subjective discount factors

calibrated for the RE and the naive CEU model is small whereas the difference to

the sophisticated CEU model is large. In Section 5.2 we explain the reason for these

differences. Importantly, we also investigate how results are affected by recalibration.
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In these experiments we hold the discount rate constant at its calibrated value for the

RE agent.

5 Results

5.1 Ambiguous versus Rational Survival Beliefs

Figure 4 compares predicted subjective survival rates resulting from our model of am-

biguous survival beliefs with their empirical counterparts and corresponding objective

survival rates for men in Panel (a) and for women in Panel (b). Interview age, cf. Ta-

ble 1, is shown on the abscissa. Actual subjective survival beliefs are depicted in the

figure as a blue solid line and corresponding objective beliefs as a red dashed-dotted

line. To understand this figure, recall that actual subjective survival beliefs are elicited

in the HRS only for a combination of interview ages and target ages as shown in Ta-

ble 1. The step function of corresponding objective beliefs follows from changes in the

interview age / target age assignment. For example, a 69 year old person is asked about

her subjective assessment to live until age 80 whereas a 70 year old is asked about her

probability to reach age 85. The chance to live from 69 to 80 is much higher than the

chance to live from 70 to 85. Therefore, objective survival beliefs drop discretely be-

tween interview ages 69 and 70. Furthermore, within each interview age / target age

bin, objective survival rates generally increase. For example, the chance to survive from

age 60 to 80 is lower than the chance to survive from age 61 to 80.18 Finally, the figure

shows as a green dashed line the predicted subjective survival rates from our model for

the parameter estimates of δ and λ as given in Table 2. Overall, we can conclude from

this figure that the fit of predicted to actual subjective survival rates is very good. In

particular, the model replicates underestimation of survival rates at younger ages and

overestimation at older ages.

Figure 5 shows the age-specific degree of ambiguity as a function of planning age h.

While the initial degree of ambiguity at age 20 is δ = 0.135, cf. Table 2, ambiguity

at age 50 is roughly at 0.51. As predicted by the theoretical model, cf. Proposition 1,

ambiguity is monotonically increasing and, as a consequence of the square-root experi-

ence function, e(h) =
√
h, concave in planning age h. This pattern, in particular the

age-increasing ambiguity, is important to understand the survival rate functions of our

18On the other hand, our cohort based prediction of objective survival rates incorporates trends in

life-expectancy. In particular at relatively “young”ages it may therefore be that the objective survival

rate curve is downward sloping within interview age / target age bins. For example, the objective

survival rate of a 52 year old man to live to age 80 turns out to be slightly higher than of a 53 year old

man because the 52 year old man belongs to a younger cohort.
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Figure 4: Objective, Subjective and Predicted Subjective Survival Rates
(a) Women (b) Men
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Notes: Unconditional survival probabilities to different specific target ages according to the questions

in the HRS, cf. Table 1. Interview age is on the abscissa. The solid blue line are subjective survival

beliefs, the dashed-dotted red line are the corresponding objective survival rates and the dashed

green line are simulated subjective survival beliefs from the estimated CEU model.

model to which we turn next. The figure also shows a line with constant ambiguity

which will be relevant for our sensitivity analysis, cf. Section 5.2.3.

Figure 5: Ambiguity over the Life-Cycle
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Notes: Degree of ambiguity δ as a function of planning age h. The average ambiguity of men and

women is used in the calibrated life-cycle model.

Figure 6 compares ambiguous subjective survival functions– i.e., the subjective haz-

ard rates– as black dashed lines to their objective counterparts as red solid lines. The

four panels of the figure represent different planning ages h. Panel (a) is for planning

age 20 (h = 0) and Panel (d) for planning age 85, (h = 65). In each of the four panels

of the figure, target age t is depicted on the abscissa. Within each panel, experience–
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and therefore the ambiguity parameter δh– is unaltered. Across panels, ambiguity is

increasing according to the pattern of Figure 5. The initial point of survival functions

at age t = h is driven by ambiguity at that age. As planning age h increases, i.e., as

we move from Panel (a) to Panel (d), the distance of this point to a survival rate of 1

increases. The size of this initial blip is large. It results from the parsimonious structure

of our model but otherwise does not affect our results much, cf. Section 5.2.3.

The key observation from the figure is that subjective survival functions are flatter

than their objective counterparts which is in line with Hammermesh (1985), Peracchi

and Perotti (2010), Elder (2013) and several others. Furthermore, ambiguous survival

beliefs match the stylized fact described by Wu et al. (2013): People at a specific

planning (or interview) age underestimate their chances of survival to the nearer future

and overestimate survival probabilities to the more distant future. Also notice that

the overestimation of survival probabilities becomes more pronounced as the agent gets

older. I.e., the point at which the subjective and the objective survival curves intersect

moves to the left when moving across the figure from Panel (a) to Panel (d).

Figure 6: Survival Functions
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Notes: Unconditional objective and subjective probabilities viewed from different planning ages h.

Target age t is depicted on the abscissa.
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5.2 Life-Cycle Profiles with Ambiguous Beliefs

5.2.1 Baseline Calibration

To highlight the effects of modeling subjective survival beliefs on life-cycle savings we

conveniently compress all information by showing average asset holdings of CEU agents

compared to RE agents who use objective survival data. We focus on the average

asset-to-permanent income ratio as described in the calibration section. We scale assets

with the same annuity value as the one used for estimating preference parameters, cf.

Section 4.5.

Results are shown in Figure 7. The figure shows average asset holdings over the

life-cycle for the three types of agents, RE agents as the black dotted line, naive CEU

agents as the blue dashed line and sophisticated CEU agents as the red dashed-dotted

line. The profiles of our calibrated models are compared to the data (grey line). Assets

steadily increase until retirement entry and fall thereafter. This implies positive saving

rates during working life while agents dissave during retirement.

The overall shape of life-cycle asset holdings is explained as follows: due to prudence,

agents save for precautionary reasons to self-insure against future income risk. There are

two forces triggering precautionary saving. One is the standard income risk, the second

is the risk of drawing zero labor income. Since the latter gives rise to a self imposed

borrowing constraint, asset holdings throughout the life-cycle are always positive. As

agents become older, life-cycle motives for saving become more and more relevant and

motives for precautionary saving become less strong, also see, e.g., Gourinchas and

Parker (2002). Assets are being accumulated in order to finance retirement consumption.

In retirement, the only precautionary motive to save is to avoid zero resources in all

income states. This motive again becomes more and more relevant as asset holdings

converge towards zero when agents get older.

With regard to differences in asset accumulation across types, first focus at the

RE type, displayed in the figure as a dotted line. Relative to the data, the dynamically

consistent RE model features higher saving and therefore stronger asset accumulation on

average until retirement and a faster speed of asset decumulation thereafter. Accordingly,

through the lens of the RE model the data are puzzling: households save too little until

retirement and have asset holdings in old age that are too high. Any attempt to improve

the fit of the RE model by, e.g., decreasing the discount rate would lead to a lower speed

of asset decumulation at the cost of even higher saving during the working period and

vice versa.

On the contrary, the calibrated naive CEU model gives rise to less saving during the

accumulation phase and a much slower speed of asset decumulation than for the RE
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Figure 7: Assets-to-Permanent Income, CEU, RE and Data
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Notes: Average asset-to-permanent-income ratios from SCF data and from CEU and RE agents

using recalibrated preference parameters ρ for all models. The data covers ages 30 and 95, details

of how the data is constructed is described in Appendix D.

model, moving it close to the data. The driving force for undersaving (relative to the

RE model) is pessimism with regard to survival prospects. The reason for high old-

age asset holdings is the strong optimism with regard to surviving into the future, cf.

