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Abstract

We develop a model of an order-driven exchange competing for order flow with off-

exchange trading mechanisms. Liquidity suppliers face a trade-off between benefits and

costs of order exposure. If they display trading intentions, they attract additional trade

demand. We show, in equilibrium, hiding trade intentions can induce mis-coordination

between liquidity supply and demand, generate excess price fluctuations and harm price

efficiency. Econometric high-frequency analysis based on unique data on hidden orders

from NASDAQ reveals strong empirical support for these predictions: We find abnormal

reactions in prices and order flow after periods of high excess-supply of hidden liquidity.
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1 Introduction

Today’s electronic markets organize trading by matching liquidity suppliers with liquidity de-

manders. Liquidity suppliers expose their trade interest by submitting limit orders to the elec-

tronic limit order book and provide trading opportunities to counterparties. Exposure of trade

intention is thus central to the process of trading. Over the most recent decade, markets have

nevertheless increased the proliferation of hidden liquidity, enabling investors to conceal their

trading intentions. In fact, hidden liquidity has become a sizable proportion of the overall mar-

ket liquidity. Bessembinder et al. (2009) report that 44% of volume in Euronext-Paris is hidden

and Frey and Sandas (2009) report a proportion of 16% of hidden liquidity in the German Xetra

market.

Although these numbers suggest that a growing trading population perceive an individual

benefit in trading hidden orders, there is, however, an ongoing debate about the impact of

hidden liquidity for the overall market. The controversy has increasingly moved to the center

of regulatory debates.1 Critics claim that intransparent markets can damage the role of stock

exchanges as a venue for investors to establish fair and efficient prices (see, e.g., Hendershott

and Jones (2005)). On the other hand, proponents argue that hidden liquidity attracts market

depth that would otherwise not partake in trading (see Aitken et al. (2001)). The ongoing

controversy, particularly the question of how hidden liquidity affects market quality, is arguably

relevant for both stock exchanges and regulators.

A second fundamental question concerns the origination of hidden liquidity: What is the

impact of trade design on the supply of hidden liquidity? The answer has important impli-

cations for stock exchange operators. Imposing adequate trading rules might help reducing

downside effects of hidden liquidity while preserving some of its benefits. In this case, ex-

change operators are challenged to broaden the range of market instruments to ensure adequate

transparency levels in markets.

To address these questions, we analyze the role of hidden liquidity when public exchanges

compete for order flow with off-exchange trading mechanisms. As markets become increas-

ingly fragmented, alternative trading venues, such as dark pools, crossing networks and private

broker dealer networks, have significantly increased their share of market liquidity at the ex-

1In view of new rules for the markets in financial instruments (MIFID II), European Commissioner Barnier

echoed the growing concerns: "... Strict transparency rules will ensure that [hidden] trading of shares and other

equity instruments which undermine efficient and fair price formation will no longer be allowed."
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pense of the public exchange. To understand the effects and determinants of hidden liquidity in

a given market, it is therefore necessary to account for the interplay between inter-market and

intra-market liquidity competition.

We theoretically and empirically show that large hidden orders on public exchanges can

intensify market fragmentation, increase transaction costs, and induce excess returns and ex-

cess volatility. We illustrate that these price effects are not related to information but arise

from mis-coordination between trading counterparties: when liquidity suppliers do not (or

incompletely) display their trade intentions, counterparties (i.e., liquidity demanders) cannot

effectively coordinate the pricing and timing of mutually beneficent trades. A key result is that

the induced counterparty mismatch not only impairs overall welfare but also generates artifi-

cial price pressure, causes liquidity migration to off-exchange trading venues and thus harms

liquidity provision in the public exchange.

Our analysis builds on a model with two markets: a primary exchange and an alternative

trading venue. The primary market is organized as an electronic limit order book. In our model,

three traders arrive sequentially and act strategically. The liquidity supplier in the primary

market has discretion over the displayed/hidden size of his order and faces liquidity competition

from a liquidity competitor. The latter has discretion over order aggressiveness and may front-

run (i.e., overbid) the liquidity supplier’s order. The third trader is a large investor and has

discretion over the trading venue. He can decide whether to trade in the primary market or

in the alternative trading venue. Grossmann (1992) argues that it is more cost-efficient for

large investors to trade reactively and to monitor the market for trading opportunities instead of

actively expressing their trading intentions in the public exchange.2 We assume that our large

trader is such a latent trader. He has an incentive to trade in the public market when the market

discloses a critical mass of liquidity.

Thus, liquidity suppliers can elicit order flow from the latent investor if they actively expose

their trading intentions. The downside of revealing trading intentions, however, is to be con-

fronted with liquidity competition. The first trader therefore faces a trade-off between losses

incurred from being overbid and the risk of non-execution as counterparty order flow is not

attracted. On the other hand, the liquidity competitor decides whether to overbid the hidden

order. Not overbidding the hidden order results in loss of execution priority which aggravates

with the liquidity supplier’s exposure (display) size. Hence, the liquidity competitor’s decision

ultimately involves a trade-off between the loss of priority and the costs of trading aggressively

2See Hasbrouck and Saar (2009), Bessembinder et al. (2009), and Harris (1997) for a similar argument.
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(i.e., overbidding). Our key results are therefore driven by the interaction of both mechanisms,

liquidity competition in the primary exchange and order flow attraction from latent investors.

A central finding of our study is that due to mis-coordination (large) hidden orders can

significantly harm price discovery and induce excess price fluctuations. When traders conceal

their trade intentions by using hidden orders, they are less likely to attract latent counterparties,

leading to increased execution risk.3 When outstanding orders are not executed and when

traders are pre-committed to trading, remaining (hidden) orders eventually have to be canceled

and re-submitted as aggressive market orders to ensure liquidation. Ultimately, this switch to

aggressive trading, however, induces price pressures (i.e., price fluctuations) as the market is

confronted with excess trade demand. These price pressures do not arise when large orders

are fully revealed. Large displayed orders attract counterparty order flow and thus get likely

executed right-away, absorbing any price pressure arising from potentially non-executed orders.

In this sense, large hidden orders can impair price efficiency by causing mismatches between

liquidity suppliers and (latent) liquidity demanders. The implication that large hidden orders

can harm market quality is relevant as the empirical literature suggests that in fact most large

orders are hidden.4

Our work distinguishes from the traditional information-based literature (see, e.g., Kyle

(1985)): In our framework, price fluctuations are due to non-informational frictions and arise

from impaired trade coordination (see Admanti and Pfleiderer (1991)). The latter, however, is

affected by liquidity competition and the level of liquidity externalities to which a market is ex-

posed. These driving forces have been recently identified as key mechanisms of modern trading

(see, e.g., Foucault et al. (2005) and Hendershott and Mendelson (2002)). Our findings comple-

ment this line of research and demonstrate that fundamental empirical market microstructure

relationships in limit order book markets (see, e.g., Biais (1993), Ranaldo (2004), and Hall

and Hautsch (2006)) can be explained by the interplay between liquidity competition and the

disclosure of trading intentions. For instance, we show that liquidity suppliers hide a larger

fraction of their orders when the spread is wide and when the opposite side of the book is thin.

In this case, liquidity suppliers have a greater incentive to bypass (i.e., overbid) orders, forcing

liquidity suppliers to limit the display size. Second, we find that public exchanges exhibit a

3Bessembinder et al. (2009) provide evidence that hidden orders have a low execution probability.
4For instance, Bessembinder et al. (2009) reports that on average 76% of large orders contain a hidden size

and that 75% of the volume of these orders is hidden. Frey and Sandas (2009) find that (partially) hidden orders

are on average 12 to 20 times larger than exposed limit orders.

4



higher level of hidden depth when the costs of trading in off-exchange venues are low. Conse-

quently, latent traders are less likely to trade in the primary market and liquidity suppliers tend

to hide more to avoid liquidity competition. Third, the role of the tick size is ambiguous, as

two counteracting mechanisms exist. In line with Harris (1997), we find that a larger tick size

reduces the likelihood of overbidding and therefore increases the incentives for order exposure.

However, we also illustrate that a larger tick size reduces the incentives of latent traders to trade

in the primary exchange, thus increasing execution risk.

Finally, our model provides a novel perspective on the causal relation between bid-ask

spreads and market volatility. We show that the spread and market volatility are linked through

hidden liquidity. The logic is as follows: Wider spreads increase liquidity competition as over-

bidding existing orders by a single price increment is less costly. Consequently and in line

with Harris (1997) and Buti and Rindi (2013), liquidity suppliers hide an increasing fraction

of their order to compensate for stronger liquidity competition. This reduces the presence

of latent traders and thus increases liquidity suppliers’ risk of non-execution. Eventually, as

liquidity suppliers have to trade a larger fraction of their non-executed orders via aggressive

market orders, stronger price reactions emerge. Thus, in our model, wider spreads cause larger

price fluctuations as a result of liquidity competition, whereas the traditional models based on

information asymmetry suggest the exact opposite causation.5

Our theoretical hypotheses are empirically tested using two unique data sets. To infer

the presence of hidden depth, we use NASDAQ ModelView data, which provides minute-by-

minute snapshots of the entire hidden and displayed depth in the order book of S&P 500 stocks.

Moreover, order flow information is reconstructed from ITCH order-message data contained in

NASDAQ’s TotalView data set, as processed via the limit order book platform LOBSTER.6

This data set contains the reconstructed limit order book at each instant, including all order

messages, i.e., order cancelations, modifications, submissions, and executions.

The empirical analysis confirms the main theoretical predictions. First, on the basis of

cross-sectional simultaneous equations regressions, we find that the fraction of hidden liquidity

is higher when (on average) spreads are wider and (relative) tick sizes are larger. Similarly,

we show that stocks with a larger proportion of hidden liquidity are more volatile. Second, to

5For instance, Glosten and Milgrom (1985) and Copeland and Galai (1983) argue that wider spreads compen-

sate market makers for the risk of adverse selection in volatile markets, implying that higher volatility increases

spreads.
6See https://lobster.wiwi.hu-berlin.de/
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test whether price reactions are triggered by hidden order submissions, we estimate the short-

run and long-run impact of (one-sided) hidden liquidity using impulse response functions. We

model the order book and order flow dynamics using a high-frequency vector autoregressive

process with the vector of endogenous variables capturing order flow and order book charac-

teristics. In line with our theoretical predictions, we find that (buy) hidden order submissions

cause significant subsequent (buy) market order submission activities, which, in turn, generate

price pressures resulting in significant mid-quote reactions. In contrast, as correctly predicted

by our model, excess supply in displayed liquidity elicitates counterparty order flow and there-

fore reduces the price reactions emanating from non-executed, outstanding orders.

Our results are important for both market regulators and exchange operators. Public mar-

kets compete for order flow in an increasingly fragmented market. If they lose this “battle for

liquidity”, the public price formation process may be harmed. Extant literature suggests that

these liquidity externalities are closely related to market transparency. In this work, we show

that transparency on primary exchanges can enhance market quality and price efficiency, as dis-

played liquidity attracts additional order flow from latent investors. To increase market share

and improve price formation of public exchanges, our analysis suggests that market operators

should broaden their network with other liquidity pools, enhance their order routing infras-

tructure and provide large institutional investors direct market access and real-time monitoring

capabilities such that liquidity opportunities can be seized instantly as they arise.

The remainder of this paper is structured as follows: In Section 2, we introduce the theo-

retical model. Equilibrium results follow in Section 3, yielding main theoretical implications

and testable predictions: We first analyse a baseline version of the model without latent trader

and derive conclusions on different aspects of liquidity competition. In a second step, we ex-

tend our analysis to allow for the existence of alternative trading venues. Employing a partial

equilibrium analysis, Section 4 derives key insights regarding the impact of hidden order sub-

missions on several dimensions of the market. In Sections 5 and 6, we empirically verify the

key predictions based on cross-sectional and time series analysis. Finally, Section 7 concludes.

2 A Model of Liquidity Competition and Trade Signaling

We introduce a sequential trading model with discrete timing in two markets: a primary ex-

change that operates as an electronic limit order book and an alternative trading platform that

is specialized in trading large blocks. The trading population consists of sequentially arriving
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liquidity suppliers, a large (block) trader, and a noise trader. While liquidity suppliers and the

large block trader interact strategically, the noise trader trades for exogenous reasons. In the

next section, we explain the details of the institutional framework, the timing of the events, and

the trading population.

2.1 Institutional Framework

The primary exchange is order driven. Thus, investors can openly quote prices and trade against

the public order book. In this market, liquidity suppliers have the possibility of hiding their or-

ders. Hence, not all liquidity is fully disclosed to other market participants. Most generally, the

alternative trading venue is a brokerage mechanism that locates counterparties to investors, sim-

ilar to upstairs markets, crossing networks, or broker-dealer networks. The alternative trading

venue provides a second source of liquidity, which is particularly important when liquidity in

the primary exchange is thin. This trading structure is particularly tailored to large institutional

investors and block traders (see, e.g., Madhavan and Cheng (1997) and Keim and Madhavan

(1996)).

The Electronic Exchange

Orders are submitted on a discrete price grid with a minimum tick size ∆. Prices at time t

are given relative to the prevailing best ask, At, and bid, Bt. To keep the model tractable, we

assume a liquid market, where the spread resiliency, i.e., the speed of reversion of spreads to

their equilibrium level (see, e.g., Foucault et al. (2005)), is higher than the time scale underlying

our model.7 This assumption is in line with the assumption of a competitive spread as discussed

by Kyle (1985) and Glosten and Milgrom (1985).