Figure 6. The optimism about future survival prospects gets stronger as the agent ages,

eventually becoming the dominating force for trends in assets. This strength of optimism

is crucially governed by our (precise) estimate of the relative optimism parameter, λ.

The sophisticated CEU model generates very similar results compared to the naive

CEU model: on average saving rates during the working period are almost identical

and so is asset accumulation. Old-age asset holdings of sophisticated agents are slightly

higher than those of naive agents. The reason is that sophisticates, by foreseeing the

optimistic biases of their own future selves, decumulate assets at a lower speed for

reasons of consumption smoothing. The close similarities between the two CEU agents

only occur because we recalibrate the discount rate. It is almost one percentage point

higher for the sophisticated agent, cf. Table 3. We discuss this in detail below in

Section 5.2.2, where we also provide additional interpretation for our findings.

Table 4 comprises our results by reporting summary statistics for all three agent

types and the data. As a summary statistic for the goodness of fit of the three models

we report the R2s from the non-linear regressions in (20). While R2 looses its usual

interpretation in non-linear models as a measure of the fraction of the overall variation
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explained by the model, it is still a useful summary statistic of goodness fit. It is bounded

from above by 1 and a value closer to 1 indicates better fit. Results on the R2s confirm

the visual impression gained from Figure 7, i.e., the fit of the naive CEU model is best

and the one of the RE model is worst.

The average saving rate of both the naive and sophisticated CEU agents during the

prime saving years, ages 25-54, is about 9.2%. The corresponding average saving rate

in the US is 9.5%.19 On the contrary, RE agents save on average 13.5%, exceeding the

relevant data by 4 percentage points.

Table 4: Summary Statistics

RE CEU Data1)

Naive Soph.

R2 0.756 0.944 0.935

Saving rate2) 13.5% 9.2% 9.2% 9.5%

Saving rate, planned2) − 14.7% −
Assets at age 75 relative to 623) 70.0% 77.9% 79.0% 72.4%

Assets at age 85 relative to 623) 37.0% 57.1% 60.8% 53.0%

Assets at age 95 relative to 623) 9 .1% 34 .9% 42 .1% 47 .9%

1) The data for asset decumulation is calculated from SCF data. Due to small sample sizes, SCF

data on average asset holdings at age 95 cannot be measured reliably and are thus reported in

italics. The saving rate is the weighted average of ages 25-54 between 1980-85 from the Consumer

Expenditure Survey (CES) as reported by Bosworth et al. (1991), Table 3.
2) The average saving rate as is defined as the average of individual saving rates between ages 25

and 54. The average planned saving rate is the rate for ages 25-54 planned at age 20.
3) Average asset holdings at age 75, 85 and 95 relative to assets at retirement entry at age 62.

Comparing plans and realizations for naive CEU agents we observe that, initially,

CEU agents plan to save more and consume less during working life which would result

in higher assets. The planned average saving rate of naive CEU agents at age 20 for

ages 25-54 is 14.7%, compared to the average realized saving rate for that age bin

of 9.2%. The fact that actual saving behavior deviates from plans naturally follows

from time inconsistency. That saving is lower than planned means that households

moderately overestimate their future survival rates, leading us back to the predictions of

the simple 3-period model. If overestimation was stronger, then they would actually save

19The SCF does not contain quantitative questions on saving, only qualitative ones such as whether

one had positive saving. Furthermore, as the SCF does not have a panel dimension, we cannot compute

savings from changes in assets. Thus, we chose CES data as reported by Bosworth et al. (1991).
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more than originally planned. These patterns are qualitatively consistent with findings

in the literature on undersaving: Barsky et al. (1997) document that agents have a

preference for constant or upward sloping consumption paths which cannot be achieved

by observed saving rates. Lusardi and Mitchell (2011) present survey results showing

that out of those households that made a retirement savings plan, the majority was not

able to stick to their plan. Finally, Choi et al. (2006) document that two thirds of

respondents in a survey have saving rates below their ideal ones.

Finally, Table 4 also summarizes the sizeable differences in old-age asset holdings

between RE and CEU agents. For naive CEU agents, average asset holdings at ages

75, 85 and 95 relative to those at retirement entry are 77.9%, 57.1% and 34.9% compared

to 72.4%, 53.0% and 47.9% in the data. Recall that the last data point, i.e., asset holdings

at age 95, has to be looked at with care because of few observations. On the contrary,

these values are only at 70.0%, 37.0%, and 9.1% for RE agents. Sophisticated CEU

agents have even higher assets at old age relative to assets at retirement entry. Also

notice that the overall fit of the sophisticated CEU model to the data is worse than for

naive agents.

We can therefore conclude that the combination of ambiguous survival beliefs with

the assumption of naivity has to be considered as a candidate explanation for the joint

occurrence of low retirement savings, time inconsistent saving behavior and high old-age

asset holdings.

5.2.2 The Effects of Discounting

As described in Section 4, the calibrated discount rate varies across all model variants

in our baseline results, cf. Table 3. This section documents how our main findings are

affected by this approach to calibration. To this end, we hold constant the value of the

discount rate calibrated for the RE model of 3.4% and use it in the two variants of the

CEU model. With this strategy we single out the pure effects of ambiguous survival

beliefs. Results on asset holdings are displayed in Figure 8 and corresponding summary

statistics are provided in Table 5.

As the difference of calibrated discount rates between the RE and the naive CEU

models is not large, cf. Table 3, our results do not change much for naive CEU agents.

With the lower RE-model discount rate, saving increases slightly and hence the average

asset decumulation speed also decreases. TheR2, as a summary statistic for the goodness

of fit, decreases very mildly to 0.943.

Significant changes occur for the sophisticated CEU model where the calibrated

discount rate is almost one percentage point higher in our baseline calibration. Relative

to this, the R2 strongly decreases to 0.817. The saving rate during the working period
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Figure 8: Assets-to-Permanent Income, CEU, RE and Data: Constant ρ

20 40 60 80 100
0

5

10

15

20
RE
Naive CEU
Soph CEU
Data

Notes: Average asset-to-permanent-income ratios from SCF data and from CEU and RE agents

using ρRE = 0.034 as a preference parameter for all models. The data covers ages 30 and 95, details

of how the data is constructed is described in Appendix D.

goes up to 11.4% which is– although still lower than for the RE agent– more than

observed in the data.

We complement this picture by displaying life-cycle consumption relative to perma-

nent income across agent types (again holding ρ constant) in Figure 9. At younger ages,

both the naive and the sophisticated households consume more than RE agents. In the

middle stages of the life-cycle optimism starts to dominate their survival belief forma-

tion. This increases the consumption growth rate so that both CEU agents consume less

at middle and more at old age than the RE agents. Finally, observe from the figure that

sophisticates indeed consume less at young ages than do naifs leading to higher asset

holdings over the life-cycle.

Again, the simple three-period model from the Supplementary Appendix provides

guidance for understanding these results. Sophisticates foresee the increasing optimism

of their own future selves. Given their relatively low inter-temporal elasticity of substi-

tution of 1/3 they therefore place a high value on the marginal utility from saving, give

up on consumption when young and build up higher asset positions during the working

period than their naive counterparts. In consequence, they also decumulate assets at a

lower speed in old age.
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Table 5: Summary Statistics: Constant ρ 1)

Naive CEU Soph. CEU Data

Baseline ρRE Baseline ρRE

R2 0.944 0.943 0.935 0.817

Saving rate 9.2% 9.0% 9.2% 11.4% 9.5%

Saving rate, planned 14.7% 14.6% − −
Assets at age 75 relative to 62 77.9% 77.8% 79.0% 83.1% 72.4%

Assets at age 85 relative to 62 57.1% 56.8% 60.8% 66.9% 53.0%

Assets at age 95 relative to 62 34 .9% 34 .6% 42 .1% 48 .7% 47 .9%

1) For a description of how the statistics are constructed see Table 4.