Assumption 1. Market makers are competitive such that the spread instantly reverts back to

the competitive level S, once a change occurred, i.e.,

St = S ∀ t > 0. (2.1)

This assumption implies that order submissions, cancelations, and executions on one side of

the market are instantly corrected by price revisions on the opposite side, such that the spread

7The speed of resiliency is known to be linked to the liquidity of a market; see Biais et al. (1995), Degryse

et al. (2005), or Domowitz and Madhavan (2003).
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always remains at its equilibrium value. We assume that limit orders can be submitted either on

the best bid (ask) quote or with a price improvement of one tick (into the spread). Limit orders

are executed against incoming market orders in a discriminatory fashion by using a hierarchy of

(i) price priority, (ii) display priority, and (iii) time priority. In line with Harris and Hasbrouck

(1996), we assume that limit orders pose a pre-commitment to trade. Hence, suppose that a

buy (hidden) limit order trader has a trading horizon until time T and that the trader enters

the market at time t, aiming at buying N shares at the (submission) price pl
t. Consequently, at

terminal time T , non-executed shares are canceled and turned into market orders to guarantee

trade execution. The trader’s implementation shortfall according to Perold (1988) is given by

ΠT :=
(

pl
t − Bt

)

XT
︸ ︷︷ ︸

executed limit order

+ (pm
T − Bt) (N − XT )

︸ ︷︷ ︸

non-executed limit order

, (2.2)

where BtN is the benchmark price at arrival time t, pm
T denotes the marginal price of the market

order at time T and XT is the volume executed at the initial submission price level pl
t until time

T . While the trader’s limit order submission price pl
t is a matter of choice, the market order

price pm
T at T is determined by the order’s price impact and thus depends on the execution

volume (N − XT ) and the prevailing opposite-side (i.e., sell-side) depth. In order to keep the

analysis tractable, we assume that the price impact is linear in the remaining shares, i.e.,

pm
T := BT + S +

1

2
β(N − XT )

︸ ︷︷ ︸

effective spread

. (2.3)

Note that β represents the marginal price impact of the market (buy) order and corresponds to

the inverse of the buy-side depth density. The effective or realized spread gives the cost (i.e.,

price impact) of trading aggressive market orders.

The Alternative Trading Venue

In the alternative off-exchange trading venue, investors employ the services of brokers or bro-

kerage mechanisms to locate counterparties. Consistent with Keim and Madhavan (1996),

Booth et al. (2002), and Harris (2003), we assume that the settlement price in this market, pγ
t ,

equals a (reference-) price from the public exchange plus a commission fee γ that compensates

the broker’s counterparty search costs:

pγ
t =







At + γ in case of a buy,

Bt − γ in case of a sell.
(2.4)

We implicitly assume that the brokerage market is sufficiently liquid to assure trade execution.
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2.2 Market Participants and Timing

We consider four market participants that arrive in sequential order: a hidden trader (H) arriv-

ing at t0 with probability q, a liquidity competitor (C) arriving at t1, a latent block trader (L)

arriving at t2 with probability µ, and a noise trader arriving at T with t0 < t1 < t2 < T . The

noise trader represents exogenous and random liquidity demand, reflected by a market order

with size x. For simplicity, we assume that x is exponentially distributed with mean λ. The

remaining three traders interact strategically and are risk-neutral. We denote the respective

strategies of each strategic investor by σH , σC , and σL.

Traders in the Primary Exchange

The (buy) hidden trader H has NH shares to trade until time T . He has discretion over the

display size DH . The remaining N − DH are kept hidden from the public. Hence, his strategy

σH consists of deciding on the magnitude of DH . In line with the trading mechanism of the

primary exchange (see Section 2.1), at arrival time t0, he submits his order at the best prevailing

bid price Bt0 . As the trading horizon T is fixed, we henceforth omit the time subscript and

index variables that are associated with the hidden trader or the liquidity competitor by H and

C, respectively. According to (2.2) and (2.3), the hidden trader’s payoff is then given by

ΠH =
(

S +
1

2
β(NH − XH(σH , σC , σL))

)(

NH − XH(σH , σC , σL)

)

. (2.5)

The liquidity competitor C arrives at t1 with size NC . His strategy σC consists of deciding

on the optimal submission price level: submission at the prevailing bid price Bt0 (”stay”) or

overbidding at Bt0 + ∆ (”step”). Accordingly, his payoff derived from (2.2) is

ΠC = ∆ · 1{σC=step}XC(σH , σC , σL)

+
(

∆ · 1{σC=step} + S +
1

2
β(NC − XC(σH , σC , σL))

)(

NC − XC(σH , σC , σL)

)

.

(2.6)

The execution volumes XH and XC (and thereby the payoffs) depend on the trading strategies

of all traders, σC , σH , and σL and are derived in Lemma A1 and Lemma A2 (see Appendix).

2.2.1 The Latent (Block) Trader

At t2, a (sell) block trader arrives with a total trade demand of NL shares. We assume that

he monitors the primary exchange with probability µ and that he has the strategic choice σL
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between trading on-exchange (σL = on) or off-exchange, i.e., in the alternative market (σL =

off ).8 If he does not monitor the primary exchange, he only trades on the alternative market,

i.e., σL = off . As the alternative market provides an infinite liquidity reservoir at price pγ
t

(2.4), there is no execution risk. In contrast, the liquidity supply in the primary exchange is

limited, and the total trade demand of block traders may not be executed. Therefore, the block

trader uses the alternative market as a market of last resort to enforce the execution of non-

executed shares.9

We assume that the latent trader is large in the sense that his trading demand exceeds the

combined liquidity supply of both liquidity suppliers:

Assumption 2 (Latent Trader Demand). The latent trader is large in the sense of

NL > NH + NC . (2.7)

For large investors, continuous expression of trade demand (in terms of limit orders) in public

markets is costly (see, e.g., Grossmann (1992)); hence, we assume that the latent trader uses

market orders only. Thus, using (2.4) and assuming that the latent trader only trades the amount

of shares that is openly displayed, i.e., at most DH + NC shares, the payoff at time T in excess

of the arrival price Bt0 is given by

ΠL =







(∆ · 1{σC=step} − γ)NL if σL = off,

∆NC · 1{σC=step} − (∆ + γ)(NL − DH − NC) if σL = on.
(2.8)

Hence, in the case of off-exchange trading, the latent trader has to pay the off-exchange fee γ

but benefits from an increase in the off-exchange settlement price if the liquidity competitor

decides to overbid the prevailing quote by one tick ∆. If the latent trader enters the primary

exchange, he ”saves” the fee γ but can maximally trade DH + NC shares. By completely

executing the (displayed) liquidity supply DH + NC , he removes the order book depth of the

price levels Bt0 +∆ (in case of overbidding by the liquidity competitor) and Bt0 and thus pushes

the bid quote down to the level Bt0 − ∆. Because of (2.4), this also lowers the corresponding

settlement (sell) price and makes it more costly to execute the remaining NL −DH −NC shares

on the off-exchange venue. The mechanism in which the latent block trader moves quotes on

8Traditionally, the off-exchange market for large block traders is called the upstairs market, whereas the ex-

change market is referred to as the downstairs market.
9Conrad et al. (2003) shows that 60% of large block trades use off-exchange trading mechanisms as a market

of last resort.
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the primary exchange, which in turn affects off-exchange settlement prices, is crucial to our

model. As discussed in detail below, this mechanism induces the latent trader to stay away

from the primary market if (displayed) liquidity supply is too low and off-exchange executions

of remaining volume thus become too costly.

The Trading Game

Denote the action spaces of the hidden trader, liquidity competitor, and latent trader by ΣH ,

ΣC , and ΣL, respectively:

ΣH = [0, NH], ΣC = {stay, step} , ΣL = {on, off} . (2.9)

As both H and C are assumed to be buyers, a better strategy reduces the respective payoff, i.e.,

reduces transaction costs. Accordingly, the Nash equilibrium is characterized as follows.

Definition 1 (Nash Equilibrium Trading Strategies). The triple σ∗ = (σ∗
C , σ∗

H , σ∗
L) constitutes

a Nash equilibrium if for any other set of strategies (σH , σC , σL) the following relations hold:

Et0

[

ΠH(σ∗
H , σ∗

C , σ∗
L)|
]

≤ Et0

[

ΠH(σH , σ∗
C , σ∗

L)|
]

(2.10)

Et1

[

ΠC(σ∗
H , σ∗

C , σ∗
L)|
]

≤ Et1

[

ΠC(σ∗
H , σC , σ∗

L)|
]

(2.11)

Et2

[

ΠL(σ∗
H , σ∗

C , σ∗
L)|
]

≥ Et2

[

ΠL(σ∗
H , σ∗

C , σL)|
]

. (2.12)

The existence of the Nash equilibrium in such a finite dynamic game with complete information

is guaranteed by Zermelo’s Theorem, and the equilibrium strategies of each player can be de-

rived by applying the principle of sequential rationality or backward induction (see Mas-Colell

et al. (1995)). The uniqueness of the equilibrium will be shown below.

3 Equilibrium Analysis

Solving for equilibrium in the general case µ ∈ [0, 1] is possible but rather tedious. Therefore,

we confine our analysis to two benchmark cases that help to disentangle and highlight the key

mechanisms. We therefore focus on a baseline model without latent demand (µ = 0), and in

a second step, we include a latent block trader with µ = 1. The proofs for the lemmata and

propositions in this section are provided in the Appendix. Corollaries follow straightforwardly

from previous propositions.

11



3.1 Equilibrium without a Latent Block Trader

Under the absence of a latent block trader, the model is reduced to a game of pure liquidity

competition between trader H and C. We first derive the competitor’s best response strategy at

t1 and, subsequently, solve for the hidden trader’s equilibrium strategy.

Lemma 1 (Liquidity Competitor’s Best Response). Given the hidden trader’s display size DH ,

the competitor’s best response σ∗
C obeys

σ∗
C =







stay if DH ≤ ΦC ,

step else,
ΦC :=







λ log

(

1
1−g

)

if g < 1,

∞ else,

(3.1)

with

g :=
NC

λ

∆

S

(

1 − e−
NC

λ

)

+ β

(

NC − λ

(

1 − e−
NC

λ

)) . (3.2)

Hence, the liquidity competitor’s order aggressiveness is governed by a (display) threshold

ΦC . The reason for this result is intuitive: for large display sizes DH , the competitor faces a

reduced execution probability owing to an increasing loss in time priority. To counter-balance

this effect, he needs to overbid the hidden trader by a single tick ∆. This strategy is particularly

beneficial if the spread S is wide, as in this case, it becomes costly to cross the spread and to

trade the non-executed shares as market orders. On the other hand, the incentive for overbidding

the current bid quote declines with increasing minimum tick size ∆ as it represents the costs

for overbidding (i.e., order aggressiveness).

Figure 1 illustrates these relationships by depicting the threshold ΦC in dependence of

the display size DH and the ratio between the spread and the minimum tick size. The figure

shows that for large displayed order volumes, it is beneficial for the competitor to increase

liquidity competition by ”stepping ahead” even if the (relative) spread is comparably small.

Nevertheless, a lower bound for S/∆ exists for which the competitor never overbids, regardless

of DH . 10 As of Figure 1, liquidity competitors never overbid in markets that have a spread less

than 2 ticks ∆.

In equilibrium, the hidden trader limits his exposure to the critical size, which marginally

prevents the competitor from overbidding (σC = step) and thus from gaining price priority. As

consequence, he displays at most ΦC shares:

10Note that the fraction S/∆ represents the spread in multiples of the tick size and can never be below 1.
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Figure 1: Overbidding region triggered by the threshold ΦC . The graph illustrates the scenario for λ =

NC = 100 shares and β = 0 (i.e., “thick” opposite-side depth). When the hidden trader’s display size is

large, i.e., DH > ΦC , the liquidity competitor will improve the price, i.e., σC = step. When the spread

(tick) is wide (small), his incentive to “step ahead” increases. ΦC diverges at S
∆ = (1 − e−1) ≈ 1.582.
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50

100

150

0 2 4 6 8 10
S
∆

DH

ΦC

σC = stay

Proposition 1 (Equilibrium). The hidden trader’s and liquidity competitor’s equilibrium strate-

gies σ∗
H (= D∗

H) and σ∗
C obey

σ∗
C = stay, D∗

H =







ΦC if NH > ΦC,

NH else.
(3.3)

Hence, only large (hidden) traders need to limit their exposure because of competition in liq-

uidity supply. Particularly, according to the next corollary, large traders hide an equally large

portion of their order:

Corollary 1 (Large orders are hidden). In equilibrium,

lim
NH→∞

D∗
H

NH

= 0 holds. (3.4)

The fact that particularly large investors use hidden orders to reduce their exposure costs is well

documented in the empirical literature. For instance, Frey and Sandas (2009) report that iceberg

or hidden orders are on average 12-20 times larger than ordinary limit orders. Bessembinder

et al. (2009) show that 75% of “large” orders with a notional value exceeding 50,000 EUR

are at least partially hidden. They also find that 87% of the volume of large orders is hidden.

Summarizing the insights from Lemma 1 and Proposition 1 yields the following corollary:
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Corollary 2 (Determinants of Hidden Liquidity without Latent Block Traders). Liquidity com-

petition and thus the provision of hidden liquidity

(i) rises with larger same-side depth DH ,

(ii) rises with wider bid-ask spread S,

(iii) declines with opposite-side depth,

(iv) declines with tick size ∆,

(v) rises with larger demand NC .

These results are in line with extant empirical findings. For instance,

Bessembinder et al. (2009) report that the decision to hide and the magnitude of the hidden

size are positively affected by the size of the spread and negatively affected by opposite-side

depth. Likewise, Biais et al. (1995), Ranaldo (2004), Cao et al. (2009) and Hall and Hautsch

(2006) show that liquidity competition increases if spreads widen. Ranaldo (2004) and Cao

et al. (2009) report that liquidity competition increases when same-side depth is large. Sim-

ilarly, Harris (1994, 1996) and De Winne and D’Hondt (2009) report that hidden liquidity

provision is low in stocks with large tick sizes. Finally, Harris (1994, 1996) shows that the

presence of liquidity competition forces traders to hide their orders.

3.2 Equilibrium with Latent Block Traders

We extend the baseline model by allowing for an additional strategic trader: the latent block

trader. This agent is actively monitoring the order book of the primary exchange for liquid-

ity opportunities and has discretion over the trading place. Because he strategically chooses

between both market places, he effectively acts as a source for liquidity externalities, as liq-

uidity suppliers in the primary exchange have incentives to expose sufficient liquidity to elicit

order flow from the latent trader. In this section, we derive the equilibrium by first computing

the latent investor’s optimal strategy. Then, the liquidity competitor’s and hidden trader’s best

responses are derived recursively.

Lemma 2 (Latent Trader’s Best Response). Given, σH = DH and σC , the latent trader’s
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optimal strategy σ∗
L obeys

σ∗
L =







off if 0 ≤ DH < ΦLa
,

on if ΦLa
≤ DH < ΦLb

and σC = stay,

off if ΦLa
≤ DH < ΦLb

and σC = step,

on if ΦLb
≤ DH ,

(3.5)

with ΦLa
≤ ΦLb

and

ΦLa
:=

(NL − NC)∆ − NCγ

γ + ∆
, ΦLb

:=
2(NL − NC)∆ − NCγ

γ + ∆
. (3.6)

The latent trader chooses a strategy of optimally benefiting from the liquidity supply on the

primary exchange without making the off-exchange execution of remaining shares too costly.

Recalling that quote shifts in the primary exchange also shift off-exchange settlement prices

(see (2.4)), the latent trader only trades in the primary exchange if his payoff (because of saving

the commission fee γ) over-compensates for the increased off-exchange execution costs. If

DH < ΦLa
, the liquidity supply is too low to outweigh the costs of executing the remaining

shares at a higher settlement price. Accordingly, if DH ≥ ΦLa
holds, he only enters the primary

market if the liquidity competitor decides not to overbid. If the competitor revises the bid quote

(σC = step), however, the latent trader takes advantage of an improved settlement price on the

off-exchange market and stays away from the primary exchange. This situation arises unless

the displayed liquidity supply exceeds a second threshold, ΦLb
. Then, it becomes beneficial for

the latent trader to trade in the public market, as he can execute a sufficiently large portion of

his order volume.

Hence, we can conclude that the structure of the public exchange affects market fragmen-

tation. Precisely, latent order flow is attracted when the commission fee γ is high, tick sizes

∆ are small, and the total displayed liquidity is high. These predictions resonate well with the

findings of the empirical literature. For instance, Griffiths et al. (1998), Griffiths et al. (2001),

and Hendershott and Jones (2005) report that the proportion of off-exchange trading increases

when the displayed depth is low and tick sizes are wide.

Since the competitor knows that the latent trader is only attracted if a minimum level of

liquidity is displayed (DH ≥ La) and if the current bid quote is not overbid (σC = stay), it is

optimal for the competitor to "stay" at the initial best bid quote. The advantage of this strategy

is twofold: first, he attracts the latent block trader, and second, he ”saves” the extra tick ∆ in
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transaction costs. If the displayed liquidity is too low (DH < ΦLa
), however, the block trader

will never enter the primary market, regardless of the competitor’s action σC . In this case, the

competitor’s optimal strategy σ∗
C reduces to the optimal strategy of the baseline game without

the latent block trader (see Lemma 1). Formally summarizing this strategy yields Lemma 3:

Lemma 3 (Liquidity Competitor’s Best Response). Given σ∗
L and DH , the liquidity competi-

tor’s best response obeys

σ∗
C =







σ∗0
C (DH) if 0 ≤ DH < ΦLa

,

stay if ΦLa
≤ DH ,

(3.7)

with σ∗0
C denoting the competitor’s optimal strategy in the case without the latent investor ac-

cording to Proposition 1.

Finally, the equilibrium is obtained by deriving the hidden trader’s best response, given the

competitor’s best strategy.

Proposition 2 (Equilibrium Strategies). The equilibrium strategies σ∗
H (≡ D∗

H), σ∗
C and σ∗

L

obey

D∗
H =







D∗0
H if NH ≤ ΦLa

NH else
, σ∗

C = stay, σ∗
L =







on if NH ≥ ΦLa

off else
, (3.8)

with D∗0
H denoting the hidden trader’s optimal strategy in the case without latent investors

according to Proposition 1.

Hence, in equilibrium, it is optimal for large liquidity suppliers, i.e., NH > ΦLa
, to fully reveal

their trade intentions and thus to display the entire volume, i.e., D∗
H = NH . In this case, they

benefit from counterparty attraction while avoiding or outweighing the downside of liquidity

competition. Conversely, small traders with NH < ΦLa
cannot attract latent demand and thus

choose a display size (i.e., D∗
H ≤ ΦC) that merely prevents overbidding by the liquidity com-

petitor. In this case, the optimal display size is limited by D∗0
H and is exclusively driven by

liquidity competition, as derived in Proposition 1 in Section 3.1.

The critical size ΦLa
can be interpreted as a liquidity premium demanded by the latent

block trader to offset the costs of trading in the off-exchange trading venue. Thus, all factors

that increase ΦLa
make attracting latent counterparties less likely and implicitly increase –

though not necessarily monotonously – the size of the hidden volume. The following corollary

summarizes the determinants of hidden liquidity in the presence of latent trade demand:
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Corollary 3 (Determinants of Hidden Liquidity with Latent Block Traders). The provision of

hidden liquidity increases

(i) with larger spreads S,

(ii) lower opposite-side depth,

(iii) the size of the latent block trader NL,

(iv) lower upstairs commission fee γ.

The tick size ∆ and the extent of liquidity competition NC affect the provision of hidden liquid-

ity in the primary exchange through opposite channels, liquidity competition and the attraction

of latent order flow. For instance, while a smaller tick size increases liquidity competition, it

increases the incentives for latent block traders to enter the public market. Similarly, a higher

NC increases competition but also attracts more latent demand. Consequently, the effects of ∆

and NC on hidden liquidity provision are not straightforward.

4 Impact of Hidden Orders: A Partial Equilibrium Analysis

How market transparency affects market quality is a key issue in market microstructure re-

search. This question, however, cannot be solely addressed in the full equilibrium analysis in

Section 3.2, where traders act rationally and have complete information.11 In such a setting,

it is optimal for a (sufficiently large) liquidity supplier not to use hidden orders at all. Conse-

quently, the impact of the use of hidden orders can only be assessed by deviating from the full

equilibrium. Therefore, we use a partial equilibrium setting to analyze the case, where liquid-

ity suppliers hide too much. Then, the choice variable DH is no longer fixed to its equilibrium

value but is a free parameter with DH 6= D∗
H . This approach is further justified by the vast

empirical evidence that the majority of large orders are in fact kept hidden and not exposed.12

In this section, we assume that the hidden trader is not small, i.e., NH ≥ ΦLa
, and that the

latent trader is present with certainty, i.e., µ = 1. Let σ∗ denote the Nash equilibrium triple as

11In particular, assuming that liquidity suppliers in the primary exchange are aware of the presence of the latent

investor (i.e., either µ = 0 or µ = 1) is a strong assumption.
12Deviating from the full-equilibrium concept does not necessarily weaken the normative implications of our

model. Traders who deviate from the equilibrium are ’irrational’ in light of our setting but are not necessarily

under risk aversion or uncertainty regarding the presence of a latent counterparty in an extended setting.
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in Proposition 2, and let σ̃ denote the partial equilibrium triple with

σ̃(DH) := (σH = DH , σ∗
C , σ∗

L) (4.1)

where σ∗
C and σ∗

L denote the Nash-equilibrium strategies of the competitor and latent trader as

in Proposition 2 and DH is fixed with DH 6= D∗
H (or σH 6= σ∗

H ).

In limit order book markets, price changes materialize through the impact of incoming

order flows on the (initial) state of the order book. Analyzing the impact of hidden orders on

the order flow composition is thus important to quantify the effect of hidden liquidity supply

on prices.

4.1 Impact on the Order Flow Composition

To assess the impact of the hidden order submission at time t0 on the future incoming order flow,

we consider order decisions taken after t0 until T . Denote by EXBT
t0

and CABT
t0

the expected

execution volumes and cancelation volumes of (limit) buy orders until time T , respectively.

Similarly, EXST
t0

denotes the expected execution volume of (limit) sell orders until time T .

The expected execution volume of buy limit orders, EXBT
t0

, stems from market sell orders

xL, submitted by the latent investor and market sell orders x submitted by the noise trader.

Both market orders execute against the liquidity provided by the hidden trader and the liquidity

competitor. Recalling that x ∼ Exp(λ) and that xL obeys

xL =







DH + NC if σL = on,

0 else.
(4.2)

Then, EXBT
t0

is given by

EXBT
t0

(σ̃(DH)) := E[XC+XH |σ = σ̃(DH)] = E[min(x+xL, NC+NH)|σ = σ̃(DH)], (4.3)

where XC and XH denote the execution volumes of the hidden trader and the liquidity supplier

until time T , respectively, corresponding to the minimum of liquidity supply NC + NH and

demand x + xL. To emphasize the dependence of the partial equilibrium triple σ̃ on the display

size choice DH , we use the notation σ̃ = σ̃(DH).

One central assumption of our model is that liquidity suppliers trade under liquidation con-

straints. Therefore, non-executed shares at T have to be canceled and (re-) submitted as market

sell orders to ensure liquidation. Consequently, the expected amount of buy-side cancelations
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and market sell order (re-) submissions until time T have to equal the expected amount of

non-executed buy-side shares, i.e.,

CABT
t0

(σ̃(DH)) = EXST
t0

(σ̃(DH)) = NC + NH − EXBT
t0

(σ̃(DH)). (4.4)

The next corollary describes the relation between the display size DH and the expected buy

executions, sell executions, and cancelations.

Corollary 4 (Expected Execution and Cancelation Volumes). Assume a large (buy) hidden

trader, i.e., NH > ΦLa
and DH 6= D∗

H . Then, the following relations hold:

EXBT
t0

(σ∗) > EXBT
t0

(σ̃(DH)), (4.5)

CABT
t0

(σ∗) < CABT
t0

(σ̃(DH)), (4.6)

EXST
t0

(σ∗) < EXST
t0

(σ̃(DH)). (4.7)

In particular, EXBT
t0

(σ̃) (CABT
t0

(σ∗) and EXST
t0

(σ∗(DH))) is monotonically increasing (de-

creasing) in the display size DH .

Hence, the lower the display size is, i.e., the larger the proportion of hidden liquidity is, the

lower the number of buy-side limit orders executed by the latent investor will be. Consequently,

a larger volume of buy-side limit orders remain non-executed, need to be canceled, and need to

be (re-)submitted as the number of market sell orders increase. Therefore, we can summarize

that the decision to hide orders affects the composition of the future order flow and increases

the aggressiveness on the opposite side of the market. In contrast, displayed (buy) orders do not

generate sell market order executions, as they find a trading counterpart and get fully executed.

4.2 Impact on Prices

In this section, we show that the market orders resulting from non-executed (and canceled)

hidden orders generate price fluctuations. By defining Mt = (At + Bt)/2 as the mid-quote,

we denote RT
t0

= MT − Mt0 as the midquote return between time t0 and T . We define excess

returns and excess volatility in a way providing sensible measures of how the deviation from

the socially desirable Nash equilibrium materializes in terms of price fluctuations:

Definition 2 (Excess Return). The excess return is defined as the difference between the ex-

pected midquote return under the strategy-triple σ̃ with fixed DH and the expected midquote

return under the Nash equilibrium-triple σ∗, i.e.,

R̃T
t0

(DH) := E[RT
t0

|σ̃(DH)] − E[RT
t0

|σ∗]. (4.8)
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Definition 3 (Excess Volatility). Excess volatility is defined as the difference between the vari-

ance of the midquote return under the strategy-triple σ̃ with fixed DH and the variance of the

midquote return under the Nash equilibrium-triple σ∗, i.e.,

Ṽ T
t0

(DH) := V ar[RT
t0

|σ̃(DH)] − V ar[RT
t0

|σ∗]. (4.9)

The following propositions provide the excess returns and excess volatility conditional on

the hidden size HH = NH − DH , the slope of the price impact function β, and the hidden

trader’s arrival probability q.

Proposition 3 (Excess Returns). Assume a large buy hidden trader, i.e., NH ≥ ΦLa
. Then,

excess returns obey

R̃T
t0

(HH) =







qβHH for 0 < ΦLa
≤ DH ,

qβ(NH + NC) for 0 ≤ DH < ΦLa
,

qβ(HH + NC) − βNC for ΦLa
≤ 0.