5.2.3 The Effects of Experience

We next shut down experience by setting e(h) = 0 for all h so that our notion of

ambiguous survival beliefs reduces to the static scenario of an age-independent neo-

additive probability weighting function where δh = δ for all h, cf. Proposition 1. We

re-estimate parameters δ and λ which gives λ = 0.424 and δ = 0.565. The high value

of δ roughly corresponds to the mean value of δh in our baseline model, cf. Figure 5. It

implies that initial biases of subjective survival functions are even stronger than those

depicted in Figure 6.

Despite this, the key quantitative implications of our model are little affected. As

documented in Table 6, the average saving rate decreases for both CEU types. For

naive CEU agents, the difference between planned and realized saving rates increases.

The asset decumulation speed during the retirement period, however, is little affected.

Finally, notice that the R2s decrease. This supports our preferred specification with

dynamic updating of survival beliefs.

6 Concluding Remarks

This paper studies implications of ambiguous survival beliefs for consumption and saving

behavior. Point of departure of our analysis is that people make mistakes in assessing

their chances to survive into the future: “young”people tend to underestimate whereas

“old”people tend to overestimate their survival probabilities. We adopt and parame-

trize a model of Bayesian learning of ambiguous survival beliefs which replicates these

patterns. The resulting conditional neo-additive survival beliefs are merged into a sto-

chastic life-cycle model with CEU (=Choquet expected utility) agents to study life-cycle

consequences compared to agents with rational expectations (RE).
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Figure 9: Life-Cycle Consumption of CEU and RE: Constant ρ

20 40 60 80 100
0

0.5

1

1.5

RE
Naive CEU
Soph CEU

Notes: Average consumption relative to permanent income as described in the calibration

section over the life-cycle from CEU and RE agents using ρRE = 0.034 as a preference

parameter for all models.

We show that agents of our model behave dynamically inconsistent. As a result,

CEU agents save less at younger ages than they actually planned to save. Due to under-

estimation of survival at young age, CEU agents also save less than RE agents. Despite

this tendency to undersave, CEU agents eventually have higher asset holdings after re-

tirement because of the overestimation of survival probabilities in old age. Overall, the

CEU model provides an accurate quantitative picture of life-cycle asset holdings until

about age 85. Furthermore, the assumption of naive CEU agents better fits the data

than the assumption of sophisticated CEU agents. Our model of biases in the assessment

of survival prospects therefore adds to explanations for three empirical findings: (i) time

inconsistency of agents, (ii) undersaving at younger ages and (iii) high asset holdings at

old age. Hence, our model hits at– but does not kill– “three birds with one stone”.

Our work gives rise to several avenues of future research. First, observe that the am-

biguous survival belief functions depicted in Figure 6 closely resemble quasi-hyperbolic

time discounting functions, cf., e.g., Laibson (1997). In Groneck et al. (2014) we com-

pare the formal relationship between quasi-hyperbolic time-discounting, on the one hand,

and a CPT/CEU model, on the other hand. In contrast to the quantitative analysis of

the present paper, which aims to bring the model to the data, the stylized analysis in

Groneck et al. (2014) restricts attention to a static CPT/CEU model in which agents

do not learn over the life-cycle. As our main finding we show that quasi-hyperbolic
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Table 6: Summary Statistics, Constant δ 1)

Naive CEU Sophisticated CEU Data

Baseline Const. δ Baseline Const. δ

Discount rate ρ 0.0340 0.0323 0.0427 0.0421

R2 0.944 0.930 0.935 0.925

Saving rate 9.2% 8.6% 9.2% 8.9% 9.5%

Saving rate, planned 14.7% 16.6% − −
Assets at age 75 relative to 62 77.9% 79.0% 79.0% 79.9% 72.4%

Assets at age 85 relative to 62 57.1% 58.5% 60.8% 62.1% 53.0%

Assets at age 95 relative to 62 34 .9% 36 .0% 42 .1% 43 .2% 47 .9%

1) Results for the CEU model without experience and with recalibrated ρ as in the baseline scenario.

Forr a description of how the statistics are constructed see Table 4.

time-discounting over the life-cycle is formally equivalent to a static CPT/CEU life cy-

cle model with neo-additive capacities such that (i) the ambiguity parameter is positive

whereas (ii) the optimism parameter is zero. Our analysis further implies that a positive

optimism parameter rather than Bayesian learning under ambiguity is responsible for

the qualitative feature that CPT/CEU agents might– in contrast to quasi-hyperbolic

time-discounting agents– oversave at old ages.

Second, we plan to combine our notion of CEU agents with bequest motives in order

to cover important aspects of life-cycle decisions. The main challenge for this generalizing

approach will be to come up with a parsimonious model in which all calibrated behavioral

parameters are identified.

Third, we will extend our framework to address normative questions on the op-

timal design of the tax and transfer system, similar to Laibson et al. (1998), Imro-

horoglu et al. (2003) and, more recently, Pavoni and Yazici (2012, 2013) in the hyperbolic

time discounting literature.
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A Appendix: Choquet Decision Theory

A.1 Choquet Integration and Neo-additive Capacities

Consider a measurable space (Ω,F) with F denoting a σ-algebra on the state space Ω

and a non-additive probability measure (=capacity) κ : F → [0, 1] satisfying

(i) κ (∅) = 0, κ (Ω) = 1

(ii) A ⊂ B ⇒ κ (A) ≤ κ (B) for all A,B ∈ F .
The Choquet integral of a bounded F-measurable function f : Ω→ R with respect to

capacity κ is defined as the following Riemann integral extended to domainΩ (Schmeidler

1986):

E [f, κ] =

∫ 0

−∞
(κ ({ω ∈ Ω | f (ω) ≥ z})− 1) dz+

∫ +∞

0

κ ({ω ∈ Ω | f (ω) ≥ z}) dz. (21)

For example, assume that f takes onm different values such that A1, ..., Am is the unique

partition of Ω with f (ω1) > ... > f (ωm) for ωi ∈ Ai. Then the Choquet expectation
(21) becomes

E [f, κ] =
m∑
i=1

f (ωi) · [κ (A1 ∪ ... ∪ Ai)− κ (A1 ∪ ... ∪ Ai−1)] .

This paper focuses on non-additive probability measures that are defined as neo-

additive capacities in the sense of Chateauneuf et al. (2007). Recall that the set of null

events, denoted N , collects all events that the decision maker deems impossible.

Definition 1. Fix some set of null-events N ⊂ F for the measurable space (Ω,F).

The neo-additive capacity, ν, is defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (22)

for all A ∈ F such that µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Ω\A ∈ N

and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iff Ω\A ∈ N .
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In this paper, we are exclusively concerned with the empty set as the only null event,

i.e., N = {∅}. In this case, the neo-additive capacity ν in (22) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A)

for all A 6= ∅,Ω. The following observation extends a result (Lemma 3.1) of Chateauneuf
et al. (2007) for finite random variables to the more general case of random variables

with a bounded range (see Zimper 2012 for a formal proof).

Observation 1. Let f : Ω → R be an F-measurable function with bounded range.
The Choquet expected value (21) of f with respect to a neo-additive capacity (22)

is then given by

E [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] .

A.2 The Generalized Bayesian Update Rule

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

(1961) type which show that real-life decision-makers violate Savage’s (1954) sure thing

principle. Abandoning the sure thing principle has two important implications for con-

ditional CEU preferences. First, in contrast to Bayesian updating of additive proba-

bility measures, there exist several perceivable Bayesian update rules for non-additive

probability measures (Gilboa and Schmeidler 1993; Pires 2002; Eichberger et al. 2007;

Siniscalchi 2011). Second, if CEU preferences are updated in accordance with an up-

dating rule that universally satisfies the principle of consequentialism, then these CEU

preferences violate the principle of dynamic consistency (in a universal sense) whenever

they do not reduce to EU preferences (cf. Epstein and Le Breton 1993; Ghirardato 2002;

Zimper 2012 and references therein).

In the present paper we assume that the agents form conditional capacities in accor-

dance with the Generalized Bayesian update rule such that, for all non-null A,B ∈ F ,

κ (A | B) =
κ (A ∩B)

κ (A ∩B) + 1− κ (A ∪ ¬B)
. (23)

An application of (23) to a neo-additive capacity ν gives rise to the following observation.

Observation 2. If the Generalized Bayesian update rule (23) is applied to a neo-
additive capacity (22), we obtain, for all non-null A,B ∈ F ,

ν (A | B) = δB · λ+ (1− δB) · µ (A | B)

such that

δB =
δ

δ + (1− δ) · µ (B)
.
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B Appendix: Bayesian Learning of Ambiguous Sur-

vival Beliefs

This appendix derives Proposition 1 and it constructs the neo-additive probability spaces

which we use when we define the life-cycle CEU maximization problem in Section 3.4.

To this purpose, we present a simplified version of the learning model of ambiguous

survival beliefs as developed in Ludwig and Zimper (2013). We consider an h-old agent,

with 0 ≤ h ≤ k, who observes the random sample information Ĩn(h) which counts how

many individuals out of a sample of size n (h) have survived from age k to t with k < t.

By assumption, these individuals have the same i.i.d. objective survival probability as

the agent.

B.1 The Benchmark Case of Additive Survival Beliefs

At first, consider a standard Bayesian decision maker whose additive estimator for the

chance of surviving from k to t conditional on Ĩn(h) is defined as the conditional expected

value

E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
where the random variable θ̃ stands for the agent’s survival chance with support on

(0, 1). By the i.i.d. assumption of individual survivals, Ĩn(h) is, conditional on the true

survival probability θ̃ = θ, binomially distributed with probabilities

µ
(
Ĩn(h) = j | θ

)
=

(
n (h)

j

)
θj (1− θ)n−j for j ∈ {0, ..., n (h)} .

We further assume that the agent’s prior over θ̃ is given as a Beta distribution with

parameters α, β > 0, implying E
[
θ̃, µ

(
θ̃
)]

= α
α+β

. That is, we assume that

µ
(
θ̃ = θ

)
= Kα,βθ

α−1 (1− θ)β−1

where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant.20

By Bayes’rule we obtain the following conditional distribution of θ̃

µ
(
θ̃ = θ | Ĩn(h) = j

)
=

µ
(
Ĩn(h) = j | θ

)
µ (θ)∫

(0,1)
µ
(
Ĩn(h) = j | θ

)
µ (θ) dθ

= Kα+j−1
α+j,β+n(h)−kθ

α+j−1 (1− θ)β+n(h)−j−1 for θ ∈ (0, 1)

20The gamma function is defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.
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Note that µ
(
θ̃ | Ĩn(h) = j

)
is itself a Beta distribution with parameters α+j, β+n (h)−j.

The agent’s subjective survival belief conditional on information Ĩn(h) = j is thus given

as

E
[
θ̃, µ

(
θ̃ | j

)]
=

α + j

α + β + n (h)

=

(
α + β

α + β + n (h)

)
E
[
θ̃, µ

(
θ̃
)]

+

(
n (h)

α + β + n (h)

)
j

n (h)
,

for j ∈ {0, ..., n (h)} .

That is, the posterior estimator E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
is a weighted average of her prior

survival probability E
[
θ̃, µ

(
θ̃
)]
, not including any sample information, and the observed

sample mean j
n(h)
.

B.2 Ambiguous Survival Beliefs

Turn now to a Choquet decision maker with neo-additive capacity

ν
(
θ̃
)

= δ · λ+ (1− δ) · µ
(
θ̃
)

such that the conditional neo-additive capacity ν
(
θ̃ | Ĩn(h)

)
results from an application of

the Generalized Bayesian update rule. Instead of the additive estimator E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
we now suppose that the agent’s estimator for her survival chance is given as the condi-

tional Choquet expected value

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
=δĨn(h)

(
λ sup θ̃ + (1− λ) inf θ̃

)
+
(

1− δĨn(h)
)
E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
.

(24)

For a Beta distribution µ
(
θ̃
)
, Ludwig and Zimper (2013) prove the following result:

Observation 3. The Choquet decision maker’s ambiguous survival belief is given as

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
= δĨn(h) · λ+

(
1− δĨn(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
, (25)

with

δĨn(h) =
δ

δ + (1− δ) · µ
(
Ĩn(h)

)
where the unconditional distribution of Ĩn(h) is given by

µ
(
Ĩn(h) = j

)
=

(
n (h)

j

)
(α + j − 1) · ... · α · (β + n (h)− j − 1) · ... · β

(α + β + n (h)− 1) · ... · (α + β)
, (26)

for j ∈ {0, ..., n (h)} .
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In a next step, we employ several simplifying assumptions:

Assumption 1. The additive part E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
is, for any information Ĩn(h),

given as the objective probability, denoted ψk,t, to survive from age k to t.

Assumption 2. The agent’s additive prior over the parameter space is given as a
uniform distribution, i.e., a Beta distribution with parameters α = β = 1, implying

for (26) that

µ
(
Ĩn(h) = j

)
=

(
n (h)

k

)
k! (n (h)− k)!

(n (h) + 1) · n (h)!

=
1

1 + n (h)
.

Assumption 1 is an extreme version of the rational Bayesian learning part of the

model developed in Appendix B.1. It specifies a correct additive prior and hence sim-

plifies upon Ludwig and Zimper (2013).21 By this assumption any difference between

subjective survival beliefs and objective survival probabilities are exclusively driven by

the ambiguity part of the agent’s belief. Assumption 2 allows for an explicit expression of

the unconditional probability µ
(
Ĩn(h)

)
which only depends on age h, i.e., it is identical

for every possibly observed sample information Ĩn(h) if h is fixed.

Observation 4. Under Assumptions 1-2, the estimator (25) simplifies to

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
= E

[
θ̃, ν

(
θ̃ | h

)]
= δh · λ+ (1− δh) · ψk,t

such that

δh =
δ

δ + (1− δ) · 1
1+n(h)

whenever h ≤ k < t ≤ T , i.e., ψk,t ∈ (0, 1).

Finally, identifying the h-old agent’s subjective belief to survive from k to t with

her estimator (24), i.e., defining νhk,t ≡ E
[
θ̃, ν

(
θ̃ | h

)]
, and setting e (h) ≡ n (h) for the

agent’s experience function gives the desired result of Proposition 1.

21Ludwig and Zimper (2013) are more explicit about the rational Bayesian learning part of the model

and assume a proportional bias in prior additive beliefs.
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B.3 Neo-additive Probability Spaces

It remains to provide a mathematically rigorous translation of the notion of ambiguous

survival beliefs νhk,t of Proposition 1 into the construction of the conditional neo-additive

probability spaces
(
Ω,Fh, ν (· | h)

)
, h = 1, ..., T , that are relevant to the CEU life-cycle

maximization problem of Section 3.4.