(4.10)

The proposition shows that hiding trading intentions can cause price changes. It is important

to note that these price effects are driven not by information but by insufficient signaling of

trading intentions. Not signaling results in a mis-coordination between trading counterparties

and a mis-match between liquidity supply and demand. Because of the underlying liquidation

time constraint, this liquidity mis-match induces price pressure as liquidity suppliers are ulti-

mately forced to increase their order aggressiveness and to post market orders. These market

orders confront the market with additional buy demand, which has not been previously visible.

Consequently, prices rise with the hidden size HH . The following proposition shows that these

effects also translate into higher volatility:

Proposition 4 (Excess Volatility). Assume a large buy hidden trader, i.e., NH ≥ ΦLa
. Then,

excess volatility obeys

Ṽ T
t0

(HH) =β2(1 − q)q







H2
H − 2HHNC , 0 < ΦLa

≤ DH ,

N2
H − N2

C , 0 ≤ DH < ΦLa
,

H2
H − N2

C , ΦLa
≤ 0.

(4.11)

Hence, the decision to hide induces excess volatility, which is increasing in the hidden size.

In contrst, excess-volatility vanishes for large display sizes DH ≈ NH (i.e., HH ≈ 0) that are

20



close to the rational Nash strategy σ∗
H = D∗

H = NH . The empirical literature has provided

extensive evidence of the negative relation between observable depth ("open interest") and

market volatility.13

Recall from Lemma 2 that latent trading counterparties in the public order book market are

more likely to be attracted when off-exchange brokerage fees γ are large and when the (rela-

tive) tick size ∆ is small. Therefore, liquidity suppliers are more likely to reveal their trading

intentions and to execute their orders by directly avoiding the use of market orders. This miti-

gates price pressures from non-executed shares and reduces excess volatility. Consequently, ∆

and γ affect price volatility indirectly through ΦLa
. The resulting relationships are summarized

in Corollary 5 and follow directly from Proposition 4.

Corollary 5 (Hidden Liquidity and Volatility). Assume a large hidden trader, i.e., NH >

max(NC , ΦLa
). Then, ceteris paribus (excess) volatility increases with

(i) larger hidden size NH − DH ,

(ii) smaller display size DH ,

(iii) lower off-exchange-brokerage fees γ,

(iv) larger tick size ∆.

An interesting finding is that the spread does not play a role in the case µ = 1, i.e., when the

presence of the latent investor is known with certainty by all market participants. Although

the spread is a major determinant of the liquidity competitor’s decision to overbid the hidden

trader in the case without a hidden trader (see Lemma 1), this mechanism changes as soon as

the liquidity competitor knows that the hidden trader will attract the latent counterparty. Then,

there is no incentive for him to overbid the hidden trader and to post more aggressive prices.

Consequently, liquidity competition and bid-ask spreads do not affect the supply of hidden

liquidity and thereby will not affect prices.

However, as soon as there is uncertainty (i.e., 0 < µ < 1) or incomplete information about

the presence of the latent trader, the bid-ask spreads will affect volatility through liquidity

competition and the hidden trader’s willingness to expose his shares. This follows because

with probability 1 − µ, the liquidity competitor will face the benchmark case without the latent

13For instance, Bessembinder and Seguin (1993) find that the relation between open interest and market volatil-

ity is negative for a wide range of markets, including agricultural, financial, metal, and currency trading. More

evidence is reported in Ahn et al. (2001), Watanabe (2001), Ragunathan and Peker (1997) and Fung and Patterson

(1999).
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trader. Thus, if at least µ is small enough, by continuity, the spread will affect the competitor’s

order aggressiveness in the same way as of Proposition 2 and in turn will affect the hidden

traders exposure decision likewise.

Corollary 6 (Volatility and Spread). Assume a large hidden trader, i.e., NH > max(NC , ΦLa
)

and that 0 ≥ µ < 1 holds. Then, for sufficiently small µ, volatility increases with wider spreads.

For sake of brevity, we limit our arguments to the previous discussion and do not show a rigor-

ous proof. Nevertheless, substantial empirical evidence for this relation has been documented

for various markets.14

5 Testing Cross-Sectional Implications

5.1 Testable Hypotheses

The equilibrium model in Sections 3 and 4 establishes a set of cross-sectional predictions on

the origination of hidden liquidity and its effects on different characteristics of the order book

market. Key cross-sectional hypotheses are generated from Corollaries 3, 5, and 6 as follows:

Hypothesis 1 (Cross-sectional Predictions: Spread, Tick and Volatility).

(i) Markets with smaller spreads have a higher proportion of hidden liquidity.

(ii) Markets with wider (relative) tick sizes have a higher proportion of hidden liquidity.

(iii) Markets with higher proportion of hidden liquidity have a higher return volatility.

5.2 Data

Our empirical analysis uses a combination of two data sets based on NASDAQ trading. Infor-

mation on consolidated hidden and displayed depth for each price level on a minute-by-minute

basis for all NASDAQ traded stocks originates from the NASDAQ ModelView data set. The

initial sample covers the constituents of the S&P500 universe through the period from Novem-

ber to December 2008. To reduce the impact of very illiquid stocks, we restrict the analysis to

14See, for instance Harris (1996), Aitken et al. (2001), De Winne and D’Hondt (2009), Bollerslev and Melvin

(1994), Bollerslev and Domowitz (2012), Hasbrouck and Saar (2001), Plerou et al. (2005), Wang and Yau (2000)

or Kalimipalli and Warga (2002).
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stocks that have a quoted spread below 25 cents on average. This leaves us with a sample of

N = 468 stocks.

Moreover, to utilize information on order flow between the minute-by-minute snapshots,

we augment the snapshots by using NASDAQ TotalView message-level data, which is pro-

cessed via the data service ”LOBSTER”15. The data contains information on any (visible) or-

der activity and the corresponding fully reconstructed (displayed) NASDAQ limit order book

at each instant. We aggregate order executions, cancelations, and submissions stemming from

NASDAQ TotalView for each minute and merge this information with the minute-by-minute

snapshots on hidden depth from NASDAQ ModelView. The merged data set then consists of

390 daily minute-by-minute information observed over 40 trading days, resulting into 15, 600

observations per stock.

We limit our analysis to the ten best price levels in the order book. These levels represent

the most active parts of the limit order book and are thus most suitable to test the predictions

of our theoretical model. Table 1 reports averages across stock groups and time for mid-quote

levels, spreads, visible and hidden depth, and limit order activities. We group the stocks into

quintiles based on the average daily trading volumes (ADV ). We observe distinct variations

in trading activities, as reflected by inter-trade durations ranging from 2.65 seconds for the

least actively traded stocks to 0.35 seconds for stocks in the largest liquidity quintile. Similar

monotonic relationships across the liquidity quintiles are found for trade sizes (increasing in

ADV ), bid-ask spreads (decreasing in ADV ), price levels (decreasing in ADV ), first-level

order book depth (increasing in ADV ), and daily volatility, measured based on the daily high-

low range relative to the daily average mid-quote (increasing in ADV ). Hence, the highest

trading activity (in terms of both number of transactions and size of shares) is observed for

stocks with small spreads, low price levels, and high depth.

Most interestingly, we observe that the proportion of hidden shares in total posted shares

is declining for less liquid stocks, amounting to approximately 17% on average. The relative

amount of shares executed against standing hidden orders, however, is decreasing with the

overall underlying daily trading volume. While 26% of trading volume on average is executed

against hidden orders in the smallest liquidity quintile, this number declines to 7% on average

for the most actively traded stocks. Hence, hidden liquidity is more prevalent for less liquid

stocks with wider spreads and lower displayed depth.

15See http://lobster.wiwi.hu-berlin.de/.
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Table 1: Averages across stocks and time for daily trading volume (ADV ), inter-trade durations

(DUR), daily high-low ranges standardized by corresponding daily average mid-quotes (HL), and

trade sizes (T S), and averages of minute-by-minute snapshots of bid-ask spreads (SPR), mid-quotes

(MQ), visible depth on top (first level) of the book (D1), and total hidden depth on the first 10 levels

(HD10). Moreover, we report the average ratios of hidden to total depth on the first 10 levels (evaluated

based on minute-by-minute snapshots) (RHD10), the average number of shares traded against hid-

den volume (T HD), and the corresponding ratio of executed hidden shares to average trading volumes

(RT HD := T HD/ADV ). The amount of traded hidden volume, T HD, is computed as the average

daily trade volume executed on the best quotes. The averages are computed within liquidity quintiles

based on ADV . The stock universe consists of all S&P500 constituents that are traded on NASDAQ,

excluding stocks with an average spread below 25 cents. The sample ultimately includes 468 stocks for

the period between November and December 2008.

Liquidity

Quintile

Observable Stock Properties
Hidden Liquidity

posted traded

ADV
(106sh.)

DUR
(sec.)

HL
(ratio)

T S
(sh.)

SP R
(ticks)

MQ
($)

D1
(sh.)

HD10
(sh.)

RHD10
(ratio)

T HD
(106sh.)

RT HD
(ratio)

q20 1.39 2.65 0.07 147 4.91 36.46 308 656 0.19 0.37 0.26

q40 2.72 1.38 0.08 158 3.39 32.84 576 1318 0.20 0.57 0.20

q60 4.23 0.94 0.09 165 2.40 27.41 800 1671 0.17 0.69 0.15

q80 7.13 0.61 0.10 178 1.87 24.59 1278 2292 0.16 0.83 0.11

q100 16.98 0.35 0.11 219 1.38 23.32 3490 6202 0.13 1.10 0.07

Total 6.57 1.19 0.09 174 2.79 28.91 1305 2440 0.17 0.71 0.16

5.3 Econometric Analysis

Hypothesis 1 posits predictions regarding the relationships between the proportion of hidden

liquidity (RHD10), the relative bid-ask spread (RSP R), the relative tick size (RTCK), and

volatility (RV ). The relative bid-ask spread RSP R is defined as the ratio between the spread

SP R and the mid-quote MQ, while the relative tick size RTCK is defined as the ratio between

the tick size TCK and the mid-quote price MQ. Volatility is estimated as the daily realized

volatility (computed as the sum of squared 10-min returns).
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According to our theory, hidden liquidity triggers market volatility but not vice versa, sug-

gesting the following reduced model:

RHD10i = αh + βh,2RTCKi + βh,3RSP Ri + εhi, (5.1)

RVi = αv + βv,1RHD10i + βv,2RTCKi + βv,3RSP Ri + εvi, (5.2)

for i = 1, . . . , N and white noise error terms εhi and εvi. Although not predicted by our theory,

we also include the relative tick size RTCKi and RSP Ri as additional control variables in

equation (5.2).16 All variables are entered in logarithmic form of time averages across days and

(in the case of RHD10i and RSP Ri) one-minute snapshots within a day. This leaves us with

N = 468 cross-sectional observations.17

However, although it is not captured by our framework, the causality between market

volatility and hidden liquidity might be reversed. For instance, Harris (1996) suggests that

liquidity suppliers use hidden orders to reduce the risk of being picked-off. Since the risk of

being picked-off is particularly high in volatile markets, causality may run from volatility to

hidden liquidity. Moreover, simultaneity can simply arise because of the use of time averages

of volatility and hidden liquidity. To account for this effect, we consider a second specification

in which we explicitly include RVi in the first equation, resulting into a bivariate simultaneous

equations system:

RHD10i = αIV
h + βIV

h,1RVi + βIV
h,2RTCKi + βIV

h,3RSP Ri + εIV
hi , (5.3)

RVi = αIV
v + βIV

v,1 RHD10i + βIV
v,2RTCKi + βIV

v,3RSP Ri + εIV
vi . (5.4)

As soon as both βIV
h,1 and βIV

v,1 are truly non-zero, RHD10i and RVi are simultaneous, and the

parameters cannot be consistently estimated by OLS. We therefore use two-stage least squares

(2SLS) to estimate the system equation by equation. We use the squared daily mid-quote return,

RET2i, as an obvious instrument for RVi. As a second instrument, we utilize the displayed

depth D10i. Both RET2i and D10i are correlated with the endogenous variables. While the

uncorrelatedness of RET2i and εIV
hi is easily justified (given that RVi serves as a regressor

16For instance, the extant information-based literature suggests that volatility and spreads are linked through

information asymmetry (e.g., Kyle (1985)).
17An alternative to using averaged variables would be to estimate the model in a panel setting, which would

allow us to exploit not only cross-sectional variation but also time variation. Properly capturing the strong serial

(cross-)dependencies of most variables (see Section 6) in a panel setting would be very challenging, however, and

would require panel VAR approaches, which would be cumbersome, or even impossible, to estimate given the

amount of underlying observations.
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Table 2: Estimation results of cross-sectional regressions of (5.1), (5.2), (5.3) and (5.4). The first two

columns give the OLS estimates of (5.1) and (5.2). The next columns give the 2SLS estimates of (5.3)

and (5.4) with instruments RET 2i and D10i. Standard errors are shown in brackets. Below, we report

the F -statistics based on the first-stage regressions as tests for weak instruments and the Sargan test for

over-identification.