To this purpose define the finite state space Ω = {0, 1, ..., T} and denote by F the

powerset of Ω. We interpret Dt = {t} , t ∈ Ω as the event in F that the agent dies at the
end of period t. Define age h of the agent as the following event in F : h = Dh∪ ...∪DT .

Further, formally define Zk,t = Dt ∪ ... ∪DT as the event in F that the agent survives
from period k to the beginning of period t.

For each age h, the σ-algebra Fh is generated by the following partition of Ω:

{{0} , .., {h− 1} , {h, ..., T}}. That is, if the agent turns age h she (trivially) observes
that she has not died in any previous period but will die at the end of either period h

or h + 1 or ... or T . Observe that our definition of Fh implies a standard information
filtration process because of F1 ⊂ ... ⊂ FT = F .
To conclude the construction of

(
Ω,Fh, ν (· | h)

)
, h = 1, ..., T , define ν (Zk,t | h) ≡

νhk,t such that ν
h
k,t is given by Proposition 1.

C Appendix: Proof of Propositions

C.1 Proof of Proposition 2

Fix age h and consider the neo-additive probability space (Ω,F , ν (· | h)) constructed in

Appendix B.3. The objective probability to survive until period t is given as

ψh,t =

t−1∏
s=h

ψs,s+1

implying

ψh,t =

T∑
s=t+1

ψh(Ds)
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where Dt denotes the event that the agent dies at the end of period t. Consequently,

(8) can be equivalently rewritten as

E
[
U (c) , νh

]
= δh

(
λ

(
u(ch) +

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]
)

+ (1− λ)u(ch)

)

+ (1− δh)
(
u(ch) +

T∑
t=h+1

ψh(Dt)

t∑
s=h+1

βs−hE [u (cs) , π (ηs|ηh)]
)

= u(ch) + δhλ

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh,t · βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

νhh,tβ
t−hE [u (ct) , π (ηt|ηh)] ,

which, together with Proposition 1, proves the proposition.�

C.2 Proof of Proposition 4

The value functions of self h in periods h and h+ 1 are given by

V h
h (xh, ηh) = max

ch,xh+1

{
u (ch) + βνhh,h+1Eh

[
V h
h+1

(
xh+1, ηh+1

)]}
V h
h+1

(
xh+1, ηh+1

)
= max

ch+1,xh+2

{
u (ch+1) + β

νhh,h+2

νhh,h+1

Eh+1

[
V h
h+2

(
xh+2, ηh+2

)]}
.

For self h+ 1 we accordingly have

V h+1
h+1

(
xh+1, ηh+1

)
= max

ch+1,xh+2

{
u (ch+1) + βνh+1

h+1,h+2Eh+1

[
V h+1
h+2

(
xh+2, ηh+2

)]}
.

The first-order conditions with respect to consumption for selves h and h + 1 are

given by

du

dch
= βRνhh,h+1Eh

[
∂V h

h+1(·)
∂xh+1

]
(27a)

du

dch+1

= βRνh+1
h+1,h+2Eh+1

[
∂V h+1

h+2 (·)
∂xh+2

]
. (27b)

To get an expression for the derivative of the value function of self h with respect to

cash-on-hand in period h+ 1, appearing on the right-hand-side of (27a) notice that the

familiar Envelope condition does not hold. This captures the notion that self h correctly
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anticipates that future self h + 1 will deviate from the optimal consumption plan of

self h. The respective derivative of the value function writes as

∂V h
h+1(·)
∂xh+1

=
du

dch+1

mh+1 + βR
νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∂V h

h+2(·)
∂xh+2

]
(28)

= mh+1

(
du

dch+1

− βR
νhh,h+2

νhh,h+1

Eh+1

[
∂V h

h+2(·)
∂xh+2

])
︸ ︷︷ ︸
6=0, i.e., the envelope condition does not hold.

+ βR
νhh,h+2

νhh,h+1

Eh+1

[
∂V h

h+2(·)
∂xh+2

]
where mh+1 ≡ ∂ch+1

∂xh+1
.

Collecting equations, the relevant first-order conditions of self h are (27a) and (28).

Condition (27b) is a constraint to the maximization problem of self h, again because

self h correctly anticipates optimality of behavior of self h+ 1.

Rewrite (27b) by adding and subtracting terms as

du

dch+1

= β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h+1

h+2 (·)
∂xh+2

]

+ β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h

h+2(·)
∂xh+2

−
∂V h

h+2(·)
∂xh+2

]
to get

βREh+1

[
∂V h

h+2(·)
∂xh+2

]
=

du

dch+1

1

νh+1
h+1,h+2

+ βREh+1

[
∆V h,h+1

h+2

]
, (29)

where ∆V h,h+1
h+2 ≡

[
∂V hh+2(·)
∂xh+2

− ∂V h+1h+2 (·)
∂xh+2

]
.

As a key difference to the quasi-hyperbolic time discounting (QHTD) model,∆V h,h+1
h+2 6=

0 in our model because, in contrast to QHTD, the value functions of selves h and h+ 1

differ in all periods h+ 1, h+ 2, . . ..

Remark 1 Two features of the model cause this difference. First, self h forms survival
beliefs with experience e(h) and according ambiguity parameter δh whereas self h+ 1 has

experience e(h+1) and ambiguity δh+1, and so forth. Second, the nature of non-additivity

beliefs leads to this difference.

Next, use (29) in (28) to get

∂V h
h+1(·)
∂xh+1

=
du

dch+1

mh+1 +
νhh,h+2

νhh,h+1

(1−mh+1)

(
du

dch+1

1

νh+1
h+1,h+2

+ βREh+1

[
∆V h,h+1

h+2

])

=
du

dch+1

(
mh+1 +

νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(1−mh+1)

)
+ βR

νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∆V h,h+1

h+2

]
.
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Using the above in (27a) we finally get

du

dch
= βRνhh,h+1Eh

[
du

dch+1

(
mh+1 +

νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(1−mh+1)

)

+ βR
νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∆V h,h+1

h+2

]]

= βRνhh,h+1Eh
[
du

dch+1

Θh+1 + Λh+1

]
where the last line follows from the law of iterated expectations. �

D Appendix: Details on SCF Data

The Survey of Consumer Finances (SCF) is a representative triennial cross-sectional

survey of U.S. families sponsored by the Federal Reserve Board in cooperation with

the Department of the Treasury. We merge data from the six waves 1992, 1995, 1998,

2001, 2004 and 2007. We use households whose heads are aged 26-95. Our total sample

contains 21.560 respondents.

To construct the average life-cycle profile of the– appropriately smoothed (see below)–

asset-to-permanent-income ratio we proceed as follows.22 Define assets as net worth

including housing wealth, but excluding implicit pension and social security wealth.

We deflate assets and income to 1992 Dollars. To approximate permanent income we

first compute gross labor and social security income by excluding income from capi-

tal gains.23 Using data from Cagetti (2003)– who approximates tax rates for different

income percentiles– we next compute after-tax income. Based on the– appropriately

smoothed (see below)– age-specific averages of net income we compute the net-present

value and convert this to annuities using the calibrated interest rate of r = 0.042. This

gives our permanent-income approximation. Finally, we compute the asset-to-income

ratio from these two time series.

Average age-specific assets and net income are both smoothed over age by applying

a cubic spline regression. We use robust fitting by three iterations of weighted least

squares. Respective weights are computed from previous residuals.