Structural Model Simultaneous Equations Model

RHD10i RVi RHD10i RVi RHD10i RVi

(5.1) (5.2) (5.3) (5.4) (5.3) (5.4)

RHD10i 3.356∗∗∗ 3.356∗∗∗ 1.560∗∗∗

(0.427) (0.427) (0.163)

RVi 0.298∗∗∗ 0.294∗∗∗

(0.038) (0.038)

RT CKi −0.464∗∗∗ 1.877∗∗∗ −0.559∗∗∗ 1.877∗∗∗ −0.558∗∗∗ 1.043∗∗∗

(0.027) (0.217) (0.029) (0.217) (0.029) (0.090)

RSPRi 0.172∗∗∗ −0.234∗ 0.070∗∗ −0.234∗ 0.071∗∗ 0.075

(0.031) (0.126) (0.033) (0.126) (0.033) (0.063)

Const. −1.663∗∗∗ −5.438∗∗∗ 1.620∗∗∗ −5.438∗∗∗ 1.581∗∗∗ −8.426∗∗∗

(0.106) (0.791) (0.431) (0.791) (0.430) (0.332)

Instruments − − RET 2i RET 2i, Di

N 468 468 468 468 468 468

Weak-Instr. − − 1067.78∗∗∗ 68.08∗∗∗ 532.46∗∗∗ 86.52∗∗∗

Sargan − − − − 71.75∗∗∗ 109.30∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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in (5.3) and thus captures most volatility-associated variation in εIV
hi ), the uncorrelatedness of

RET2i and εIV
vi is more critical and relies on the ability of the regressors that are included

in (5.4) to sufficiently capture variations in RVi. We conjecture, however, that cross-sectional

variation in RVi in particular is captured by the included regressors rather than by squared

daily returns, diminishing the remaining explanatory power of RET2i for RVi and making

correlations between RET2i and εIV
vi unlikely. The uncorrelatedness between D10i and both

εIV
hi and εIV

vi can be similarly justified, as D10i and RTCKi are strongly correlated18, and thus,

we expect the explanatory power of RTCKi to capture most of the variation in both equations

(5.3) and (5.4), making correlations between D10i and both εvi
and εhi

less likely.

Table 2 presents the equation-by-equation OLS estimates of (5.1) and (5.2) and 2SLS estimates

of (5.3) and (5.4). Without exception, the coefficient estimates for all the model specifications

confirm the predictions of Hypothesis 1 and are significant at the 5% level. In particular, hidden

liquidity provision (RHD10i) is higher for stocks that trade at wider spreads (RSP Ri) and

smaller tick sizes (RTCKi). Furthermore, markets that exhibit a higher proportion of hidden

liquidity supply (RHD10i) are more volatile (RVi). Moreover, as expected, we find evidence

for simultaneity between volatility and hidden liquidity provision. Although the test of over-

identification does not fully support our choice of over-identifying moment conditions, the

results are nevertheless qualitatively similar across the different specifications. The results are

also qualitatively similar if additional or other instruments are employed (not shown here).

We therefore conclude that simultaneity effects do not fundamentally influence the coefficient

estimates of our variables of interest.

6 Testing the Dynamic Implications

6.1 Testable Hypotheses

Beyond cross-sectional relationships among hidden liquidity supply, minimum tick sizes, and

volatility, our theory implies that order (non-)display has causal effects on order executions,

order cancelations, and market returns. In this section, we employ a multivariate time-series

approach to test these time series implications while controlling for dynamic interdependencies.

This setting allows us to empirically assess whether and to which extent hidden liquidity causes

price shifts and volatility.

18The estimated correlation coefficient between D10i and RT CKi equals 0.81.
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The following hypotheses originate from Corollary 4. Since the postulated relationships

are symmetric for buy and sell orders, it is sufficient to formulate the hypotheses for one side

of the market only. Accordingly, the hypotheses are associated with a hidden/displayed order

submission on the buy side.

Hypothesis 2 (Oder Executions).

(i) Displayed limit buy order submissions do (do not) increase limit buy (sell) order execu-

tions.

(ii) Hidden limit buy order submissions do (do not) increase limit sell (buy) order executions.

Hypothesis 3 (Order Cancelations).

(i) Displayed limit buy order submissions do not (do not) increase subsequent buy (sell) side

cancelation rates.

(ii) Hidden limit buy order submissions do (do not) increase subsequent buy (sell) side can-

celation rates.

Hypothesis 4 (Returns).

(i) Displayed limit buy order submissions do not cause positive excess returns.

(ii) Hidden limit buy order submissions cause positive excess returns.

6.2 Descriptive Statistics

Testing the dynamic implications of hidden liquidity for order executions, cancelations, and

returns requires a time-series setting that accounts for high-frequency order book dynamics. To

limit the computational burden induced by data processing and dynamic order book modeling,

we conduct the following analysis based on 10 randomly selected stocks from the S&P500

universe. The tickers are APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC,

reflecting an arbitrary cross-section of differently liquid S&P500 constituents.

Time-series averages of mid-quotes, bid-ask spreads, visible and hidden depth, and order

activities based on one-minute aggregates for the 10 stocks are provided in Table WA1 (see

web appendix).19 The statistics indicate that order submission behavior and market dynamics

19For the sake of brevity, some of the descriptive statistics are provided in a web appendix available at

http://homepage.univie.ac.at/nikolaus.hautsch/media/files/webappendix_CHH14.pdf.
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are obviously strongly driven by liquidity competition and non-trade order activity. In line with

Hautsch and Huang (2012), we observe that most order activity derives from order submis-

sion and order cancelation activity: on average, approximately 47% of the order flow volume

originates from order submissions, 49%, from cancelations, and only approximately 4%, from

trades/executions.

Table WA2 (see web appendix) provides evidence on the time variability of minute-by-

minute activities for one exemplary stock in our sample that belongs to the automotive indus-

try, AOZ (AutoZone, Inc.). The table reports mid-quotes, bid-ask spreads, visible and hidden

depth, order imbalances, and order activities based on one-minute aggregates. We observe dis-

tinct time-series variations in bid-ask spreads and the number of limit order submissions and

cancelations. Interestingly, the overall liquidity supply (through the first 10 price levels) and

the number of limit order executions are clearly more stable over time. These patterns are quite

representative for other S&P500 stocks and show that recent NASDAQ market activities are

strongly driven by significant order submission and cancelation activities that mostly occur on

the first level but that obviously not substantially affect the liquidity supply deeper in the book.

A second noticeable observation is that hidden liquidity, in terms of both total order supply and

order imbalances, exhibits high variation and has larger extreme values than displayed liquidity.

The time variability of depth is illustrated in Figure 2, which shows minute-by-minute

time series of total hidden and displayed depth up to the first 10 levels for four randomly

selected stocks. We observe that the liquidity supply tends to be clustered over time and that it

exhibits substantial time variation. The latter finding is particularly true for hidden liquidity, as

significant spikes and thus large quantities of hidden volume tend to occur on an irregular but

relatively frequent basis.

Figure WA3 (see web appendix) shows cross-sectional averages of autocorrelation func-

tions (ACFs) of one-minute returns, 10-min volatilities, and one-minute snapshots of depth and

displayed depth imbalances, defined as standing buy volume in excess of sell volume. More-

over, we report one-minute aggregates of limit order submissions (SUB and SUS), cancela-

tions (CAB and CAS), and executions (EXB and EXS). The 10-min volatility is computed

as a 10-min realized volatility, corresponding to the sum of squared one-minute mid-quote

returns, computed over subsequent 10-min intervals.

All variables (except mid-quote returns) are strongly autocorrelated over time and show

very persistent (i.e., slowly decaying) autocorrelation patterns in most cases. Interestingly, the

liquidity supply (reflected by submissions and cancelations) is more persistent than the liquidity
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Figure 2: Minute-by-minute time series of total hidden and displayed depth HD10 and D10 for the

stocks AZO (AutoZone, Inc.), CAH (Cardinal Health, Inc. ), EMR (Emerson Electric Co.), and GOOG

(Google) traded on NASDAQ, November to December 2008. The total period consists of 40 days with

390 trading minutes each, corresponding to 15600 minutes in total. The total hidden (displayed) depth

on the first 10 levels is shown in blue (red).
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demand (reflected by order executions). In line with the finding that liquidity competition

is a substantial driver of market dynamics, this finding suggests that traders actively micro-

manage, modify, and cancel passive orders when they feel that orders are mis-priced or have a

low chance of execution. The presence of strong serial dependence in execution volumes (i.e.,

market orders) is in line with the fact that traders do not execute their position by using a single

market order, but rather slice larger orders into smaller orders and feed them sequentially into

the market. This is in line with the literature on optimal liquidation (e.g., Obizhaeva and Wang

(2013)).

Moreover, we find that depth imbalances, representing excess demand for trading on one

side of the book, are less persistent. Hence, excess trade demand does not persist over longer
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periods, as traders naturally have to liquidate excess positions over a reasonable time period.

We observe that hidden order imbalances are more persistent than displayed imbalances. This

finding supports our theory predicting that displayed order imbalances provide a signal for

counterparties to trade larger volumes at lower costs. Thus, displayed imbalances are eventually

absorbed by counterparties’ market order flows. Conversely, hidden order imbalances "survive"

longer, as their presence cannot easily be detected by counterparties.

6.3 Econometric Modeling

To test Hypotheses 2, 3, and 4 and to isolate the dynamic implications of hidden order sub-

missions on subsequent returns and order activities, we must account for the underlying serial

dependence of the processes. Moreover, an evaluation of the cross-autocorrelations (not re-

ported here) reveals significant dynamic cross-dependences between the individual variables.

In line with, e.g., Hasbrouck (1991) and Hautsch and Huang (2012), we capture these

multivariate dynamics by using a vector autoregressive model for the underlying order book

process. In particular, we suggest modeling the state of the market in terms of mid-quote

returns, volatility, and variables representing the state of the order book as well as the incoming

order flow. In particular, we model high-frequency market dynamics based on one-minute mid-

quote returns (RET ), bid-ask spreads (SP R), minute-by-minute rolling window estimates of

10-min realized volatilities (RV ), minute-by-minute snapshots of hidden and displayed order

imbalances (HI10 and DI10, respectively), total depth (sum of hidden and displayed depth on

the first 10 levels; TD10), and per-minute numbers of submitted, executed, and canceled buy

and sell limit orders (SUB, SUS, EXB, EXS, CAB, and CAS).20 Accordingly, the state of

the order book at t is represented by the 12-dimensional vector yt, consisting of the variables

RET , SP R, V OLA, HI10, DI10, TD, SUB, SUS, EXB, EXS, CAB, and CAS. We

propose modeling yt in terms of a vector autoregressive model of the order p (VAR(p)) of the

form

yt =
p
∑

j=1

Ajyt−j + ut, (6.1)

with Aj denoting (12 × 12) coefficient matrices for j = 1, ..., p and ut denoting the vector of

zero mean white noise error terms with E [utu
′
t] = Σu.

20We log-transform total depth T D10, realized volatility RV , and spread SP R. Residual diagnostics widely

confirm this choice.
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Using order imbalances allows us to test market-side-specific effects of hidden and dis-

played volume. Biais et al. (1995), Ranaldo (2004), Chordia et al. (2002), Hall and Hautsch

(2006), and Cao et al. (2009) show that order imbalances carry more information than indi-

vidual order depth levels about the state of the market. Moreover, directly modeling buy-sell

depth imbalances simplifies the analysis, as these variables are less persistent than the underly-

ing depth levels. A similar argument provides justification for modeling mid-quote returns and

bid-ask spreads instead of separate quote levels. While quote processes are non-stationary, first

differences of quote processes and spreads are covariance stationary, see, e.g., Engle and Pat-

ton (2004) and Hautsch and Huang (2012). Moreover, the two fundamental mechanisms in our

theoretical model – liquidity competition and counterparty attraction – are driven by the mag-

nitude of bid-ask spreads and returns but not quote levels. Therefore, in line with the analysis

of Hautsch and Huang (2012), the resulting vector autoregressive model can be considered as

a restricted stationary version of a more general co-integrated VAR model for levels of quotes

and depth. Indeed, the stationarity of the underlying variables, including order flows and stand-

ing order depth, is confirmed by underlying unit root (Augmented Dickey-Fuller) tests (not

reported here).

A natural way to test Hypotheses 2, 3, and 4 while controlling for dynamic order book in-

terdependencies is to evaluate the impulse response of hidden and displayed order imbalances.

In particular, in our framework, incoming buy (sell) hidden or displayed orders are identified

as positive (negative) shocks to the corresponding order imbalances HI10 or DI10. Impulse

responses in a VAR system are straightforwardly derived based on the moving-average repre-

sentation,

yt = Φ0ut + Φ1ut−1 + Φ2ut−2 + Φ3ut−3 + . . . , (6.2)

with Φ0 = IK and Φs =
∑p

j=1 Φs−jAj for s > 0. Following Pesaran and Shin (1998), we

consider generalized impulse response functions that are obtained by shocking element j by δj

while integrating out the effects on other elements, i.e.,

Θj(n) := E [yt+n | ujt = δj , Ωt−1] − E [yt+n, Ωt−1] , (6.3)

with Ωt denoting the information set up to time t. Assuming multivariate normality for ut, the

conditional expectation given a scaled shock δj :=
√

σjj in one variable yields E [ut | ujt = δj] =

Σuejσ
−1
jj δj, with ej denoting the unit vector. The generalized impulse , i.e., Θ(n) := (Θ1(n), Θ2(n), . . . , Θj(n)

with the j-th response obeying

Θj(n) =
ΦnΣuej√

σjj

, j = 1, . . . , K, (6.4)
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measures the effect of a one-standard-error shock to the j-th equation at time t on the condi-

tional expectation of yt+n. Accordingly, the cumulative (generalized) impulse response Ξ(n) :=

(Ξ1(n), Ξ2(n), . . . , Ξj(n), . . . ΞK(n)) is defined by

Ξj(n) :=
n∑

k=1

Θj(k) =
n∑

k=1

Φk

Σuej√
σjj

, j = 1, . . . , K (6.5)

and is consistently estimated by

Ξ̂j(n) =
n∑

k=1

Φ̂k

Σ̂uej
√

σ̂jj

. (6.6)

The main advantage of this approach is that the generalized impulse response functions are

invariant to the re-ordering of the endogenous variables. As shown by Pesaran and Shin (1998),

orthogonalized impulse responses coincide with orthogonalized impulse responses (based on a

Cholesky decomposition of Σu) if the respective variable is the first one in the ordering. Pesaran

and Shin (1998) derive the asymptotic properties of the impulse response functions based on

a co-integrated VAR model. In the web appendix, we adapt these derivations and provide the

asymptotic distributions of the generalized impulse response functions.