22To construct the data we adopted the approach described in Chris Carroll’s lecture notes,

cf. http://www.econ2.jhu.edu/people/ccarroll. We thank Chris Carroll for providing us the Stata code.
23Our income measure includes ’wages and salaries’, ’unemployment or worker’s compensation’, ’child

support or alimony’, ’TANF, food stamps, or other forms of welfare or assistance’, ’net income from

Social Security or other pensions’, ’annuities, or other disability or retirement programs’and ’any other

sources’. We exclude some few observations with negative income values.
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Supplementary Appendix: A Three-Period Model

We provide the intuition for how ambiguous survival beliefs affect consumption and

saving behavior in a simple three-period model (T = 2) without income risk which can

be solved analytically. In this simple model we abstract from borrowing constraints,

hence at+1 < 0, for t < T is possible. The no-Ponzi condition aT+1 ≥ 0 is of course

assumed. To simplify the analysis we assume the discount factor β to be one and an

interest rate r of zero.

As shown in Section 3, lifetime utility for T = 2 with ambiguous survival beliefs is

expressed as

U0
0 = u(c0) + ν0

0,1

(
u(c1) +

ν0
0,2

ν0
0,1

u(c2)

)
, (30)

where νhk,t is the subjective survival belief from Proposition 1. Recall that superscripts

denote the respective planning age.

As in Section 3 we normalize the utility from death to zero and assume a CRRA per-

period utility function with preference shifter Υ ≥ 0 for the utility from survival. Since

we here ignore income risk the additional Stone-Geary parameter c̄ is not required. Also

recall that lifetime utility of CEU agents reduces to the standard rational expectations

case if and only if there is no initial ambiguity, i.e., iff δ = 0.

We define by xt ≡ at + yt cash-on-hand as the sum of financial assets at and income

yt. In addition, define the present value of future income, ht ≡
∑T

s=t+1 ys, as human

wealth. Finally, let total wealth be wt ≡ xt +ht. The budget constraint is then given by

wt+1 = wt − ct.

In light of the data on subjective beliefs displayed in Figure 1 of the paper we

interpret period 0 of the simple model as the period when survival probabilities are

underestimated, i.e., up to actual age of about 70. Period 1 then reflects the period when

there is overestimation in the data. Correspondingly, we make the following assumption:

Assumption 4. We assume for some δ > 0 that

ψ0,1 > ν0
0,1 = δ0λ+ (1− δ0)ψ0,1 (31)

i.e., that λ < ψ0,1, as well as

ψ1,2 < ν1
1,2 = δ1λ+ (1− δ1)ψ1,2 (32)
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i.e., that λ > ψ1,2.
24

Consumption and Saving Plans

We now turn to the complete inter-temporal household solution to analyze how con-

sumption and saving decisions are altered by biases in subjective survival beliefs.

Rational Expectations

The reference model is the standard solution to the rational expectations model (where δ0 =

δ1 = 0). Here, lifetime utility does not depend on the planing period, i.e., U0
1 = U1

1 .

Lifetime utility in period 0 is given by U0 = u(c0) + ψ0,1

(
u(c1) + ψ1,2u(c2)

)
.

Observation 5. Policy functions of the rational expectations solution are linear in
total wealth, ct = mtwt, where

mt =


1

1+
(ψt,t+1)

1
θ

mt+1

for t < T

1 for t = T.

Hence:

m0 =
1

1 + ψ
1
θ
0,1 + ψ

1
θ
0,2

, m1 =
1

1 + ψ
1
θ
1,2

.

Proof. See, e.g., Deaton (1992) �.

Naive CEU Households

To draw a distinction between RE and CEU households, we use superscript n to denote

policy functions (in terms of marginal propensities to consume) of naive CEU house-

holds. Given that the household consumes all outstanding wealth in the final period 2

(i.e., mn
2 = 1) the solution of the household’s problem for all other periods are as follows:

24Notice that, despite equation (32), we may have that the household in period 0 underestimates the

probability to survive from period 1 to 2, hence we may have that

ψ1,2 > ν01,2 = δ0λ+ (1− δ0)ψ1,2.

This is so because δ0 < δ1 and therefore less weight is put on the relative optimism parameter λ.
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Proposition 5. For the naive CEU household we get:

• The solution to the problem in period 1 is:

cn1 = mn
1w1 where mn

1 =
1

1 +
(
ν1

1,2

) 1
θ

. (33)

• The plan in period 0 for period 1 is:

c0,n
1 = m0,n

1 w1 where m0,n
1 =

1

1 +
(
ν00,2
ν00,1

) 1
θ

. (34)

where we denote the planning period as a superscript.

• The solution in period 0 is:

cn0 = mn
0w0 where mn

0 =
1

1 +
(ν00,1)

1
θ

m0,n
1

=
1

1 + (ν0
0,1)

1
θ + (ν0

0,2)
1
θ

. (35)

Proof. The first-order condition in period 1 is:

uc(c1) = ν1
1,2uc(c2)

which directly yields (33). Analogously, the first-order condition for period 1 from

the perspective of period 0 is given by:

uc(c1) =
ν0

0,2

ν0
0,1

uc(c2)

which yields (34). Finally, the first-order condition in period 0 is:

uc(c0) = ν0
0,1uc(c1)

yielding

mn
0 =

1

1 +
(ν00,1)

1
θ

m0,n
1

.

Notice that

(ν0
0,1)−

1
θm0,n

1 =
(ν0

0,1)−
1
θ

1 +
(
ν00,2
ν00,1

) 1
θ

=
1

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

.

Using this in the above gives the last term in (35).�

Comparing the policy functions of the RE agent (cf. Observation 5) and the naive

agent (cf. Proposition 5) yields the following Proposition 6 which highlights the conse-

quences of ambiguous survival beliefs for life-cycle consumption and asset accumulation.
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Proposition 6. Comparing the naive CEU agent to the RE agent we get the following
implications:

• There is undersaving in a sense that

mn
0 > m0 ⇔ cn0 > c0 ⇔ wn1 < w1

if and only if there is suffi cient underestimation (SU) of survival risk by the

naive CEU agent in a sense that

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ < ψ

1
θ
0,1 + ψ

1
θ
0,2. (SU)

• Naive CEU agents save less in period 1 than originally planned, i.e.,

m0,n
1 < mn

1 .

if and only if there is moderate overestimation (MO) of survival risk in a

sense that

ν1
1,2 <

ν0
0,2

ν0
0,1

. (MO)

• There is oversaving in the sense that

mn
1 < m1 ⇔ cn2

cn1
>
c2

c1

⇔ wn2
wn1

<
w2

w1

,

by Assumption 4, equation (32) (i.e., by overestimation). Combined with

condition (SU) this implies that

cn1 < c1.

• Naive CEU agents have higher wealth than RE agents

wn2 > w2 ⇔ cn2 > c2,

if and only if there is suffi cient overestimation (SO) of survival beliefs in

period 1 in a sense that

ν1
1,2 > ψ1,2

1 + (ν0
0,1)

1
θ + (ν0

0,2)
1
θ

1 + ψ
1
θ
0,1 + ψ

1
θ
0,2

·
ψ

1
θ
0,1 + ψ

1
θ
0,2

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

·
1 + (ν1

1,2)
1
θ

1 + ψ
1
θ
1,2

θ

> ψ1,2.

(SO1)
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Proof.

• Thatmn
0 > m0 under condition (SU) immediately follows from the expressions

for the respective marginal propensities in Observation 5 and Proposition 5.

• That m0,n
1 < mn

1 under condition (MO) immediately follows from comparing

the respective marginal propensities given in Proposition 5.

• Thatmn
1 < m1 under Assumption 4, equation (32), again immediately follows

from comparison of the respective expressions for marginal propensities in

Observation 5 and Proposition 5.

• By the respective expressions for marginal propensities in Observation 5 and
Proposition 5, the inequality wn2 > w2 and therefore cn2 > c2 holds iff

(1−mn
0 )(1−mn

1 ) > (1−m0)(1−m1)

⇔
(ν0

0,1)
1
θ + (ν0

0,2)
1
θ

1 + (ν0
0,1)

1
θ + (ν0

0,2)
1
θ

·
(ν1

1,2)
1
θ

1 + (ν1
1,2)

1
θ

>
ψ

1
θ
0,1 + ψ

1
θ
0,2

1 + ψ
1
θ
0,1 + ψ

1
θ
0,2

ψ
1
θ
1,2

1 + ψ
1
θ
1,2

⇔
(
ν1

1,2

ψ1,2

) 1
θ

>
1 + (ν0

0,1)
1
θ + (ν0

0,2)
1
θ

1 + ψ
1
θ
0,1 + ψ

1
θ
0,2

·
ψ

1
θ
0,1 + ψ

1
θ
0,2

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ︸ ︷︷ ︸

>1, by condition (SU)

·
1 + (ν1

1,2)
1
θ

1 + ψ
1
θ
1,2︸ ︷︷ ︸

>1, by Assumption 4, equation (32)

(36)

from which condition (SO1) readily follows. To see that the first term on the

RHS of (36) exceeds one under condition (SU), notice that condition (SU)

implies

ψ
1
θ
0,1 + ψ

1
θ
0,2

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

> 1

⇔ 1 +
1

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

> 1 +
1

ψ
1
θ
0,1 + ψ

1
θ
0,2

⇔
ψ

1
θ
0,1 + ψ

1
θ
0,2

1 + ψ
1
θ
0,1 + ψ

1
θ
0,2

·
1 + (ν0

0,1)
1
θ + (ν0

0,2)
1
θ

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

> 1.

�

As to the first implication, we require condition (SU) in order for the simple model

to give rise to undersaving. Observe that condition (SU) has a straightforward interpre-

tation for log-utility (θ = 1). It can then be rewritten as

SLE0 ≡ 1 + ν0
0,1 + ν0

0,2 < LE0 ≡ 1 + ψ0,1 + ψ0,2,
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i.e., subjective life-expectancy at birth, SLE0, is less than the respective objective life-

expectancy, LE0. The term suffi cient underestimation (SU) means that underestimation

of subjective beliefs in period 0, cf. Assumption 4, equation (31), must be suffi ciently

strong in order to dominate any overestimation of subjective survival beliefs to occur

eventually. Otherwise the naive CEU agent would save more than the RE agent, given

forward looking behavior and her desire for consumption smoothing.

As to the second implication, we requiremoderate overestimation, cf. condition (MO),

of subjective survival beliefs. In contrast to condition SU, condition MO refers to sur-

vival beliefs formed in period 1 for the probability to survive to period 2. Accordingly,

it restricts ν1
1,2 by an upper bound which is determined by the ratio of subjective beliefs,

ν00,2
ν00,1
. That is, only if overestimation is not too large, we can expect model households to

save less than originally planned. Otherwise the naive CEU agent would revise her plan

to actually save more than originally planned.

The third implication states that our assumption on overestimation, cf. Assump-

tion 4, equation (32), immediately gives rise to the implication that the speed of asset

decumulation of the naive CEU agent is less than the speed of decumulation of the RE

agent. This does not, however, imply that period 2 asset holdings of the naive CEU

agent exceed those of the RE agent because the effects of suffi cient underestimation

in period 0 and overestimation in period 1 work in opposite directions as far as asset

holdings are concerned.

This observation readily implies that an additional lower bound on the degree of

overestimation is required in order to find that asset holdings in period 2 of the naive

CEU agent exceed those of the RE agent. This is stated as suffi cient overestimation

in condition (SO1). Optimism has to be suffi ciently strong to dominate the initial

underestimation of survival beliefs. As an interpretation of the lower bound observe that

the lower bound increases if the initial underestimation of survival belief gets stronger,

i.e., if the gap between ψ0,1 and ν
0
0,1 increases.

The analysis so far clarifies that it is a quantitative question whether the calibrated

life-cycle model can generate the three empirical regularities on saving behavior: (i) time

inconsistent behavior to the effect that people save less than originally planned (under

“moderate overestimation”); (ii) undersaving at young age (under “suffi cient underesti-

mation”); (iii) too high old-age asset holdings (under “suffi cient overestimation”).

Sophisticated CEU Agents

Unlike naive agents, sophisticated agents anticipate the correct lifetime utility for all

future selves as additional constraints, i.e., they anticipate that their future selves will

not be acting in their interest. The only way to influence future selves behavior is via the
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savings decision of current self 0. Thus, sophisticated agents take (over-) consumption

of future selves into account when making their current saving plans.

The solution to the problem of the sophisticated CEU agent is as follows:

Proposition 7. The solution to the sophisticated CEU agent’s problem in period 0 is

given by

cs0 = ms
0w0 =

1

1 +
(Θ0(ms1)·ν00,1)

1
θ

ms1

w0 (37)

where ms
1 = mn

1 and m
s
2 = mn

2 = 1 and

Θ0 (ms
1) ≡

(
ms

1 +
ν0

0,2

ν0
0,1ν

1
1,2

(1−ms
1)

)
.

Θ0 (ms
1) > 1 under condition (MO). The solution for ms

0 is given by

ms
0 =

1

1 +
(

1 + (ν1
1,2)

1
θ

)1− 1
θ
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
) 1
θ

. (38)

Proof. In period 2 we obviously havems
2 = mn

2 . The FOC of the sophisticated agent in

period 1 is the same as for the period 1 naive agent, cf. the proof of Proposition 5.

From this it follows that ms
1 = mn

1 . In period 0 the first-order condition is given

by

du

dcs0
= ν0

0,1Θ0 (ms
1)
du

dcs1

⇔ cs1
cs0

=
(
ν0

0,1Θ0 (ms
1)
) 1
θ

⇔ cs0 =
(
ν0

0,1

)− 1
θ (Θ0 (ms

1))−
1
θ (w0 − cs0)ms

1

⇔ cs0 =
1

1 + 1

(Θ0(ms1)·ν00,1)
− 1
θms1

w0

where

Θ0 (ms
1) ≡ ms

1 +
ν0

0,2

ν0
0,1ν

1
1,2

(1−ms
1).

We obviously get that

Θ0 (ms
1) > 1

⇔
ν0

0,2

ν0
0,1ν

1
1,2

> 1
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which is condition (MO).

To derive ms
0 start from

Θ0 (ms
1) ν0

0,1 =

(
ms

1 +
ν0

0,2

ν0
0,1ν

1
1,2

(1−ms
1)

)
ν0

0,1

= ms
1ν

0
0,1 +

ν0
0,2

ν1
1,2

(1−ms
1)

=
1

1 + (ν1
1,2)

1
θ

ν0
0,1 +

ν0
0,2

ν1
1,2

(ν1
1,2)

1
θ

1 + (ν1
1,2)

1
θ

=
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1

1 + (ν1
1,2)

1
θ

,

therefore

(
Θ0 (ms

1) ν0
0,1

)− 1
θ ms

1 =

(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1

1 + (ν1
1,2)

1
θ

)− 1
θ

1

1 + (ν1
1,2)

1
θ

=

(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
)− 1

θ

(
1 + (ν1

1,2)
1
θ

)1− 1
θ

and

1 +
1(

Θ0 (ms
1) ν0

0,1

)− 1
θ ms

1

= 1 +

(
1 + (ν1

1,2)
1
θ

)1− 1
θ

(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
)− 1

θ

=

(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
)− 1

θ
+
(

1 + (ν1
1,2)

1
θ

)1− 1
θ

(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
)− 1

θ

.