6.4 Estimation Results

The high persistence of the underlying order book process requires using a VAR process with

high lag order, which could be more parsimoniously captured by using a vector autoregressive

moving average (VARMA) specification. The latter specification, however, is more cumber-

some to estimate, particularly in case of a 12-dimensional process. Therefore, we use a VAR

approximation of the underlying process, which is consistently estimated with OLS equation

by equation. Information criteria suggest a lag order of 30. Portmanteau tests for the presence

of serial correlation in the resulting residuals (not shown here) widely confirm this choice. To

check the robustness of this choice with respect to the resulting impulse response functions,

we also estimate alternative specifications that are parameterized more parsimoniously, partic-

ularly a VAR(5) and VAR(15) specification. In line with the results of Jorda (2005) showing

that impulse-response estimates are relatively stable regarding the choice of the underlying lag

order (given that a dominant part of the serial dependence is sufficiently captured), we find that

our results are not qualitatively affected and that they are remarkably quantitatively stable with

respect to the model choice. We refrain from reporting individual VAR estimates, which are

33

http://homepage.univie.ac.at/nikolaus.hautsch/media/files/webappendix_CHH14.pdf


hardly interpretable for such a highly parameterized process and which are not the focus of our

analysis.

Figures 3 to 5 show the estimates of the cumulative impulse responses of one-minute buy

and sell limit order execution volumes (Ξ̂EXB and Ξ̂EXS), buy and sell limit order cancelation

volumes (Ξ̂CAB and Ξ̂CAS), and mid-quote returns (Ξ̂RET ) triggered by a positive one-standard-

error shock in hidden and displayed order imbalances (HI10 and DI10). The reported impulse

response functions are cross-sectional averages (across the analyzed M = 10 stocks). Thus,

given a fixed time interval t = n after the shock and variable j, the corresponding asymptotic

variance of the averaged impulse response function is approximated by M−2 ∑M
l=1 Λl

jn, with

Λl
jn denoting the asymptotic covariance of the generalized impulse response (see web appendix

for details).21 Note that a positive shock in order imbalances is associated with an increase in

(hidden or displayed) liquidity on the buy side. Since the effects are symmetric in the sign of

the shock, we restrict our analysis to positive shocks only and refrain from showing the opposite

case.

According to Figure 3 below, the cumulative impulse response estimates with respect to

order execution volumes confirm Hypothesis 2: In line with prediction (ii), an increase in buy-

side hidden orders does not generate an increase in buy order executions (EXB) but does

generate an increase in sell order executions (EXS). Second, and in line with prediction (i),

we observe that an increase in buy-side displayed orders generates an increase in buy order

executions (EXB) but does not generate an increase in sell order executions (EXS). Our

predictions are significant at the 5% level.

21This approximation obviously ignores potential cross-equation correlations between the estimated asset-

specific impulse response functions of stock l. Given the high parameterization, the latter is not straightforwardly

taken into account. We therefore use this approximation as a convenient but still sufficiently precise way to assess

and compactly illustrate the overall significance of our estimates. The latter – and thus – our conclusions regarding

the empirical validity of our hypotheses are not affected by this approximation and is confirmed by the individual

(asset-specific) estimates, which are not reported here.
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Figure 3: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated limit order buy and sell execution volumes (Ξ̂EXB and Ξ̂EXS) due to positive one-

standard-deviation shocks in hidden (blue) and displayed (red) order imbalances. The dashed lines show

the approximate 95% confidence intervals of the averaged impulse response functions. Based on one-

minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView data for

the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, November to December

2008.
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Figure 4: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated limit order buy and sell cancelation volumes (Ξ̂CAB and Ξ̂CAS) due to positive

one-standard-deviation shocks in hidden (blue) and displayed (red) order imbalances. The dashed lines

show the approximate 95% confidence intervals of the averaged impulse response functions. Based

on one-minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView

data for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, November to

December 2008.
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As depicted by Figure 4 above, shocks in hidden or displayed order imbalances do not

cause any significant reactions in cancelation volumes. While this result confirms Hypothe-
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sis 3(i), it does not support Hypothesis 3(ii) at first sight. This lack of support can be easily

explained by data limitations as NASDAQ ModelView data do not contain the cancelation of

hidden orders. Consequently, Hypothesis 3(ii) cannot be directly tested. Recorded cancelations

of displayed orders, however, can (at least partly) correspond to displayed parts of larger (par-

tially) hidden orders. In this case, the cancelation of partly hidden orders might also trigger

a fraction of displayed cancelations. This reasoning might explain the borderline significance

(though non-significance throughout the entire period) of buy impulse responses triggered by

hidden liquidity.

Figure 5: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated mid-quote returns (Ξ̂RET ) due to positive one-standard-deviation shocks in hidden

(blue) and displayed (red) order imbalances. The dashed lines show the approximate 95% confidence

intervals of the averaged impulse response functions. Based on one-minute aggregates of NASDAQ

ITCH data and one-minute snapshots of NASDAQ ModelView data for the stocks APC, AZO, CAH,

GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, November to December 2008.
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Figure 5 above displays the cumulative impulse response of mid-quote returns. As pre-

dicted by Hypothesis 4, we observe significantly positive price reactions after submissions of

hidden orders. Conversely, the reaction of displayed orders is negative with a significantly

smaller magnitude. Although Hypothesis 4 does not predict negative return reactions owing

to shocks in displayed orders, there is a straightforward explanation for this effect: displayed

orders are executed immediately, i.e., market sell orders consume liquidity on the buy side of

the book and thus push prices downward. This is also in line with the observation that price

reactions occur almost instantly, and prices do not change thereafter. Hence, displayed buy

orders are executed once they are submitted and observed by other market participants. Hence,

this finding empirically supports one of the major predictions of our theory: excessively hiding
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order volume is not optimal, causes a mis-coordination between liquidity supply and demand,

and ultimately causes price movements.

Although it is not a subject of our predictions, for completeness, we also show estimated

cumulative impulse responses for submission volumes (see Figure 6). We observe that (buy

side) hidden order submissions increase the rate of subsequent (buy side) displayed order sub-

missions. Even if this effect is not captured by our theory, we interpret this effect to arise from

hidden traders who are not able to execute their position during the intended trading horizon

and to re-submit their volume in terms of limit orders (instead of market orders). This behavior

might be considered as an alternative – though less aggressive – strategy to enforce execution.

Figure 6: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated limit buy and sell order submission volumes (Ξ̂SUB and Ξ̂SUS) due to positive

one-standard-deviation shocks in hidden (blue) and displayed (red) order imbalances. The dashed lines

show the approximate 95% confidence intervals of the averaged impulse response functions. Based

on one-minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView

data for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, November to

December 2008.
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7 Conclusion

We model a liquidity suppliers’ trade-off between the costs and benefits of order exposure.

While order exposure fosters liquidity competition and increases the risk of being front-run

by liquidity competitors, it has the advantage of possibly attracting latent trade demand. La-

tent trade demand can stem from large investors who generally employ off-exchange trading

mechanisms and who only enter the public primary market because of trading (liquidity) op-

portunities. In a (partial) equilibrium model, we show that excessively hiding trading interests

37



can be harmful if traders are pre-committed to trade. The key mechanism is that hidden orders

cannot elicit latent trade demand; thus, they are less likely executed, as they are not visible to

latent traders. Consequently, to enforce execution, (hidden) liquidity suppliers need to cancel

their orders and post them as market orders. This activity causes excess trade demand in the

market, pushes prices, and ultimately increases volatility. These price reactions are caused not

by information but by mis-coordination between liquidity supply and demand.

Our model does not assume the presence of asymmetric information but builds on the

effects of order exposure and liquidity externalities across markets. While omitting the effects

of asymmetric information is arguably a simplification, our model nevertheless allows us to

demonstrate that several fundamental market microstructure relationships can be explained by

pure mechanisms of order setting and liquidity competition. Indeed, empirical evidence based

on unique data on non-displayed orders at NASDAQ strongly confirms our predictions. The

key theoretical and empirical result is that greater use of hidden liquidity ultimately induces a

higher mix of (costly) more aggressive orders and thereby generates excess price fluctuations.

In this sense, hidden orders can impair price efficiency.

An important fact is that the elicitation of latent order flow depends on a critical mass

of displayed orders. As there are several sources of risks and costs to trade in the public

exchange, latent investors demand a minimum liquidity premium (i.e., a minimum display size)

to trade publicly. Thus, hidden liquidity might be beneficial when exposure does not exceed

the liquidity premium or when the likelihood of latent investors monitoring the market is low.

Ultimately, whether hidden liquidity is beneficial depends on the heterogeneity of traders. We

predict that the downside effect of hidden orders increases with the fraction of large investors

compared to small and medium-sized traders.

What are the practical consequences of our findings for exchange operators? Certainly,

banning hidden orders is not a viable option, as large investors would increasingly switch to

off-exchange mechanisms, such as dark pools and brokerage networks, ultimately reducing

liquidity in the public market. We nevertheless show that exchange operators can control pre-

trade transparency through key market variables, such as the spread, tick size, and fees. First,

the relative tick size can be controlled through optimal stock split rules. Tick sizes that are too

large (relatively) can prevent latent investors from trading publicly and thus reduce the benefits

of order exposure. On the other hand, tick sizes that are too small (relatively) increase liquidity

suppliers’ risk of being undercut, ultimately increasing the incentives for dark liquidity. Sec-

ond, exchange operators can enhance market makers and liquidity suppliers’ incentives to keep
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spreads narrow, reducing the costs of liquidity competition and thus increasing the incentives

for exposure. Finally, our results suggest that a market’s fee-and-rebate policy should provide

greater incentives for large investors and large trades. Since market monitoring and exposure

are both expensive for large investors, providing higher rebates and increasing monitoring as

well as direct market access capabilities can increase the chances of exposure but also increase

the rate at which latent investors observe the public market to seize those liquidity opportuni-

ties.

Ultimately, the issue at hand stems from the fact that continuous double-auction markets

are less efficient than other markets in matching and coordinating large trades, as gaining ex-

posure and monitoring large positions are more expensive in continuous markets. Providing

incentives for large trades can help attract greater order flow from off-exchange trading mech-

anisms to public exchanges, improve public market liquidity, and enhance the quality of the

price discovery process.

Appendix

To proof the propositions and lemmata of Section 3 and 4, we first establish preparatory results

in Section Preparatory Lemmata. The proofs of the key results are then provided in the suc-

ceeding sections. Lemmata, propositions and remarks that are established in this appendix are

numbered with an "A" prefix, while corresponding equations are numbered with an "a" prefix.

A.1 Preparatory Lemmata

Traders’ Execution Volumes

Lemma A1 (Liquidity Competitor’s Execution Volume). Let x denote the market sell order

size at time T , NC the liquidity supplier’s total order size and DH the hidden trader’s display

size. Then, the liquidity competitor’s execution volume XC at time T obeys

XC =







min(x, NC) if (σC , σL) = (step, off),

min((x − DH)+, NC) if (σC , σL) = (stay, off),

NC if σL = on.

(a1)
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Proof. Consider the first case, i.e., (σC , σL) = (step, off). Then, because the competitor

undercuts the hidden trader and submits at Bt0 +∆, he has price priority over the hidden trader.

Hence, incoming market order shares x get first matched against the NC of the competitor, i.e.,

XC = min(x, NC). Now assume (σC , σL) = (stay, off). This time price priority between the

competitor and the hidden trader is equal. However, the displayed part - having arrived at t0 -

has time priority over the competitor’s order. Thus, the liquidity suppliers order only executes

against the remaining (x − DH)+ shares of the initial market sell order of size x. Hence, the

execution volume reads XC = min((x − DH)+, NC). Finally assume σL = on. Because of the

block-trader’s large demand, i.e. NL > NH + NC , he will trade all shares from the competitor,

i.e., XC = NC .

Lemma A2 (Hidden Trader’s Execution Volume). Let x denote the market sell order size at

time T , NC the liquidity supplier’s total order size and DH the hidden trader’s display size.

Then, the hidden trader’s execution volume XH obeys

XH =







min ((x − NC)+, NH) if (σC , σL) = (step, off),

min(x, DH) + min((x − DH − NC)+, NH − DH) if (σC , σL) = (stay, off),

DH + min(x, NH − DH) if σL = on.

(a2)

Proof. We can essentially recycle the arguments of the proof in Lemma A1. In case (σC , σL) =

(step, off), the hidden trader has lower price priority than the competitor, thus his order gets

executed only after a market order of size x has executed the competitor’s NC shares, i.e.

XH = min((x − NC)+, NH). In case (σC , σL) = (stay, off), the displayed part of the hidden

trader gets served first (i.e., DH), then the competitor (i.e., NC shares) and at last the hidden

trader’s hidden part of the order (i.e., NH − DH). Thus,

XH = min(x, DH) + min((x − DH − NC)+, NH − DH).