Using the above in (37) gives (38). �

This shows that the solution to the sophisticated agent’s problem is identical to the

naive agent in periods 1 and 2. This is due to the fact that the marginal propensity in

period 2 is known to be ms
2 = mn

2 = 1 for all types. Consequently, Θ1(ms
2) = 1 and

therefore also ms
1 = mn

1 .

As Θ0(ms
1) > 1 under “moderate overestimation”, cf. condition (MO), we find

that condition (MO) leads to a higher growth rate of marginal utilities of sophisticates

compared to naifs, implying that consumption growth increases. Θ0 (ms
1) > 1 reflects

the sophisticated agent’s high valuation of savings. At the same time, Θ0 (ms
1) depends
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negatively on the MPC of the future self 1, ms
1, implying that self 0’s propensity to save

decreases when future self 1’s MPC increases. Yet, these statements refer only to the

change of consumption over time. The level of consumption of sophisticates in period 0

of course also depends negatively on ms
1. The higher is m

s
1 the higher will be m

s
0 for

reasons of consumption smoothing. Hence, whether cs0 is lower than c
n
0 depends on these

offsetting forces. The next proposition makes this explicit:

Proposition 8. Define Ξ as

Ξ ≡

(
1 + (ν1

1,2)
1
θ

)1− 1
θ
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
) 1
θ

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

We have

Ξ


> 1 ⇔ mn

0 > ms
0, c

n
0 > cs0, c

n
1 < cs1, c

n
2 < cs2

< 1 ⇔ mn
0 < ms

0, c
n
0 < cs0, c

n
1 > cs1, c

n
2 > cs2

= 1 if θ = 1 ⇔ mn
0 = ms

0, c
n
0 = cs1, c

n
1 = cs1, c

n
2 = cs2.

Proof. Observe from Propositions 5 and 7 that

mn
0 ≥ ms

0

⇔ 1

1 + (ν0
0,1)

1
θ + (ν0

0,2)
1
θ

≥ 1

1 +
(

1 + (ν1
1,2)

1
θ

)1− 1
θ
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
) 1
θ

⇔
(

1 + (ν1
1,2)

1
θ

)1− 1
θ
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
) 1
θ ≥ (ν0

0,1)
1
θ + (ν0

0,2)
1
θ

⇔ Ξ ≡

(
1 + (ν1

1,2)
1
θ

)1− 1
θ
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
) 1
θ

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

≥ 1.

We readily observe from Ξ = 1 ⇔ ms
0 = mn

0 for θ = 1 (in which case ν1
1,2 does

not influence the consumption decision of sophisticates in period 0). Furthermore,

if ms
0 < mn

0 , then w
s
1 > mn

1 . Given that the consumption growth rate between

periods 1 and 2 of the two agents is identical and given that they both consume

the same present value of life-time resources, w0, this also implies that cs1 > cn1
and cs2 > cn2 and vice versa for m

s
0 > mn

0 . �

It would be desirable to further make statements about how Ξ varies with θ. To

approach this, observe from Proposition 5 that an increase of θ decreasesmn
0 . This is due

to the desire for consumption smoothing: increasing θ (decreasing the IES) increases the
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consumption growth rate which increases savings and reduces the marginal propensity to

consume today. For the sophisticated agent the analogous effects are at work but there

is an important (at least partially) offsetting one. This is easiest to see by inspection

of equation (37) in Proposition 7. We assume for the remainder of the analysis that

condition (MO) holds to the effect that Θ0(ms
1) > 1. First, increasing θ reduces ms

1. As

seen from Proposition 7 this reducesms
0. Second, increasing θ also increases (ν0

0,1)
1
θ which

also contributes to a reduction of ms
0. Third, increasing θ also indirectly affects Θ0(ms

1):

by decreasing ms
1, Θ0(ms

1) goes up. As Θ0(ms
1) > 1– by condition (MO)– this effect

further contributes to a reduction of ms
0. Finally, however, notice that there is a direct

effect of increases in θ via term Θ0(ms
1)

1
θ . Under condition (MO) the derivative of this

term with respect to θ is negative. It is given by − 1
θ2

ln (Θ0(ms
1)) Θ0(ms

1)
1
θ . Hence,

holding Θ0(ms
1) constant this partially offsetting effect is particularly strong for low

values of θ (and weak for high values of θ). The effect is also strong when ν1
1,2 is low

because thenms
1 is low. We can therefore expect that

∂Ξ
∂θ
> 0 if ν1

1,2 exceeds some critical

value. The next suffi cient condition establishes this locally at θ = 1:

Proposition 9. ∂Ξ
∂θ

∣∣
θ=1

> 0 if

ν1
1,2 > ν0

0,1 + ν0
0,2 − 1. (SO2)

Proof. ∂Ξ
∂θ
has the same sign as ∂ ln Ξ

∂θ
. We get

ln Ξ =

(
1− 1

θ

)
ln
(

1 + (ν1
1,2)

1
θ

)
+

1

θ
ln
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
)
− ln

(
(ν0

0,1)
1
θ + (ν0

0,2)
1
θ

)
= Ξ1 + Ξ2 + Ξ3.

We find

∂Ξ1

∂θ
=

1

θ2 ln
(

1 + (ν1
1,2)

1
θ

)
− 1

θ2

(
1− 1

θ

)
ln(ν1

1,2)(ν1
1,2)

1
θ

1 + (ν1
1,2)

1
θ

> 0, if θ ≥ 1 (39)

∂Ξ2

∂θ
= − 1

θ2 ln
(
ν0

0,1 + ν0
0,2(ν1

1,2)
1
θ
−1
)
− 1

θ3

ν0
0,2 ln(ν1

1,2)(ν1
1,2)

1
θ
−1

ν0
0,1 + ν0

0,2(ν1
1,2)

1
θ
−1︸ ︷︷ ︸

<0

(40)

∂Ξ3

∂θ
= − 1

θ2

ln(ν0
0,1)(ν0

0,1)
1
θ + ln(ν0

0,2)(ν0
0,2)

1
θ

(ν0
0,1)

1
θ + (ν0

0,2)
1
θ

> 0. (41)

Hence, for θ ≥ 1 any ambiguity in the sign of ∂Ξ
∂θ
can only come from the first term

in the derivative (40). For θ = 1, the term is obviously positive (so that the overall

derivative is positive) if ν0
0,1 + ν0

0,2 < 1. For the other case, i.e., for ν0
0,1 + ν0

0,2 ≥ 1,

we get by comparing for θ = 1 the first term in (39) with the first term in (40) the

suffi cient condition. �
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Figures 10 and 11 present an illustration for a calibrated version of the simple model.

For simplicity, we consider a static model here and choose δ1 = δ2 = 0.5. We also

set λ = 0.5, ψ0,1 = 1 and ψ1,2 = 0.25. We consider θ ∈ {0.5, 1.5}. This parametrization
is such that Assumption 4 holds. It also gives rise to conditions (MO), (SU), (SO1) and

(SO2). The figures confirm the findings from the previous propositions. Importantly, the

relative consumption patterns between RE and CEU households displayed in Figure 10

and the differences between sophisticates and naifs shown in Panel (a) of Figure 11

correspond to our findings in the quantitative model (which also features a relatively

low IES), cf. Figure 9.

Figure 10: Consumption
(a) θ = 1.5 (b) θ = 0.5
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Notes: Consumption for different values of θ.

Figure 11: Difference in Consumption: Naives & Sophisticates
(a) θ = 1.5 (b) θ = 0.5
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