Finally assume σL = on. Because his demand is large, i.e., NL > NH + NC , the latent trader

will trade all displayed DH shares. The remaining NH − DH will be traded against the noise

trader. Hence, the hidden trader’s execution volume reads XH = DH +min(x, NH −DH).
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Traders’ Payoffs

Lemma A3 (The Block-Trader’s Payoff). Given the strategies σL, σC and σH ≡ DH , the

block-trader’s payoff ΠL obeys

ΠL =







−(∆ + γ) (NL − DH − NC)+
if (σL, σC) = (on, stay),

NC∆ − (∆ + γ) (NL − DH − NC)+
if (σL, σC) = (on, step),

−γNL if (σL, σC) = (off, stay),

(∆ − γ) NL if (σL, σC) = (off, step).

(a3)

Proof. Consider the first case, i.e., (σL, σC) = (on, stay). The block-trader trades all displayed

depth, i.e., DH + NC shares, at the price Bt0 = 0. Consequently, downstairs market price shifts

to Bt0 − ∆. Thus, the remaining NL − NC − DH shares will get executed at the upstairs

price Bt0 − ∆ + γ and the (relative) payoff reads ΠL = −(∆ + γ) (NL − DH − NC)+
. Now,

consider the second case, i.e., (σL, σC) = (on, step). In this case, everything remains the same,

except the block-trader executes NC shares at one-∆ better price. Therefore, the payoff obeys

ΠL = NC∆ − (∆ + γ) (NL − DH − NC)+
. Consider the case (σL, σC) = (off, stay). The

block-trader trades all NL shares in the upstairs market by paying a fee γ for each of the shares,

thus ΠL = −γNL. Finally, assuming (σL, σC) = (off, step), i.e., the block-trader again trades

all NL in the upstairs market. As the liquidity competitor improves the public best bid price, the

upstairs prices shifts as well according to (2.4). Therefore, payoff reads ΠL = (∆ − γ)NL.

Lemma A4 (Liquidity Competitor’s Payoff). Given the strategies σL, σC and σH ≡ DH , the

liquidity competitor’s payoff ΠC obeys

ΠC =







∆ min(x, NC) + (S + ∆ + 1
2
β(NC − x)+)(NC − x)+ if (σC , σL) = (step, off),

∆NC if (σC , σL) = (step, on),
(

S + 1
2
β (NC − (x − DH)+)

+
)

(NC − (x − DH)+)
+

if (σC , σL) = (stay, off),

0 if (σC , σL) = (stay, on).

(a4)

Proof. Follows directly from equation (2.2) and Lemma A1. For instance, assume σL = off

and σC = stay, the execution volume according to Lemma A1 equals min((x − DH)+, NC)

shares. Thus, the payoff according to (2.2) reads

(

S +
1

2
β
(

NC − (x − DH)+
)+
) (

NC − (x − DH)+
)+

.
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On the other hand, when the liquidity competitor “steps ahead”, i.e., σC = step, then the

opportunity costs associated with executing the order increases marginally by one tick ∆, i.e.,

the payoff reads

∆ min(x, NC) + (S + ∆ +
1

2
β(NC − x)+)(NC − x)+.

Now assume the case when the latent trader trades downstairs, i.e., σL = on. Then when the

liquidity competitor improves the best bid (i.e., σC = step), his total payoff reads ∆NC . If the

competitor submits his limit order at the benchmark price Bt0 = 0 however, his execution costs

are zero.

Lemma A5 (Hidden Trader’s Payoff). Given the strategies σL, σC and σH ≡ DH , the hidden

trader’s payoff ΠH obeys

ΠH(σC , σL, σH) =






(S + ∆ + 1
2
β(NH − (x − NC)+)+)(NH − (x − NC)+)+ if (σC , σL) = (step, off),

(S + 1
2
βXH) (NH − XH) if (σC , σL) = (stay, off),

(S − ∆ + 1
2
β(NH − DH − x)+)(NH − DH − x)+ if σL = on,

(a5)

with XH := min(x, DH) + min((x − DH − NC)+, NH − DH).

Proof. Follows directly from (2.2) and the execution volume XH derived from Lemma A2.

We proceed in the same fashion as before. Therefore, consider first σL = off and assume

σC = step. Because the competitor’s order has priority over the hidden trader’s order, in total

(x − NC)+ standing (iceberg) order shares get executed at the benchmark price Bt0 = 0. Thus

remaining (NH − (x − NC)+)+ shares have to get executed via markets orders at the (relative)

price (S + ∆ + 1
2
β(NH − (x − NC)+)+). Consider now σC = stay. In this case, the execution

volume reads

XH = min(x, DH) + min((x − DH − NC)+, NH − DH).

Together with (2.2), one obtains the result. Finally, in the case σL = on, the execution volume

according to Lemma A2 reads DH + min(x, NH − DH). As all visible liquidity has been

replenished at Bt0 , the price shifts by a tick ∆ downwards. Therefore, the remaining NH −
DH − min(x, NH − DH) = (NH − DH − x)+ shares are executed as market orders at the price

(S − ∆ + 1
2
β(NH − DH − x)+).
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A.2 Equilibrium Results of Section 3

Proof of Lemma 1 (Liquidity Competitor’s Best Response). We use Lemma A4 and the fact that

µ = 0 or equivalently σL = off holds. Hence, the competitor’s payoff as in (a4) reduces to

ΠC(σC , DH) =







S (NC − (x − DH)+)
+

if σC = stay,

∆ min(x, NC) + (S + ∆)(NC − x)+ if σC = step.
(a6)

We want to find the strategy σ∗
C that minimizes the competitor’s expected payoff given the

hidden trader choses to display DH shares, i.e.,

σ∗
C ≡ arg min

σC∈ΣC

E[ΠC(σC , DH)].

From (a6), we infer that E[ΠC(σC = stay, DH = 0)] < E[ΠC(σC = step, DH = 0)] holds.

Thus because of continuity, for sufficiently small display sizes DH , σC = stay is the optimal

strategy for the competitor. On the other hand, E[ΠC(σC = stay, DH)] is monotonously in-

creasing in the display size DH , whereas it is constant for σC = step. Let us denote ΦC the

critical threshold when both strategies exactly trade-off (if no such finite threshold exists, we

symbolically write ΦC = ∞). Then, the optimal strategy can be expressed in the following

way:

σ∗
C =







stay if DH ≤ ΦC ,

step else.

We obtain ΦC by simply equating both payoffs E[ΠC(σC = stay, DH)] and

E[ΠC(σC = step, DH)] and solving for DH ≡ ΦC . That is

0 = E[ΠC(σC = stay, ΦC)] − E[ΠC(σC = step, ΦC)]

=
((

1 − e−
NC

λ

)(

1 − e−
ΦC

λ

)

λ(βλ − S) + NCe−
ΦC

λ

(

βλ + e
ΦC

λ (∆ − βλ)
))

.

Solving for ΦC , we can finally rewrite the latter expression as

ΦC =







λ log
(

1
1−g

)

if g < 1,

∞ else.

with

g :=
NC

λ

∆

S

(

1 − e−
NC

λ

)

+ β

(

NC − λ

(

1 − e−
NC

λ

)) .
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Proof of Proposition 1 (Equilibrium). Because of Lemma 1 and the fact that λ, NC , ∆ > 0

holds, the display threshold is positive, i.e., ΦC > 0. Let us therefore consider the first case,

i.e., NH < ΦC . Then, because of DH ≤ NH and by Lemma 1, the liquidity competitor stays

at the same price level as the hidden trader, i.e., σ∗
C = stay. Thus according to Lemma A5, the

hidden trader’s (expected) payoff reads

E

[

ΠH(σC = stay, σH = DH)

]

= E

[

(S +
1

2
β(NH − XH))(NH − XH)

]

= SNH +
1

2
βN2

H − E[XH ](S + βNH) +
1

2
βE[(XH)2].

By Lemma A5, the hidden trader’s payoff is monotonously decreasing in the display size DH .

Hence, D∗
H = NH and σ∗

C = stay.

Now assume the opposite case, i.e., NH ≥ ΦC holds. Following the same reasoning, in

case DH ≤ ΦC , the competitor chooses the stay-strategy and therefore we have

E[ΠH(σH = DH)] ≥ E[ΠH(σH = ΦC)], DH ≤ ΦC .

Hence, D∗
H ≥ ΦC . It remains to be shown that D∗

H ≤ ΦC holds. Therefore, consider the

following expression

E[ΠH |DH ≤ ΦC ] − E[ΠH |DH > ΦC ] =

= E

[

(S +
1

2
β(NH − XH))(NH − XH)

∣
∣
∣
∣
∣
DH ≤ ΦC

]

− E

[

(S + ∆ +
1

2
β(NH − XH))(NH − XH)

∣
∣
∣
∣
∣
DH > ΦC

]

(∗)
= −∆

(

NH − E[XH

∣
∣
∣DH > ΦC ]

)

︸ ︷︷ ︸

≤0

+(S + βNH)
(

E[XH

∣
∣
∣DH > ΦC ] − E[XH

∣
∣
∣DH ≤ ΦC ]

)

︸ ︷︷ ︸

<0

+
1

2
β
(

E[(XH)2
∣
∣
∣DH ≤ ΦC ] − E[(XH)2

∣
∣
∣DH > ΦC ]

)

︸ ︷︷ ︸

<0

< 0.

The negativity of the first term in (∗) follows because NH ≥ XH by definition. The signs of

the second and third terms follow directly from Lemma A2 and the fact that in equilibrium

the competitor choses σC = step in case σH > ΦC and σC = stay otherwise. Thus finally,

D∗
H ≤ ΦC and therefore D∗

H = ΦC .

Proof of Lemma 2 (Laten Trader’s Best Response). First, assume σC = stay and 0 ≤ DH ≤
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ΦLa
. Then, according to the block investor’s payoff (a3) and the definition of ΦLa

, we have

ΠL(σL = off, σC = stay) − ΠL(σL = on, σC = stay) =

= −γNL + (∆ + γ)(NL − DH − NC)+

≥ −γNL + (∆ + γ)(NL − ΦLa
− NC)+ = 0.

Thus, for DH ≤ ΦLa
and σC = stay, the block-trader’s optimal strategy obeys σ∗

L = on. In

an analogous way, assuming σC = stay and ΦLa
< DH , we find σ∗

L = off . Thus, we can

summarize

σ∗
L =







on for DH ≤ ΦLa

off else
for σC = stay. (a7)

Now we consider the case σC = step. We proceed in the same fashion, according to (a3) and

for 0 ≤ DH ≤ ΦLb
, we have

ΠL(σL = off, σC = step) − ΠL(σL = on, σC = step) =

= (∆ − γ)NL − NC∆ + (∆ + γ)(NL − DH − NC)+

≥ (∆ − γ)NL − NC∆ + (∆ + γ)(NL − ΦLb
− NC)+ = 0.

In other words, for DH ≤ ΦLb
and σC = step, the block-trader’s optimal strategy is σ∗

L = on.

Analogously we obtain for ΦLb
< DH , that the block-trader’s optimal strategy is σ∗

L = off .

We thus have

σ∗
L =







on for DH ≤ ΦLb

off else
for σC = step. (a8)

Because of NL > NC , we have ΦLa
< ΦLb

and we can finally sum up both results (a7) and

(a8)

σ∗
L =







off if 0 ≤ DH < ΦLa
,

on if ΦLa
≤ DH < ΦLb

and σC = stay,

off if ΦLa
≤ DH < ΦLb

and σC = step,

on if ΦLb
≤ DH .

Proof of Lemma 3 (Liquidity Competitor’s Best Response with Latent Investor). First, assume

that DH ≤ ΦLa
holds. Then, because of Lemma 2, the latent trader will never trade in the

public exchange, i.e., σL = off . For the liquidity competitor and the hidden trader, this
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problem effectively reduces to the case without latent trader. We can thus recycle the results of

Proposition 1, i.e., σ∗
C = σ∗0

C with 0 ≤ DH < ΦLa
, where σ∗0

C is referring to the competitor’s

equilibrium strategy without latent demand (i.e., µ = 0).

Now assume ΦLa
< DH ≤ ΦLb

. According to Lemma 2, the latent trader trades in the

primary exchange if (and only if) the competitor does not improve the best bid price, i.e., if

σC = stay holds. However, according to Lemma A3,

ΠC(σL = off, σC = step) − ΠC(σL = on, σC = stay) > 0

holds for any x ≥ 0. Thus, σ∗
C = stay for ΦLa

< DH ≤ ΦLb
.

Finally, consider the case ΦLb
< DH . Again using Lemma 2, the latent trader will trade on

the primary exchange, i.e., σL = on and the payoff according to Lemma A3 obey

ΠC(σL = on, σC = stay) − ΠC(σL = on, σC = step) = −∆NC < 0, x ≥ 0.

If the latter inequality holds for all x, so it also holds in expectation. Thus, in this case, the

liquidity competitor’s optimal strategy is σ∗
C = stay when DH > ΦLa

holds.

Proof of Proposition 2 (Equilibrium with Block Investors). The best response strategies of the

liquidity competitor and the latent trader have been shown in Lemma 2 and 3. To derive the

equilibrium, the hidden trader’s optimal strategy remains to be shown. For now, assume NH ≤
ΦLa

. Because DH ≤ NH ≤ ΦLa
and because of Lemma 2, the latent trader will never trade in

the public exchange, i.e., σL = off . Hence, the hidden trader’s game reduces to the baseline

model without the latent investor and therefore σ∗
H = σ∗0

H for NH ≤ ΦLa
, where σ∗0

H denotes

the hidden trader’s equilibrium strategy without the latent investor as of Proposition 1.

Now assume the opposite case, i.e., NH > ΦLa
. Because of Lemma 2 and Lemma 3,

in case DH > ΦLa
, the competitor will chose σC = stay and the latent investor will chose

σL = on. Hence in this case, the payoff according to Lemma A5 reads

E[ΠH

∣
∣
∣DH > ΦLa

] =E[ΠH

∣
∣
∣σL = on, σC = stay, DH > ΦLa

]

=E[(S +
1

2
β(NH − XH))(NH − XH)

∣
∣
∣σL = on, σC = stay, DH > ΦLa

]

≥E[(S +
1

2
β(NH − XH)) (NH − XH)

︸ ︷︷ ︸

=0

∣
∣
∣σL = on, σC = stay, DH = NH ]

=E[ΠH

∣
∣
∣DH = NH ] = 0.
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On the other hand,

E[ΠH

∣
∣
∣DH ≤ ΦLa

] ≥E[ΠH

∣
∣
∣DH ≤ ΦLa

, σC = stay]

=E[(S +
1

2
β(NH − XH)) (NH − XH)

∣
∣
∣DH ≤ ΦLa

, σC = stay]

≥SE[(NH − XH)
∣
∣
∣DH ≤ ΦLa

, σC = stay]

≥SE[(NH − XH)
∣
∣
∣DH ≤ ΦLa

, σC = stay, NC = 0]

=S
(

NH − λ(1 − e−
NH

λ )
)

> 0

holds for finite λ > 0. Thus, we have E[ΠH ] ≥ E[ΠH

∣
∣
∣DH = NH ], i.e., D∗

H = NH .

A.3 Partial Equilibrium Results of Section 4

Proof of Corollary 4 (Expected Execution and Cancelation Volumes). It suffices to show the as-

sertion for EXBT
t0

. The rest follows by definition. Therefore, first observe that the latent

trader’s market order size is governed by

xL =







DH + NC if σL = on,

0 else.
(a9)

But according to Lemma 2, in equilibrium (i.e., ΣC = stay), if the hidden trader displays

more, the latent trader will adopt the strategy σL = on. Thus xL is a monotonically increasing

function of DH and so is x + xL as the noise trader’s market order does not depend on DH . In

particular, min(x + xL, NC + NH) is a monotonously increasing function of DH and so must

the expectation

EXBT
t0

= E[min(x + xL, NC + NH)] (a10)

be a monotonously increasing function of DH .

Proofs of Proposition 3 and 4

To derive Proposition 3 and 4, we first establish some basic properties related to the binomial

arrival of the hidden trader. Subsequently, we provide a representation of the midpoint returns

in our model as established in Lemma A6. The results of excess returns and excess volatility

will be based on this representation. Finally, Proposition A1 and A2 are established to prove

Proposition 3 and 4 of Section 4.
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Preparatory Remarks and Results

Remark A1 (Hidden Trader’s Binomial Order Arrival). Assume the hidden trader arrives with

probability q at t1. When he arrives, then NH = n > 0, with 0 ≤ DH = d ≤ NH = n, else

NH = DH = 0. Thus, NH and DH can be described as binomial random variables with mean

and variance obeying

E[N̄H ] = qNH , E[D̄H ] = qDH ,

V ar[N̄H ] = q(1 − q)N2
H , V ar[D̄H ] = q(1 − q)D2

H . (a11)

Both, N̄H and ∆̄, are correlated with covariance

Cov[N̄H , D̄H ] = E[N̄HD̄H ] − E[N̄H ]E[D̄H ]

= q(1 − q)NHDH .
(a12)

Moreover, denote the total sell market order volume at T by X̄ . The sell market order volume

consists of both, the sell orders issued by the noise trader, i.e., x, and the market orders issued

from the latent block trader, i.e., xL ≤ NL. Thus, we have X̄ = x + xL. Remember that

x̄L =







D̄H + NC if σL = on,

0 else.
(a13)

Also by assumption arrival of the noise trader is independent of the actions of the hidden trader

and the latent trader, i.e.,

Cov[x, xL] = 0, Cov[x, D̄H ] = 0, Cov[x, N̄H ] = 0. (a14)

Lemma A6 (Midpoint Returns). The midpoint-return between time t = 0 and T , i.e., RT obeys

RT = pmid
T − pmid

0 =
β

2
(N̄H + NC − X̄), (a15)

with pmid
t = At+Bt

2
.

Proof. When liquidity supply is higher than liquidity demand, i.e., N̄H + NC > X̄ , then the

(buy) liquidity suppliers issue N̄H + NC − X̄ shares of market buy orders to complete their

trades at time T . Since we assume linear price impact of market orders as of (2.3) and a constant

spread, i.e., At = S + Bt ∀t > 0. This results in a price shift of the best ask price AT and bid

price BT as follows

AT = At +
β

2
(N̄H + C − X̄), BT = Bt +

β

2
(N̄H + C − X̄).

48



The same holds in the presence if excess liquidity demand, i.e., N̄H + NC ≤ X̄ . Thus, ulti-

mately, the midpoint return reads

RT
t0

:= mT − mt0 =
β

2
(N̄H + C − X̄),

with mt = At+Bt

2
.

To prove Proposition 3, we first establish the following proposition.

Proposition A1 (Expected Equilibrium Returns).

(i) Partial Equilibrium: Assume that σL = σ∗
L and σC = stay as of Proposition 2 and that

the hidden trader chooses any strategy, i.e., σH = DH ≡ D∗
H . Then the expected market

return obeys

E[RT
t0

|DH ] =
β

2







qNH + NC − λ, 0 ≤ DH < ΦLa
,

q
(

NH − NC − DH

)

+ NC − λ, 0 < ΦLa
≤ DH ,

q
(

NH − DH

)

− λ, ΦLa
≤ 0.

(a16)

(ii) Full Equilibrium: Assume all traders employ their equilibrium strategies, i.e., σL = σ∗
L,

σC = stay and σH = σ∗
H as of Proposition 2, then the expected market return obeys

E[RT
t0

|DH = D∗
H ] =

β

2







qNH + NC − λ, 0 ≤ NH < ΦLa
,

NC(1 − q) − λ, 0 < ΦLa
≤ NH ,

−λ, ΦLa
≤ 0.

(a17)

Proof. We first compute the expected return for the case ΦLa
> DH ≥ 0. According to

Proposition 2, in this case the latent trader does not trade in the order book market, i.e., σL 6= on

and because of (a13), x̄L = 0 and X̄ = x follow. Thus, together with (a15), we get

E[RT
t0

] = E[β(N̄H + NC − X̄)]

= E[β(N̄H + NC − x)]

= β
(

qNH + NC − λ
)

.

(a18)

The conclusion for the case 0 < ΦL ≤ DH is found in total analogy. Thus, according to

Proposition 2, σL = on (i.e., x̄L = DH + NC) holds, when the hidden trader arrives and
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σL = off (i.e., x̄L = 0) otherwise. In particular, E[x̄L] = q(DH + NC) holds. Together with

(a15), we obtain

E[RT
t0

] = E[β(N̄H + NC − X̄)]

= β E[N̄H ]
︸ ︷︷ ︸

=qNH

+βNC − β E[x]
︸ ︷︷ ︸

=λ

−β E[x̄L]
︸ ︷︷ ︸

=q(DH +NC)

= β

(

q
(

NH − NC − DH

)

+ NC − λ

)

,

(a19)

where we used (a11) and (a13). Least, we consider the case ΦL ≤ 0 ≤ DH . Since ΦL ≤
0 holds, the latent trader trades always all visible shares, independent of the hidden trader’s

arrival. In particular, E[x̄L] = qDH + NC holds. Thus,

E[RT
t0

] = E[β(N̄H + NC − X̄)]

= βE[(N̄H + NC − x − x̄L
︸︷︷︸

=D̄H+NC

)]

= β

(

qNH − qDH − λ

)

.

(ii) Follows directly from (i) and Proposition 2. The cases ΦLa
< 0 and NH ≥ ΦLa

follow

immediately from σ∗
H = D∗

H = NH . While the third case is independent of DH .

Proof of Proposition 3. Follows directly from Proposition A1 and the definition of excess re-

turns (see Definition 2 on page 19).

Similarly, to prove Proposition 4, we first establish the following proposition.

Proposition A2 (Equilibrium Volatility).

(i) Partial Equilibrium: Assume that σL = σ∗
L and σC = stay as of Proposition 2 and that

the hidden trader chooses any strategy, i.e., σH = DH ≡ D∗
H . Then, the midpoint return

variance obeys

V ar[RT
t0

] =
1

4
β2λ2 +

1

4
β2(1 − q)q







N2
H , 0 ≤ DH < ΦLa

,

(NH − DH − NC)2, 0 < ΦLa
≤ DH ,

(NH − DH)2, ΦLa
≤ 0.

(a20)
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(ii) Full Equilibrium: Assume all traders employ their equilibrium strategies, i.e., σL = σ∗
L,

σC = stay and σH = σ∗
H as of Proposition 2, then volatility (i.e., return variance between

time t0 and T ) obeys

V ar[RT
t0

] =
1

4
β2λ2 +

1

4
β2(1 − q)q







N2
H , 0 ≤ NH < ΦLa

,

N2
C , 0 < ΦLa

≤ NH ,

0, ΦLa
≤ 0.

(a21)

Proof. Consider the case 0 ≤ DH < ΦLa
. Due to Proposition 2 and (a13), σL = off , x̄L = 0

and X̄ = x hold. Together with (a15), we have

V ar[RT
t0

] = V ar

[

1

2
β(N̄H + NC − X̄)

]

= V ar

[

1

2
β(N̄H + NC − x)

]

=
1

4
β2 V ar[x]
︸ ︷︷ ︸

λ2

−1

2
β2 Cov[x, N̄H ]
︸ ︷︷ ︸

=0

+
1

4
β2 V ar[N̄H]
︸ ︷︷ ︸

=q(1−q)NH

=
1

4
β2λ2 +

1

4
β2q(1 − q)N2

H ,

where in the third equation we used the fact that NC is a constant and in the fifth equation we

used the stochastic properties of x and N̄H as of (a12) and (a14).

Now we consider the case 0 < ΦL ≤ DH . According to Proposition 2, we have σL = on

when the hidden trader arrives and σL = off when not. Together with (a13) and (a15), we

obtain

V ar[RT
t0

] = V ar

[

1

2
β(N̄H + NC − X̄)

]

=
1

4
β2V ar[N̄H + NC − x − x̄L]

=
1

4
β2V ar[N̄H − x − x̄L]

=
1

4
β2 V ar[N̄H]
︸ ︷︷ ︸

=q(1−q)NH

+
1

4
β2 V ar[x]
︸ ︷︷ ︸

=λ2

+
1

4
β2 × V ar[x̄L]

︸ ︷︷ ︸

=q(1−q)(DH +NC)2

− 1

2
β2 Cov[N̄H, x]
︸ ︷︷ ︸

=0

−1

2
β2Cov[N̄H , x̄L] +

1

2
β2 Cov[x, x̄L]
︸ ︷︷ ︸

=0

,

(a22)

where we used the fact that NC is fix in the third equation and stochastic independence in the

forth equation as of (a14). Moreover, since the latent trader only trades when the hidden trader
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arrives, x̄L is itself a binomial random variable taking value DH + NC with probability q and

0 otherwise. In particular, we have V ar[x̄L] = q(1 − q)(DH + NC)2 and one can easily show

that Cov[N̄H , x̄L] = q(1 − q)NH(DH + NC) holds. Hence, the return variance obeys

V ar[RT
t0

] =
1

4
β2q(1 − q)N2

H +
1

4
β2λ2 +

1

4
β2q(1 − q)(DH + NC)2 − 1

2
β2 Cov[N̄H , x̄L]

︸ ︷︷ ︸

=q(1−q)NH (DH +NC)

=
1

4
β2λ2 +

1

4
β2q(1 − q)

(

NH − DH − NC

)2

.

(a23)

Using the same arguments, we consider the case ΦL ≤ 0 ≤ DH . In this case, the latent trader

trades always the amount x̄L = D̄H + NC . Hence,

V ar[RT
t0

] = V ar[β(N̄H + NC − X̄)]

=
1

4
β2V ar[N̄H + NC − x − x̄L]

=
1

4
β2V ar[N̄H − x − D̄H ]

=
1

4
β2 V ar[N̄H ]
︸ ︷︷ ︸

=q(1−q)N2
H

+
1

4
β2 V ar[x]
︸ ︷︷ ︸

=λ2

+
1

4
β2 V ar[D̄H ]
︸ ︷︷ ︸

=q(1−q)D2
H

− 1

2
β2 Cov[N̄H , x]
︸ ︷︷ ︸

=0

−1

2
β2 Cov[N̄H, D̄H ]
︸ ︷︷ ︸

=q(1−q)NH DH

+
1

2
β2 Cov[x, D̄H ]
︸ ︷︷ ︸

=0

=
1

4
β2λ2 +

1

4
β2q(1 − q)

(

NH − DH

)2

.

(ii) Follows directly from (i) and Proposition 2. The cases ΦLa
< 0 and NH ≥ ΦLa

follow

immediately from σ∗
H = D∗

H = NH . While the third case is independent of DH .

Proof of Proposition 4. The proof is analogously to the proof of Proposition 3. It follows

directly from Proposition A2 by applying the definition of excess volatility (see Definition 3 on

page 20).
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